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Preface to the First Edition

Basic principles underlying the transactions of financial markets are tied to
probability and statistics. Accordingly it is natural that books devoted to
mathematical finance are dominated by stochastic methods. Only in recent
years, spurred by the enormous economical success of financial derivatives,
a need for sophisticated computational technology has developed. For ex-
ample, to price an American put, quantitative analysts have asked for the
numerical solution of a free-boundary partial differential equation. Fast and
accurate numerical algorithms have become essential tools to price financial
derivatives and to manage portfolio risks. The required methods aggregate to
the new field of Computational Finance. This discipline still has an aura of
mysteriousness; the first specialists were sometimes called rocket scientists.
So far, the emerging field of computational finance has hardly been discussed
in the mathematical finance literature.

This book attempts to fill the gap. Basic principles of computational
finance are introduced in a monograph with textbook character. The book is
divided into four parts, arranged in six chapters and seven appendices. The
general organization is

Part I (Chapter 1): Financial and Stochastic Background
Part II (Chapters 2, 3): Tools for Simulation
Part III (Chapters 4, 5, 6): Partial Differential Equations for Options
Part IV (Appendices A1...A7): Further Requisits and Additional Material.

The first chapter introduces fundamental concepts of financial options and
of stochastic calculus. This provides the financial and stochastic background
needed to follow this book. The chapter explains the terms and the function-
ing of standard options, and continues with a definition of the Black-Scholes
market and of the principle of risk-neutral valuation. As a first computational
method the simple but powerful binomial method is derived. The following
parts of Chapter 1 are devoted to basic elements of stochastic analysis, in-
cluding Brownian motion, stochastic integrals and Itô processes. The material
is discussed only to an extent such that the remaining parts of the book can
be understood. Neither a comprehensive coverage of derivative products nor
an explanation of martingale concepts are provided. For such in-depth cov-
erage of financial and stochastic topics ample references to special literature
are given as hints for further study. The focus of this book is on numerical
methods.

V
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Chapter 2 addresses the computation of random numbers on digital
computers. By means of congruential generators and Fibonacci generators,
uniform deviates are obtained as first step. Thereupon the calculation of
normally distributed numbers is explained. The chapter ends with an intro-
duction into low-discrepancy numbers. The random numbers are the basic
input to integrate stochastic differential equations, which is briefly developed
in Chapter 3. From the stochastic Taylor expansion, prototypes of numerical
methods are derived. The final part of Chapter 3 is concerned with Monte
Carlo simulation and with an introduction into variance reduction.

The largest part of the book is devoted to the numerical solution of those
partial differential equations that are derived from the Black-Scholes analysis.
Chapter 4 starts from a simple partial differential equation that is obtained by
applying a suitable transformation, and applies the finite-difference approach.
Elementary concepts such as stability and convergence order are derived. The
free boundary of American options —the optimal exercise boundary— leads
to variational inequalities. Finally it is shown how options are priced with
a formulation as linear complimentarity problem. Chapter 5 shows how a
finite-element approach can be used instead of finite differences. Based on
linear elements and a Galerkin method a formulation equivalent to that of
Chapter 4 is found. Chapters 4 and 5 concentrate on standard options.

Whereas the transformation applied in Chapters 4 and 5 helps avoiding
spurious phenomena, such artificial oscillations become a major issue when
the transformation does not apply. This is frequently the situation with the
non-standard exotic options. Basic computational aspects of exotic options
are the topic of Chapter 6. After a short introduction into exotic options,
Asian options are considered in some more detail. The discussion of numer-
ical methods concludes with the treatment of the advanced total variation
diminishing methods. Since exotic options and their computations are under
rapid development, this chapter can only serve as stimulation to study a field
with high future potential.

In the final part of the book, seven appendices provide material that may
be known to some readers. For example, basic knowledge on stochastics and
numerics is summarized in the appendices A2, A4, and A5. Other appendices
include additional material that is slightly tangential to the main focus of the
book. This holds for the derivation of the Black-Scholes formula (in A3) and
the introduction into function spaces (A6).

Every chapter is supplied with a set of exercises, and hints on further study
and relevant literature. Many examples and 52 figures illustrate phenomena
and methods. The book ends with an extensive list of references.

This book is written from the perspectives of an applied mathematician.
The level of mathematics in this book is tailored to readers of the advanced
undergraduate level of science and engineering majors. Apart from this basic
knowledge, the book is self-contained. It can be used for a course on the sub-
ject. The intended readership is interdisciplinary. The audience of this book
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includes professionals in financial engineering, mathematicians, and scientists
of many fields.

An expository style may attract a readership ranging from graduate stu-
dents to practitioners. Methods are introduced as tools for immediate appli-
cation. Formulated and summarized as algorithms, a straightforward imple-
mentation in computer programs should be possible. In this way, the reader
may learn by computational experiment. Learning by calculating will be a
possible way to explore several aspects of the financial world. In some parts,
this book provides an algorithmic introduction into computational finance.
To keep the text readable for a wide range of readers, some of the proofs
and derivations are exported to the exercises, for which frequently hints are
given.

This book is based on courses I have given on computational finance since
1997, and on my earlier German textbook Einführung in die numerische
Berechnung von Finanz-Derivaten, which Springer published in 2000. For
the present English version the contents have been revised and extended
significantly.

The work on this book has profited from cooperations and discussions
with Alexander Kempf, Peter Kloeden, Rainer Int-Veen, Karl Riedel and
Roland Seydel. I wish to express my gratitude to them and to Anita Rother,
who TEXed the text. The figures were either drawn with xfig or plotted and
designed with gnuplot, after extensive numerical calculations.

Additional material to this book, such as hints on exercises and colored
figures and photographs, is available at the website address

www.mi.uni-koeln.de/numerik/compfin/

It is my hope that this book may motivate readers to perform own com-
putational experiments, thereby exploring into a fascinating field.

Köln Rüdiger Seydel
February 2002
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This edition contains more material. The largest addition is a new section
on jump processes (Section 1.9). The derivation of a related partial integro-
differential equation is included in Appendix A3. More material is devoted
to Monte Carlo simulation. An algorithm for the standard workhorse of in-
verting the normal distribution is added to Appendix A7. New figures and
more exercises are intended to improve the clarity at some places. Several
further references give hints on more advanced material and on important
developments.

Many small changes are hoped to improve the readability of this book.
Further I have made an effort to correct misprints and errors that I knew
about.

A new domain is being prepared to serve the needs of the computational
finance community, and to provide complementary material to this book. The
address of the domain is

www.compfin.de
The domain is under construction; it replaces the website address www.mi.uni-
koeln.de/numerik/compfin/.

Suggestions and remarks both on this book and on the domain are most
welcome.

Köln Rüdiger Seydel
July 2003
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Preface to the Third Edition

The rapidly developing field of financial engineering has suggested extensions
to the previous editions. Encouraged by the success and the friendly reception
of this text, the author has thoroughly revised and updated the entire book,
and has added significantly more material. The appendices were organized in
a different way, and extended. In this way, more background material, more
jargon and terminology are provided in an attempt to make this book more
self-contained. New figures, more exercises, and better explanations improve
the clarity of the book, and help bridging the gap to finance and stochastics.

The largest addition is a new section on analytic methods (Section 4.8).
Here we concentrate on the interpolation approach and on the quadratic
approximation. In this context, the analytic method of lines is outlined. In
Chapter 4, more emphasis is placed on extrapolation and the estimation of
the accuracy. New sections and subsections are devoted to risk-neutrality.
This includes some introducing material on topics such as the theorem of
Girsanov, state-price processes, and the idea of complete markets. The anal-
ysis and geometry of early-exercise curves is discussed in more detail. In
the appendix, the derivations of the Black-Scholes equation, and of a partial
integro-differential equation related to jump diffusion are rewritten. An extra
section introduces multidimensional Black-Scholes models. Hints on testing
the quality of random-number generators are given. And again more ma-
terial is devoted to Monte Carlo simulation. The integral representation of
options is included as a link to quadrature methods. Finally, the references
are updated and expanded.

It is my pleasure to acknowledge that the work on this edition has bene-
fited from helpful remarks of Rainer Int-Veen, Alexander Kempf, Sebastian
Quecke, Roland Seydel, and Karsten Urban.

The material of this Third Edition has been tested in courses the author
gave recently in Cologne and in Singapore. Parallel to this new edition, the
website www.compfin.de is supplied by an option calculator.

Köln Rüdiger Seydel
October 2005
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Preface to the Fourth Edition

Financial engineering is evolving at a fast pace; new methods are being de-
veloped and efficient algorithms are being demanded. This fourth edition of
Tools for Computational Finance carefully integrates new directions set forth
by recent research. Insight from conferences and workshops has been vali-
dated by us and tested in the class room. In this fourth edition the main
focus is still largely, albeit not exclusively, on the Black–Scholes world, which
is considered a bench mark and the central point within a slightly more gen-
eral setting.

New topics of this fourth edition include a section on calibration, with
background material on minimization in the Appendix. Heston’s model is
also included. Two examples of exotic options have been added, namely: a
two-dimensional barrier option and a two-dimensional binary option. And
the exposition on Monte Carlo methods for American options has been ex-
tended by regression methods, including the Longstaff–Schwartz algorithm.
Furthermore, the tradeoff bias versus variance is discussed. Bermudan-based
algorithms play a larger role in this edition, with more emphasis on the dy-
namic programming principle based on continuation values. Section 4.6 on
finite-difference methods has been reorganized, now stressing the efficiency of
direct methods. — A few minor topics of the previous edition have become
obsolete and have been removed.

Every endeavor has been made to further improve the clarity of this expo-
sition. Amendments have been made throughout. And numerous additional
references provide hints for further study.

It is my pleasure to acknowledge that this edition has benefited from
inspiring discussions with several people, including Marco Avellaneda, Peter
Carr, Peter Forsyth, Tat Fung, Jonathan Goodman, Pascal Heider, Christian
Jonen, Jan Kallsen, Sebastian Quecke, and Roland Seydel.

Köln, August 2008 Rüdiger Seydel
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Notations

elements of options:

t time
T maturity date, time to expiration
S price of underlying asset

Sj , Sji specific values of the price S
St price of the asset at time t
K strike price, exercise price
Ψ payoff function
V value of an option (VC value of a call, VP value of a put,

Am American, Eur European)
σ volatility
r interest rate (Appendix A1)

general mathematical symbols:

IR set of real numbers
IN set of integers > 0
∈ element in
⊆ subset of, ⊂ strict subset
[a, b] closed interval {x ∈ IR : a ≤ x ≤ b}
[a, b) half-open interval a ≤ x < b (analogously (a, b], (a, b))
P probability
E expectation (Appendix B1)
Var variance
Cov covariance
log natural logarithm
:= defined to be
.= equal except for rounding errors
≡ identical
=⇒ implication
⇐⇒ equivalence
O(hk) Landau-symbol: for h → 0

f(h) = O(hk) ⇐⇒ f(h)
hk is bounded

∼ N (μ, σ2) normal distributed with expectation μ and variance σ2

∼ U [0, 1] uniformly distributed on [0, 1]

XIX



XX Notations

Δt small increment in t
tr transposed; Atr is the matrix where the rows

and columns of A are exchanged.
C0[a, b] set of functions that are continuous on [a, b]
∈ Ck[a, b] k-times continuously differentiable
D set in IRn or in the complex plane, D̄ closure of D,

D◦ interior of D
∂D boundary of D
L2 set of square-integrable functions
H Hilbert space, Sobolev space (Appendix C3)
[0, 1]2 unit square
Ω sample space (in Appendix B1)
f+ := max{f, 0}
d symbol for differentiation
u̇ time derivative du

dt of a function u(t)
f ′ derivative of a function f
i symbol for imaginary unit
e symbol for the basis of the exponential function exp
∂ symbol for partial differentiation
1M =1 on M, =0 elsewhere (indicator function)

integers:

i, j, k, l,m, n,M,N, ν

various variables:

Xt,X,X(t) random variable
Wt Wiener process, Brownian motion (Definition 1.7)
y(x, τ) solution of a partial differential equation for (x, τ)
w approximation of y
h discretization grid size
ϕ basis function (Chapter 5)
ψ test function (Chapter 5)

abbreviations:

BDF Backward Difference Formula, see Section 4.2.1
CIR Cox Ingersoll Ross model, see Section 1.7.4
CFL Courant-Friedrichs-Lewy, see Section 6.5.1
Dow Dow Jones Industrial Average
FE Finite Element
FFT Fast Fourier Transformation
FTBS Forward Time Backward Space, see Section 6.5.1
FTCS Forward Time Centered Space, see Section 6.4.2
GBM Geometric Brownian Motion, see (1.33)
LCP Linear Complementary Problem
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MC Monte Carlo
ODE Ordinary Differential Equation
OTC Over the Counter
OU Ornstein Uhlenbeck
PDE Partial Differential Equation
PIDE Partial Integro-Differential Equation
PSOR Projected Successive Overrelaxation
QMC Quasi Monte Carlo
SDE Stochastic Differential Equation
SOR Successive Overrelaxation
TVD Total Variation Diminishing
i.i.d. independent and identical distributed
inf infimum, largest lower bound of a set of numbers
sup supremum, least upper bound of a set of numbers
supp(f) support of a function f : {x ∈ D : f(x) �= 0}
t.h.o. terms of higher order

hints on the organization:

(2.6) number of equation (2.6)
(The first digit in all numberings refers to the chapter.)

(A4.10) equation in Appendix A; similarly B, C, D
−→ hint (for instance to an exercise)



Chapter 1 Modeling Tools
for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation) to
buy or sell a risky asset at a prespecified fixed price within a specified period.
An option is a financial instrument that allows —amongst other things— to
make a bet on rising or falling values of an underlying asset. The underlying
asset typically is a stock, or a parcel of shares of a company. Other examples
of underlyings include stock indices (as the Dow Jones Industrial Average),
currencies, or commodities. Since the value of an option depends on the
value of the underlying asset, options and other related financial instruments
are called derivatives (−→ Appendix A2). An option is a contract between
two parties about trading the asset at a certain future time. One party is
the writer, often a bank, who fixes the terms of the option contract and
sells the option. The other party is the holder, who purchases the option,
paying the market price, which is called premium. How to calculate a fair
value of the premium is a central theme of this book. The holder of the
option must decide what to do with the rights the option contract grants.
The decision will depend on the market situation, and on the type of option.
There are numerous different types of options, which are not all of interest
to this book. In Chapter 1 we concentrate on standard options, also known
as vanilla options. This Section 1.1 introduces important terms.

Options have a limited life time. The maturity date T fixes the time hori-
zon. At this date the rights of the holder expire, and for later times (t > T )
the option is worthless. There are two basic types of option: The call option
gives the holder the right to buy the underlying for an agreed price K by the
date T . The put option gives the holder the right to sell the underlying for
the price K by the date T . The previously agreed price K of the contract is
called strike or exercise price1. It is important to note that the holder is
not obligated to exercise —that is, to buy or sell the underlying according
to the terms of the contract. The holder may wish to close his position by
selling the option. In summary, at time t the holder of the option can choose
to

1 The price K as well as other prices are meant as the price of one unit of
an asset, say, in $.
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2 Chapter 1 Modeling Tools for Financial Options

• sell the option at its current market price on some options exchange
(at t < T ),

• retain the option and do nothing,
• exercise the option (t ≤ T ), or
• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy
the underlying for the price K, in case the holder chooses to exercise. The
risk situation of the writer differs strongly from that of the holder. The writer
receives the premium when he issues the option and somebody buys it. This
up-front premium payment compensates for the writer’s potential liabilities in
the future. The asymmetry between writing and owning options is evident.
This book mostly takes the standpoint of the holder (long position in the
option).

Not every option can be exercised at any time t ≤ T . For European
options, exercise is only permitted at expiration T . American options can
be exercised at any time up to and including the expiration date. For options
the labels American or European have no geographical meaning. Both types
are traded in each continent. Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends
on the price per share of the underlying, which is denoted S. This letter
S symbolizes stocks, which are the most prominent examples of underlying
assets. The variation of the asset price S with time t is expressed by St or
S(t). The value of the option also depends on the remaining time to expiry
T − t. That is, V depends on time t. The dependence of V on S and t is
written V (S, t). As we shall see later, it is not easy to define and to calculate
the fair value V of an option for t < T . But it is an easy task to determine
the terminal value of V at expiration time t = T . In what follows, we shall
discuss this topic, and start with European options as seen with the eyes of
the holder.

S

V

K

Fig. 1.1. Intrinsic value of a call with exercise price K (payoff function)
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The Payoff Function

At time t = T , the holder of a European call option will check the current
price S = ST of the underlying asset. The holder has two alternatives to
acquire the underlying asset: either buying the asset on the spot market
(costs S), or buying the asset by exercising the call option (costs K). The
decision is easy: the costs are to be minimal. The holder will exercise the call
only when S > K. For then the holder can immediately sell the asset for the
spot price S and makes a gain of S −K per share. In this situation the value
of the option is V = S − K. (This reasoning ignores transaction costs.) In
case S < K the holder will not exercise, since then the asset can be purchased
on the market for the cheaper price S. In this case the option is worthless,
V = 0. In summary, the value V (S, T ) of a call option at expiration date T
is given by

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST − K in case ST > K (option is exercised)

Hence
V (ST , T ) = max{ST − K, 0} .

Considered for all possible prices St > 0, max{St−K, 0} is a function of St, in
general for 0 ≤ t ≤ T .2 This payoff function is shown in Figure 1.1. Using
the notation f+ := max{f, 0}, this payoff can be written in the compact
form (St − K)+. Accordingly, the value V (ST , T ) of a call at maturity date
T is

V (ST , T ) = (ST − K)+ . (1.1C)

For a European put, exercising only makes sense in case S < K. The
payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

Hence
V (ST , T ) = max{K − ST , 0} ,

or
V (ST , T ) = (K − ST )+ , (1.1P)

compare Figure 1.2.

2 In this chapter, the payoff evaluated at t only depends on the current
value St. Payoffs that depend on the entire path St for all 0 ≤ t ≤ T occur
for exotic options, see Chapter 6.
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S

V

K

K

Fig. 1.2. Intrinsic value of a put with exercise price K (payoff function)

The curves in the payoff diagrams of Figures 1.1 and 1.2 show the option
values from the perspective of the holder. The profit is not shown. For an
illustration of the profit, the initial costs for buying the option at t = t0 must
be subtracted. The initial costs basically consist of the premium and the
transaction costs. Since both are paid upfront, they are multiplied by er(T−t0)

to take account of the time value; r is the continuously compounded interest
rate. Subtracting the costs leads to shifting down the curves in Figures 1.1
and 1.2. The resulting profit diagram shows a negative profit for some range
of S-values, which of course means a loss (see Figure 1.3).

K

S

V

K

Fig. 1.3. Profit diagram of a put

The payoff function for an American call is (St−K)+ and for an American
put (K−St)+ for any t ≤ T . The Figures 1.1 and 1.2 as well as the equations
(1.1C), (1.1P) remain valid for American type options.

The payoff diagrams of Figures 1.1, 1.2 and the corresponding profit dia-
grams show that a potential loss for the purchaser of an option (long position)
is limited by the initial costs, no matter how bad things get. The situation for
the writer (short position) is reverse. For him the payoff curves of Figures 1.1,
1.2 as well as the profit curves must be reflected on the S-axis. The writer’s
profit or loss is the reverse of that of the holder. Multiplying the payoff of a
call in Figure 1.1 by (−1) illustrates the potentially unlimited risk of a short
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call. Hence the writer of a call must carefully design a strategy to compensate
for his risks. We will come back to this issue in Section 1.5.

A Priori Bounds

No matter what the terms of a specific option are and no matter how the
market behaves, the values V of the options satisfy certain bounds. These
bounds are known a priori. For example, the value V (S, t) of an American
option can never fall below the payoff, for all S and all t. These bounds follow
from the no-arbitrage principle (−→ Appendices A2, A3).

To illustrate the strength of no-arbitrage arguments, we assume for an
American put that its value is below the payoff. V < 0 contradicts the def-
inition of the option. Hence V ≥ 0, and S and V would be in the triangle
seen in Figure 1.2. That is, S < K and 0 ≤ V < K − S. This scenario would
allow arbitrage. The strategy would be as follows: Borrow the cash amount
of S + V , and buy both the underlying and the put. Then immediately exer-
cise the put, selling the underlying for the strike price K. The profit of this
arbitrage strategy is K −S −V > 0. This is in conflict with the no-arbitrage
principle. Hence the assumption that the value of an American put is below
the payoff must be wrong. We conclude for the put

V Am
P (S, t) ≥ (K − S)+ for all S, t .

Similarly, for the call

V Am
C (S, t) ≥ (S − K)+ for all S, t .

(The meaning of the notations V Am
C , V Am

P , V Eur
C , V Eur

P is evident.)
Other bounds are listed in Appendix D1. For example, a European put

on an asset that pays no dividends until T may also take values below the
payoff, but is always above the lower bound Ke−r(T−t) − S. The value of
an American option should never be smaller than that of a European option
because the American type includes the European type exercise at t = T and
in addition early exercise for t < T . That is

V Am ≥ V Eur

as long as all other terms of the contract are identical. When no dividends
are paid until T , the values of put and call for European options are related
by the put-call parity

S + V Eur
P − V Eur

C = Ke−r(T−t) ,

which can be shown by applying arguments of arbitrage (−→ Exercise 1.1).

Options in the Market

The features of the options imply that an investor purchases puts when the
price of the underlying is expected to fall, and buys calls when the prices are
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about to rise. This mechanism inspires speculators. An important application
of options is hedging (−→ Appendix A2).

The value of V (S, t) also depends on other factors. Dependence on the
strike K and the maturity T is evident. Market parameters affecting the
price are the interest rate r, the volatility σ of the price St, and dividends
in case of a dividend-paying asset. The interest rate r is the risk-free rate,
which applies to zero bonds or to other investments that are considered free
of risks (−→ Appendices A1, A2). The important volatility parameter σ can
be defined as standard deviation of the fluctuations in St, for scaling divided
by the square root of the observed time period. The larger the fluctuations,
respresented by large values of σ, the harder is to predict a future value of
the asset. Hence the volatility is a standard measure of risk. The dependence
of V on σ is highly sensitive. On occasion we write V (S, t; T,K, r, σ) when
the focus is on the dependence of V on market parameters.

Time is measured in years. The units of r and σ2 are per year. Writing
σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate of
5%. Table 1.1 summarizes the key notations of option pricing. The notation is
standard except for the strike price K, which is sometimes denoted X, or E.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 denoting
the date when the option is issued and t as a symbol for “today.” But this
book mostly sets t0 = 0 in the role of “today,” without loss of generality.
Then the interval 0 ≤ t ≤ T represents the remaining life time of the option.
The price St is a stochastic process, compare Section 1.6. In real markets,
the interest rate r and the volatility σ vary with time. To keep the mod-
els and the analysis simple, we mostly assume r and σ to be constant on
0 ≤ t ≤ T . Further we suppose that all variables are arbitrarily divisible and
consequently can vary continuously —that is, all variables vary in the set IR
of real numbers.

Table 1.1. List of important variables

t current time, 0 ≤ t ≤ T
T expiration time, maturity

r > 0 risk-free interest rate, continuously compounded
S, St spot price, current price per share of stock/asset/underlying

σ annual volatility
K strike, exercise price per share

V (S, t) value of an option at time t and underlying price S

The Geometry of Options

As mentioned, our aim is to calculate V (S, t) for fixed values of K,T, r, σ.
The values V (S, t) can be interpreted as a piece of surface over the subset



1.1 Options 7

S

t

0

V

2

1

T

K

C

C

K

Fig. 1.4. Value V (S, t) of an American put (schematically)
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Fig. 1.5. Value V (S, t) of an American put with r = 0.06, σ = 0.30, K = 10, T = 1

S > 0 , 0 ≤ t ≤ T

of the (S, t)-plane. Figure 1.4 illustrates the character of such a surface for
the case of an American put. For the illustration assume T = 1. The figure
depicts six curves obtained by cutting the option surface with the planes
t = 0, 0.2, . . . , 1.0. For t = T the payoff function (K − S)+ of Figure 1.2 is
clearly visible.
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Shifting this payoff parallel for all 0 ≤ t < T creates another surface,
which consists of the two planar pieces V = 0 (for S ≥ K) and V = K − S
(for S < K). This payoff surface (K − S)+ is a lower bound to the option
surface, V (S, t) ≥ (K − S)+. Figure 1.4 shows two curves C1 and C2 on
the option surface. The curve C1 is the early-exercise curve, because on the
planar part with V (S, t) = K−S holding the option is not optimal. (This will
be explained in Section 4.5.) The curve C2 has a technical meaning explained
below. Within the area limited by these two curves the option surface is
clearly above the payoff surface, V (S, t) > (K − S)+. Outside that area,
both surfaces coincide. This is strict “above” C1, where V (S, t) = K − S,
and holds approximately for S beyond C2, where V (S, t) ≈ 0 or V (S, t) < ε
for a small value of ε > 0. The location of C1 and C2 is not known, these
curves are calculated along with the calculation of V (S, t). Of special interest
is V (S, 0), the value of the option “today.” This curve is seen in Figure 1.4
for t = 0 as the front edge of the option surface. This front curve may be seen
as smoothing the corner in the payoff function. The schematic illustration of
Figure 1.4 is completed by a concrete example of a calculated put surface in
Figure 1.5. An approximation of the curve C1 is shown.

The above was explained for an American put. For other options the
bounds are different (−→ Appendix D1). As mentioned before, a European
put takes values above the lower bound Ke−r(T−t) − S, compare Figure 1.6
and Exercise 1.1b.

In summary, this Section 1.1 has introduced an option with the following
features: it depends on one underlying, and its payoff is (K − S)+ or (S −
K)+, with S evaluated at the current time instant. This is the standard
option called vanilla option. All other options are called exotic. To clarify the
distinction between vanilla options and exotic options, we hint at ways how
an option can be “exotic.” For example, an option may depend on a basket
of several underlying assets, or the payoff may be different, or the option may
be path-dependent in that V no longer depends solely on the current (St, t)
but on the entire path St for 0 ≤ t ≤ T . To give an example of the latter,
we mention an Asian option, where the payoff depends on the average value
of the asset for all times until expiry. Or for a barrier option the value also
depends on whether the price St hits a prescribed barrier during its life time.
We come back to exotic options later in the book.

1.2 Model of the Financial Market

Ultimately it is the market which decides on the value of an option. If we try
to calculate a reasonable value of the option, we need a mathematical model
of the market. Mathematical models can serve as approximations and ideal-
izations of the complex reality of the financial world. For modeling financial
options, the models named after the pioneers Black, Merton and Scholes have
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Fig. 1.6. Value of a European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
The payoff V (S, T ) is drawn with a dashed line. For small values of S the value V
approaches its lower bound, here 9.4 − S.

been both successful and widely accepted. This Section 1.2 introduces some
key elements of market models.

The ultimate aim is to value the option —that is, to calculate V (S, t).
It is attractive to define the option surfaces V (S, t) on the half strip S > 0,
0 ≤ t ≤ T as solutions of suitable equations. Then calculating V amounts to
solving the equations. In fact, a series of assumptions allows to characterize
the value functions V (S, t) as solutions of certain partial differential equations
or partial differential inequalities. The model is represented by the famous
Black–Scholes equation, which was suggested in 1973.

Definition 1.1 (Black–Scholes equation)

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.2)

Equation (1.2) is a partial differential equation for the value function V (S, t)
of options. This equation may serve as symbol of the classical market model.
But what are the assumptions leading to the Black–Scholes equation?
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Assumptions 1.2 (Black–Merton–Scholes model of the market)
(a) There are no arbitrage opportunities.
(b)The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest
rates for borrowing and lending money are equal, all parties have immedi-
ate access to any information, and all securities and credits are available
at any time and in any size. Consequently, all variables are perfectly di-
visible —that is, may take any real number. Further, individual trading
will not influence the price.

(c) The asset price follows a geometric Brownian motion.
(This stochastic motion will be discussed in Sections 1.6–1.8.)

(d) r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time
period. The option is European.

These are the assumptions that lead to the Black–Scholes equation (1.2).
Some of the assumptions (c), (d) are rather strong, in particular, the volatility
σ being constant. Some of the assumptions can be weakened. We come to
more complex models later in the text. A derivation of the Black–Scholes
partial differential equation (1.2) is given in Appendix A4. Admitting all real
numbers t within the interval 0 ≤ t ≤ T leads to characterize the model as
continuous-time model. In view of allowing also arbitrary S > 0, V > 0, we
speak of a continuous model.

A value function V (S, t) is not fully defined by merely requesting that it
solves (1.2) for all S and t out of the half strip. In addition to solving this
partial differential equation, the function V (S, t) must satisfiy a terminal
condition and boundary conditions. The terminal condition for t = T is

V (S, T ) = Ψ(S) ,

where Ψ denotes the payoff function (1.1C) or (1.1P), depending on the type
of option. The boundaries of the half strip 0 < S, 0 ≤ t ≤ T are defined by
S = 0 and S → ∞. At these boundaries the function V (S, t) must satisfy
boundary conditions. For example, a European call must obey

V (0, t) = 0; V (S, t) → S − Ke−r(T−t) for S → ∞ . (1.3C)

This completes one possibility of defining a value function V (S, t). In
Chapter 4 we will come back to the Black–Scholes equation and to bound-
ary conditions. For (1.2) an analytic solution is known [equation (A4.10) in
Appendix A4]. Note that the partial differential equation (1.2) is linear in
the value function V . The nonlinearity of the Black–Scholes problem comes
from the payoff; the functions Ψ(S) = (K − S)+ or Ψ(S) = (S − K)+ are
convex. The partial differential equation (PDE) is no longer linear when As-
sumptions 1.2(b) are relaxed. For example, for considering trading intervals
Δt and transaction costs as k per unit, one could add the nonlinear term
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to (1.2), see [WDH96], [Kwok98]. Also finite liquidity (feedback of trading
to the price of the underlying) leads to nonlinear terms in the PDE. In the
general case, closed-form solutions do not exist, and a solution is calculated
numerically, especially for American options. For the latter a further non-
linearity stems from the early-exercise feature (−→ Chapter 4). For solving
(1.2) numerically, a variant with dimensionless variables can be used (−→
Exercise 1.2).

Of course, the calculated value V of an option depends on the chosen mar-
ket model. Writing V (S, t; T,K, r, σ) suggests a focus on the Black–Scholes
equation. This could be made definite by writing V BS, for example. Other
market models may involve more parameters. Then, in general, the corre-
sponding value of the value function V is different from V BS. Since we mostly
stick to the market model of Assumptions 1.2, we drop the superscript. All
our prices V are model prices, not market prices. They depend on the under-
lying choice of assumptions. For the relation of our model prices V to market
prices V mar, see Section 1.10.

At this point, a word on the notation is appropriate. The symbol S for the
asset price is used in different roles: First it comes without subscript in the
role of an independent real variable S > 0 on which the value function V (S, t)
depends, say as solution of the partial differential equation (1.2). Second it is
used as St with subscript t to emphasize its random character as stochastic
process. When the subscript t is omitted, the current role of S becomes clear
from the context.

1.3 Numerical Methods

Applying numerical methods is inevitable in all fields of technology includ-
ing financial engineering. Often the important role of numerical algorithms
is not noticed. For example, an analytical formula at hand [such as the
Black–Scholes formula (A4.10)] might suggest that no numerical procedure
is needed. But closed-form solutions may include evaluating the logarithm or
the computation of the distribution function of the normal distribution. Such
elementary tasks are performed using sophisticated numerical algorithms. In
pocket calculators one merely presses a button without being aware of the
numerics. The robustness of those elementary numerical methods is so de-
pendable and the efficiency so large that they almost appear not to exist. Even
for apparently simple tasks the methods are quite demanding (−→ Exercise
1.3). The methods must be carefully designed because inadequate strategies
might produce inaccurate results (−→ Exercise 1.4).
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Spoilt by generally available black-box software and graphics packages we
take the support and the success of numerical workhorses for granted. We
make use of the numerical tools with great respect but without further com-
ments, and we just assume an elementary education in numerical methods.
An introduction into important methods and hints on the literature are given
in Appendix C1.

Since financial markets undergo apparently stochastic fluctuations, stochas-
tic approaches provide natural tools to simulate prices. These methods are
based on formulating and simulating stochastic differential equations. This
leads to Monte Carlo methods (−→ Chapter 3). In computers, related simu-
lations of options are performed in a deterministic manner. It will be decisive
how to simulate randomness (−→ Chapter 2). Chapters 2 and 3 are devoted
to tools for simulation. These methods can be applied even in case the As-
sumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified
by the validity of the underlying models. For example it may be advisable to
solve the partial differential equations of the Black–Scholes type. Then one
has to choose among several methods. The most elementary ones are finite-
difference methods (−→ Chapter 4). A somewhat higher flexibility concerning
error control is possible with finite-element methods (−→ Chapter 5). The
numerical treatment of exotic options requires a more careful consideration of
stability issues (−→ Chapter 6). The methods based on differential equations
will be described in the larger part of this book.

The various methods are discussed in terms of accuracy and speed. Ulti-
mately the methods must give quick and accurate answers to real-time prob-
lems posed in financial markets. Efficiency and reliability are key demands.
Internally the numerical methods must deal with diverse problems such as
convergence order or stability. So the numerical analyst is concerned in error
estimates and error bounds. Technical criteria such as complexity or storage
requirements are relevant for the implementation.

The mathematical formulation benefits from the assumption that all vari-
ables take values in the continuum IR. This idealization is practical since
it avoids initial restrictions of technical nature, and it gives us freedom to
impose artificial discretizations convenient for the numerical methods. The
hypothesis of a continuum applies to the (S, t)-domain of the half strip
0 ≤ t ≤ T , S > 0, and to the differential equations. In contrast to the
hypothesis of a continuum, the financial reality is rather discrete: Neither
the price S nor the trading times t can take any real value. The artificial
discretization introduced by numerical methods is at least twofold:

1.) The (S, t)-domain is replaced by a grid of a finite number of (S, t)-
points, compare Figure 1.7.

2.) The differential equations are adapted to the grid and replaced by a
finite number of algebraic equations.
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Fig. 1.7. Grid points in the (S, t)-domain

Another kind of discretization is that computers replace the real numbers by
a finite number of rational numbers, namely, the floating-point numbers. The
resulting rounding error will not be relevant for much of our analysis, except
for investigations of stability.

The restriction of the differential equations to the grid causes discretiza-
tion errors. The errors depend on the coarsity of the grid. In Figure 1.7,
the distance between two consecutive t-values of the grid is denoted Δt.3 So
the errors will depend on Δt and on ΔS. It is one of the aims of numerical
algorithms to control the errors. The left-hand figure in Figure 1.7 shows a
simple rectangle grid, whereas the right-hand figure shows a tree-type grid
as used in Section 1.4. The type of the grid matches the kind of underly-
ing equations. The values of V (S, t) are primarily approximated at the grid
points. Intermediate values can be obtained by interpolation.

The continuous model is an idealization of the discrete reality. But the
numerical discretization does not reproduce the original discretization. For
example, it would be a rare coincidence when Δt represents a day. The deriva-
tions that go along with the twofold transition

discrete −→ continuous −→ discrete

do not compensate.

3 The symbol Δt denotes a small increment in t (analogously ΔS,ΔW ). In
case Δ would be a number, the product with u would be denoted Δ · u or
uΔ.
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1.4 The Binomial Method

The major part of the book is devoted to continuous models and their dis-
cretizations. With much less effort a discrete approach provides us with a
short way to establish a first algorithm for calculating options. The result-
ing binomial method due to Cox, Ross and Rubinstein is robust and widely
applicable.

In practice one is often interested in the one value V (S0, 0) of an option
at the current spot price S0. Then it can be unnecessarily costly to calculate
the surface V (S, t) for the entire domain to extract the required information
V (S0, 0). The relatively small task of calculating V (S0, 0) can be comfortably
solved using the binomial method. This method is based on a tree-type grid
applying appropriate binary rules at each grid point. The grid is not prede-
fined but is constructed by the method. For illustration see the right-hand
grid in Figure 1.7, and Figure 1.10.

A Discrete Model

We begin with discretizing the continuous time t, replacing t by equidistant
time instances ti. Let us use the notations

M : number of time steps
Δt := T

M
ti := i · Δt, i = 0, ...,M
Si := S(ti)

So far the domain of the (S, t) half strip is semidiscretized in that it is replaced
by parallel straight lines with distance Δt apart, leading to a discrete-time
model. The next step of discretization replaces the continuous values Si along
the parallel t = ti by discrete values Sji, for all i and appropriate j. (Here the
indices j, i in Sji mean a matrix-like notation.) For a better understanding
of the S-discretization compare Figure 1.8. This figure shows a mesh of the
grid, namely, the transition from t to t + Δt, or from ti to ti+1.

Assumptions 1.3 (binomial method)

(Bi1) The price S over each period of time Δt can only have two possible
outcomes: An initial value S either evolves up to Su or down to Sd
with 0 < d < u. Here u is the factor of an upward movement and d is
the factor of a downward movement.

(Bi2) The probability of an up movement is p, P(up) = p.

The rules (Bi1) and (Bi2) represent the framework of a binomial process.
Such a process behaves like tossing a biased coin where the outcome “head”
(up) occurs with probability p. At this stage of the modeling, the values of
the three parameters u, d und p are undetermined. They are fixed in a way
such that the model is consistent with the continuous model in case Δt → 0.
This aim leads to further assumptions. The basic idea of the approach is
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Fig. 1.8. The principle setup of the binomial method

to equate the expectation and the variance of the discrete model with the
corresponding values of the continuous model. This amounts to require
(Bi3) Expectation and variance of S refer to the continuous counterparts,

evaluated for the risk-free interest rate r.

This assumption leads to equations for the parameters u, d, p. The resulting
probability P of (Bi2) does not reflect the expectations of an individual in the
market. Rather P is an artificial risk-neutral probability that matches (Bi3).
The expectation E below in (1.4) refers to this probability; this is sometimes
written EP. (We shall return to the assumptions (Bi1), (Bi2), and (Bi3) in
the subsequent Section 1.5.) Let us further assume that no dividend is paid
within the time period of interest. This assumption simplifies the derivation
of the method and can be removed later.

Derivation of Equations
Recall the definition of the expectation for the discrete case, Appendix B1,
equation (B1.13), and conclude

E(Si+1) = pSiu + (1 − p)Sid .

Here Si is an arbitrary value for ti, which develops randomly to Si+1, fol-
lowing the assumptions (Bi1) and (Bi2). In this sense, E is a conditional
expectation. As will be seen in Section 1.7.2, the expectation of the continu-
ous model is

E(Si+1) = Si erΔt (1.4)

Equating gives
erΔt = pu + (1 − p)d . (1.5)

This is the first of three required equations to fix u, d, p. Solved for the risk-
neutral probability p we obtain
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p =
erΔt − d

u − d
. (1.6)

To be a valid model of probability, 0 ≤ p ≤ 1 must hold. This is equivalent
to

d ≤ erΔt ≤ u . (1.7)

These inequalities relate the upward and downward movements of the asset
price to the riskless interest rate r. The inequalities (1.7) are no new assump-
tion but follow from the no-arbitrage principle. The assumption 0 < d < u
remains valid.

Next we equate variances. Via the variance the volatility σ enters the
model. From the continuous model we apply the relation

E(S2
i+1) = S2

i e(2r+σ2)Δt . (1.8)

For the relations (1.4) and (1.8) we refer to Section 1.8 (−→ Exercise 1.12).
Recall that the variance satisfies Var(S) = E(S2) − (E(S))2 (−→ Appendix
B1). Equations (1.4) and (1.8) combine to

Var(Si+1) = S2
i e2rΔt(eσ2Δt − 1) .

On the other hand the discrete model satisfies

Var(Si+1) = E(S2
i+1) − (E(Si+1))2

= p(Siu)2 + (1 − p)(Sid)2 − S2
i (pu + (1 − p)d)2 .

Equating variances of the continuous and the discrete model, and applying
(1.5) leads to

e2rΔt(eσ2Δt − 1) = pu2 + (1 − p)d2 − (erΔt)2

e2rΔt+σ2Δt = pu2 + (1 − p)d2 (1.9)

The equations (1.5), (1.9) constitute two relations for the three unknowns
u, d, p. We are free to impose an arbitrary third equation. One example is the
plausible assumption

u · d = 1 , (1.10)

which reflects a symmetry between upward and downward movement of the
asset price. Now the parameters u, d and p are fixed. They depend on r, σ
and Δt. So does the grid, which is analyzed next (Figure 1.9).

The above rules are applied to each grid line i = 0, . . . ,M , starting at
t0 = 0 with the specific value S = S0. Attaching meshes of the kind depicted
in Figure 1.8 for subsequent values of ti builds a tree with values Sujdk and
j + k = i. In this way, specific discrete values Sji of Si are defined. Since
the same constant factors u and d underlie all meshes and since Sud = Sdu
holds, after the time period 2Δt the asset price can only take three values
rather than four: The tree is recombining. It does not matter which of the
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two possible paths we take to reach Sud. This property extends to more than
two time periods. Consequently the binomial process defined by Assumption
1.3 is path independent. Accordingly at expiration time T = MΔt the price
S can take only the (M + 1) discrete values SujdM−j , j = 0, 1, ...,M . By
(1.10) these are the values Su2j−M =: SjM . The number of nodes in the tree
grows quadratically in M . (Why?)

The symmetry of the choice (1.10) becomes apparent in that after two
time steps the asset value S repeats. (Compare also Figure 1.10.) In the
(t, S)-plane the tree can be interpreted as a grid of exponential-like curves.
The binomial approach defined by (Bi1) with the proportionality between Si

and Si+1 reflects exponential growth or decay of S. So all grid points have
the desirable property S > 0.

Solution of the Equations

Using the abbreviation α := erΔt we obtain by elimination (which the reader
may check in more generality in Exercise 1.14) the quadratic equation

0 = u2 − u(α−1 + αeσ2Δt︸ ︷︷ ︸
=:2β

) + 1 ,

with solutions u = β±
√

β2 − 1. By virtue of ud = 1 and Vieta’s Theorem, d
is the solution with the minus sign. In summary the three parameters u, d, p
are given by

β : =
1
2
(e−rΔt + e(r+σ2)Δt)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
erΔt − d

u − d

(1.11)
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Fig. 1.10. Tree in the (S, t)-plane for M = 32 (data of Example 1.6)

A consequence of this approach is that up to terms of higher order the relation
u = eσ

√
Δt holds (−→ Exercise 1.6). Therefore the extension of the tree in

S-direction matches the volatility of the asset. So the tree is well-scaled and
will cover a relevant range of S-values.

Forward Phase: Initializing the Tree

Now the factors u and d can be considered as known, and the discrete values
of S for each ti until tM = T can be calculated. The current spot price S = S0

for t0 = 0 is the root of the tree. (To adapt the matrix-like notation to the
two-dimensional grid of the tree, this initial price will be also denoted S00.)
Each initial price S0 leads to another tree of values Sji.

For i = 1, 2, ...,M calculate :

Sji := S0u
jdi−j , j = 0, 1, ..., i

Now the grid points (ti, Sji) are fixed, on which the option values Vji :=
V (ti, Sji) are to be calculated.
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Figure 1.5)

Calculating the Option Value, Valuation of the Tree
For tM the payoff V (S, tM ) is known from (1.1C), (1.1P). This payoff is valid
for each S, including SjM = SujdM−j , j = 0, ...,M . This defines the values
VjM :
Call: V (S(tM ), tM ) = max {S(tM ) − K, 0}, hence:

VjM := (SjM − K)+ (1.12C)

Put: V (S(tM ), tM ) = max {K − S(tM ), 0}, hence:

VjM := (K − SjM )+ (1.12P)

The backward phase calculates recursively for tM−1, tM−2, ... the option
values V for all ti, starting from VjM . The recursion is based on Assumption
1.3, (Bi3). Repeating the equation that corresponds to (1.5) with double
index leads to

SjierΔt = pSjiu + (1 − p)Sjid ,

and
SjierΔt = pSj+1,i+1 + (1 − p)Sj,i+1 .

Relating the Assumption 1.3, (Bi3) of risk neutrality to V , Vi = e−rΔtE(Vi+1),
we obtain in double-index notation the recursion

Vji = e−rΔt (pVj+1,i+1 + (1 − p)Vj,i+1) . (1.13)

So far, this recursion for Vji is merely an analogy, which might be seen as a
further assumption. But the following Section 1.5 will give a justification for
(1.13), which turns out to be a consequence of the no-arbitrage principle and
the risk-neutral valuation.
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For European options, (1.13) is a recursion for i = M − 1, . . . , 0, starting
from (1.12), and terminating with V00. (For an illustration see Figure 1.11.)
The obtained value V00 is an approximation to the value V (S0, 0) of the
continuous model, which results in the limit M → ∞ (Δt → 0). The accuracy
of the approximation V00 depends on M . This is reflected by writing V

(M)
0

(−→ Exercise 1.7). The basic idea of the approach implies that the limit of
V

(M)
0 for M → ∞ is the Black–Scholes value V (S0, 0) (−→ Exercise 1.8).
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Fig. 1.12. Example 1.6: Three cuts through the rough approximation of the sur-
face V (S, t) for t = 0.404 (solid curve), t = 0.3 (dashed), t = 0.195 (dotted),
approximated with M = 32

For American options, the above recursion must be modified by adding a
test whether early exercise is to be preferred. To this end the value of (1.13)
is compared with the value of the payoff. In this context, the value (1.13) is
the “continuation value,” denoted V cont

ji . And at time tj the holder optimizes
the position and decides which of the two choices

{ exercise, hold }

is preferable. So the holder chooses the maximum

max{payoff(Sji), V cont
ji } .
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This amounts to a dynamic programming procedure. In summary, the
dynamic-programming principle, based on the equations (1.12) for i rather
than M , combined with (1.13), reads as follows:

Call:

Vji = max
{
(Sji − K)+, e−rΔt · (pVj+1,i+1 + (1 − p)Vj,i+1)

}
(1.14C)

Put:

Vji = max
{
(K − Sji)+, e−rΔt · (pVj+1,i+1 + (1 − p)Vj,i+1)

}
(1.14P)

The resulting algorithm is

Algorithm 1.4 (binomial method)

Input: r, σ, S = S0, T, K, choice of put or call,
European or American, M

calculate: Δt := T/M, u, d, p from (1.11)
S00 := S0

SjM = S00u
jdM−j , j = 0, 1, ...,M

(for American options, also Sji = S00u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)
VjM from (1.12)

Vji for i < M

{
from (1.13) for European options

from (1.14) for American options

Output: V00 is the approximation V
(M)
0 to V (S0, 0)

Example 1.5 (European put)
K = 10, S = 5, r = 0.06, σ = 0.3, T = 1.
The Table 1.2 lists approximations V (M) to V (5, 0). The convergence
towards the Black–Scholes value V (S, 0) is visible; the latter was cal-
culated by evaluating (A4.10). (In this book the number of printed
decimals illustrates at best the attainable accuracy and does not re-
flect economic practice.) Applying other methods, the function V (S, 0)
can be approximated for an interval of S-values. The Figure 1.6 shows
related results obtained by using the methods of Chapter 4. The con-
vergence rate is reflected by the results in Table 1.2. The rate is linear,
O(Δt) = O(M−1), which is seen by plotting V (M) over M−1. In such
a plot, the values of V (M) roughly lie close to a straight line, which
reflects the linear error decay. The reader may wish to investigate more
closely how the error decays with M (−→ Exercise 1.7). It turns out
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Table 1.2. Results of Example 1.5

M V (M)(5, 0)

8 4.42507
16 4.42925
32 4.429855
64 4.429923
128 4.430047
256 4.430390
2048 4.430451

Black–Scholes 4.43046477621

that for the described version of the binomial method the convergence
in M is not monotonic. It will not be recommendable to extrapolate
the V (M)-data to the limit M → ∞, at least not the data of Table 1.2.

