Functional Analysis I Winter 2006/07

This course is based on the textbooks of Hans Wilhelm Alt [Alt02] and Michael Reed and Barry Simon [RS75] on Functional Analysis. The concepts and notation are based on the course "Einführung in die Funktionalanalysis" held in winter 2005/06.

Contents

1	Cor	npact operators	3
	1.1	Definition and examples	3
	1.2	Elementary properties	5
	1.3	Spectrum and resolvent	7
	1.4	Fredholm operators	12
	1.5	Spectral theorem	18
	1.6	Fredholm alternative and an application	22
	1.7	Normal operators	23
	1.8	Spectral theorem for normal operators	26
2	Hal	an-Banach theorem	29
	2.1	Extension of linear functionals on spaces with sub-linear map-	
		pings	29
	2.2		32
	2.3	Applications	33
3	Uni	form boundedness principle	36
	3.1	Baire category theorem	36
	3.2	Uniform boundedness principle	36
	3.3		37
	3.4	Open mapping theorem	38
	3.5		40
	3.6		40
		~ -	

4	Wea	ak convergence	41		
	4.1	Definition, elementary properties and examples	41		
	4.2	Banach–Alaoglu theorem	43		
	4.3	Reflexive spaces	45		
	4.4	Separation theorem	49		
5	Projections				
	5.1	Linear projections	52		
	5.2	Continuous projections	53		
	5.3	Closed complement theorem			
	5.4	Orthogonal projections			
6	Bounded operators 50				
	6.1	Adjoint operators	56		
	6.2	Spectrum and resolvent	58		
	6.3	Spectral theorem (continuous functional calculus)	64		
7	Unbounded operators				
	7.1	Domains, graphs, adjoints, and spectrum	67		
	7.2	Symmetric and self-adjoint operators			
\mathbf{R}_{i}	References				

1 Compact operators

In this section X, Y are Banach spaces over the field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ with norm $\|\cdot\|$.

1.1 Definition and examples

Definition 1.1 The set of the compact (linear) operators from X to Y is defined by

$$K(X;Y) := \{T \in L(X;Y) \mid T(U_1(0)) \text{ is totally bounded} \}.$$

Lemma 1.2 For $T \in L(X;Y)$ the following properties are equivalent:

- (i) $T \in K(X;Y)$.
- (ii) $T(U_1(0))$ is compact in Y.
- (iii) T(M) is totally bounded for all bounded $M \subset X$.
- (iv) For all bounded sequences $(x_n)_{n\in\mathbb{N}}$ in X the sequence $(Tx_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

Proof: (i) is equivalent to (ii): Corollary E3.4(iii).

- (ii) implies (iv): Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in X. Then there exists r>0 such that $||x_n||< r$ for all $n\in\mathbb{N}$. Set $u_n:=x_n/r, n\in\mathbb{N}$. Then $(Tu_n)_{n\in\mathbb{N}}$ is a sequence in $T(U_1(0))$. Since $\overline{T(U_1(0))}$ is compact by (ii), $(Tu_n)_{n\in\mathbb{N}}$ has a convergent subsequence, i.e., $(Tx_{n_k}/r)_{k\in\mathbb{N}}$ is convergent for some subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$. But then also $(Tx_{n_k})_{k\in\mathbb{N}}$ is convergent.
- (iv) implies (iii): Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in T(M). Then there exists a sequence $(x_n)_{n\in\mathbb{N}}$ in M such that $Tx_n = y_n$ for all $n \in \mathbb{N}$. Since M is bounded, also $(x_n)_{n\in\mathbb{N}}$ is bounded. Then (iv) implies that $(y_n)_{n\in\mathbb{N}}$ has a convergent subsequence. Thus, each sequence in T(M) has a convergent subsequence. This implies that T(M) is totally bounded (see the proof of Proposition E3.3)
 - (iii) implies (i): Obvious.

Example 1.3 (i) Let Y be finite dimensional. Then K(X;Y) = L(X;Y).

- (ii) Let $T \in L(X;Y)$ with $\dim \mathcal{R}(T) < \infty$ (finite rank operators). Then $T \in K(X;Y)$.
- (iii) Let $k:[0,1]\times[0,1]\to\mathbb{K}$ be continuous. Then the linear mapping $T:C([0,1])\to C([0,1])$ defined by

$$(Tf)(x) := \int_0^1 k(x, y) f(y) \, dy, \quad f \in C([0, 1]), \, x \in [0, 1],$$

is compact.

(iv) Let $\Omega_1 \subset \mathbb{R}^{d_1}$, $\Omega_2 \subset \mathbb{R}^{d_2}$ be open, $1 , <math>1 < q < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, and $K: \Omega_1 \times \Omega_2 \to \mathbb{K}$ measurable with

$$||K|| := \left(\int_{\Omega_1} \left(\int_{\Omega_2} |K(x,y)|^{p'} dy \right)^{\frac{q}{p'}} dx \right)^{\frac{1}{q}} < \infty.$$

Then the linear mapping $T: L^p(\Omega_2) \to L^q(\Omega_1)$ defined by

$$(Tf)(x) := \int_{\Omega_2} K(x, y) f(y) \, dy, \quad f \in L^p(\Omega_2), \, x \in \Omega_1,$$

is bounded with $||T||_{L(L^p;L^q)} \leq ||K||$. Furthermore one can show that T is compact. The function K is called the **integral kernel** corresponding to T. (v) Let

$$D := \{ f \in C^2([0,\pi]) | f(0) = f(\pi) = 0 \} \subset L^2([0,\pi]).$$

Such boundary conditions are called **Dirichlet boundary condition**. We consider the linear mapping $L: D \to L^2([0,\pi])$ defined by

$$Lf := f'', \quad f \in D.$$

Then L is injective and $L^{-1}: \mathcal{R}(L) \to D$ extends to a self-adjoint, compact operator on $L^2([0,\pi])$. **Eigenfunctions** of L (and thus of L^{-1}) are given by

$$f_n := \sin(n\cdot), \quad n \in \mathbb{N},$$

with corresponding **eigenvalues** $-n^2$, $n \in \mathbb{N}$ $(-1/n^2, n \in \mathbb{N})$. Moreover, $(f_n)_{n\in\mathbb{N}}$ is an orthogonal basis of $L^2([0,\pi])$.

This statement generalizes to the Laplace operator

$$\Delta := \sum_{i=1}^{d} \partial_i^2$$

with Dirichlet boundary conditions for quite general bounded subsets $\Omega \subset \mathbb{R}^d$. Of course, with different eigenfunctions and eigenvalues. This can be shown by an application of the spectral theorem for compact operators, because Δ^{-1} is a self-adjoint, compact operator on $L^2(\Omega)$.

Proof: (i): $T \in L(X;Y)$ maps bounded sets to bounded sets. But bounded sets in finite dimensional spaces are totally bounded by Corollary E3.4(iv) (there exists $n \in \mathbb{N}$ such that Y is isometrically isomorph to \mathbb{K}^n equipped with the norm induced by $\|\cdot\|$).

- (ii): Since, in particular, $T \in L(X; \mathcal{R}(T))$, this follows immediately from (i).
 - (iii): See Exercise E4.3, E4.4.
 - (iv): Will be shown later.
- (v): L is injective, because if Lf = 0 the integration by parts formula yields

$$0 = (Lf, f)_{L^2} = \int_0^{\pi} f''(x)f(x) dx = -\int_0^{\pi} f'(x)f'(x) dx + f'f\Big|_0^{\pi}$$
$$= -\int_0^{\pi} f'(x)f'(x) dx + f'(\pi)f(\pi) - f'(0)f(0) = -\int_0^{\pi} f'(x)f'(x) dx.$$

Thus, f'=0. This together with f(0)=0 implies f=0. Hence there exits $L^{-1}: \mathcal{R}(L) \to D$. Later on we will show that L^{-1} is bounded and $\overline{\mathcal{R}(L)}=L^2([0,\pi])$. Thus, L^{-1} extends to a bounded operator on $L^2([0,\pi])$, see Exercise 1.1. $L^{-1}\in K(L^2([0,\pi]))$ we will show later.

Since L is symmetric on D w.r.t. $(\cdot, \cdot)_{L^2}$, i.e.,

$$(Lf,g)_{L^2} = \int_0^\pi f''(x)g(x) dx = -\int_0^\pi f'(x)g'(x) dx + f'g\Big|_0^\pi$$
$$= -\int_0^\pi f'(x)g'(x) dx = (f, Lg)_{L^2}, \quad \text{for all } f, g \in D,$$

 L^{-1} is self-adjoint on $L^{2}([0,\pi])$.

The statement about eigenfunctions and eigenvalues is obvious, except for being a basis. This also will be shown later.

1.2 Elementary properties

Lemma 1.4 (i): K(X;Y) is a closed, subspace of L(X;Y). (ii): If $T \in L(X;Y)$, $S \in L(Y;Z)$ with Z a Banach space and T or S compact, then also ST is compact.

Proof: (i): K(X;Y) is a subspace, because if $T_1, T_2 \in K(X;Y)$ and $\alpha \in \mathbb{K}$, and if $(x_m)_{m \in \mathbb{N}}$ is a bounded sequence in X, then by Lemma 1.2 there exists

a convergent subsequence $(T_1x_{n_k})_{k\in\mathbb{N}}$. From this one can drop to a further convergent subsequence $(T_2x_{n_{k_l}})_{l\in\mathbb{N}}$. Then also

$$((\alpha T_1 + T_2)x_{n_{k_l}})_{l \in \mathbb{N}}$$

is convergent. Thus, $\alpha T_1 + T_2$ is compact by Lemma 1.2.

For proving K(X;Y) being closed, let $(T_n)_{n\in\mathbb{N}}$ be a sequence in K(X;Y) which converges to $T\in L(X;Y)$. Let $\varepsilon>0$ and choose $n_{\varepsilon}\in\mathbb{N}$ such that

$$||T - T_{n_{\varepsilon}}||_{L(X;Y)} < \frac{\varepsilon}{2}.$$

Since $T_{n_{\varepsilon}}$ is compact, there exit balls $U_{\frac{\varepsilon}{2}}(y_i)$, $i=1,\ldots,m_{\varepsilon}$, such that

$$T_{n_{\varepsilon}}(U_1(0)) \subset \bigcup_{i=1}^{m_{\varepsilon}} U_{\frac{\varepsilon}{2}}(y_i).$$

But then is

$$T(U_1(0)) \subset \bigcup_{i=1}^{m_{\varepsilon}} U_{\varepsilon}(y_i).$$

Thus, T is compact.

(ii): Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in X. Since T is continuous also $(Tx_n)_{n\in\mathbb{N}}$ is bounded. If S is compact, then $(STx_n)_{n\in\mathbb{N}}$ has a convergent subsequence. If T is compact, there exists a convergent subsequence $(Tx_{n_k})_{k\in\mathbb{N}}$ and continuity of S implies convergence of $(STx_{n_k})_{k\in\mathbb{N}}$. So in both cases ST is compact.

Lemma 1.5 A projection $P \in P(X)$ is compact, iff $\dim \mathcal{R}(P) < \infty$.

Proof: Finite rank operators are compact by Example 1.3(ii). The fact that compact projections have a finite dimensional range we know from Exercise E5.3.

Lemma 1.6 Let Y be a Hilbert space and $T \in L(X; Y)$. Then T is compact, iff there exists a sequence of finite rank operators which converges to T.

Proof: If T is the limit of finite rank operators, then by Lemma 1.4(i) T is compact, because from Example 1.3(ii) we already know that finite rank operators are compact.

Now let $T \in K(X;Y)$ and $\varepsilon > 0$. Then there exist balls $U_{\varepsilon}(y_i)$, $i = 1, \ldots, m_{\varepsilon}$, such that

$$T(U_1(0)) \subset \bigcup_{i=1}^{m_{\varepsilon}} U_{\varepsilon}(y_i).$$

Set

$$Y_{\varepsilon} := \operatorname{span}\{y_1, \dots, y_{m_{\varepsilon}}\}\$$

and denote by P_{ε} the orthogonal projection on Y_{ε} (which exists due to Corollary E5.14). Then $||Id - P_{\varepsilon}||_{L(Y)} \leq 1$, because

$$||y - P_{\varepsilon}y||_Y^2 = (y - P_{\varepsilon}y, y - P_{\varepsilon}y)_Y = (y, y - P_{\varepsilon}y)_Y \le ||y|| ||y - P_{\varepsilon}y||$$

for all $y \in Y$ due to the properties of P_{ε} and Cauchy–Schwartz inequality. Note that

$$T_{\varepsilon} := P_{\varepsilon}T : X \to Y_{\varepsilon}$$

is a finite rank operator. Now for $x \in U_1(0)$ there exists $i_0 \in \{1, \ldots, m_{\varepsilon}\}$ such that $Tx \in U_{\varepsilon}(y_{i_0})$. Hence

$$(T - T_{\varepsilon})x = (Id - P_{\varepsilon})Tx = (Id - P_{\varepsilon})(Tx - y_{i_0})$$

and therefore

$$||(T - T_{\varepsilon})x|| \le ||Id - P_{\varepsilon}||_{L(Y)}||Tx - y_{i_0}|| < \varepsilon \text{ for all } x \in U_1(0).$$

Thus,
$$||T - T_{\varepsilon}||_{L(X;Y)} \le \varepsilon$$
.

1.3 Spectrum and resolvent

Definition 1.7 The resolvent set of $T \in L(X)$ is defined by

$$\rho(T) := \left\{ \lambda \in \mathbb{K} \,\middle|\, \mathcal{N}(\lambda Id - T) = \{0\}, \right.$$

$$\mathcal{R}(\lambda Id - T) = X \ and \ (\lambda Id - T)^{-1} \in L(X) \right\}$$

and the spectrum by

$$\sigma(T) := \mathbb{K} \setminus \rho(T).$$

For $\lambda \in \rho(T)$ the operator

$$R(\lambda;T) := (\lambda Id - T)^{-1} \in L(X)$$

is called **resolvent** of T at λ and the function

$$\rho(T) \ni \lambda \mapsto R(\lambda; T) \in L(X)$$

is called resolvent function.

The spectrum can be decomposed into the point spectrum

$$\sigma_p(T) := \{ \lambda \in \sigma(T) \mid \mathcal{N}(\lambda Id - T) \neq \{0\} \},$$

the continuous spectrum

$$\sigma_c(T) := \left\{ \lambda \in \sigma(T) \, \middle| \, \mathcal{N}(\lambda Id - T) = \{0\} \text{ and } \right.$$

$$\mathcal{R}(\lambda Id - T) \neq X, \text{ but } \overline{\mathcal{R}(\lambda Id - T)} = X \right\},$$

and the residual spectrum

$$\sigma_r(T) := \{ \lambda \in \sigma(T) \mid \mathcal{N}(\lambda Id - T) = \{ 0 \} \text{ and } \overline{\mathcal{R}(\lambda Id - T)} \neq X \}.$$

Remark 1.8 (i) The condition $(\lambda Id - T)^{-1} \in L(X)$ in the definition of $\rho(T)$ is already implied by $(\lambda Id - T) \in L(X)$, $(\lambda Id - T)$ injective and surjective by the inverse mapping theorem, see Theorem 3.9 below. This we will prove later in this course.

(ii) $\lambda \in \sigma_p(T)$ is equivalent to the existence of an $0 \neq x \in X$ such that $Tx = \lambda x$. Then x is called **eigenvector** corresponding to the **eigenvalue** λ . The space $\mathcal{N}(\lambda Id - T)$ is called **eigenspace** of T to the eigenvalue λ . The eigenspace is a T-invariant subspace of X. A subspace $Y \subset X$ is called T-invariant, if $T(Y) \subset Y$.

Proposition 1.9 Let $T \in L(X)$. $\rho(T) \subset \mathbb{K}$ is open and the resolvent function $R(\cdot;T)$ is a \mathbb{K} -analytic mapping from $\rho(T)$ to L(X). Furthermore

$$||R(\lambda;T)||_{L(X)}^{-1} \le \operatorname{dist}(\lambda,\sigma(T)), \quad \lambda \in \rho(T).$$

Remark 1.10 A mapping $F: D \to Y, D \subset \mathbb{K}$ open, Y Banach space, is called \mathbb{K} -analytic, if for each $\lambda_0 \in D$ there exists a ball $U_{r_0}(\lambda_0) \subset D$, $r_0 > 0$ and a sequence $(y_n)_{n \in \mathbb{N}}$ in Y, such that

$$F(\lambda) = \sum_{n=1}^{\infty} y_n (\lambda - \lambda_0)^n, \quad \lambda \in U_{r_0}(\lambda_0).$$

 \mathbb{C} -analytic mappings with values in Y are holomorphic and many results from Complex Analysis generalize to this infinite dimensional setting, see e.g. [Alt02, App. 8], [RS75, Chap. VI]. See also the proof of Lemma 6.8 below, where this will be shown exemplary by using the Hahn-Banach theorem

Proof of Proposition 1.9: Let $\lambda \in \rho(T)$. Then we have for all $\mu \in \mathbb{K}$:

$$(\lambda - \mu)Id - T = (\lambda Id - T) - \mu Id = (\lambda Id - T)(Id - \mu R(\lambda; T)).$$

The operator

$$S(\mu) := Id - \mu R(\lambda; T)$$

is continuously invertible for

$$|\mu| \|R(\lambda; T)\|_{L(X)} < 1$$

by Proposition E4.6. Then $\lambda - \mu \in \rho(T)$ with

$$R(\lambda - \mu; T) = S(\mu)^{-1} R(\lambda; T) = \sum_{k=0}^{\infty} \mu^k R(\lambda; T)^{k+1}$$

again by Proposition E4.6. Therefore, with $d := ||R(\lambda;T)||_{L(X)}^{-1}$ we obtain

$$U_d(\lambda) \subset \rho(T)$$
,

i.e. $\operatorname{dist}(\lambda, \sigma(T)) \geq d$.

Proposition 1.11 Let $T \in L(X)$ and $\mathbb{K} = \mathbb{C}$. $\sigma(T) \subset \mathbb{C}$ is compact and non-empty (if $X \neq \{0\}$) with

$$r(T) := \sup_{\lambda \in \sigma(T)} |\lambda| = \lim_{m \to \infty} ||T^m||_{L(X)}^{\frac{1}{m}} \le ||T||_{L(X)}.$$

r(T) is called spectral radius of T.

Proof: Let $\lambda \neq 0$. By Proposition E4.6.

$$Id - \frac{T}{\lambda}$$

is continuously invertible, if

$$\left\| \frac{T}{\lambda} \right\|_{L(X)} < 1,$$

i.e. $|\lambda| > ||T||_{L(X)}$. Then

$$R(\lambda;T) = \frac{1}{\lambda} \left(Id - \frac{T}{\lambda} \right)^{-1} = \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}}.$$
 (1.1)

Thus

$$r := \sup_{\lambda \in \sigma(T)} |\lambda| \le ||T||_{L(X)}.$$

Observe that

$$\lambda^m Id - T^m = (\lambda Id - T)p_m(T) = p_m(T)(\lambda Id - T)$$

where

$$p_m(T) = \sum_{k=0}^{m-1} \lambda^{m-1-k} T^k.$$

Hence $\lambda \in \sigma(T)$ implies $\lambda^m \in \sigma(T^m)$. Then as before

$$|\lambda^m| \le ||T^m||_{L(X)}$$

and therefore

$$|\lambda| \le ||T^m||_{L(X)}^{\frac{1}{m}}.$$

Thus

$$r \le \liminf_{m \to \infty} \|T^m\|_{L(X)}^{\frac{1}{m}}.$$

Now it is left to show that

$$r \ge \limsup_{m \to \infty} \|T^m\|_{L(X)}^{\frac{1}{m}}.$$

Proposition 1.9 implies that $R(\cdot,T)$ is \mathbb{C} -analytic in $\mathbb{C}\setminus \overline{U_r(0)}$ (\mathbb{C} if $\sigma(T)=\emptyset$). Therefore the integral

$$\int_{\partial U_s(0)} \lambda^m R(\lambda; T) \, d\lambda, \quad m \in \mathbb{N}_0,$$

for s > r is independent of s. Hence together with (1.1) we obtain

$$\frac{1}{2\pi i} \int_{\partial U_s(0)} \lambda^m R(\lambda; T) \, d\lambda = \frac{1}{2\pi i} \int_{\partial U_s(0)} \sum_{k=0}^{\infty} \lambda^{m-k-1} T^k \, d\lambda
= \frac{1}{2\pi} \sum_{k=0}^{\infty} s^{m-k} \int_0^{2\pi} \exp(i\theta(m-k)) \, d\theta \, T^k = \sum_{k=0}^{\infty} s^{m-k} \delta_{m,k} T^k = T^m.$$

The exchange of infinite sum and integral is justified by the uniform convergence of the series on $\partial U_s(0)$. Hence we have for $m \in \mathbb{N}_0$ and s > r

$$||T^m||_{L(X)} = \frac{1}{2\pi} \left\| \int_{\partial U_s(0)} \lambda^m R(\lambda; T) \, d\lambda \right\|_{L(X)} \le s^{m+1} \sup_{|\lambda| = s} ||R(\lambda; T)||_{L(X)}. (1.2)$$

Therefore we obtain for s > r

$$\limsup_{m \to \infty} \|T^m\|_{L(X)}^{\frac{1}{m}} \le s \limsup_{m \to \infty} (s \sup_{|\lambda| = s} \|R(\lambda; T)\|_{L(X)})^{\frac{1}{m}} = s \text{ (or 0)}.$$

Since this holds for all s > r we obtain the desired inequality:

$$\limsup_{m \to \infty} ||T^m||_{L(X)}^{\frac{1}{m}} \le r.$$

Hence the statement concerning the spectral radius is proved. In the case when $\sigma(T) = \emptyset$, we get from (1.2) (m = 0)

$$||Id||_{L(X)} \le s \sup_{|\lambda| \le 1} ||R(\lambda;T)||_{L(X)}$$
 for all $0 < s \le 1$.