Example 1.6 (American put)
K = 50, S = 50, r = 0.1, σ = 0.4, T = 0.41666... ( 5

12 for 5 months),
M = 32.
Figure 1.10 shows the tree for M = 32. The approximation to V0 is
4.2719. Although the binomial method is not designed to accurately
approximate the surface V (S, t), it provides rough information also for
t > 0. Figure 1.12 depicts for three time instances t = 0.404, t =
0.3, t = 0.195 the obtained approximation of V (S, t); the calculated
discrete values are interpolated by straight line segments. The function
V (S, 0) can be approximated with the methods of Chapter 4, compare
Figure 4.11.

Extensions

The paying of dividends can be incorporated into the binomial algorithm. If
dividends are paid at tk the price of the asset drops by the same amount.
To take into account this jump, the tree is cut at tk and the S-values are
reduced appropriately, see [Hull00, § 16.3], [WDH96].

By correcting the terminal probabilities, which come out of the binomial
distribution (−→ Exercise 1.8), it is possible to adjust the tree to actual
market data [Ru94]. Another extension of the binomial model is the trinomial
model. Here each mesh offers three outcomes, with probabilities p1, p2, p3

and p1 + p2 + p3 = 1. The trinomial model allows for higher accuracy. The
reader may wish to derive the trinomial method.
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1.5 Risk-Neutral Valuation

In the previous Section 1.4 we have used the Assumptions 1.3 to derive an
algorithm for valuation of options. This Section 1.5 discusses the assumptions
again, leading to a different interpretation.

The situation of a path-independent binomial process with the two fac-
tors u and d continues to be the basis of the argumentation. The scenario is
illustrated in Figure 1.13. Here the time period is the time to expiration T ,
which replaces Δt in the local mesh of Figure 1.8. Accordingly, this global
model is called one-period model. The one-period model with only two pos-
sible values of ST has two clearly defined values of the payoff, namely, V (d)

(corresponds to ST = S0d) and V (u) (corresponds to ST = S0u). In contrast
to the Assumptions 1.3 we neither assume the risk-neutral world (Bi3) nor
the corresponding probability P(up) = p from (Bi2). Instead we derive the
probability using the no-arbitrage argument. In this section the factors u and
d are assumed to be given.

T

0

t

V V(u)

S

V

(d)

0

S

S d S u00

0

Fig. 1.13. One-period binomial model

Let us construct a portfolio of an investor with a short position in one
option and a long position consisting of Δ shares of an asset, where the asset
is the underlying of the option. The portfolio manager must choose the
number Δ of shares such that the portfolio is riskless. That is, a
hedging strategy is needed. To discuss the hedging properly we assume that
no funds are added or withdrawn.

By Πt we denote the wealth of this portfolio at time t. Initially the value
is

Π0 = S0 · Δ − V0 , (1.15)

where the value V0 of the written option is not yet determined. At the end
of the period the value VT either takes the value V (u) or the value V (d). So
the value of the portfolio ΠT at the end of the life of the option is either
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Π(u) = S0u · Δ − V (u)

or
Π(d) = S0d · Δ − V (d) .

In the no-arbitrage world, Δ is chosen such that the value ΠT is riskless. Then
all uncertainty is removed and Π(u) = Π(d) must hold. This is equivalent to

(S0u − S0d) · Δ = V (u) − V (d) ,

which defines the strategy

Δ =
V (u) − V (d)

S0(u − d)
. (1.16)

With this value of Δ the portfolio with initial value Π0 evolves to the final
value ΠT = Π(u) = Π(d), regardless of whether the stock price moves up or
down. Consequently the portfolio is riskless.

If we rule out early exercise, the final value ΠT is reached with certainty.
The value ΠT must be compared to the alternative risk-free investment of
an amount of money that equals the initial wealth Π0, which after the time
period T reaches the value erT Π0. Both the assumptions Π0erT < ΠT and
Π0erT > ΠT would allow a strategy of earning a risk-free profit. This is in
contrast to the assumed arbitrage-free world. Hence both Π0erT ≥ ΠT and
Π0erT ≤ ΠT and equality must hold.4 Accordingly the initial value Π0 of
the portfolio equals the discounted final value ΠT , discounted at the interest
rate r,

Π0 = e−rT ΠT .

This means
S0 · Δ − V0 = e−rT (S0u · Δ − V (u)) ,

which upon substituting (1.16) leads to the value V0 of the option:

V0 = S0 · Δ − e−rT (S0uΔ − V (u))
= e−rT {Δ · [S0erT − S0u] + V (u)}
= e−rT

u−d {(V (u) − V (d))(erT − u) + V (u)(u − d)}
= e−rT

u−d {V (u)(erT − d) + V (d)(u − erT )}
= e−rT {V (u) erT −d

u−d + V (d) u−erT

u−d }
= e−rT {V (u)q + V (d) · (1 − q)}

with

q :=
erT − d

u − d
. (1.17)

4 For an American option it is not certain that ΠT can be reached because
the holder may choose early exercise. Hence we have only the inequality
Π0erT ≤ ΠT .
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We have shown that with q from (1.17) the value of the option is given by

V0 = e−rT {V (u)q + V (d) · (1 − q)} . (1.18)

The expression for q in (1.17) is identical to the formula for p in (1.6), which
was derived in the previous section. Again we have

0 < q < 1 ⇐⇒ d < erT < u .

Presuming these bounds for u and d, q can be interpreted as a probability Q.
Then qV (u) + (1 − q)V (d) is the expected value of the payoff with respect to
this probability (1.17),

EQ(VT ) = qV (u) + (1 − q)V (d) .

Now (1.18) can be written

V0 = e−rT EQ(VT ) . (1.19)

That is, the value of the option is obtained by discounting the expected payoff
[with respect to q from (1.17)] at the risk-free interest rate r. An analogous
calculation shows

EQ(ST ) = qS0u + (1 − q)S0d = S0erT .

The probabilities p of Section 1.4 and q from (1.17) are defined by identical
formulas (with T corresponding to Δt). Hence p = q, and EP = EQ. But the
underlying arguments are different. Recall that in Section 1.4 we showed the
implication

E(ST ) = S0erT =⇒ p = P(up) =
erT − d

u − d
,

whereas in this section we arrive at the implication

p = P(up) =
erT − d

u − d
=⇒ E(ST ) = S0erT .

So both statements must be equivalent. Setting the probability of the up
movement equal to p is equivalent to assuming that the expected return on
the asset equals the risk-free rate. This can be rewritten as

e−rT EP(ST ) = S0 . (1.20)

The important property expressed by equation (1.20) is that of a martingale:
The random variable e−rT ST of the left-hand side has the tendency to remain
at the same level. That is why a martingale is also called “fair game.” A mar-
tingale displays no trend, where the trend is measured with respect to EP. In
the martingale property of (1.20) the discounting at the risk-free interest rate
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r exactly matches the risk-neutral probability P(= Q) of (1.6)/(1.17). The
specific probability for which (1.20) holds is also called martingale measure.

Summary of results for the one-period model: Under the Assumptions 1.2 of
the market model, the choice Δ of (1.16) eliminates the random-dependence
of the payoff and makes the portfolio riskless. There is a specific probability
Q (= P) with Q(up) = q, q from (1.17), such that the value V0 satisfies
(1.19), and S0 the analogous property (1.20). These properties involve the
risk-neutral interest rate r. That is, the option is valued in a risk-neutral
world, and the corresponding Assumption 1.3 (Bi3) is meaningful.

In the real-world economy, growth rates in general are different from r,
and individual subjective probabilities differ from our Q. But the assumption
of a risk-neutral world leads to a fair valuation of options. The obtained value
V0 can be seen as a rational price. In this sense the resulting value V0 applies
to the real world. The risk-neutral valuation can be seen as a technical tool.
The assumption of risk neutrality is just required to define and calculate a
rational price or fair value of V0. For this specific purpose we do not need
actual growth rates of prices, and individual probabilities are not relevant.
But note that we do not really assume that financial markets are actually
free of risk.

The general principle outlined for the one-period model is also valid for
the multiperiod binomial model and for the continuous model of Black and
Scholes (−→ Exercise 1.8).

The Δ of (1.16) is the hedge parameter delta, which eliminates the risk
exposure of our portfolio caused by the written option. In multiperiod models
and continuous models Δ must be adapted dynamically. The general defini-
tion is

Δ = Δ(S, t) =
∂V (S, t)

∂S
;

the expression (1.16) is a discretized version.

1.6 Stochastic Processes

Brownian motion originally meant the erratic motion of a particle (pollen)
on the surface of a fluid, caused by tiny impulses of molecules. Wiener sug-
gested a mathematical model for this motion, the Wiener process. But earlier
Bachelier had applied Brownian motion to model the motion of stock prices,
which instantly respond to the numerous upcoming informations similar as
pollen react to the impacts of molecules. The illustration of the Dow in Figure
1.14 may serve as motivation.

A stochastic process is a family of random variables Xt, which are defined
for a set of parameters t (−→ Appendix B1). Here we consider the continuous-
time situation. That is, t ∈ IR varies continuously in a time interval I, which
typically represents 0 ≤ t ≤ T . A more complete notation for a stochastic



1.6 Stochastic Processes 27

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

0 50 100 150 200 250 300 350 400 450 500

Fig. 1.14. The Dow at 500 trading days from September 8, 1997 through August
31, 1999

process is {Xt, t ∈ I}, or (Xt)0≤t≤T . Let the chance “play,” then the resulting
function Xt is called realization or path of the stochastic process.

Special properties of stochastic processes have lead to the following names:
Gaussian process: All finite-dimensional distributions (Xt1 , . . . , Xtk

)
are Gaussian. Hence specifically Xt is distributed normally for all t.
Markov process: Only the present value of Xt is relevant for its future
motion. That is, the past history is fully reflected in the present value.5

An example of a process that is both Gaussian and Markov, is the Wiener
process. Wiener processes are important building blocks for models of finan-
cial markets, and are the main theme of this section.

5 This assumption together with the assumption of an immediate reaction
of the market to arriving informations are called hypothesis of the efficient
market [Bo98].
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1.6.1 Wiener Process

Definition 1.7 (Wiener process, Brownian motion)
A Wiener process (or Brownian motion; notation Wt or W ) is a time-
continuous process with the properties

(a) W0 = 0
(b) Wt ∼ N (0, t) for all t ≥ 0. That is, for each t the random variable

Wt is distributed normally with mean E(Wt) = 0 and variance
Var(Wt) = E(W 2

t ) = t.
(c) All increments ΔWt := Wt+Δt − Wt on nonoverlapping time

intervals are independent: That is, the displacements Wt2 − Wt1

and Wt4 − Wt3 are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.
(d) Wt depends continuously on t.

Generally for 0 ≤ s < t the property Wt−Ws ∼ N (0, t−s) holds, in particular

E(Wt − Ws) = 0 , (1.21a)
Var(Wt − Ws) = E((Wt − Ws)2) = t − s . (1.21b)

The relations (1.21a,b) can be derived from Definition 1.7 (−→ Exercise 1.9).
The relation (1.21b) is also known as

E((ΔWt)2) = Δt . (1.21c)

The independence of the increments according to Definition 1.7(c) implies
for tj+1 > tj the independence of Wtj

and (Wtj+1 − Wtj
), but not of Wtj+1

and (Wtj+1 − Wtj
). The Wiener process of Definition 1.7 is called standard

Wiener process, or standard Brownian motion. Standard Wiener processes
are examples of martingales —there is no drift. This process is an integral
element of more involved models. For example, Xt := μt + Wt is a Brownian
motion with drift μ.

Discrete-Time Model
Let Δt > 0 be a constant time increment. For the discrete instances tj := jΔt
the value Wt can be written as a sum of increments ΔWk,

WjΔt =
j∑

k=1

(
WkΔt − W(k−1)Δt

)
︸ ︷︷ ︸

=:ΔWk

.

The ΔWk are independent and because of (1.21) normally distributed with
Var(ΔWk) = Δt. Increments ΔW with such a distribution can be calculated
from standard normally distributed random numbers Z. The implication

Z ∼ N (0, 1) =⇒ Z ·
√

Δt ∼ N (0,Δt)

leads to the discrete model of a Wiener process
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ΔWk = Z
√

Δt for Z ∼ N (0, 1) for each k . (1.22)

We summarize the numerical simulation of a Wiener process as follows:

Algorithm 1.8 (simulation of a standard Wiener process)

Start: t0 = 0, W0 = 0; Δt

loop j = 1, 2, ... :
tj = tj−1 + Δt

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√

Δt

The drawing of Z —that is, the calculation of Z ∼ N (0, 1)— will be explained
in Chapter 2. The values Wj are realizations of Wt at the discrete points tj .
The Figure 1.15 shows a realization of a Wiener process; 5000 calculated
points (tj ,Wj) are joined by linear interpolation.
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Fig. 1.15. Realization of a Wiener process, with Δt = 0.0002
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Almost all realizations of Wiener processes are nowhere differentiable.
This becomes intuitively clear when the difference quotient

ΔWt

Δt
=

Wt+Δt − Wt

Δt

is considered. Because of relation (1.21b) the standard deviation of the nu-
merator is

√
Δt. Hence for Δt → 0 the normal distribution of the difference

quotient disperses and no convergence can be expected.

1.6.2 Stochastic Integral

For motivation, let us suppose that the price development of an asset is
described by a Wiener process Wt. Let b(t) be the number of units of the
asset held in a portfolio at time t. We start with the simplifying assumption
that trading is only possible at discrete time instances tj , which define a
partition of the interval 0 ≤ t ≤ T . Then the trading strategy b is piecewise
constant,

b(t) = b(tj−1) for tj−1 ≤ t < tj

and 0 = t0 < t1 < . . . < tN = T .
(1.23)

Such a function b(t) is called step function. The trading gain for the subin-
terval tj−1 ≤ t < tj is given by b(tj−1)(Wtj

− Wtj−1), and

N∑
j=1

b(tj−1)(Wtj
− Wtj−1) (1.24)

represents the trading gain over the time period 0 ≤ t ≤ T . The trading gain
(possibly < 0) is determined by the strategy b(t) and the price process Wt.

We now drop the assumption of fixed trading times tj and allow b to be
arbitrary continuous functions. This leads to the question whether (1.24) has
a limit when with N → ∞ the size of all subintervals tends to 0. If Wt would
be of bounded variation than the limit exists and is called Riemann–Stieltjes
integral ∫ T

0

b(t) dWt .

In our situation this integral generally does not exist because almost all
Wiener processes are not of bounded variation. That is, the first variation of
Wt, which is the limit of

N∑
j=1

|Wtj
− Wtj−1 | ,

is unbounded even in case the lengths of the subintervals vanish for N → ∞.
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Although this statement is not of primary concern for the theme of this
book6, we digress for a discussion because it introduces the important rule
(dWt)2 = dt. For an arbitrary partition of the interval [0, T ] into N subin-
tervals the inequality

N∑
j=1

|Wtj
− Wtj−1 |2 ≤ max

j
(|Wtj

− Wtj−1 |)
N∑

j=1

|Wtj
− Wtj−1 | (1.25)

holds. The left-hand sum in (1.25) is the second variation and the right-
hand sum the first variation of W for a given partition into subintervals. The
expectation of the left-hand sum can be calculated using (1.21),

N∑
j=1

E(Wtj
− Wtj−1)

2 =
N∑

j=1

(tj − tj−1) = tN − t0 = T .

But even convergence in the mean holds:
Lemma 1.9 (second variation: convergence in the mean)

Let t0 = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = T be a sequence of partitions of

the interval t0 ≤ t ≤ T with

δN := max
j

(t(N)
j − t

(N)
j−1) . (1.26)

Then (dropping the (N))

l.i.m.
δN→0

N∑
j=1

(Wtj
− Wtj−1)

2 = T − t0 (1.27)

Proof: The statement (1.27) means convergence in the mean (−→ Ap-
pendix B1). Because of

∑
Δtj = T − t0 we must show

E

⎛
⎝∑

j

((ΔWj)2 − Δtj)

⎞
⎠

2

→ 0 for δN → 0 .

Carrying out the multiplications and taking the mean gives

2
∑

j

(Δtj)2

(−→ Exercise 1.10). This can be bounded by 2(T − t0)δN , which com-
pletes the proof.

Part of the derivation can be summarized to

6 The less mathematically oriented reader may like to skip the rest of this
subsection.
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E((ΔWt)2 − Δt) = 0 , Var((ΔWt)2 − Δt) = 2(Δt)2 ,

hence (ΔWt)2 ≈ Δt. This property of a Wiener process is written symboli-
cally

(dWt)2 = dt (1.28)

It will be needed in subsequent sections.

Now we know enough about the convergence of the left-hand sum of (1.25)
and turn to the right-hand side of this inequality. The continuity of Wt implies

max
j

|Wtj
− Wtj−1 | → 0 for δN → 0 .

Convergence in the mean applied to (1.25) shows that the vanishing of this
factor must be compensated by an unbounded growth of the other factor, to
make (1.27) happen. So

N∑
j=1

|Wtj
− Wtj−1 | → ∞ für δN → 0 .

In summary, Wiener processes are not of bounded variation, and the integra-
tion with respect to Wt can not be defined as an elementary limit of (1.24).

The aim is to construct a stochastic integral∫ t

t0

f(s)dWs

for general stochastic integrands f(t). For our purposes it suffices to briefly
sketch the Itô integral, which is the prototype of a stochastic integral.

For a step function b from (1.23) an integral can be defined via the sum
(1.24), ∫ t

t0

b(s)dWs :=
N∑

j=1

b(tj−1)(Wtj
− Wtj−1) . (1.29)

This is the Itô integral over a step function b. In case the b(tj−1) are
random variables, b is called a simple process. Then the Itô integral is
again defined by (1.29). Stochastically integrable functions f can be
obtained as limits of simple processes bn in the sense

E
[ ∫ t

t0

(f(s) − bn(s))2ds
]
→ 0 for n → ∞ . (1.30)

Convergence in terms of integrals
∫

ds carries over to integrals
∫

dWt.
This is achieved by applying Cauchy convergence E

∫
(bn − bm)2ds → 0

and the isometry
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E
[( ∫ t

t0

b(s) dWs

)2 ]
= E

[ ∫ t

t0

b(s)2 ds
]

.

Hence the integrals
∫

bn(s)dWs form a Cauchy sequence with respect
to convergence in the mean. Accordingly the Itô integral of f is defined
as ∫ t

t0

f(s) dWs := l.i.m.n→∞

∫ t

t0

bn(s) dWs ,

for simple processes bn defined by (1.30). The value of the integral is
independent of the choice of the bn in (1.30). The Itô integral as function
in t is a stochastic process with the martingale property.

If an integrand a(x, t) depends on a stochastic process Xt, the function
f is given by f(t) = a(Xt, t). For the simplest case of a constant integrand
a(Xt, t) = a0 the Itô integral can be reduced via (1.29) to∫ t

t0

dWs = Wt − Wt0 .

For the “first” nontrivial Itô integral consider Xt = Wt and a(Wt, t) = Wt.
Its solution will be presented in Section 3.2.

Wiener processes are the driving machines for diffusion models (next sec-
tion). There are other stochastic processes that can be used for modeling
financial markets. For several models jump processes are considered. We turn
to jump processes in Section 1.9.

1.7 Diffusion Models

Many fundamental models of financial markets use Wiener processes as driv-
ing process. These are the diffusion models discussed in this section.

1.7.1 Itô Process

Phenomena in nature, technology and economy are often modeled by means of
deterministic differential equations ẋ = d

dtx = a(x, t). This kind of modeling
neglects stochastic fluctuations and is not appropriate for stock prices. If
processes x are to include Wiener processes as special case, the derivative
d
dtx is meaningless. To circumvent non-differentiability, integral equations are
used to define a general class of stochastic processes. Randomness is inserted
additively,

x(t) = x0 +
∫ t

t0

a(x(s), s)ds + randomness,
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with an Itô integral with respect to the Wiener process Wt. The first integral
in the resulting integral equation is an ordinary (Lebesgue- or Riemann-)
integral. The final integral equation is symbolically written as a “stochastic
differential equation” (SDE) and named after Itô.

Definition 1.10 (Itô stochastic differential equation)
An Itô stochastic differential equation is

dXt = a(Xt, t) dt + b(Xt, t) dWt ; (1.31a)

this together with Xt0 = X0 is a symbolic short form of the integral
equation

Xt = Xt0 +
∫ t

t0

a(Xs, s) ds +
∫ t

t0

b(Xs, s) dWs . (1.31b)

The terms in (1.31) are named as follows:

a(Xt, t): drift term or drift coefficient
b(Xt, t): diffusion coefficient

The integral equation (1.31b) defines a large class of stochastic processes Xt;
solutions Xt of (1.31b) are called Itô process, or stochastic diffusion.

As intended, the Wiener process is a special case of an Itô process, because
from Xt = Wt the trivial SDE dXt = dWt follows, hence the drift vanishes,
a = 0, and b = 1 in (1.31). If b ≡ 0 and X0 is constant, then the SDE becomes
deterministic.

An experimental approach may help to develop an intuitive understanding
of Itô processes. The simplest numerical method combines the discretized
version of the Itô SDE

ΔXt = a(Xt, t)Δt + b(Xt, t)ΔWt (1.32)

with the Algorithm 1.8 for approximating a Wiener process, using the same
Δt for both discretizations. The result is

Algorithm 1.11 (Euler discretization of an SDE)
Approximations yj to Xtj

are calculated by

Start: t0, y0 = X0, Δt, W0 = 0
loop j = 0, 1, 2, ...

tj+1 = tj + Δt

ΔW = Z
√

Δt with Z ∼ N (0, 1)
yj+1 = yj + a(yj , tj)Δt + b(yj , tj)ΔW



1.7 Diffusion Models 35

In the simplest setting, the step length Δt is chosen equidistant, Δt = T/m
for a suitable integer m. Of course the accuracy of the approximation depends
on the choice of Δt (−→ Chapter 3). The evaluation is straightforward. In
case the functions a and b are easily calculated, the greatest effort may be to
calculate random numbers Z ∼ N (0, 1) (−→ Section 2.3). Solutions to the
SDE or to its discretized version for a given realization of the Wiener process
are called trajectories or paths. By simulation of the SDE we understand the
calculation of one or more trajectories. For the purpose of visualization, the
discrete data are mostly joined by straight lines.

Example 1.12 dXt = 0.05Xt dt + 0.3Xt dWt

Without the diffusion term the exact solution would be Xt = X0e0.05t.
For X0 = 50, t0 = 0 and a time increment Δt = 1/300 the Figure
1.16 depicts a trajectory Xt of the SDE for 0 ≤ t ≤ 1. For another
realization of a Wiener process Wt the solution looks different. This is
demonstrated for a similar SDE in Figure 1.17.
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Fig. 1.16. Numerically approximated trajectory of Example 1.12 with a = 0.05Xt,
b = 0.3Xt, Δt = 1/300, X0 = 50
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1.7.2 Geometric Brownian Motion

Next we discuss one of the most important continuous models for the motion
of stock prices St. This standard model assumes that the relative change (re-
turn) dS/S of a security in the time interval dt is composed of a deterministic
drift μdt plus stochastic fluctuations in the form σdWt:

Model 1.13 (geometric Brownian motion, GBM)

dSt = μSt dt + σSt dWt
(1.33, GBM)

This SDE is linear in Xt = St, and a(St, t) = μSt is the drift rate with
the expected rate of return μ, b(St, t) = σSt, σ is the volatility. (Compare
Example 1.12 and Figure 1.16.) The geometric Brownian motion of (1.33) is
the reference model on which the Black–Scholes–Merton approach is based.
Following Assumption 1.2 we assume that μ and σ are constant.

A theoretical solution of (1.33) will be given in (1.54). The deterministic
part of (1.33) is the ordinary differential equation

Ṡ = μS

with solution St = S0eμ(t−t0). For the linear SDE of (1.33) the expectation
E(St) solves Ṡ = μS. Hence

S0eμ(t−t0) = E(St |St0 = S0)

is the expectation of the stochastic process and μ is the expected continuously
compounded return earned by an investor per year, conditional on starting
at S0. The rate of return μ is also called growth rate. The function S0eμ(t−t0)

may be seen as a core about which the process fluctuates. Accordingly the
simulated values S1 of the ten trajectories in Figure 1.17 group around the
value 50 · e0.1 ≈ 55.26.

Let us test empirically how the values S1 distribute about their expected
value. To this end calculate, for example, 10000 trajectories and count how
many of the terminal values S1 fall into the subintervals k5 ≤ t < (k + 1)5,
for k = 0, 1, 2 . . .. Figure 1.18 shows the resulting histogram. Apparently the
distribution is skewed. We revisit this distribution in the next section.

A discrete version of (1.33) is

ΔS

S
= μΔt + σZ

√
Δt , (1.34a)

known from Algorithm 1.11. The ratio ΔS
S is called one-period simple return,

where we interpret Δt as one period. According to (1.34a) this return satisfies

ΔS

S
∼ N (μΔt, σ2Δt) . (1.34b)
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Fig. 1.17. 10 paths of SDE (1.33) with S0 = 50, μ = 0.1 and σ = 0.2

The distribution of the simple return matches actual market data in a crude
approximation, see for instance Figure 1.21. This allows to calculate estimates
of historical values of the volatility σ.7 The approximation is valid as long as
Δt is small. We will return to this in Section 1.8.

1.7.3 Risk-Neutral Valuation

We digress for the length of this subsection and again turn to the topic of a
risk-neutral valuation, now for the continuous-time setting. In Section 1.5 we
have shown

V0 = e−rT EQ(VT )
for the one-period model. Formally, the same holds true for the market model
based on GBM. But now the understanding of the risk-neutral probability Q
is more involved. This subsection sketches the framework for GBM.

Let us rewrite GBM from (1.33) to get

dSt = rSt dt + (μ − r)St dt + σSt dWt

= rSt dt + σSt

[
μ − r

σ
dt + dWt

]
,

(1.35)

7 For the implied volatility see Exercise 1.5.
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Fig. 1.18. Histogram of 10000 calculated values S1 corresponding to (1.33), with
S0 = 50, μ = 0.1, σ = 0.2

with standard Wiener process W . In the reality of the market, an investor
expects μ > r as compensation for the risk that is higher for stocks than for
bonds. In this sense, the quotient γ of the excess return μ − r to the risk σ,

γ :=
μ − r

σ
, (1.36)

is called market price of risk. With this variable γ, (1.35) is written

dSt = rSt dt + σSt[γ dt + dWt] . (1.37)

Under certain assumptions on γ (−→ Appendix B2) there is another proba-
bility measure Q and —matching it— another Wiener process W γ

t with drift
depending on γ, such that

dW γ
t = γ dt + dWt . (1.38)

Under Q the process W γ
t is a standard Wiener process. (For γ �= 0 it is not

standard under P.) Equation (1.37) becomes

dSt = rSt dt + σSt dW γ
t . (1.39)
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(We use the same symbol St for solutions of (1.39).) Comparing this SDE
to (1.33), notice that the growth rate μ is replaced by the risk-free rate r.
Together the transition consists of

μ → r
P → Q
W → W γ

which is named risk-neutral valuation principle. To simulate (1.39) just
apply the standard Algorithm 1.8 for the standard Wiener process W γ

t . Then
the rate r in (1.39) and W γ

t correspond to the “risk-neutral measure” Q. The
advantage of the risk-neutral measure Q corresponding to (1.38) is that the
discounted process e−rtSt is a martingale under Q,

d(e−rtSt) = e−rtσSt dW γ
t .

This property of having no drift is an essential ingredient of a no-arbitrage
market and a prerequisite to modeling options. For a thorough discussion
of the continuous model, martingale theory is used. (More background and
explanation is provided by Appendix B3.) Let us summarize the situation in
a remark:

Remark 1.14 (risk-neutral valuation principle)
For modeling options with underlying GBM, the original probability
is adjusted to the risk-neutral probability Q. To simulate the process
under Q, the return rate μ is replaced by the risk-free interest rate r,
and W γ

t is approximated as standard Wiener process.

1.7.4 Mean Reversion

The assumptions of a constant interest rate r and a constant volatility σ are
quite restrictive. To overcome this simplification, SDEs for rt and σt have
been constructed that control rt or σt stochastically. A class of models is
based on the SDE

drt = α(R − rt) dt + σrr
β
t dWt , α > 0 . (1.40)

The driving force Wt is again a Wiener process. The drift term in (1.40)
is positive for rt < R and negative for rt > R, which causes a pull to R.
This effect is called mean reversion. The strength of the reversion can be
influenced by the choice of the frequency parameter α. The parameter R,
which may depend on t, corresponds to a long-run mean of the interest rate
over time. The SDE (1.40) defines a general class of models, including several
interesting special cases known under special names:
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β = 0, R = 0 : Ornstein–Uhlenbeck process (OU)
β = 0, R > 0 : Vasicek model
β = 1

2 , R > 0 : Cox–Ingersoll–Ross process (CIR)
The CIR model [CoxIR85] is also called square-root process. Its volatility

σr
√

rt and with it the stochastic part vanish when rt tends to zero. Provided
r0 > 0, R > 0, this guarantees rt ≥ 0 for all t. An illustration of the mean
reversion is provided by Figure 1.19. In a transient phase (until t ≈ 1 in
the run documented in the figure) the relatively large deterministic term
dominates, and the range r ≈ R is reached quickly. Thereafter the stochastic
term dominates, and r dances about the mean value R. Figure 1.19 shows
this for a Cox–Ingersoll–Ross model. For a discussion of related models we
refer to [LL96], [Hull00], [Kwok98]. The calibration of the models (that is,
the adaption of the parameters to the data) is a formidable task (−→ Section
1.10).
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Fig. 1.19. Simulation rt of the Cox–Ingersoll–Ross model (1.40) with β = 0.5 for
R = 0.05, α = 1, σr = 0.1, r0 = 0.15, Δt = 0.01

The SDE (1.40) is of a different kind as the GBM in (1.33). Coupling the
SDE for rt to that for St leads to a system of two SDEs. Even larger systems
are obtained when further SDEs are coupled to define a stochastic process Rt

or to calculate stochastic volatilities. Related examples are given by Examples
1.15 and 1.16 below. In particular for modeling options, stochastic volatilities
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have shown great potential. We come back to this in the Examples 1.15 and
1.16 below.

1.7.5 Vector-Valued SDEs

The Itô equation (1.31) is formulated as scalar equation; accordingly the SDE
(1.33) represents a one-factor model. The general multifactor version can be
written in the same notation. Then Xt = (X(1)

t , . . . , X
(n)
t ) and a(Xt, t) are

n-dimensional vectors. The Wiener processes of each component SDE need
not be correlated. In the general situation, the Wiener process can be m-
dimensional, with components W

(1)
t , ...,W

(m)
t . Then b(Xt, t) is an (n × m)-

matrix. The interpretation of the SDE systems is componentwise. The scalar
stochastic integrals are sums of m stochastic integrals,

X
(i)
t = X

(i)
0 +

∫ t

0

ai(Xs, s) ds +
m∑

k=1

∫ t

0

bik(Xs, s) dW (k)
s , (1.41a)

for i = 1, ..., n, and t0 = 0 for convenience. Or in the symbolic SDE notation,
this system reads

dXt = a(Xt, t) dt + b(Xt, t) dWt , (1.41b)

where b dW is a matrix multiplication. When we take the components of the
vector dW as uncorrelated,

E (dW (k)dW (j)) =
{

0 for k �= j
dt for k = j

(1.42)

then possible correlations between the components of dX must be carried by
b.

Example 1.15 (mean-reverting volatility tandem)
We consider a three-factor model with stock price St, instantaneous
spot volatility σt and an averaged volatility ζt serving as mean-reverting
parameter: ⎧⎪⎨

⎪⎩
dS = σS dW (1)

dσ = −(σ − ζ)dt + ασ dW (2)

dζ = β(σ − ζ)dt

Here and sometimes later on, we suppress the subscript t, which is pos-
sible when the role of the variables as stochastic processes is clear from
the context. The rate of return μ of S is zero; dW (1) and dW (2) may
be correlated. As seen from the SDE, the stochastic volatility σ follows
the mean volatility ζ and is simultaneously perturbed by a Wiener pro-
cess. Both σ und ζ provide mutual mean reversion, and stick together.
Accordingly the two SDEs for σ and ζ may be seen as a tandem con-
trolling the dynamics of the volatility. We recommend numerical tests.
For motivation see Figure 3.2.



42 Chapter 1 Modeling Tools for Financial Options

Example 1.16 (Heston’s model)
Heston [Hes93] uses an Ornstein–Uhlenbeck process to model a stochas-
tic volatility σt. Then the variance vt := σ2

t follows a Cox–Ingersoll–
Ross process (1.40). (−→ Exercise 1.20) The system of Heston’s model
is

dSt = μSt dt +
√

vt St dW
(1)
t

dvt = κ(θ − vt) dt + σv
√

vt dW
(2)
t

(1.43)

with two correlated Wiener processes W
(1)
t ,W

(2)
t and suitable parame-

ters μ, κ, θ, σv, ρ, where ρ is the correlation between W
(1)
t ,W

(2)
t . Hidden

parameters might be S0, v0, if not available. This model establishes a
correlation between price and volatility.

Computational Matters

Stochastic differential equations are simulated in the context of Monte Carlo
methods. Thereby, the SDE is integrated N times, with N large (N = 10000
or much larger). Then the weight of any single trajectory is almost ne-
glectable. Expectation and variance are calculated over the N trajectories.
Generally this costs an enormous amount of computing time. The required
instruments are:

1.) Generating N (0, 1)-distributed random numbers (−→ Chapter 2)
2.) Integration methods for SDEs (−→ Chapter 3)

1.8 Itô Lemma and Applications

Itô’s lemma is most fundamental for stochastic processes. It may help, for
example, to derive solutions of SDEs (−→ Exercise 1.11).

1.8.1 Itô Lemma

Itô’s lemma is the stochastic counterpart of the chain rule for deterministic
functions X(t) and Y (t) := g(X(t), t), which is

d
dt

g(X(t), t) =
∂g

∂x
· dX

dt
+

∂g

∂t
,

and can be written

dX = a(X(t), t) dt ⇒ dg =
(

∂g

∂x
a +

∂g

∂t

)
dt .

Here we state the one-dimensional version of the Itô lemma; for the multidi-
mensional version see the Appendix B2.
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Lemma 1.17 (Itô)
Suppose Xt follows an Itô process (1.31), dXt = a(Xt, t)dt+b(Xt, t)dWt,
and let g(x, t) be a C2,1-smooth function (continuous ∂g

∂x , ∂2g
∂x2 , ∂g

∂t ).
Then Yt := g(Xt, t) follows an Itô process with the same Wiener pro-
cess Wt:

dYt =
(

∂g

∂x
a +

∂g

∂t
+

1
2

∂2g

∂x2
b2

)
dt +

∂g

∂x
b dWt (1.44)

where the derivatives of g as well as the coefficient functions a and b in
general depend on the arguments (Xt, t).
For a proof we refer to [Ar74], [Øk98], [Ste01], [Pro04]. Here we confine
ourselves to the basic idea. When t varies by Δt, then X by ΔX =
a · Δt + b · ΔW and Y by ΔY = g(X + ΔX, t + Δt) − g(X, t). The
Taylor expansion of ΔY begins with the linear part ∂g

∂xΔX + ∂g
∂t Δt,

in which ΔX = aΔt + bΔW is substituted. The additional term with
the derivative ∂2g

∂x2 is new and is introduced via the O(Δx2)-term of the
Taylor expansion,

1
2

∂2g

∂x2
(ΔX)2 =

1
2

∂2g

∂x2
b2(ΔW )2 + t.h.o.

Because of (1.28), (ΔW )2 ≈ Δt, the leading term is also of the order
O(Δt) and belongs to the linear terms. Taking correct limits (similar
as in Lemma 1.9) one obtains (1.44).

1.8.2 Consequences for Stocks and Options

Suppose the stock price follows a geometric Brownian motion, hence Xt =
St, a = μSt, b = σSt, for constant μ, σ. The value Vt of an option depends
on St, Vt = V (St, t). Assuming a C2-smooth value function V depending on
S and t, we apply Itô’s lemma. For V (S, t) in the place of g(x, t) the result is

dVt =
(

∂V

∂S
μSt +

∂V

∂t
+

1
2

∂2V

∂S2
σ2S2

t

)
dt +

∂V

∂S
σSt dWt . (1.45)

This SDE is used to derive the Black–Scholes equation, see Appendix A4.

As second application of Itô’s lemma consider Yt = log(St), viz g(x, t) :=
log(x), for St solving GBM with constant μ, σ. Itô’s lemma leads to the linear
SDE

d log St = (μ − 1
2
σ2) dt + σdWt . (1.46)

In view of (1.31) the solution is straightforward:
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Yt = Yt0 + (μ − 1
2
σ2)
∫ t

t0

ds + σ

∫ t

t0

dWs

= Yt0 + (μ − 1
2
σ2)(t − t0) + σ(Wt − Wt0)

(1.47)

From the properties of the Wiener process Wt we conclude that Yt is dis-
tributed normally. To write down the density function f̂(Yt), the mean
μ̂ := E(Yt) and the variance σ̂ are needed. For this linear SDE (1.46) the
expectation E(Yt) satisfies the deterministic part

d
dt

E(Yt) = μ − σ2

2
.

The solution of ẏ = μ − σ2

2 with initial condition y(t0) = y0 is

y(t) = y0 + (μ − σ2

2
)(t − t0) .

In other words, the expectation of the Itô process Yt is

μ̂ := E(log St) = log S0 + (μ − σ2

2
)(t − t0) .

Analogously, we see from the differential equation for E(Y 2
t ) (or from the

analytical solution of the SDE for Yt) that the variance of Yt is σ2(t− t0). In
view of (1.46) the simple SDE for Yt implies that the stochastic fluctuation
of Yt is that of σWt, namely, σ̂2 := σ2(t− t0). So, from (B1.9) with μ̂ and σ̂,
the density of Yt is

f̂(Yt) :=
1

σ
√

2π(t − t0)
exp

⎧⎪⎨
⎪⎩−

(
Yt − y0 −

(
μ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)

⎫⎪⎬
⎪⎭ .

Back transformation using Y = log(S) and considering dY = 1
S dS and

f̂(Y )dY = 1
S f̂(log S)dS = f(S)dS yields the density of St:

fGBM(S, t − t0; S0, μ, σ) :=

1
Sσ
√

2π(t − t0)
exp

⎧⎪⎨
⎪⎩−

(
log(S/S0) −

(
μ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)

⎫⎪⎬
⎪⎭

(1.48)

This is the density of the lognormal distribution, conditional on St0 = S0.
Under the basic assumption of a geometric Brownian motion (1.33) the stock
price St is distributed lognormally. The distribution is skewed, see Figure
1.20. Now the skewed behavior coming out of the experiment reported in
Figure 1.18 is clear. Notice that in Figures 1.18 and 1.20 the parameters
match. Figure 1.18 is an approximation of the solid curve in Figure 1.20.
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Fig. 1.20. Density (1.48) over S for μ = 0.1, σ = 0.2, S0 = 50, t0 = 0 and t = 0.5
(dotted curve with steep gradient), t = 1 (solid curve), t = 2 (dashed) and t = 5
(dotted with flat gradient)

In summary, the assumption of GBM amounts to

St = S0 exp(Yt) , (1.49)

where the log-price Yt is a Brownian motion with drift, Yt = (μ− 1
2σ2)t+σWt.

— Having derived the density (1.48), we now can prove equation (1.8), with
μ = r according to Remark 1.14 (−→ Exercise 1.12).

1.8.3 Integral Representation

Another important application of a known density function is that it allows
for an integral representation of European options. This will be revisited in
Subsection 3.5.1, where we show for a European put under GBM

V (S0, 0) = e−rT

∫ ∞

0

(K − ST )+ fGBM(ST , T ; S0, r, σ) dST . (1.50)

The integral is the conditional expectation of the payoff under the assumed
risk-neutral law,

EQ =
∫ ∞

0

payoff · density dST . (1.51)
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The integral representation (1.51) holds for arbitrary payoff functions and
density functions of a general class of valuation models.

1.8.4 Bermudan Options

The integral representation (1.51) for European options can be applied to
approximate American options. To this end, discretize the time interval 0 ≤
t ≤ T into an equidistant grid of time instances ti, similar as done for the
binomial method of Section 1.4:

Δt :=
T

M
, ti := i Δt (i = 0, . . . ,M) .

This defines lines in the (S, t)-domain, and cuts it into M slices. An option
that restricts early exercise to specified discrete dates during its life is called a
Bermudan option. The above slicing defines an artificial Bermudan option,
constructed for the purpose of approximating the corresponding American
option.

Let V Ber denote the value of a Bermudan option, and V Ber(M) the value
of the Bermudan option in the above setting of M slices of equal size. Clearly,

V Eur ≤ V Ber(M) ≤ V Am for all M ,

and V Eur = V Ber(1). This holds because of the additional exercise possibilities
of an otherwise identical option. One can show

lim
M→∞

V Ber(M) = V Am .

Hence, for suitable M the value V Ber(M) can be used as approximation to
V Am.

Let us consider the time slice ti ≤ t ≤ ti+1 for any i. For the valuation
of the option’s value at ti, the “inner payoff” is V (S, ti+1) along the line
t = ti+1. Since a Bermudan option can not be exercised fo ti < t < ti+1, its
continuation value for ti is given by the integral representation of a European
option. This continuation value is

V cont(x, ti) = e−r(ti+1−ti)

∫
V (ξ, ti+1) f(ξ, ti+1 − ti; x, . . .) dξ (1.52a)

for arbitrary x. Here S at line t = ti is represented by x, and the price at
ti+1 by ξ. The dots stand for the parameters of the risk-neutral evaluation of
the chosen model, and f is its density conditional on Sti

= x. For an n-factor
model, the domain of integration is IRn.

Since the Bermudan option can be exercised at ti, its value is again given
by the dynamic programming principle,

V (x, ti) = max {Ψ(x), V cont(x, ti) } , (1.52b)
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where Ψ denotes the payoff. Equations (1.52) define for i = M − 1, . . . , 0 a
backward recursive algorithm. It starts from the payoff at T , which provides
V (S, tM ). That is, only for the first time level i = M − 1, the option is
“vanilla,” whereas for i < M − 1 the inner payoffs are given by (1.52b).

In the algorithm, the evaluation of the integral in (1.52a) is done by
quadrature (−→ Appendix C1), and the continuation value function V cont

is constructed by interpolation based on m nodes in x-space [Que07]. In
the simplest case n = 1, the nodes may represent equidistantly chosen Sj

(1 ≤ j ≤ m). The inner payoffs are denoted gi.

Algorithm 1.18 (Bermudan option)
set m nodes x1, . . . , xm ∈ IRn.
gM (x) := V (x, tM ) = V (x, T ) = Ψ(x).
recursively backwards (i = M − 1, . . . , 0):
(1) input: gi+1

loop (j = 1, . . . , m): calculate by quadrature

qj := e−r(ti+1−ti)

∫
gi+1(ξ) f(ξ, ti+1 − ti; xj , . . .) dξ

output: q1, . . . , qm

(2) interpolate (x1, q1), . . . , (xm, qm). output: C(x)
(3) gi(x) := max {Ψ(x), C(x)}

The final g0(x) is the approximation of V Ber(M)(x, 0). The method works
also for general non-GBM models, as long as they are not path-dependent.
The order of convergence in Δt is linear. If necessary, the nodes xj can be
readjusted after each i.

1.8.5 Empirical Tests

It is inspiring to test the idealized Model 1.13 of a geometric Brownian motion
against actual empirical data. Suppose the time series S1, ..., SM represents
consecutive quotations of a stock price. To test the data, histograms of the
returns are helpful (−→ Figure 1.21). The transformation y = log(S) is most
practical. It leads to the notion of the log return, defined by8

Ri,i−1 := log
Si

Si−1
. (1.53)

Let Δt be the equally spaced sampling time interval between the quotations
Si−1 and Si, measured in years. Then (1.48) leads to

Ri,i−1 ∼ N ((μ − σ2

2
)Δt , σ2Δt) .

8 Since Si = Si−1 exp(Ri,i−1), the log return is also called continuously
compounded return in the ith time interval [Tsay02].
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Comparing with (1.34) we realize that the variances of the simple return
and of the log return are identical. The sample variance σ2Δt of the data
allows to calculate estimates of the historical volatility σ (−→ Exercise 1.13).
But the shape of actual market histograms is usually not in good agreement
with the well-known bell shape of the Gaussian density. The symmetry may
be perturbed, and in particular the tails of the data are not well modeled
by the hypothesis of a geometric Brownian motion: The exponential decay
expressed by (1.48) amounts to thin tails. This underestimates extreme events
and hence does not match the reality of stock prices.
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Fig. 1.21. Histogram (compare Exercise 1.13): frequency of daily log returns Ri,i−1

of the Dow in the time period 1901-1999.

We conclude this section by listing again the analytical solution of the
basic linear constant-coeffficient SDE (1.33)

dSt = μSt dt + σSt dWt

of GBM. From (1.47) or (1.49), the process

St := S0 exp
((

μ − σ2

2

)
t + σWt

)
(1.54)
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solves the linear constant-coefficient SDE (1.33). Equation (1.54) generalizes
to the case of nonconstant coefficients (−→ Exercise 1.18). As a consequence
we note that St > 0 for all t, provided S0 > 0.