Since the resolvent in this case is \mathbb{C} -analytic on \mathbb{C} we have

$$\sup_{|\lambda| \le 1} ||R(\lambda;T)||_{L(X)} < \infty.$$

Thus $||Id||_{L(X)} = 0$, i.e. $X = \{0\}$.

Analyzing the proof of Proposition 1.11 we obtain in the real case the following corollary.

Corollary 1.12 Let $T \in L(X)$ and $\mathbb{K} = \mathbb{R}$. $\sigma(T) \subset \mathbb{R}$ is compact with

$$r(T) = \sup_{\lambda \in \sigma(T)} |\lambda| \le ||T^m||_{L(X)}^{\frac{1}{m}} \le ||T||_{L(X)} \quad \text{for all} \quad m \in \mathbb{N}.$$

Remark 1.13 (i) If dim $X < \infty$, then $\sigma(T) = \sigma_p(T)$.

(ii) If $\dim X = \infty$ and $T \in K(X)$, then $0 \in \sigma(T)$. In general, however, 0 might not be an eigenvalue.

Proof: (i): If $\lambda \in \sigma(T)$, then $\lambda Id - T$ is not bijective. Since $\dim X < \infty$, this implies that $\lambda Id - T$ is not injective, i.e., $\lambda \in \sigma_p(T)$.

(ii): Let $T \in K(X)$ and $0 \in \rho(T)$. Then $T^{-1} \in L(X)$ and therefore also

$$Id = T^{-1}T \in K(X)$$

by Lemma 1.4(ii). Thus, X is finite dimensional by Theorem E3.8 (Heine–Borel). See Exercise 1.3(ii) for a compact operator not having 0 as an eigenvalue.

1.4 Fredholm operators

Definition 1.14 A mapping $A \in L(X;Y)$ is called **Fredholm operator**, iff:

- (i) $\dim \mathcal{N}(A) < \infty$,
- (ii) $\mathcal{R}(A)$ is closed,
- (iii) $\operatorname{codim} \mathcal{R}(A) < \infty$.

The index of a Fredholm operator is defined by

$$\operatorname{ind}(A) := \dim \mathcal{N}(A) - \operatorname{codim} \mathcal{R}(A).$$

Remark 1.15 One says a closed subset Y of a Banach space X has finite **codimension** (codim $Y < \infty$), if

$$X = Y \oplus Z$$

and $\dim Z = n$ for some $n \in \mathbb{N}_0$. Then $\operatorname{codim} Y = n$ ($\operatorname{codim} Y$ is independent of the choice of Z, see Corollary 5.5 below.

Proposition 1.16 Let $T \in K(X)$. Then A := Id - T is a Fredholm operator with index 0.

Proof: Step 1: $\dim \mathcal{N}(A) < \infty$: Since Ax = 0 is equivalent to x = Tx, we have

$$U_1(0) \cap \mathcal{N}(A) \subset T(U_1(0)).$$

Thus the unit ball in $\mathcal{N}(A)$ is totally bounded. Therefore $\dim \mathcal{N}(A) < \infty$ by Theorem E3.8 (Heine–Borel).

Step 2: $\mathcal{R}(A)$ is closed: Let $x \in \overline{\mathcal{R}(A)}$ and $(x_n)_{n \in \mathbb{N}}$ a sequence in X such that

$$\lim_{n\to\infty} Ax_n = x.$$

W.l.o.g., we may assume that

$$||x_n|| \le 2d_n$$
 with $d_n := \operatorname{dist}(x_n, \mathcal{N}(A)), n \in \mathbb{N},$

otherwise choose $(a_n)_{n\in\mathbb{N}}$ in $\mathcal{N}(A)$ such that

$$||x_n - a_n|| \le 2 \operatorname{dist}(x_n, \mathcal{N}(A)), \quad n \in \mathbb{N},$$

and use the sequence $(\tilde{x}_n)_{n\in\mathbb{N}}$ with $\tilde{x}_n := x_n - a_n, n \in \mathbb{N}$. Note that

$$\operatorname{dist}(\tilde{x}_n, \mathcal{N}(A)) = \operatorname{dist}(x_n, \mathcal{N}(A)), \quad n \in \mathbb{N}.$$

Assume that $(d_n)_{n\in\mathbb{N}}$ is not bounded. Then there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty} d_{n_k} = \infty$. Set

$$y_k := \frac{x_{n_k}}{d_{n_k}}, \quad k \in \mathbb{N}.$$

Then

$$\lim_{k \to \infty} Ay_k = \lim_{k \to \infty} \frac{Ax_{n_k}}{d_{n_k}} = 0.$$

Since $(y_k)_{k\in\mathbb{N}}$ is bounded and T compact, there exists a subsequence $(k_l)_{l\in\mathbb{N}}$ and $y\in X$ such that

$$\lim_{l\to\infty} Ty_{k_l} = y.$$

Hence

$$\lim_{l \to \infty} y_{k_l} = \lim_{l \to \infty} A y_{k_l} + \lim_{l \to \infty} T y_{k_l} = y.$$

$$\tag{1.3}$$

Since A is continuous, it follows

$$Ay = \lim_{l \to \infty} Ay_{k_l} = 0.$$

Thus $y \in \mathcal{N}(A)$. This implies

 $||y_{k_l} - y|| \ge \operatorname{dist}(y_{k_l}, \mathcal{N}(A))$

$$= \operatorname{dist}\left(\frac{x_{n_{k_l}}}{d_{n_{k_l}}}, \mathcal{N}(A)\right) = \frac{\operatorname{dist}(x_{n_{k_l}}, \mathcal{N}(A))}{d_{n_{k_l}}} = 1.$$

But this contradicts (1.3). Hence, $(d_n)_{n\in\mathbb{N}}$ is bounded and therefore also $(x_n)_{n\in\mathbb{N}}$. Now, because T is compact, we can conclude the existence of a subsequence $(n_k)_{k\in\mathbb{N}}$ and $z\in X$ such that

$$\lim_{k \to \infty} Tx_{n_k} = z.$$

Thus

$$x = \lim_{k \to \infty} Ax_{n_k} = A(\lim_{k \to \infty} Ax_{n_k} + \lim_{k \to \infty} Tx_{n_k}) = A(x+z),$$

i.e., $x \in \mathcal{R}(A)$.

Step 3: $\mathcal{N}(A) = \{0\}$ implies $\mathcal{R}(A) = X$: Assume there exists $x \in X \setminus \mathcal{R}(A)$. Then

$$A^n x \in \mathcal{R}(A^n) \setminus \mathcal{R}(A^{n+1})$$
 for all $n \in \mathbb{N}$.

Because if there would exist $y \in X$ such that $A^n x = A^{n+1} y$, then

$$A^n(x - Ay) = 0.$$

But then $\mathcal{N}(A) = \{0\}$ implies (inductively)

$$x - Ay = 0$$
.

i.e. $x \in \mathcal{R}(A)$. Contradiction!

Furthermore, $\mathcal{R}(A^{n+1})$, $n \in \mathbb{N}$, is closed by Step 2, because

$$A^{n+1} = (Id - T)^{n+1} = Id + \sum_{k=1}^{n+1} {n+1 \choose k} (-T)^k$$

and

$$\sum_{k=1}^{n+1} \binom{n+1}{k} (-T)^k$$

is compact by Lemma 1.4. Hence there exists $a_{n+1} \in \mathcal{R}(A^{n+1})$ with

$$0 < ||A^n x - a_{n+1}|| \le 2 \operatorname{dist}(A^n x, \mathcal{R}(A^{n+1})).$$

Now consider

$$x_n := \frac{A^n x - a_{n+1}}{\|A^n x - a_{n+1}\|} \in \mathcal{R}(A^n), \quad n \in \mathbb{N}.$$

We have $\operatorname{dist}(x_n, \mathcal{R}(A^{n+1})) \geq \frac{1}{2}$, because for all $y \in \mathcal{R}(A^{n+1})$ is

$$||x_n - y|| = \frac{||A^n x - (a_{n+1} + ||A^n x - a_{n+1}||y)||}{||A^n x - a_{n+1}||} \ge \frac{\operatorname{dist}(A^n x, \mathcal{R}(A^{n+1}))}{||A^n x - a_{n+1}||} \ge \frac{1}{2}.$$

Thus for m > n

$$||Tx_n - Tx_m|| = ||x_n - (Ax_n + x_m - Ax_m)|| \ge \frac{1}{2},$$

because $Ax_n + x_m - Ax_m \in \mathcal{R}(A^{n+1})$. Therefore, $(Tx_n)_{n \in \mathbb{N}}$ has no convergent subsequence although $(x_n)_{n \in \mathbb{N}}$ is bounded. This is in contradiction to the compactness of T.

Step 4: $\operatorname{codim} \mathcal{R}(A) \leq \operatorname{dim} \mathcal{N}(A)$: By Step 1 $n := \operatorname{dim} \mathcal{N}(A) \in \mathbb{N}_0$. Let $x_1, \ldots, x_n \in X$ be a basis of $\mathcal{N}(A)$.

Assume the statement is not true. Then there exist linear independent vectors $y_1, \ldots, y_n \in X$ such that $\operatorname{span}\{y_1, \ldots, y_n\} \oplus \mathcal{R}(A)$ is a strict subset of X. As a corollary of the Hahn–Banach theorem (see Corollary 2.5(iii) below) there exist $x'_1, \ldots, x'_n \in X'$ such that

$$x'_k(x_l) = \delta_{k,l}, \quad k, l = 1, \dots n.$$

Then

$$\tilde{T}x := Tx + \sum_{k=1}^{n} x'_k(x)y_k, \quad x \in X,$$

defines an operator $\tilde{T} \in K(X)$, because T is compact and $\tilde{T} - T$ is finite rank. Set

$$\tilde{A} := Id - \tilde{T}.$$

Then $x \in \mathcal{N}(\tilde{A})$ is equivalent to

$$0 = \tilde{A}x = Ax - \sum_{k=1}^{n} x'_{k}(x)y_{k}.$$

Hence Ax = 0 and $x'_k(x) = 0$, k = 1, ..., n (due to the choice of $y_1, ..., y_n$). Since $x \in \mathcal{N}(A)$ we have

$$x = \sum_{k=1}^{n} \alpha_k x_k$$
 for some $\alpha_1, \dots, \alpha_n \in \mathbb{K}$.

Therefore

$$0 = x'_l(x) = \sum_{k=1}^n \alpha_k x'_l(x_k) = \alpha_l$$
, for all $l = 1, ..., n$.

Thus x=0, i.e. \tilde{A} is injective. Now, applying Step 3 to \tilde{A} , we obtain $\mathcal{R}(\tilde{A})=X$. Since $\tilde{A}x_l=-y_l,\ l=1,\ldots,n,$ and

$$\tilde{A}\left(x - \sum_{l=1}^{n} x_l'(x)x_l\right) = Ax$$
 for all $x \in X$

we have

$$X = \mathcal{R}(\tilde{A}) \subset \operatorname{span}(y_1, \dots, y_n) \oplus \mathcal{R}(A).$$

Contradiction!

Step 5: $\operatorname{codim} \mathcal{R}(A) \geq \dim \mathcal{N}(A)$: From Step 4 we know that

$$\mathbb{N} \ni m := \operatorname{codim} \mathcal{R}(A) \le n := \dim \mathcal{N}(A).$$

First we reduce the problem to the case m = 0. Choose $x_1, \ldots, x_n \in X$ and $x'_1, \ldots, x'_n \in X'$ as in Step 4 and $y_1, \ldots, y_m \in X$ such that

$$X = \operatorname{span}\{y_1, \dots, y_m\} \oplus \mathcal{R}(A).$$

As in Step 4 the mapping

$$\tilde{T}x := Tx + \sum_{k=1}^{m} x'_k(x)y_k, \quad x \in X,$$

is compact and $\tilde{A} := Id - \tilde{T}$ is surjective with

$$\mathcal{N}(\tilde{A}) = \operatorname{span}\{x_i \mid m < i \le n\} \cup \{0\}.$$

Hence it remains to show that $\mathcal{N}(\tilde{A}) = \{0\}$ for surjective \tilde{A} . I.e., the problem is reduced to the case m = 0.

In the case m = 0 is $\mathcal{R}(A) = X$. We assume there exists $x_1 \in \mathcal{N}(A) \setminus \{0\}$. By surjectivity of A, inductively we can choose $x_k \in X$ such that

$$Ax_k = x_{k-1}, \quad k \ge 2.$$

Then

$$x_k \in \mathcal{N}(A^k) \setminus \mathcal{N}(A^{k-1}).$$

By Proposition E3.5, for $k \ge 2$ we can choose

$$z_k \in \mathcal{N}(A^k)$$
 with $||z_k|| = 1$ and $\operatorname{dist}(z_k, \mathcal{N}(A^{k-1})) \ge \frac{1}{2}$.

Then we have for l < k

$$||Tz_k - Tz_l|| = ||z_k - (Az_k + z_l - Az_l)|| \ge \frac{1}{2},$$

because $(Az_k + z_l - Az_l) \in \mathcal{N}(A^{k-1})$. I.e., $(Tz_k)_{k \in \mathbb{N}}$ has no convergent subsequence. Since $(z_k)_{k \in \mathbb{N}}$ is bounded, this is in contradiction to the compactness of T.

1.5 Spectral theorem

Theorem 1.17 (Riesz–Schauder) For each operator $T \in K(X)$ holds: (i) $\sigma(T) \setminus \{0\}$ consists of countable many (finite or infinite) eigenvalues with 0 as the only possible accumulation point. If $\sigma(T)$ has infinite many elements, then

$$\sigma(T) = \sigma_p(T) \cup \{0\}.$$

(ii) For $\lambda \in \sigma(T) \setminus \{0\}$ is

$$1 \le n_{\lambda} := \max\{n \in \mathbb{N} \mid \mathcal{N}((\lambda Id - T)^{n-1}) \ne \mathcal{N}((\lambda Id - T)^n)\} < \infty.$$

 n_{λ} is called order of λ and $\dim \mathcal{N}(\lambda Id - T)$ multiplicity of λ .

(iii) (Riesz decomposition) For $\lambda \in \sigma(T) \setminus \{0\}$ we have:

$$X = \mathcal{N}((\lambda Id - T)^{n_{\lambda}}) \oplus \mathcal{R}((\lambda Id - T)^{n_{\lambda}}).$$

Both spaces are closed and T-invariant. $\mathcal{N}((\lambda Id - T)^{n_{\lambda}})$ is finite dimensional. (iv) For $\lambda \in \sigma(T) \setminus \{0\}$ is

$$\sigma(T|_{\mathcal{R}((\lambda Id - T)^{n_{\lambda}})}) = \sigma(T) \setminus \{\lambda\}.$$

Proof: (i): Let $0 \neq \lambda \notin \sigma_p(T)$. Then

$$\mathcal{N}\left(Id - \frac{T}{\lambda}\right) = \{0\}, \text{ hence } \mathcal{R}\left(Id - \frac{T}{\lambda}\right) = X$$

by Proposition 1.16. Hence $\lambda \in \rho(T)$. This shows

$$\sigma(T) \setminus \{0\} \subset \sigma_p(T)$$
.

If $\sigma(T)\setminus\{0\}$ has infinite many elements, then we choose $\lambda_n\in\sigma(T)\setminus\{0\}$, $n\in\mathbb{N}$, pairwise different with corresponding eigenvectors $e_n, n\in\mathbb{N}$. Set

$$X_n := \operatorname{span}\{e_1, \dots, e_n\}, \quad n \in \mathbb{N}.$$

The eigenvectors are linear independent, because if we would have

$$e_n = \sum_{k=1}^{n-1} \alpha_k e_k, \quad \alpha_1, \dots, \alpha_{n-1} \in \mathbb{K},$$

with e_1, \ldots, e_{n-1} linear independent, then

$$0 = Te_n - \lambda_n e_n = \sum_{k=1}^{n-1} \alpha_k (Te_k - \lambda_n e_k) = \sum_{k=1}^{n-1} \alpha_k (\lambda_k - \lambda_n) e_k,$$

hence $\alpha_k = 0$ for $k = 1, \dots n - 1$, i.e. $e_n = 0$. Contradiction!

Therefore X_{n-1} is a proper subspace of X_n . Hence by Proposition E3.5 there exits $x_n \in X_n$ with

$$||x_n|| = 1$$
 and $\operatorname{dist}(x_n, X_{n-1}) \ge \frac{1}{2}$.

Since $x_n = \alpha_n e_n + \tilde{x}_n$ for some $\alpha_n \in \mathbb{K}$ and $\tilde{x}_n \in X_{n-1}$, T-invariance of X_{n-1} implies

$$Tx_n - \lambda_n x_n = T\tilde{x}_n - \lambda_n \tilde{x}_n \in X_{n-1}.$$

Thus we have for m < n

$$\left\| T\left(\frac{x_n}{\lambda_n}\right) - T\left(\frac{x_m}{\lambda_m}\right) \right\| = \left\| x_n + \frac{1}{\lambda_n} (Tx_n - \lambda_n x_n) - \frac{1}{\lambda_m} Tx_m \right\| \ge \frac{1}{2},$$

because

$$\frac{1}{\lambda_n}(Tx_n - \lambda_n x_n) - \frac{1}{\lambda_m}Tx_m \in X_{n-1}.$$

Therefore

$$\left(T\left(\frac{x_n}{\lambda_n}\right)\right)_{n\in\mathbb{N}}$$

has no convergent subsequence. Since T is compact,

$$\left(\frac{x_n}{\lambda_n}\right)_{n\in\mathbb{N}}$$

can not have a bounded subsequence. Thus

$$\lim_{n \to \infty} \frac{1}{|\lambda_n|} = \lim_{n \to \infty} \left\| \frac{x_n}{\lambda_n} \right\| = \infty,$$

i.e.,

$$\lim_{n\to\infty} \lambda_n = 0.$$

Hence 0 is the only accumulation point of $\sigma(T) \setminus \{0\}$. In particular,

$$\#(\sigma(T) \setminus U_r(0)) < \infty$$
 for all $r > 0$.

Therefore, $\sigma(T)$ is countable.

(ii): Set $A := \lambda Id - T$, $\lambda \in \sigma(T) \setminus \{0\}$. Then clearly

$$\mathcal{N}(A^{n-1}) \subset \mathcal{N}(A^n)$$
 for all $n \in \mathbb{N}$.

Assume that $\mathcal{N}(A^{n-1})$ is a proper subset of $\mathcal{N}(A^n)$ for all $n \in \mathbb{N}$. Similarly as in (i) we can choose $x_n \in \mathcal{N}(A^n)$ with

$$||x_n|| = 1$$
 and $\operatorname{dist}(x_n, \mathcal{N}(A^{n-1})) \ge \frac{1}{2}$,

due to Proposition E3.5. Thus we have for m < n

$$||Tx_n - Tx_m|| = ||\lambda x_n - (Ax_n + \lambda x_m - Ax_m)|| \ge \frac{|\lambda|}{2} > 0,$$

because

$$Ax_n + \lambda x_m - Ax_m \in \mathcal{N}(A^{n-1}).$$

But $(x_n)_{n\in\mathbb{N}}$ is a bounded sequence. This is in contradiction to the compactness of T. Consequently we find an $n\in\mathbb{N}$ such that $\mathcal{N}(A^{n-1})=\mathcal{N}(A^n)$. Then we have for m>n

$$x \in \mathcal{N}(A^m)$$
 implies $A^{m-n}x \in \mathcal{N}(A^n) = \mathcal{N}(A^{n-1})$ implies $A^{n-1+m-n}x = 0$ implies $x \in \mathcal{N}(A^{m-1})$.

Thus $\mathcal{N}(A^m) = \mathcal{N}(A^{m-1})$. Now inductively we obtain $\mathcal{N}(A^m) = \mathcal{N}(A^n)$ for all $m \geq n$. Therefore $n_{\lambda} < \infty$. Since $\mathcal{N}(A) \neq \{0\}$, we have $n_{\lambda} \geq 1$.

(iii): Again set
$$A := \lambda Id - T$$
, $\lambda \in \sigma(T) \setminus \{0\}$. We have

$$\mathcal{N}(A^{n_{\lambda}}) \oplus \mathcal{R}(A^{n_{\lambda}}) \subset X$$
,

because if

$$x \in \mathcal{N}(A^{n_{\lambda}}) \cap \mathcal{R}(A^{n_{\lambda}}),$$

then $A^{n_{\lambda}}x=0$ and $x=A^{n_{\lambda}}y$ for some $y\in X.$ Therefore, $A^{2n_{\lambda}}y=0,$ i.e.,

$$y \in \mathcal{N}(A^{2n_{\lambda}}) = \mathcal{N}(A^{n_{\lambda}}).$$

Hence

$$x = A^{n_{\lambda}}y = 0.$$

Now we can write

$$A^{n_{\lambda}} = \lambda^{n_{\lambda}} Id + \sum_{k=1}^{n_{\lambda}} \binom{n_{\lambda}}{k} \lambda^{n_{\lambda}-k} (-T)^k$$

and

$$\sum_{k=1}^{n_{\lambda}} \binom{n_{\lambda}}{k} \lambda^{n_{\lambda}-k} (-T)^{k}$$

is compact by Lemma 1.4. Hence $\mathcal{R}(A^{n_{\lambda}})$ is closed and

$$\mathcal{N}(A^{n_{\lambda}}) \oplus \mathcal{R}(A^{n_{\lambda}}) = X$$

by Proposition 1.16 together with Corollary 5.5 below.

Notice that T commutes with A, i.e., AT = TA, and therefore T also commutes with $A^{n_{\lambda}}$. Hence T leaves $\mathcal{N}(A^{n_{\lambda}})$ and $\mathcal{R}(A^{n_{\lambda}})$ invariant.

(iv): Denote by T_{λ} the restriction of T to $\mathcal{R}(A^{n_{\lambda}})$, $\lambda \in \sigma(T) \setminus \{0\}$. Then $T_{\lambda} \in K(\mathcal{R}(A^{n_{\lambda}}))$. Note that $\mathcal{R}(A^{n_{\lambda}})$ is a closed subspace of X by (iii), hence a Banach space. Furthermore

$$\mathcal{N}(\lambda Id - T_{\lambda}) = \mathcal{N}(A) \cap \mathcal{R}(A^{n_{\lambda}}) = \{0\},\$$

because $\mathcal{N}(A) \subset \mathcal{N}(A^{n_{\lambda}})$. Thus

$$\mathcal{R}(\lambda Id - T_{\lambda}) = \mathcal{R}(A^{n_{\lambda}}),$$

by Proposition 1.16 applied to T_{λ} . Hence $\lambda \in \rho(T_{\lambda})$. It remains to show that

$$\sigma(T_{\lambda}) = \sigma(T) \setminus {\lambda}.$$

Let $\mu \in \mathbb{K} \setminus \{\lambda\}$. As above we obtain that $(\mu Id - T)$ leaves $\mathcal{N}(A^{n_{\lambda}})$ invariant. Furthermore, $(\mu Id - T)$ is on this subspace injective, because

$$x \in \mathcal{N}(\mu Id - T)$$
 means $(\lambda - \mu)x = Ax$.

If additionally $A^m x = 0$ for some $m \in \mathbb{N}$, then

$$(\lambda - \mu)A^{m-1}x = A^m x = 0,$$

i.e. $A^{m-1}x = 0$, because $\lambda \neq \mu$. Hence, inductively we obtain x = 0. This shows

$$\mathcal{N}(\mu Id - T) \cap \mathcal{N}(A^m) = \{0\}$$

for all $m \in \mathbb{N}$. For $m = n_{\lambda}$ this yields injectivity of $\mu Id - T$ on $\mathcal{N}(A^{n_{\lambda}})$. Since this space is finite dimensional, $\mu Id - T$ is also bijective on $\mathcal{N}(A^{n_{\lambda}})$. Hence

$$\mu \in \rho(T)$$
 iff $\mu \in \rho(T_{\lambda})$.

Therefore, by separating a finite dimensional characteristic subspace corresponding to the eigenvalue λ , we obtain a remaining operator T_{λ} with

$$\sigma(T_{\lambda}) = \sigma(T) \setminus \{\lambda\}.$$

1.6 Fredholm alternative and an application

Theorem 1.18 (Fredholm alternative) If $T \in K(X)$ and $\lambda \neq 0$, then: Either the equation

$$Tx - \lambda x = u$$

is for each $y \in X$ uniquely solvable or the equation

$$Tx - \lambda x = 0$$

has a non-trivial solution.

Proof: Follows immediately from Proposition 1.16.

Example 1.19 Consider the following Volterra type integral operator $T: C([0,1]) \to C([0,1])$:

$$(Tf)(x) := \int_0^x k(x,y)f(y) \, dy, \quad f \in C([0,1]), \, x \in [0,1],$$

where $k \in C([0,1]^2)$. We know that $T \in K(C([0,1]))$, see Exercise 3.1(iii). We are interested in solutions to

$$Tf - \lambda f = 0, \quad f \in C([0, 1]),$$

where $\lambda \neq 0$. Such an equation is called **integral equation of second type**. (Integral equations of first type are given by Tf = 0 or Tf = g, respectively, and much more complicated to analyze.) Our aim is to show that for $\lambda \neq 0$ the operator $\lambda Id - T$ is injective. W.l.o.g. we may assume $\lambda = 1$ (otherwise consider $\frac{T}{\lambda}$). Tf = f, $f \in C([0,1])$, implies

$$|f(x)| = |(Tf)(x)| \le \int_0^x |k(x,y)||f(y)| \, dy \le x ||k||_{\sup} ||f||_{\sup}, \ x \in [0,1].$$

Hence

$$|f(x)| \le \int_0^x |k(x,y)| y ||k||_{\sup} ||f||_{\sup} dy \le \frac{x^2}{2} ||k||_{\sup}^2 ||f||_{\sup}, \ x \in [0,1].$$

Then, inductively,

$$|f(x)| \le \frac{x^n}{n!} ||k||_{\sup}^n ||f||_{\sup}, \ x \in [0, 1].$$

Hence, in the limit $n \to \infty$ we obtain f = 0, i.e. $\lambda Id - T$ is injective. Now, by the Fredholm alternative, uniqueness implies the existence of a unique solution $f \in C([0,1])$ to the inhomogeneous equation

$$Tf - \lambda f = g$$

for all $g \in C([0, 1])$.

1.7 Normal operators

In this subsection X is a Hilbert space over the field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ with scalar product (\cdot, \cdot) .

Definition 1.20 Let $T \in L(X)$. T is called **normal**, iff T commutes with T^* , i.e.

$$T^*T - TT^* = 0.$$

Lemma 1.21 Let $T \in L(X)$.

- (i) If T is self-adjoint, then T is also normal.
- (ii) T is normal, iff

$$||Tx|| = ||T^*x||$$
 for all $x \in X$.

- (iii) If T is normal, then also $\lambda Id T$ is normal for all $\lambda \in \mathbb{K}$.
- (iv) If T is normal and $\lambda \in \mathbb{K}$, then

$$\mathcal{N}(\lambda Id - T) = \mathcal{N}(\overline{\lambda}Id - T^*).$$

Proof: (i): Obvious!

(ii): Let T be normal. Then

$$(Tx, Tx) = (x, T^*Tx) = (x, TT^*x) = (T^*x, T^*x)$$
 for all $x \in X$.

Vice versa: By the polarization identity

$$\frac{1}{4}(\|u+v\|^2 - \|u-v\|^2) = \Re(u,v), \quad u,v \in X,$$

follows

$$\Re(Tx, Ty) = \Re(T^*x, T^*y)$$
 for all $x, y \in X$.

In the case $\mathbb{K} = \mathbb{C}$ we replace y by iy and obtain

$$0 = (Tx, Ty) - (T^*x, T^*y) = (T^*Tx - TT^*x, y) \text{ for all } x, y \in X.$$

Thus $T^*T - TT^*$.

- (iii): Obvious!
- (iv): Follows immediately from (ii) together with (iii).

Lemma 1.22 Let $T \in L(X)$ be normal and $\mathbb{K} = \mathbb{C}$. If $X \neq \{0\}$, then

$$\sup_{\lambda \in \sigma(T)} |\lambda| = ||T||_{L(X)}.$$

Proof: We already now from Proposition 1.11 that

$$\sup_{\lambda \in \sigma(T)} |\lambda| = \lim_{m \to \infty} ||T^m||_{L(X)}^{\frac{1}{m}} \le ||T||_{L(X)}.$$

Hence it is sufficient to show that

$$||T^m|| \ge ||T||^m \quad \text{for all } m \in \mathbb{N}_0. \tag{1.4}$$

Let $T \neq 0$ (for T = 0 the statement is obvious). For m = 0, 1 the inequality in (1.4) is trivial. Let $m \geq 1$ and $x \in X$, then by Lemma 1.21(ii)

$$||T^m x||^2 = (T^* T^m x, T^{m-1} x) \le ||T^* T^m x|| ||T^{m-1} x||$$

$$\le ||T^{m+1} x|| ||T^{m-1} x|| \le ||T^{m+1}|| ||T||^{m-1} ||x||^2.$$

Thus

$$||T^m||^2 \le ||T^{m+1}|| \, ||T||^{m-1}.$$

Therefore, if $||T^m|| \ge ||T||^m$, then

$$||T^{m+1}|| \ge \frac{||T^m||^2}{||T||^{m-1}} \ge ||T||^{2m-(m-1)} = ||T||^{m+1}.$$

Example 1.23 Let $(e_k)_{k\in\mathbb{N}}$, $N\subset\mathbb{N}$, be an orthonormal system in X and $\lambda_k\in\mathbb{K}$ such that $|\lambda_k|\leq r<\infty,\,k\in\mathbb{N}$. Then

$$Tx := \sum_{k \in \mathbb{N}} \lambda_k(x, e_k) e_k, \quad x \in X,$$

defines an operator $T \in L(X)$, see Exercise 1.3. Since

$$(Tx,y) = \sum_{k \in \mathbb{N}} \lambda_k(x, e_k)(e_k, y) = \left(x, \sum_{k \in \mathbb{N}} \overline{\lambda_k(e_k, y)} e_k\right),$$

is

$$T^*x = \sum_{k \in \mathbb{N}} \overline{\lambda_k}(x, e_k) e_k, \quad x \in X.$$

Therefore

$$T^*Tx = TT^*x = \sum_{k \in \mathbb{N}} |\lambda_k|^2(x, e_k)e_k, \quad x \in X,$$

i.e., T is normal. If $\#N < \infty$, then is T finite rank and, in particular, $T \in K(X)$. If $N = \mathbb{N}$, then

$$T \in K(X)$$
 iff $\lim_{n \to \infty} \lambda_n = 0$,

see Exercise 1.3(ii).

1.8 Spectral theorem for normal operators

In this subsection X is a Hilbert space over the field \mathbb{C} .

Theorem 1.24 Let $T \in K(X)$ be normal, $T \neq 0$. Then there exists an orthonormal system $\{e_k \mid k \in M\}$, $M \subset \mathbb{N}$, and $0 \neq \mu_k \in \mathbb{C}$, $k \in M$, such that:

(i)

$$Te_k = \mu_k e_k, \quad k \in M, \quad \sigma(T) \setminus \{0\} = \{\mu_k \mid k \in M\},$$

i.e. the numbers μ_k are the eigenvalues of T different from zero with eigenvectors e_k , $k \in M$. (In this notation the eigenvalues μ_k for different k might be the same.) If $M = \mathbb{N}$, then $\lim_{k \to \infty} \mu_k = 0$.

(ii) For the orders we have: $n_{\mu_k} = 1$ for all $k \in M$. (iii)

$$X = \mathcal{N}(T) \perp \overline{\operatorname{span}\{e_k \mid k \in M\}}.$$

(iv)

$$Tx = \sum_{k \in M} \mu_k(x, e_k) e_k$$
 for all $x \in X$.

Remark 1.25 If we write

$$X = Y \perp Z$$

for $Y, Z \subset X$ closed, subspaces, then this means

$$X = Y \oplus Z$$
 and $(y, z) = 0$ for all $y \in Y, z \in Z$.

In the proof we will also use the notation

$$X \supset (\perp_{n \in \mathbb{N}} X_n) := \operatorname{span}\{x_1 \in X_1, x_2 \in X_2, x_3 \in X_3, \ldots\}$$

for $X_n \subset X$, $n \in \mathbb{N} \subset \mathbb{N}$, closed, subspaces, pairwise orthogonal.

Proof: From Theorem 1.17 we know that $\sigma(T) \setminus \{0\}$ consists of eigenvalues λ_k , $k \in \mathbb{N} \subset \mathbb{N}$, only. Furthermore, if N has infinitely many elements,

then $\lim_{k\to\infty} \lambda_k = 0$. Here we choose the λ_k pairwise different for different $k \in \mathbb{N}$. We also know from Theorem 1.17, that

$$N_k := \mathcal{N}(\lambda_k Id - T)$$

is finite dimensional for all $k \in N$. Set $N_0 := \mathcal{N}(T)$ and $\lambda_0 := 0$. Lemma 1.21(iv) implies

$$N_k = \mathcal{N}(\overline{\lambda_k}Id - T^*), \quad k \in N \cup \{0\}. \tag{1.5}$$

Observe that

$$N_k \perp N_l$$
 for $k, l \in N \cup \{0\}, k \neq l$,

because if $x_k \in N_k$ and $x_l \in N_l$, then

$$\lambda_k(x_k, x_l) = (Tx_k, x_l) = (x_k, T^*x_l) = (x_k, \overline{\lambda_l}x_l) = \lambda_l(x_k, x_l).$$

Since $\lambda_k \neq \lambda_l$ it follows that $(x_k, x_l) = 0$.

We claim that

$$X = \overline{\perp_{k \in N \cup \{0\}} N_k}. \tag{1.6}$$

In order to show this we choose

$$y \in Y = \left(\perp_{k \in N \cup \{0\}} N_k \right)^{\perp}.$$

Using (1.5), we can conclude for $x \in N_k$, $k \in N \cup \{0\}$,

$$(Ty, x) = (y, T^*x) = (y, \overline{\lambda_k}x) = \lambda_k(y, x) = 0.$$

Thus $Ty \in Y$, i.e. Y is T-invariant. Now consider

$$T_0 := T|_{Y}$$
.

Then $T \in K(Y)$ and normal. If $Y \neq \{0\}$, then by Lemma 1.22 there exists $\lambda \in \sigma(T_0)$ with $|\lambda| = ||T_0||$. If $T_0 \neq 0$, then λ would be an eigenvalue of T_0 (by Theorem 1.17) and therefore also of T. I.e. $N_k \cap Y \neq \{0\}$ for some $k \in N$. That is in contradiction with the definition of Y. Hence $T_0 = 0$, i.e. $Y \subset N_0$. But that is also in contradiction with the definition of Y. Thus $Y = \{0\}$, i.e. (1.6) is true.

Denote by P_0 the orthogonal projection on $\mathcal{N}(T)$. Since for all $x \in X$ we have $x = (Id - P_0)x + P_0x$, from (1.6) we can infer

$$X = \mathcal{N}(T) \perp \overline{\perp_{k \in N} N_k}. \tag{1.7}$$

Now choose for each $k \in N$ an orthonormal basis $\{b_{k1}, \ldots, b_{kd_k}\}$ of N_k . Then by Proposition E5.8

$$\{b_{ki_k} \mid 1 \le i_k \le d_k, k \in N\} \tag{1.8}$$

is an orthonormal basis of $\overline{\perp_{k\in N} N_k}$ and together with (1.7) we obtain

$$X = \mathcal{N}(T) \perp \overline{\operatorname{span}\{b_{ki_k} \mid 1 \le i_k \le d_k, k \in N\}}.$$
(1.9)

Furthermore we can conclude that

$$x = \sum_{k \in \mathbb{N}} \sum_{i=1}^{d_k} (x, b_{ki}) b_{ki} + P_0(x) \quad \text{for all } x \in X.$$
 (1.10)

Applying T to (1.10) we obtain

$$Tx = \sum_{k \in \mathbb{N}} \sum_{i=1}^{d_k} (x, b_{ki}) Tb_{ki} + TP_0(x) = \sum_{k \in \mathbb{N}} \sum_{i=1}^{d_k} \lambda_k(x, b_{ki}) b_{ki}, \quad x \in X.$$
 (1.11)

Changing the notation of the orthonormal system in (1.8) into $\{e_k \mid k \in M\}$, $M \subset \mathbb{N}$, and adapting appropriately the notation for the eigenvalues, (i) follows by the above considerations. Furthermore, (iii) then is a equivalent to (1.9) and (iv) to (1.11).

(ii): Let
$$x \in \mathcal{N}((\mu_i Id - T)^2), j \in M$$
. Then

$$(\mu_j Id - T)x \in \mathcal{N}(\mu_j Id - T) = \mathcal{N}(\overline{\mu_j} Id - T^*).$$

Therefore

$$0 = (x, (\overline{\mu_j}Id - T^*)(\mu_jId - T)x)$$

= $((\mu_iId - T)x, (\mu_iId - T)x) = ||(\mu_iId - T)x||^2.$

Thus
$$x \in \mathcal{N}(\mu_j Id - T)$$
, i.e. $n_{\mu_j} = 1$ for all $j \in M$.

Corollary 1.26 Let $T \in L(X)$ be self-adjoint, i.e. $T^* = T$.

- (i) $\sigma_p(T) \subset [-\|T\|, \|T\|] \subset \mathbb{R}$. If additionally $T \in K(X)$, then $\|T\|$ or $-\|T\|$ is an eigenvalue.
- (ii) If T is positive semi-definite, i.e. $(Tx, x) \ge 0$ for all $x \in X$, then $\sigma_p(T) \subset [0, ||T||]$. If additionally $T \in K(X)$, then ||T|| is an eigenvalue.

Proof: (i): Let x be an eigenvector with corresponding eigenvalue λ . Then

$$\lambda ||x||^2 = (\lambda x, x) = (Tx, x) = (x, Tx) = (x, \lambda x) = \overline{\lambda} ||x||^2.$$

Hence $\lambda = \overline{\lambda}$, because $x \neq 0$. Since

$$\sup_{\lambda \in \sigma(T)} |\lambda| = ||T|| \tag{1.12}$$

(see Lemma 1.22) the first statement is shown. Then for $T \in K(X)$ (1.12) together with Theorem 1.17 implies, that ||T|| or -||T|| is an eigenvalue.

(ii): Let x be an eigenvector with corresponding eigenvalue λ . Then

$$\lambda ||x||^2 = (Tx, x) \ge 0.$$

Hence $\lambda \geq 0$, because $x \neq 0$. If $T \in K(X)$ from (i) we already know that ||T|| or -||T|| is an eigenvalue. Thus ||T|| is an eigenvalue.

2 Hahn–Banach theorem

2.1 Extension of linear functionals on spaces with sublinear mappings

Theorem 2.1 Let X be an \mathbb{R} -vector space and:

(i) $p: X \to \mathbb{R}$ is sub-linear, i.e., for all $x, y \in X$ and $\alpha \geq 0$ we have:

$$p(x+y) \le p(x) + p(y)$$
 and $p(\alpha x) = \alpha p(x)$.

- (ii) $f: Y \to \mathbb{R}$ is linear, Y a subspace of X.
- (iii) $f(x) \le p(x)$ for all $x \in Y$.

Then there exists a linear mapping $F: X \to \mathbb{R}$ such that

$$F(x) = f(x)$$
 for $x \in Y$ and $F(x) \le p(x)$ for $x \in X$.