1.9 Jump Models

The geometric Brownian motion Model 1.13 has continuous paths St. As
noted before, the continuity is at variance with those rapid asset price move-
ments that can be considered almost instantaneous. Such rapid changes can
be modeled as jumps. This section introduces a basic building block of a
jump process, namely, the Poisson process. Related simulations (like that of
Figure 1.22) may look more authentic than continuous paths. But one has to
pay a price: With a jump process the risk of an option in general can not be
hedged away to zero. And calibration becomes more involved.

To define a Poisson process, denote the time instances for which a jump
occurs τj , with

τ1 < τ2 < τ3 < . . .

Let the number of jumps be counted by the counting variable Jt, where

τj = inf{t ≥ 0 , Jt = j} .

A Bernoulli experiment describes the probability that a jump occurs. For this
local discussion, consider a subinterval of length Δt := t

n and allow for only
two outcomes, jump yes or no, with the probabilities

P(Jt − Jt−Δt = 1) = λΔt
P(Jt − Jt−Δt = 0) = 1 − λΔt

(1.55)

for some λ such that 0 < λΔt < 1. The parameter λ is referred to as the
intensity of this jump process. Consequently k jumps in 0 ≤ τ ≤ t have the
probability

P(Jt − J0 = k) =
(

n
k

)
(λΔt)k(1 − λΔt)n−k ,

where the trials in each subinterval are considered independent. A little rea-
soning reveals that for n → ∞ this probability converges to

(λt)k

k!
e−λt ,

which is known as the Poisson distribution with parameter λ > 0 (−→ Ap-
pendix B1). This leads to the Poisson process.
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Fig. 1.22. Path of (1.57) with μ = 0.06, σ = 0.3, λ = 5, q = Z · 0.1 + 1 for
Z ∼ N (0, 1), Δt = 0.001.

Definition 1.19 (Poisson process)
The stochastic process {Jt , t ≥ 0} is called Poisson process if the following
conditions hold:
(a) J0 = 0
(b) Jt − Js are integer-valued for 0 ≤ s < t < ∞ and

P(Jt − Js = k) =
λk(t − s)k

k!
e−λ(t−s) for k = 0, 1, 2 . . .

(c) The increments Jt2 −Jt1 and Jt4 −Jt3 are independent for all 0 ≤ t1 <
t2 < t3 < t4.

Several properties hold as consequence of this definition:

Properties 1.20 (Poisson process)
(d) Jt is right-continuous and nondecreasing.
(e) The times between successive jumps are independent and exponentially

distributed with parameter λ. Thus,

P(τj+1 − τj > Δτ) = e−λΔτ for each Δτ .

(f) Jt is a Markov process.
(g) E(Jt) = λt, Var(Jt) = λt
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Simulating Jumps
Following the above introduction into Poisson processes, there are two pos-
sibilities to calculate jump instances τj such that the above probabilities are
met. First, the equation (1.55) may be used together with uniform deviates
(−→ Chapter 2). In this way a Δt-discretization of a t-grid can be easily
exploited to decide whether a jump occurs in a subinterval. The other alter-
native is to calculate exponentially distributed random numbers h1, h2, . . .
(−→ Section 2.2.2) to simulate the intervals Δτ between consecutive jump
instances, and set

τj+1 := τj + hj .

The expectation of the hj is 1
λ .

The unit amplitudes of the jumps of the Poisson counting process Jt are
not relevant for the purpose of establishing a market model. The jump sizes
of the price of a financial asset must be considered random. This requires
—in addition to the jump instances τj— another random variable.

Let the random variable St jump at τj , and denote τ+ the moment im-
mediately after the jump, and τ− the moment before. Then the absolute size
of the jump is

ΔS = Sτ+ − Sτ− ,

which we model as a proportional jump,

Sτ+ = qSτ− with q > 0 . (1.56)

So, ΔS = qSτ− − Sτ− = (q − 1)Sτ− . The jump sizes equal q − 1 times the
current asset price. Accordingly, this model of a jump process depends on a
random variable qt and is written

dSt = (qt − 1)St− dJt , where Jt is a Poisson process.

We assume that qτ1 , qτ2 , ... are i.i.d. The resulting process with the two in-
volved processes Jt, qt is called compound Poisson.

Next we superimpose the jump process to stochastic diffusion, here to
GBM. The combined geometric Brownian and Poisson process is given by

dSt = St− ( μdt + σ dWt + (qt − 1) dJt ) . (1.57)

Here σ is the same as for the GBM, hence conditional on no jump. We further
assume that q is independent of W . Such a combined model represented by
(1.57) is called jump-diffusion process. It involves three different stochastic
driving processes, namely, Wt, Jt, and qt.

Figure 1.22 shows a simulation of the SDE (1.57). The choice λΔt = 0.005
has taken care of the jump times, see (1.55). For this simulation, the jump
sizes q are simply chosen ∼ N (1, 0.01). In Figure 1.22, large jumps are seen,
for instance, for τ1 = 0.05 and τ2 = 0.088.
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An analytical solution of (1.57) can be calculated on each of the jump-
free subintervals τj < t < τj+1 where the SDE is just the GBM diffusion
dS = S(μdt + σdW ). For example, in the first subinterval until τ1, the solu-
tion is given by (1.54). At τ1 a jump of the size

(ΔS)1 := (qτ1 − 1)Sτ−
1

occurs, and thereafter the solution continues with

St = S0 · exp
((

μ − σ2

2

)
t + σWt

)
+ (qτ1 − 1)Sτ−

1
,

until τ2. The interchange of continuous parts and jumps proceeds in this way,
all jumps are added. So the SDE can be written as

St = S0 +
∫ t

0

Ss(μds + σdWs) +
Jt∑

j=1

Sτ−
j

(qτj
− 1) . (1.58)

This is the model based on Merton’s paper [Mer76]. The equation (1.58)
can be rewritten in the log-framework, with Yt := log St. The jump sizes
according to model (1.56) match the log-scenario,

Zτ : = Yτ+ − Yτ− = log(qSτ−) − log Sτ−

= log qτ .

Following (1.54), the model can be written

Yt = Y0 +
(

μ − σ2

2

)
t + σWt +

Jt∑
j=1

Zτj
(1.59)

—that is the sum of a drift term, a Brownian motion, and a jump process.
Merton assumes normally distributed Z, which amounts to lognormal q. In
summary we emphasize again that the jump-diffusion process has three driv-
ing processes, namely, W,J , and q. As in the GBM case, see (1.49)/(1.54),
the price process is of the form St = S0 exp(Yt). The task of valuing options
leads to a partial integro-differential equation (A4.14), shown in Appendix
A4. This equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r − λc)S

∂V

∂S
− (λ + r)V + λE(V (qS, t)) = 0

reduces to the Black–Scholes equation in the no-jump special case for λ = 0.

The above jump-diffusion process is not the only jump process used in
finance. There are also processes with an infinite number of jumps in finite
time intervals. To model such processes, building blocks are provided by
a more general class of jump processes, namely, the Lévy processes. Simply
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speaking, think of relaxing the properties (b), (d) of Definition 1.7 of a Wiener
process such that non-normal distributions and jumps are permitted. See
Appendix B4 for some basics on Lévy processes.

An infinite number of jumps can not as easily be simulated as a jump-
diffusion process. Fortunately, there are Lévy processes that can be con-
structed via Wiener processes subjected to a random time change. To this
end, let τ(t) be a subordinator —that is a non-decreasing Lévy process. Such
a process τ(t) can be regarded as “business time,” which runs faster than
the calendar time when the trading volume is high, and slower otherwise.
Then, for a standard Wiener process Wt, a class of Lévy processes is defined
by Wτ(t). The subordinator τ(t) replaces the deterministic “ordinary” time
t. Two such examples are the variance gamma process (VG), and the nor-
mal inverse Gaussian process (NIG). For VG, the subordinator is a Gamma
process, and NIG is a Wiener process subordinated by an inverse Gaussian
process. With a t-grid as in Algorithm 1.8 and τj := τ(j Δt) a time-changed
process can be generated as Wj = Wj−1 + Z

√
τj − τj−1 (−→ Exercise 2.17).

1.10 Calibration

Which model should be chosen for a particular application?
This is a truly fundamental question. The question involves two views,

namely, a qualitative and a quantitative aspect.
When one speaks of a “model,” the focus is on its quality. This refers

to the structure and the type of equation. Important ingredients of a model
are, for example, a diffusion term, a jump feature, a specific nonlinearity,
or whether the volatility is considered as a constant or a stochastic process.
Ideally, the model and its equations represent economical laws. On the other
hand, the quantitative aspect of the model consists in the choice of specific
numbers for the coefficients or parameters of the model. “Modeling” refers to
the setup of a chosen equation, and “calibration” is the process of matching
the parameters of the model to the data that represent reality.

The distinction between modeling and calibration is not always obvious.
For example, consider the class of mean-reversion models represented by
(1.40). There is the exponent β in the factor rβ

t . This exponent β can be
regarded either as parameter, or as a structural element of the model. The
three cases

β = 0 : the factor is unity, rβ = 1, it “disappears,”
β = 1 : the factor is linear, it represents a proportionality,

β = 1/2 : the factor
√

r is a specific nonlinearity,

point at the qualitative aspect of this specific parameter. Typically, modeling
sets forth some argument why a certain parameter is preset in a specific way,
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and not subjected to calibration. Modeling places emphasis on capturing
market behavior rather than the peculiarities of a given data set.

Let us denote N parameters to be calibrated by c1, . . . , cN . Examples are
the volatility σ in GBM (1.33), or α,R for the mean-reversion term in (1.40),
or the jump intensity λ of a jump-diffusion process. For the mean-reverting
volatility tandem of Example 1.15, the vector to calibrate consists of five
parameters,

c = (α, β, ρ, σ0, ζ0) .

Here ρ is the correlation between the two Wiener processes W (1),W (2), and
σ0, ζ0 are the initial values for the processes σt, ζt. For the volatility tandem
it makes sense to assume ζ0 = σ0, which cuts down the calibration dimension
N from five to four. The initial stock price S0 is known. The interest rates
r that match a maturity T are obtained, for example, from EURIBOR, and
are not object of the calibration. Any attempt to cut down the calibration
dimension N is welcome because the costs of calibration are significant.

Suppose an initial guess of the calibration vector c. Then the calibration
procedure is based on the three steps

(1) simulate the model —that is, solve it numerically,
(2) compare the calculated results with the data – that is, calculate
the defect, and
(3) adapt c such that the model better matches the data —that is,
the defect should decrease.

Obviously, these three steps are repeated iteratively. There is no unique way
how to decrease the defect. A standard approach is to minimize the defect in
a least-squares fashion.

In our context of calibrating models for finance, data of vanilla options
are available as follows: For each date tj the price S of the underlying is
known as well as market prices V mar for several strikes K and maturities T .
Let the option prices V mar be observed for M pairs (T1,K1), . . . , (TM ,KM ).
That is, for tj the available data are

S, (Tk,Kk, V mar
k ), k = 1, . . . ,M .

For definiteness of the calibration require sufficient data in the sense M ≥ N .
First, a model is specified. Then, in step (1), the chosen model is

evaluated for each of the M data (S, Tk,Kk), which gives model prices
V (S; 0; Tk,Kk; c). In general, this valuation process is expensive. An excel-
lent approach for the simultaneous valuation of a large number of European
options is the FFT method of Carr and Madan [CaM99]. In the following
step (2), the result of the valuation is compared to the market prices. There
will be a defect. Therefore, in step (3), an iteration is set up to improve
the current fit c. The least-squares approach is to minimize the sum of the
squares of all defects, over all c
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min
c

M∑
k=1

(V mar
k − V (S, 0;Tk,Kk; c))2 . (1.60)

This is done by invoking minimization methods, see Appendix C4. Finally,
the calibration results in a minimizing c. The sum in (1.60) can be modified
by weighting the terms appropriately; clearly this affects the resulting c. The
value of the sum is a measure of the discrepancy of the model. The discrepancy
of (1.60) can be visualized as a surface over the parameter c-space.

A simple example is provided by the implied volatility, see Exercise 1.5.
Here N = 1 with c

∧=σ, M = 1, and it is possible to make the defect vanish
— the minimum in (1.60) becomes zero.

As a numerical example, we calibrate three models on the same data set of
standard European calls on the DAX index observed in the time period Jan-
uary 2002 through September 2005. For example, the calibration of Heston’s
model (1.43) results in the five parameters

K = 1.63 , θ = 0.0934 , σv = 0.473 , V0 = 0.0821 , ρ = −0.8021 ,

and μ = r for the risk-neutrality. — The same data are applied to calibrate
the Black-Scholes model: The data are matched by GBM with the constant
σ = 0.239. And for the jump-diffusion model (1.57), the four parameters

σ = 0.129 , λ = 3.1 , μJ = −0.358 , σJ = 0.185

are obtained, where the jump size q is modeled as log q ∼ N (μJ , σ2
J). These

calibration results are from [End08]. To become risk-neutral, the jump diffu-
sion is furnished with

μ = r − λ (exp[μJ + 1
2σ2

J ] − 1) .

So far, we have not come close to an answer to the initial question on
the “best” choice of an appropriate model. An attempt to decide on the
quality of a model would be to compare the defects. For instance, compare
the values of the sums in (1.60). In the above experiment, Heston’s model
has the smallest defect; the defect of the jump diffusion is three time as large,
and Black–Scholes five times.

It is tempting to say that one model is better than another one, when
the discrepancy is smaller. But this could be a wrong conclusion. Admitting
a large enough number of parameters enables to reach a seemingly best fit
with a small discrepancy. The danger with a large number of parameters is
overfitting. Overfitting can be detected as follows: Divide the data into halves,
fit the model on the one half (in-sample fit), and then test the quality of the
fit on the other half of the data (out-of-sample fit). In case the out-of-sample
fit matches the data much worse than the in-sample fit, we have a strong
clue on overfitting. Overfitting is related to the stability of parameters. If the
parameters c change drastically when exchanging one data set by a similar
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data set, then the model is considered unstable. In order to obtain information
on the parameter uncertainty, the discrepancy must be analyzed more closely
around the calculated best fit c.

There is another test of the quality of a model, namely, how well hedging
works. A hedging strategy based on the model is compared to the reality
of the data. Extensive empirical tests and comparisons in [Dah07], [End08]
suggest that in the context of option pricing, a stochastic volatility may be
a more basic ingredient of a good model than jump processes are. In terms
of stability, out-of-sample fitting, and hedging of options, Heston’s model
(Example 1.16) is highly recommendable — these conclusions are based on
the prices of European options on the DAX 2002–2005. In terms of hedging
capabilities, the classical Black–Scholes model is competitive.

To summarize, it is obvious that calibration is a formidable task, in partic-
ular if several parameters are to be fitted. The attainable level of calibration
quality depends on the chosen model. In case the structure of the equation is
not designed properly, an attempt to improve parameters may be futile. For
a given model, it might well happen that a perfect calibration is never found.
It is yet unclear, which model will eventually emerge as “most recommend-
able.” With our focus on computational tools, it does make sense to consider
the classical Black–Scholes model as a benchmark.

Notes and Comments

on Section 1.1:
This section presents a brief introduction into standard options. For more
comprehensive studies of financial derivatives we refer, for example, to
[CR85], [WDH96], [Hull00]. Mathematical detail can be found in [LL96],
[MR97], [KS98], [Shi99], [Epps00], [Ste01]. Other recent books on financial
markets include [ElK99], [Gem00], [MeVN02], [DaJ03]. (All hints on the lit-
erature are examples; an extensive overview on the many good books in this
rapidly developing field is hardly possible.)

on Section 1.2:
Black, Merton and Scholes developed their approaches concurrently, with ba-
sic papers in 1973 ([BS73], [Mer73]; compare also [Me90]). Merton and Scholes
were awarded the Nobel Prize in economics in 1997. (Black had died in 1995.)
One of the results of these authors is the so-called Black–Scholes equation
(1.2) with its analytic solution formula (A4.10). For reference on discrete-
time models, see [Pli97], [FöS02]. For transaction costs, consult also [Lel85],
[BaS98], [Gra01], [ZhZ03], and for market illiquidity or feedback effects see
[FrS97], [GlDN08].
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on Section 1.3:
References on specific numerical methods are given where appropriate. As
computational finance is concerned, most quotations refer to research papers.
Other general text books discussing computational issues include [WDH96],
[Hig04]; further hints can be found in [RT97]. For the calculation of the sample
variance (Exercise 1.4) see [ChGL83], [Hig96].

on Section 1.4:
The binomial method can sometimes be found under the heading tree method
or lattice method. The binomial method was introduced by Cox, Ross and
Rubinstein in 1979 [CRR79], later than the approach of Black, Merton and
Scholes. In the literature, the result of the dynamic programming procedure
is often listed under the name Snell envelope.

Table 1.2 might suggest that it is easy to obtain high accuracy with bi-
nomial methods. This is not the case; flaws were observed in particular close
to the early-exercise curve [CoLV02]. As illustrated by Figure 1.10, the de-
scribed standard version wastes many nodes Sji close to zero and far away
from the strike region. Alternatively to the choice ud = 1 in equation (1.10)
the choice p = 1

2 is possible, see [Hull00], §16.5. When the strike K is not
well grasped by the tree and its grid points, the error depending on M may
oscillate. To facilitate extrapolation, it is advisable to have the strike value
K on the medium grid point, ST = K, no matter what (even) value of M
is chosen. The error can be smoothed by special choices of u and d (−→
Exercise 1.15). For advanced binomial methods and speeding up convergence
see [Br91], [Kl01]. For a detailed account of the binomial method see also
[CR85]. [HoP02] explains how to implement the binomial method in spread-
sheets. Many applications of binomial trees are found in [Lyuu02].

on Section 1.5:
As shown in Section 1.5, a valuation of options based on a hedging strat-
egy is equivalent to the risk-neutral valuation described in Section 1.4. An-
other equivalent valuation is obtained by a replication portfolio. This basically
amounts to including the risk-free investment, to which the hedged portfolio
of Section 1.5 was compared, into the portfolio. To this end, the replication
portfolio includes a bond with the initial value B0 := −(Δ · S0 − V0) = −Π0

and interest rate r. The portfolio consists of the bond and Δ shares of
the asset. At the end of the period T the final value of the portfolio is
Δ ·ST +erT (V0−Δ ·S0). The hedge parameter Δ and V0 are determined such
that the value of the portfolio is VT , independent of the price evolution. By
adjusting B0 and Δ in the right proportion we are able to replicate the option
position. This strategy is self-financing: No initial net investment is required.
The result of the self-financing strategy with the replicating portfolio is the
same as what was derived in Section 1.5. The reader may like to check this.
For the continuous-time case, see Appendix A4.
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Frequently discounting is done with the factor (1 + r · Δt)−1. This r
would not be a continuously compounding interest rate. Our e−rΔt or e−rT

is consistent with the approach of Black, Merton and Scholes. For references
on risk-neutral valuation we mention [Hull00], [MR97], [Kwok98] and [Shr04].

on Section 1.6:
Introductions into stochastic processes and further hints on advanced litera-
ture can be found in [Doob53], [Fr71], [Ar74], [Bi79], [RY91], [KP92], [Shi99],
[Sato99], [Shr04]. The requirement (a) of Definition 1.7 (W0 = 0) is merely
a convention of technical relevance; it serves as normalization. Add a con-
stant α and obtain a Brownian motion starting at α. The definition of a
Wiener process depends on the underlying probability measure P, which en-
ters through the definition of independence, and by its distribution being
Gaussian, see (B1.1). For a proof of the nondifferentiability of Wiener pro-
cesses, see [HuK00]. For more hints on martingales, see Appendix B2.

In contrast to the results for Wiener processes, differentiable functions Wt

satisfy for δN → 0∑
|Wtj

− Wtj−1 | −→
∫

|W ′
s|ds ,

∑
(Wtj

− Wtj−1)
2 −→ 0 .

The Itô integral and the alternative Stratonovich integral are explained in
[Doob53], [Ar74], [CW83], [RY91], [KS91], [KP92], [Mik98], [Øk98], [Sc80],
[Shr04]. The class of (Itô-)stochastically integrable functions is characterized
by the properties f(t) is Ft adapted and E

∫
f(s)2ds < ∞. We assume that

all integrals occuring in the text exist. The integrator Wt needs not be a
Wiener process. The stochastic integral can be extended to semimartingales
[HuK00].

on Section 1.7:
The Algorithm 1.11 is sometimes named after Euler and Maruyama.

The general linear SDE is of the form

dXt = (a1(t)Xt + a2(t)) dt + (b1(t)Xt + b2(t)) dWt .

The expectation E(Xt) of a solution process Xt of a linear SDE satisfies the
differential equation

d
dt

E(Xt) = a1E(Xt) + a2 ,

and for E(X2
t ) we have

d
dt

E(X2
t ) = (2a1 + b2

1)E(X2
t ) + 2(a2 + b1b2)E(Xt) + b2

2 .

This is obtained by taking the expection of the SDEs for Xt and X2
t , the latter

one derived by Itô’s lemma [KP92], [Mik98]. Combining both differential
equations allows to calculate the variance. — The Example 1.15 with a system
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of three SDEs is taken from [HPS92]. [KP92] in Section 4.4 gives a list of SDEs
that are analytically solvable or reducible. For the CIR system of Example
1.16 and a dependent variable u(S, v, t) a two-dimensional PDE is derived in
[Hes93].

The model of a geometric Brownian motion of equation (1.33) is the classi-
cal model describing the dynamics of stock prices. It goes back to Samuelson
(1965; Nobel Prize in economics in 1970). Already in 1900 Bachelier had
suggested to model stock prices with Brownian motion. Bachelier used the
arithmetic version, which can be characterized by replacing the left-hand side
of (1.33) by the absolute change dS. This amounts to the process of the drift-
ing Brownian motion St = S0 + μt + σWt. Here the stock price can become
negative. Main advantages of the geometric Brownian motion are its expo-
nential growth or decay, the success of the approaches of Black, Merton and
Scholes, which is based on that motion, and the existence of moments (as the
expectation). For positive S, the form (1.33) of GBM is not as restrictive as
it might seem, see Exercise 1.18. A variable volatility σ(S, t) is called local
volatility. Such a volatility can be used to make the Black–Scholes model
compatible with observed market prices [Dup94].

on Section 1.8:
The Itô lemma is also called Doeblin-Itô formula, after the early manuscript
[Doe40] was disclosed. The Algorithm 1.18 was improved by [Que07], includ-
ing the use of radial basis functions, a tricky control of truncation errors,
and a convergence analysis. The approximation quality of American options
is quite satisfactory even for small values of M .

In view of their continuity, GBM processes are not appropriate to model
jumps, which are characteristic for the evolution of stock prices. The jumps
lead to relatively heavy tails in the distribution of empirial returns (see Figure
1.21)9. As already mentioned, the tails of the lognormal distribution are too
thin. Other distributions match empirical data better. One example is the
Pareto distribution, which has tails behaving like x−α for large x and a con-
stant α > 0. A correct modeling of the tails is an integral basis for value at risk
(VaR) calculations. For the risk aspect consult [EKM97], [BaN97], [Dowd98],
[ArDEH99], and the survey [EbFKO07]. For distributions that match empir-
ical data see [EK95], [Shi99], [BP00], [MRGS00], [BTT00]. Estimates of fu-
ture values of the volatility are obtained by (G)ARCH methods, which work
with different weights of the returns [Shi99], [Hull00], [Tsay02], [FHH04],
[Rup04]. Promising are models of behavioral finance that consider the market
as dynamical system [Lux98], [BH98], [CDG00], [BV00], MCFR00], [Sta01],
[DBG01]. These systems experience the nonlinear phenomena bifurcation

9 The thickness is measured by the kurtosis E((X − μ)4)/σ4. The normal
distribution has kurtosis 3. So the excess kurtoris is the difference to 3. Fre-
quently, data of returns are characterized by large values of excess kurtosis.
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and chaos, which require again numerical methods. Such methods exist, and
are explained elsewhere [Se94].

on Section 1.9:
Section 1.9 concentrates on Merton’s jump-diffusion process. [Kou02] in a
similar framework assumes a double-exponential distribution for the jump
size. For building Lévy models we refer to [Sato99], [ConT04], see also the
brief notes in Appendix B4. For time-changed Lévy processes, consult for in-
stance [AnéG00], [CaGMY03], [ConT04], [CaW04]. Time-changed Lévy pro-
cesses have been successfully applied to match empirical data.

All the three processes mentioned in Section 1.9 (Merton, VG, NIG) have
a density function. Hence, Algorithm 1.18 can be applied [Que07]. Lévy-
process models have been extended by incorporating stochastic volatilites
[CaGMY03], [Kal06]. A subordinator τ(t) can be constructed as integral of
a square-root process.

on Section 1.10:
The CIR-based Heston model can be extended to jump-diffusion. This can
be applied to both processes St and vt in (1.43), which defines a general class
of models with 10 parameters [DuPS00]. But applying jumps only for St , one
obtains the same quality with eight parameters [Bat96]. Also the OU-based
Schöbel–Zhu model is recommendable [ScZ99]. Another FFT based valuation
approach is [FeO08].

Exercises

Exercise 1.1 Put-Call Parity

Consider a portfolio consisting of three positions related to the same asset,
namely, one share (price S), one European put (value VP), plus a short posi-
tion of one European call (value VC). Put and call have the same expiration
date T , and no dividends are paid.
a) Assume a no-arbitrage market without transaction costs. Show

S + VP − VC = Ke−r(T−t)

for all t, where K is the strike and r the risk-free interest rate.
b) Use the put-call parity to show

VC(S, t) ≥ S − Ke−r(T−t)

VP(S, t) ≥ Ke−r(T−t) − S .
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Exercise 1.2 Transforming the Black–Scholes Equation

Show that the Black–Scholes equation (1.2)

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

for V (S, t) with constant σ and r is equivalent to the equation

∂y

∂τ
=

∂2y

∂x2

for y(x, τ). For proving this, you may proceed as follows:

a) Use the transformation S = Kex and a suitable transformation t ↔ τ
to show that (1.2) is equivalent to

−V̇ + V ′′ + αV ′ + βV = 0

with V̇ = ∂V
∂τ , V ′ = ∂V

∂x , α, β depending on r and σ.

b) The next step is to apply a transformation of the type

V = K exp(γx + δτ)y(x, τ)

for suitable γ, δ.

c) Transform the terminal condition of the Black–Scholes equation accord-
ingly.

Exercise 1.3 Standard Normal Distribution Function

Establish an algorithm to calculate

F (x) =
1√
2π

∫ x

−∞
exp(− t2

2
) dt .

Hint: Construct an algorithm to calculate the error function

erf(x) :=
2√
π

∫ x

0

exp(−t2) dt

and use erf(x) to calculate F (x). Use quadrature methods (−→ Appendix
C1).

Exercise 1.4 Calculating the Sample Variance

An estimate of the variance of M numbers x1, ..., xM is

s2
M :=

1
M − 1

M∑
i=1

(xi − x̄)2, with x̄ :=
1
M

M∑
i=1

xi

The alternative formula
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s2
M =

1
M − 1

⎛
⎝ M∑

i=1

x2
i −

1
M

(
M∑
i=1

xi

)2
⎞
⎠ (�)

can be evaluated with only one loop i = 1, ...,M , but should be avoided
because of the danger of cancellation. The following single-loop algorithm is
recommended instead of (�):

α1 := x1, β1 := 0
for i = 2, ...,M :

αi := αi−1 +
xi − αi−1

i

βi := βi−1 +
(i − 1)(xi − αi−1)2

i

a) Show x̄ = αM , s2
M = βM

M−1 .
b) For the ith update in the algorithm carry out a rounding error analysis.

What is your judgement on the algorithm?

Exercise 1.5 Implied Volatility

For European options we take the valuation formula of Black and Scholes of
the type V = v(S, τ,K, r, σ), where τ denotes the time to maturity, τ := T−t.
For the definition of the function v see Appendix A4, equation (A4.10). If
actual market data V mar of the price are known, then one of the parameters
considered known so far can be viewed as unknown and fixed via the implicit
equation

V mar − v(S, τ,K, r, σ) = 0 . (∗)
In this calibration approach the unknown parameter is calculated iteratively
as solution of equation (∗). Consider σ to be in the role of the unknown
parameter. The volatility σ determined in this way is called implied volatility
and is zero of f(σ) := V mar − v(S, τ,K, r, σ).

Assignment:
a) Implement the evaluation of VC and VP according to (A4.10).
b) Design, implement and test an algorithm to calculate the implied

volatility of a call. Use Newton’s method to construct a sequence
xk → σ. The derivative f ′(xk) can be approximated by the difference
quotient

f(xk) − f(xk−1)
xk − xk−1

.

For the resulting secant iteration invent a stopping criterion that re-
quires smallness of both |f(xk)| and |xk − xk−1|.

c) Calculate the implied volatilities for the data

T − t = 0.211 , S0 = 5290.36 , r = 0.0328
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and the pairs K,V from Table 1.3 (for more data see www.compfin.de).
For each calculated value of σ enter the point (K,σ) into a figure,
joining the points with straight lines. (You will notice a convex shape
of the curve. This shape has lead to call this phenomenon volatility
smile.)

Table 1.3. Calls on the DAX on Jan 4th 1999

K 6000 6200 6300 6350 6400 6600 6800
V 80.2 47.1 35.9 31.3 27.7 16.6 11.4

Exercise 1.6 Price Evolution for the Binomial Method

For β from (1.11) and u = β +
√

β2 − 1 show

u = exp
(
σ
√

Δt
)

+ O
(√

(Δt)3
)

.

Exercise 1.7 Implementing the Binomial Method

Design and implement an algorithm for calculating the value V (M) of a Eu-
ropean or American option. Use the binomial method of Algorithm 1.4.

INPUT: r (interest rate), σ (volatility), T (time to expiration in years),
K (strike price), S (price of asset), and the choices
put or call, and European or American.

Control the mesh size Δt = T/M adaptively. For example, calculate V for
M = 8 and M = 16 and in case of a significant change in V use M = 32 and
possibly M = 64.

Test examples:
a) put, European, r = 0.06, σ = 0.3, T = 1, K = 10, S = 5
b) put, American, S = 9, otherwise as in a)
c) call, otherwise as in a)
d) The mesh size control must be done carefully and has little relevance

to error control. To make this evident, calculate for the test numbers
a) a sequence of V (M) values, say for M = 100, 101, 102, . . . , 150, and
plot the error |V (M) − 4.430465|.

Exercise 1.8 Limiting Case of the Binomial Model

Consider a European Call in the binomial model of Section 1.4. Suppose the
calculated value is V

(M)
0 . In the limit M → ∞ the sequence V

(M)
0 converges to

the value VC(S0, 0) of the continuous Black–Scholes model given by (A4.10)
(−→ Appendix A4). To prove this, proceed as follows:
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a) Let jK be the smallest index j with SjM ≥ K. Find an argument why

M∑
j=jK

(
M

j

)
pj (1 − p)M−j (S0u

jdM−j − K)

is the expectation E(VT ) of the payoff. (For an illustration see Figure
1.23.)

b) The value of the option is obtained by discounting, V
(M)
0 = e−rT E(VT ).

Show
V

(M)
0 = S0BM,p̃(jK) − e−rT KBM,p(jK) .

Here BM,p(j) is defined by the binomial distribution (−→ Appendix
B1), and p̃ := pue−rΔt.

c) For large M the binomial distribution is approximated by the normal
distribution with distribution F (x). Show that V

(M)
0 is approximated

by

S0F

(
Mp̃ − α√
Mp̃(1 − p̃)

)
− e−rT KF

(
Mp − α√
Mp(1 − p)

)
,

where

α := −
log S0

K + M log d

log u − log d
.

d) Substitute the p, u, d by their expressions from (1.11) to show

Mp − α√
Mp(1 − p)

−→
log S0

K + (r − σ2

2 )T

σ
√

T

for M → ∞. Hint: Use Exercise 1.6: Up to terms of high order the
approximations u = eσ

√
Δt, d = e−σ

√
Δt hold. (In an analogous way the

other argument of F can be analyzed.)

Exercise 1.9
In Definition 1.7 the requirement (a) W0 = 0 is dispensable. Then the re-
quirement (b) reads

E(Wt − W0) = 0 , E((Wt − W0)2) = t .

Use these relations to deduce (1.21).
Hint: (Wt − Ws)2 = (Wt − W0)2 + (Ws − W0)2 − 2(Wt − W0)(Ws − W0)

Exercise 1.10
a) Suppose that a random variable Xt satisfies Xt ∼ N (0, σ2). Use (B1.4)

to show
E(X4

t ) = 3σ4 .

b) Apply a) to show the assertion in Lemma 1.9,
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Fig. 1.23. Illustration of a binomial tree and payoff for Exercise 1.8, here for a
put, (S, t) points for M = 8, K = S0 = 10. The binomial density of the risk-free
probability is shown, scaled with factor 10.
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Exercise 1.11 Analytical Solution of Special SDEs

Apply Itô’s lemma to show

a) Xt = exp
(
λWt − 1

2λ2t
)

solves dXt = λXt dWt

b) Xt = exp (2Wt − t) solves dXt = Xt dt + 2Xt dWt

Hint: Use suitable functions g with Yt = g(Xt, t). In (a) start with Xt = Wt

and g(x, t) = exp(λx − 1
2λ2t).

Exercise 1.12 Moments of the Lognormal Distribution

For the density function f(S; t − t0, S0) from (1.48) show

a)
∫∞
0

Sf(S; t − t0, S0) dS = S0eμ(t−t0)

b)
∫∞
0

S2f(S; t − t0, S0) dS = S2
0e(σ2+2μ)(t−t0)

Hint: Set y = log(S/S0) and transform the argument of the exponential
function to a squared term.
In case you still have strength afterwards, calculate the value of S for which
f is maximal.
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Exercise 1.13 Return of the Underlying

Let a time series S1, ..., SM of a stock price be given (for example data in the
domain www.compfin.de).
The simple return

R̂i,j :=
Si − Sj

Sj
,

an index number of the success of the underlying, lacks the desirable property
of additivity

RM,1 =
M∑
i=2

Ri,i−1 . (∗)

The log return
Ri,j := log Si − log Sj .

has better properties.
a) Show Ri,i−1 ≈ R̂i,i−1, and
b) Ri,j satisfies (∗).
c) For empirical data calculate the Ri,i−1 and set up histograms. Calculate

sample mean and sample variance.
d) Suppose S is lognormally distributed. How can a value of the volatility

be obtained from an estimate of the variance?
e) The mean of the 26866 log returns of the time period of 98.66 years of

Figure 1.21 is 0.000199 and the standard deviation is 0.01069. Calculate
an estimate of the historical volatility σ.

Exercise 1.14 Solution to the Binomial Model

Derive from equations (1.5), (1.9) and ud = γ for some constant γ (not
necessarily γ = 1 as in (1.10)) the relation

u = β +
√

β2 − γ for β :=
1
2
(γe−rΔt + e(r+σ2)Δt) .

Exercise 1.15 Anchoring the Binomial Grid at K

The equation (1.10) has established a kind of symmetry for the grid. As an
alternative, one may anchor the grid in another way by choosing (for even
M)

S0u
M/2dM/2 = K .

a) Give a geometrical interpretation.
b) Derive the relevant formula for u and d.
Hint: Use Exercise 1.14.
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Exercise 1.16 Portfolios
Figure 1.24 sketches some payoffs over S. For each of these payoffs, construct
portfolios out of vanilla options such that the payoff is met.

(d)(c)

(b)(a)

K1

K2K1

K2K1K2

K2K1

Fig. 1.24. Four payoffs, value over S; see Exercise 1.16

Exercise 1.17 Bounds and Arbitrage
Using arbitrage arguments, show the following bounds for the values VC of
vanilla call options:
a) 0 ≤ VC

b) (S − K)+ ≤ V Am
C ≤ S

Exercise 1.18 Positive Itô Process
Let Xt be a positive one-dimensional Itô process for t ≥ 0.
Show that there exist functions α and β such that

dXt = Xt(αt dt + βt dWt)

and

Xt = X0 exp
{∫ t

0

(αs −
1
2
β2

s ) ds +
∫ t

0

βs dWs

}

Exercise 1.19 General Black–Scholes Equation
Assume a portfolio

Πt = αtSt + βtBt

consisting of αt units of a stock St and βt units of a bond Bt, which obey

dSt = μ(St, t) dt + σ(St, t) dWt

dBt = r(t)Bt dt
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The functions μ, σ, and r are assumed to be known, and σ > 0. Further
assume the portfolio is self-financing in the sense

dΠt = αt dSt + βt dBt ,

and replicating such that ΠT equals the payoff of a European option. (Then
Πt equals the price of the option for all t.) Derive the Black–Scholes equation
for this scenario, assuming Πt = g(St, t) with g sufficiently often differen-
tiable.
Hint: coefficient matching of two versions of dΠt

Exercise 1.20 Ornstein–Uhlenbeck process

An Ornstein–Uhlenbeck process is defined as solution of the SDE

dXt = −αXt dt + γ dWt, α > 0

for a Wiener process W .
a) Show

Xt = e−αt

(
X0 + γ

∫ t

0

eαsdWs

)

b) Suppose the volatility σt is an Ornstein–Uhlenbeck process. Show that
the variance vt := σ2

t follows a Cox–Ingersoll–Ross process, namely,

dvt = κ(θ − vt) dt + σv
√

vt dWt .



Chapter 2 Generating Random Numbers
with Specified Distributions

Simulation and valuation of finance instruments require numbers with speci-
fied distributions. For example, in Section 1.6 we have used numbers Z drawn
from a standard normal distribution, Z ∼ N (0, 1). If possible the numbers
should be random. But the generation of “random numbers” by digital com-
puters, after all, is done in a deterministic and entirely predictable way. If
this point is to be stressed, one uses the term pseudo-random1.

Computer-generated random numbers mimic the properties of true ran-
dom numbers as much as possible. This is discussed for uniformly distributed
numbers in Section 2.1. Suitable transformations generate normally dis-
tributed numbers (Sections 2.2, 2.3). Another approach is to dispense with
randomness and to generate quasi-random numbers, which aim at avoiding
one disadvantage of random numbers, namely, the potential lack of equidis-
tributedness. The resulting low-discrepancy numbers will be discussed in
Section 2.5. These numbers are used for the deterministic Monte Carlo inte-
gration (Section 2.4).

Definition 2.1 (sample from a distribution)
We call a sequence of numbers to be a sample from F if the numbers are
independent realizations of a random variable with distribution function
F .

If F is the uniform distribution over the interval [0, 1) or [0, 1], then we call
the samples from F uniform deviates (variates), notation ∼ U [0, 1]. If F is
the standard normal distribution then we call the samples from F standard
normal deviates (variates); as notation we use ∼ N (0, 1). The basis of the
random-number generation is to draw uniform deviates.

1 Since in our context the predictable origin is clear we omit the modifier
“pseudo,” and hereafter use the term “random number.” Similarly we talk
about randomness of these numbers when we mean apparent randomness.
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2.1 Uniform Deviates

A standard approach to calculate uniform deviates is provided by linear con-
gruential generators.

2.1.1 Linear Congruential Generators

Choose integers M, a, b. Then a sequence of integers Ni is defined by

Algorithm 2.2 (linear congruential generator)

Choose N0.
For i = 1, 2, ... calculate
Ni = (aNi−1 + b) mod M

(2.1)

The modulo congruence N = Y mod M between two numbers N and Y is an
equivalence relation [Ge98]. In Algorithm 2.2 all variables are integers in the
range a, b,N0 ∈ {0, 1, ...,M − 1}, a �= 0. The number N0 is called the seed.
Numbers Ui ∈ [0, 1) are defined by

Ui = Ni/M . (2.2)

The numbers Ui will be taken as uniform deviates. Whether they are suitable
will depend on the choice of M,a, b and will be discussed next.

Properties 2.3 (periodicity)
(a) Ni ∈ {0, 1, ...,M − 1}
(b) The Ni are periodic with period ≤ M .

(Because there are not M + 1 different Ni. So two in {N0, ..., NM}
must be equal, Ni = Ni+p with p ≤ M .)

Obviously, some peculiarities must be excluded. For example, N = 0 must be
ruled out in case b = 0, because otherwise Ni = 0 would repeat. In case a = 1
the generator settles down to Nn = (N0 +nb) mod M . This sequence is too
easily predictable. Various other properties and requirements are discussed in
the literature, in particular in [Kn95]. In case the period is M , the numbers
Ui are distributed evenly when exactly M numbers are needed. Then each
grid point on a mesh on [0,1] with mesh size 1

M is occupied once.
After these observations we start searching for good choices of M,a, b.

But for serious computations we recommend to rely on the many suggestions
in the literature. [PTVF92] presents a table of “quick and dirty” generators,
for example, M = 244944, a = 1597, b = 51749. But which of the many
possible generators are recommendable?
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2.1.2 Quality of Generators

What are good random numbers? A practical answer is the requirement that
the numbers should meet “all” aims, or rather pass as many tests as possible.
The requirements on good number generators can roughly be divided into
three groups.

The first requirement is that of a large period. In view of Property 2.3 the
number M must be as large as possible, because a small set of numbers makes
the outcome easier to predict —a contrast to randomness. This leads to select
M close to the largest integer machine number. But a period p close to M
is only achieved if a and b are chosen properly. Criteria for relations among
M,p, a, b have been derived by number-theoretic arguments. This is outlined
in [Kn95], [Ri87]. A common choice for 32-bit computers is M = 231 − 1,
a = 16807, b = 0.

A second group of requirements are the statistical tests that check whether
the numbers are distributed as intended. The simplest of such tests evaluates
the sample mean μ̂ and the sample variance ŝ2 (B1.11) of the calculated
random variates, and compares to the desired values of μ and σ2. (Recall
μ = 1/2 and σ2 = 1/12 for the uniform distribution.) Another simple test is
to check correlations. For example, it would not be desirable if small numbers
are likely to be followed by small numbers.

A slightly more involved test checks how well the probability distribution
is approximated. This works for general distributions (−→ Exercise 2.14).
Here we briefly summarize an approach for uniform deviates. Calculate j
samples from a random number generator, and investigate how the samples
distribute on the unit interval. To this end, divide the unit interval into
subintervals of equal length ΔU , and denote by jk the number of samples
that fall into the kth subinterval

kΔU ≤ U < (k + 1)ΔU .

Then jk/j should be close the desired probability, which for this setup is ΔU .
Hence a plot of the quotients

jk

jΔU
for all k

against kΔU should be a good approximation of 1, the density of the uniform
distribution. This procedure is just the simplest test; for more ambitious tests,
consult [Kn95].

The third group of tests is to check how well the random numbers dis-
tribute in higher-dimensional spaces. This issue of the lattice structure is
discussed next. We derive a priori analytical results on where the random
numbers produced by Algorithm 2.2 are distributed.
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2.1.3 Random Vectors and Lattice Structure

Random numbers Ni can be arranged in m-tupels (Ni, Ni+1, ..., Ni+m−1) for
i ≥ 1. Then the tupels or the corresponding points (Ui, ..., Ui+m−1) ∈ [0, 1)m

are analyzed with respect to correlation and distribution. The sequences de-
fined by Algorithm 2.2 lie on (m − 1)-dimensional hyperplanes. This state-
ment is trivial since it holds for the M parallel planes through U = i/M ,
i = 0, ...,M − 1. But the statement becomes exciting in case it is valid for
a family of parallel planes with large distances between neighboring planes.
Next we attempt to construct such planes.
Analysis for the case m = 2:

Ni = (aNi−1 + b) mod M

= aNi−1 + b − kM for kM ≤ aNi−1 + b < (k + 1)M ,

k an integer. A side calculation for arbitrary z0, z1 shows

z0Ni−1 + z1Ni = z0Ni−1 + z1(aNi−1 + b − kM)
= Ni−1(z0 + az1) + z1b − z1kM

= M · {Ni−1
z0 + az1

M
− z1k︸ ︷︷ ︸

=:c

} + z1b .

We divide by M and obtain the equation of a straight line in the (Ui−1, Ui)-
plane, namely,

z0Ui−1 + z1Ui = c + z1bM
−1 . (2.3)

The points calculated by Algorithm 2.2 lie on these straight lines. To eliminate
the seed we take i > 1. Fixing one tupel (z0, z1), the equation (2.3) defines
a family of parallel straight lines, one for each number out of the finite set
of c’s. The question is whether there exists a tupel (z0, z1) such that only
few of the straight lines cut the square [0, 1)2? In this case wide areas of the
square would be free of random points, which violates the requirement of a
uniform distribution of the points. The minimum number of parallel straight
lines (hyperplanes) cutting the square, or equivalently the maximum distance
between them serve as measures of the equidistributedness. We now analyze
the number of straight lines, searching for the worst case.

When we admit only integer (z0, z1), and require

z0 + az1 = 0 mod M , (2.4)

then c is integer. By solving (2.3) for c = z0Ui−1+z1Ui−z1bM
−1 and applying

0 ≤ Ui < 1 we obtain the maximal interval Ic such that for each integer c ∈ Ic

its straight line cuts or touches the square [0, 1)2. We count how many such c
exist, and have the information we need. For some constellations of a,M, z0

and z1 it may be possible that the points (Ui−1, Ui) lie on very few of these
straight lines!
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Example 2.4 Ni = 2Ni−1 mod 11 (that is, a = 2, b = 0, M = 11)
We choose z0 = −2, z1 = 1, which is one tuple satisfying (2.4), and
investigate the family (2.3) of straight lines

−2Ui−1 + Ui = c

in the (Ui−1, Ui)-plane. For Ui ∈ [0, 1) we have −2 < c < 1. In view of
(2.4) c is integer and so only the two integers c = −1 and c = 0 remain.
The two corresponding straight lines cut the interior of [0, 1)2. As Figure
2.1 illustrates, the points generated by the algorithm form a lattice. All
points on the lattice lie on these two straight lines. The figure lets us
discover also other parallel straight lines such that all points are caught
(for other tupels z0, z1). The practical question is: What is the largest
gap? (−→ Exercise 2.1)
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Fig. 2.1. The points (Ui−1, Ui) of Example 2.4

Example 2.5 Ni = (1229Ni−1 + 1) mod 2048
The requirement of equation (2.4)

z0 + 1229z1

2048
integer

is satisfied by z0 = −1, z1 = 5, because

−1 + 1229 · 5 = 6144 = 3 · 2048
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The distance between straight lines measured along the vertical Ui–axis
is 1

z1
= 1

5 . All points (Ui−1, Ui) lie on only six straight lines, with
c ∈ {−1, 0, 1, 2, 3, 4}, see Figure 2.2. On the “lowest” straight line (c = −1)
there is only one point.

Higher-dimensional vectors (m > 2) are analyzed analogously. The generator
called RANDU

Ni = aNi−1 mod M , with a = 216 + 3, M = 231

may serve as example. Its random points in the cube [0, 1)3 lie on only 15
planes (−→ Exercise 2.2). For many applications this must be seen as a severe
defect.
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Fig. 2.2. The points (Ui−1, Ui) of Example 2.5

In Example 2.4 we asked what the maximum gap between the parallel
straight lines is. In other words, we have searched for strips of maximum size
in which no point (Ui−1, Ui) falls. Alternatively we can directly analyze the
lattice formed by consecutive points. For illustration consider again Figure
2.1. We follow the points starting with ( 1

11 , 2
11 ). By vectorwise adding an

appropriate multiple of
(

1
a

)
=

(
1
2

)
the next two points are obtained. Pro-

ceeding in this way one has to take care that upon leaving the unit square
each component with value ≥ 1 must be reduced to [0, 1) to observe mod M .
The reader may verify this with Example 2.4 and numerate the points of the
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lattice in Figure 2.1 in the correct sequence. In this way the lattice can be
defined. This process of defining the lattice can be generalized to higher di-
mensions m > 2. (−→ Exercise 2.3).

A disadvantage of the linear congruential generators of Algorithm 2.2 is
the boundedness of the period by M and hence by the word length of the
computer. The situation can be improved by shuffling the random numbers
in a random way. For practical purposes, the period gets close enough to
infinity. (The reader may test this on Example 2.5.) For practical advice we
refer to [PTVF92].

2.1.4 Fibonacci Generators

The original Fibonacci recursion motivates trying the formula

Ni+1 := (Ni + Ni−1) mod M .

It turns out that this first attempt of a three-term recursion is not suitable
for generating random numbers (−→ Exercise 2.15). The modified approach

Ni+1 := (Ni−ν − Ni−μ) mod M (2.5)

for suitable ν, μ ∈ IN is called lagged Fibonacci generator. For many choices
of ν, μ the approach (2.5) leads to recommendable generators.

Example 2.6
Ui := Ui−17 − Ui−5 ,

in case Ui < 0 set Ui := Ui + 1.0

The recursion of Example 2.6 immediately produces floating-point numbers
Ui ∈ [0, 1). This generator requires a prologue in which 17 initial U ’s are gen-
erated by means of another method. The generator can be run with varying
lags ν, μ. [KMN89] recommends

Algorithm 2.7 (Fibonacci generator)

Repeat: ζ := Ui − Uj

if ζ < 0, set ζ := ζ + 1
Ui := ζ

i := i − 1
j := j − 1
if i = 0, set i := 17
if j = 0, set j := 17
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Fig. 2.3. 10000 (pseudo-)random points (Ui−1, Ui), calculated with Algorithm 2.7

Initialization: Set i = 17, j = 5, and calculate U1, ..., U17 with a congru-
ential generator, for instance with M = 714025, a = 1366, b = 150889.
Set the seed N0 = your favorite dream number, possibly inspired by the
system clock of your computer.

Figure 2.3 depicts 10000 random points calculated by means of Algorithm
2.7. Visual inspection suggests that the points are not arranged in some
apparent structure. The points appear to be sufficiently random. But the
generator provided by Example 2.6 is not sophisticated enough for ambitious
applications; its pseudo-random numbers are rather correlated. See Notes and
Comments for hints on other generators.
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2.2 Extending to Random Variables
from other Distributions

Frequently normal variates are needed. Their generation is based on uniform
deviates. The simplest strategy is to calculate

X :=
12∑

i=1

Ui − 6, for Ui ∼ U [0, 1] .

X has expectation 0 and variance 1. The Central Limit Theorem (−→ Ap-
pendix B1) assures that X is approximately normally distributed (−→ Exer-
cise 2.4). But this crude attempt is not satisfying. Better methods calculate
nonuniformly distributed random variables by a suitable transformation out
of a uniformly distributed random variable [Dev86]. But the most obvious
approach inverts the distribution function.

2.2.1 Inversion

The following theorem is the basis for inversion methods.
Theorem 2.8 (inversion)

Suppose U ∼ U [0, 1] and F be a continuous strictly increasing distribution
function. Then F−1(U) is a sample from F .
Proof: Let P denote the underlying probability.

U ∼ U [0, 1] means P(U ≤ ξ) = ξ for 0 ≤ ξ ≤ 1.
Consequently

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) .

Application

Following Theorem 2.8, the inversion method takes uniform deviates u ∼
U [0, 1] and sets x = F−1(u) (−→ Exercises 2.5, 2.16). To judge the inversion
method we consider the normal distribution as the most important example.
Neither for its distribution function F nor for its inverse F−1 there is a
closed-form expression (−→ Exercise 1.3). So numerical methods are used.
We discuss two approaches.

Numerical inversion means to calculate iteratively a solution x of the
equation F (x) = u for prescribed u. This iteration requires tricky termina-
tion criteria, in particular when x is large. Then we are in the situation u ≈ 1,
where tiny changes in u lead to large changes in x (Figure 2.4). The approx-
imation of the solution x of F (x) − u = 0 can be calculated with bisection,
or Newton’s method, or the secant method (−→ Appendix C1).

Alternatively the inversion x = F−1(u) can be approximated by a suitably
constructed function G(u),
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G(u) ≈ F−1(u) .

Then only x = G(u) needs to be evaluated. Constructing such an approxima-
tion formula G, it is important to realize that F−1(u) has “vertical” tangents
at u = 1 and u = 0 (horizontal in Figure 2.4). This pole behavior must be
reproduced correctly by the approximating function G. This suggests to use
rational approximation (−→ Appendix C1), which allows incorporating the
point symmetry with respect to (u, x) = (1

2 , 0), and the pole at u = 1 (and
hence at u = 0) in the ansatz for G (−→ Exercise 2.6). Rational approx-
imation of F−1(u) with a sufficiently large number of terms leads to high
accuracy [Moro95]. The formulas are given in Appendix D2.

u=F(x)
1/2

x

1

u

Fig. 2.4. Small changes in u leading to large changes in x

2.2.2 Transformations in IR1

Another class of methods uses transformations between random variables.
We start the discussion with the scalar case. If we have a random variable X
with known density and distribution, what can we say about the density and
distribution of a transformed h(X)?

Theorem 2.9
Suppose X is a random variable with density f(x) and distribution F (x).
Further assume h : S −→ B with S,B ⊆ IR, where S is the support2 of
f(x), and let h be strictly monotonous.
(a) Then Y := h(X) is a random variable. Its distribution FY in case

h′ > 0 is FY (y) = F (h−1(y)).
(b) If h−1 is absolutely continuous then for almost all y the density of

h(X) is

f(h−1(y))
∣∣∣∣ dh−1(y)

dy

∣∣∣∣ . (2.6)

2 f is zero outside S. (In this section, S is no asset price.)
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Proof:
(a) For h′ > 0 we have P(h(X) ≤ y) = P(X ≤ h−1(y)) = F (h−1(y)) .
(b) h−1 absolutely continuous =⇒ The density of Y = h(X) is equal to the

derivative of the distribution function almost everywhere. Evaluating
the derivative dF (h−1(y))

dy with the chain rule implies the assertion. The
absolute value in (2.6) is necessary such that a positive density comes
out, because in case h′ < 0 the distribution is 1− F (h−1(y)). (See for
instance [Fisz63], § 2.4 C.)

Application

Since we are able to calculate uniform deviates, we start from X ∼ U [0, 1]
with f being the density of the uniform distribution,

f(x) = 1 for 0 ≤ x ≤ 1, otherwise f = 0 .

Here the support S is the unit interval. What we need are random numbers
Y matching a prespecified density g(y). It remains to find a transformation
h such that g(y) is identical to the density in (2.6), 1 · | dh−1(y)

dy | = g(y). Then
we only evaluate h(X).

Example 2.10 (exponential distribution)
The exponential distribution with parameter λ > 0 has the density

g(y) =

{
λe−λy for y ≥ 0

0 for y < 0 .

Here the range B consists of the nonnegative real numbers. The aim is to
generate an exponentially distributed random variable Y out of a U [0, 1]-
distributed random variable X. To this end we define the monotonous
transformation from the unit interval S into B by

y = h(x) := − 1
λ

log x

with the inverse function h−1(y) = e−λy for y ≥ 0. For this h verify

f(h−1(y))
∣∣∣∣ dh−1(y)

dy

∣∣∣∣ = 1 ·
∣∣(−λ)e−λy

∣∣ = λe−λy = g(y)

as density of h(X). Hence h(X) is distributed exponentially.
Application:
In case U1, U2, ... are nonzero uniform deviates, the numbers h(Ui)

− 1
λ

log(U1), − 1
λ

log(U2), ...

are distributed exponentially. (−→ Exercise 2.17)
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Attempt to Generate a Normal Distribution

Starting from the uniform distribution (f = 1) a transformation y = h(x) is
searched such that its density equals that of the standard normal distribution,

1 ·
∣∣∣∣ dh−1(y)

dy

∣∣∣∣ = 1√
2π

exp
(
−1

2
y2

)
.

This is a differential equation for h−1 without analytical solution. As we will
see, a transformation can be applied successfully in IR2. To this end we need
a generalization of the scalar transformation of Theorem 2.9 into IRn.

2.2.3 Transformation in IRn

The generalization of Theorem 2.9 to the vector case is
Theorem 2.11

Suppose X is a random variable in IRn with density f(x) > 0 on the
support S. The transformation h : S → B, S,B ⊆ IRn is assumed to be
invertible and the inverse be continuously differentiable on B. Y := h(X)
is the transformed random variable. Then Y has the density

f(h−1(y))
∣∣∣∣∂(x1, ..., xn)
∂(y1, ..., yn)

∣∣∣∣ , y ∈ B , (2.7)

where x = h−1(y) and ∂(x1,...,xn)
∂(y1,...,yn) is the determinant of the Jacobian

matrix of all first-order derivatives of h−1(y).
(Theorem 4.2 in [Dev86])

2.3 Normally Distributed Random Variables

In this section the focus is on applying the transformation method in IR2 to
generate normal variates. Keep in mind that inversion is a valid alternative.

2.3.1 Method of Box and Muller

To apply Theorem 2.11 we start with the unit square S := [0, 1]2 and the
density (2.7) of the bivariate uniform distribution. The transformation is{

y1 =
√

−2 log x1 cos 2πx2 =: h1(x1, x2)

y2 =
√

−2 log x1 sin 2πx2 =: h2(x1, x2) .
(2.8)

The function h(x) is defined on [0, 1]2 with values in IR2. The inverse function
h−1 is given by
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⎧⎨
⎩

x1 = exp
{
− 1

2 (y2
1 + y2

2)
}

x2 =
1
2π

arctan
y2

y1

where we take the main branch of arctan. The determinant of the Jacobian
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This shows that
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∣∣∣ is the density (2.7) of the bivariate standard normal
distribution. Since this density is the product of the two one-dimensional
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the two components of the vector y are independent. So, when the compo-
nents of the vector X are ∼ U [0, 1], the vector h(X) consists of two inde-
pendent standard normal variates. Let us summarize the application of this
transformation:

Algorithm 2.12 (Box–Muller)

(1) generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1].
(2) θ := 2πU2, ρ :=

√
−2 log U1

(3) Z1 := ρ cos θ is a normal variate
(as well as Z2 := ρ sin θ).

The variables U1, U2 stand for the components of X. Each application of the
algorithm provides two standard normal variates. Note that a line structure
in [0, 1]2 as in Example 2.5 is mapped to curves in the (Z1, Z2)-plane. This
underlines the importance of excluding an evident line structure.
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Fig. 2.5. Transformations of the Box–Muller–Marsaglia approach, schematically

2.3.2 Variant of Marsaglia

The variant of Marsaglia prepares the input in Algorithm 2.12 such that
trigonometric functions are avoided. For U ∼ U [0, 1] we have V := 2U − 1
∼ U [−1, 1]. (Temporarily we misuse also the financial variable V for local
purposes.) Two values V1, V2 calculated in this way define a point in the
(V1, V2)-plane. Only points within the unit disk are accepted:

D := {(V1, V2) : V 2
1 + V 2

2 < 1}; accept only (V1, V2) ∈ D .

In case of rejectance both values V1, V2 must be rejected. As a result, the
surviving (V1, V2) are uniformly distributed on D with density f(V1, V2) = 1

π
for (V1, V2) ∈ D. A transformation from the disk D into the unit square
S := [0, 1]2 is defined by(

x1

x2

)
=
(

V 2
1 + V 2

2
1
2π arg((V1, V2))

)
.

That is, the Cartesian coordinates V1, V2 on D are mapped to the squared ra-
dius and the normalized angle.3 For illustration, see Figure 2.5. These “polar
coordinates” (x1, x2) are uniformly distributed on S (−→ Exercise 2.7).
Application

For input in (2.8) use V 2
1 + V 2

2 as x1 and 1
2π arctan V2

V1
as x2. With these

variables the relations

cos 2πx2 =
V1√

V 2
1 + V 2

2

, sin 2πx2 =
V2√

V 2
1 + V 2

2

,

hold, which means that it is no longer necessary to evaluate trigonometric
functions. The resulting algorithm of Marsaglia has modified the Box–Muller
method by constructing input values x1, x2 in a clever way.

3 arg((V1, V2)) = arctan(V2/V1) with the proper branch.
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Algorithm 2.13 (polar method)

(1) Repeat: generate U1, U2 ∼ U [0, 1]; V1 := 2U1 − 1,
V2 := 2U2 − 1, until W := V 2

1 + V 2
2 < 1.

(2) Z1 := V1

√
−2 log(W )/W

Z2 := V2

√
−2 log(W )/W

are both standard normal variates.

The probability that W < 1 holds is given by the ratio of the areas, π/4 =
0.785... So in about 21% of all U [0, 1] drawings the (V1, V2)-tupel is rejected
because of W ≥ 1. Nevertheless the savings of the trigonometric evaluations
makes Marsaglia’s polar method more efficient than the Box–Muller method.
Figure 2.6 illustrates normally distributed random numbers (−→ Exercise
2.8).
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Fig. 2.6. 10000 numbers ∼ N (0, 1) (values entered horizontally and separated ver-
tically with distance 10−4)

2.3.3 Correlated Random Variables

The above algorithms provide independent normal deviates. In some applica-
tions random variables are required that depend on each other in a prescribed
way. Let us first recall the general n-dimensional density function.

Multivariate normal distribution (notations):

X = (X1, ...,Xn), μ = EX = (EX1, ...,EXn)

The covariance matrix (B1.8) of X is denoted Σ, and has elements

Σij = (CovX)ij := E ((Xi − μi)(Xj − μj)) ; σ2
i = Σii

Using this notation, the correlation coefficients are
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ρij :=
Σij

σiσj
(⇒ ρii = 1) . (2.9)

The density function f(x1, ..., xn) corresponding to N (μ,Σ) is

f(x) =
1

(2π)n/2

1
(det Σ)1/2

exp
{
−1

2
(x − μ)trΣ−1(x − μ)

}
. (2.10)

The matrix Σ is symmetric positive definite in case det Σ �= 0. From numeri-
cal mathematics we know that for such matrices the Cholesky decomposition
Σ = LLtr exists, with a lower triangular matrix L (−→ Appendix C1).

Transformation
Suppose Z ∼ N (0, I) and x = Az, A ∈ IRn×n, where z is a realization of Z,
0 is the zero vector, and I the identity matrix. We see from
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and from dx = |det A|dz that
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dz

holds for arbitrary nonsingular matrices A. In case A is specifically the matrix
L of the Cholesky decomposition, Σ = AAtr and |det A| = (det Σ)1/2. In this
way the densities with the respect to x and z are converted. In view of the
general density f(x) recalled above in (2.10), AZ is normally distributed with

AZ ∼ N (0, AAtr) .

Finally, translation with vector μ implies

μ + AZ ∼ N (μ,AAtr) . (2.11)

Application
Suppose we need a normal variate X ∼ N (μ,Σ) for given mean vector μ and
covariance matrix Σ. Such a random variable is calculated with the following
algorithm:

Algorithm 2.14 (correlated random variable)

(1) Calculate the Cholesky decomposition AAtr = Σ

(2) Calculate Z ∼ N (0, I) componentwise
by Zi ∼ N (0, 1), i = 1, ..., n, for instance,
with Marsaglia’s polar algorithm

(3) μ + AZ has the desired distribution ∼ N (μ,Σ)
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Special case n = 2: In this case, in view of (2.9), only one correlation number
is involved, namely, ρ := ρ12 = ρ21, and the correlation matrix must be of
the form

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (2.12)

In this two-dimensional situation it makes sense to carry out the Cholesky
decomposition analytically (−→ Exercise 2.9). Figure 2.7 illustrates a highly
correlated two-dimensional situation, with ρ = 0.85.
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Fig. 2.7. Simulation of a correlated vector process with two components, and μ =
0.05, σ1 = 0.3, σ2 = 0.2, ρ = 0.85, Δt = 1/250

2.4 Monte Carlo Integration

A classical application of random numbers is the Monte Carlo integration.
The discussion in this section will serve as background for Quasi Monte Carlo,
a topic of the following Section 2.5.

Let us begin with the one-dimensional situation. Assume a probability
distribution with density g. Then the expectation of a function f is

E(f) =

∞∫
−∞

f(x)g(x) dx ,
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compare (B1.4). For a definite integral on an interval D = [a, b], we use the
uniform distribution with density

g =
1

b − a
· 1D =

1
λ1(D)

· 1D ,

where λ1(D) denotes the length of the interval D. This leads to

E(f) =
1

λ1(D)

b∫
a

f(x) dx ,

or
b∫
a

f(x) dx = λ1(D) · E(f) .

This equation is the basis of Monte Carlo integration. It remains to approx-
imate E(f). For independent samples xi ∼ U [a, b] the law of large numbers
(−→ Appendix B1) establishes the estimator

1
N

N∑
i=1

f(xi)

as approximation to E(f). The approximation improves as the number of
trials N goes to infinity; the error is characterized by the Central Limit
Theorem.

This principle of the Monte Carlo Integration extends to the higher-
dimensional case. Let D ⊂ IRm be a domain on which the integral∫

D
f(x) dx

is to be calculated. For example, D = [0, 1]m. Such integrals occur in finance,
for example, when mortgage-backed securities (CMO, collateralized mortgage
obligations) are valuated [CaMO97]. The classical or stochastic Monte Carlo
integration draws random samples x1, ..., xN ∈ D which should be indepen-
dent and uniformly distributed. Then

θN := λm(D)
1
N

N∑
i=1

f(xi) (2.13)

is an approximation of the integral. Here λm(D) is the volume of D (or the
m-dimensional Lebesgue measure [Ni92]). We assume λm(D) to be finite.
From the law of large numbers follows convergence of θN to λm(D)E(f) =∫
D f(x) dx for N → ∞. The variance of the error

δN :=
∫
D

f(x) dx − θN
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satisfies

Var(δN ) = E(δ2
N ) − (E(δN ))2 =

σ2(f)
N

(λm(D))2 , (2.14a)

with the variance of f

σ2(f) :=
∫
D

f(x)2 dx −
(∫

D
f(x) dx

)2

. (2.14b)

Hence the standard deviation of the error δN tends to 0 with the order
O(N−1/2). This result follows from the Central Limit Theorem or from other
arguments (−→ Exercise 2.10). The deficiency of the order O(N−1/2) is the
slow convergence (−→ Exercise 2.11 and the second column in Table 2.1). To
reach an absolute error of the order ε, equation (2.14a) tells that the sample
size is N = O(ε−2). To improve the accuracy by a factor of 10, the costs (that
is the number of trials, N) increase by a factor of 100. Another disadvantage
is the lack of a genuine error bound. The probabilistic error of (2.14) does
not rule out the risk that the result may be completely wrong. The σ2(f) in
(2.14b) is not known and must be approximated, which adds to the uncer-
tainty of the error. And the Monte Carlo integration responds sensitively to
changes of the initial state of the used random-number generator. This may
be explained by the potential clustering of random points. In many appli-
cations the above deficiencies are balanced by two good features of Monte
Carlo integration: A first advantage is that the order O(N−1/2) of the error
holds independently of the dimension m. Another good feature is that the
integrands f need not be smooth, square integrability suffices (f ∈ L2, see
Appendix C3).

So far we have described the basic version of Monte Carlo integration,
stressing the slow decline of the probabilistic error with growing N . The
variance of the error δ can also be diminished by decreasing the numerator
in (2.14a). This variance of the problem can be reduced by suitable methods.
(We will come back to this issue in Chapter 3.) We conclude the excursion
into the stochastic Monte Carlo integration with the variant for those cases in
which λm(D) is hard to calculate. For D ⊆ [0, 1]m and x1, ..., xN ∼ U [0, 1]m

use ∫
D

f(x) dx ≈ 1
N

N∑
i=1

xi∈D

f(xi) . (2.15)

For the integral (1.50) with density fGBM see Section 3.5.
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2.5 Sequences of Numbers with Low Discrepancy

One difficulty with random numbers is that they may fail to distribute uni-
formly. Here, “uniform” is not meant in the stochastic sense of a distribution
∼ U [0, 1], but has the meaning of equidistributedness. The aim is to generate
numbers for which the deviation from uniformity is minimal. This deviation
is called “discrepancy.” Another objective is to obtain good convergence for
some important applications.

2.5.1 Discrepancy

The bad convergence behavior of the stochastic Monte Carlo integration is
not inevitable. For example, for m = 1 and D = [0, 1] an equidistant x-grid
with mesh size 1/N leads to a formula (2.13) that resembles the trapezoidal
sum ((C1.2) in Appendix C1). For smooth f , the order of the error is at least
O(N−1). (Why?) But such a grid-based evaluation procedure is somewhat
inflexible because the grid must be prescribed in advance and the number
N that matches the desired accuracy is unknown beforehand. In contrast,
the free placing of sample points with Monte Carlo integration can be per-
formed until some termination criterion is met. It would be desirable to find
a compromise in placing sample points such that the fineness advances but
clustering is avoided. The sample points should fill the integration domain
D as uniformly as possible. To this end we require a measure of the equidis-
tributedness.

Let Q ⊆ [0, 1]m be an arbitrary axially parallel m-dimensional rectangle
in the unit cube [0, 1]m of IRm. That is, Q is a product of m intervals. Suppose
a set of points x1, ..., xN ∈ [0, 1]m. The decisive idea behind discrepancy is
that for an evenly distributed point set the fraction of the points lying within
the rectangle Q should correspond to the volume of the rectangle (see Figure
2.8). Let # denote the number of points, then the goal is

# of xi ∈ Q

# of all points
≈ vol(Q)

vol([0, 1]m)

for as many rectangles as possible. This leads to the following definition:

Definition 2.15 (discrepancy)

The discrepancy of the point set {x1, ..., xN} is

DN := sup
Q

∣∣∣∣# of xi ∈ Q

N
− vol(Q)

∣∣∣∣ .

Analogously the variant D∗
N (star discrepancy) is obtained when the set of

rectangles is restricted to those Q∗, for which one corner is the origin:
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Fig. 2.8 On the idea of discrepancy

Table 2.1 Comparison of different convergence rates to zero

N 1√
N

√
log log N

N
log N

N
(log N)2

N
(log N)3

N

101 .31622777 .28879620 .23025851 .53018981 1.22080716
102 .10000000 .12357911 .04605170 .21207592 .97664572
103 .03162278 .04396186 .00690776 .04771708 .32961793
104 .01000000 .01490076 .00092103 .00848304 .07813166
105 .00316228 .00494315 .00011513 .00132547 .01526009
106 .00100000 .00162043 .00001382 .00019087 .00263694
107 .00031623 .00052725 .00000161 .00002598 .00041874
108 .00010000 .00017069 .00000018 .00000339 .00006251
109 .00003162 .00005506 .00000002 .00000043 .00000890

Q∗ =
m∏

i=1

[0, yi)

where y ∈ IRm denotes the corner diagonally opposite the origin.
The more evenly the points of a sequence are distributed, the closer the
discrepancy DN is to zero. Here DN refers to the first N points of a sequence
of points (xi), i ≥ 1. The discrepancies DN and D∗

N satisfy (−→ Exercise
2.12b)

D∗
N ≤ DN ≤ 2mD∗

N .
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The discrepancy allows to find a deterministic bound on the error δN of
the Monte Carlo integration,

|δN | ≤ v(f)D∗
N ; (2.16)

here v(f) is the variation of the function f with v(f) < ∞, and the domain
of integration is D = [0, 1]m [Ni92], [TW92], [MC94]. This result is known
as Theorem of Koksma and Hlawka. The bound in (2.16) underlines the
importance to find numbers x1, ..., xN with small value of the discrepancy
DN . After all, a set of N randomly chosen points satisfies

E(DN ) = O

(√
log log N

N

)
.

This is in accordance with the O(N−1/2) law. The order of magnitude of
these numbers is shown in Table 2.1 (third column).

Definition 2.16 (low-discrepancy point sequence)
A sequence of points or numbers x1, x2, ..., xN , ... ∈ [0, 1]m is called low-
discrepancy sequence if

DN = O

(
(log N)m

N

)
. (2.17)

Deterministic sequences of numbers satisfying (2.17) are also called quasi-
random numbers, although they are fully deterministic. Table 2.1 reports on
the orders of magnitude. Since log(N) grows only modestly, a low discrepancy
essentially means DN ≈ O(N−1) as long as the dimension m is not too
large. The equation (2.17) expresses some dependence on the dimension m,
contrary to Monte Carlo methods. But the dependence on m in (2.17) is far
less stringent than with classical quadrature.

2.5.2 Examples of Low-Discrepancy Sequences

In the one-dimensional case (m = 1) the point set

xi =
2i − 1
2N

, i = 1, ..., N (2.18)

has the value D∗
N = 1

2N ; this value can not be improved (−→ Exercise 2.12c).
The monotonous sequence (2.18) can be applied only when a reasonable N is
known and fixed; for N → ∞ the xi would be newly placed and an integrand f
evaluated again. Since N is large, it is essential that the previously calculated
results can be used when N is growing. This means that the points x1, x2, ...
must be placed “dynamically” so that they are preserved and the fineness
improves when N grows. This is achieved by the sequence
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1
2
,

1
4
,
3
4
,

1
8
,
5
8
,
3
8
,
7
8
,

1
16

, ...

This sequence is known as van der Corput sequence. To motivate such a
dynamical placing of points imagine that you are searching for some item in
the interval [0, 1] (or in the cube [0, 1]m). The searching must be fast and
successful, and is terminated as soon as the object is found. This defines N
dynamically by the process.

The formula that defines the van der Corput sequence can be formulated
as algorithm. We first study an example, say, x6 = 3

8 . The index i = 6 is
written as binary number

6 = (110)2 =: (d2 d1 d0)2 with di ∈ {0, 1} .

Then reverse the binary digits and put the radix point in front of the sequence:

(. d0 d1 d2)2 =
d0

2
+

d1

22
+

d3

23
=

1
22

+
1
23

=
3
8

If this is done for all indices i = 1, 2, 3, ... the van der Corput sequence
x1, x2, x3, ... results. These numbers can be defined with the following func-
tion:
Definition 2.17 (radical-inverse function)

For i = 1, 2, ... let

i =
j∑

k=0

dkbk

be the expansion in base b (integer ≥ 2), with digits dk ∈ {0, 1, ..., b− 1}.
Then the radical-inverse function is defined by

φb(i) :=
j∑

k=0

dkb−k−1 .

The function φb(i) is the digit-reversed fraction of i. This mapping may be
seen as reflecting with respect to the radix point. To each index i a rational
number φb(i) in the interval 0 < x < 1 is assigned. Every time the number
of digits j increases by one, the mesh becomes finer by a factor 1/b. This
means that the algorithm fills all mesh points on the sequence of meshes with
increasing fineness (−→ Exercise 2.13). The above classical van der Corput
sequence is obtained by

xi := φ2(i) .

The radical-inverse function can be applied to construct points xi in the m-
dimensional cube [0, 1]m. The simplest construction is the Halton sequence.
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Definition 2.18 (Halton sequence)
Let p1, ..., pm be pairwise prime integers. The Halton sequence is defined
as the sequence of vectors

xi := (φp1(i), ..., φpm
(i)) , i = 1, 2, ...

Usually one takes p1, ..., pm to be the first m prime numbers. Figure 2.9 shows
for m = 2 and p1 = 2, p2 = 3 the first 10000 Halton points. Compared to the
pseudo-random points of Figure 2.3, the Halton points are distributed more
evenly.
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Fig. 2.9. 10000 Halton points from Definition 2.18, with p1 = 2, p2 = 3

Further sequences were developed by Sobol, Faure and Niederreiter, see
[Ni92], [MC94], [PTVF92]. All these sequences are of low discrepancy, with

N · D∗
N ≤ Cm(log N)m + O

(
(log N)m−1

)
.
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The Table 2.1 shows how fast the relevant terms (log N)m/N tend to zero.
If m is large, extremely large values of the denominator N are needed before
the terms become small. But it is assumed that the bounds are unrealistically
large and overestimate the real error. For the Halton sequence in case m = 2
the constant is C2 = 0.2602.

Quasi Monte Carlo (QMC) methods approximate the integrals with the
arithmetic mean θN of (2.13), but use low-discrepancy numbers xi instead
of random numbers. QMC is a deterministic method. Practical experience
with low-discrepancy sequences are better than might be expected from the
bounds known so far. This also holds for the bound (2.16) by Koksma and
Hlawka; apparently a large class of functions f satisfy |δN | � v(f)D∗

N , see
[SM94].

Notes and Comments

on Section 2.1:
The linear congruential method is sometimes called Lehmer generator. Easily
accessible and popular generators are RAN1 and RAN2 from [PTVF92]. Fur-
ther references on linear congruential generators are [Ma68], [Ri87], [Ni92],
[LEc99]. Nonlinear congruential generators are of the form

Ni = f(Ni−1) mod M .

Hints on the algorithmic implementation are found in [Ge98]. Generally it is
advisable to run the generator in integer arithmetic in order to avoid round-
ing errors that may spoil the period, see [Lehn02]. For Fibonacci generators
we refer to [Br94]. The version of (2.5) is a subtractive generator. Additive
versions (with a plus sign instead of the minus sign) are used as well [Kn95],
[Ge98]. The codes in [PTVF92] are recommendable. A truely remarkably long
period is provided by the Mersenne twister [MaN98]. For simple statistical
tests with illustrations see [Hig04].

There are multiplicative Fibonacci generators of the form

Ni+1 := Ni−νNi−μ mod M .

Hints on parallelization are given in [Mas99]. For example, parallel Fibonacci
generators are obtained by different initializing sequences. Note that com-
puter systems and software packages often provide built-in random number
generators.

on Sections 2.2, 2.3:
The inversion result of Theorem 2.8 can be formulated placing less or no
restrictions on F , see [Ri87], p. 59, [Dev86], p. 28, or [La99], p. 270. There
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are numerous other methods to calculate normal and nonnormal variates;
for a detailed overview with many references see [Dev86]. The Box–Muller
approach was suggested in [BoM58]. Marsaglia’s modification was published
in a report quoted in [MaB64]. For simulating Lévy processes, see [ConT04].

on Section 2.4:
The bounds on errors of the Monte Carlo integration refer to arbitrary func-
tions f ; for smooth functions better bounds can be expected. In the one-
dimensional case the variation is defined as the supremum of

∑
j |f(tj) −

f(tj−1)| over all partitions, see Section 1.6.2. This definition can be general-
ized to higher-dimensional cases. A thorough discussion is [Ni78], [Ni92].

An advanced application of Monte Carlo integration uses one or more
methods of reduction of variance, which allows to improve the accuracy in
many cases [HH64], [Ru81], [Ni92], [PTVF92], [Fi96], [Kwok98], [La99]. For
example, the integration domain can be split into subsets (stratified sampling)
[RiW03]. Another technique is used when for a control variate g with g ≈ f
the exact integral is known. Then f is replaced by (f−g)+g and Monte Carlo
integration is applied to f − g. Another alternative, the method of antithetic
variates, will be described in Section 3.5 together with the control-variate
technique.

on Section 2.5:
Besides the supremum discrepancy of Definition 2.15 the L2-analogy of an
integral version is used. Hints on speed and preliminary comparison are found
in [MC94]. For application on high-dimensional integrals see [PT95]. For large
values of the dimension m, the error (2.17) takes large values, which might
suggest to discard its use. But the notion of an effective dimension and prac-
tical results give a favorable picture at least for CMO applications of order
m = 360 [CaMO97]. The error bound of Koksma and Hlawka (2.16) is not
necessarily recommendable for practical use, see the discussion in [SM94].
The analogy of the equidistant lattice in (2.18) in higher-dimensional space
has unfavorable values of the discrepancy, DN = O

(
1

m√
N

)
. For m > 2 this

is worse than Monte Carlo, compare [Ri87]. — Monte Carlo does not take
advantage of smoothness of integrands. In the case of smooth integrands,
sparse-grid approaches are highly competitive. These most refined quadra-
ture methods moderate the curse of the dimension, see [GeG98], [GeG03],
[Rei04].

Van der Corput sequences can be based also on other bases. Computer
programs that generate low-discrepancy numbers are available. For example,
Sobol numbers are calculated in [PTVF92] and Sobol- and Faure numbers
in the computer program FINDER [PT95] and in [Te95]. At the current
state of the art it is open which point set has the smallest discrepancy in
the m-dimensional cube. There are generalized Niederreiter sequences, which
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include Sobol- and Faure sequences as special cases [Te95]. In several appli-
cations deterministic Monte Carlo seems to be superior to stochastic Monte
Carlo [PT96]. A comparison based on finance applications has shown good
performance of Sobol numbers [Gla04]. Chapter 5 in [Gla04] provides more
discussion and many references.

Besides volume integration, Monte Carlo is needed to integrate over pos-
sibly high-dimensional probability distributions. Drawing samples from the
required distribution can be done by running a cleverly constructed Markov
chain. This kind of method is called Markov Chain Monte Carlo (MCMC).
That is, a chain of random variables X0,X1,X2, . . . is constructed where for
given Xj the next state Xj+1 does not depend on the history of the chain
X0,X1,X2, . . . , Xj−1. By suitable construction criteria, convergence to any
chosen target distribution is obtained. For MCMC we refer to the literature,
for example to [GiRS96], [La99], [Beh00], [Tsay02], [Häg02].

Exercises

Exercise 2.1

Consider the random number generator Ni = 2Ni−1 mod 11. For (Ni−1, Ni) ∈
{0, 1, ..., 10}2 and integer tupels with z0 + 2z1 = 0 mod 11 the equation

z0Ni−1 + z1Ni = 0 mod 11

defines families of parallel straight lines, on which all points (Ni−1, Ni) lie.
These straight lines are to be analyzed. For which of the families of parallel
straight lines are the gaps maximal?

Exercise 2.2 Deficient Random Number Generator

For some time the generator

Ni = aNi−1 mod M, with a = 216 + 3, M = 231

was in wide use. Show for the sequence Ui := Ni/M

Ui+2 − 6Ui+1 + 9Ui is integer!

What does this imply for the distribution of the tripels (Ui, Ui+1, Ui+2) in
the unit cube?

Exercise 2.3 Lattice of the Linear Congruential Generator

a) Show by induction over j

Ni+j − Nj = aj(Ni − N0) mod M

b) Show for integer z0, z1, ..., zm−1
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⎛
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⎞
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⎟⎟⎠

Exercise 2.4 Coarse Approximation of Normal Deviates

Let U1, U2, ... be independent random numbers ∼ U [0, 1], and

Xk :=
k+11∑
i=k

Ui − 6 .

Calculate mean and variance of the Xk.

Exercise 2.5 Cauchy-Distributed Random Numbers

A Cauchy-distributed random variable has the density function

fc(x) :=
c

π

1
c2 + x2

.

Show that its distribution function Fc and its inverse F−1
c are

Fc(x) =
1
π

arctan
x

c
+

1
2

, F−1
c (y) = c tan(π(y − 1

2
)) .

How can this be used to generate Cauchy-distributed random numbers out
of uniform deviates?

Exercise 2.6 Inverting the Normal Distribution

Suppose F (x) is the standard normal distribution function. Construct a rough
approximation G(u) to F−1(u) for 0.5 ≤ u < 1 as follows:

a) Construct a rational function G(u) (−→ Appendix C1) with correct
asymptotic behavior, point symmetry with respect to (u, x) = (0.5, 0),
using only one parameter.

b) Fix the parameter by interpolating a given point (x1, F (x1)).
c) What is a simple criterion for the error of the approximation?

Exercise 2.7 Uniform Distribution

For the uniformly distributed random variables (V1, V2) on [−1, 1]2 consider
the transformation
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X1

X2

)
=
(

V 2
1 + V 2

2
1
2π arg((V1, V2))

)

where arg((V1, V2)) denotes the corresponding angle. Show that (X1, X2) is
distributed uniformly.

Exercise 2.8 Programming Assignment: Normal Deviates

a) Write a computer program that implements the Fibonacci generator

Ui :=Ui−17 − Ui−5

Ui :=Ui + 1 in case Ui < 0

in the form of Algorithm 2.7.
Tests: Visual inspection of 10000 points in the unit square.

b) Write a computer program that implements Marsaglia’s Polar Algorithm.
Use the uniform deviates from a).

Tests:
1.) For a sample of 5000 points calculate estimates of mean and variance.
2.) For the discretized SDE

Δx = 0.1Δt + Z
√

Δt, Z ∼ N (0, 1)

calculate some trajectories for 0 ≤ t ≤ 1, Δt = 0.01, x0 = 0.

Exercise 2.9 Correlated Distributions

Suppose we need a two-dimensional random variable (X1,X2) that must be
normally distributed with mean 0, and given variances σ2

1 , σ2
2 and prespecified

correlation ρ. How is X1,X2 obtained out of Z1, Z2 ∼ N (0, 1)?

Exercise 2.10 Error of the Monte Carlo Integration

The domain for integration is Q = [0, 1]m. For

ΘN :=
1
N

N∑
i=1

f(xi) , E(f) :=
∫

f dx , g := f − E(f)

and σ2(f) from (2.14b) show
a) E(g) = 0
b) σ2(g) = σ2(f)
c) σ2(δN ) = E(δ2

N ) = 1
N2

∫
(
∑

g(xi))2 dx = 1
N σ2(f)

Hint on (c): When the random points xi are i.i.d. (independent iden-
tical distributed), then also f(xi) and g(xi) are i.i.d. A consequence is∫

g(xi)g(xj) dx = 0 for i �= j.
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Exercise 2.11 Experiment on Monte Carlo Integration

To approximate the integral ∫ 1

0

f(x) dx

calculate a Monte Carlo sum

1
N

N∑
i=1

f(xi)

for f(x) = 5x4 and, for example, N = 100000 random numbers xi ∼ U [0, 1].
The absolute error behaves like cN−1/2. Compare the approximation with
the exact integral for several N and seeds to obtain an estimate of c.

Exercise 2.12 Bounds on the Discrepancy

(Compare Definition 2.15) Show
a) 0 ≤ DN ≤ 1,
b) D∗

N ≤ DN ≤ 2mD∗
N (show this at least for m ≤ 2),

c) D∗
N ≥ 1

2N for m = 1.

Exercise 2.13 Algorithm for the Radical-Inverse Function

Use the idea
i =
(
dkbk−1 + ... + d1

)
b + d0

to formulate an algorithm that obtains d0, d1, ..., dk by repeated divison by
b. Reformulate φb(i) from Definition 2.17 into the form φb(i) = z/bj+1 such
that the result is represented as rational number. The numerator z should be
calculated in the same loop that establishes the digits d0, ..., dk.

Exercise 2.14 Testing the Distribution
Let X be a random variate with density f and let a1 < a2 < ... < al define
a partition of the support of f into subintervals, including the unbounded
intervals x < a1 and x > al. Recall from (B1.1), (B1.2) that the probability
of a realization of X falling into ak ≤ x < ak+1 is given by

pk :=

ak+1∫
ak

f(x) dx , k = 1, 2, . . . , l − 1 ,

which can be approximated by (ak+1 − ak)f
(

ak+ak+1
2

)
. Perform a sample of

j realizations x1, . . . , xj of a random number generator, and denote jk the
number of samples falling into ak ≤ x < ak+1. For normal variates with
density f from (B1.9) design an algorithm that performs a simple statistical
test of the quality of the x1, . . . , xj .
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Hints: See Section 2.1 for the special case of uniform variates. Argue for what
choices of a1 and al the probabilities p0 and pl may be neglected. Think about
a reasonable relation between l and j.

Exercise 2.15 Quality of Fibonacci-Generated Numbers
Analyze and visualize the planes in the unit cube, on which all points fall
that are generated by the Fibonacci recursion

Ui+1 := (Ui + Ui−1) mod 1 .

Exercise 2.16
Use the inversion method and uniformly distributed U ∼ U [0, 1] to calculate
a stochastic variable X with distribution

F (x) = 1 − e−2x(x−a) , x ≥ a .

Exercise 2.17 Time-Changed Wiener Process
For a time-changing function τ(t) set τj := τ(j Δt) for some time increment
Δt.
a) Argue why Algorithm 1.8 changes to Wj = Wj−1 + Z

√
τj − τj−1 (last

line).
b) Let τj be the exponentially distributed jump instances of a Poisson ex-

periment, see Section 1.9 and Property (1.20e). How should the jump
intensity λ be chosen such that the expectation of the Δτ is Δt? Imple-
ment and test the algorithm, and visualize the results. Experiment with
several values of the jump intensity λ.
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Fig. 3.1. Illustration of the Monte Carlo approach; European put, K = 50, S0 = 50,
T = 1, σ = 0.2, r = 0; five simulations with payoff; vertical axis: V

Sections 1.5 and 1.7.3 have introduced the principle of risk-neutral evaluation,
which can be summarized by

V (S0, 0) = e−rT EQ(V (ST , T )) ,

where EQ represents the expectation under a risk-neutral measure. For the
Black–Scholes model, this expectation is an integral as in (1.50)/(1.51). This
suggests two approaches of calculating V . Either approximate the integral, or
calculate the expectation by simulating the underlying stochastic differential
equation (SDE) repeatedly. The latter approach is illustrated in Figure 3.1.
Five paths St are calculated for 0 ≤ t ≤ T in the risk-neutral fashion, each
starting from S0. Then for each resulting ST the payoff is calculated, here
for a European put. The figure illustrates the bulk of the work. (In reality,
thousands of paths are calculated.) It remains the comparably cheap task
of calculating the mean of the payoffs as approximation for EQ. This is the
Monte Carlo approach. The Monte Carlo approach works for general models,
for example, for systems of equations, see Figure 3.2.
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This chapter is based on the ability to numerically integrate SDEs. There-
fore a significant part of the chapter is devoted to this topic. Again Xt denotes
a stochastic process and solution of an SDE,

dXt = a(Xt, t) dt + b(Xt, t) dWt for 0 ≤ t ≤ T ,

where the driving process W is a Wiener process. The solution of a discrete
version of the SDE is denoted yj . That is, yj should be an approximation to
Xtj

, or yt an approximation to Xt. From Algorithm 1.11 we know the Euler
discretization{

yj+1 = yj + a(yj , tj)Δt + b(yj , tj)ΔWj , tj = jΔt ,

ΔWj = Wtj+1 − Wtj
= Z

√
Δt with Z ∼ N (0, 1) .

(3.1)

The step length Δt is assumed equidistant. As is common usage in numerical
analysis, we also use the h-notation, h := Δt. For Δt = h = T/m the index
j in (3.1) runs from 0 to m− 1. The initial value for t = 0 is assumed a given
constant,

y0 = X0 .

From numerical methods for deterministic ODEs (b ≡ 0) we know the dis-
cretization error of Euler’s method is O(h),

XT − yT = O(h) .

The Algorithm 1.11 (repeated in equation (3.1)) is an explicit method in that
in every step j → j + 1 the values of the functions a and b are evaluated at
the previous approximation (yj , tj). Evaluating b at the left-hand mesh point
(yj , tj) is consistent with the Itô integral and the Itô process, compare the
notes at the end of Chapter 1.

After we have seen in Chapter 2 how Z ∼ N (0, 1) can be calculated,
all elements of Algorithm 1.11 are known, and we are equipped with a first
method to numerically integrate SDEs (−→ Exercise 3.1). In this chapter we
learn about other methods, and discuss the accuracy of numerical solutions
of SDEs. The exposition of Sections 3.1 through 3.3 follows [KP92]. Readers
content with Euler’s method (3.1) may like to skip these sections. After a
brief exposition on constructing bridges (Section 3.4), we turn to the main
theme Monte Carlo for European and American options (Sections 3.5 and
3.6).

3.1 Approximation Error

To study the accuracy of numerical approximations, we choose the example
of a linear SDE

dXt = αXt dt + βXt dWt, initial value X0 for t = 0 .
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Fig. 3.2. Example 1.15, α = 0.3, β = 10, σ0 = ζ0 = 0.2, realization of the volatility
tandem σt, ζt (dashed) for 0 ≤ t ≤ 1, Δt = 0.004

For this equation with constant coefficients α, β we derived in Section 1.8 the
analytical solution

Xt = X0 exp
((

α − 1
2β2

)
t + βWt

)
. (3.2)

For a given realization of the Wiener process Wt we obtain as solution a
trajectory (sample path) Xt. For another realization of the Wiener process
the same theoretical solution (3.2) takes other values. If a Wiener process Wt

is given, we call a solution Xt of the SDE a strong solution. In this sense the
solution in (3.2) is a strong solution. If one is free to select a Wiener process,
then a solution of the SDE is called weak solution. For a weak solution, only
the distribution of X is of interest, not its path.

Assuming an identical sample path of a Wiener process for the SDE and
for the numerical approximation, a pathwise comparison of the trajectories
Xt of (3.2) and y from (3.1) is possible for all tj . For example, for tm =
T the absolute error for a given Wiener process is |XT − yT |. Since the
approximation yT also depends on the chosen step length h, we also write
yh

T . For another Wiener process the error is somewhat different. We average
the error over “all” sample paths of the Wiener process:
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Definition 3.1 (absolute error)
The absolute error at T is ε(h) := E(|XT − yh

T |).
In practice we represent the set of all sample paths of a Wiener process by
N different simulations.

Example 3.2 X0 = 50, α = 0.06, β = 0.3, T = 1.
We want to investigate experimentally how the absolute error depends
on h. Starting with a first choice of h we calculate N = 50 simulations
and for each realization the values of XT and yT —that is XT,k, yT,k

for k = 1, ..., N . Again: to obtain pairs of comparable trajectories, also
the theoretical solution (3.2) is fed with the same Wiener process used in
(3.1). Then we calculate the estimate ε̂ of the absolute error ε,

ε̂(h) :=
1
N

N∑
k=1

|XT,k − yh
T,k| .