Proof: We consider the class of all extensions of f:

$$\mathcal{M} := \{(Z, g) \mid Z \text{ subspace}, Y \subset Z \subset X,$$

 $g: Z \to \mathbb{R} \text{ linear}, g = f \text{ on } Y, g(x) \leq p(x) \text{ on } Z\}.$

 $\mathcal{M} \neq \emptyset$, because $(Y, f) \in \mathcal{M}$. Now consider an arbitrary $(Z, g) \in \mathcal{M}$ with $Z \neq X$ and $z_0 \in X \setminus Z$. At least, we want to extend g to

$$Z_0 := \text{span}\{Z \cup \{z_0\}\} = Z \oplus \text{span}\{z_0\}.$$

We try the ansatz

$$g_0(z + \alpha z_0) := g(z) + c\alpha, \quad z \in \mathbb{Z}, \alpha \in \mathbb{R},$$

where we have to chose $c \in \mathbb{R}$ appropriately. Clearly, g_0 is linear on Z_0 . Furthermore, $g_0 = g = f$ on Y. It remains to show that

$$g(z) + c\alpha \le p(z + \alpha z_0), \quad z \in \mathbb{Z}, \alpha \in \mathbb{R}.$$

Since $g \leq p$ on Z, it is fulfilled for $\alpha = 0$. For $\alpha > 0$ the inequality implies

$$c \le \frac{p(z + \alpha z_0) - g(z)}{\alpha} = p\left(\frac{z}{\alpha} + z_0\right) - g\left(\frac{z}{\alpha}\right),$$

and for $\alpha < 0$

$$c \ge \frac{p(z + \alpha z_0) - g(z)}{\alpha} = g\left(-\frac{z}{\alpha}\right) - p\left(-\frac{z}{\alpha} - z_0\right).$$

Hence, c has to fulfill

$$\sup_{z \in Z} (g(z) - p(z - z_0)) \le c \le \inf_{z \in Z} (p(z + z_0) - g(z)).$$

This is possible, because for $z, z' \in Z$ we have:

$$g(z') + g(z) = g(z' + z) \le p(z' + z)$$

= $p(z' - z_0 + z + z_0) \le p(z' - z_0) + p(z + z_0),$

and therefore

$$q(z') - p(z' - z_0) \le p(z + z_0) - q(z).$$

Our aim is to find via this extension procedure $(X, F) \in \mathcal{M}$. For this we use:

Lemma 2.2 (Zorn's lemma) Let (\mathcal{M}, \leq) be a non-empty partially ordered set such that each totally ordered subset \mathcal{N} (i.e., $n_1, n_2 \in \mathcal{N}$ implies $n_1 \leq n_2$ or $n_2 \leq n_1$) possesses an upper bound (i.e., there exists $m \in \mathcal{M}$ such that $n \leq m$ for all $n \in \mathcal{N}$). Then \mathcal{M} possesses a maximal element (i.e., there exists $m_0 \in \mathcal{M}$ such that for all $m \in \mathcal{M}$: $m_0 \leq m$ implies $m \leq m_0$).

In our situation an order is defined by

$$(Z_1, g_1) \le (Z_2, g_2)$$
 iff $Z_1 \subset Z_2$ and $g_2 = g_1$ on Z_1 .

We have to verify the assumptions of Zorn's lemma. Let $\mathcal{N} \subset \mathcal{M}$ be totally ordered and define

$$Z_* := \bigcup_{(Z,g) \in \mathcal{N}} Z,$$
 $g_*(x) := g(x), \quad \text{if } x \in Z \quad \text{and} \quad (Z,g) \in \mathcal{N}.$

It is to show that $(Z_*, g_*) \in \mathcal{M}$. We have $Y \subset Z_* \subset X$ and g_* is well defined. Indeed, if

$$x \in Z_1 \cap Z_2$$
, $(Z_1, g_1), (Z_2, g_2) \in \mathcal{N}$,

then

$$(Z_1, g_1) \le (Z_2, g_2)$$
 or $(Z_2, g_2) \le (Z_1, g_1)$ (\mathcal{N} is totally ordered).

W.l.o.g. we assume the first case (the second case we can treat analogously). Then

$$Z_1 \subset Z_2$$
 and $g_2 = g_1$ on Z_1

and therefore

$$g_2(x) = g_1(x)$$
 (since $x \in Z_1$).

The properties $g_* = f$ on Y and $g_* \leq p$ are inhered by construction.

Linearity of Z_* and g_* : Let $x, y \in Z_*$, then there exist $(Z_x, g_x), (Z_y, g_y) \in \mathcal{N}$ such that $x \in Z_x$ and $y \in Z_y$. Again we have

$$(Z_x, g_x) \le (Z_y, g_y)$$
 or $(Z_y, g_y) \le (Z_x, g_x)$.

W.l.o.g. we assume $x, y \in Z_y$. Then

$$\alpha x + \beta y \in Z_y \subset Z_*, \quad \alpha, \beta \in \mathbb{R}.$$

Furthermore,

$$g_*(\alpha x + \beta y) = g_y(\alpha x + \beta y) = \alpha g_y(x) + \beta g_y(y) = \alpha g_*(x) + \beta g_*(y).$$

Now by Zorn's lemma \mathcal{M} has an maximal element (Z, g). Suppose that $Z \neq X$, then the extension procedure from the beginning of the proof gives $(Z_0, g_0) \in \mathcal{M}$ such that

$$(Z,g) \leq (Z_0,g_0)$$
 and $Z_0 \neq Z$.

But (Z, g) is maximal. That's a contradiction!

2.2 Extension of continuous linear functionals

Theorem 2.3 Let Y be a subspace of a normed \mathbb{K} -vector space X (where Y is equipped with the norm of X!). Then for each $y' \in Y'$ there exists an $x' \in X'$ such that

$$x' = y'$$
 on Y and $||x'||_{X'} = ||y'||_{Y'}$.

Proof: First let $\mathbb{K} = \mathbb{R}$. Set

$$p(x) := ||y'||_{Y'} ||x||_X, \quad x \in X.$$

Then for $y \in Y$

$$y'(y) \le ||y'||_{Y'} ||y||_Y = ||y'||_{Y'} ||y||_X = p(y).$$

Thus, the assumptions of Theorem 2.1 are fulfilled and we get a linear mapping $x':X\to\mathbb{R}$ such that

$$x' = y'$$
 on Y and $x' \le p$ on X . (2.1)

The second property in (2.1) implies

$$\pm x'(x) = x'(\pm x) \le p(\pm x) = ||y'||_{Y'} ||x||_X,$$

i.e., $x' \in X'$ and $||x'||_{X'} \le ||y'||_{Y'}$. The first property in (2.1) implies

$$||y'||_{Y'} = \sup_{y \in Y, ||y||_X \le 1} |y'(y)| = \sup_{y \in Y, ||y||_X \le 1} |x'(y)| \le ||x'||_{X'}.$$

Next we consider the case $\mathbb{K} = \mathbb{C}$. View X and Y as \mathbb{R} -vector spaces $X_{\mathbb{R}}$ and $Y_{\mathbb{R}}$. Then

$$y'_{re} := \Re y' \in Y'_{\mathbb{R}} \quad \text{with} \quad \|y'_{re}\|_{Y'_{\mathbb{R}}} \le \|y'\|_{Y'},$$

and

$$y'(x) = \Re y'(x) + i\Im y'(x) = y'_{re}(x) - iy'_{re}(ix), \quad x \in Y.$$

Let x'_{re} be a extension of y'_{re} to $X_{\mathbb{R}}$ with $\|x'_{re}\|_{X'_{\mathbb{R}}} = \|y'_{re}\|_{Y'_{\mathbb{R}}}$ constructed as in the real case. Then define

$$x'(x) := x'_{re}(x) - ix'_{re}(ix), \quad x \in X.$$

Then x' = y' on Y and $x' : X \to \mathbb{C}$ is \mathbb{C} -linear, because x' is \mathbb{R} -linear and

$$x'(ix) = x'_{re}(ix) - ix'_{re}(-x) = i(-ix'_{re}(ix) - x'_{re}(-x)) = ix'(x), \quad x \in X.$$

Now let $x \in X$ and $x'(x) = re^{i\theta}, r \ge 0, \theta \in [0, 2\pi)$. Then

$$|x'(x)| = r = \Re(e^{-i\theta}x'(x)) = \Re(x'(e^{-i\theta}x)) = x'_{re}(e^{-i\theta}x) \le ||x'_{re}||_{X'_{\mathbb{D}}} ||x||$$

and

$$||x'_{re}||_{X'_{\mathbb{R}}} = ||y'_{re}||_{Y'_{\mathbb{R}}} \le ||y'||_{Y'}.$$

Hence, $x' \in X'$ and $||x'||_{X'} \le ||y'||_{Y'}$. On the other hand we have $||x'||_{X'} \ge ||y'||_{Y'}$, because x' is a extension of y'.

2.3 Applications

Proposition 2.4 Let Y be a closed, subspace of a normed vector space X and $x_0 \in X \setminus Y$. Then there exists an $x' \in X'$ such that

$$x' = 0$$
 on Y , $||x'|| = 1$ and $x'(x_0) = dist(x_0, Y)$.

Proof: On

$$Y_0 := \operatorname{span}(Y \cup \{x_0\}) = Y \oplus \operatorname{span}\{x_0\}$$

define

$$y_0'(y + \alpha x_0) := \alpha \operatorname{dist}(x_0, Y), \quad y \in Y, \alpha \in \mathbb{K}.$$

Then

$$y_0':Y_0\to\mathbb{K}$$

is linear and $y_0' = 0$ on Y. Now by Theorem 2.3 it is sufficient to show that $y_0' \in Y_0'$ and $||y_0'|| = 1$. Since for $y \in Y$ and $\alpha \neq 0$

$$\operatorname{dist}(x_0, Y) \le \left\| x_0 - \frac{-y}{\alpha} \right\|,$$

we have

$$|y_0'(y + \alpha x_0)| \le |\alpha| \|x_0 - \frac{-y}{\alpha}\| = \|\alpha x_0 + y\|,$$

i.e. $y_0' \in Y_0'$ and $||y_0'|| \le 1$. Because Y is closed, we have $\mathrm{dist}(\mathbf{x}_0,\mathbf{Y}) > 0$. Hence for each $\varepsilon > 0$ the exist $y_\varepsilon \in Y$ such that

$$||x_0 - y_{\varepsilon}|| \le (1 + \varepsilon) \operatorname{dist}(\mathbf{x}_0, \mathbf{Y}).$$

Hence

$$y_0'(x_0 - y_{\varepsilon}) = \operatorname{dist}(\mathbf{x}_0, \mathbf{Y}) \ge \frac{1}{1 + \varepsilon} \|\mathbf{x}_0 - \mathbf{y}_{\varepsilon}\|.$$

Because $x_0 - y_{\varepsilon} \neq 0$ this yields

$$||y_0'|| \ge \frac{1}{1+\varepsilon}$$
 for all $\varepsilon > 0$.

Thus $||y_0'|| = 1$.

Corollary 2.5 Let X be a normed space and $x_0 \in X$.

(i) If $x_0 \neq 0$, then there exist $x_0' \in X'$ such that

$$||x_0'|| = 1$$
 and $x_0'(x_0) = ||x_0||$.

- (ii) If $x'(x_0) = 0$ for all $x' \in X'$, then $x_0 = 0$.
- (iii) Let $x_1, \ldots, x_n \in X$ be linear independent. Then there exist $x'_1, \ldots, x'_n \in X'$ such that $x'_k(x_l) = \delta_{k,l}, 1 \leq k, l \leq n$.
- (iv) By $Tx' := x'(x_0), x' \in X'$, a linear functional $T \in L(X'; \mathbb{K}) = (X')'$ is defined with $||T||_{(X')'} = ||x_0||$.

Proof: (i): Follows from Proposition 2.4 when setting $Y = \{0\}$.

- (ii): Follows from (i).
- (iii): To construct $x'_k \in X'$ apply Proposition 2.4 to

$$Y_k = \text{span}\{x_l \mid l \neq k, 1 \le l \le n\}, \quad 1 \le k \le n,$$

and then normalize the obtained linear functional.

- (iv): We have $|T(x')| \le ||x'||_{X'} ||x_0||$. If $x_0 \ne 0$, then $|Tx'_0| = ||x_0||$ where x'_0 as in (i). Thus, $||T||_{(X')'} = ||x_0||$.
- **Remark 2.6** Proposition 2.4 can be considered as a generalization of the projection theorem for Hilbert spaces, see Corollary E5.14. Because, if X is a Hilbert space we can define

$$x'(x) := \left(x, \frac{x_0 - Px_0}{\|x_0 - Px_0\|}\right), \quad x \in X,$$

where P is the orthogonal projection on Y. By construction x' = 0 on Y and therefore

$$x'(x_0) = x'(x_0 - Px_0) = ||x_0 - Px_0|| = \operatorname{dist}(x_0, Y).$$

Additionally, by Cauchy-Schwartz

$$|x'(x)| < ||x||$$

and

$$x'(x_0 - Px_0) = \left(x_0 - Px_0, \frac{x_0 - Px_0}{\|x_0 - Px_0\|}\right) = \|x_0 - Px_0\| \neq 0.$$

Thus, x' has the properties as in Proposition 2.4.

3 Uniform boundedness principle

3.1 Baire category theorem

Theorem 3.1 Let (X, d) be a non-empty complete metric space and

$$X = \bigcup_{k \in \mathbb{N}} A_k$$
, A_k closed, $k \in \mathbb{N}$.

Then there exists a $k_0 \in \mathbb{N}$ such that $\mathring{A}_{k_0} \neq \emptyset$.

Proof: Assume that $\mathring{A}_k = \emptyset$ for all $k \in \mathbb{N}$. Then we have:

 $U \subset X$ open, not empty, $k \in \mathbb{N}$ implies $U \setminus A_k$ open, not empty

implies there exists a ball
$$\overline{U_{\epsilon}(x)} \subset U \setminus A_k$$
 with $\epsilon \leq \frac{1}{k}$.

Hence, we can choose inductively a sequence of balls $U_{\epsilon}(x_k)$ such that

$$\overline{U_{\epsilon_k}(x_k)} \subset U_{\epsilon_{k-1}}(x_{k-1}) \setminus A_k \text{ and } \epsilon_k \leq \frac{1}{k}, \quad k \geq 2,$$

with $U_{\epsilon_1}(x_1) \subset X \setminus A_1$. Then $x_l \in U_{\epsilon_k}(x_k)$ for all $l \geq k$ and $\lim_{k \to \infty} \epsilon_k = 0$. Thus, $(x_k)_{k \in \mathbb{N}}$ is a Cauchy sequence and there exists

$$x := \lim_{k \to \infty} x_k \in X.$$

Note that $x \in \overline{U_{\epsilon_k}(x_k)}$ for all $k \in \mathbb{N}$. Since $\overline{U_{\epsilon_k}(x_k)} \cap A_k = \emptyset$ we have

$$x \notin \bigcup_{k \in \mathbb{N}} A_k = X.$$

That is a contradiction.

3.2 Uniform boundedness principle

Theorem 3.2 Let (X,d) be a non-empty complete metric space and Y a normed space. Consider a set of functions $\mathcal{F} \subset C^0(X;Y)$ such that

$$\sup_{f \in \mathcal{F}} ||f(x)|| < \infty \quad \text{for all } x \in X.$$

Then there exists $x_0 \in X$ and $\epsilon_0 > 0$ such that

$$\sup_{x \in \overline{U_{\epsilon_0}(x_0)}} \sup_{f \in \mathcal{F}} ||f(x)|| < \infty.$$

Proof: Set

$$A_k := \bigcap_{f \in \mathcal{F}} \{ x \in X \mid ||f(x)|| \le k \}.$$

Then the A_k fulfill the assumptions of Theorem 3.1. Thus, there exists a k_0 such that $\mathring{A}_{k_0} \neq \emptyset$. In particular,

$$\sup_{x \in A_{k_0}} \sup_{f \in \mathcal{F}} ||f(x)|| \le k_0.$$

Now choose a ball $\overline{U_{\epsilon_0}(x_0)} \subset A_{k_0}$.

3.3 Banach-Steinhaus theorem

Theorem 3.3 (Banach–Steinhaus theorem) Let X be a Banach space, Y a normed space and $T \subset L(X;Y)$ such that

$$\sup_{T \in \mathcal{T}} ||Tx|| < \infty \quad \text{for all } x \in X.$$

Then

$$\sup_{T\in\mathcal{T}}\|T\|<\infty,$$

i.e., \mathcal{T} is bounded in L(X;Y).

Proof: Since $\mathcal{T} \subset L(X;Y) \subset C^0(X;Y)$ and \mathcal{T} has the properties as in Theorem 3.2, there exists $x_0 \in X$, $\epsilon_0 > 0$ and a constant $C < \infty$ such that

$$||Tx|| \le C$$
 for all $T \in \mathcal{T}, ||x - x_0|| \le \epsilon_0$.

Then for all $T \in \mathcal{T}$ and $x \neq 0$

$$||Tx|| = \frac{||x||}{\epsilon_0} ||T(x_0 + \epsilon_0 \frac{x}{||x||}) - T(x_0)|| \le \frac{||x||}{\epsilon_0} 2C,$$

i.e., $||T|| \leq \frac{2C}{\epsilon_0}$.

Notation 3.4 For $x \in X$ and $x' \in X'$ we write

$$\langle x, x' \rangle := x'(x)$$

and call it **duality product**. Because, if X is a Hilbert space, then the Riesz isomorphism J yields

$$\langle x, Jy \rangle = (x, y)_X.$$

Theorem 3.5 Let X be a Banach space, Y a normed space and $\mathcal{T} \subset L(X;Y)$ such that for all $x \in X$ and $y' \in Y'$

$$\sup_{T \in \mathcal{T}} |\langle Tx, y' \rangle| < \infty.$$

Then \mathcal{T} is bounded in L(X;Y).

Proof: For $x \in X$ and $T \in \mathcal{T}$

$$S_{x,T}(y') := \langle Tx, y' \rangle$$

defines an element of (Y')' with $||S_{x,T}|| = ||Tx||_Y$, see Corollary 2.5(iii). Since for all $x \in X$

$$\sup_{T \in \mathcal{T}} |S_{x,T}(y')| < \infty, \quad \text{for all } y' \in Y',$$

and Y' is a Banach space, see Proposition E4.3(ii), Theorem 3.3 yields

$$\sup_{T\in\mathcal{T}}\|Tx\|_Y=\sup_{T\in\mathcal{T}}\|S_{x,T}\|<\infty,\quad\text{for all }x\in X.$$

Now the statement follows from the Banach–Steinhaus theorem.

3.4 Open mapping theorem

Definition 3.6 Let X and Y be topological spaces. Then $f: X \to Y$ is open, iff

U open in X implies f(U) open in Y.

Remark 3.7 (i) If f is bijective, then f is open if and only if f^{-1} is continuous.

(ii) If X, Y are normed spaces and $T: X \to Y$ is linear, then:

T is open iff there exists $\delta > 0$ such that $U_{\delta}(0) \subset T(U_{1}(0))$.

Proof: (i): clear!

(ii) Sufficiency: also clear!

Necessity: Let U be open and $x \in U$. Choose $\epsilon > 0$ such that $U_{\epsilon}(x) \subset U$. Since $U_{\delta}(0) \subset T(U_1(0))$ for some $\delta > 0$, we find $U_{\epsilon\delta}(Tx) \subset T(U_{\epsilon}(x)) \subset T(U)$. Thus, T(U) is open.

Theorem 3.8 Let X and Y be a Banach spaces and $T \in L(X;Y)$. Then:

T is surjective iff T is open.

Proof: Necessity: Since $U_{\delta}(0) \subset T(U_{1}(0))$ for some $\delta > 0$, see Remark 3.7(ii), we find $U_r(0) \subset T(U_{\frac{r}{\delta}}(0))$ for all r > 0.

Sufficiency: Since T is surjective we have

$$Y = \bigcup_{k \in \mathbb{N}} \overline{T(U_k(0))}.$$

By Baire category theorem there exists k_0 and a ball $U_{\epsilon_0}(y_0)$ in Y such that

$$U_{\epsilon_0}(y_0) \subset \overline{T(U_{k_0}(0))}.$$

This implies that for each $y \in U_{\epsilon_0}(0)$ there exists a sequence $(x_i)_{i \in \mathbb{N}}$ in $U_{k_0}(0)$ such that $\lim_{i\to\infty} Tx_i = y_0 + y$. If we choose $x_0 \in X$ with $Tx_0 = y_0$ this gives

$$\lim_{i \to \infty} T\left(\frac{x_i - x_0}{k_0 + ||x_0||}\right) = \frac{y}{k_0 + ||x_0||} \text{ and } \left\|\frac{x_i - x_0}{k_0 + ||x_0||}\right\| < 1 \text{ for all } i \in \mathbb{N}.$$

This yields

$$U_{\delta}(0) \subset \overline{T(U_1(0))} \tag{3.1}$$

for $\delta:=\frac{\epsilon_0}{k_0+\|x_0\|}>0$. We would like, however, to have such an inclusion without taking the closure. Note that (3.1) implies

$$y \in U_{\delta}(0)$$
 implies there exists $x \in U_1(0)$ such that $y - Tx \in U_{\frac{\delta}{2}}(0)$ implies $2(y - Tx) \in U_{\delta}(0)$.