Such an experiment was performed for five values of h. In this way the
first series of results were obtained (first line in Table 3.1). Such a series
of experiments was repeated twice, using other seeds. As Table 3.1 shows,
ε̂(h) decreases with decreasing h, but slower than one would expect from
the behavior of the Euler method applied to deterministic differential
equations. The order can be determined by fitting the values of the table.
To speed up, let us test the order O(h1/2). For this purpose divide each
ε̂(h) of the table by the corresponding h1/2. This shows that the order
O(h1/2) is correct, because each entry of the table leads essentially to the
same constant value, here 2.8. Apparently this example satisfies ε̂(h) ≈
2.8h1/2. For another example we would expect a different constant.

Table 3.1. Results of Example 3.2

Table of the ε̂(h) h = 0.01 h = 0.005 h = 0.002 h = 0.001 h = 0.0005

series 1 (with seed1) 0.2825 0.183 0.143 0.089 0.070
series 2 (with seed2) 0.2618 0.195 0.126 0.069 0.062
series 3 (with seed3) 0.2835 0.176 0.116 0.096 0.065

These results obtained for the estimates ε̂ are assumed to be valid for ε.
This leads to postulate

ε(h) ≤ c h1/2 = O(h1/2).

The order of convergence is worse than the order O(h), which Euler’s method
(3.1) achieves for deterministic differential equations (b ≡ 0). But in view of



3.1 Approximation Error 105

(1.28), (dW )2 = h, the order O(h1/2) is no surprise. For a proof of the order,
see [KP92].

Definition 3.3 (strong convergence)
yh

T converges strongly to XT with order γ > 0,
if ε(h) = E(|XT − yh

T |) = O(hγ).
yh

T converges strongly, if

lim
h→0

E(|XT − yh
T |) = 0 .

Hence the Euler method applied to SDEs converges strongly with order 1/2.
Note that convergence refers to fixed finite intervals, here for a fixed value T .
For long-time integration (T → ∞), see the notes at the end of this chapter.

Strongly convergent methods are appropriate when the trajectory itself is
of interest. This was the case for Figures 1.16 and 1.17. Often the pointwise
approximation of Xt is not our real aim but only an intermediate result in
the effort to calculate a moment. For example, many applications in finance
need to approximate E(XT ). A first conclusion from this situation is that of
all calculated yi only the last is required, namely, yT . A second conclusion is
that for the expectation a single sample value of yT is of little interest. The
same holds true if the ultimate interest is Var(XT ) rather than XT . In this
situation the primary interest is not strong convergence with the demanding
requirement yT ≈ XT and even less yt ≈ Xt for t < T . Instead the concern
is the weaker requirement to approximate moments or other functionals of
XT . The aim is to achieve E(yT ) ≈ E(XT ), or E(|yT |q) ≈ E(|XT |q), or more
general E(g(yT )) ≈ E(g(XT )) for an appropriate function g.

Definition 3.4 (weak convergence)
yh

T converges weakly to XT with respect to g with order β > 0,
if |E(g(XT )) − E(g(yh

T ))| = O(hβ).

The Euler scheme is weakly O(h1) convergent with respect to all polynomi-
als g provided the coefficient functions a and b are four times continuously
differentiable ([KP92], Chapter 14). For the special polynomial g(x) = x,
(B1.4) implies convergence of the mean E(x). For g(x) = x2 the relation
Var(X) = E(X2) − (E(X))2 implies convergence of the variance (the reader
may check). Proceeding in this way implies weak convergence with respect
to all moments.

Since the properties of the integrals on which expectation is based lead
to

|E(X) − E(Y )| = |E(X − Y )| ≤ E(|X − Y |) ,

we confirm that strong convergence implies weak convergence with respect
to g(x) = x.

When weakly convergent methods are evaluated, the increments ΔW can
be replaced by other random variables ΔŴ that have the same expectation
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and variance. If the replacing random variables are easier to evaluate, costs
can be saved significantly.

3.2 Stochastic Taylor Expansion

The derivation of algorithms for the integration of SDEs is based on stochas-
tic Taylor expansions. To facilitate the understanding of stochastic Taylor
expansions we confine ourselves to the scalar and autonomous1 case, and
first introduce the terminology by means of the deterministic case. That is,
we begin with d

dtXt = a(Xt). The chain rule for arbitrary f ∈ C1(IR) is

d
dt

f(Xt) = a(Xt)
∂

∂x
f(Xt) =: Lf(Xt) .

With the linear operator L this rule in integral form is

f(Xt) = f(Xt0) +
∫ t

t0

Lf(Xs) ds . (3.3)

This version is resubstituted for the integrand f̃(Xs) := Lf(Xs), which re-
quires at least f ∈ C2, and gives the term in braces:

f(Xt) =f(Xt0) +
∫ t

t0

{
f̃(Xt0) +

∫ s

t0

Lf̃(Xz) dz

}
ds

=f(Xt0) + f̃(Xt0)
∫ t

t0

ds +
∫ t

t0

∫ s

t0

Lf̃(Xz) dz ds

=f(Xt0) + Lf(Xt0)(t − t0) +
∫ t

t0

∫ s

t0

L2f(Xz) dz ds

This version of the Taylor expansion consists of two terms and the remainder
as double integral. To get the next term of the second-order derivative, apply
(3.3) for L2f(Xz), and split off the term

L2f(Xt0)
∫ t

t0

∫ s

t0

dz ds = L2f(Xt0)
1
2
(t − t0)2

from the remainder double integral. At this stage, the remainder is a triple
integral. This procedure is repeated to obtain the Taylor formula in integral
form. Each further step requires more differentiability of f .

We now devote our attention to stochastic diffusion and investigate the
Itô-Taylor expansion of the autonomous scalar SDE

1 An autonomous differential equation does not explicitly depend on the
independent variable, here a(Xt) rather than a(Xt, t). The standard GBM
Model 1.13 of the stock market is autonomous for constant μ and σ.
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dXt = a(Xt) dt + b(Xt) dWt .

Itô’s Lemma for g(x, t) := f(x) is

df(Xt) =
{

a
∂

∂x
f(Xt) +

1
2
b2 ∂2

∂x2
f(Xt)︸ ︷︷ ︸

=:L0f(Xt)

}
dt + b

∂

∂x
f(Xt)︸ ︷︷ ︸

=:L1f(Xt)

dWt ,

or in integral form

f(Xt) = f(Xt0) +
∫ t

t0

L0f(Xs) ds +
∫ t

t0

L1f(Xs) dWs . (3.4)

This SDE will be applied for different choices of f . Specifically for f(x) ≡ x
the SDE (3.4) recovers the original SDE

Xt = Xt0 +
∫ t

t0

a(Xs) ds +
∫ t

t0

b(Xs) dWs . (3.5)

As first applications of (3.4) we substitute f = a and f = b. The resulting
versions of (3.4) are substituted in (3.5) leading to

Xt =Xt0 +
∫ t

t0

{
a(Xt0) +

∫ s

t0

L0a(Xz) dz +
∫ s

t0

L1a(Xz) dWz

}
ds

+
∫ t

t0

{
b(Xt0) +

∫ s

t0

L0b(Xz) dz +
∫ s

t0

L1b(Xz) dWz

}
dWs

with
L0a = aa′ + 1

2b2a′′

L1a = ba′
L0b = ab′ + 1

2b2b′′

L1b = bb′ .
(3.6)

Summarizing the four double integrals into one remainder expression R, we
have

Xt = Xt0 + a(Xt0)
∫ t

t0

ds + b(Xt0)
∫ t

t0

dWs + R , (3.7a)

with

R =
∫ t

t0

∫ s

t0

L0a(Xz) dz ds +
∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+
∫ t

t0

∫ s

t0

L0b(Xz) dz dWs +
∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs .

(3.7b)

The order of the terms is limited by the number of repeated integrations. In
view of (1.28), dW 2 = dt, we expect the last of the integrals in (3.7b) to be
of first order (and show this below).
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In an analogous fashion the integrands in (3.7b) can be replaced using
(3.4) with appropriately chosen f . In this way triple integrals occur. We
illustrate this for the integral on f = L1b, which is the double integral of
lowest order. The non-integral term of (3.4) allows to split off another “ground
integral” with constant integrand,

R = L1b(Xt0)
∫ t

t0

∫ s

t0

dWz dWs + R̃ .

In view of (3.6) and (3.7a) this result can be summarized as

Xt =Xt0 + a(Xt0)
∫ t

t0

ds + b(Xt0)
∫ t

t0

dWs

+ b(Xt0)b
′(Xt0)

∫ t

t0

∫ s

t0

dWz dWs + R̃ .

(3.8)

A general treatment of the Itô-Taylor expansion with an appropriate formal-
ism is found in [KP92].

The next step is to formulate numerical algorithms out of the equations
derived by the stochastic Taylor expansion. To this end the integrals must
be solved. For (3.8) we need a solution of the double integral. For Xt = Wt

the Itô Lemma with a = 0, b = 1 and y = g(x) := x2 leads to the equation
d(W 2

t ) = dt + 2Wt dWt. Specifically for t0 = 0 this is the equation∫ t

0

∫ s

0

dWz dWs =
∫ t

0

Ws dWs = 1
2W 2

t − 1
2 t . (3.9)

Another derivation of (3.9) uses

n∑
j=1

Wtj
(Wtj+1 − Wtj

) = 1
2W 2

t − 1
2

n∑
j=1

(Wtj+1 − Wtj
)2

for t = tn+1 and t1 = 0, and takes the limit in the mean on both sides (−→
Exercise 3.2). The general version of (3.9) needed for (3.8) is∫ t

t0

Ws dWs = 1
2 (Wt − Wt0)

2 − 1
2 (t − t0) .

With Δt := t−t0 and the random variable ΔWt := Wt−Wt0 this is rewritten
as ∫ t

t0

∫ s

t0

dWz dWs = 1
2 (ΔWt)

2 − 1
2Δt . (3.10)

Since this double integral is of order Δt, it completes the list of first-order
terms.
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Also the three other double integrals∫ t

t0

∫ s

t0

dz ds ,

∫ t

t0

∫ s

t0

dWz ds ,

∫ t

t0

∫ s

t0

dz dWs

are needed for the construction of higher-order numerical methods. The first
integral is elementary, of second order and not stochastic. The two others
depend on each other via the equation∫ t

t0

∫ s

t0

dz dWs +
∫ t

t0

∫ s

t0

dWz ds =
∫ t

t0

dWs

∫ t

t0

ds (3.11)

(−→ Exercise 3.3). This indicates that the two remaining double integrals
are of order 1.5. We will return to these integrals in the following section.

3.3 Examples of Numerical Methods

Now we apply the stochastic Taylor expansion to construct numerical meth-
ods for SDEs. First we check how Euler’s method (3.1) evolves. Here we
evaluate the integrals in (3.7a) and substitute

t0 → tj , t → tj+1 = tj + Δt .

This leads to

Xtj+1 = Xtj
+ a(Xtj

)Δt + b(Xtj
)ΔWj + R .

After neglecting the remainder R the Euler scheme of (3.1) results, here for
autonomous SDEs.

To obtain higher-order methods, further terms of the stochastic Taylor
expansions are added. We may expect a “repair” of the half-order O(

√
Δt)

by including the lowest-order double integral of (3.8), which is calculated in
(3.10). The resulting correction term, after multiplying with bb′, is added to
the Euler scheme. Discarding the remainder R̃, an algorithm results, which
is due to Milstein (1974).

Algorithm 3.5 (Milstein)

Start: t0 = 0, y0 = X0, W0 = 0, Δt = T/m

loop j = 0, 1, 2, ...,m − 1 :
tj+1 = tj + Δt

Calculate the values a(yj), b(yj), b′(yj)

ΔW = Z
√

Δt with Z ∼ N (0, 1)

yj+1 = yj + aΔt + bΔW +
1
2
bb′ · ((ΔW )2 − Δt)
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This integration method by Milstein is strongly convergent with order one
(−→ Exercise 3.8). Adding the correction term has raised the strong conver-
gence order of Euler’s method to 1.

Runge–Kutta Methods

A disadvantage of the Taylor-expansion methods is the use of the derivatives
a′, b′, ... Analogously as with deterministic differential equations there is
the alternative of Runge–Kutta–type methods, which only evaluate a or b for
appropriate arguments.

As an example we discuss the factor bb′ of Algorithm 3.5, and see how to
replace it by an approximation. Starting from

b(y + Δy) − b(y) = b′(y)Δy + O((Δy)2)

and using Δy = aΔt + bΔW we deduce in view of (1.28) that

b(y + Δy) − b(y) = b′(y)(aΔt + bΔW ) + O(Δt)
= b′(y)b(y)ΔW + O(Δt) .

Applying (1.28) again, we substitute ΔW =
√

Δt and arrive at an O(
√

Δt)-
approximation of the product bb′, namely,

1√
Δt

(
b[yj + a(yj)Δt + b(yj)

√
Δt] − b(yj)

)
.

This expression is used in the Milstein scheme of Algorithm 3.5. The resulting
variant

ŷ :=yj + aΔt + b
√

Δt

yj+1 =yj + aΔt + bΔW +
1

2
√

Δt
(ΔW 2 − Δt)[b(ŷ) − b(yj)]

(3.12)

is a Runge–Kutta method, which also converges strongly with order one.
Versions of these schemes for nonautonomous SDEs read analogously.

Taylor Scheme with Weak Second-Order Convergence.

Next we investigate the method that results when in the remainder term
(3.7b) of all double integrals the ground integrals are split off. This is done
by applying (3.4) for f = L0a, f = L1a, f = L0b, f = L1b . Then the new
remainder R̃ consists of triple integrals. For f = L1b this analysis was carried
out at the end of Section 3.2. With (3.6) and (3.10) the correction term

bb′
1
2

(
(ΔW )2 − Δt

)
resulted, which has lead to the strong convergence order one of the Milstein
scheme. For f = L0a the integral is not stochastic and the term
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aa′ +

1
2
b2a′′

)
1
2
Δt2

is an immediate consequence. For f = L1a and f = L0b the integrals are
again stochastic, namely,

I(1,0) :=
∫ t

t0

∫ s

t0

dWz ds =
∫ t

t0

(Ws − Wt0) ds ,

I(0,1) :=
∫ t

t0

∫ s

t0

dz dWs =
∫ t

t0

(s − t0) dWs .

Summarizing all terms, the preliminary numerical scheme is

yj+1 = yj + aΔt + bΔW +
1
2
bb′
(
(ΔW )2 − Δt

)
+

1
2

(
aa′ +

1
2
b2a′′

)
Δt2 + ba′I(1,0) +

(
ab′ +

1
2
b2b′′

)
I(0,1) .

(3.13)

It remains to approximate the two stochastic integrals I(0,1) and I(1,0). Setting
ΔY := I(1,0) we have in view of (3.11)

I(0,1) = ΔWΔt − ΔY .

At this state the two stochastic double integrals I(0,1) and I(1,0) are expressed
in terms of only one random variable ΔY , in addition to the variable ΔW
used before. Since for weak convergence only the correct moments are needed,
all occuring random variables (here ΔW and ΔY ) can be replaced by other
random variables with the same moments. The normally distributed random
variable ΔY has expectation, variance and covariance

E(ΔY ) = 0, E(ΔY 2) =
1
3
(Δt)3, E(ΔY ΔW ) =

1
2
(Δt)2 (3.14)

(−→ Exercise 3.4). Such a random variable can be realized by two indepen-
dent normally distributed variates Z1 and Z2,

ΔY =
1
2
(Δt)3/2

(
Z1 +

1√
3
Z2

)
with Zi ∼ N (0, 1), i = 1, 2

(3.15)

(−→ Exercise 3.5). With this realization of ΔY we have approximations of
I(0,1) and I(1,0), which are substituted into (3.13).

Next the random variable ΔW is replaced by other variates having
the same moments. ΔWj can be replaced by the simple approximation
ΔŴj = ±

√
Δt, where both values have probability 1/2. Expectation and

variance of ΔŴ and ΔW are the same: E(ΔŴ ) = 0, E(ΔŴ 2) = Δt. For the
numerical scheme (3.13) there is an even better approximation: Choosing ΔW̃
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trivalued such that the two values ±
√

3Δt occur with probability 1/6, and
the value 0 with probability 2/3, then the random variable ΔỸ := 1

2Δt ΔW̃
has up to terms of order O(Δt3) the moments in (3.14) (−→ Exercise 3.6).
As a consequence, the variant of (3.13)

yj+1 = yj + aΔt + bΔW̃ +
1
2
bb′
(
(ΔW̃ )2 − Δt

)
+

1
2

(
aa′ +

1
2
b2a′′

)
Δt2 +

1
2

(
a′b + ab′ +

1
2
b2b′′

)
ΔW̃Δt

(3.16)

is second-order weakly convergent.

Higher–Dimensional Cases

In higher-dimensional cases there are mixed terms. We distinguish two kinds
of “higher–dimensional”:

1.) y ∈ IRn, a, b ∈ IRn. Then, for instance, replace bb′ by ∂b
∂y b, where ∂b

∂y is
the Jacobian matrix of all first-order partial derivatives.

2.) For multiple Wiener processes the situation is more complicated, because
then simple explicit integrals as in (3.9) do not exist. Only the Euler
scheme remains simple: for m Wiener processes the Euler scheme is

yj+1 = yj + aΔt + b(1)ΔW (1) + ... + b(m)ΔW (m) .

The Figure 3.2 depicts two components of the system of Example 1.15.

Jump Diffusion

Jump diffusion can be simulated analogously as pure diffusion. Thereby the
jump times are not included in the equidistant grid of the jΔt. An alternative
is to simulate the jump times τ1, τ2, . . . separately, and superimpose them on
the Δt-size grid. Then the jumps can be carried out correctly. With such
jump-adapted schemes higher accuracy can be obtained [BrLP06], see also
[HiK05].

3.4 Intermediate Values

Integration methods as discussed in the previous section calculate approxi-
mations yj only at the grid points tj . This leaves the question how to obtain
intermediate values, namely, approximations y(t) for t �= tj . This situation is
simple for deterministic ODEs. There we have in general smooth solutions,
which suggests to construct an interpolation curve joining the calculated
points (yj , tj). The deterministic nature guarantees that the interpolation is
reasonably close to the exact solution, at least for small steps Δt.
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A smooth interpolation is at variance with the stochastic nature of so-
lutions of SDEs. When Δt is small, it may be sufficient to match the “ap-
pearance” of a stochastic process. For example, a linear interpolation is easy
to be carried out. Such an interpolating continuous polygon was used for
the Figures 1.15 and 1.16. Another easily executable alternative would be to
construct an interpolating step function with step length Δt. Such an argu-
mentation is concerned with the graphical aspects of filling, and does not pay
attention to the law given by an underlying SDE.

The situation is different when the gaps between two calculated yj and
yj+1 are large. Then the points that are supposed to fill the gaps should
satisfy the underlying SDE. A Brownian bridge is a proper means to fill the
gaps in Brownian motion. For illustration assume that y0 (for t = 0) and yT

(for t = T ) are to be connected. Then the Brownian bridge defined by

Bt = y0

(
1 − t

T

)
+ yT

t

T
+
{

Wt −
t

T
WT

}
(3.17)

describes the stochastic behavior that matches Brownian motion. The first
two terms represent a straight-line connection between y0 and yT . This line
segment stands for the trend. The term Wt − t

T WT describes the stochastic
fluctuation (−→ Exercise 3.7).

Bridges such as the Brownian bridge have important applications. For
example, suppose that for a stochastic process St a large step has been taken
from S0 to some value ST . The question may be, what is the largest value of
St in the gap 0 < t < T? Or, does St reach a certain barrier B? Of course,
answers can be expected only with a certain probability. A crude method
to tackle the problem would be to calculate a dense chain of Stj

in the gap
with a small step size Δt. This is a costly way to get the information. As
an alternative, one can evaluate the relevant probabilities of the behavior of
bridges directly, without explicitly constructing intermediate points. In this
way, larger steps are possible, and costs are reduced.

3.5 Monte Carlo Simulation

As pointed out in Section 2.4 in the context of calculating integrals, Monte
Carlo is attractive in high-dimensional spaces. The same characterization
holds when Monte Carlo (MC) is applied to the valuation of options. For sake
of clarity we describe the approach for European vanilla options in context
with the one-dimensional Black–Scholes model. But bear in mind that MC is
broadly applicable, which will be demonstrated by means of an exotic option
at the end of this section.

From Section 1.7.2 we take the one-factor model of a geometric Brownian
motion of the asset price St,
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dS

S
= μdt + σ dW .

Here μ is the expected growth rate. When options are to be priced we assume
a risk-neutral world and replace μ accordingly (compare Section 1.7.3 and
Remark 1.14, and Appendix B4). Recall the lognormal distribution of GBM,
with density function (1.48).

The Monte Carlo simulation of options can be seen in two ways: either
dynamically as a process of simulating numerous paths of prices St with sub-
sequent appropriate valuation (as suggested by Figure 3.1), or as the formal
MC approximation of integrals. For the latter view we briefly discuss the
integral representation of options. Both views are equivalent; the simulation
aspect is merely the financial interpretation and implementation of the MC
procedure for integrals.

3.5.1 Integral Representation

In the one-period model of Section 1.5 the valuation of an option was sum-
marized in (1.19) as the discounted values of a probable payoff,

V0 = e−rT EQ(VT ) .

For the binomial model we prove for European options in Exercise 1.8 that
this method produces

V
(M)
0 = e−rT E(VT ) ,

where E reflects expectation with respect to the risk-free probability of the bi-
nomial method. And for the continuous-time Black–Scholes model, the result
in (A4.11b) for a put is

V0 = e−rT [K F (−d2) − e(r−δ)T S F (−d1)] , (3.18)

similarly for a call. Since F is an integral (−→ Appendix D2), equation (3.18)
is a first version of an integral representation. Its origin is either the analytic
solution of the Black–Scholes PDE, or the representation

V0 = e−rT

∞∫
0

(K − ST )+ fGBM(ST , T ; S0, r, σ) dST . (3.19)

Here fGBM(ST , T ; S0, μ, σ) is the density (1.48) of the lognormal distribution,
with μ = r, or μ replaced by r − δ to match a continuous dividend yield δ.
It is not difficult to prove that (3.18) and (3.19) are equivalent (−→ Exercise
3.9). We summarize the integral representation as

V (S0, 0) = e−rT Ẽ(V (ST , T ) |S0) (3.20)
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The risk-neutral expectation Ẽ corresponds to EQ in Section 1.5. All these
expectations are conditional on paths starting at t = 0 with the value S0.

The integral representation (3.19) offers another way to calculate V0,
namely, via an approximation of (3.19) by means of numerical quadrature
methods (see Appendix C1), rather than applying MC. Of course, in this one-
dimensional situation, the approximation of the closed-form solution (3.18)
is more efficient. But in higher-dimensional spaces integrals corresponding
to (3.19) can be become highly attractive for computational purposes. Note
that the integrand is smooth because the zero branch of the put’s payoff
(K − ST )+ needs not be integrated; in (3.19) the integration is cut to the
interval 0 ≤ ST ≤ K. Any numerical quadrature method can be applied, such
as sparse-grid quadrature [GeG98], [Rei04], [Que07]. But in what follows, we
stay with Monte Carlo approximations.

3.5.2 Basic Version for European Options

The simulation aspect of Monte Carlo has been described before, see Figure
3.1. The procedure consists in calculating a large number N of trajectories
of the SDE, always starting from S0, and then average over the payoff values
Ψ((ST )k) of the samples (ST )k, k = 1, . . . , N , in order to obtain informa-
tion on the probable behavior of the process. This is identical to the formal
MC method for approximating an integral as (3.19), see Section 2.4. The
equivalence with the simulation aspect is characterized by the convergence

1
N

N∑
k=1

Ψ((ST )k) −→
∫ ∞

−∞
Ψ(ST ) fGBM(ST ) dST = E(Ψ(ST )),

see (B1.3). The correct probability distribution of the samples (ST )k is guar-
anteed by integrating the correct SDE under the risk-neutral measure (μ = r
for the Black–Scholes model and a non-dividend paying asset). Finally, the
result is discounted at the risk-free rate r to obtain the value for t = 0.

After having chosen the three items model, current initial value S0, and
payoff function Ψ , the Monte Carlo method works as follows:

Algorithm 3.6 (Monte Carlo simulation of European options)

(1) For k = 1, ..., N : Choose a seed and integrate the SDE of the underly-
ing model for 0 ≤ t ≤ T under the risk-neutral measure. (for example,
dS = rS dt + σS dW )
Let the final result be (ST )k.

(2) By evaluating the payoff function Ψ one obtains the values

(V (ST , T ))k := Ψ((ST )k), k = 1, ..., N.
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(3) An estimate of the risk-neutral expectation is

Ê(V (ST , T )) :=
1
N

N∑
k=1

(V (ST , T ))k.

(4) The discounted variable

V̂ := e−rT Ê(V (ST , T ))

is a random variable with E(V̂ ) = V (S0, 0).

In case the underlying receives a continuous dividend yield δ, replace
the r in step (1) by r − δ. (not in step (4)!) The resulting V̂ is the desired
approximation V̂ ≈ V (S0, 0). In this simple form, the Monte Carlo simulation
can only be applied to European options where the exercise date is fixed. Only
the value V (S0, 0) is obtained, and the lack of other information on V (S, t)
does not allow to check whether the early-exercise constraint of an American
option is violated. For American options a greater effort in simulation is
necessary, see Section 3.6. The convergence behavior corresponds to that
discussed for Monte Carlo integration, see Section 2.4. In practice the number
N must be chosen large, for example, N = 10000. This explains why Monte
Carlo simulation in general is expensive. For standard European options with
univariate underlying that satisfies the Assumption 1.2, the alternative of
evaluating the Black–Scholes formula is by far cheaper. But in principle both
approaches provide the same result, where we neglect that accuracies and
costs are different.

For multivariate options the MC algorithm works analogously, see the
example in Section 3.5.5. But the integration of a system of n SDEs clearly
has costs depending on n. So the costs of MC depend on n. In practice, this
can affect the error. In case the budget in computing time is limited, which
is standard for realtime calculations, a limit on the budget will limit the
number N of paths, and in turn, the error. If one path costs κ seconds, and
the budget for N paths is b seconds, then (2.14a) states that the attainable
error is of the order

√
κ/

√
b. In this sense, κ = O(n) does influence the error

of MC considerably.
Note that the above Algorithm 3.6 is a crude version of Monte Carlo

simulation. Since the simulations are independent, the confidence intervals
provided by the Central Limit Theorem can be applied (−→ Appendix B1).
In this way, a probabilistic error control is incorporated. Also methods of
variance reduction are applied, see Section 3.5.4.

Example 3.7 (European put)
Consider a European put with the parameters S0 = 5, K = 10, r =
0.06, σ = 0.3, T = 1. For the linear SDE dS = rS dt + σS dW with
constant coefficients the theoretical solution is known, see equation (1.54).
For the chosen parameters we have
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Fig. 3.3. Ten sequences of Monte Carlo simulations on Example 3.7, each with a

maximum of 10000 paths. horizontal axis: N , vertical axis: mean value V̂ (suffers
from bias, see Section 3.5.3)

S1 = 5 exp(0.015 + 0.3W1) ,

which requires “the” value of the Wiener process at t = 1. Related values
W1 can be obtained from (1.22) with Δt = T as W1 = Z

√
T , Z ∼ N (0, 1).

But for this illustration we do not take advantage of the analytic solu-
tion formula, because MC is not limited to linear SDEs with constant
coefficients. To demonstrate the general procedure we integrate the SDE
numerically with step length Δt < T , in order to calculate an approxima-
tion to S1. Any of the methods derived in Section 3.3 can be applied. For
simplicity we use Euler’s method. Since the chosen value of r is small, the
discretization error of the drift term is small compared to the standard
deviation of W1. As a consequence, the accuracy of the integration for
small values of Δt is hardly better than for larger values of the step size.
Artificially we choose Δt = 0.02 for the time step. Hence each trajectory
requires to calculate 50 normal variates ∼ N (0, 1). Figure 3.3 shows the
resulting values V̂ ≈ V (S0, 0) for 10 sequences of simulations, each with
a maximum of N = 10000 trajectories. Each sequence has started with a
different seed for the calculation of the random numbers from Section 2.3.
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The Example 3.7 is a European put with the same parameters as Example
1.5. This allows to compare the results of the simulation with the more
accurate results from Table 1.2, where we have obtained V (5, 0) ≈ 4.43.
The simulations reported in Figure 3.3 have difficulties to come close to
this value. Since Figure 3.3 depicts all intermediate results for sample sizes
N < 10000, the convergence behavior of Monte Carlo can be observed. For
this example and N < 2000 the accuracy is bad; for N ≈ 6000 it reaches
acceptable values, and hardly improves for 6000 < N ≤ 10000. Note that
the “convergence” is not monotonous, and one of the simulations delivers
a frustratingly inaccurate result.

3.5.3 Bias

The sampling error of Monte Carlo, which is characterized by the central
limit theorem, was already discussed in Section 2.4. Recall the size of this
error is proportional to N−1/2. In principle, the same error is encountered
when Monte Carlo is applied to option valuation. In case of the Black–Scholes
model, when the closed-form solution (1.54) of the SDE can be used in step (1)
of Algorithm 3.6, the sampling error is basically the only error. But for general
options, approximations are often based on discretizations (as in Example
3.7), and some bias is encountered. As a result, the error deteriorates.

Bias typically occurs when the option is path-dependent —that is, its
value depends on St for possibly all t ≤ T . For example, the volatility may
be local, which means that it depends on St, σ = σ(S). Another example is
furnished by the lookback option, where the valuation depends on

x := E

(
max

0≤t≤T
St

)
.

In both examples, a time discretization may help with a finite number m of
values Stj

, with the notation as used in (3.1). Even if the underlying SDE is
such that a closed-form solution is available, the estimator provided by the
discretely sampled maximum

x̂ := max
0≤j≤m

Stj

almost surely underestimates x. That is, the estimator x̂ of x is biased, with

bias(x̂) := E(x̂) − x �= 0 . (3.21)

The lookback option is one example where local information on the indi-
vidual paths is required. Other examples of exotic options requiring Stj

for
several tj are barrier options, and Asian options, see Section 6.1. In these
examples, if applied to the Black–Scholes model, the analytic solution can be
used locally in each step. Two alternatives for a step from t to t + Δt are
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St+Δt = St exp[(μ − 1
2σ2)Δt + σ ΔW ] (unbiased)

St+Δt = St (1 + μΔt + σ ΔW ) (Euler’s step, biased)
(3.22)

For the bias due to the application of Euler’s scheme, see Exercise 3.10.
Compare Figures 3.3 and 3.5 for results with and without bias.

Fortunately, when sufficient computing time is available, this bias can be
made arbitrarily small by taking sufficiently large values of m. There is a
tradeoff between making the variance small (N → ∞), and making the bias
small (m → ∞, Δt → 0). The mean square error

MSE(x̂) := E[(x̂ − x)2] (3.23a)

measures both errors: A straightforward calculation (which the reader may
check) shows

MSE(x̂) = (E(x̂) − x)2 + E[(x̂ − E(x̂))2]

= (bias(x̂))2 + Var(x̂)
(3.23b)

The final aim is to make MSE small, and the investigator must balance the
effort in controlling the bias or the sampling error.

We outline this for a Monte Carlo approximation that makes use of a nu-
merical integration scheme such as Euler’s method. For brevity, write again
h for the step Δt. Let x̂ := yh

T be the result of a weakly convergent discretiza-
tion scheme, see Definition 3.4, with order β and g =identity. Then the bias
of the discretization is of the order β,

bias(x̂) = α1h
β , α1 a constant.

Since the variance of Monte Carlo is of the order N−1 (N the sample size,
see (2.14a)), (3.23b) leads to model the mean square error as

MSE = α2
1h

2β +
α2

N

for some constant α2. This error model allows to analyze the tradeoff (N → ∞
or h → 0) more closely (−→ Exercise 3.13). It turns out that for optimally
chosen h,N the error

√
MSE behaves like

√
MSE ∼ C− β

1+2β

where C denotes the costs of the approximation. Applying Euler’s method
(β = 1) gives the exponent −1/3, clearly worse than the exponent −1/2 of
an unbiased Monte Carlo. As [Gla04] points out, this result emphasizes the
importance of high-order schemes (β > 1) for high demands of accuracy.

3.5.4 Variance Reduction

To improve the accuracy of simulation and thus the efficiency, it is essential to
apply methods of variance reduction. We explain the methods of the antithetic
variates and the control variates. In many cases these methods decrease the
variances.
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Fig. 3.4. Ten series of antithetic simulations on Example 3.7

Antithetic Variates

If a random variable satisfies Z ∼ N (0, 1), then also −Z ∼ N (0, 1). Let V̂
denote the approximation obtained by Monte Carlo simulation. With little
extra effort during the original Monte Carlo simulation we can run in parallel
a side calculation which uses −Z instead of Z. For each original path this
creates a “partner” path, which looks like a mirror image of the original. The
partner paths also define a Monte Carlo simulation of the option, called the
antithetic variate, denoted by V −. The average

VAV := 1
2

(
V̂ + V −

)
(3.24)

(AV for antithetic variate) is a new approximation, which in many cases is
more accurate than V̂ . Since V̂ and VAV are random variables we can only
aim at

Var(VAV) < Var(V̂ ) .

In view of the properties of variance and covariance (equation (B1.7) in Ap-
pendix B1),

Var(VAV) = 1
4Var(V̂ + V −)

= 1
4Var(V̂ ) + 1

4Var(V −) + 1
2Cov(V̂ , V −) .

(3.25)
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From
|Cov(X,Y )| ≤ 1

2
[Var(X) + Var(Y )]

(follows from (B1.7)) we deduce

Var(VAV) ≤ 1
2
(Var(V̂ ) + Var(V −)) .

By construction, Var(V̂ ) = Var(V −) should hold. Hence Var(VAV) ≤ Var(V̂ ).
This shows that in the worst case only the efficiency is slightly deteriorated
by the additional calculation of V −. The favorable situation is when the co-
variance is negative. Then (3.25) shows that the variance of VAV can become
significantly smaller than that of V̂ . Since we have chosen the random num-
bers −Z for the calculation of V −, the chances are high that V̂ and V − are
negatively correlated and hence Cov(V̂ , V −) < 0. In this situation VAV is a
better approximation than V̂ . Variance reduction by antithetic variates may
not be too effective, but is easily implemented.

In Figure 3.4 we simulate Example 3.7 again, now with antithetic vari-
ates. With this example and the chosen random number generator the vari-
ance reaches small values already for small N . Compared to Figure 3.3 the
convergence is somewhat smoother. The accuracy the experiment shown in
Figure 3.3 reaches with N = 6000 is achieved already with N = 2000 in
Figure 3.4. But in the end, the error has not become really small. The main
reason for the remaining significant error in the experiment reported by Fig-
ure 3.4 is the bias due to the discretization error of the Euler scheme. To
remove this source of error, we repeat the above experiments with the ana-
lytical solution of (1.49). The result is shown in Figure 3.5 for crude Monte
Carlo, and in Figure 3.6 for MC with antithetic variates. These figures better
reflect the convergence behavior of Monte Carlo simulation. By the way, ap-
plying the Milstein scheme of Algorithm 3.5 does not improve the picture: No
qualitative change is visible if we replace the Euler-generated simulations of
Figures 3.3/3.4 by their Milstein counterparts. This may be explained by the
fact that the weak convergence order of Milstein’s method equals that of the
Euler method. — Recall that Example 3.7 is chosen merely for illustration;
here other methods are by far more efficient than Monte Carlo approaches.

Control Variates
Again V denotes the exact value of the option and V̂ a Monte Carlo approx-
imation. For comparison we calculate in parallel another option, which is
closely related to the original option, and for which we know the exact value
V ∗. Let the Monte Carlo approximation of V ∗ be denoted V̂ ∗. This variate
serves as control variate with which we wish to “control” the error. The addi-
tional effort to calculate the control variate V̂ ∗ is small in case the simulations
of the asset S are identical for both options. This situation arises when S0, μ
and σ are identical and only the payoff differs. When the two options are
similar enough one may expect a strong positive correlation between them.
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Fig. 3.5. Five series of Monte Carlo simulations on Example 3.7, using the analytic
solution of the SDE (compare to Fig. 3.3)

So we expect relatively large values of Cov(V, V ∗) or Cov(V̂ , V̂ ∗), close to its
upper bound,

Cov(V̂ , V̂ ∗) ≈ 1
2
Var(V̂ ) +

1
2
Var(V̂ ∗) .

This leads us to define “closeness” between the options as sufficiently large
covariance in the sense

Cov(V̂ , V̂ ∗) >
1
2
Var(V̂ ∗) . (3.26)

The method is motivated by the assumption that the unknown error V −V̂ has
the same order of magnitude as the known error V ∗−V̂ ∗. This expectation can
be written V ≈ V̂ +(V ∗−V̂ ∗), which leads to define as another approximation

VCV := V̂ + V ∗ − V̂ ∗ (3.27)

(CV for control variate). We see from (B1.6) (with β = V ∗) and (B1.7) that

Var(VCV) = Var(V̂ − V̂ ∗) = Var(V̂ ) + Var(V̂ ∗) − 2Cov(V̂ , V̂ ∗) .

If (3.26) holds, then Var(VCV) < Var(V̂ ). In this sense Var(VCV) is a better
approximation than V̂ .
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Fig. 3.6. Five series of Monte Carlo simulations on Example 3.7 using the analytic
solution of the SDE and antithetic variates (3.21) (compare to Fig. 3.4)

3.5.5 Application to an Exotic Option

As mentioned before, the error of Monte Carlo methods does not vary with
the dimension. As an example we choose a two-dimensional binary put to
illustrate that MC can be applied as easily as in a one-dimensional situation.

Assume that two underlying assets S1(t), S2(t) obey a two-dimensional
GBM,

dS1 = S1 (μ1 dt + σ1 dW (1))

dS2 = S2 (μ2 dt + σ2 (ρdW (1) +
√

1 − ρ2 dW (2))) .
(3.28)

This makes use of Exercise 2.9: W (1) and W (2) are two uncorrelated standard
Wiener processes, and the way they interact in (3.28) establishes a correlation
ρ between S1 and S2. The analytic solution of (3.28) is given by

S1(T ) = S1(0) exp
(

(μ1 −
1
2
σ2

1)T + σ1W
(1)(T )

)

S2(T ) = S2(0) exp
(

(μ2 −
1
2
σ2

2)T + σ2(ρW (1)(T ) +
√

1 − ρ2 W (2)(T ))
)

,

(3.29)
which generalizes (1.54).
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Fig. 3.7. Example 3.8, binary option. top: two paths starting at S1 = S2 = 5 with
their payoff values; bottom: N = 1000 terminal points with their payoff values

Example 3.8 (2D European binary put)
A two-asset cash-or-nothing put pays the fixed cash amount C in case

S1(T ) < K1 and S2(T ) < K2 .

We choose the parameters T = 1, K1 = K2 = 5, σ1 = 0.2, σ2 = 0.3,
ρ = 0.3, C = 1, r = 0.1; no dividends, so the “costs of carry” are taken
as μ1 = μ2 = r. The value V (S1, S2, 0) is to be evaluated at S1(0) =
S2(0) = 5.
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Fig. 3.8. Example 3.8: surface V (S1, S2, 0) calculated by Algorithm 1.18; courtesy
of S. Quecke [Que07]

Figure 3.7 illustrates both the payoff of this exotic option and the Monte Carlo
approach. The top figure depicts the box characterizing the payoff. Further,
two paths starting at S1(0) = S2(0) = 5 are drawn. For t = T , one of the
paths ends inside the box, accordingly the payoff value there is V = C = 1.
The other path terminates “outside the strike,” the payoff value is zero. Since
we have the analytic solution (3.29), no paths need to be calculated. Rather,
terminal points (S1(T ), S2(T )) are evaluated by (3.29). The lower figure in
Figure 3.7 shows 1000 points calculated in this way. Taking the mean value
and discounting as in Algorithm 3.6, yields approximations to V (5, 5, 0). With
N = 105 simulations we obtain

V (5, 5, 0) ≈ 0.174 ,

using random numbers based on the simple generator of Algorithm 2.7. The
accuracy is almost three digits.2) Using Euler’s method rather than the an-
alytic solution, Example 3.8 offers nice possibilities to conduct empirical

2) This example has an analytic solution based on bivariate distribution
functions, see [Haug98].
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studies in controlling either the bias or the sample error. We conclude Exam-
ple 3.8 with Figure 3.8, which depicts the entire surface V (S1, S2, 0), calulated
with Algorithm 1.18 [Que07].

3.6 Monte Carlo Methods for American Options

The equation (3.20) can be generalized to American options. Similar as for
European options, Monte Carlo applied to American options requires sim-
ulating paths St of the underlying model. Again, for ease of exposition, we
think of the prototype example of the univariate Black–Scholes model where
we integrate dSt = rSt dt+σSt dWt for t ≥ 0. Whereas for European options
it is clear to integrate until expiration, t = T , the American option requires
to continuously investigate whether early exercise is advisable.

3.6.1 Stopping Time

To mimic reality, one must take care that for any t the decision on early
exercise is only based on the information that is known so far. Recall that
the filtration Ft is interpreted as a model of the available information at time
t. This situation suggests to require a stopping time be defined accordingly:

Definition 3.9 (stopping time)
A stopping time τ with respect to a filtration Ft is a random variable
that is Ft-measurable for all t ≥ 0.

That is, {τ ≤ t} ∈ Ft for all t ≥ 0. Typically a decision is made when τ is
reached, such as exercising early. For any time t we know whether τ ≤ t —
that is, whether the decision is made. Two examples should make the concept
of a stopping time clearer.

t

β

τ

S

0

T

0
S K

Fig. 3.9. The strategy of Example 3.10 to define a stopping time τ
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Example 3.10 (hitting time)
For a value β, which fixes a level of S, define

τ := inf{t > 0 | St ≥ β} ,

and τ := ∞ if such a t does not exist.

This example, illustrated in Figure 3.9, fulfils the requirements of a stopping
time.3 It defines a stopping strategy, “stop when St has reached β.”

The example

τ := moment when St reaches its maximum over 0 ≤ t ≤ T

is no stopping time, because for each t < T knowledge of the future states
of S is needed. For any arbitrary time t (< T ) it is not possible to decide
whether to stop.

S

0

T

0
S K

τ

t

Fig. 3.10. The optimal stopping time τ of a vanilla put. The heavy curve is the
early-exercise curve.

Of all possible stopping times, the stopping at the early-exercise curve is
optimal (illustrated in Figure 3.10). This optimal stopping gives the American
option its optimal value. From a practical point of view, the stopping at the
early-exercise curve can not be established as in Example 3.10, because the
curve is not known initially. But the following characterization of the value
V (S, 0) of an American option holds true:

V (S, 0) = sup
0≤τ≤T

EQ(e−rτ Ψ(Sτ ) |S0 = S) ,

where τ is a stopping time and Ψ the payoff.
(3.30)

This result is a special case for t = 0 of a more general formula for V (S, t),
which is proved in [Ben84]. Clearly, (3.30) includes the case of a European
option for τ := T , in which case taking the supremum is not effective.

3 For a proof, see ([LL96], p. 34, or [HuK00], p. 42).
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Fig. 3.11. Monte Carlo approximations V low(β)(S, 0) (+) for several values of β
(Exercise 3.12, random numbers from [MaN98]). The dashed line represents the
exact value V (S, 0).

3.6.2 Parametric Methods

A practical realization of (3.30) leads to calculating lower bounds V low(S, 0)
and upper bounds V up(S, 0) such that

V low(S, 0) ≤ V (S, 0) ≤ V up(S, 0) . (3.31)

Since by (3.30) V (S, 0) is given by taking the supremum over all stopping
times, a lower bound is obtained by taking a specific stopping strategy. To
illustrate the idea, choose the stopping strategy of Example 3.10 with a level
β, see Figure 3.9. If we denote for each calculated path the resulting stopping
time by τ̃ , a lower bound to V (S, 0) is given by

V low(β)(S, 0) := EQ(e−rτ̃ Ψ(Sτ̃ ) |S0 = S) . (3.32)

This value depends on the parameter β, which is indicated by writing V low(β).
The bound is calculated by Monte Carlo simulation over a sample of N paths,
where the paths are stopped according to the chosen stopping rule. Procedure
and costs of such a simulation for one value of β are analogous as in Algorithm
3.6. Repeating the experiment for another value of β may produce a better
(larger) value V low(β).
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It is difficult to get a tolerable accuracy working with only a single pa-
rameter β. The situation can be slightly improved by choosing a finishing line
different from Figure 3.9. A simple but nicely working approximation uses a
parabola in the (S, t)-domain with horizontal tangent at t = T . Again this
approach requires only one parameter β (−→ Exercise 3.12). The result of
this approach is illustrated in Figure 3.11.

There are many examples how to obtain better lower bounds. For instance,
the early-exercise curve can be approximated by pieces of curves or pieces of
straight lines, which are defined by several parameters; β then symbolizes a
vector of parameters. The idea is to optimize in the chosen parameter space,
trusting that

max
β

V low(β) ≈ V.

As illustrated by Figure 3.11, the corresponding surface to be maximized is
not smooth. Accordingly, an optimization in the parameter space is costly, see
Appendix C4. Recall that each evaluation of V low(β) for one β is expensive.

t

S

0

T

0
S K

Fig. 3.12. No stopping time; maximizing the payoff of a given path

What kind of parametric approximation, and what choice of the param-
eters can be considered “good” when V (S, t) is still unknown? To this end,
upper bounds V up can be constructed, and one attempts to push the differ-
ence V up−V low close to zero in order to improve the approximation provided
by (3.31).4 An upper bound can be obtained, for example, when one peers
into the future. As a crude example, the entire path St for 0 ≤ t ≤ T may be
simulated, and the option is “exercised” in retrospect when

e−rt Ψ(St)

is maximal. This is illustrated in Figure 3.12. Pushing the lower bounds
V low(β) towards upper bounds amounts to search in the β-parameter space

4 Since the bounds are approximated by stochastic methods, it may happen
that the true value V (S, 0) is not inside the calculated interval (3.31).
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for a better combination of β-values. As a by-product of approximating
V (S, 0), the corresponding parameters β provide an approximation of the
early-exercise curve.

The above is just a crude strategy how Monte Carlo can be applied to
approximate American options. In particular, the described simple approach
to obtain upper bounds is not satisfactory.
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Fig. 3.13. Bermuda option; schematic illustration with five trajectories and M = 5
exercise times; data as in Figure 3.1. horizontal axis: S, vertical axis: t. The points
Sik are marked.