Hence we can choose inductively points $y_k \in U_{\delta}(0)$ and $x_k \in U_1(0)$ such that

$$y_0 = y$$
 and $y_{k+1} = 2(y_k - Tx_k)$.

Then

$$2^{-(k+1)}y_{k+1} = 2^{-k}y_k - T(2^{-k}x_k),$$

and therefore

$$\lim_{m \to \infty} T\left(\sum_{k=0}^{m} 2^{-k} x_k\right) = y - \lim_{m \to \infty} 2^{-(m+1)} y_{m+1} = y.$$

Since

$$\sum_{k=0}^{m} \|2^{-k} x_k\| < \sum_{k=0}^{m} 2^{-k} \le 2 < \infty \quad \text{is} \quad \left(\sum_{k=0}^{m} 2^{-k} x_k\right)_{m \in \mathbb{N}}$$

a Cauchy sequence in X. Because X is complete, there exists

$$x := \sum_{k=0}^{\infty} 2^{-k} x_k \in X$$
 with $||x|| < 2$.

Then continuity of T implies

$$Tx = \lim_{m \to \infty} T\left(\sum_{k=0}^{m} 2^{-k} x_k\right) = y.$$

Hence we have shown that $U_{\delta}(0) \subset T(U_2(0))$, or $U_{\frac{\delta}{2}}(0) \subset T(U_1(0))$. Now by Remark 3.7(ii) we can conclude that T is open.

3.5 Inverse mapping theorem

Theorem 3.9 Let X and Y be a Banach spaces and $T \in L(X;Y)$. Then

T is bijective implies
$$T^{-1} \in L(Y; X)$$
.

Proof: T^{-1} is linear. By Theorem 3.8 T is open, hence T^{-1} is continuous, see Remark 3.7(i).

3.6 Closed graph theorem

Theorem 3.10 Let X and Y be a Banach spaces and $T: X \to Y$ linear. Then

$$graph(T) := \{(x, Tx) \in X \times Y \mid x \in X\}$$

is closed in $X \times Y$ iff $T \in L(X;Y)$.

Proof: Sufficiency: In the formulation of the theorem we view $X \times Y$ as a Banach space, e.g., equipped with the norm $\|(x,y)\| := \|x\|_X + \|y\|_Y$. As a closed subspace $Z := \operatorname{graph}(T)$ is a Banach space. Set

$$P_X(x,y) := x, \ P_Y(x,y) := y, \ \text{for} \ (x,y) \in Z.$$

 P_X and P_Y are linear and continuous and $P_X: Z \to X$ is bijective. By the inverse mapping theorem $P_X^{-1} \in L(X; Z)$, therefore $T = P_Y P_X^{-1} \in L(X; Y)$. Necessity: Follows directly from continuity of T.

4 Weak convergence

In this section we assume X to be a Banach space and use the notation $\langle x, x' \rangle := x'(x), x \in X, x' \in X'$, as fixed in Notation 3.4.

4.1 Definition, elementary properties and examples

Definition 4.1 (i) A sequence $(x_k)_{k \in \mathbb{N}}$ in X converges weakly to $x \in X$ $(x_k \to x \text{ weakly in } X \text{ as } k \to \infty, \text{ or } x_k \to x \text{ as } k \to \infty)$, iff

$$\lim_{k \to \infty} \langle x_k, x' \rangle = \langle x, x' \rangle \quad \text{for all} \quad x' \in X'.$$

(ii) A sequence $(x'_k)_{k\in\mathbb{N}}$ in X' converges weakly* to $x'\in X'$ $(x'_k\to x'$ weakly* in X' as $k\to\infty$, or $x'_k\rightharpoonup^*x'$ as $k\to\infty$), if

$$\lim_{k \to \infty} \langle x, x'_k \rangle = \langle x, x' \rangle \quad \text{for all} \quad x \in X.$$

- (iii) Weak and weak* Cauchy sequences are defined correspondingly.
- (iv) A subset $M \subset X$ (X', resp.) is called **weak** (**weak***, resp.) **sequentially compact**, if each sequence in M possess a weak (weak*, resp.) convergent subsequence, whose weak (weak*, resp.) limit is also in M.
- (v) To distinguish norm convergence from weak convergence, in corresponding situations we call convergence w.r.t. the norm strong convergence.

Proposition 4.2 (i) Via

$$\langle x', J_X x \rangle := \langle x, x' \rangle$$

an isometric mapping $J_X \in L(X; X'')$ is defined. Here X'' := (X')' is the **bidual space** of X.

(ii) Let $x_k, x \in X$ for all $k \in \mathbb{N}$, then:

$$x_k \rightharpoonup x$$
 in X as $k \to \infty$ iff $J_X x_k \rightharpoonup^* J_X x$ in X'' as $k \to \infty$.

Proof: (i): See Corollary 2.5(iii).

(ii): For
$$x' \in X'$$
 is $\langle x_k, x' \rangle = \langle x', J_X x_k \rangle$ and $\langle x, x' \rangle = \langle x', J_X x \rangle$.

Proposition 4.3 (i) Corollary 2.5(ii) implies that the weak limit is uniquely determined. For the weak* limit this is trivially true.

- (ii) Strong convergence implies weak (weak*) convergence.
- (iii) From $x'_k \rightharpoonup^* x'$ in X' as $k \to \infty$ it follows that

$$||x'|| \le \liminf_{k \to \infty} ||x'_k||.$$

(iv) From $x_k \rightharpoonup x$ in X as $k \to \infty$ it follows that

$$||x|| \le \liminf_{k \to \infty} ||x_k||,$$

i.e., the norm is lower continuous w.r.t. weak convergence.

- (v) Weakly (weakly*) convergent sequences are norm bounded.
- (vi) If $x_k \to x$ strongly in X and $x'_k \rightharpoonup^* x'$ in X' as $k \to \infty$, then

$$\lim_{k \to \infty} \langle x_k, x_k' \rangle = \langle x, x' \rangle.$$

The same statement is true, if $x_k \rightharpoonup x$ in X and $x'_k \rightarrow x'$ strongly in X' as $k \rightarrow \infty$.

Proof: (iii): For all $x \in X$ we have

$$|\langle x, x' \rangle| = \lim_{k \to \infty} |\langle x, x'_k \rangle| \le \liminf_{k \to \infty} ||x'_k|| ||x||,$$

hence

$$||x'|| \le \liminf_{k \to \infty} ||x_k'||.$$

(iv): As in the proof of (iii) we find

$$|\langle x, x' \rangle| \le ||x'|| \cdot \liminf_{k \to \infty} ||x_k||.$$

Now we choose x' with ||x'|| = 1 and $\langle x, x' \rangle = ||x||$, see Corollary 2.5(i), and the statement is proven.

(v): If
$$x'_k \rightharpoonup^* x'$$
 in X' , then

$$\sup_{k\in\mathbb{N}} |\langle x, x_k' \rangle| < \infty \quad \text{for all } x \in X.$$

Thus, by Banach-Steinhaus theorem

$$\sup_{k \in \mathbb{N}} \|x_k'\| < \infty.$$

If $x_k \to x$ in X, then $J_X x_k \to^* J_X x$ in X'', see Proposition 4.2(ii). Therefore, as above we find that $(J_X x_k)_{k \in \mathbb{N}}$ is bounded in X'' and then isometry of J_X yields that $(x_k)_{k \in \mathbb{N}}$ is bounded in X.

(vi): Under the first assumption we have:

$$|\langle x, x' \rangle - \langle x_k, x_k' \rangle| \le |\langle x, x' - x_k' \rangle| + ||x - x_k|| ||x_k'||.$$

Since $(x'_k)_{k\in\mathbb{N}}$ is bounded in X', see (v), the statement is shown. Under the second assumption the statement can be shown analogously.

Example 4.4 Let $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, where for p = 1 the complete measure space (μ, \mathcal{B}, S) is assumed to be σ -finite. Then

$$J(g)(f) := \int_{S} f\overline{g} d\mu, \qquad f \in L^{p}(\mu), g \in L^{q}(\mu),$$

defines an isometric conjugate linear isomorphism $J: L^q(\mu) \to L^p(\mu)'$ (proof will be given later). In the case p = q = 2 (Hilbert space) J coincides with the Riesz isomorphism. Hence

$$f_k \rightharpoonup f$$
 in $L^p(\mu)$ as $k \to \infty$ iff $\lim_{k \to \infty} \int_S f_k \overline{g} \, d\mu = \int_S f \overline{g} \, d\mu$ for all $g \in L^q(\mu)$.

4.2 Banach–Alaoglu theorem

Theorem 4.5 Let X be separable. Then the closed unit ball $\overline{U_1(0)}$ in X' is weak* sequentially compact.

Proof: Let $\{x_n \mid n \in \mathbb{N}\}$ be dense in X and $(x'_k)_{k \in \mathbb{N}}$ a sequence in X' with $\|x'_k\| \leq 1$. Then the $(\langle x_n, x'_k \rangle)_{k \in \mathbb{N}}$ are bounded sequences in \mathbb{K} . Hence, by dropping to subsequences and then to the diagonal sequence we obtain for all $n \in \mathbb{N}$ the existence of

$$\lim_{k \to \infty} \langle x_n, x_k' \rangle \in \mathbb{K}.$$

Then also for all $y \in Y := \operatorname{span}\{x_n \mid n \in \mathbb{N}\}\$ there exists

$$\langle y, x' \rangle := \lim_{k \to \infty} \langle y, x'_k \rangle,$$

and $x': Y \to \mathbb{K}$ is linear. Since

$$|\langle y, x' \rangle| = \lim_{k \to \infty} |\langle y, x'_k \rangle| \le ||y||,$$

the mapping $x' \in L(Y; \mathbb{K})$ and therefore can be extended to a continuous, linear mapping on $\overline{Y} = X$, see Exercise 1.1. Consequently, $x' \in X'$ with $||x'|| \leq 1$. Additionally, for all $x \in X$ and $y \in Y$ we have

$$|\langle x, x' - x_k' \rangle| \le |\langle x - y, x' - x_k' \rangle| + |\langle y, x' - x_k' \rangle| \le 2||x - y|| + |\langle y, x' - x_k' \rangle|.$$

The second term for each $y \in Y$ tends to zero as $k \to \infty$ and the first can be made arbitrarily small, because Y is dense in X.

Example 4.6 Theorem 4.5 in general does not hold, if X is not separable. E.g., take $X = L^{\infty}((0,1))$ and for $1 \ge \epsilon > 0$ define

$$T_{\epsilon}f := \frac{1}{\epsilon} \int_0^{\epsilon} f \, dx, \quad f \in L^{\infty}((0,1)).$$

Then $T_{\epsilon} \in L^{\infty}((0,1))'$ with $||T_{\epsilon}|| \leq 1$. But there does not exist any zero sequence $(\epsilon_k)_{k \in \mathbb{N}}$ such that the sequence $(T_{\epsilon_k})_{k \in \mathbb{N}}$ converges weakly*.

Proof: Assume there exists such a zero sequence $(\epsilon_k)_{k\in\mathbb{N}}$. W.l.o.g. we can assume (by dropping to a subsequence) that

$$1>\frac{\epsilon_{k+1}}{\epsilon_k} \ \text{for all} \ k\in\mathbb{N} \ \text{ and } \ \lim_{k\to\infty}\frac{\epsilon_{k+1}}{\epsilon_k}=0.$$

Observe the function

$$f(x) := (-1)^j, \quad \epsilon_{j+1} < x < \epsilon_j, \ j \in \mathbb{N}.$$

Then $f \in L^{\infty}((0,1))$. We have

$$T_{\epsilon_k} f = \frac{1}{\epsilon_k} \left((\epsilon_k - \epsilon_{k+1})(-1)^k + \int_0^{\epsilon_{k+1}} f \, dx \right),$$

and therefore

$$|T_{\epsilon_k}f - (-1)^k| \le \frac{1}{\epsilon_k} \left(\epsilon_{k+1} + \int_0^{\epsilon_{k+1}} |f| \, dx \right) \le \frac{2\epsilon_{k+1}}{\epsilon_k} \quad \text{for all} \quad k \in \mathbb{N}.$$

This shows that $(T_{\epsilon_k}f)_{k\in\mathbb{N}}$ has the two accumulation points $\{-1,1\}$. Thus, $(T_{\epsilon_k})_{k\in\mathbb{N}}$ can not be weakly* convergent.

4.3 Reflexive spaces

Definition 4.7 Let J_X be the isometry as in Proposition 4.2. The space X is called reflexive, iff J_X is surjective.

Lemma 4.8 (i) If X is reflexive, then weak and weak* convergence in X' coincide.

- (ii) If X is reflexive, then each closed subspace of X is reflexive.
- (iii) Let $T: X \to Y$ be a continuous isomorphism (Y a Banach space). Then X is reflexive, iff Y is reflexive.
- (iv) X is reflexive, iff X' is reflexive.
- (v) X' separable, implies X separable.

Proof: (ii): Let $Y \subset X$ be a closed subspace. For $y'' \in Y''$ set

$$\langle x', x'' \rangle := \langle x' |_{Y}, y'' \rangle, \quad x' \in X'.$$

Then $x'' \in X''$. Define $x := J_X^{-1} x''$. Then we have for all $x' \in X'$ with x' = 0 on Y

$$\langle x, x' \rangle = \langle x', x'' \rangle = \langle x' |_{Y}, y'' \rangle = 0.$$

Therefore, $x \in Y$ by Proposition 2.4. If $x' \in X'$ is an extension of y', provided by Hahn–Banach theorem, we conclude for all $y' \in Y'$:

$$\langle x, y' \rangle = \langle x, x' \rangle = \langle x' |_{Y}, y'' \rangle = \langle y', y'' \rangle,$$

i.e., $y'' = J_Y(x)$. This yields surjectivity of J_Y .

(iii): Let X be reflexive and $y'' \in Y''$. Then

$$\langle x', x'' \rangle := \langle x' \circ T^{-1}, y'' \rangle, \quad x' \in X',$$

defines an element $x'' \in X''$ and we have for all $y' \in Y'$:

$$\langle y', y'' \rangle = \langle y' \circ T, x'' \rangle = \langle J_X^{-1} x'', y' \circ T \rangle = \langle T J_X^{-1} x'', y' \rangle$$

Thus, $y'' = J_Y T J_X^{-1} x''$.

(iv) Let X be reflexive: If $x''' \in X'''$, then $x''' \circ J_X \in X'$ and we have for all $x'' \in X''$:

$$\langle x'', x''' \rangle = \langle J_Y^{-1} x'', x''' \circ J_X \rangle = \langle x''' \circ J_X, x'' \rangle,$$

i.e., $x''' = J_{X'}(x''' \circ J_X)$.

Let X' be reflexive: Using the arguments as above we obtain that X'' is reflexive. Since J_X is isometric, $J_X(X)$ is a closed subspace of X''. Hence, by (ii) also reflexive. Now (iii) yields reflexivity of X.

(v): Let $\{x'_n \mid n \in \mathbb{N}\}$ be dense in X'. Choose $x_n \in X$ such that

$$\langle x_n, x_n' \rangle \ge \frac{1}{2} ||x_n'||$$
 and $||x_n|| = 1$

and define $Y := \overline{\operatorname{span}\{x_n \mid n \in \mathbb{N}\}}$. If now $x' \in X'$ with x' = 0 on Y, then for all $n \in \mathbb{N}$:

$$||x' - x'_n|| \ge |\langle x_n, x' - x'_n \rangle| = |\langle x_n, x'_n \rangle| \ge \frac{1}{2} ||x'_n|| \ge \frac{1}{2} (||x'|| - ||x'_n - x'||).$$

Thus

$$||x'|| \le 3 \inf_{n \in \mathbb{N}} ||x' - x_n'|| = 0,$$

because $\{x'_n \mid n \in \mathbb{N}\}$ is assumed to be dense in X'. Now Proposition 2.4 yields Y = X.

Theorem 4.9 Let X be reflexive. Then the closed unit ball $\overline{U_1(0)} \subset X$ is weak sequentially compact.

Proof: Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in X with $||x_k|| \leq 1$ and

$$Y := \overline{\operatorname{span}\{x_n \mid n \in \mathbb{N}\}}.$$

Then also Y is reflexive, see Lemma 4.8(ii), and additionally separable. Consequently, also $Y'' = J_Y(Y)$ and Y', see Lemma 4.8(v), are separable. Therefore, we can apply Theorem 4.5 to $(J_Y x_k)_{k \in \mathbb{N}}$. Thus, there exists a $y'' \in Y''$ such that for a subsequence $(k_l)_{l \in \mathbb{N}}$

$$\lim_{l \to \infty} \langle y', J_Y x_{k_l} \rangle = \langle y', y'' \rangle \quad \text{for all} \quad y' \in Y'.$$

Set $x := J_Y^{-1} y'' \in Y$. Then

$$\lim_{l \to \infty} \langle x_{k_l}, y' \rangle = \lim_{l \to \infty} \langle y', J_Y x_{k_l} \rangle = \langle y', y'' \rangle = \langle x, y' \rangle$$

for all $y' \in Y'$. Since for $x' \in X'$ the mapping $x'|_{Y}$ lies in Y' we also have

$$\lim_{l \to \infty} \langle x_{k_l}, x' \rangle = \langle x, x' \rangle,$$

i.e., $x_{k_l} \rightharpoonup x$ in X as $l \to \infty$.

Example 4.10 (i) Each Hilbert space X is reflexive. Hence, together with Riesz representation we have: Let $(x_k)_{k\in\mathbb{N}}$ be a bounded sequence in X, then there exists a subsequence $(x_{k_l})_{l\in\mathbb{N}}$ and $x\in X$ such that

$$\lim_{l \to \infty} (x_{k_l}, y)_X = (x, y)_X \quad \text{for all} \quad y \in X.$$

(ii): $L^p(\mu)$ for $1 is reflexive. Therefore, together with Example 4.4: Let <math>(f_k)_{k \in \mathbb{N}}$ be a bounded sequence in $L^p(\mu)$, then there exists a subsequence $(f_{k_l})_{l \in \mathbb{N}}$ and $f \in L^p(\mu)$ such that

$$\lim_{l \to \infty} \int_{S} f_{k_{l}} g \, d\mu = \int_{S} f g \, d\mu \quad \text{for all} \quad g \in L^{q}(\mu).$$

(iii) Let μ be σ -finite. Then $L^1(\mu)$ and $L^{\infty}(\mu)$ are not reflexive, if the underlying σ -algebra has infinite many disjoint sets with positive finite measure (i.e., if and only if $L^1(\mu)$ and $L^{\infty}(\mu)$, resp., are infinite dimensional).

Proof: (i): Let $J: X \to X'$ be the (conjugate linear) isomorphism provided in the Riesz representation theorem. For $x'' \in X''$ define

$$\langle y, x' \rangle := \overline{\langle Jy, x'' \rangle}, \qquad y \in X.$$

Then $x' \in X'$. Set $x := J^{-1}x'$, then we have for all $y \in X$:

$$\langle Jy, x'' \rangle = \overline{\langle y, Jx \rangle} = \overline{\langle y, x \rangle_X} = \langle x, Jy \rangle,$$

i.e., $x'' = J_X x$. Thus, surjectivity of J_X is shown. Notice, that in the real case $J_X^{-1} = J^{-1}J'$, where $J': X'' \to X'$ is the adjoint mapping to J. (ii): The isometries

$$J_p: L^p(\mu) \to L^q(\mu)'$$
 and $J_q: L^q(\mu) \to L^p(\mu)'$

provided in Example 4.4 have the property:

$$\overline{\langle f, J_q g \rangle} = \langle g, J_p f \rangle, \quad f \in L^p(\mu), g \in L^q(\mu).$$

For $f'' \in L^p(\mu)''$ we define

$$\langle g, g' \rangle := \overline{\langle J_q g, f'' \rangle}, \qquad g \in L^q(\mu).$$

We find $g' \in L^q(\mu)'$. Set $f := J_n^{-1}g'$, then we have for $g \in L^q(\mu)$:

$$\langle g, g' \rangle = \langle g, J_p f \rangle = \overline{\langle f, J_q g \rangle} = \overline{\langle J_q g, J_{L^p(\mu)} f \rangle}.$$

Therefore,

$$\langle J_q g, f'' \rangle = \langle J_q g, J_{L^p(\mu)} f \rangle$$
, for all $g \in L^q(\mu)$.