3.6.3 Regression Methods

One basic idea of regression methods is to approximate the American-style
option by a Bermuda-style option. A Bermudan option restricts early exer-
cise to specified discrete dates during its life. As in Section 1.8.4, the time
instances with right to exercise are created artificially by a finite set of dis-
crete time instances ti :

Δt :=
T

M
, ti := iΔt (i = 0, . . . , M) ,

see the illustration of Figure 3.13. The situation resembles the time discretiza-
tion of the binomial method of Section 1.4. In that semidiscretized setting the
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value of the dynamic programming procedure of equation (1.14) generalizes
to

Vi(S) = max{Ψ(S) , V cont
i (S)} ,

where the continuation value or holding value V cont
i is defined by the condi-

tional expectation

V cont
i (S) := e−rΔt Ẽ(Vi+1(Si+1) |Si = S) .

[On the binomial tree, this is equation (1.13).] Ẽ (or EQ) is calculated as
before under the assumption of risk neutrality.

In this context of a Bermudan option, we define the continuation value

Ci(x) := e−rΔt EQ

[
V (Sti+1 , ti+1) | Sti

= x
]
. (3.33)

The general recursion is the

Principle 3.11 (dynamic programming)
Set VM (x) = Ψ(x). For i = M − 1, ..., 1

calculate Ci(x) for x > 0 and
Vi(x) := V (x, ti) = max {Ψ(x), Ci(x)}

V0 := V (S0, 0) = C0(S0)

The Ci(x) are calculated by least squares, see Appendix C4. This sets up the
basic principle of regression methods. Again, paths are calculated starting
from S0, according to the underlying risk-neutral model.

Algorithm 3.12 (regression I)
(a) Simulate N paths S1(t), ..., SN (t). Calculate and store the values

Sik := Sk(ti) , i = 1, ...,M, k = 1, ..., N .

(b) For i = M set VMk := Ψ(SMk) for all k.
(c) For i = M − 1, ..., 1:

Approximate Ci(x) using suitable basis functions φ0, ..., φL (monomi-
als, for example)

Ci(x) ≈
L∑

l=0

alφl(x) =: Ĉi(x)

by least squares over the N points

(xk, yk) := (Sik, e−rΔtVi+1,k) , k = 1, ..., N,

and set
Vik := max

{
Ψ(Sik), Ĉi(Sik)

}
.

(d)

V0 := e−rΔt 1
N

(V11 + ... + V1N ) .
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In step (c), the coefficients a0, . . . , aL of the approximation Ĉ result from
the least-squares method. If the S and the x are interpreted as vectors, the
algorithm also describes the multifactor case. [LonS01] has introduced a spe-
cial version of the regression, incorporating as a subalgorithm the calculation
of the stopping time of each path. Working with individual stopping times en-
ables to set up an interleaving mechanism over the time levels for comparing
cash flows. The central step in (c) changes to

Vik :=
{

Ψ(Sik) for Ψ(Sik) ≥ Ĉi(Sik)
Vi+1,k for Ψ(Sik) < Ĉi(Sik)

. (3.34)

This requires to adapt steps (b), (c), (d). Points out-of-the-money do not
enter the regression. To save storage, intermediate values can be filled in
by using a bridging technique. Following [Jon08], a significant speed-up is
possible when working with a cash-flow vector g, and an integer stopping
time vector τ (the integer factors k of τk = kΔt). The resulting algorithm is:

Algorithm 3.13 (regression II)
(a) Simulate N paths as in Algorithm 3.12.
(b) Set gk := Ψ(SMk), τk = M for k = 1, ..., N .
(c) For i = M − 1, ..., 1:

For the subset of in-the-money-points

(xk, yk) := (Sik, e−r(τk−i)Δtgk) ,

approximate Ci(x) by Ĉi(x) ,
and update in case Ψ(Sik) ≥ Ĉi(Sik): set

gk := Ψ(Sik), τk := i .

(d) Ĉ0 :=
1
N

N∑
k=1

e−rτkΔtgk , V0 := max{Ψ(S0), Ĉ0}.

Figure 3.14 shows a simple setting as an attempt to illustrate the regres-
sion method, with strike K = 10, and M = 2, N = 5. For i = 1, four of the
paths are in the money. Their continuation values Vi+1,k are denoted a, b,
c, d in Figure 3.14. The heavy line is the regression Ĉ, here a straight line
because it is based only on the two regressors φ0 = 1, φ1 = x. The maximum
max{Ψ, Ĉ} is easy to check: for the points a and b the payoff is larger than
Ĉ(S).

3.6.4 Other Methods, and Further Hints

Recently, many refined Monte Carlo methods for the calculation of Ameri-
can options have been suggested. These include the use of stochastic grids
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Fig. 3.14. Regression; illustration for a put with r = 0, M = 2, K = 10

[BrG04]. For an overview on related methods, consult Chapter 8 in [Gla04].
Here we outline some related ideas.

In summary we emphasize that Monte Carlo simulation is of great impor-
tance for general models where no specific assumptions (as those of Black,
Merton and Scholes) have lead to efficient approaches. For example, in case
the interest rate r cannot be regarded as constant but is modeled by some
SDE (such as equation (1.40)), then a system of SDEs must be integrated. Ex-
amples of stochastic volatility are provided by Example 1.15, compare Figure
3.2, or by the Heston model (1.43). In such cases the Black–Scholes equation
may not help and a Monte Carlo simulation can be the method of choice.
Then the Algorithm 3.6 is adapted appropriately. Monte Carlo methods are
especially attractive for multifactor models with high dimension.

The demands for accuracy of Monte Carlo simulation should be kept on
a low level. In many cases an error of 1% must suffice. Recall that it does not
make sense to decrease the Monte Carlo sampling error significantly below the
error of the time discretization of the underlying SDE (and vice versa). When
the amount of available random numbers is too small or its quality poor,
then no improvement of the error can be expected. The methods of variance
reduction can save a significant amount of costs [BBG97], [SH97], [Pl99].
Note that different variance-reduction techniques can be combined with each
other. The efficiency of Monte Carlo simulations can be enhanced by suitably
combining several discretizations with different levels of coarseness [Gil08].

When results are required for slightly changed parameter values, it may
be necessary to rerun Monte Carlo. But sometimes this can be avoided. For
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example, options are often priced for different maturities. When Monte Carlo
is combined with a bridging technique, several such options can be priced
effectively in a single run [RiW03]. Another example occurs when Greeks are
calculated by Monte Carlo. Here we comment on approximating delta= ∂V

∂S .
Applying two runs of Monte Carlo simulation, one for S0 and one for a
close value S0 −ΔS, an approximation of delta is obtained by the difference
quotient

V (S0) − V (S0 − ΔS)
ΔS

. (3.35)

The increment ΔS must be chosen carefully and not too small, because (B1.6)
in Appendix B tells us that the variance of (3.35) for arbitrary numerator
scales with (ΔS)−2. So it is important to investigate how the numerator de-
pends on ΔS. Simulating the two terms V (S0) and V (S0−ΔS) using common
random numbers improves the situation, see [Gla04]. As an alternative, Malli-
avin calculus allows to shift the differencing to the density function, which
leads via a kind of differentiation by parts to a different integral to be approx-
imated by Monte Carlo. For references on this technique, see [FoLLLT99].

Finally we test the Monte Carlo simulation in a fully deterministic vari-
ant. To this end we insert the quasi-random two-dimensional Halton points
into Algorithm 2.13 and use the resulting quasi normal deviates to calculate
solutions of the SDE. In this way, for Example 3.7 acceptable accuracy is
reached already for about 2000 paths, much better than what is shown in the
experiments reported by Figures 3.3 or 3.5.

A closer investigation reveals that normal deviates based on Box-Muller-
Marsaglia (Algorithm 2.13) with two-dimensional Halton points lose the
equidistributedness; the low discrepancy is not preserved. Apparently the
quasi-random method does not simulate independence [Ge98]. A related vi-
sual inspection resembles Figure 2.6. This sets the stage for the slightly faster
inversion method [Moro95] (−→ Appendix D2), based on one-dimensional
low-discrepancy sequences. Figure 3.15 shows the result. The scaling of the
figure is the same as before.

Notes and Comments

on Sections 3.1, 3.2:
Under suitable assumptions it is possible to prove for strong solutions exis-
tence and uniqueness, see [KP92]. Usually the discretization error dominates
other sources of error. We have neglected the sampling error (the difference
between ε̂ and ε), imperfections in the random number generator, and round-
ing errors. Typically these errors are likely to be less significant. Section 3.2
closely follows Section 5.1 of [KP92].
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Fig. 3.15. Quasi Monte Carlo applied to Example 3.7

on Section 3.3:
[KP92] discusses many methods for the approximation of paths of SDEs,
and proves their convergence. An introduction is given in [Pl99]. Possible
orders of strongly converging schemes are integer multiples of 1

2 whereas the
orders of weakly converging methods are whole numbers. Simple adaptions
of deterministic schemes do not converge for SDEs. For the integration of
random ODEs we refer to [GK01]. Maple routines for SDEs can be found in
[CKO01], and MATLAB routines in [Hig01].

For ODEs and SDEs linear stability is investigated. This is concerned
with the long-time behavior of solutions of the test equation dXt = αXt dt+
βXt dWt, where α is a complex number with negative real part. This situation
does not appear relevant for applications in finance. The numerical stability
in the case Re(α) < 0 depends on the step size h and the relation among
the three parameters α, β, h. For this topic and further references we refer to
[SM96], [Hig01], [Pl99].

on Section 3.4:
For Brownian bridges see, for instance, [KS91], [RY91], [KP92], [Øk98],
[Mo98], [Gla04]. Other bridges than Brownian bridges are possible. For a
Gamma process and a Gaussian bridge this is shown in [RiW02], [RiW03].
For the effectiveness of Monte Carlo integration improved with bridging
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techniques, see [CaMO97]. The probablity that a Brownian bridge passes
a given barrier is found in [KS91], see also [Gla04]. The maximum of a stan-
dard Wiener process tied down to W0 = 0, W1 = a on 0 ≤ t ≤ 1 has the
distribution F (x) of Exercise 2.16.

Another alternative to fill large gaps is to apply fractal interpolation
[Man99].

on Section 3.5:
In the literature the basic idea of the approach summarized by equation
(3.19) is analyzed using martingale theory, compare the references in Chap-
ter 1 and Appendix B2. An early paper suggesting MC for the pricing of
options is [Boy77]. An important application of Monte Carlo methods is the
calculation of risk indices such as value at risk, see the notes on Section 1.8.
The equivalence of the Monte Carlo simulation (representation (3.18)/(3.19))
with the solution of the Black–Scholes equation is guaranteed by the theorem
of Feynman and Kac [KS91], [Ne96], [Re96], [Øk98], [Bjö98], [TR00], [Shr04].
A standard reference on MC in finance is [Gla04].

Monte Carlo simulations can be parallelized in a trivial way: The single
simulations can be distributed among the processors in a straightforward
fashion because they are independent of each other. If M processors are
available, the speed reduces by a factor of 1/M . But the streams of random
numbers in each processor must be independent. For related generators see
[Mas99]. In doubtful and sensitive cases Monte Carlo simulation should be
repeated with other random-number generators, and with low-discrepancy
numbers [Jäc02].

The method of control variates can be modified with a parameter α,

V α
CV := V̂ + α(V ∗ − V̂ ∗),

where one tries to find a value of α such that the variance is minimized. For a
discussion of variance reduction and examples, consult Chapter 4 in [Gla04].
For the variance-reduction method of importance sampling, see [New97].

on Section 3.6:
For Monte Carlo simulation on American options see also [BrG97], [BBG97],
[Kwok98], [Ro00], [Fu01], [LonS01], [Gla04]. Note that for multivariate op-
tions of the American style the costs are increasing with the dimension more
significantly than for European options. For parametric methods, the param-
eter vector β defines surfaces rather than curves. And for regression methods,
the calculation of C or Ĉ is costly and does depend on the dimension. A nice
experiment with a parametric method is [Hig04].

A first version of regression was introduced by [Til93], where the continu-
ation value was approximated based on subsets of paths. This bundling tech-
nique was modified in [Car96] by an improved regression. As [Til93] points
out, a single set of paths of an underlying asset can be generated and then
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used repeatedly to value many different derivatives. Lack of independence
makes it difficult to prove convergence, or to set up confidence intervals. For
these aspects, see [Egl05], and [AnB04] and the references therein.

Exercises

Exercise 3.1 Implementing Euler’s Method
Implement Algorithm 1.11. Start with a test version for one scalar SDE, then
develop a version for a system of SDEs. Test examples:
a) Perform the experiment of Figure 1.17.
b) Integrate the system of Example 1.15 for α = 0.3, β = 10 and the initial

values S0 = 50, σ0 = 0.2, ξ0 = 0.2 for 0 ≤ t ≤ 1.
We recommend to plot the calculated trajectories.

Exercise 3.2 Itô Integral in Equation (3.9)
Let the interval 0 ≤ s ≤ t be partitioned into n subintervals, 0 = t1 < t2 <
... < tn+1 = t. For a Wiener process Wt assume Wt1 = 0.

a) Show
n∑

j=1

Wtj

(
Wtj+1 − Wtj

)
=

1
2
W 2

t − 1
2

n∑
j=1

(
Wtj+1 − Wtj

)2
b) Use Lemma 1.9 to deduce Equation (3.9).

Exercise 3.3 Integration by Parts for Itô Integrals
a) Show ∫ t

t0

sdWs = tWt − t0Wt0 −
∫ t

t0

Ws ds

Hint: Start with the Wiener process Xt = Wt and apply the Itô Lemma
with the transformation y = g(x, t) := tx.

b) Denote ΔY :=
∫ t

t0

∫ s

t0
dWz ds. Show by using a) that

∫ t

t0

∫ s

t0

dz dWs = ΔWΔt − ΔY .

Exercise 3.4 Moments of Itô Integrals for Weak Solutions
a) Use the Itô isometry

E

⎡
⎣
(∫ b

a

f(t, ω) dWt

)2
⎤
⎦ =

∫ b

a

E
[
f2(t, ω)

]
dt

to show its generalization
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E [I(f)I(g)] =
∫ b

a

E[fg] dt , where I(f) =
∫ b

a

f(t, ω) dWt .

Hint: 4fg = (f + g)2 − (f − g)2.
b) For ΔY :=

∫ t

t0

∫ s

t0
dWz ds the moments are

E[ΔY ] = 0, E[ΔY 2] =
Δt3

3
, E[ΔY ΔW ] =

Δt2

2
and E[ΔY ΔW 2] = 0.

Show this by using a) and E
[∫ b

a
f(t, ω) dWt

]
= 0.

Exercise 3.5
By transformation of two independent standard normally distributed random
varables Zi ∼ N (0, 1), i = 1, 2, two new random variables are obtained by

ΔŴ := Z1

√
Δt, ΔŶ :=

1
2
(Δt)3/2

(
Z1 +

1√
3
Z2

)
.

Show that ΔŴ and ΔŶ have the moments of (3.14).

Exercise 3.6
In addition to (3.14) further moments are

E(ΔW ) = E(ΔW 3) = E(ΔW 5) = 0, E(ΔW 2) = Δt, E(ΔW 4) = 3Δt2.

Assume a new random variable ΔW̃ satisfying

P
(
ΔW̃ = ±

√
3Δt

)
=

1
6
, P

(
ΔW̃ = 0

)
=

2
3

and the additional random variable

ΔỸ :=
1
2
ΔW̃Δt .

Show that the random variables ΔW̃ and ΔỸ have up to terms of order
O(Δt3) the same moments as ΔW and ΔY .

Exercise 3.7 Brownian Bridge
For a Wiener process Wt consider

Xt := Wt −
t

T
WT for 0 ≤ t ≤ T .

Calculate Var(Xt) and show that√
t

(
1 − t

T

)
Z with Z ∼ N (0, 1)

is a realization of Xt.
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Exercise 3.8 Error of the Milstein Scheme

To which formula does the Milstein scheme reduce for linear SDEs? Per-
form the experiment outlined in Example 3.2 using the Milstein scheme of
Algorithm 3.5. Set up a table similar as in Table 3.1 to show

ε̂(h) ≈ h

for Example 3.2.

Exercise 3.9 Monte Carlo and European Option

For a European put with time to maturity τ := T − t prove that

V (St, t)=e−rτ

∞∫
0

(K−ST )+
1

ST σ
√

2πτ
exp

{
−

[ln(ST /St)−(r − σ2

2 )τ ]2

2σ2τ

}
dST

= e−rτKF (−d2) − StF (−d1) ,

where d1 and d2 are defined in (A4.10).
Hints: The second equation is to be shown, the first only collects the terms
of (3.18). Use (K − ST )+ = 0 for ST > K, and get two integrals.

Exercise 3.10 Bias of the Euler Approximation

Given is the SDE dSt = St(μdt + σ dWt) with constant μ, σ. Let Ŝ denote
an Euler approximation at t2 := 2Δt, calculated with two steps of length Δt,
starting at t0 := 0 with the value S0.
a) Calculate E(Ŝ).
b) Calculate the bias E(Ŝ) − S0 exp[μt2] .

Exercise 3.11 Monte Carlo for European Options

Implement a Monte Carlo method for single-asset European options, based
on the Black–Scholes model. Perform experiments with various values of N
and a random number generator of your choice. Compare results obtained
by using the analytic solution formula for St with results obtained by using
Euler’s discretization. For c) B is the barrier such that the option expires
worthless when St ≥ B for some t.
input: S0, number of simulations (trajectories) N , payoff function Ψ(S), risk-
neutral interest rate r, volatility σ, time to maturity T , strike K.
payoffs:
a) vanilla put, with Ψ(S) = (K − S)+, S0 = 5, K = 10, r = 0.06, σ = 0.3,

T = 1.
b) binary call, with Ψ(S) = 1S>K , S0 = K = σ = T = 0.5, r = 0.1
c) up-and-out barrier: call with S0 = 5, K = 6, r = 0.05, σ = 0.3, T = 1,

B = 8.
Hint: Correct values are: a) 4.43046 b) 0.46220 [Que07] c) 0.0983 [Hig04]
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Exercise 3.12 Project: Monte Carlo Experiment

Construct as hitting curve a parabola with horizontal tangent at (S, t) =
(K,T ), similar as in Figure 3.10. The parabola is defined by the intersection
with the S-axis, (S, t) = (β, 0). Choose K = 10, r = 0.006, σ = 0.3, and
S0 = 9 and simulate for several values of β the GBM dS = rS dt + σS dW
several thousand times, and calculate the hitting time for each trajectory.
Estimate a lower bound to V (S0, 0) using (3.30). Decide whether an exact
calculation of the hitting point makes sense. (Run experiments comparing
such a strategy to implementing the hitting time restricted to the discrete
time grid.) Think about how to implement upper bounds.

Exercise 3.13 Error of Biased Monte Carlo

Assume
MSE = ζ(h,N) := α2

1h
2β +

α2

N

as error model of a Monte Carlo simulation with sample size N , based on a
discretization of an SDE with stepsize h, where α1, α2 are two constants.
a) Argue why for some constant α3

C(h,N) := α3
N

h

is a reasonable model for the costs of the MC simulation.
b) Minimize ζ(h,N) with respect to h,N subject to the side condition

α3N/h = C

for given budget C.
c) Show that for the optimal h,N

√
MSE = α4C

− β
1+2β .



Chapter 4 Standard Methods
for Standard Options

We now enter the part of the book that is devoted to the numerical solution
of equations of the Black–Scholes type. Here we discuss “standard” options
in the sense as introduced in Section 1.1 and assume the scenario charac-
terized by the Assumptions 1.2. In case of European options the function
V (S, t) solves the Black–Scholes equation (1.2). It is not really our aim to
solve this partial differential equation because it possesses an analytic solu-
tion (−→ Appendix A4). Ultimately our intention is to solve more general
equations and inequalities. In particular, American options will be calculated
numerically. The goal is not only to calculate single values V (S0, 0) —for
this purpose binomial methods can be applied— but also to approximate the
curve V (S, 0), or even the surface defined by V (S, t) on the half strip S > 0,
0 ≤ t ≤ T . Thereby we collect information on early exercise, and on delta
hedging by observing the derivative ∂V

∂S .
American options obey inequalities of the type of the Black–Scholes equa-

tion (1.2). To allow for early exercise, the Assumptions 1.2 must be weakened.
As a further generalization, the payment of dividends must be taken into ac-
count because otherwise early exercise does not make sense for American
calls.

The main part of this chapter outlines an approach based on finite differ-
ences. We begin with unrealistically simplified boundary conditions in order
to keep the explanation of the discretization schemes transparent. Later sec-
tions will discuss the full boundary conditions, which turn out to be tricky
in the case of American options. At the end of this chapter we will be able to
implement a finite-difference algorithm that can calculate standard American
(and European) options. If we work carefully, the resulting finite-difference
computer program will yield correct approximations. But the finite-difference
approach is not necessarily the most efficient one. Hints on other methods
will be given at the end of this chapter. For nonstandard options we refer to
Chapter 6.

The finite-difference methods will be explained in some detail because
they are the most elementary approaches to approximate differential equa-
tions. As a side-effect, this chapter serves as introduction into several fun-
damental concepts of numerical mathematics. A trained reader may like to
skip Sections 4.2 and 4.3. The aim of this chapter is to introduce concepts,
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as well as a characterization of the free boundary (early-exercise curve), and
of linear complementarity.

In addition to the classical finite-difference approach, “standard methods”
include analytic methods, which to a significant part are based on nonnumer-
ical methods. The final Section 4.8 will give an introduction.

4.1 Preparations

We assume that dividends are paid with a continuous yield of constant level.
In case of a discrete payment of, for example, one payment per year, the
payment can be converted into a continuous yield (−→ Exercise 4.1). To
this end one has to take into consideration that at the instant of a discrete
payment the price S(t) of the asset instantaneously drops by the amount
of the payment. This holds true because of the no-arbitrage principle. The
continuous flow of dividends is modeled by a decrease of S in each time
interval dt by the amount

δS dt ,

with a constant δ ≥ 0. This continuous dividend model can be easily built into
the Black–Scholes framework. To this end the standard model of a geometric
Brownian motion represented by the SDE (1.33) is generalized to

dS

S
= (μ − δ) dt + σ dW .

The corresponding Black–Scholes equation for the value function V (S, t) is

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0 . (4.1)

This equation is equivalent to the equation

∂y

∂τ
=

∂2y

∂x2
(4.2)

for y(x, τ) with 0 ≤ τ , x ∈ IR. This equivalence can be proved by means of
the transformations

S = Kex, t = T − 2τ

σ2
, q :=

2r

σ2
, qδ :=

2(r − δ)
σ2

,

V (S, t) = V
(
Kex, T − 2τ

σ2

)
=: v(x, τ) and

v(x, τ) =: K exp
{
− 1

2 (qδ − 1)x −
(

1
4 (qδ − 1)2 + q

)
τ
}

y(x, τ) .

(4.3)

For the slightly simpler case of no dividend payments (δ = 0) the derivation
was carried out earlier (−→ Exercise 1.2). Intrinsic to the transformation
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(4.3) is that the constants r, σ, δ must be constants. The transformation is
motivated by the observation that the Black–Scholes equation in the ver-
sion (4.1) has variable coefficients Sj with powers matching the order of the
derivative with respect to S. That is, the relevant terms in (4.1) are of the
type

Sj ∂jV

∂Sj
, for j = 0, 1, 2 .

Linear differential equations with such terms are known as Euler’s differ-
ential equations; their analysis suggests the transformation S = Kex. The
transformed version in equation (4.2) has constant coefficients (=1), which
simplifies implementing numerical algorithms.

In view of the time transformation in (4.3) the expiration time t = T
is determined in the “new” time by τ = 0, and t = 0 is transformed to
τ = 1

2σ2T . Up to the scaling by 1
2σ2 the new time variable τ represents the

remaining life time of the option. And the original domain of the half strip
S > 0, 0 ≤ t ≤ T belonging to (4.1) becomes the strip

−∞ < x < ∞, 0 ≤ τ ≤ 1
2σ2T ,

on which we are going to approximate a solution y(x, τ) to (4.2). After that
calculation we again apply the transformations of (4.3) to derive out of y(x, τ)
the value of the option V (S, t) in the original variables.

Under the transformations (4.3) the terminal conditions (1.1C) and (1.1P)
become initial conditions for y(x, 0). A call, for example, satisfies

V (S, T ) = max{S − K, 0} = K · max{ex − 1, 0} .

From (4.3) we find

V (S, T ) = K exp
{
−x

2
(qδ − 1)

}
y(x, 0) ,

and thus

y(x, 0) = exp
{x

2
(qδ − 1)

}
max{ex − 1, 0}

=
{

exp
{

x
2 (qδ − 1)

}
(ex − 1) for x > 0

0 for x ≤ 0 .

Using

exp
{x

2
(qδ − 1)

}
(ex − 1) = exp

{x

2
(qδ + 1)

}
− exp

{x

2
(qδ − 1)

}
the initial conditions y(x, 0) in the new variables read

call: y(x, 0) = max
{

e
x
2 (qδ+1) − e

x
2 (qδ−1), 0

}
(4.4C)

put: y(x, 0) = max
{

e
x
2 (qδ−1) − e

x
2 (qδ+1), 0

}
(4.4P)



144 Chapter 4 Standard Methods for Standard Options

The boundary-value problem is completed by imposing boundary conditions
for x → −∞ and x → +∞ (in Section 4.4).

The equation (4.2) is of the type of a parabolic partial differential equation
and is the simplest diffusion or heat-conducting equation. Both equations
(4.1) and (4.2) are linear in the dependent variables V or y. The differential
equation (4.2) is also written yτ = yxx or ẏ = y′′. The diffusion term is yxx.

In principle, the methods of this chapter can be applied directly to (4.1).
But the equations and algorithms are easier to derive for the algebraically
equivalent version (4.2). Note that numerically the two equations are not
equivalent. A direct application of this chapter’s methods to version (4.1) can
cause severe difficulties. This will be discussed in Chapter 6 in the context
of Asian options. These difficulties will not occur for equation (4.2), which
is well-suited for standard options with constant coefficients. The equation
(4.2) is integrated in forward time —that is, for increasing τ starting from
τ = 0. This fact is important for stability investigations. For increasing τ the
version (4.2) makes sense; this is equivalent to the well-posedness of (4.1) for
decreasing t.

4.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied
to the PDE (4.2).

4.2.1 Difference Approximation

Each two times continuously differentiable function f satisfies

f ′(x) =
f(x + h) − f(x)

h
− h

2
f ′′(ξ) ;

where ξ is an intermediate number between x and x+h. The accurate position
of ξ is usually unknown. Such expressions are derived by Taylor expansions.
We discretize x ∈ IR by introducing a one-dimensional grid of discrete points
xi with

... < xi−1 < xi < xi+1 < ...

For example, choose an equidistant grid with mesh size h := xi+1 − xi. The
x is discretized, but the function values fi := f(xi) are not discrete, fi ∈ IR.
For f ∈ C2 the derivative f ′′ is bounded, and the term −h

2 f ′′(ζ) can be
conveniently written as O(h). This leads to the practical notation

f ′(xi) =
fi+1 − fi

h
+ O(h) . (4.5)

Analogous expressions hold for the partial derivatives of y(x, τ), which in-
cludes a discretization in τ . This suggests to replace the neutral notation h
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by either Δx or Δτ , respectively. The fraction in (4.5) is the difference quo-
tient that approximates the differential quotient f ′ of the left-hand side; the
O(hp)-term is the error. The one-sided (i.e. nonsymmetric) difference quo-
tient of (4.5) is of the order p = 1. Error orders of p = 2 are obtained by
central differences

f ′(xi) =
fi+1 − fi−1

2h
+ O(h2) (for f ∈ C3)

f ′′(xi) =
fi+1 − 2fi + fi−1

h2
+ O(h2) (for f ∈ C4)

or by one-sided differences that involve more terms, such as

f ′(xi) =
−fi+2 + 4fi+1 − 3fi

2h
+ O(h2) (for f ∈ C3) .

Rearranging terms and indices provides the approximation formula

fi ≈
4
3
fi−1 −

1
3
fi−2 +

2
3
hf ′(xi) , (BDF2)

which is of second order. The latter difference quotient leads to one example of
a backward differentiation formula (BDF). Equidistant grids are advantagous
in that algorithms are easy to implement, and error terms are easily derivated
by Taylor’s expansion. This chapter works with equidistant grids.

x

x

τ

τ

τ

Δ

Δτ
ν+1

ν

i i+1i−1x x x

Fig. 4.1. Detail and notations of the grid

4.2.2 The Grid

Either the x-axis, or the τ -axis, or both can be discretized. If only one of the
two independent variables x or τ is discretized, one obtains a semidiscretiza-
tion consisting of parallel lines. This is used in Exercise 4.10 and in Section
4.8.3. Here we perform a full discretization leading to a two-dimensional grid.

Let Δτ and Δx be the mesh sizes of the discretizations of τ and x. The
step in τ is Δτ := τmax/νmax for τmax := 1

2σ2T and a suitable integer νmax.
The choice of the x-discretization is more complicated. The infinite interval
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−∞ < x < ∞ must be replaced by a finite interval a ≤ x ≤ b. Here the end
values a = xmin < 0 and b = xmax > 0 must be chosen such that for the
corresponding Smin = Kea and Smax = Keb and the interval Smin ≤ S ≤
Smax a sufficient quality of approximation is obtained. For a suitable integer
m the step length in x is defined by Δx := (b − a)/m. Additional notations
for the grid are

τν := ν · Δτ for ν = 0, 1, ..., νmax

xi := a + iΔx for i = 0, 1, ...,m
yiν := y(xi, τν),
wiν approximation to yiν .

This defines a two-dimensional uniform grid as illustrated in Figure 4.1.1 Note
that the equidistant grid in this chapter is defined in terms of x and τ , and
not for S and t. Transforming the (x, τ)-grid via the transformation in (4.3)
back to the (S, t)-plane, leads to a nonuniform grid with unequal distances
of the grid lines S = Si = Kexi : The grid is increasingly dense close to Smin.
(This is not advantagous for the accuracy of the approximations of V (S, t).
We will come back to this in Section 5.2.) The Figure 4.1 illustrates only a
small part of the entire grid in the (x, τ)-strip. The grid lines x = xi and
τ = τν can be indicated by their indices (Figure 4.2).

The points where the grid lines τ = τν and x = xi intersect, are called
nodes. In contrast to the theoretical solution y(x, τ), which is defined on
a continuum, the wiν are only defined for the nodes. The error wiν − yiν

depends on the choice of parameters νmax, m, xmin, xmax. A priori we do not
know which choice of parameters matches a prespecified error tolerance. An
example of the order of magnitude of these parameters is given by xmin = −5,
xmax = 5, νmax = 100, m = 100. This choice of xmin, xmax has shown to be
reasonable for a wide range of r, σ-values and accuracies. The actual error is
then controlled via the numbers νmax und m of grid lines.

4.2.3 Explicit Method

Substituting
∂yiν

∂τ
=

yi,ν+1 − yiν

Δτ
+ O(Δτ)

∂2yiν

∂x2
=

yi+1,ν − 2yiν + yi−1,ν

Δx2
+ O(Δx2)

into (4.2) and discarding the error terms leads to the equation

wi,ν+1 − wiν

Δτ
=

wi+1,ν − 2wiν + wi−1,ν

Δx2

for the approximation w. Solving for wi,ν+1 we obtain

1 Writing the indices in matrix notation as in yiν is meant in the sense yi,ν .
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wi,ν+1 = wiν +
Δτ

Δx2
(wi+1,ν − 2wiν + wi−1,ν) .

With the abbreviation
λ :=

Δτ

Δx2

the result is written compactly

wi,ν+1 = λwi−1,ν + (1 − 2λ)wiν + λwi+1,ν
(4.6)

The Figure 4.2 accentuates the nodes that are connected by this formula.
Such a graphical scheme illustrating the structure of the equation, is called
molecule.

τ

i+1ii-1

ν+1

ν

x

Fig. 4.2. Connection scheme of the explicit method

The equation (4.6) and the Figure 4.2 suggest an evaluation organized by
time levels. All nodes with the same index ν form the ν-th time level. For a
fixed ν the values wi,ν+1 for all i of the time level ν + 1 are calculated. Then
we advance to the next time level. The formula (4.6) is an explicit expression
for each of the wi,ν+1; the values w at level ν +1 are not coupled. Since (4.6)
provides an explicit formula for all wi,ν+1 (i = 0, 1, ...,m), this method is
called explicit method or forward-difference method.
Start: For ν = 0 the values of wi0 are given by the initial conditions

wi0 = y(xi, 0) for y from (4.4), 0 ≤ i ≤ m .

The w0ν and wmν for 1 ≤ ν ≤ νmax are fixed by boundary conditions. For
the next few pages, to simplify matters, we artificially set w0ν = wmν = 0.
The correct boundary conditions are deferred to Section 4.4.

For the following analysis it is useful to collect all values w of the time
level ν into a vector,

w(ν) := (w1ν , ..., wm−1,ν)tr .
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The next step towards a vector notation of the explicit method is to introduce
the constant (m − 1) × (m − 1) tridiagonal matrix

A := Aexpl :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 2λ λ 0 · · · 0

λ 1 − 2λ
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . λ

0 · · · 0 λ 1 − 2λ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.7a)

Now the explicit method in matrix-vector notation reads

w(ν+1) = Aw(ν) for ν = 0, 1, 2, ... (4.7b)

The formulation of (4.7) with the matrix A and the iteration (4.7b) is needed
only for theoretical investigations. An actual computer program would rather
use the version (4.6). The inner-loop index i does not occur explicitly in the
vector notation of (4.7).

To illustrate the behavior of the explicit method, we perform an experi-
ment with an artificial example, where initial conditions and boundary con-
ditions are not related to finance.

Example 4.1
yτ = yxx, y(x, 0) = sinπx, x0 = 0, xm = 1, boundary conditions
y(0, τ) = y(1, τ) = 0 (that is, w0ν = wmν = 0).
The aim is to calculate an approximation w for one (x, τ), for example, for
x = 0.2, τ = 0.5. The exact solution is y(x, τ) = e−π2τ sin πx, such that
y(0.2, 0.5) = 0.004227.... We carry out two calculations with the same
Δx = 0.1 (hence 0.2 = x2), and two different Δτ :

(a) Δτ = 0.0005 =⇒ λ = 0.05
0.5 = τ1000, w2,1000

.= 0.00435
(b) Δτ = 0.01 =⇒ λ = 1,

0.5 = τ50, w2,50
.= −1.5 ∗ 108 (the actual numbers depend on the

computer)

It turns out that the choice of Δτ in (a) has led to a reasonable approximation,
whereas the choice in (b) has caused a disaster. Here we have a stability
problem!

4.2.4 Stability

Let us perform an error analysis of the iteration w(ν+1) = Aw(ν). In general
we use the same notation w for the theoretical definition of w and for the
values of w that are obtained by numerical calculations in a computer. Since
we now discuss rounding errors, we must distinguish between the two mean-
ings. Let w(ν) denote the vectors theoretically defined by (4.7). Hence, by
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definition, the w(ν) are free of rounding errors. But in computational reality,
rounding errors are inevitable. We denote the computer-calculated vector by
w̄(ν) and the error vectors by

e(ν) := w̄(ν) − w(ν) ,

for ν ≥ 0. The result in a computer can be written

w̄(ν+1) = Aw̄(ν) + r(ν+1) ,

where the vectors r(ν+1) amount to rounding errors that occur during the
calculation of Aw̄(ν). Let us concentrate on the effect of the rounding errors
that occur for an arbitrary ν, say for ν∗. We ask for the propagation of this
error for increasing ν > ν∗. Without loss of generality we set ν∗ = 0, and
for simplicity take r(ν) = 0 for ν > 1. That is, we investigate the effect the
initial rounding error e(0) has on the iteration. The initial error e(0) represents
the rounding error during the evaluation of the initial condition (4.4), when
w̄(0) is calculated. According to this scenario we have w̄(ν+1) = Aw̄(ν). The
relation

Ae(ν) = Aw̄(ν) − Aw(ν) = w̄(ν+1) − w(ν+1) = e(ν+1)

between consecutive errors is applied repeatedly and results in

e(ν) = Aνe(0) . (4.8)

For the method to be stable, previous errors must be damped. This leads to
require Aνe(0) → 0 for ν → ∞. Elementwise this means limν→∞{(Aν)ij} = 0
for ν → ∞ and for any pair of indices (i, j). The following lemma provides a
criterion for this requirement.

Lemma 4.2

ρ(A) < 1 ⇐⇒ Aνz → 0 for all z and ν → ∞
⇐⇒ lim

ν→∞
{(Aν)ij} = 0

Here ρ(A) is the spectral radius of A,

ρ(A) := max
i

|μA
i | ,

where μA
1 , ..., μA

m−1 denote the eigenvalues of A. The proof can be found in
text books of numerical analysis, for example, in [IK66]. As a consequence of
Lemma 4.2 we require for stable behavior that |μA

i | < 1 for all eigenvalues,
here for i = 1, ...,m−1. To check the criterion of Lemma 4.2, the eigenvalues
μA

i of A are needed. To this end we split the matrix A into
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A = I − λ ·

⎛
⎜⎜⎜⎝

2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=:G

.

It remains to investigate the eigenvalues μG of the tridiagonal matrix G.2

Lemma 4.3

Let G =

⎛
⎜⎜⎜⎝

α β 0

γ
. . . . . .
. . . . . . β

0 γ α

⎞
⎟⎟⎟⎠ be an N2-matrix.

The eigenvalues μG
k and the eigenvectors v(k) of G are

μG
k = α + 2β

√
γ

β
cos

kπ

N + 1
, k = 1, ..., N ,

v(k) =

(√
γ

β
sin

kπ

N + 1
,

(√
γ

β

)2

sin
2kπ

N + 1
, ...,

(√
γ

β

)N

sin
Nkπ

N + 1

)tr

.

Proof: Substitute into Gv = μGv.

To apply the lemma observe N = m− 1, α = 2, β = γ = −1, and obtain the
eigenvalues μG and finally the eigenvalues μA of A:

μG
k = 2 − 2 cos

kπ

m
= 4 sin2

(
kπ

2m

)

μA
k = 1 − 4λ sin2 kπ

2m

Now we can state the stability requirement |μA
k | < 1 as∣∣∣∣1 − 4λ sin2 kπ

2m

∣∣∣∣ < 1, k = 1, ...,m − 1 .

This implies the two inequalities λ > 0 and

−1 < 1 − 4λ sin2 kπ

2m
, rewritten as

1
2

> λ sin2 kπ

2m
.

The largest sin-term is sin (m−1)π
2m ; for increasing m this term grows mono-

tonically approaching 1.

2 The zeros in the corner of the matrix symbolize the tringular zero struc-
ture of (4.7a).
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In summary we have shown

For 0 < λ ≤ 1
2

the explicit method w(ν+1) = Aw(ν) is stable.

In view of λ = Δτ/Δx2 this stability criterion amounts to bounding the Δτ
step size,

0 < Δτ ≤ Δx2

2
(4.9)

This explains what happened with Example 4.1. The values of λ in the two
cases of this example are

(a) λ = 0.05 ≤ 1
2

(b) λ = 1 >
1
2

In case (b) the chosen Δτ and hence λ were too large, which led to an
amplification of rounding errors resulting eventually in the “explosion” of
the w-values.

The explicit method is stable only as long as (4.9) is satisfied. As a conse-
quence, the parameters m and νmax of the grid resolution can not be chosen
independent of each other. If the demands for accuracy are high, the step
size Δx will be small, which in view of (4.9) bounds Δτ quadratically. This
situation suggests searching for a method that is unconditionally stable.

4.2.5 An Implicit Method

When we introduced the explicit method in Subsection 4.2.3, we approxi-
mated the time derivative with a forward difference, “forward” as seen from
the ν-th time level. Now we try the backward difference

∂yiν

∂τ
=

yiν − yi,ν−1

Δτ
+ O(Δτ) ,

which yields the alternative to (4.6)

−λwi+1,ν + (2λ + 1)wiν − λwi−1,ν = wi,ν−1
(4.10)

The equation (4.10) relates the time level ν to the time level ν − 1. For the
transition from ν − 1 to ν only the value wi,ν−1 on the right-hand side of
(4.10) is known, whereas on the left-hand side of the equation three unknown
values of w wait to be computed. Equation (4.10) couples three unknowns.
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The corresponding molecule is shown in Figure 4.3. There is no simple explicit
formula with which the unknown can be obtained one after the other. Rather
a system must be considered, all equations simultaneously. A vector notation
reveals the structure of (4.10): With the matrix

A := Aimpl :=

⎛
⎜⎜⎜⎜⎝

2λ + 1 −λ 0

−λ
. . . . . .
. . . . . . . . .

0
. . . . . .

⎞
⎟⎟⎟⎟⎠ (4.11a)

the vector w(ν) is implicitly defined as solution of the system of linear equa-
tions

Aw(ν) = w(ν−1) for ν = 1, ..., νmax (4.11b)

Here we again have assumed w0ν = wmν = 0. For each time level ν such a
system of equations must be solved. This method is sometimes called implicit
method. But to distinguish it from other implicit methods, we call it fully
implicit, or backward-difference method, or more accurately backward time
centered space scheme (BTCS). The method is unconditionally stable for all
Δτ > 0. This is shown analogously as in the explicit case (−→ Exercise 4.2).
The costs of this implicit method are low, because the matrix A is constant
and tridiagonal. Initially, for ν = 0, the LR-decomposition (−→ Appendix
C1) is calculated once. Then the costs for each ν are only of the order O(m).

ν−1

i+1ii-1

ν+1

ν

Fig. 4.3. Molecule of the backward-difference method (4.10)
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4.3 Crank–Nicolson Method

For the methods of the previous section the discretizations of ∂y
∂τ are of the or-

der O(Δτ). It seems preferable to use a method where the time discretization
of ∂y

∂τ has the better order O(Δτ2), and the stability is unconditional. Let us
again consider equation (4.2), the equivalent to the Black–Scholes equation,

∂y

∂τ
=

∂2y

∂x2
.

Crank and Nicolson suggested to average the forward- and the backward
difference method. For easy reference, we collect the underlying approaches
from the above:

forward for ν:

wi,ν+1 − wiν

Δτ
=

wi+1,ν − 2wiν + wi−1,ν

Δx2

backward for ν + 1:

wi,ν+1 − wiν

Δτ
=

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2

Addition yields

wi,ν+1 − wiν

Δτ
=

1
2Δx2

(wi+1,ν−2wiν +wi−1,ν +wi+1,ν+1−2wi,ν+1+wi−1,ν+1)

(4.12)
The equation (4.12) involves in each of the time levels ν and ν + 1 three
values w (Figure 4.4). This is the basis of an efficient method. Its features
are summarized in Theorem 4.4.

i+1ii−1

ν

ν+1

Fig. 4.4. Molecule of the Crank–Nicolson method (4.12)

Theorem 4.4 (Crank–Nicolson)
Suppose y is smooth in the sense y ∈ C4. Then:
1.) The order of the method is O(Δτ2) + O(Δx2).
2.) For each ν a linear system of a simple tridiagonal structure must be

solved.
3.) Stability holds for all Δτ > 0.
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Proof:
1.) order: A practical notation for the symmetric difference quotient of second
order for yxx is

δ2
xwiν :=

wi+1,ν − 2wiν + wi−1,ν

Δx2
. (4.13)

Apply the operator δ2
x to the exact solution y. Then by Taylor expansion for

y ∈ C4 one can show

δ2
xyiν =

∂2

∂x2
yiν +

Δx2

12
∂4

∂x4
yiν + O(Δx4) .

The local discretization error ε describes how well the exact solution y of (4.2)
satisfies the difference scheme,

ε :=
yi,ν+1 − yiν

Δτ
− 1

2
(δ2

xyiν + δ2
xyi,ν+1) .

Applying the operator δ2
x of (4.13) to the expansion of yi,ν+1 at τν and ob-

serving yτ = yxx leads to

ε = O(Δτ2) + O(Δx2)

(−→ Exercise 4.3)

2.) system of equations: With λ := Δτ
Δx2 the equation (4.12) is rewritten

− λ

2
wi−1,ν+1 + (1 + λ)wi,ν+1 −

λ

2
wi+1,ν+1

=
λ

2
wi−1,ν + (1 − λ)wiν +

λ

2
wi+1,ν

(4.14)

The values of the new time level ν + 1 are implicitly given by the system
of equations (4.14). For the simplest boundary conditions w0ν = wmν = 0
equation (4.14) is a system of m − 1 equations. With matrices

A := ACN :=

⎛
⎜⎜⎜⎜⎝

1 + λ −λ
2 0

−λ
2

. . . . . .

. . . . . . −λ
2

0 −λ
2 1 + λ

⎞
⎟⎟⎟⎟⎠ ,

B := BCN :=

⎛
⎜⎜⎜⎜⎝

1 − λ λ
2 0

λ
2

. . . . . .

. . . . . . λ
2

0 λ
2 1 − λ

⎞
⎟⎟⎟⎟⎠

(4.15a)
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the system (4.14) is rewritten

Aw(ν+1) = Bw(ν) . (4.15b)

The eigenvalues of A are real and lie between 1 and 1+2λ. (This follows from
the Theorem of Gerschgorin, see Appendix C1). This rules out a zero eigen-
value, and so A must be nonsingular and the solution of (4.15b) is uniquely
defined.

3.) stability: The matrices A and B can be rewritten in terms of a constant
tridiagonal matrix,

A = I + λ
2 G, G :=

⎛
⎜⎜⎜⎝

2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞
⎟⎟⎟⎠ , B = I − λ

2 G .

Now the equation (4.15b) reads

(2I + λG︸ ︷︷ ︸
=:C

)w(ν+1) = (2I − λG)w(ν)

= (4I − 2I − λG)w(ν)

= (4I − C)w(ν) ,

which leads to the formally explicit iteration

w(ν+1) = (4C−1 − I)w(ν) . (4.16)

The eigenvalues μC
k of C for k = 1, ...,m − 1 are known from Lemma 4.3,

μC
k = 2 + λμG

k = 2 + λ(2 − 2 cos
kπ

m
) = 2 + 4λ sin2 kπ

2m
.

In view of (4.16) we require for a stable method that for all k∣∣∣∣ 4
μC

k

− 1
∣∣∣∣ < 1 .

This is guaranteed because of μC
k > 2. Consequently, the Crank–Nicolson

method (4.15) is unconditionally stable for all λ > 0 (Δτ > 0).