Since J_q is surjective, we can conclude that $f'' = J_{L^p(\mu)}f$. Thus, $L^p(\mu)$ is reflexive. Notice, that in the real case $J_{L^p(\mu)}^{-1} = J_p^{-1}J_q'$, where $J_q': L^p(\mu)'' \to L^q(\mu)'$ is the adjoint mapping to J_q .

(iii): Because of Lemma 4.8(iv), Example 4.4 for p=1 and Lemma 4.8(iii), it suffices to prove this for $L^1(\mu)$. Let $F \in L^{\infty}(\mu)'$ and $J_{\infty} : L^{\infty}(\mu) \to L^1(\mu)'$ the isomorphism provided in Example 4.4. Then via

$$\langle f', G \rangle := \overline{\langle J_{\infty}^{-1} f', F \rangle}, \qquad f' \in L^1(\mu)',$$

an element $G \in L^1(\mu)''$ is defined.

Assume that $G = J_{L^1(\mu)}f$ for some $f \in L^1(\mu)$. Then we have for all $g \in L^{\infty}(\mu)$:

$$\overline{\langle g, F \rangle} = \langle J_{\infty}g, G \rangle = \langle J_{\infty}g, J_{L^{1}(\mu)}f \rangle = \langle f, J_{\infty}g \rangle = \int_{S} f\overline{g} \, d\mu,$$

i.e.,

$$\langle g, F \rangle = \int_{S} g\overline{f} \, d\mu, \quad \text{for all} \quad g \in L^{\infty}(\mu).$$
 (4.1)

Now, under the assumptions on μ as in (iv), we construct an F which does not fulfill (4.1). Let $E_k \in \mathcal{B}$ such that

$$E_k \subset E_{k+1}, \ \mu(E_k) < \mu(E_{k+1}) \text{ and } E := \bigcup_{k \in \mathbb{N}} E_k.$$

Consider the subspace

$$Y := \overline{\{g \in L^{\infty}(\mu) \mid g = 0 \text{ on } S \setminus E_k \text{ for some } k\}} \subset L^{\infty}(\mu).$$

Then $\chi_E \notin Y$. Thus, Proposition 2.4 yields the existence of an $F \in L^{\infty}(\mu)'$ such that F = 0 on Y and $F(\chi_E) = 1$. Hence, we have for all k:

$$F(\chi_{E_k}) = 0$$
 and $F(\chi_E) = 1$.

But for all $f \in L^1(\mu)$ we have

$$\lim_{k \to \infty} \int_{S} \chi_{E_k} \overline{f} \, d\mu = \int_{S} \chi_{E} \overline{f} \, d\mu.$$

That stands in contradiction to (4.1). Therefore, $J_{L^1(\mu)}$ can not be surjective.

4.4 Separation theorem

Theorem 4.11 Let X be a normed space, $M \subset X$ closed and convex, and $x_0 \in X \setminus M$. Then there exists $x' \in X'$ and $\alpha \in \mathbb{R}$ such that

$$\Re\langle x, x' \rangle \leq \alpha \quad \text{for all} \quad x \in M \quad \text{and} \quad \Re\langle x_0, x' \rangle > \alpha.$$

Proof: First we consider the case $\mathbb{K} = \mathbb{R}$. Without lost of generality we assume $0 \in \mathring{M}$ (translate M and x_0 by a point from M and substitute M by $\overline{U_r(M)}$ with $r < \operatorname{dist}(x_0, M)$). Let us consider the **Minkowski functional**

$$p(x) := \inf \left\{ r > 0 \mid \frac{x}{r} \in M \right\}, \quad x \in X.$$

Since $0 \in \mathring{M}$, we have $0 \le p(x) < \infty$ for all $x \in M$. Additionally,

$$p \le 1$$
 on M and $p(x_0) > 1$.

Furthermore,

$$p(\alpha x) = \alpha p(x), \quad \alpha \ge 0,$$

 $p(x+y) \le p(x) + p(y),$

i.e., p is sublinear. Indeed, because for $\alpha > 0$ we have

$$\frac{x}{r} \in M \quad \text{iff} \quad \frac{\alpha x}{\alpha r} \in M,$$

and convexity of M yields:

$$\frac{x}{r}, \frac{y}{s} \in M$$
 implies $\frac{x+y}{r+s} = \frac{r}{r+s} \frac{x}{r} + \frac{s}{r+s} \frac{y}{s} \in M$.

Define

$$f(\alpha x_0) := \alpha p(x_0), \quad \alpha \in \mathbb{R}.$$

Then

$$f(\alpha x_0) = p(\alpha x_0), \quad \alpha \ge 0,$$

$$f(\alpha x_0) < 0 < p(\alpha x_0), \quad \alpha < 0.$$

Now by Hahn–Banach (applied to span $\{x_0\}$) there exists a linear extension F of f to X such that $F \leq p$. Therefore

$$F \le p \le 1$$
 on M and $F(x_0) = f(x_0) = p(x_0) > 1$.

Since $\overline{U_r(0)} \subset M$ for some r > 0, we have

$$x \in X$$
 implies $\frac{rx}{\|x\|} \in M$ implies $p(x) \le \frac{\|x\|}{r}$ implies $F(x) \le \frac{1}{r} \|x\|$,

i.e., $F \in X'$.

In the case $\mathbb{K} = \mathbb{C}$ we consider X as a \mathbb{R} vector space $X_{\mathbb{R}}$ and obtain an $F_{\mathbb{R}} \in X'_{\mathbb{R}}$ with the desired properties. Then as in the proof of Theorem 2.3 we define $F := F_{\mathbb{R}} - iF_{\mathbb{R}}(i\cdot) \in X'$. Since $\Re F = F_{\mathbb{R}}$, the proof is finished.

Proposition 4.12 Let X be a normed space and $M \subset X$ closed and convex. Then M is weak sequentially closed, i.e., if $x_k \in M$ for all $k \in \mathbb{N}$ and $x_k \rightarrow x$ in X as $k \rightarrow \infty$, then also $x \in M$.

Proof: Assume that $x \notin M$. Then by Theorem 4.11 there exists $x' \in X'$ and $\alpha \in \mathbb{R}$ such that

$$\Re \langle y, x' \rangle \leq \alpha \quad \text{for all} \quad y \in M \quad \text{and} \quad \Re \langle x, x' \rangle > \alpha.$$

Hence, $\Re\langle x_k, x' \rangle \leq \alpha$ and because of weak convergence also $\Re\langle x, x' \rangle \leq \alpha$. That is a contradiction.

Proposition 4.13 (Lemma of Mazur) Let $(x_k)_{k \in \mathbb{N}}$ be a sequence in a normed space X converging weakly to x. Then $x \in \text{conv}\{x_k \mid k \in \mathbb{N}\}$.

Proof: conv $\{x_k \mid k \in \mathbb{N}\}$ is convex, hence also its closure. Now apply Proposition 4.12.

Theorem 4.14 Let X be reflexive, $M \subset X$ non-empty, closed and convex. Then for $x_0 \in X$ there exists $x \in M$ such that

$$||x_0 - x|| = \operatorname{dist}(x_0, M).$$

Proof: Let $(x_k)_{k\in\mathbb{N}}$ be a minimizing sequence, i.e.,

$$x_k \in M$$
 for all $k \in \mathbb{N}$ and $\lim_{k \to \infty} ||x_0 - x_k|| = \operatorname{dist}(x_0, M)$.

Then $(x_k)_{k\in\mathbb{N}}$ is a bounded sequence and Theorem 4.9 yields the existence of a subsequences $(k_l)_{l\in\mathbb{N}}$ and an $x\in X$ such that $x_{k_l}\rightharpoonup x$ as $l\to\infty$. By Proposition 4.12 $x\in M$. Since also $x_{k_l}-x_0\rightharpoonup x-x_0$ as $l\to\infty$, lower continuity of the norm, see Proposition 4.3(iv), implies that $||x_0-x||=\operatorname{dist}(x_0,M)$.

5 Projections

In this section we assume X to be a \mathbb{K} vector space.

5.1 Linear projections

Definition 5.1 Let Y be a subspace of X. A linear mapping $P: X \to X$ is called (linear) projection on Y, iff

$$P^2 = P$$
 and $\mathcal{R}(P) = Y$.

Proposition 5.2 (i) P is a projection on a subspace $Y \subset X$, iff

$$P: X \to Y$$
 and $P = Id$ on Y .

(ii) If $P: X \to X$ is a projection, then

$$X = \mathcal{N}(P) \oplus \mathcal{R}(P).$$

(iii) If $P: X \to X$ is a projection, then also Id - P and

$$\mathcal{N}(Id - P) = \mathcal{R}(P)$$
 and $\mathcal{R}(Id - P) = \mathcal{N}(P)$.

(iv) For each subspace $Y \subset X$ there exist a linear projection on Y.

Proof: (i): Obvious!

(ii): We have for all $x \in X$:

$$x = x - Px + Px$$
.

Here $(x - Px) \in \mathcal{N}(P)$ and $Px \in \mathcal{R}(P)$. If $x \in \mathcal{N}(P) \cap \mathcal{R}(P)$, then Px = 0 and P(x) = x, thus x = 0.

(iii): We have

$$(Id - P)^2 = Id - 2P + P^2 = Id - 2P + P = Id - P.$$

Furthermore

$$x \in \mathcal{N}(Id - P)$$
 iff $x - Px = 0$ iff $x \in \mathcal{R}(P)$.

hence $\mathcal{N}(Id-P) = \mathcal{R}(P)$. Then also $\mathcal{N}(P) = \mathcal{N}(Id-(Id-P)) = \mathcal{R}(Id-P)$.

(iv): As in the proof of Theorem 2.1 (Hahn–Banach) set

$$\mathcal{M} := \{(Z, P) \mid Z \text{ subspace}, Y \subset Z \subset X,$$

$$P: Z \to Y \text{ linear, } P = Id \text{ on } Y$$
.

with the same order relation. Analogously as in the proof of Theorem 2.1 one can prove that \mathcal{M} possesses a maximal element (Z, P). Suppose there exists $z_0 \in X \setminus Z$. Then

$$Z_0 := Z \oplus \operatorname{span}\{z_0\}, \quad P_0(z + \alpha z_0) := P(z), \quad z \in Z, \, \alpha \in \mathbb{K},$$

defines an element $(Z_0, P_0) \in \mathcal{M}$ with $(Z, P) \leq (Z_0, P_0)$ and $Z_0 \neq Z$. But (Z, P) is maximal. That's a contradiction.

5.2 Continuous projections

Proposition 5.3 Let X be a normed space and $P \in P(X)$ (linear continuous projection).

- (i) $\mathcal{N}(P)$ and $\mathcal{R}(P)$ are closed.
- (ii) $||P|| \ge 1$ or P = 0.

Proof: (i): Since the pre-image of a closed set under a continuous mapping is closed $\mathcal{N}(P) = P^{-1}(\{0\})$ is closed. By Proposition 5.2(iii) then also $\mathcal{R}(P)$ is closed.

(ii): Since L(X) is a Banach algebra, we have $||P|| = ||P^2|| \le ||P||^2$. Thus ||P|| = 0 or $||P|| \ge 1$.

5.3 Closed complement theorem

Theorem 5.4 Let Y be a closed subspace of a Banach space X and Z a subspace such that $X = Y \oplus Z$. Then the following are equivalent:

- (i) There exists a continuous projection P on Y with $Z = \mathcal{N}(P)$.
- (ii) Z is closed.

Proof: (i) implies (ii): $\mathcal{N}(P)$ is closed.

(ii) implies (i): Consider the Banach space

$$\widetilde{X} := Y \times Z, \quad \|(y, z)\|_{\widetilde{X}} := \|y\|_X + \|z\|_X,$$

and define T(y,z):=y+z. Since $X=Y\oplus Z,\,T:\widetilde{X}\to X$ is linear and bijective. Define $P_Y:X\to Y$ and $P_Z:X\to Z$ via

$$T^{-1}x = (P_Y x, P_Z x), \quad x \in X.$$

Then P_Y and P_Z are linear. Since $T^{-1}(y) = (y,0)$ for $y \in Y$, $P_Y = Id$ on Y, i.e., P_Y is a projection on Y. Because $||P_Yx||_X \leq ||T^{-1}x||_{\widetilde{X}}$, P_Y is continuous if T^{-1} is continuous. Since $||T(y,z)||_X \leq ||(y,z)||_{\widetilde{X}}$, T is continuous and therefore also T^{-1} by the inverse mapping theorem.

Corollary 5.5 Let Y be a finite dimensional subspace of a Banach space X and Z a closed subspace such that $X = Y \oplus Z$. If $W \cap Z = \{0\}$, then W is finite dimensional with $\dim(W) \leq \dim(Y)$ and $\dim(W) = \dim(Y)$, iff $X = W \oplus Z$.

Proof: Since Y is finite dimensional, it is closed. Let $P \in P(X)$ be the projection on Y with $Z = \mathcal{N}(P)$ provided in Theorem 5.4. Then

$$S := P|_W : W \to Y$$

is linear and injective. Indeed, if Py = 0, then $y \in Z \cap W = \{0\}$. Since Y is finite dimensional, this implies that also W is finite dimensional with $\dim(W) \leq \dim(Y)$.

If $X = W \oplus Z$, then as above (exchange Y and W) $\dim(Y) \leq \dim(W)$, i.e., $\dim(W) = \dim(Y)$.

If $\dim(W) = \dim(Y)$, then is S bijective. Thus for $x \in X$ is

$$y := S^{-1}Px \in W$$

with

$$Py = PS^{-1}Px = SS^{-1}Px = Px,$$

i.e., $x - y \in \mathcal{N}(P) = Z$. This proves $X = W \oplus Z$.

5.4 Orthogonal projections

Lemma 5.6 Let Y be a closed subspace of a Hilbert space X and P the orthogonal projection on Y provided in Corollary E5.14. Then:

- (i): $P \in P(X)$.
- (ii): $\mathcal{R}(P) = Y$ and $\mathcal{N}(P) = Y^{\perp}$.
- (iii): $X = Y \perp Y^{\perp}$.
- (iv): Let $Z \subset X$ a subspace such that $X = Y \perp Z$, then $Z = Y^{\perp}$. That is why Y^{\perp} is called the **orthogonal complement** of Y.

Proof: (i), (ii): P as in Corollary E5.14 is characterized by

$$(x - Px, y) = 0 \qquad \forall y \in Y, \tag{5.1}$$

and from this we already concluded linearity of P. Additionally, P is continuous because when setting y = Px, (5.1) implies

$$||Px||^2 = (Px, Px) = (x, Px) < ||x|| ||Px||,$$

thus $||Px|| \le ||x||$. Furthermore, (5.1) immediately yields that $P \in P(X)$. Indeed, if $x \in Y$, then set $y = x - Px \in Y$ in (5.1) and obtain x - Px = 0, i.e., P = Id on Y. Furthermore, (5.1) implies

$$x \in \mathcal{N}(P)$$
 iff $Px = 0$ iff $(x, y) = 0 \ \forall y \in Y$ iff $x \in Y^{\perp}$.

- (iii): Follows from Proposition 5.2(ii).
- (iv): First observe that $Z \subset Y^{\perp}$. But, if $x \in Y^{\perp}$ with the representation $x = z + y, z \in Z, y \in Y$, then also $x z \in Y^{\perp}$. Thus, $0 = (x z, y) = ||y||^2$, i.e., $x = z \in Z$.

Proposition 5.7 Let X be a Hilbert space and $P: X \to X$ linear. Then the following statements are equivalent:

(i) P is an orthogonal projection on $\mathcal{R}(P)$, i.e.,

$$||x - Px|| \le ||x - Py|| \quad \forall x, y \in X.$$

- (ii) (x Px, Py) = 0 for all $x, y \in X$.
- (iii) $P^2 = P$ and (x, Py) = (Px, y) for all $x, y \in X$ (i.e., P is self-adjoint).
- (iv) $P \in P(X)$ and $||P|| \le 1$ (then ||P|| = 1 or ||P|| = 0 by Proposition 5.3(iv)).

Proof: (i) is equivalent to (ii): See the proofs of Proposition E5.13 and Corollary E5.14.

(ii) implies (iii): For $x, y \in X$ we have:

$$0 = (x - Px, Py) - \overline{(y - Py, Px)}$$

= $(x, Py) - (Px, Py) - \overline{(y, Px)} + \overline{(Py, Px)}$
= $(x, Py) - (Px, y)$.

Using this identity we get for $x \in X$:

$$(P^2x - Px, y) = (P(Px - x), y) = (Px - x, Py) = 0$$

for all $y \in X$. Thus, $P^2x = Px$.

(iii) implies (iv): Set y = Px in (iii) and obtain

$$||Px||^2 = (x, P^2x) = (x, Px) \le ||x|| ||Px||.$$

Hence $||Px|| \le ||x||$ and therefore $||P|| \le 1$. Now $P^2 = P$ yields $P \in P(X)$.

(iv) implies (ii): Let $x \in X$, $y \in \mathcal{R}(P)$ and set z = x - Px. Since Py = y and Pz = 0 we have for $\varepsilon > 0$ and $|\alpha| = 1$:

$$||y||^2 = ||P(\varepsilon z + \alpha y)||^2 \le \varepsilon^2 ||z||^2 + 2\varepsilon \Re(z, \alpha y) + ||y||^2.$$

Thus

$$0 \le \lim_{\varepsilon \to 0} \varepsilon ||z||^2 + 2\Re(z, \alpha y) = 2\Re\overline{\alpha}(z, y).$$

Since this holds for all $|\alpha| = 1$ we have

$$0 = (z, y) = (x - Px, y).$$

6 Bounded operators

In this section we assume X and Y to be normed \mathbb{K} vector spaces.

6.1 Adjoint operators

Let us recall the definition of the adjoint operator given in Definition E.4.4.

Definition 6.1 For $T \in L(X;Y)$

$$\langle x, T'y' \rangle := \langle Tx, y' \rangle, \quad x \in X, y' \in Y',$$

defines a linear mapping $T': Y' \to X'$. T' is called the **adjoint operator** to T. Since

$$|\langle x, T'y' \rangle| \le ||y'||_{Y'} ||T|| ||x||_X,$$

we have $T' \in L(Y'; X')$ with $||T'|| \le ||T||$.

Example 6.2 Let $X = Y = l^1(\mathbb{K})$ and T the shift operator

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots), \quad (x_1, x_2, \ldots) \in l^1(\mathbb{K}).$$

Then $J_{\infty}^{-1}T'J_{\infty}: l^{\infty}(\mathbb{K}) \to l^{\infty}(\mathbb{K})$ is the operator

$$J_{\infty}^{-1}T'J_{\infty}(y_1, y_2, \ldots) = (y_2, y_3, \ldots), \quad (y_1, y_2, \ldots) \in l^{\infty}(\mathbb{K}).$$

Furthermore, ||T|| = 1 = ||T'||.

Theorem 6.3 Let X and Y be Banach spaces. The map $T \to T'$ is an isometric embedding of L(X;Y) into L(Y';X').

Proof: The map $T \to T'$ is linear. Furthermore

$$||T|| = \sup_{\|x\|_X \le 1} ||Tx||_Y = \sup_{\|x\|_X \le 1} \Big(\sup_{\|y'\|_{Y'} \le 1} |\langle Tx, y' \rangle| \Big)$$
$$= \sup_{\|y'\|_{Y'} \le 1} \Big(\sup_{\|x\|_X \le 1} |\langle x, T'y' \rangle| \Big) = \sup_{\|y'\|_{Y'} \le 1} ||T'y'|| = ||T'||.$$

The second equality is a consequence of Corollary 2.5(i).

Let us recall the definition of the Hilbert space adjoint given in Definition E5.16.

Definition 6.4 Let T be a bounded linear operator mapping a Hilbert space X into itself. The Banach space adjoint is then in L(X'). Recall the conjugate linear Riesz isomorphism

$$J: X \to X'$$
.

The Hilbert space adjoint then is defined by

$$T^* = J^{-1}T'J \in L(X).$$

 $T \in L(X)$ is called **self-adjoint**, iff $T^* = T$.

The Hilbert space adjoint satisfies

$$(Tx,y) = \langle Tx,Jy \rangle = \langle x,T'Jy \rangle = (x,J^{-1}T'Jy) = (x,T^*y), \quad x,y \in X.$$

Proposition 6.5 Let X be a Hilbert space and $T, S \in L(X)$.

- (i) $(T^*)^* = T$.
- (ii) $(TS)^* = S^*T^*$.
- (iii) $T \to T^*$ is a conjugate linear isometric isomorphism of L(X) onto L(X).
- (iv) If T has a bounded inverse, then T^* has a bounded inverse and $(T^*)^{-1} = (T^{-1})^*$.
- (v) $||T^*T|| = ||T||^2$.

Proof: (i), (ii): Easily checked.

(iii): Follows from Theorem 6.3, the fact that J is a conjugate linear isometry and (i).

(iv): Since $T^{-1}T = Id = TT^{-1}$ we have from (ii)

$$T^*(T^{-1})^* = Id^* = Id = Id^* = (T^{-1})^*T^*$$

which proves (iv).

(v) Note that by (iii)

$$||T^*T|| \le ||T^*|| ||T|| = ||T||^2$$

and

$$||T^*T|| \ge \sup_{\|x\| \le 1} (T^*Tx, x) = \sup_{\|x\| \le 1} (Tx, Tx) = \sup_{\|x\| \le 1} ||Tx||^2 = ||T||^2.$$

Lemma 6.6 Let X be a Hilbert space and $T \in L(X)$ self-adjoint. Then

$$||T|| = \sup_{\|x\| \le 1} |(Tx, x)|.$$

Proof: See Exercise 11.2.

6.2 Spectrum and resolvent

Proposition 6.7 Let X be a Banach space and suppose $T \in L(X)$. Then for any two points $\lambda, \mu \in \rho(T)$, $R(\lambda; T)$ and $R(\mu; T)$ commute and

$$R(\lambda;T) - R(\mu,T) = (\mu - \lambda)R(\lambda;T)R(\mu;T)$$
 (first resolvent equation).

Proof: The expression

$$R(\lambda;T) - R(\mu;T) = R(\lambda;T)(\mu Id - T)R(\mu;T) - R(\lambda;T)(\lambda Id - T)R(\mu;T)$$

proves the first resolvent equation. Interchanging λ and μ shows that $R(\lambda; T)$ and $R(\mu; T)$ commute.

The statement of the following lemma was already shown in Proposition 1.11. But here we give a different proof, which exemplary shows how to generalize results from Complex Analysis for mappings with values in \mathbb{C} to mappings with values in a \mathbb{C} Banach space.

Lemma 6.8 Let $X \neq \{0\}$ be a \mathbb{C} Banach space, $T \in L(X)$. Then the spectrum of T is not empty.

Proof: If $|\lambda| > ||T||$, then we have

$$R(\lambda;T) = \frac{1}{\lambda} \left(Id - \frac{T}{\lambda} \right)^{-1} = \frac{1}{\lambda} \left(Id + \sum_{n=1}^{\infty} \left(\frac{T}{\lambda} \right)^n \right)$$

(Neumann series). Thus

$$\lim_{|\lambda| \to \infty} ||R(\lambda; T)|| = 0. \tag{6.1}$$

Assume that $\sigma(T) = \emptyset$. Then by Proposition 1.9

$$R(\cdot;T):\mathbb{C}\to L(X)$$

is a holomorphic mapping. Hence there exists a sequence $(T_n)_{n\in\mathbb{N}}$ in L(X) such that

$$R(\lambda;T) = \sum_{n=0}^{\infty} T_n \lambda^n, \quad \lambda \in \mathbb{C}.$$

In particular, $R(\cdot;T)$ is a continuous mapping and therefore bounded on compact subsets of \mathbb{C} . This together with (6.1) yields the existence of a constant $0 < C < \infty$ (independent of $\lambda \in \mathbb{C}$) such that

$$||R(\lambda;T)|| \le C$$
 for all $\lambda \in \mathbb{C}$.

Hence for all $y' \in L(X)$

$$\langle R(\lambda;T), y' \rangle = \sum_{n=0}^{\infty} \langle T_n, y' \rangle \lambda^n, \quad \lambda \in \mathbb{C},$$

and

$$|\langle R(\lambda;T), y' \rangle| \le ||R(\lambda;T)|| ||y'|| \le C||y'||$$
 for all $\lambda \in \mathbb{C}$.

Therefore

$$\langle R(\cdot;T),y'\rangle:\mathbb{C}\to\mathbb{C}$$

is a bounded holomorphic function. By Liouville's theorem together with (6.1)

$$\langle R(\lambda;T), y' \rangle = 0$$
 for all $\lambda \in \mathbb{C}, y' \in L(X)$.

Then Corollary 2.5(i) implies

$$R(\lambda; T) = 0$$
 for all $\lambda \in \mathbb{C}$.

This is impossible if $X \neq \{0\}$. Contradiction! Thus, $\sigma(T)$ is not empty.

Theorem 6.9 (Phillips) Let X be a Banach space, $T \in L(X)$. Then $\sigma(T) = \sigma(T')$ and $R(\lambda; T') = R(\lambda; T)'$, $\lambda \in \rho(T) = \rho(T')$. If X is a Hilbert space, then $\sigma(T^*) = \{\lambda \mid \overline{\lambda} \in \sigma(T)\}$ and $R(\overline{\lambda}; T^*) = R(\lambda; T)^*$.

Proof: Let $\lambda \in \rho(T)$, then

$$\langle x, x' \rangle = \langle (\lambda Id - T)R(\lambda; T)x, x' \rangle$$

= $\langle R(\lambda; T)x, (\lambda Id - T')x' \rangle = \langle x, R(\lambda; T)'(\lambda Id - T')x' \rangle$

for all $x \in X$ and $x' \in X'$. The same holds when interchanging $(\lambda Id - T)$ and $R(\lambda; T)$. Therefore,

$$R(\lambda; T)'(\lambda Id - T') = Id = (\lambda Id - T')R(\lambda; T)',$$

i.e., $R(\lambda; T') = R(\lambda; T)'$ and, in particular, $\rho(T) \subset \rho(T')$. Starting with $\lambda \in \rho(T')$, $(\lambda Id - T')$ and $R(\lambda; T')$ in an analogous way we obtain $\rho(T') \subset \rho(T)$. Thus, $\rho(T) = \rho(T')$ and therefore also $\sigma(T) = \sigma(T')$.

The Hilbert space case follows from Proposition 6.5 or by an analogous consideration as above, but with the scalar product instead of the dual paring.

Example 6.10 Let T be the shift operator on $l^1(\mathbb{K})$ acting as

$$T(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \quad (x_1, x_2, \ldots) \in l^1(\mathbb{K}).$$

Its adjoint $T': l^{\infty}(\mathbb{K}) \to l^{\infty}(\mathbb{K})$ is the operator

$$T'(y_1, y_2, \ldots) = (0, y_1, y_2, \ldots), \quad (y_1, y_2, \ldots) \in l^{\infty}(\mathbb{K}).$$

(here we identify $J_{\infty}^{-1}T'J_{\infty}$ and T'). It is easy to check that ||T|| = 1 = ||T'||. Thus all λ with $|\lambda| > 1$ are in $\rho(T)$ and $\rho(T')$.

Suppose $|\lambda| < 1$. Then the vector

$$x_{\lambda} := (1, \lambda, \lambda^2, \ldots)$$

is in $l^1(\mathbb{K})$ and satisfies

$$(\lambda Id - T)x_{\lambda} = 0.$$

Thus, all such λ are in the point spectrum of T. Since the spectrum is closed $\sigma(T) = \{\lambda \mid |\lambda| \leq 1\}$. By Theorem 6.9 this set is also the spectrum of T'. We want to show that T' has no point spectrum. Suppose that $y = (y_n)_{n \in \mathbb{N}} \in l^{\infty}(\mathbb{K})$ such that $(\lambda Id - T')y = 0$. Then

$$\lambda y_1 = 0, \quad \lambda y_2 - y_1 = 0, \quad \dots$$

These equations together imply that y = 0. So $(\lambda Id - T')$ is injective and T' has no point spectrum. Next suppose $|\lambda| < 1$. Then for all $y \in l^{\infty}(\mathbb{K})$

$$\langle x_{\lambda}, (\lambda Id - T')y \rangle = \langle (\lambda Id - T)x_{\lambda}, y \rangle = 0,$$

where $x_{\lambda} \in l^1(\mathbb{K})$ is the eigenvector with eigenvalue λ . By Corollary 2.5(i) we now that there exists an element in $l^{\infty}(\mathbb{K})$ which does not vanish on x_{λ} , so the range of $(\lambda Id - T')$ is not dense. Thus $\{\lambda \mid |\lambda| < 1\}$ is in the residual spectrum of T'.

It remains to consider the boundary $|\lambda| = 1$. Suppose that $|\lambda| = 1$ and $(\lambda Id - T)x = 0$ for some $x = (x_n)_{n \in \mathbb{N}} \in l^1(\mathbb{K})$. Then

$$x_2 = \lambda x_1, \quad x_3 = \lambda x_2, \quad \dots$$

So, $x = x_1(1, \lambda, \lambda^2, ...)$ which is not in $l^1(\mathbb{K})$. Thus, λ is not in the point spectrum. If the range of $(\lambda Id - T)$ were not dense, there would be a nonzero $y \in l^{\infty}(\mathbb{K})$ such that

$$\langle (\lambda Id - T)x, y \rangle = 0 \quad \forall x \in l^1(\mathbb{K}).$$

But then

$$\langle x, (\lambda Id - T')y \rangle = 0 \quad \forall x \in l^1(\mathbb{K})$$

which would imply that λ is in the point spectrum of T' which we have proven cannot occur. Thus, $\{\lambda \mid |\lambda| = 1\}$ is neither in the point spectrum of T nor in the residual spectrum of T, hence in the continuous spectrum of T.

Finally, we prove that $\{\lambda \mid |\lambda| = 1\}$ is in the residual spectrum of T' by explicitly finding an open ball disjoint from $\mathcal{R}(\lambda Id - T')$. If $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}} \in l^{\infty}(\mathbb{K})$ and obey $y = (\lambda Id - T')x$, then

$$y_1 = \lambda x_1, \dots, y_n = \lambda x_n - x_{n-1}, \dots$$

Therefore,

$$x_n = \overline{\lambda}^{n+1} \sum_{m=1}^n \lambda^m y_m.$$

Let $z = (z_n)_{n \in \mathbb{N}} \in l^{\infty}(\mathbb{K})$ with $z_n = \overline{\lambda}^n$ and suppose that $w \in l^{\infty}(\mathbb{K})$ with $||w - z||_{\infty} \leq \frac{1}{2}$. Then

$$\Re(\lambda^n w_n) \ge \Re(\lambda^n z_n) - \|w - z\|_{\infty} \ge \frac{1}{2}.$$

Thus, if $(\lambda Id - T')v = w$ for some $v \in l^{\infty}(\mathbb{K})$, then since

$$v_n = \overline{\lambda}^{n+1} \sum_{m=1}^n \lambda^m w_m$$

 $|v_n| \ge n/2$ which is impossible. Therefore, $\mathcal{R}(\lambda Id - T')$ does not intersect with the ball of radius $\frac{1}{2}$ about z. Thus, λ is in the residual spectrum.

Proposition 6.11 Let X be a Banach space, $T \in L(X)$. Then

- (i) If λ is in the residual spectrum of T, then λ is in the point spectrum of T'.
- (ii) If λ is in the point spectrum of T, then λ is either in the point spectrum or the residual spectrum of T'.

Proof: (i): Since $(\lambda Id - T)$ is not dense, by Proposition 2.4 there exists an $0 \neq x' \in X'$ such that

$$0 = \langle (\lambda Id - T)x, x' \rangle = \langle x, (\lambda Id - T')x' \rangle \quad \forall x \in X.$$

So x' is an eigenvector of T' corresponding to the eigenvalue λ .

(ii): Let x be an eigenvector of T corresponding to the eigenvalue λ , then

$$0 = \langle (\lambda Id - T)x, x' \rangle = \langle x, (\lambda Id - T')x' \rangle \quad \forall x' \in X'.$$

Furthermore, by Corollary 2.5(i) the exists an $x'_0 \in X'$ such that $\langle x, x'_0 \rangle \neq 0$. Therefore $\mathcal{R}(\lambda Id - T')$ cannot be dense in X'. If now $(\lambda Id - T')$ is not injective, then λ is in the point spectrum of T'. Otherwise λ is in the residual spectrum of T'.

Theorem 6.12 Let $A \in L(X)$ be a self-adjoint operator on a Hilbert space X. Then,

- (i) A has no residual spectrum.
- (ii) $\sigma(A) \subset \mathbb{R}$.
- (iii) Eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

Proof: (i): First note that the point spectrum is a subset of \mathbb{R} . Then (i) follows from Proposition 6.11 and the fact that the point and residual spectrum are disjoint by definition.

(ii): If λ and μ are real, we compute

$$\|((\lambda + i\mu)Id - A)x\|^2 = (x, ((\lambda - i\mu)Id - A)((\lambda + i\mu)Id - A)x)$$

= $\|(\lambda Id - A)x\|^2 + \mu^2 \|x\|^2$, $x \in X$.

Thus

$$\|((\lambda + i\mu)Id - A)x\| \ge |\mu|\|x\|.$$
 (6.2)

Now let $\mu \neq 0$. Then (6.2) implies that $((\lambda + i\mu)Id - A)$ is an injection and has bounded inverse on its range which is closed. Since A has no residual spectrum, $\mathcal{R}((\lambda + i\mu)Id - A) = X$. Therefore $(\lambda + i\mu) \in \rho(A)$ if $\mu \neq 0$. Thus $\sigma(A) \subset \mathbb{R}$.

(iii): Let $x_{\mu}, x_{\lambda} \in X$ be eigenvectors corresponding to $\mu \neq \lambda$, respectively. Then by (ii)

$$\lambda(x_{\lambda}, x_{\mu}) = (Ax_{\lambda}, x_{\mu}) = (x_{\lambda}, Ax_{\mu}) = \mu(x_{\lambda}, x_{\mu}).$$

Hence

$$(\lambda - \mu)(x_{\lambda}, x_{\mu}) = 0.$$

Since $\lambda \neq \mu$ this implies $(x_{\lambda}, x_{\mu}) = 0$.

6.3 Spectral theorem (continuous functional calculus)

In this subsection X is always assumed to be a \mathbb{C} vector space.

Theorem 6.13 Let A be a self-adjoint bounded operator on a Hilbert space X. Then, there exists a unique map $\phi: C(\sigma(A)) \to L(X)$ with the following properties:

(i) ϕ is linear and an algebraic *-homomorphism, that is,

$$\phi(fg) = \phi(f)\phi(g) \qquad \phi(\lambda f) = \lambda \phi(f)$$
$$\phi(1) = Id \qquad \phi(\overline{f}) = \phi(f)^*$$

for all $f, g \in C(\sigma(A)), \lambda \in \mathbb{C}$.

(ii) ϕ is continuous, that is, $\|\phi(f)\| \leq C\|f\|_{C(\sigma(A))}$ for some $C < \infty$.

(iii) Let f be the function f(x) = x, $x \in \sigma(A)$, then $\phi(f) = A$.

Moreover, ϕ has the additional properties:

(iv) If $A\psi = \lambda \psi$, $\psi \in X$, then $\phi(f)\psi = f(\lambda)\psi$.

 $(v) \ \sigma(\phi(f)) = \{f(\lambda) \mid \lambda \in \sigma(A)\} \ (spectral \ mapping \ theorem).$

(vi) If $f \ge 0$, then $\phi(f) \ge 0$.

(vii) $\|\phi(f)\| = \|f\|_{C(\sigma(A))}$ (this strengthens (ii)).

We sometimes write $\phi_A(f)$ or f(A) for $\phi(f)$ to emphasize the dependence on A.

Lemma 6.14 Let A be a bounded operator on a Banach space X and $P(x) = \sum_{n=0}^{N} a_n x^n, \ x, a_n \in \mathbb{C}, 0 \le n \le N$. Then

$$\sigma(P(A)) = \{P(\lambda) \, | \, \lambda \in \sigma(A)\}.$$

Proof: Let $\lambda \in \sigma(A)$. Since $x = \lambda$ is a root of $P(x) - P(\lambda)$, we have

$$P(x) - P(\lambda) = (x - \lambda)Q(x) = Q(x)(x - \lambda)$$

SO

$$P(A) - P(\lambda)Id = (A - \lambda Id)Q(A) = Q(A)(A - \lambda Id).$$

Since $(A - \lambda Id)$ has no inverse neither does $P(A) - P(\lambda)Id$, that is, $P(\lambda) \in \sigma(P(A))$.

Conversely, let $\mu \in \sigma(P(A))$ and let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ be the roots of $P(x) - \mu$, that is,

$$P(x) - \mu = a(x - \lambda_1) \cdot \dots \cdot (x - \lambda_n), \quad a \in \mathbb{C}.$$

The case a=0 is trivial. Hence let $a\neq 0$. If $\lambda_1,\ldots,\lambda_n\notin\sigma(A)$, then

$$(P(A) - \mu Id)^{-1} = a^{-1}(A - \lambda_n Id)^{-1} \cdot \dots \cdot (A - \lambda_1 Id)^{-1}.$$

So we conclude that some $\lambda_i \in \sigma(A)$, that is, $\mu = P(\lambda)$ for some $\lambda \in \sigma(A)$.

Lemma 6.15 Let A be a bounded self-adjoint operator on a Hilbert space X and $P(x) = \sum_{n=0}^{N} a_n x^n$, $x, a_n \in \mathbb{C}$, $0 \le n \le N$. Then

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|.$$

Proof:

$$\begin{split} \|P(A)\|^2 &= \Big(\sup_{\|\varphi\| \le 1} \sqrt{(P(A)\varphi, P(A)\varphi)}\Big)^2 = \sup_{\|\varphi\| \le 1} (P(A)\varphi, P(A)\varphi) \\ &= \sup_{\|\varphi\| \le 1} (\varphi, P(A)^*P(A)\varphi) = \|P(A)^*P(A)\| = \|\overline{P}P(A)\| \\ &= \sup_{\lambda \in \sigma(\overline{P}P(A))} |\lambda| = \sup_{\lambda \in \sigma(A)} |\overline{P}P(\lambda)| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|^2 = \Big(\sup_{\lambda \in \sigma(A)} |P(\lambda)|\Big)^2, \end{split}$$

where we used Lemma 6.6, Lemma 1.22 and Lemma 6.14.

Proof of Theorem 6.13: Properties (i), (iii) imply that

$$\phi(P) = P(A)$$

for each polynomial. Then by Lemma 6.15

$$\|\phi(P)\| = \|P\|_{C(\sigma(A))}$$

Therefore, ϕ has a unique continuous linear extension to the closure of the polynomials in $C(\sigma(A))$, i.e, to all of $C(\sigma(A))$ by Weierstraß approximation theorem. Hence, properties (i)-(iii) determine ϕ uniquely. Obviously, properties (i)-(iii), (vii) also hold for the closure.

(iv): Note that

$$\phi(P)\psi = P(\lambda)\psi$$

for all polynomials. Thus

$$\phi(f)\psi = f(\lambda)\psi$$

for all $f \in C(\sigma(A))$ by continuity.

(vi): Notice if $f \geq 0$ then $f = g^2$ with g real and $g \in C(\sigma(A))$. Thus, $\phi(f) = \phi(g)^2$ with $\phi(g)$ self-adjoint, so $\phi(f) \geq 0$.

(v): See Exercise 12.1.

Example 6.16 (i) Theorem 6.13 gives the existence of the **square root** of positive semi-definite $A \in L(X)$ (see Corollary 1.26(ii) for the definition of positive semi-definite).

First note that on a complex Hilbert space positive semi-definite operators are always self-adjoint (in the real case this is not true). Indeed, since

$$\mathbb{R} \ni (Ax, x) = \overline{(Ax, x)} = (x, Ax)$$
 for all $x \in X$,

we get

$$(Ax, y) = (x, Ay)$$
 for all $x, y \in X$,

by the polarization identities:

$$(Ax,y) = \frac{1}{4} \Big((A(x+y), x+y) - (A(x-y), x-y) + i \Big((A(x+iy), x+iy) - (A(x-iy), x-iy) \Big) \Big)$$

and

$$(x, Ay) = \frac{1}{4} \Big((x + y, A(x + y)) - (x - y, A(x - y)) + i \Big((x + iy, A(x + iy)) - (x - iy, A(x - iy)) \Big) \Big), \quad x, y \in X.$$

Then $\sigma(A) \subset \mathbb{R}$ by Theorem 6.12(ii). Now let $\lambda < 0$, then

$$\|(\lambda Id - A)x\|^2 = (\lambda x - Ax, x - Ax)$$

$$= \lambda^2(x, x) - \lambda(x, Ax) - \lambda(Ax, x) + (Ax, Ax)$$

$$\geq \lambda^2(x, x) = |\lambda|^2 \|x\|^2 \quad \text{for all} \quad x \in X.$$

Hence, as in the proof of Theorem 6.12(ii) it follow that $\lambda \in \rho(A)$. Thus $\sigma(A) \subset [0, \infty)$.