Although the correct boundary conditions are still lacking, it makes sense
to formulate the basic version of the Crank–Nicolson algorithm for the PDE
(4.2).
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Algorithm 4.5 (Crank–Nicolson)

Start: Choose m, νmax; calculate Δx,Δτ

w
(0)
i = y(xi, 0) with y from (4.4), 0 ≤ i ≤ m

Calculate the LR-decomposition of A

loop: for ν = 0, 1, ..., νmax − 1 :

Calculate c := Bw(ν) (preliminary)
Solve Ax = c using e.g. the LR-decomposition—

that is, solve Lz = Bw(ν) and Rx = z

w(ν+1) := x

The LR-decomposition is the symbol for the solution of the system of linear
equations. Later we shall see when to replace it by the RL-decomposition.
It is obvious that the matrices A and B are not stored in the computer. —
Next we show how the vector c in Algorithm 4.5 is modified to realize the
correct boundary conditions.

4.4 Boundary Conditions

The Black–Scholes equation (4.1), the transformed version (4.2), and the dis-
cretized versions of the previous sections, they all need boundary conditions.
In particular, the values

V (S, t) for S = 0 and S → ∞, or
y(x, τ) for xmin and xmax, or
w0ν and wmν for ν = 1, ..., νmax,

respectively, must be prescribed by boundary conditions. The preliminary
homogenous boundary conditions w0ν = wmν = 0 of the previous sections do
not match the scenario of Black, Merton and Scholes. In order to complete
and adapt the Algorithm 4.5 we must define realistic boundary conditions.

The boundary conditions for the expiration time t = T are obvious. They
give rise to the simplest cases of boundary conditions for t < T : As motivated
by the Figures 1.1 and 1.2 and the equations (1.1C), (1.1P), the value VC of
a call and the value VP of a put must satisfy

VC(S, t) = 0 for S = 0, and
VP(S, t) = 0 for S → ∞

(4.17)

also for all t < T . This follows from the integral representation (3.20), because
discounting does not affect the value 0 of the payoff. And S(0) = 0 implies
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S(t) = 0 for all t > 0 because of dS = S(μdt + σ dW ); hence the value
VC(0, t) = 0 can be predicted safely. The same holds true for S(0) → ∞ and
V of (1.1P). This holds for European as well as for American options, with
or without dividend payments.

The boundary conditions on each of the “other sides” of S, where V �= 0,
are more difficult. We postpone the boundary conditions for the American
option to the next section, and investigate European options in this section.

From the put-call parity (−→ Exercise 1.1) we deduce the additional
boundary conditions for European options without dividend payment (δ = 0).
The result is

VC(S, t) = S − Ke−r(T−t) for S → ∞
VP(S, t) = Ke−r(T−t) − S for S ≈ 0 .

(4.18)

The lower bounds for European options (−→ Appendix D1) are attained
at the boundaries. In (4.18) for S ≈ 0 we do not discard the term S, be-
cause the realization of the transformation (4.3) requires Smin > 0, see Sec-
tion 4.2.2. Boundary conditions analogous as in (4.18) hold for the case of
a continuous flow of dividend payments (δ �= 0). We skip the derivation,
which can be based on transformation (4.3) and the additional transforma-
tion S = Seδ(T−t) (−→ Exercise 4.4). In summary, the boundary conditions
for European options in the (x, τ)-world are as follows:

Boundary Conditions 4.6 (European options)

y(x, τ) = r1(x, τ) for x → −∞ ,

y(x, τ) = r2(x, τ) for x → ∞ , with
call: r1(x, τ) := 0 ,

r2(x, τ) := exp
(

1
2 (qδ + 1)x + 1

4 (qδ + 1)2τ
)

put: r1(x, τ) := exp
(

1
2 (qδ − 1)x + 1

4 (qδ − 1)2τ
)

,

r2(x, τ) := 0

(4.19)

Truncation: Instead of the theoretical domain −∞ < x < ∞ the practical
realization truncates the infinite interval to the finite interval

a := xmin ≤ x ≤ xmax =: b ,

see Section 4.2.2. This suggests the boundary conditions

w0ν = r1(a, τν)
wmν = r2(b, τν)

for all ν. These are explicit formulas and easy to implement. To this end
return to the Crank–Nicolson equation (4.14), in which some of the terms on
both sides of the equations are known by the boundary conditions. For the
equation with i = 1 these are terms
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from the left-hand side: − λ

2
w0,ν+1 = −λ

2
r1(a, τν+1)

from the right-hand side:
λ

2
w0ν =

λ

2
r1(a, τν)

and for i = m − 1:

from the left-hand side: − λ

2
wm,ν+1 = −λ

2
r2(b, τν+1)

from the right-hand side:
λ

2
wmν =

λ

2
r2(b, τν)

These known boundary values are collected on the right-hand side of system
(4.14). So we finally arrive at

Aw(ν+1) = Bw(ν) + d(ν)

d(ν) : =
λ

2
·

⎛
⎜⎜⎜⎜⎝

r1(a, τν+1) + r1(a, τν)
0
...
0

r2(b, τν+1) + r2(b, τν)

⎞
⎟⎟⎟⎟⎠

(4.20)

The previous version (4.15b) is included as special case, with d(ν) = 0. The
statement in Algorithm 4.5 that defines c is modified to the statement

Calculate c := Bw(ν) + d(ν) .

The methods of Section 4.2 can be adapted by analogous formulas. The sta-
bility is not affected by adding the vector d, which is constant with respect
to w.

4.5 American Options as Free Boundary Problems

In Sections 4.1 through 4.3 we so far have considered tools for the Black–
Scholes differential equation —that is, we have investigated European op-
tions. Now we turn our attention to American options. Recall that the value
of an American option can never be smaller than the value of a European
option,

V Am ≥ V Eur.

In addition, an American option has at least the value of the payoff. So we
have elementary lower bounds for the value of American options, but —as
we will see— additional numerical problems to cope with.
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4.5.1 Early-Exercise Curve

A European option can have a value that is smaller than the payoff (compare,
for example, Figure 1.6). This can not happen with American options. Recall
the arbitrage strategy: if for instance an American put would have a value
V Am

P < (K −S)+, one would simultaneously purchase the asset and the put,
and exercise immediately. An analogous arbitrage argument implies that for
an American call the situation V Am

C < (S − K)+ can not prevail. Therefore
the inequalities

V Am
P (S, t) ≥ (K − S)+ for all (S, t)

V Am
C (S, t) ≥ (S − K)+ for all (S, t)

(4.21)

hold. This result is illustrated schematically for a put in Figure 4.5.

(t)fS
S

0

V

possible European option for t<T

possible American option for t<T

payoff function for t=T

K

K

Fig. 4.5. V (S, t) for a put and a t < T , schematically

For American options we have noted in (4.17) the boundary conditions
that prescribe V = 0. The boundary conditions at each of the other “ends”
of the S-axis are still needed. In view of the inequalities (4.21) it is clear that
the missing boundary conditions will be of a different kind than those for
European options, which are listed in (4.18). Let us investigate the situation
of an American put, which is illustrated in Figure 4.5. First discuss the
left-end part of the curve VP(S, t), for small S > 0, and some t < T . Without
the possibility of early exercise the inequality VP(S, t) < K − S holds for
r > 0 and sufficiently small S. But in view of (4.21) the American put should
satisfy VP(S, t) ≡ K − S at least for small S. To understand what happens
for “medium” values of S, imagine to approach from the right-hand side,
where V Am

P (S, t) > (K − S)+. Continuity and monotony of VP suggest the
curve V Am

P (S, t) hits the straight line of the payoff at some value Sf with
0 < Sf < K, see Figure 4.5. This contact point Sf is defined by

V Am
P (S, t) > (K − S)+ for S > Sf(t),

V Am
P (S, t) = K − S for S ≤ Sf(t) .

(4.22)
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For S < Sf the value V Am
P equals the straight line of the payoff and noth-

ing needs to be calculated. For each t, the curve V Am
P (S, t) reaches its left

boundary at Sf(t).
The above situation holds for any t < T , and the contact point Sf varies

with t, Sf = Sf(t). For all 0 ≤ t < T , the contact points Sf(t) form a curve
in the (S, t)-half strip. The curve Sf is the boundary separating the area
with V > payoff and the area with V = payoff. The curve Sf of a put is
illustrated in the left-hand diagram of Figure 4.6. A priori the location of the
boundary Sf is unknown, the curve is “free.” This explains why the problem
of calculating V Am

P (S, t) for S > Sf(t) is called free boundary problem.

hold hold

t

T

S

call

stop

f

t

f
S (T) S (T)

f
S 

put

f

stop

S 

T

S

Fig. 4.6. Continuation region (shaded) and stopping region for American options

For American calls the situation is similar, except that the contact only
occurs for dividend-paying assets, δ �= 0. This is seen from

V Am
C ≥ V Eur

C ≥ S − Ke−r(T−t) > S − K

for δ = 0, r > 0, t < T , compare Exercise 1.1. V Am
C > S−K for δ = 0 implies

that early-exercise does not pay. American and European calls on assets that
pay no dividends are identical, V Am

C = V Eur
C . A typical curve V Am

C (S, t) for
δ �= 0 contacting the payoff is shown in Figure 4.9. And the free boundary Sf

may look like the right-hand diagram of Figure 4.6.
The notation Sf(t) for the free boundary is motivated by the process of

solving PDEs. But the primary meaning of the curve Sf is economical. The
free boundary Sf is the early-exercise curve. The time instance ts when a
price process St reaches the early-exercise curve is the optimal stopping time,
compare also the illustration of Figure 3.10. Let us explain this for the case
of a put; for a call with δ �= 0 the argument is similar.

In case S > Sf , early-exercise causes an immediate loss, because (4.22)
implies −V + K − S < 0. Receiving the strike price K does not compensate
the loss of S and V . Accordingly, the holder of the option does not exercise
when S > Sf . This explains why the area S > Sf is called continuation
region (shaded in Figure 4.6).
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On the other side of the boundary curve Sf , characterized by V = K −S,
each change of S is compensated by a corresponding move of V . Here the
only way to create a profit is to exercise and invest the proceeds K at the
risk-free rate for the remaining time period T − t. The resulting profit will be

Ker(T−t) − K .

To maximize the profit, the holder of the option will maximize T − t, and
accordingly exercise as soon as V ≡ K − S is reached. Hence, the boundary
curve Sf is the early-exercise curve. And the area S ≤ Sf is called stopping
region. — So much for the basic principle. Of course, the profit depends on
r > 0, and the holder must watch the market, see [Hull00].

Now that the curve Sf is recognized as having such a distinguished impor-
tance as early-exercise curve, we should make sure that the properties of Sf

are as suggested by Figures 4.5 and 4.6. In fact, the curves Sf(t) are continu-
ously differentiable in t, and monotonous not decreasing / not increasing as
illustrated. There are both upper and lower bounds to Sf(t). For more details
and proofs see Appendix A5. Here we confine ourselves to the bounds given
by the limit t → T (t < T, δ > 0):

put: lim
t→T−

Sf(t) = min(K,
r

δ
K) (4.23P)

call: lim
t→T−

Sf(t) = max(K,
r

δ
K) (4.23C)

These bounds express a qualitatively different behavior of the early-exercise
curve in the two situations 0 < δ < r and δ > r. This is illustrated in Figure
4.7 for a put. For the chosen numbers for all δ ≤ 0.06 the limit of (4.23P)
is the strike K (lower diagram). Compare to Figures 1.4 and 1.5, and to the
title figure of this book to get a feeling for the geometrical importance of the
curve as contact line where two surfaces merge. For larger values of S the
surface V (S, t) approaches 0 in a way illustrated by Figure 4.8.

4.5.2 Free Boundary Problem

Again we start with a put. For the European option, the left-end boundary
condition is formulated for S = 0. For the American option, the left-end
boundary is given along the curve Sf . In order to calculate the free boundary
Sf(t) we need an additional condition. To this end consider the slope ∂V

∂S
with which V Am

P (S, t) touches at Sf(t) the straight line K − S, which has
the constant slope −1. By geometrical reasons we can rule out for V Am

P the
case ∂V (Sf(t),t)

∂S < −1, because otherwise (4.21) and (4.22) would be violated.
Using arbitrage arguments, the case ∂V (Sf(t),t)

∂S > −1 can also be ruled out
(−→ Exercise 4.9). It remains the condition ∂V Am

P (Sf(t), t)/∂S = −1. That
is, V (S, t) touches the payoff function tangentially. This tangency condition
is commonly called the high-contact condition, or smooth pasting. For the
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Fig. 4.7. Early-exercise curves of an American put, r = 0.06, σ = 0.3, K = 10,
and dividend rates δ = 0.12 (top figure), δ = 0.08 (middle), δ = 0.04 (bottom); raw
data of a finite-difference calculation without interpolation or smoothing



4.5 American Options as Free Boundary Problems 163

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

C_1 

C_2 
-3

-5

-7

Fig. 4.8. Calculated curves of a put matching Figures 1.4, 1.5. C1 is the curve Sf .
The three curves C2 have the meaning V < 10−k for k = 3, 5, 7.

somewhat hypothetical case of a perpetual option (T = ∞) the tangential
touching can be calculated analytically (−→ Exercise 4.8). In summary, two
boundary conditions must hold at the contact point Sf(t):

V Am
P (Sf(t), t) = K − Sf(t)

∂V Am
P (Sf(t), t)

∂S
= −1

(4.24P)

As before, the right-end boundary condition VP(S, t) → 0 must be observed
for S → ∞.

For American calls analogous boundary conditions can be formulated.
For a call in case δ > 0, r > 0 the free boundary conditions

V Am
C (Sf(t), t) = Sf(t) − K

∂V Am
C (Sf(t), t)

∂S
= 1

(4.24C)

must hold along the right-end boundary for Sf(t) > K. The left-end boundary
condition at S = 0 remains unchanged. Figure 4.9 shows an American call
on a dividend-paying asset. The high contact on the payoff is visible.
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Fig. 4.9. Value V (S, 0) of an American call with K = 10, r = 0.25, σ = 0.6, T = 1
and dividend flow δ = 0.2. Crosses indicate the corresponding curve of a European
call; the payoff is shown. A special value is V (K, 0) = 2.18728.

We note in passing that the transformation ζ := S/Sf(t), y(ζ, t) := V (S, t)
allows to set up a Black–Scholes-type PDE on a rectangle. In this way, the
unknown front Sf(t) is fixed at ζ = 1, and is given implicitly by an ordinary
differential equation as part of a nonlinear PDE. This front-fixing approach
is numerically relevant (−→ Exercise 4.11).

4.5.3 Black–Scholes Inequality

The Black–Scholes equation (4.1) is valid on the continuation region (shaded
areas in Figure 4.6). For the numerical approach of the following Section 4.6
the computational domain will be the entire half strip with S > 0, including
the stopping areas. This will allow locating the early-exercise curve Sf . The
approach requires to adapt the Black–Scholes equation in some way to the
stopping areas.

To this end, define the Black–Scholes operator as

LBS(V ) :=
1
2
σ2S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV .

With this notation the Black–Scholes equation reads
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∂V

∂t
+ LBS(V ) = 0 .

What happens with this operator on the stopping regions? To this end we
substitute the payoff into ∂V

∂t + LBS(V ) for the case of a put. (The reader
may carry out the analysis for the case of a call.) For the put, for S ≤ Sf ,

V = K − S ,
∂V

∂t
= 0 ,

∂V

∂S
= −1 ,

∂2V

∂S2
= 0 .

Hence
∂V

∂t
+ LBS(V ) = −(r − δ)S − r(K − S) = δS − rK .

From (4.23P) we have the bound δS < rK, which leads to conclude

∂V

∂t
+ LBS(V ) < 0 .

The Black–Scholes equation changes to an inequality on the stopping region.
The same inequality holds for the call. In summary, on the entire half strip
American options must satisfy an inequality of the Black–Scholes type,

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV ≤0 . (4.25)

The inequalities (4.21) and (4.25) hold for all (S, t). In case the strict inequal-
ity “>” holds in (4.21), equality holds in (4.25). The contact boundary Sf

divides the half strip into the stopping region and the continuation region,
each with appropriate version of V :

put: V Am
P = K − S for S ≤ Sf (stop)

V Am
P solves (4.1) for S > Sf (hold)

and
call: V Am

C = S − K for S ≥ Sf (stop)

V Am
C solves (4.1) for S < Sf (hold)

This shows that also for American options the Black–Scholes equation (4.1)
must be solved, however, with special arrangements because of the free
boundary. We have to look for methods that simultaneously calculate V along
with the unknown Sf .

Note that ∂V
∂S is continuous when Sf is crossed, but ∂2V

∂S2 and ∂V
∂t are

not continuous. It must be expected that this lack of smoothness along the
early-exercise curve Sf affects the accuracy of numerical approximations.
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4.5.4 Obstacle Problem

A brief digression into obstacle problems will motivate the procedure. We
assume an “obstacle” g(x), say with g(x) > 0 for α < x < β, g ∈ C2, g′′ < 0
and g(−1) < 0, g(1) < 0, compare Figure 4.10. Across the obstacle a function
u with minimal length is stretched like a rubber thread. Between x = α and
x = β the curve u clings to the boundary of the obstacle. For α and β we
encounter high-contact conditions, where the curve of u touches the obstacle
tangentially. These two values x = α and x = β are unknown initially. This
obstacle problem is a simple free boundary problem.

g(x)

α β
x

u(x)

1−1

Fig. 4.10. Function u(x) across an obstacle g(x)

The aim is to reformulate the obstacle problem such that the free bound-
ary conditions do not show up explicitly. This may promise computational
advantages. The function u shown in Figure 4.10 is defined by the require-
ment u ∈ C1[−1, 1], and by:

for − 1 < x < α : u′′ = 0 (then u > g)
for α < x < β : u = g (then u′′ = g′′ < 0)
for β < x < 1 : u′′ = 0 (then u > g)

The characterization of the two outer intervals is identical. The situation
manifests a complementarity in the sense

if u > g, then u′′ = 0 ;
if u = g, then u′′ < 0 .

In retrospect it is clear that American options are complementary in an anal-
ogous way:

if V > payoff, then Black–Scholes equation ∂V
∂t + LBS(V ) = 0

if V = payoff, then Black–Scholes inequality ∂V
∂t + LBS(V ) < 0

This analogy motivates searching for a solution of the obstacle problem. The
obstacle problem can be reformulated as⎧⎪⎨

⎪⎩
find a function u such that
u′′(u − g) = 0, −u′′ ≥ 0, u − g ≥ 0 ,

u(−1) = u(1) = 0, u ∈ C1[−1, 1] .

(4.26)
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The key line (4.26) is a linear complementarity problem (LCP). This
formulation does not mention the free boundary conditions at x = α and
x = β explicitly. This will be advantageous because α and β are unknown. If
a solution to (4.26) is known, then α and β are read off from the solution. So
we construct a numerical solution procedure for the complementarity version
(4.26) of the obstacle problem.

Discretization of the Obstacle Problem

A finite-difference approximation for u′′ on the grid xi = −1 + iΔx, with
Δx = 2

m , gi := g(xi) leads to{
(wi−1 − 2wi + wi+1)(wi − gi) = 0,
− wi−1 + 2wi − wi+1 ≥ 0, wi ≥ gi

}
0 < i < m ,

and w0 = wm = 0. The wi are approximations to u(xi). In view of the signs
of the factors in the first line in this discretization scheme it can be written
using a scalar product. To this end define a vector notation using

B :=

⎛
⎜⎜⎜⎝

2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞
⎟⎟⎟⎠ and w :=

⎛
⎝ w1

...
wm−1

⎞
⎠ , g :=

⎛
⎜⎝

g1
...

gm−1

⎞
⎟⎠ .

Then the discretized complementarity problem is rewritten in the form{
(w − g)trBw = 0 ,

Bw ≥ 0 , w ≥ g
(4.27)

To calculate (4.27) one solves Bw = 0 under the side condition w ≥ g. This
will be explained in Section 4.6.2.

4.5.5 Linear Complementarity for American Put Options

In analogy to the simple obstacle problem described above we now derive
a linear complementarity problem for American options. Here we confine
ourselves to American puts without dividends (δ = 0); the general case will
be listed in Section 4.6. The transformations (4.3) lead to

∂y

∂τ
=

∂2y

∂x2
as long as V Am

P > (K − S)+ .

Also the side condition (4.21) is transformed: The relation

V Am
P (S, t) ≥ (K − S)+ = K max{1 − ex, 0}

leads to the inequality
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y(x, τ) ≥ exp{ 1
2 (q − 1)x + 1

4 (q + 1)2τ}max{1 − ex, 0}
= exp{ 1

4 (q + 1)2τ}max{(1 − ex)e
1
2 (q−1)x, 0}

= exp{ 1
4 (q + 1)2τ}max{e 1

2 (q−1)x − e
1
2 (q+1)x, 0}

=: g(x, τ)

This function g allows to write the initial condition (4.4) as y(x, 0) = g(x, 0).
In summary, we require yτ = yxx as well as

y(x, 0) = g(x, 0) and y(x, τ) ≥ g(x, τ) ,

and, in addition, the boundary conditions, and y ∈ C1 with respect to x.
For x → ∞ the function g vanishes, g(x, τ) = 0, so the boundary condition
y(x, τ) → 0 for x → ∞ can be written

y(x, τ) = g(x, τ) for x → ∞ .

The same holds for x → −∞ (−→ Exercise 4.5). In practice, the boundary
conditions are formulated for xmin and xmax. Collecting all expressions, the
American put is formulated as linear complementarity problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
∂y

∂τ
− ∂2y

∂x2

)
(y − g) = 0 ,

∂y

∂τ
− ∂2y

∂x2
≥ 0 , y − g ≥ 0

y(x, 0) = g(x, 0), y(xmin, τ) = g(xmin, τ) ,

y(xmax, τ) = g(xmax, τ) , y ∈ C1 with respect to x .

The exercise boundary is automatically captured by this formulation. An
analogous formulation holds for the American call. Both of the formulations
are listed in the beginning of the following section. We will return to the
obstacle problem with a version as variational problem in Section 5.3.

4.6 Computation of American Options

In the previous sections we have derived a linear complimentarity problem
for both put and call of an American-style option. We summarize the results
into Problem 4.7. This assumes for a put r > 0, and for a call δ > 0; otherwise
the American option is not distinct from the European counterpart.
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Problem 4.7 (linear complementarity problem)

q =
2r

σ2
; qδ =

2(r − δ)
σ2

;

put: g(x, τ) := exp{ τ
4 ((qδ − 1)2 + 4q)}max{e x

2 (qδ−1) − e
x
2 (qδ+1), 0}

call: g(x, τ) := exp{ τ
4 ((qδ − 1)2 + 4q)}max{e x

2 (qδ+1) − e
x
2 (qδ−1), 0}(

∂y

∂τ
− ∂2y

∂x2

)
(y − g) = 0

∂y

∂τ
− ∂2y

∂x2
≥ 0, y − g ≥ 0

y(x, 0) = g(x, 0), 0 ≤ τ ≤ 1
2
σ2T

lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ)

As outlined in Section 4.5, the free boundary problem of American options
is described in Problem 4.7 such that the free boundary condition does not
show up explicitly. We now enter the discussion of the numerical solution of
Problem 4.7.

4.6.1 Discretization with Finite Differences

We use the same grid as in Section 4.2.2, with wiν denoting an approximation
to y(xi, τν), and giν := g(xi, τν) for 0 ≤ i ≤ m, 0 ≤ ν ≤ νmax. The backward
difference, the explicit, and the Crank–Nicolson method can be combined
into one formula,

wi,ν+1 − wiν

Δτ
= θ

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2
+

(1 − θ)
wi+1,ν − 2wiν + wi−1,ν

Δx2
,

with the choices θ = 0 (explicit), θ = 1
2 (Crank–Nicolson), θ = 1 (backward-

difference method). This family of numerical schemes parameterized by θ is
often called θ-method.

The differential inequality ∂y
∂τ − ∂2y

∂x2 ≥ 0 becomes the discrete version

wi,ν+1 − λθ(wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1)
− wiν − λ(1 − θ)(wi+1,ν − 2wiν + wi−1,ν) ≥ 0 ,

(4.28)

where we use again the abbreviation λ := Δτ
Δx2 . With the notations
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biν := wiν + λ(1 − θ)(wi+1,ν − 2wiν + wi−1,ν) , i = 2, . . . , m − 2
b1ν and bm−1,ν incorporate the boundary conditions

b(ν) := (b1ν , ..., bm−1,ν)tr

w(ν) := (w1ν , ..., wm−1,ν)tr

g(ν) := (g1ν , ..., gm−1,ν)tr

and

A :=

⎛
⎜⎜⎜⎜⎝

1 + 2λθ −λθ 0

−λθ
. . . . . .
. . . . . . . . .

0
. . . . . .

⎞
⎟⎟⎟⎟⎠ ∈ IR(m−1)×(m−1) (4.29)

(4.28) is rewritten in vector form as

Aw(ν+1) ≥ b(ν) for all ν .

Such inequalities for vectors are understood componentwise. The inequality
y − g ≥ 0 leads to

w(ν) ≥ g(ν) ,

and
(

∂y
∂τ − ∂2y

∂x2

)
(y − g) = 0 becomes(

Aw(ν+1) − b(ν)
)tr (

w(ν+1) − g(ν+1)
)

= 0 .

The initial and boundary conditions are

wi0 = gi0 , i = 1, ...,m − 1 , (w(0) = g(0)) ;
w0ν = g0ν , wmν = gmν , ν ≥ 1

The boundary conditions are realized in the vectors b(ν) as follows:

b2ν , ..., bm−2,ν as defined above,
b1ν = w1ν + λ(1 − θ)(w2ν − 2w1ν + g0ν) + λθg0,ν+1

bm−1,ν = wm−1,ν + λ(1 − θ)(gmν − 2wm−1,ν + wm−2,ν) + λθgm,ν+1

(4.30)

We summarize the discrete version of the Problem 4.7 into an Algorithm:

Algorithm 4.8 (computation of American options)

For ν = 0, 1, ..., νmax − 1 :

Calculate the vectors g := g(ν+1),

b := b(ν) from (4.29), (4.30).
Calculate the vector w as solution of the problem

Aw − b ≥ 0, w ≥ g, (Aw − b)tr(w − g) = 0. (4.31)

w(ν+1) := w
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This completes the chosen finite-difference discretization.

The remaining problem is to solve the complementarity problem in
matrix-vector form (4.31). In principle, how to solve (4.31) is a new topic
independent of the discretization background. But accuracy and efficiency
will depend on the context of selected methods. We pause for a moment to
become aware how broad the range of possible finite-difference methods is.

Recall from Subsection 4.5.3 that V (S, t) is not C2-smooth over the free
boundary Sf . This is a source of possible inaccuracies. The order two of the
basic Crank–Nicolson scheme must be expected to be deteriorated. The effect
caused by lacking smoothness depends on the choice of several items, namely,
the

(1) kind of transformation/PDE (from no transformation over a mere τ :=
T − t to the transformation (4.3)),

(2) kind of discretization (from backward-difference over Crank–Nicolson to
more refined schemes like BDF2),

(3) method of solution for (4.31).

The latter can be a direct elimination method, or an iteratively working in-
direct method. Large systems as they occur in PDE context are frequently
solved iteratively, in particular in high-dimensional spaces. Such approaches
sometimes benefit from smoothing properties. Both an iterative procedure
(following [WDH96]) and a direct approach (following [BrS77]) will be dis-
cussed below. It turns out that in the one-dimensional scenario of this chapter
(one underlying asset), the direct approach is faster.

4.6.2 Reformulation and Analysis of the LCP

In each time level ν in Algorithm 4.8, a linear complementarity problem (4.31)
must be solved. This is the bulk of work in Algorithm 4.8. Before entering
the numerical solution, we analyze the LCP. Since this subsection is general
numerical analysis independent of the finance framework, we momentarily use
vectors x, y, r freely in other context.3 For the analysis we transform problem
(4.31) from the w-world into an x-world with

x := w − g

y := Aw − b .
(4.32)

Then it is easy to see (the reader may check) that the task of calculating a
solution w for (4.31) is equivalent to the following problem:

3 Notation: In this Subsection 4.6.2 , x does not have the meaning of trans-
formation (4.3), and r not that of an interest rate, and y is no PDE solution.
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Problem 4.9 (Cryer)

Find vectors x and y such that for b̂ := b − Ag

Ax − y = b̂ , x ≥ 0 , y ≥ 0 , xtry = 0 .
(4.33)

First we make sure that the above problem has a unique solution. To this
end one shows the equivalence of Problem 4.9 with a minimization problem.

Lemma 4.10
The Problem 4.9 is equivalent to the minimization problem

min
x≥0

G(x), where G(x) :=
1
2
(xtrAx) − b̂trx is strictly convex. (4.34)

Proof. The derivatives of G are Gx = Ax − b̂ and Gxx = A. Lemma 4.3
implies that A has positive eigenvalues. Hence the Hessian matrix Gxx

is symmetric and positive definite. So G is strictly convex, and has a
unique minimum on each convex set in IRn, for example on x ≥ 0. The
Theorem of Kuhn and Tucker minimizes G under Hi(x) ≤ 0, i = 1, . . . , m.
According to this theorem,4 a vector x0 to be a minimum is equivalent to
the existence of a Lagrange multiplier y ≥ 0 with

grad G(x0) +
(

∂H(x0)
∂x

)tr

y = 0 , ytrH(x0) = 0 .

The set x ≥ 0 leads to define H(x) := −x. Hence the Kuhn–Tucker
condition is Ax− b̂+(−I)try = 0, ytrx = 0, and we have reached equation
(4.33).

An iterative procedure can be derived from the minimization problem stated
in Lemma 4.10. This algorithm is based on the SOR method [Cr71]. For
an introduction into iterative methods for the solution of systems of linear
equations Ax = b we refer to Appendix C2. Note that (4.31) is not in the
easy form of equation Ax = b discussed in Appendix C2; a modification of
the standard SOR will be necessary. The iteration of the SOR method for
Ax = b̂ = b − Ag is written componentwise (−→ Exercise 4.6) as iteration
for the correction vector x(k) − x(k−1):

r
(k)
i := b̂i −

i−1∑
j=1

aijx
(k)
j − aiix

(k−1)
i −

n∑
j=i+1

aijx
(k−1)
j (4.35a)

x
(k)
i = x

(k−1)
i + ωR

r
(k)
i

aii
. (4.35b)

4 For the Kuhn–Tucker theory we refer to [SW70], [St86].
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Here k denotes the number of the iteration, n = m−1, and in the cases i = 1,
i = m−1 one of the sums in (4.35a) is empty. The relaxation parameter ωR is
a factor chosen in a way that should improve the convergence of the iteration.
The “projected” SOR method for solving (4.33) starts from a vector x(0) ≥ 0
and is identical to the SOR method up to a modification on (4.35b) serving
for x

(k)
i ≥ 0.

Algorithm 4.11 (PSOR, projected SOR for Problem 4.9)

outer loop: k = 1, 2, . . .

inner loop: i = 1, ...,m − 1

r
(k)
i as in (4.35a)

x
(k)
i = max

{
0, x

(k−1)
i + ωR

r
(k)
i

aii

}
,

y
(k)
i = −r

(k)
i + aii

(
x

(k)
i − x

(k−1)
i

)
(4.36)

We see that this method solves Ax = b̂ for b̂ = b−Ag iteratively by componen-
twise considering x(k) ≥ 0. The vector y or the components y

(k)
i converging

against yi, are not used explicitly for the algorithm. But since y ≥ 0 is shown
(Aw ≥ b), the vector y serves an important role in the proof of convergence.
Transformed back into the w-world of problem (4.31) by means of (4.32), the
Algorithm 4.11 solves (4.31). It gives a solution to Problem 4.12:

Problem 4.12 (Cryer’s problem restated)

Solve Aw = b such that the side condition
w ≥ g is obeyed componentwise.

Adapting Algorithm 4.11 with formula (4.36) from x ≥ 0 to w ≥ g is easy.

A proof of the convergence of Algorithm 4.11 is based on Lemma 4.10. One
shows that the sequence defined in Algorithm 4.11 minimizes G. The main
steps of the argumentation are sketched as follows:

For 0 < ωR < 2 the sequence G(x(k)) is decreasing monotonically;
Show x(k+1) − x(k) → 0 for k → ∞;
The limit exists because x(k) moves in a compact set {x|G(x) ≤ G(x(0))};
The vector r from (4.35) converges toward −y;
Assuming r ≥ 0 and rtrx �= 0 leads to a contradiction to x(k+1)−x(k) → 0.
(For the proof see [Cr71].)
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The above theory has established that it suffices to solve Problem 4.12;
Aw ≥ b is guaranteed to hold. Because of the uniqueness of the solution, we
will obtain the same result w when a direct method is applied instead of the
iterative PSOR Algorithm 4.11. The structure of Problem 4.12 is not much
different from the system Aw = b without side condition. Recall that in a
first phase a direct method establishes an equivalent system Ãw = b̃ with
a triangular matrix Ã. The elimination of the components wi is the second
phase of a direct method. Obeying the side condition w ≥ g is easy to arrange
for standard options. As analyzed earlier, for a put wi = gi for small indexes
i, and for a call this holds for the large indices. In both cases there is only one
index if separating the components with wi = gi from those with wi > gi.
For a put and the unknown index if ,

wi = gi for 1 ≤ i ≤ if , and wi > gi for if < i ≤ m.

The index if marks the location of the free boundary. So, as suggested by
Brennan and Schwartz [BrS77], the elimination procedure runs forward for
a put, starting with i = 1. To have the elimination phase run in a forward
loop, the matrix Ã must be a lower triangular matrix. That is, in the case
of a put, the decomposion is a RL-decomposition (−→ Appendix C1). After
starting with i = 1, the algorithm for i > 1 then always calculates the next
component wi of Aw = b, and sets wi := gi in case wi < gi. For the call,
where the elimination phase runs in a backward loop, the traditional upper
triangular matrix Ã is calculated by the LR-decomposion. In this way, a
direct method for solving Problem 4.12 is established, which is as efficient as
solving a standard system of linear equations. (−→ Exercise 4.12)

4.6.3 An Algorithm for Calculating American Options

We return to the original meaning of the variables x, y, r, as used for in-
stance in (4.2), (4.3). It remains to substitute a proper algorithm for (4.31)
into Algorithm 4.8. From the analysis of Subsection 4.6.2, we either apply
the iterative Algorithm 4.11 (−→ Exercise 4.7), or implement the fast direct
method. The resulting algorithm is formulated in Algorithm 4.13 with an
LCP-solving module that implements the iterative version. The implemen-
tation of the direct version is left to the reader (−→ Exercise 4.12). Recall
giν := g(xi, τν) (0 ≤ i ≤ m) and g(ν) := (g1ν , . . . , gm−1,ν)tr. The Figure 4.11
depicts a result of Algorithm 4.13 for Example 1.6. Here we obtain the con-
tact point with value Sf(0) = 36.3. Figure 4.13 shows the American put that
corresponds to the call in Figure 4.9.
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Algorithm 4.13 (prototype core algorithm)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Set up the function g(x, τ) listed in Problem 4.7.
Choose θ (θ = 1/2 for Crank–Nicolson).
For PSOR: choose 1 ≤ ωR < 2 (for example, ωR = 1),

fix an error bound ε (for example, ε = 10−5).
Fix the discretization by choosing xmin, xmax, m, νmax

(for example, xmin = −5, xmax = 5, νmax = m = 100).
Calculate Δx := (xmax − xmin)/m,

Δτ := 1
2σ2T/νmax

xi := xmin + iΔx for i = 0, . . . , m

Initialize the iteration vector w with

g(0) = (g(x1, 0), . . . , g(xm−1, 0)).
Calculate λ := Δτ/Δx2 and α := λθ.

τ -loop: for ν = 0, 1, ..., νmax − 1:
τν := νΔτ

bi := wi + λ(1 − θ)(wi+1 − 2wi + wi−1) for 2 ≤ i ≤ m − 2
b1 := w1 + λ(1 − θ)(w2 − 2w1 + g0ν) + αg0,ν+1

bm−1 := wm−1 + λ(1 − θ)(gmν − 2wm−1 + wm−2) + αgm,ν+1

LCP solution, directly as in Exercise 4.12, or with PSOR:

| Set componentwise v = max(w, g(ν+1))
| (v is the iteration vector of the projected SOR.)
| PSOR-loop: for k = 1, 2, ...:
| as long as ‖vnew − v‖2 > ε:
| for i = 1, 2, ...,m − 1:
| ρ := (bi + α(vnew

i−1 + vi+1))/(1 + 2α)
| (with vnew

0 = vm = 0)
| vnew

i = max{gi,ν+1, vi + ωR(ρ − vi)}
| v := vnew (after testing for convergence)

w(ν+1) = w = v

European options:
For completeness we mention that it is possible to calculate European op-
tions with Algorithm 4.13 after some modifications. In the iterative version,
replacing the line

vnew
i = max{gi,ν+1, vi + ωR(ρ − vi)}

by the line
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Fig. 4.11. (Example 1.6) American put, K = 50, r = 0.1, σ = 0.4, T = 5
12

. V (S, 0)
(solid curve) and payoff V (S, T ) (dashed). Special value: V (K, 0) = 4.2842

vnew
i = vi + ωR(ρ − vi)

recovers the standard SOR for solving Aw = b (without w ≥ g). If in addition
the boundary conditions are adapted, then the program resulting from Algo-
rithm 4.13 can be applied to European options. The same holds true for the
direct method. And applying the analytic solution formula should be most
economical, when the entire surface is not required. But for the purpose of
testing Algorithm 4.13 it may be recommendable to compare its results to
something “known.”

Back to American options, we complete the analysis, summarizing how a
concrete financial task is solved with the core Algorithm 4.13, which is formu-
lated in artificial variables such as xi, giν , wi and not in financial variables.
This requires an interface between the real world and the core algorithm.
The interface is provided by the transformations in (4.3). This important
ingredient must be included for completeness. Let us formulate the required
transition between the real world and the numerical machinery of Algorithm
4.13 as another algorithm:
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Algorithm 4.14 (American options)

Input: strike K, time to expiration T , spot price S0, r, δ, σ

Perform the core Algorithm 4.13.
(The τ -loop ends at τend = 1

2σ2T .)
For i = 1, . . . ,m − 1:

wi approximates y(xi,
1
2σ2T ),

Si = K exp{xi}
V (Si, 0) = Kwi exp{−xi

2 (qδ − 1)} exp{−τend( 1
4 (qδ − 1)2 + q)}

Test for early exercise: Approximate Sf(0):
(in case PSOR was used)

Choose ε∗ = K · 10−5 (for example)
For a put:

if := max{i : |V (Si, 0) + Si − K| < ε∗}
S0 < Sif : stopping region!

For a call:
if := min{i : |K − Si + V (Si, 0)| < ε∗}

S0 > Sif : stopping region!

In case the direct method was used, the index if is known from the algorithm.
The Algorithm 4.14 evaluates the data at the final time level τend, which
corresponds to t = 0. The computed information for the intermediate time
levels can be evaluated analogously. In this way, the locations of Sif can be
put together to form an approximation of the free-boundary or stopping-time
curve Sf(t). But note that this approximation will be a crude step function.
It requires some effort to calculate the curve Sf(t) with reasonable accuracy,
see the illustration of curve C1 in Figure 4.8.
Modifications
The above Algorithm 4.13 (along with Algorithm 4.14) is the prototype of
a finite-difference algorithm. Improvements are possible. For example, the
equidistant time step Δτ can be given up in favor of a variable time stepping.
A few very small time steps initially will help to quickly damp the influence
of the nonsmooth payoff. The effect of the lack in smoothness is illustrated
by Figure 4.12. The turmoil at the corner is seen, but also the relatively rapid
smoothing within a few time steps. In this context it may be advisable to
start with a few fully implicit backward time steps (θ = 1) before switching
to Crank–Nicolson (θ = 1/2), see [Ran84] and the Notes on Section 4.2. After
one run of the algorithm it is advisable to refine the initial grid to have a
possibility to control the error. This simple strategy will be discussed in some
more detail in Section 4.7.
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Fig. 4.12. Finite differences, Crank–Nicolson; American put with r = 0.06, σ = 0.3,
T = 1, K = 10; M = 1000, xmin = −2, xmax = 2, Δx = 1/250, Δt = 1/1000, payoff
and V (S, tν) for tν = 1 − νΔt, ν = 1, . . . , 10.

4.7 On the Accuracy

Necessarily, each result obtained with the means of this chapter is subjected
to errors in several ways. The most important errors have been mentioned
earlier; in this section we collect them. Let us emphasize again that in gen-
eral the existence of errors must be accepted, but not their magnitude. By
investing sufficient effort, many of the errors can be kept at a tolerable level.
(a) modeling error

The assumptions defining the underlying financial model are restrictive.
The Assumption 1.2, for example, will not exactly match the reality of a
financial market. And the parameters of the equations (such as volatility
σ) are unknown and must be estimated. Hence the equations of the model
are only approximations of the “reality.”

(b) discretization errors
Under the heading “discretization error” we summarize several errors
that are introduced when the continuous PDE is replaced by a set of
approximating equations defined on a grid. An essential portion of the
discretization error is the error between differential quotients and dif-
ference quotients. For example, a Crank–Nicolson discretization is of the
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order O(Δ2), if Δ is a measure of the grid size and the solution function is
sufficiently smooth. Other discretization errors with mostly smaller influ-
ence are the error caused by truncating the infinite interval −∞ < x < ∞
to a finite interval, the implementation of the boundary conditions, or a
quantification error when the strike (x = 0) is not part of the grid. In
passing we recommend that the strike be one of the grid points, xk = 0
for one k.

(c) error from solving the linear equation
An iterative solution of the linear systems of equation Aw = b means
that the error approaches 0 when k → ∞, where k counts the number
of iterations. By practical reasons the iteration must be terminated at
a finite kmax such that the effort is bounded. So an error remains from
the linear equations. The error tends to be small for direct elimination
methods.

(d) rounding error
The finite number of digits l of the mantissa is the reason for rounding
errors.
In general, one has no accurate information on the size of these errors.

Typically the modeling errors are larger than the discretization errors. For
a stable method, the rounding errors are the least problem. The numeri-
cal analyst, as a rule, has limited potential in manipulating the modeling
error. So the numerical analyst concentrates on the other errors, especially
on discretization errors. To this end we may use the qualitative assertion of
Theorem 4.4. But such an a priori result is only a basic step toward our
ultimate goal.

4.7.1 Elementary Error Control

We neglect modeling errors and try to solve the a posteriori error problem:
Problem 4.15 (principle of an error control)

Let the exact result of a solution of the continuous equations be denoted
η∗. The approximation η calculated by a given algorithm depends on a
representative grid size Δ, on kmax, on the wordlength l of the computer,
and maybe on several additional parameters, symbolically written

η = η(Δ, kmax, l) .

Choose Δ, kmax, l such that the absolute error of η does not exceed a
prescribed error tolerance ε,

|η − η∗| < ε .

This problem is difficult to solve, because we implicitly assume an efficient
approximation avoiding an overkill with extremely small values of Δ or large
values of kmax or l. Time counts in real-time application. So we try to avoid
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unnecessary effort of achieving a tiny error |η−η∗| � ε. The exact size of the
error is unknown. But its order of magnitude can be estimated as follows.

Let us assume the method is of order p. We simplify this statement to

η(Δ) − η∗ = γΔp . (4.37)

Here γ is a priori unknown. By calculating two approximations, say for grid
sizes Δ1 and Δ2, the constant γ can be calculated. To this end subtract the
two calculated approximations η1 and η2,

η1 := η(Δ1) = γΔp
1 + η∗

η2 := η(Δ2) = γΔp
2 + η∗

to obtain
γ =

η1 − η2

Δp
1 − Δp

2

.

A simple choice of the grid size Δ2 for the second approximation is the
refinement Δ2 = 1

2Δ1. This leads to

γ

(
Δ1

2

)p

=
η1 − η2

2p − 1
. (4.38)

Especially for p = 2 the relation

γΔ2
1 = 4

3 (η1 − η2)

results. In view of the scenario (4.37) the absolute error of the approximation
η1 is given by

4
3 |η1 − η2|

and the error of η2 by (4.38).

Table 4.1. Results reported in Figure 4.13

m = νmax V (10, 0)

50 1.8562637
100 1.8752110
200 1.8800368
400 1.8812676
800 1.8815842

1600 1.8816652
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Fig. 4.13. Value V (S, 0) of an American put with K = 10, r = 0.25, σ = 0.6,
T = 1 and dividend flow δ = 0.2. For special values see Table 4.1. Crosses mark the
corresponding curve of a European option.

The above procedure does not guarantee that the error η is bounded by
ε. This flaw is explained by the simplification in (4.37), and by neglecting
the other type of errors of the above list (b)–(c). Here we have assumed γ
constant, which in reality depends on the parameters of the model, for ex-
ample, on the volatility σ. But testing the above rule of thumb (4.37)/(4.38)
on European options shows that it works reasonably well. Here we compare
the finite-difference results to the analytic solution formula (A4.10), the nu-
merical errors of which are comparatively negligible. The procedure works
similar well for American options, although then the function V (S, t) is not
C2-smooth at Sf(t). (The effect of the lack in smoothness is similar as in
Figure 4.12.) In practical applications of Crank–Nicolson’s method one can
observe quite well that doubling of m and νmax decreases the absolute error
approximately by a factor of four. To obtain a minimum of information on
the error, the core Algorithm 4.13 should be applied at least for two grids
following the lines outlined above. The information on the error can be used
to match the grid size Δ to the desired accuracy.

Let us illustrate the above considerations with an example, compare Fig-
ures 4.13 and 4.14, and Table 4.1. For an American put and xmax = −xmin =
5 we calculate several approximations, and test equation (4.37) in the form
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Fig. 4.14. Approximations depending on Δ2, with Δ = (xmax−xmin)/m = 1/νmax;
results of Figure 4.13 and Table 4.1.

η(Δ) = η∗ + γΔ2. We illustrate the approximations as points in the (Δ2, η)-
plane. The better the assumption (4.37) is satisfied, the closer the calculated
points lie on a straight line. Figure 4.14 indicates that this error-control model
can be expected to work well.

In order to check the error quality of a computer program on standard
American options, one may check the put-call symmetry relation (A5.3). For
example, for the parameters of Figure 4.13 / Table 4.1, the corresponding
call with S = K and switched parameters r = 0.2, δ = 0.25 is calculated, and
the results match very well: For the finest discretization in Table 4.1, about
8 digits match with the value of the corresponding call. But this is only a
necessary criterion for accuracy; the number of matching digits of (A5.3) does
not relate to the number of correct digits of V (S, 0).