If $f = \sqrt{\cdot}$, then $f \in C(\sigma(A))$ and real valued. Thus, \sqrt{A} is well-defined, self-adjoint and

$$\sqrt{A}\sqrt{A} = \phi(\sqrt{\cdot})\phi(\sqrt{\cdot}) = \phi((\sqrt{\cdot})^2) = A,$$

by Theorem 6.13.

(ii) If $A \in L(X)$, then obviously $A^*A \ge 0$. Hence we can define the **modulus** of A by

$$L(X) \ni |A| := \sqrt{A^*A} \ge 0.$$

(iii) From Theorem 6.13(vii) we see that

$$\|(\lambda Id - A)^{-1}\| = (\operatorname{dist}(\lambda, \sigma(A)))^{-1}$$

if A is bounded, self-adjoint, and $\lambda \notin \sigma(A)$.

7 Unbounded operators

In this section X is a Hilbert space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

7.1 Domains, graphs, adjoints, and spectrum

Example 7.1 (i) Consider the linear mapping (L, D(L)) in $X = L^2([0, \pi])$ from Example 1.3(v) given by

$$D(L) := \{ f \in C^2([0,\pi]) | f(0) = f(\pi) = 0 \} \subset L^2([0,\pi])$$

and

$$L^2([0,\pi])\ni Lf:=f'',\quad f\in D(L).$$

Since the functions

$$f_n = \sin(n\cdot) \in D(L)$$

are eigenfunctions to the eigenvalues $-n^2, n \in \mathbb{N}, (L, D(L))$ is not bounded. (ii) Let $X = L^2(\mathbb{R})$ and

$$D(T) := \Big\{ f \in L^2(\mathbb{R}) \, \Big| \, \int_{\mathbb{R}} x^2 \, |f(x)|^2 \, dx < \infty \Big\}.$$

We define for $f \in D(T)$

$$Tf(x) := xf(x), \quad x \in \mathbb{R},$$
 (position operator).

Obviously, $Tf \in L^2(\mathbb{R})$. By choosing indicator functions of intervals with measure 1 having a large distance to the origin, one easily shows that the operator (T, D(T)) is unbounded.

From now on we consider linear mappings

$$T:D(T)\to X$$

which might be well-defined only on a linear subset $D(T) \subset X$. To stress this we write (T, D(T)) and call (T, D(T)) an **operator** in X. If (T, D(T)) is not bounded, i.e., there does not exist $0 < C < \infty$ such that

$$||Tx|| \le C||x||$$
 for all $x \in D(T)$,

then we call (T, D(T)) an **unbounded operator**.

Definition 7.2 Let (T, D(T)) be an operator in X. Then we define the **graph** of (T, D(T)) by

$$\Gamma_T := \{ [x, y] \in X \times X \mid y = Tx, x \in D(T) \}.$$

The graph norm corresponding to (T, D(T)) is defined by

$$||x||_{\Gamma_T} := \sqrt{||x||^2 + ||Tx||^2}, \quad x \in D(T).$$

(T, D(T)) is called a **closed** operator, iff Γ_T is a closed subset of $X \times X$. Here $X \times X$ is equipped with the scalar product

$$([x_1, y_1], [x_2, y_2])_{X \times X} := (x_1, x_2)_X + (y_1, y_2)_X, \quad [x_1, y_1], [x_2, y_2] \in X \times X.$$

$$(7.1)$$

Lemma 7.3 An operator (T, D(T)) in X is closed, iff $(D(T), \|\cdot\|_{\Gamma_T})$ is complete.

Proof: Let (T, D(T)) be closed and let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in D(T) w.r.t $\|\cdot\|_{\Gamma_T}$. Then $(x_n)_{n \in \mathbb{N}}$ and $(Tx_n)_{n \in \mathbb{N}}$ are Cauchy sequences in X. Hence there exists

$$x = \lim_{n \to \infty} x_n, \ y = \lim_{n \to \infty} Tx_n \in X.$$

Set $y_n := Tx_n$, $n \in \mathbb{N}$. Then $([x_n, y_n])_{n \in \mathbb{N}}$ is a sequence in Γ_T which converges to [x, y] in $X \times X$. Since Γ_T is closed, we have $x \in D(T)$ and y = Tx. Thus $(x_n)_{n \in \mathbb{N}}$ converges to x in D(T) w.r.t $\|\cdot\|_{\Gamma_T}$.

Let $(D(T), \|\cdot\|_{\Gamma_T})$ be complete and $([x_n, y_n])_{n\in\mathbb{N}}$ a sequence in Γ_T which converges to [x, y] in $X \times X$. Then $y_n = Tx_n$, $n \in \mathbb{N}$. Hence $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in D(T) w.r.t $\|\cdot\|_{\Gamma_T}$. Because $(D(T), \|\cdot\|_{\Gamma_T})$ is complete

$$x = \lim_{n \to \infty} x_n \in D(T)$$
 and $Tx = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} y_n = y$

in X. Thus Γ_T is closed.

Definition 7.4 Let $(T_1, D(T_1))$ and $(T_2, D(T_2))$ be operators in X. The operator $(T_2, D(T_2))$ is called an **extension** of $(T_1, D(T_1))$, iff

$$\Gamma_{T_1} \subset \Gamma_{T_2}$$
.

Or, equivalently,

$$D(T_1) \subset D(T_2)$$
 and $T_2|_{D(T_1)} = T_1$.

Definition 7.5 An operator (T, D(T)) in X we call **closable**, iff it has a closed extension. Every closable operator has a smallest closed extension (see the proof of Proposition 7.6 below), called its **closure**, which we denote by $(\overline{T}, D(\overline{T}))$.

Proposition 7.6 If (T, D(T)) is a closable operator in X, then $\Gamma_{\overline{T}} = \overline{\Gamma_T}$.

Proof: Suppose (S, D(S)) is a closed extension of (T, D(T)). Then $\overline{\Gamma_T} \subset \Gamma_S$. Hence, if

$$[0, y] \in \overline{\Gamma_T}, \quad \text{then} \quad y = 0.$$
 (7.2)

Furthermore, since $\Gamma_T \subset X \times X$ is a linear subset, also $\overline{\Gamma_T} \subset X \times X$ is a linear subset. Hence on

$$D(R) := \{ x \in X \, | \, [x, y] \in \overline{\Gamma_T} \text{ for some } y \in X \}$$

we can define the linear mapping

$$Rx := y$$
 where $[x, y] \in \overline{\Gamma_T}$,

which due to (7.2) together with the linearity of $\overline{\Gamma_T}$ is well-defined on D(R). Then $\Gamma_R = \overline{\Gamma_T}$. Thus (R, D(R)) is a closed extension of (T, D(T)). But $\Gamma_R \subset \Gamma_S$, which is an arbitrary closed extension of (T, D(T)). Thus $\Gamma_R = \Gamma_{\overline{T}}$.

Definition 7.7 Let (T, D(T)) be a **densely defined** operator in X (i.e., $D(T) \subset X$ is dense). Let $D(T^*)$ be the set of all elements y from X for which there exists $z \in X$ such that

$$(Tx, y) = (x, z)$$
 for all $x \in D(T)$.

Since $D(T) \subset X$ is dense, this z is unique. Hence for each such $y \in D(T^*)$ we can define

$$T^*y := z$$
.

 $(T^*, D(T^*))$ is called the **(Hilbert space) adjoint** of (T, D(T)). Obviously, $T^*: D(T^*) \to X$ is linear.

Lemma 7.8 Let (T, D(T)) be a densely defined operator in X. Then $y \in D(T^*)$, iff there exists $0 \le C < \infty$ such that

$$|(Tx,y)| \le C||x||$$
 for all $x \in D(T)$.

Proof: Let $y \in D(T^*)$, then by the Cauchy–Schwartz inequality

$$|(Tx,y)| = |(x,T^*y)| \le ||x|| ||T^*y||$$
 for all $x \in D(T)$.

Vice versa. Suppose there exist $0 \le C < \infty$ such that

$$|(Tx, y)| \le C||x||$$
 for all $x \in D(T)$.

Then the mapping

$$D(T) \ni x \mapsto (Tx, y) \in \mathbb{K}$$

is linear and continuous. Since $D(T) \subset X$ is dense, it can be extended uniquely to a linear continuous mapping $F: X \to \mathbb{K}$. Hence by the Riesz representation theorem there exists a unique $z \in X$ such that

$$F(x) = (x, z)$$
 for all $x \in X$.

In particular

$$(Tx, y) = F(x) = (x, z)$$
 for all $x \in D(T)$.

Theorem 7.9 Let (T, D(T)) be a densely defined operator on X. Then: (i): $(T^*, D(T^*))$ is closed.

(ii): (T, D(T)) is closable, iff $D(T^*) \subset X$ is dense in which case $\Gamma_{\overline{T}} = \Gamma_{T^{**}}$. (iii): If (T, D(T)) is closable, then $\Gamma_{(\overline{T})^*} = \Gamma_{T^*}$.

Proof: (i): We define the operator V on $X \times X$ by

$$V[x,y] = [-y,x], \quad [x,y] \in X \times X.$$

First note that

$$V(E^{\perp}) = V(E)^{\perp}$$
 for all subspaces $E \subset X \times X$.

Furthermore $[x, y] \in V(\Gamma_T)^{\perp}$, iff

$$([x,y],[-Tz,z])_{X\times X}=0$$
 for all $z\in D(T)$.

That is equivalent to

$$(y,z)_X = (x,Tz)_X$$
 for all $z \in D(T)$.

This in turn holds, iff $[x, y] \in \Gamma_{T^*}$. Thus

$$\Gamma_{T^*} = V(\Gamma_T)^{\perp}. \tag{7.3}$$

Since $V(\Gamma_T)^{\perp} \subset X \times X$ is closed, this proves (i).

(ii): Since $\Gamma_T \subset X \times X$ is a linear subset we have by using (7.3)

$$\overline{\Gamma_T} = ((\Gamma_T)^{\perp})^{\perp} = ((V^2(\Gamma_T))^{\perp})^{\perp} = (V((V(\Gamma_T))^{\perp}))^{\perp} = (V(\Gamma_{T^*}))^{\perp}.$$

Thus, by (7.3), if $D(T^*) \subset X$ is dense, then $\overline{\Gamma_T}$ is the graph of $(T^{**}, D(T^{**}))$. Hence, in this case (T, D(T)) is closable and $\Gamma_{\overline{T}} = \Gamma_{T^{**}}$.

Conversely, suppose that $D(T^*) \subset X$ is not dense and that $0 \neq z \in D(T^*)^{\perp}$. Then

$$[z,0] \in (\Gamma_{T^*})^{\perp}$$

and therefore

$$[0, z] = V[z, 0] \in V((\Gamma_{T^*})^{\perp}) = (V(\Gamma_{T^*}))^{\perp}.$$

Hence

$$\overline{\Gamma_T} = (V(\Gamma_{T^*}))^{\perp}$$

can not be the graph of a linear mapping. Thus, by Proposition 7.6, (T, D(T)) is not closable.

(iii): Notice that if T is closable, then by (i) and (ii)

$$\Gamma_{T^*} = \Gamma_{\overline{T^*}} = \Gamma_{T^{***}} = \Gamma_{(\overline{T})^*}.$$

Definition 7.10 Let (T, D(T)) be an operator in X. A $\lambda \in \mathbb{C}$ is in the resolvent set of (T, D(T)), $\rho(T)$, iff:

- (i) $\lambda Id T : D(T) \to X$ is injective,
- (ii) $\lambda Id T : D(T) \to X$ is surjective,
- (iii) $R(\lambda;T) := (\lambda Id T)^{-1} \in L(X)$.

If $\lambda \in \rho(T)$, then $R(\lambda; T)$ is called the **resolvent** of (T, D(T)) at λ . The **spectrum**, **point spectrum**, and **residual spectrum** are the same for unbounded operators as they are for bounded operators, see Definition 1.7.

Theorem 7.11 Let (T, D(T)) be an operator in X. Then $\rho(T) \subset \mathbb{K}$ is open and the resolvent function $R(\cdot;T)$ is a \mathbb{K} -analytic mapping from $\rho(T)$ to L(X). Furthermore, for any two points $\lambda, \mu \in \rho(T)$, $R(\lambda;T)$ and $R(\mu;T)$ commute and

$$R(\lambda;T) - R(\mu,T) = (\mu - \lambda)R(\lambda;T)R(\mu;T)$$
 (first resolvent equation).

Proof: The same as in the case of $T \in L(X)$, see Proposition 1.9 and Proposition 6.7.

7.2 Symmetric and self-adjoint operators

Definition 7.12 A densely defined operator (T, D(T)) in X is called **symmetric** (or **Hermitian**), iff $\Gamma_T \subset \Gamma_{T^*}$. Or, equivalently,

$$(Tx,y)=(x,Ty) \text{ for all } x,y\in D(T).$$

Example 7.13 (i) In Example 1.3(v) we have already shown that the operator (L, D(L)) in $X = L^2([0, \pi])$ given by

$$D(L) = \{ f \in C^2([0,\pi]) | f(0) = f(\pi) = 0 \} \subset L^2([0,\pi])$$

and

$$L^{2}([0,\pi]) \ni Lf = f'', \quad f \in D(L),$$

is symmetric.

(ii) Consider the position operator (T,D(T)) in $L^2(\mathbb{R})$ from Example 7.1(ii). I.e.,

$$D(T) = \left\{ f \in L^2(\mathbb{R}) \, \middle| \, \int_{\mathbb{R}} x^2 \, |f(x)|^2 \, dx < \infty \right\}$$

and

$$Tf(x) = xf(x), \quad x \in \mathbb{R}, \quad f \in D(T).$$

(T, D(T)) is densely defined, since the indicator functions of bounded measurable sets, which are dense in $L^2(\mathbb{R})$, are contained in D(T). Furthermore, (T, D(T)) is symmetric, because

$$(Tf, f) = \int_{\mathbb{R}} Tf(x)\overline{f(x)} dx = \int_{\mathbb{R}} xf(x)\overline{f(x)} dx$$
$$= \int_{\mathbb{R}} f(x)\overline{xf(x)} dx = (f, Tf) \text{ for all } f \in D(T).$$

From Theorem 7.9(i) we can conclude that $(T^*, D(T^*))$ is closed and therefore a closed extension of (T, D(T)). Hence, (T, D(T)) is closable. But we have even that $\Gamma_T = \Gamma_{T^*}$. Indeed, let $f \in D(T^*)$, then

$$\int_{\mathbb{R}} g(x)\overline{(T^*f)(x)} dx = (g, T^*f) = (Tg, f)$$

$$= \int_{\mathbb{R}} xg(x)\overline{f(x)} dx = \int_{\mathbb{R}} g(x)\overline{xf(x)} dx \quad \text{for all} \quad g \in D(T).$$

Thus $T^*f(x) = xf(x)$ for dx-almost all $x \in \mathbb{R}$. Since $T^*f \in L^2(\mathbb{R})$, we have

$$\int_{\mathbb{R}} x^2 |f(x)|^2 \, dx < \infty,$$

i.e., $f \in D(T)$. Hence (T, D(T)) is self-adjoint in the sense of the following definition.

Definition 7.14 A densely defined operator (T, D(T)) in X is called **self-adjoint**, iff $\Gamma_T = \Gamma_{T^*}$.

A symmetric operator is always closable, since $D(T^*) \supset D(T)$ is dense in X, see Theorem 7.9(ii).

If (T, D(T)) is symmetric, $(T^*, D(T^*))$ is a closed extension of (T, D(T)), see Theorem 7.9(i), so the smallest closed extension $(T^{**}, D(T^{**}))$, see Theorem 7.9(ii), must be contained in $(T^*, D(T^*))$. Thus for symmetric operators we have

$$\Gamma_T \subset \Gamma_{T^{**}} \subset \Gamma_{T^*}$$
.

For closed symmetric operators

$$\Gamma_T = \Gamma_{T^{**}} \subset \Gamma_{T^*}$$
.

And, for self-adjoint operators

$$\Gamma_T = \Gamma_{T^{**}} = \Gamma_{T^*}.$$

Hence a closed symmetric operator (T, D(T)) is self-adjoint, iff $(T^*, D(T^*))$ is symmetric.

Definition 7.15 A symmetric operator (T, D(T)) in X is called **essentially self-adjoint**, iff its closure $(\overline{T}, D(\overline{T}))$ is self-adjoint. If (T, D(T)) is self-adjoint, a subset $D \subset D(T)$ is called a **core** for (T, D(T)) iff $\Gamma_{\overline{T|_D}} = \Gamma_T$.

Theorem 7.16 (the basic criterion for self-adjointness) Let (T, D(T)) be a symmetric operator in a complex Hilbert space X. Then the following statements are equivalent:

- (i) (T, D(T)) is self-adjoint.
- (ii) (T, D(T)) is closed and $\mathcal{N}(T^* \pm iId) = \{0\}.$
- (iii) $\mathcal{R}(T \pm iId) = X$.

Proof: (i) implies (ii): A self-adjoint operator (T, D(T)) is always closed, because $(T^*, D(T^*))$ is closed by Theorem 7.9(i) and $\Gamma_T = \Gamma_{T^*}$.

Suppose $x \in D(T^*) = D(T)$ fulfills $T^*x = ix$. Then Tx = ix and

$$i(x,x) = (ix,x) = (Tx,x) = (x,T^*x) = (x,Tx) = (x,ix) = -i(x,x).$$

Thus x = 0. A similar argument shows that $T^*x = -ix$ can hold only for x = 0.

(ii) implies (iii): Since $T^*x = -ix$ implies x = 0, $\mathcal{R}(T - iId)$ must be dense in X. Indeed, if

$$x \in \mathcal{R}(T - iId)^{\perp},$$

then we have

$$((T - iId)y, x) = 0$$
 for all $y \in D(T)$.

Hence $x \in D(T^*)$ and

$$0 = (T - iId)^*x = T^*x + ix.$$

Thus x = 0 by (ii). Now we only have to show that $\mathcal{R}(T - iId)$ is closed to conclude that $\mathcal{R}(T - iId) = X$. But this follows from

$$\|(T - iId)x\|^2 = (Tx - ix, Tx - ix) = \|Tx\|^2 + \|x\|^2, \quad x \in D(T).$$

Indeed, if $(x_n)_{n\in\mathbb{N}}$ is a sequence in D(T) such that

$$\lim_{n \to \infty} (T - iId)x_n = z.$$

Then there exist $x, y \in X$ such that

$$\lim_{n \to \infty} x_n = x \quad \text{and} \quad \lim_{n \to \infty} Tx_n = y.$$

Since (T, D(T)) is closed, $x \in D(T)$ and Tx = y. Hence

$$z = \lim_{n \to \infty} (T - iId)x_n = (T - iId)x \in \mathcal{R}(T - iId).$$

Similarly one shows that $\mathcal{R}(T+iId)=X$.

(iii) implies (i): Let $x \in D(T^*)$. Since $\mathcal{R}(T - iId) = X$, there exists $y \in D(T)$ such that

$$(T - iId)y = (T^* - iId)x.$$

Since $\Gamma_T \subset \Gamma_{T^*}$, we have $x - y \in D(T^*)$ and

$$((T^* - iId)(x - y) = 0.$$

Since $\mathcal{R}(T+iId)=X$, we have $\mathcal{N}(T^*-iId)=\{0\}$. Thus $x=y\in D(T)$. This proves that $D(T^*)=D(T)$. Hence (T,D(T)) is self-adjoint.

Corollary 7.17 Let (T, D(T)) be a symmetric operator in a complex Hilbert space X. Then the following statements are equivalent:

- (i) (T, D(T)) is essentially self-adjoint.
- $(ii) \mathcal{N}(T^* \pm iId) = \{0\}.$
- (iii) $\mathcal{R}(T \pm iId)$ are dense in X.

Proof: Follows from a careful analysis of the proof of Theorem 7.16.

References

- [Alt02] H.W. Alt. Lineare Funktional analysis. Springer-Verlag, Berlin, 2002.
- [RS75] M. Reed and B. Simon. *Methods of modern mathematical physics*, volume I. Academic Press, New York, London, 1975.