4.7.2 Extrapolation

The obviously reasonable error model suggests applying (4.37) to obtain an
improved approximation η at practically zero cost. Such a procedure is called
extrapolation. In a graphical illustration η over Δ2 as in Figure 4.14, extrap-
olation amounts to construct a straight line through two of the calculated
points. The value of the straight line for Δ2 = 0 gives the extrapolated value
from
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η∗ ≈ 4η2 − η1

3
. (4.39)

In our example, this procedure allows to estimate the correct value to be
close to 1.8817. Combining, for example, two approximations of rather low
quality, namely, m = 50 with m = 100, gives already an extrapolated ap-
proximation of 1.8815. And based on the two best approximations of Table
4.1, the extrapolated value is 1.881690.

Typically the extrapolation formula provided by (4.39) is significantly
more accurate than η2. But we have no further information on the accuracy
from the calculated η1, η2. Calculating a third approximation η3 reveals more
information. For example, a higher-order extrapolation can be constructed
(−→ Exercise 4.13). Figure 4.15 reports on the accuracies.
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Fig. 4.15. Finite difference methods, log of absolute error in V (K, 0) over log(m),
where m = νmax, and the basis of the logarithm is 10. Solid line: plain algorithm,
results in Table 4.1; dashed line: extrapolation (4.39) based on two approximations;
dotted line: higher-order extrapolation of Exercise 4.13

The convergence rate in Theorem 4.4 was derived under the assumptions
of a structured equidistant grid and a C4-smooth solution. Practical experi-
ments with unstructured grids and nonsmooth data suggest that the conver-
gence rate may still behave reasonably. But the finite-difference discretization
error is not the whole story. The more flexible finite-element approaches in
Chapter 5 will shed light on convergence under more general conditions.
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4.8 Analytic Methods

Numerical methods typically are designed such that they achieve conver-
gence. So, in principle, every accuracy can be reached, only limited by the
available computer time and by hardware restrictions. In several cases this
high potential of numerical methods is not needed. Rather, some analytic
formula may be sufficient that delivers medium accuracy at low cost. Such
“analytic methods” have been developed. Often their accuracy is reasonable
as compared to the underlying modeling error. The limited accuracy goes
along with a nice feature that is characteristic for analytic methods: their
costs are clear, and known in advance.

In reality there is hardly a clear-cut between numerical and analytic meth-
ods. On the one hand, numerical methods require analysis for their derivation.
And on the other hand, analytic methods involve numerical algorithms. These
may be elementary evaluations of functions like the logarithm or the square
root as in the Black–Scholes formula, or may consist of a sub-algorithm like
Newton’s method for zero finding. This situation might cause some uncer-
tainty on the costs. There is hardly a purely analytic method.

The finite-difference approach, which approximates the surface V (S, t),
requires intermediate values for 0 < t < T for the purpose of approximat-
ing V (S, 0). In the financial practice one is basically interested in values for
t = 0, intermediate values are rarely asked for. So the only temporal input
parameter is the time to maturity T − t (or T in case the current time is
set to zero, t = 0). Recall that also in the Black–Scholes formula, time only
enters in the form T − t (−→ Appendix A4). So it makes sense to write the
formula in terms of the time to maturity τ ,

τ := T − t ,

which leads to the compact version of the Black–Scholes formulas (A4.10),

d1(S, τ ;K, r, σ) :=
1

σ
√

τ

{
log

S

K
+
(

r +
σ2

2

)
τ

}

d2(S, τ ;K, r, σ) :=
1

σ
√

τ

{
log

S

K
+
(

r − σ2

2

)
τ

}
V Eur

P (S, τ ;K, r, σ) = −SF (−d1) + Ke−rτF (−d2)

V Eur
C (S, τ ;K, r, σ) = SF (d1) − Ke−rτF (d2)

(4.40)

(dividend-free case). F denotes the cumulated standard normal distribution
function. For dividend-free options we only need an approximation formula
for the American put V Am

P ; the other cases are covered by the Black–Scholes
formula.

This Section introduces into three analytic methods. The first two (Sub-
sections 4.8.1, 4.8.2) are described in detail such that the implementation of
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the algorithms is an easy matter. Of the other approach (method of lines in
Subsection 4.8.3) only basic ideas are set forth.

4.8.1 Approximation Based on Interpolation

If a lower bound V low and an upper bound V up on the American put are
available,

V low ≤ V Am
P ≤ V up ,

then the idea is to construct an α aiming at

V Am
P = αV up + (1 − α)V low .

This is the approach by [Joh83]. The parameter α, 0 ≤ α ≤ 1, defines the
interpolation between V low and V up. Since V Am

P depends on the market data
S, τ,K, r, σ, the single parameter α and the above interpolation can not be
expected to provide an exact value of V Am

P . (An exact value would mean that
an exact formula for V Am

P would exist.) Rather a formula for α is developed
as a function of S, τ,K, r, σ such that the interpolation formula αV up + (1−
α)V low provides a good approximation for a wide range of market data. The
smaller the gap between V low and V up , the better is the approximation.

An immediate candidate for the lower bound V low is the value V Eur
P pro-

vided by the Black–Scholes formula,

V Eur
P (S, τ ;K) ≤ V Am

P (S, τ ;K) .

From (4.18) the left-hand boundary condition of a European put with strike
K̃ is K̃e−rτ . Clearly, for K̃ = Kerτ and S = 0,

V Am
P (0, τ ;K) = V Eur

P (0, τ ;Kerτ ) ,

since both sides equal the payoff value K. From the properties of the Amer-
ican put we conclude that

V Am
P (S, τ ;K) ≤ V Eur

P (S, τ ;Kerτ )

at least for S ≈ 0. In fact, this holds for all S, which can be shown with
Jensen’s inequality, see Appendix B1. In summary, the upper bound is

V up := V Eur
P (S, τ ;Kerτ ) ,

see Figure 4.16. The resulting approximation formula is

V := αV Eur
P (S, τ ;Kerτ ) + (1 − α)V Eur

P (S, τ ;K) . (4.41)

The parameter α depends on S, τ,K, r, σ, so does V . Actually, the Black–
Scholes formula (4.40) suggests that α and V only depend on the three di-
mensionless parameters
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Fig. 4.16. Bounds on an American put V (S, .; K) for t = 0, with K = 10, r = 0.06,
σ = 0.3, τ = 1. Medium curve: the American put; lower curve: the European put
V Eur(S, .; K); upper curve: the European put V Eur(S, .; K̃), with K̃ = Kerτ

S/K (“moneyness”) , rτ , and σ2τ .

The approximation must be constructed such that the lower bound (K−S)+

of the payoff is obeyed. As we will see, all depends on the free boundary Sf ,
which must be approximated as well.

[Joh83] set up a model for α with two free parameters a0, a1, which were
determined by carrying out a regression analysis based on computed values
of V Am

P . The result is

α :=
(

rτ

a0rτ + a1

)β

, β :=
ln(S/Sf)
ln(K/Sf)

,

a0 = 3.9649 , a1 = 0.032325 .

(4.42)

The ansatz for α is designed such that for S = K (and hence β = 1) upper
and lower bound behavior and calculated option values can be matched with
reasonable accuracy with only two parameters a0, a1. The S-dependent β is
introduced to improve the approximation for S < K and S > K. Obviously,
S = Sf ⇒ β = 0 ⇒ α = 1, which captures the upper bound. And for the
lower bound, α = 0 is reached for S → ∞, and for rτ = 0. (The reader may
discuss (4.42) to check the assertions.)
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The model for α of equation (4.42) involves the unknown free-boundary
curve Sf . To approximate Sf , observe the extreme cases

Sf = K for τ = 0

Sf = K
2r

σ2 + 2r
for T → ∞ .

(For the latter case consult Exercise 4.8 and Appendix A5.) This motivates
to set the approximation Sf for Sf as

Sf := K

(
2r

σ2 + 2r

)γ

, (4.43)

for a suitably modeled exponent γ. To match the extreme cases, γ should
vanish for τ = 0, and γ ≈ 1 for large values of τ . [Joh83] suggests

γ :=
σ2τ

b0σ2τ + b1
,

b0 = 1.04083 , b1 = 0.00963 .

(4.44)

The constants b0 and b1 were again obtained by a regression analysis.
The analytic expressions of (4.43), (4.44) provide an approximation V of

Sf , and then by (4.42), (4.41) an approximation of V Am
P for S > Sf , based

on the Black–Scholes formulas (4.40) for V Eur
P .

Algorithm 4.16 (interpolation)

For given S, τ,K, r, σ evaluate γ, Sf , β based on Sf , and α .

Evaluate the Black–Scholes formula for V Eur
P

for the arguments in (4.41).

Then V from (4.41) is an approximation to V Am
P for S > Sf .

This purely analytic method is fast and simple. Numerical experiments
show that the approximaton quality of Sf is poor. But for S not too close
to Sf the approximation quality of V is quite good. As reported in [Joh83],
the error is small for rτ ≤ 0.125, which is satisfied for average values of the
risk-free rate r and time to maturity τ . For larger values of rτ , when the gap
between lower and upper bound widens, the approximation works less well.
An extension to options on dividend-paying assets is given in [Blo86].
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4.8.2 Quadratic Approximation

Next we describe an analytic method due to [MaM86]. Recall that in the
continuation region both V Am

P and V Eur
P obey the Black–Scholes equation.

Since this equation is linear, also the difference

p(S, τ) := V Am
P (S, τ) − V Eur

P (S, τ) (4.45)

satisfies the Black–Scholes equation. The relation V Am ≥ V Eur suggests to
interpret the difference p as early-exercise premium. Since both V Am

P and
V Eur

P have the same payoff, the terminal condition for τ = 0 is zero, p(S, 0) =
0. The closeness of p(S, τ) to zero should scale roughly by

H(τ) := 1 − e−rτ . (4.46)

This motivates introducing a scaled version f of p,

p(S, τ) =: H(τ) f(S,H(τ)) (4.47)

For the analysis we repeat the Black–Scholes equation, here for p(S, τ), where
subscripts denote partial differentiation, and q := 2r

σ2 :

−q

r
pτ + S2pSS + qSpS − qp = 0 (4.48)

Substituting (4.47) and

pS = HfS , pSS = HfSS , pτ = Hτf + HfHHτ

and using
1
r
Hτ = 1 − H

yields after a short calculation (the reader may check) for H �= 0 the modified
version of the Black–Scholes equation

S2fSS + qSfS − q

H
f
[
1 + H(1 − H)

fH

f

]
= 0 . (4.49)

Note that this is the “full” equation, nothing is simplified yet. No partial
derivative with respect to t shows up, but instead the partial derivative fH .

At this point, following [MaM86], we introduce a simplifying approxima-
tion. The factor H(H − 1) for the H varying in the range 0 ≤ H < 1 is a
quadratic term with maximum value of 1/4, and close to zero for τ ≈ 0 and
for large values of τ , compare (4.46). This suggests that the term

H(1 − H)
fH

f
(4.50)

may be small compared to 1, and to neglect it in (4.49). (This motivates the
name “quadratic approximation.”) The resulting equation
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S2fSS + qSfS − q

H
f = 0 (4.51)

is an ordinary differential equation with analytical solution, parametrized by
H. An analysis similar as in Exercise 4.8 leads to the solution

f(S) = αSλ , where λ := −1
2

{
(q − 1) +

√
(q − 1)2 +

4q

H

}
, (4.52)

for a parameter α. Combining (4.45), (4.47) and (4.52) we deduce for S > Sf

the approximation V

V Am
P (S, τ) ≈ V (S, τ) := V Eur

P (S, τ) + αH(τ)Sλ (4.53)

The parameter α must be such that V reaches the payoff at Sf ,

V Eur
P (Sf , τ) + αHSλ

f = K − Sf . (4.54)

Here Sf is parameterized by H via (4.46), and therefore depends on τ . To fix
the two unknowns Sf and α let us warm up the high-contact condition. This
requires the partial derivative of V with respect to S. The main part is

∂V Eur
P (S, τ)

∂S
= F (d1) − 1

where F is the cumulated normal distribution function, and d1 (and below
d2) are the expressions defined by (4.40). d1 and d2 depend on all relevant
market parameters; we emphasize the dependence on S by writing d1(S).
This gives the high-contact condition

∂V (Sf , τ)
∂S

= F (d1(Sf)) − 1 + αλHSλ−1
f = −1 ,

and immediately α in terms of Sf :

α = −F (d1(Sf))
λHSλ−1

f

. (4.55)

Substituting into (4.53) yields one equation for the remaining unknown Sf ,

V Eur
P (Sf , τ) − F (d1(Sf))

1
λ

Sf = K − Sf ,

which in view of the put-call parity (A4.11a) and F (−d) = 1 − F (d) reads

SfF (d1) − Ke−rτF (d2) − Sf + Ke−rτ − F (d1)
Sf

λ
− K + Sf = 0 .

This can be summarized to

Sf F (d1(Sf))
[
1 − 1

λ

]
+ Ke−rτ

[
1 − F (d2(Sf))

]
− K = 0 . (4.56)
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Since d1 and d2 vary with Sf , (4.56) is an implicit equation for Sf and must
be solved iteratively. This can be done, for example, by Newton’s method
(−→ Appendix C1). In this way a sequence of approximations S1, S2, ... to Sf

is constructed. As initial seed S0 = K may be used, or the more ambitious
construction in [BaW87], which exploits information on the limiting case
τ → ∞ (−→ Exercise 4.8). We summarize

Algorithm 4.17 (quadratic approximation)

For given S, τ,K, r, σ evaluate q =
2r

σ2
, H = 1 − e−rτ

and λ from (4.52).
Solve (4.56) iteratively for Sf .

(This involves a sub-algorithm, from which F (d1(Sf))
should be saved.)

Evaluate V Eur
P (S, τ) using the Black–Scholes formula (4.40).

V := V Eur
P (S, τ) − 1

λ
SfF (d1(Sf))

(
S

Sf

)λ

(4.57)

is the approximation for S > Sf ,

and V = K − S for S ≤ Sf .

Note that λ < 0, and λ depends on τ via H(τ). The time-consuming part of
the quadratic-approximation method consists of the numerical root finding
procedure. (−→ Exercise 4.14, Exercise 4.15)

4.8.3 Analytic Method of Lines

In solving PDEs numerically, the method of lines is a well-known approach.
It is based on a semidiscretization, where the domain (here the (S, τ) half
strip) is replaced by a set of parallel lines, each defined by a constant value
of τ . To this end, the interval 0 ≤ τ ≤ T is discretized into νmax sub-intervals
by τν := νΔτ , Δτ := T/νmax, ν = 1, . . . , νmax − 1. To deserve the attribute
“analytic,” we assume νmax to be small, say, work with three lines. We write
the Black–Scholes equation as in Section 4.5.3,

−∂V (S, τ)
∂τ

+ LBS(V (S, τ)) = 0 , (4.58)

where the negative sign compensates for the transition from t to τ , and replace
the partial derivative ∂V/∂τ by the difference quotient
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V (S, τ) − V (S, τ − Δτ)
Δτ

.

This gives a semidiscretized version of (4.58), namely, the ordinary differential
equation

w(S, τ − Δτ) − w(S, τ) + Δτ LBS(w(S, τ)) = 0 ,

which holds for S > Sf . Here we use the notation w rather than V to indicate
that a discretization error is involved. This semidiscretized version is applied
for each of the parallel lines, τ = τν , ν = 1, . . . , νmax − 1. (The cover figure
of this book motivates the procedure.) For each line τ = τν , the function
w(S, τν−1) is known from the previous line, starting from the known payoff
for τ = 0. The equation to be solved for each line τν is

1
2
Δτ σ2S2 ∂2w

∂S2
+ Δτ rS

∂w

∂S
− (1 + Δτ r)w = −w(·, τν−1) (4.59)

This is a second-order ordinary differential equation for w(S, τν), with bound-
ary conditions for Sf(τν) and S → ∞. The solution is obtained analytically,
similar as in Exercise 4.8. Hence there is no discretization error in S-direction.
The right-hand function −w(S, τν−1) is known, and is an inhomogeneous term
of the ODE.

S (       )S (    )
τ

τ

S

ν ν−1 ν−2

ν−2

ν−1

ν
f f f

f

τ

A C S

τ

τS (       )

B

τ

Fig. 4.17. Method of lines, situation along line τν : A: solution is given by payoff;
B: inhomogeneous term of differential equation given by payoff; C: inhomogeneous
term given by −w(., τν−1)

The resulting analytic method of lines is carried out in [CaF95]. The above
describes the basic idea. A complication arises from the early-exercise curve,
which separates each of the parallel lines into two parts. Since for the previous
line τν−1 the separation point lies more “on the right” (recall that for a put the
curve Sf(τ) is monotonically decreasing for growing τ), the inhomogeneous
term w(·, τν−1) consists of two parts as well, but separated differently (see
Figure 4.17). Accordingly, neglecting for the moment the input of previous
lines τν−2, τν−3, . . ., the analytic solution of (4.59) for the line τν consists of
three parts, defined on the three intervals
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A: 0 < S < Sf(τν) ,

B: Sf(τν) ≤ S < Sf(τν−1) ,

C: Sf(τν−1) ≤ S .

On the left-hand interval A, w equals the payoff; nothing needs to be cal-
culated. For the middle interval B the inhomogeneous term −w(., τν−1) is
given by the payoff. Since the analytic solution involves two integration con-
stants, and since the inhomogeneous terms differ on the intervals B and C,
we encounter together with the unknown Sf(τν) five unknown parameters.
One of the integration constants is zero because of the boundary condition
for S → ∞, similar as in Exercise 4.8. The unknown separation point Sf(τν)
is again fixed by the high-contact conditions (4.24P). Two remaining condi-
tions are given by the requirement that both w and dw

dS are continuous at the
matching point Sf(τν−1). This fixes all variables for the line τν .

Over all lines, νmax type-B intervals are involved, and the only remaining
type-C interval is that for S ≥ Sf(τ0) = K. The resulting formulas are
somewhat complex, for details see [CaF95]. The method is used along with
extrapolation. To this end, carry out the method three times, with νmax =
1, 2, 3, and denote the results V 1, V 2, V 3. Then the three-point extrapolation
formula

V :=
1
2
(9V 3 − 8V 2 + V 1)

gives rather accurate results.

Notes and Comments

on Section 4.1:
General references on numerical PDEs include [Sm78], [Vi81], [CL90], [Th95],
[Mo96]. For references on modeling of dividends consult [WDH96], [Kwok98],
[Mey02]. A special solution of (4.2) is

y(x, τ) =
1

2
√

πτ
exp

(
−x2

4τ

)
.

For small values of τ , the transformation (4.3) may take bad values in the
argument of the exponential function because qδ can be too large. The result
will be an overflow. In such a situation, the transformation

τ := 1
2σ2(T − t)

x := log
(

S
K

)
+
(
r − δ − σ2

2

)
(T − t)

y(x, τ) := e−rtV (S, t)

can be used as alternative [BaP96]. Again (4.2) results, but initial conditions
and boundary conditions must be adapted appropriately. As will be seen in
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Section 6.4, the quantities q and qδ are basically the Péclet number. It turns
out that large values of the Péclet number are a general source of difficulties.
For other transformations see [ZhWC04].

on Section 4.2:
We follow the notation wiν for the approximation at the node (xi, τν), to
stress the surface character of the solution y over a two-dimensional domain.
In the literature a frequent notation is wν

i , which emphasizes the different
character of the space variable (here x) and the time variable (here τ). Our
vectors w(ν) with componentes w

(ν)
i come close to this convention.

Summarizing the Black–Scholes equation to

∂V

∂t
+ LBS = 0 (4.60)

where LBS represents the other terms of the equation, see Section 4.5.3,
motivates an interpretation of the finite-difference schemes in the light of nu-
merical ODEs. There the forward approach is known as explicit Euler method
and the backward approach as implicit Euler method.

on Section 4.3:
Crank and Nicolson suggested their approach in 1947. Theorem 4.4 discusses
three main principles of numerical analysis, namely, order (of convergence),
stability, and efficiency. A Crank–Nicolson variant has been developed that
is consistent with the volatility smile, which reflects the dependence of the
volatility on the strike [AB97].

In view of the representation (4.12) the Crank–Nicolson approach corre-
sponds to the ODE trapezoidal rule. Following these lines suggests to apply
other ODE approaches, some of which lead to methods that relate more than
two time levels. In particular, backward difference formula (BDF) are of in-
terest, which evaluate L at only one time level. The relevant second-order dis-
cretization is listed in the end of Section 4.2.1. Using this formula (BDF2) for
the time discretization, a three-term recursion involving w(ν+1), w(ν), w(ν−1)

replaces the two-term recursion (4.15b) (−→ Exercise 4.10). But multistep
methods such as BDF may not behave well close to the exercise boundary,
where we encounter a lack of smoothness. This suggests to consider other
alternatives with better stability properties then Crank–Nicolson. Crank–
Nicolson is A-stable, several other methods are L-stable, which better damp
out high-frequency oscillation, see [Cash84], [KhVY07], [IkT07]. For numeri-
cal ODEs we refer to [La91], [HNW93]. From the ODE analysis circumstances
are known where the implicit Euler method behaves superior to the trape-
zoidal rule. The latter method may show a slowly damped oscillating error.
Accordingly, in several PDE situations the fully implicit method of Section
4.2.5 behaves better than Crank–Nicolson [Ran84], [ZVF00]. The explicit
scheme corresponds to the trinomial-tree method mentioned in Section 1.4.
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on Section 4.4:
If European options are evaluated via the analytic formula (A4.10), the
boundary conditions in (4.19) are of no practical interest. When boundary
conditions are not clear, it often helps to set VSS = 0 (or yxx = 0).

on Section 4.5:
For a proof of the Black–Scholes inequality, see [LL96], p.111. The obstacle
problem in this chapter is described following [WDH96]. Also the smooth
pasting argument of Exercise 4.9 is based on that work. For other arguments
concerning smooth pasting see [Moe76], and [Kwok98]. There you find a dis-
cussion of Sf(t), and of the behavior of this curve for t → T . There are several
different possibilites to implement the boundary conditions at xmin, xmax, see
[TR00], p. 122. The accuracy can be improved with artificial boundary condi-
tions [HaW03]. For direct methods, see also [DeHR98], [IkT07]. Front-fixing
goes back to Landau 1950, see [Cra84]. For applications to finance, consult,
for example, [NiST02], [ZhWC04], [HoY08], and the comments on Section
4.7.

The general definition of a linear complementarity problem is

AB = 0 , A ≥ 0 , B ≥ 0 ,

where A and B are abbreviations of more complex expressions. This can be
also written

min(A,B) = 0 .

A general reference on free boundaries and on linear complementarity is
[EO82].

Figure 4.18 shows a detail of approximations to an early-exercise curve.
The finite-difference calculated points are connected by straight lines (dashed).
The figure also shows a local approximation valid close to maturity: For t < T
and t → T , the asymptotic behavior of Sf is

Sf(t) ∼ K
(
1 − σ

√
(t − T ) log(T − t)

)
for an American put without dividends, see [MR97], [GoO02]. Discrete divi-
dend payments change the early-exercise curve [Mey02].

For a proof of the high-contact condition or smooth-pasting principle see
[Moe76], p.114. For a discussion of the smoothness of the free boundary Sf

see [MR97] and the references therein.

on Section 4.6:
By choosing the θ in (4.28) one fixes at which position along the time axis
the second-order spatial derivatives are focused. With

θ =
1
2
− 1

12
Δx2

Δτ
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Fig. 4.18. Approximations of an early-exercise curve of an American put
(T = 1, σ = 0.3, K = 10); dashed: finite-difference approximation, solid: asymptotic
behavior for t ≈ T

a scheme results that is fourth-order accurate in x-direction. The applica-
tion on American options requires careful compensation of the discontinuities
[Mayo00].

Based on the experience of this author, an optimal choice of the relaxation
parameter ωR in Algorithm 4.13 can not be given. The simple strategy ωR = 1
appears recommendable.

on Section 4.7:
Since the accuracy of the results is not easily guaranteed, it does seem ad-
visable to hesitate before exposing wealth to a chance of loss or damage.
After having implemented a finite-difference algorithm it is a must to com-
pare the results with the numbers obtained by means of other algorithms.
The lacking smoothness of solutions near (S, t) ≈ (K,T ) due to the nons-
mooth payoff can be largely improved by solving for the difference function
V Am

P (S, τ)−V Eur
P (S, τ), see also Section 4.8.2. The lacking smoothness along

the early-exercise curve can be diminished by using the front-fixing approach,
which can be applied to the above difference. But one mast pay a price. Note
that a front-fixing equation as (4.63) (−→ Exercise 4.11) is nonlinear, so the
success of the front-fixing approach depends on whether the corresponding
root-finding iteration finds a solution. Further, in our experience the lack of
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smoothness is only hidden and might lead to instabilities, such as oscilla-
tions in the early-exercise curve. A transformation such as log(S/Sf) does
not lead to constant coefficients because one of the factors depends on the
early-exercise curve. A modified approach has been suggested in [HoY08].

The question how accurate different methods are has become a major
concern in recent research; see for instance [CoLV02]. Clearly one compares
a finite-difference European option with the analytic formula (A4.10). The
latter is to be preferred, except the surface is the ultimate object. The cor-
rectness of codes can be checked by testing the validity of symmetry relations
(A5.3).

Greeks such as delta= ∂V
∂S can be calculated accurately by solving specific

PDEs that are derived from the Black–Scholes equation by differentiating.
But delta can be approximated easily based on the a calculated approxima-
tion of V . To this end, calculate an interpolating Lagrange polynomial L(S)
on the line t = 0 based on three to five neighboring nodes (Appendix C1),
and take the derivative L′(S).

We have introduced finite differences mainly in view of calculating stan-
dard American options. For exotic options PDEs occur, the solutions of which
depend on three or more independent variables [WDH96], [Bar97], [TR00];
see also Chapter 6. For bounds on the error caused by truncating the infinite
x- or S-interval, see [KaN00].

on Section 4.8:
For the case H = 0 an extra analysis is required [MaM86]. The method has
been extended to the more general situation of commodity options, where
the cost of carry is involved [BaW87]. Integral representations are based on
an inhomogeneous differential equation. Recall from Section 4.5.3 that for a
put the equation

∂V

∂t
+ LBS(V ) = δS − rK

holds for S < Sf(t); the homogeneous Black–Scholes equation holds for
S > Sf(t). Both versions can be written in one equation, and an integral
representation of the solution is presented in [Jam92], see also [Kwok98] and
the references therein. A related integral equation for the early-exercise curve
can be solved efficiently [Hei07], [Hei08].

It is possible to give an analytic expression of the premium p in terms of
the free boundary Sf [Kwok98]. The formula for p consists of an integral with
an integrand resembling the Black–Scholes formula (A4.10c). The dependence
on Sf is via coefficients d∗1 and d∗2, which are generalized from (4.40). Since
the value of the option for Sf is given by the payoff, an integral equation is
available which determines the free boundary implicitly [Kwok98]. By means
of a suitable recursion, a pointwise approximation of Sf is possible, but costly.
But here the border line to numerical approaches is definitely crossed.

There are many analytic methods, some provide bounds. For an overview,
and for numerical comparisons of various methods see [BrD96], [AiC97],
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[BrD97]. A calculator that applies the analytic methods of this chapter can
be found on the website www.compfin.de. This calulator may be used for
tests, for example, using the data of Figures 4.11 (Example 1.6), and of Fig-
ure 4.13 (Table 4.1). For comparable accuracy, simple binomial approaches
appear to have an edge over analytic methods.

on other methods:
Here we give a few hints on methods neither belonging to this chapter on
finite differences, nor to Chapters 5 or 6. General hints can be found in
[RT97], in particular with the references of [BrD97]. Closely related to linear
complementarity problems are minimization methods. An efficient realization
by means of methods of linear optimization is suggested in [DH99]. The
uniform grid can only be the first step toward more flexible approaches, such
as the finite elements to be introduced in Chapter 5. For grid stretching
and coordinate transformations see [Int07], [LeO08]. For spectral methods
see [ZhWC04]. For penalty methods we refer to [NiST02], [FV02]. Another
possibility to enhance the power of finite differences is the multigrid approach;
for general expositions see [Ha85], [TOS01]; for application to finance see
[ClP99], [Oo03].

Exercises

Exercise 4.1 Continuous Dividend Flow
Assume that a stock pays a dividend D once per year. Calculate a corre-
sponding continuous dividend rate δ under the assumptions

Ṡ = (μ − δ)S , μ = 0, S(1) = S(0) − D > 0.

Generalize the result to general growth rates μ and arbitrary day tD of divi-
dend payment.

Exercise 4.2 Stability of the Fully Implicit Method
The backward-difference method is defined via the solution of the equation
(4.11). Prove the stability.
Hint: Use the results of Section 4.2.4 and w(ν) = A−1w(ν−1).

Exercise 4.3 Crank–Nicolson Order
Let the function y(x, τ) solve the equation

yτ = yxx

and be sufficiently smooth. With the difference quotient

δ2
xwiν :=

wi+1,ν − 2wiν + wi−1,ν

Δx2
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the local discretization error ε of the Crank–Nicolson method is defined

ε :=
yi,ν+1 − yiν

Δτ
− 1

2
(
δ2
xyiν + δ2

xyi,ν+1

)
.

Show
ε = O(Δτ2) + O(Δx2) .

Exercise 4.4 Boundary Conditions of a European Call

Prove (4.19).
Hints: Either transform the Black–Scholes equation (4.1) with

S := S̄ exp(δ(T − t))

into a dividend-free version to obtain the dividend version (A4.11a) of (4.18),
or apply the dividend version of the put-call parity. The rest follows with
transformation (4.3); r1 and r2 are the dominant terms surviving when x →
±∞.

Exercise 4.5 Boundary Conditions of American Options

Show that the boundary conditions of American options satisfy

lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ) ,

where g is defined in Problem 4.7.

Exercise 4.6 Gauß–Seidel as Special Case of SOR

Let the n×n matrix A = ((aij)) additively be partitioned into A = D−L−U ,
with D diagonal matrix, L strict lower triangular matrix, U strict upper
triangular matrix, x ∈ IRn, b ∈ IRn. The Gauß–Seidel method is defined by

(D − L)x(k) = Ux(k−1) + b

for k = 1, 2, . . .. Show that with

r
(k)
i := bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i

aijx
(k−1)
j

and for ωR = 1 the relation

x
(k)
i = x

(k−1)
i + ωR

r
(k)
i

aii

holds. For general 1 < ωR < 2 this defines the SOR (successive overrelax-
ation) method.
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Exercise 4.7

Implement Algorithms 4.13 and 4.14.
Test example: Example 1.6 and others.

Exercise 4.8 Perpetual Put Option

For T → ∞ it is sufficient to analyze the ODE

σ2

2
S2 d2V

dS2
+ (r − δ)S

dV

dS
− rV = 0 .

Consider an American put with high contact to the payoff V = (K − S)+ at
S = Sf . Show:
a) Upon substituting the boundary condition for S → ∞ one obtains

V (S) = c

(
S

K

)λ2

, (4.61)

where λ2 = 1
2

(
1 − qδ −

√
(qδ − 1)2 + 4q

)
, q = 2r

σ2 , qδ = 2(r−δ)
σ2

and c is a positive constant.
Hint: Apply the transformation S = Kex. (The other root λ1 drops out.)

b) V is convex.
For S < Sf the option is exercised; then its intrinsic value is K − S. For
S > Sf the option is not exercised and has a value V (S) > K − S. The
holder of the option decides when to exercise. This means, the holder makes
a decision on the high contact Sf such that the value of the option becomes
maximal [Mer73].
c) Show: V ′(Sf) = −1, if Sf maximizes the value of the option.

Hint: Determine the constant c such that V (S) is continuous in the contact
point.

Exercise 4.9 Smooth Pasting of the American Put

Suppose a portfolio consists of an American put and the corresponding un-
derlying. Hence the value of the portfolio is Π := V Am

P +S, where S satisfies
the SDE (1.33). Sf is the value for which we have high contact, compare
(4.22).
a) Show that

dΠ =

⎧⎨
⎩

0 for S < Sf(
∂V Am

P

∂S
+ 1

)
σS dW + O(dt) for S > Sf .

b) Use this to argue
∂V Am

P

∂S
(Sf(t), t) = −1 .
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Hint: Use dS > 0 ⇒ dW > 0 for small dt. Assume ∂V
∂S > −1 and

construct an arbitrage strategy for dS > 0.

Exercise 4.10 Semidiscretization

For a semidiscretization of the Black–Scholes equation (1.2) consider the
semidiscretized domain

0 ≤ t ≤ T , S = Si := iΔS , ΔS :=
Smax

m
, i = 0, 1, . . . ,m

for some value Smax. On this set of parallel lines define for 1 ≤ i ≤ m − 1
functions wi(t) as approximation to V (Si, t).
a) Using the standard second-order difference schemes of Section 4.2.1, derive

the system
ẇ + Bw = 0 , (4.62)

which up to boundary conditions approximates (1.2). Here w is the vector
(w1, . . . , wm−1)tr. Show that B is a tridiagonal matrix, and calculate its
coefficients.

b) Use the BDF2 formula of Section 4.2.1 to show that

w(ν) = 4w(ν−1) − 3w(ν−2) + 2ΔtB w(ν−2)

is a valid scheme to integrate (4.62). Computer persons are encouraged
to implement this scheme.

Exercise 4.11 Front-Fixing for American Options

Apply the transformation

ζ :=
S

Sf(t)
, y(ζ, t) := V (S, t)

to the Black–Scholes equation (4.1).
a) Show

∂y

∂t
+

σ2

2
ζ2 ∂2y

∂ζ2
+
[
(r − δ) − 1

Sf

dSf

dt

]
ζ
∂y

∂ζ
− ry = 0 (4.63)

b) Set up the domain for (ζ, t) and formulate the boundary conditions for
an American call. (Assume δ > 0.)

c) (Project) Set up a finite-difference scheme to solve the derived boundary-
value problem. The curve Sf(t) is implicitly defined by the above PDE,
with final value Sf(T ) = max(K, r

δ K).

Exercise 4.12 Brennan–Schwartz Algorithm

Let A be a tridiagonal matrix as in (C1.5), and b and g vectors. The system
of equations Aw = b is to be solved such that the side condition w ≥ g is
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obeyed componentwise. Assume for the case of a put wi = gi for 1 ≤ i ≤ if
and wi > gi for if < i ≤ n, where if is unknown.
a) Formulate an algorithm similar as in (C1.6) that solves Aw = b in the

backward/forward approach. In the final forward loop, for each i the cal-
culated candidate wi is tested for wi ≥ gi: In case wi < gi the calculated
value wi is corrected to wi = gi.

b) Apply the algorithm to the case of a put with A, b, g from Section 4.6.1.
For the case of a call adapt the forward/backward algorithm (C1.6). In-
corporate this approach into Algorithm 4.13 by replacing the PSOR-loop.

Exercise 4.13 Extrapolation of Higher Order

Similar as in Section 4.7 assume an error model

η∗ = η(Δ) − γ1Δ
2 − γ2Δ

3

and three calculated values

η1 := η(Δ) , η2 := η

(
Δ

2

)
, η3 := η

(
Δ

4

)
.

Show that
η∗ =

1
21

(η1 − 12η2 + 32η3) .

Exercise 4.14
a) Derive (4.49).
b) Derive (4.56).

Exercise 4.15 Analytic Method for the American Put

(Project) Implement both the Algorithm 4.16 and Algorithm 4.17. Think of
how to combine them into a single hybrid algorithm.
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The finite-difference approach with equidistant grids is easy to understand
and straightforward to implement. The resulting uniform rectangular grids
are comfortable, but in many applications not flexible enough. Steep gradients
of the solution require locally a finer grid such that the difference quotients
provide good approximations of the differentials. On the other hand, a flat
gradient may be well modeled on a coarse grid. Such a flexibility of the grid
is hard to obtain with finite-difference methods.

An alternative type of methods for solving PDEs that does provide the
desired flexibility is the class of finite-element methods. A “finite element”
(FE) designates a mathematical topic such as an interval and defined there-
upon a piece of function. There are alternative names as variational methods,
or weighted residuals, or Galerkin methods. These names hint at underlying
principles that serve to derive suitable equations. As these different names
suggest, there are several different approaches leading to finite elements. The
methods are closely related.

The flexibility of finite-element methods is not only favorable to approx-
imate functions, but also to approximate domains of computation that are
not rectangular. This is important in higher-dimensional spaces. For the one-
dimensional situation of standard options, the possible improvement of a
finite-element method over the standard methods of the previous chapter is
not that significant. With the focus on standard options, Chapter 5 may be
skipped on first reading. But options with several underlyings naturally lead
to domains of computation that may be more “fancy.” This will be illustrated
by the example in Section 5.4. In such situations, finite elements are ideally
applicable and highly recommendable.

Faced with the huge field of finite-element methods, in this chapter we
confine ourselves to a brief overview on several approaches and ideas (in
Section 5.1). Then in Section 5.2, we describe the approximation with the
simplest finite elements, namely, piecewise straight-line segments. These ap-
proaches will be applied to the calculation of standard options in Section 5.3.
Section 5.4 will present an application to an exotic option with two underly-
ings. Finally, in Section 5.5, we will introduce into error estimates. Methods
more subtle than just the Taylor expansion of the discretization error are re-
quired to show that quadratic convergence is possible with unstructured grids
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and nonsmooth solutions. To keep this exposition short, many of the ideas
will be explained for the one-dimensional situation. But the ideas extend to
multidimensional scenarios.

x

Fig. 5.1. Discretization of a continuum

5.1 Weighted Residuals

Many of the principles on which finite-element methods are based, can be
interpreted as weighted residuals. What does this mean? This heading points
at ways in which a discretization can be set up, and how an approximation
can be defined. There lies a duality in a discretization. This is illustrated by
means of Figure 5.1, which shows a partition of an x-axis. This discretization
is either represented by

(a) discrete grid points xi, or by
(b) a set of subintervals.

The two ways to see a discretization lead to different approaches of construct-
ing an approximation w. Let us illustrate this with the one-dimensional situa-
tion of Figure 5.2. An approximation w based on finite differences is founded
on the grid points and primarily consists of discrete points (Figure 5.2a).
Finite elements are founded on subdomains (intervals in Figure 5.2b) with
piecewise defined functions, which are defined by suitable criteria and con-
stitute a global approximation w. In a narrower sense, a finite element is
a pair consisting of one piece of subdomain and the corresponding function
defined thereupon, mostly a polynomial. Figure 5.2 reflects the respective
basic approaches; in a second step the isolated points of a finite-difference
calculation can well be extended to continuous piecewise functions by means
of interpolation (−→ Appendix C1).

A two-dimensional domain can be partitioned into triangles, for example,
where w is again represented with piecewise polynomials. Figure 5.3 depicts
the simplest such situation, namely, a triangle in an (x, y)-plane, and a piece of
a linear function defined thereupon. Figure 5.7 below will provide an example
how triangles easily fill a seemingly “irregular” domain.

As will be shown next, the approaches of finite-element methods use inte-
grals. If done properly, integrals require less smoothness. This often matches
applications better and adds to the flexibility of finite-element methods. The
integrals can be derived in a natural way from minimum principles, or are
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constructed artificially. Finite elements based on polynomials make the cal-
culation of the integrals easy.

w

x

(a)

background of finite differences

x

(b)
w

finite elements:
piecewise defined functions

Fig. 5.2. Two kinds of approximations (one-dimensional situation)

y

x

w

Fig. 5.3. A simple finite element in two dimensions, based on a triangle

5.1.1 The Principle of Weighted Residuals

To explain the principle of weighted residuals we discuss the formally simple
case of the differential equation

Lu = f . (5.1)

Here L symbolizes a linear differential operator. Important examples are

Lu : = −u′′ for u(x), or (5.2a)
Lu : = −uxx − uyy for u(x, y) . (5.2b)

Solutions u of the differential equation are studied on a domain D ⊆ IRn.
The piecewise approach starts with a partition of the domain into a finite
number of subdomains Dk,
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D =
⋃
k

Dk . (5.3)

All boundaries should be included, and approximations to u are calculated on
the closure D̄. The partition is assumed disjoint up to the boundaries of Dk,
so D◦

j ∩ D◦
k = ∅ for j �= k. In the one-dimensional case (n = 1), for example,

the Dk are subintervals of a whole interval D. In the two-dimensional case,
(5.3) may describe a partition into triangles.

The ansatz for approximations w to a solution u is a basis representation,

w :=
N∑

i=1

ciϕi . (5.4)

In the case of one independent variable x the ci ∈ IR are constant coeffi-
cients, and the ϕi are functions of x. The ϕi are called basis functions,
or trial functions. Typically the ϕ1, ..., ϕN are prescribed, whereas the free
parameters c1, ..., cN are to be determined such that w ≈ u.

One strategy to determine the ci is based on the residual function

R := Lw − f . (5.5)

We look for a w such that R becomes “small.” Since the ϕi are considered
prescribed, in view of (5.4) N conditions or equations must be established
to define and calculate the unknown c1, ..., cN . To this end we weight the
residual by introducing N weighting functions (test functions) ψ1, ..., ψN and
require

∫
D

Rψj dx = 0 for j = 1, ..., N (5.6)

This amounts to the requirement that the residual be orthogonal to the set
of weighting functions ψj . The “dx” in (5.6) symbolizes the integration that
matches D ⊆ IRn; frequently it will be dropped. The system of equations
(5.6) for the model problem (5.1) consists of the N equations∫

D
Lwψj =

∫
D

fψj (j = 1, ..., N) (5.7)

for the N unknowns c1, ..., cN , which are part of w. Often the equations in
(5.7) are written using a formulation with inner products,

(Lw,ψj) = (f, ψj) ,

defined as the corresponding integrals in (5.7). For linear L the ansatz (5.4)
implies
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∫
Lwψj =

∫ (∑
i

ciLϕi

)
ψj =

∑
i

ci

∫
Lϕiψj︸ ︷︷ ︸
=:aij

.

The integrals aij constitute a matrix A. The rj :=
∫

fψj set up a vector r
and the coefficients cj a vector c = (c1, ..., cN )tr. This allows to rewrite the
system of equations in vector notation as

Ac = r . (5.8)

This outlines the general principle, but leaves open the questions how
to handle boundary conditions and how to select the basis functions ϕi and
the weighting functions ψj . The freedom to choose trial functions ϕi and
test functions ψj allows to construct several different methods. For the time
being suppose that these functions have sufficient potential to be differenti-
ated or integrated. We will enter a discussion of relevant function spaces in
Section 5.4.

5.1.2 Examples of Weighting Functions

We postpone the choice of basis functions ϕi and begin with listing important
examples of how to select weighting functions ψ:

1.) Galerkin method, also Bubnov–Galerkin method:
Choose ψj := ϕj . Then aij =

∫
Lϕiϕj

2.) collocation:
Choose ψj := δ(x − xj). Here δ denotes Dirac’s delta function, which in
IR1 satisfies

∫
fδ(x − xj) dx = f(xj). As a consequence,∫

Lwψj = Lw(xj) ,∫
fψj = f(xj) .

That is, a system of equations Lw(xj) = f(xj) results, which amounts to
evaluating the differential equation at selected points xj .

3.) least squares:
Choose

ψj :=
∂R

∂cj

This choice of test functions deserves its name least-squares, because to
minimize

∫
(R(c1, ..., cN ))2 the necessary criterion is the vanishing of the

gradient, so ∫
D

R
∂R

∂cj
= 0 for all j .
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1

0
x x x xx x

x
.....

ϕ i

0 1 i-1 i+1 mx2
.....

i

Fig. 5.4. “Hat function”: simple choice of finite elements

5.1.3 Examples of Basis Functions

For the choice of suitable basis functions ϕi our concern will be to meet two
aims: The resulting methods must be accurate, and their implementation
should become efficient. We defer the aspect of accuracy to Section 5.5, and
concentrate on the latter requirement, which can be focused on the sparsity of
matrices. In particular, if the matrix A of the linear equations is sparse, then
the system can be solved efficiently even when it is large. In order to achieve
sparsity we require that ϕi ≡ 0 on most of the subdomains Dk. Figure 5.4
illustrates an example for the one-dimensional case n = 1. This hat function
of Figure 5.4 is the simplest example related to finite elements. It is piecewise
linear, and each function ϕi has a support consisting of only two subintervals,
ϕi(x) �= 0 for x ∈ support. A consequence is∫

D
ϕiϕj = 0 for |i − j| > 1 , (5.9)

as well as an analogous relation for
∫

ϕ′
iϕ

′
j . We will discuss hat functions

in the following Section 5.2. More advanced basis functions are constructed
using piecewise polynomials of higher degree. In this way, basis functions
can be obtained with C1- or C2-smoothness (−→ Exercise 5.1). Recall from
interpolation (−→ Appendix C1) that polynomials of degree three can lead
to C2-smooth splines.
Remark on Lu = −u′′, u, ϕ, ψ ∈ {u : u(0) = u(1) = 0}:
Integration by parts implies formally∫ 1

0

ϕ′′ψ = −
∫ 1

0

ϕ′ψ′ =
∫ 1

0

ϕψ′′ ,

because the boundary conditions u(0) = u(1) = 0 let the nonintegral terms
vanish. These three versions of the integral can be distinguished by the
smoothness requirements on ϕ and ψ, and by the question whether the in-
tegrals exist. One will choose the integral version that corresponds to the
underlying method, and to the smoothness of the solution. For example, for
Galerkin’s approach the elements aij of A consist of the integrals
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−
∫ 1

0

ϕ′
iϕ

′
j .

We will return to the topic of function spaces in Section 5.5 (with Appendix
C3).

5.2 Galerkin Approach with Hat Functions

As mentioned before, any required flexibility is provided by finite-element
methods. This holds to a larger extent in higher-dimensional spaces. In this
section we stick to the one-dimensional situation, x ∈ IR.

1

0
x x x xx x

x
.....

ϕ 0

0 1 i-1 i+1 mx2
.....

i

1

0
x x

m-1
x

x

ϕ m

0 1 mx2
.....

x

Fig. 5.5. Special “hat functions” ϕ0 and ϕm

5.2.1 Hat Functions

We now explain the prototype of a finite-element method. This simple ap-
proach makes use of the hat functions, which we define formally (compare
Figures 5.4 and 5.5).

Definition 5.1 (hat functions)
For 1 ≤ i ≤ m − 1 set

ϕi(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − xi−1

xi − xi−1
for xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi
for xi ≤ x < xi+1

0 elsewhere

and for the boundary functions
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ϕ0(x) : =

⎧⎨
⎩

x1 − x

x1 − x0
for x0 ≤ x < x1

0 elsewhere

ϕm(x) : =

⎧⎪⎨
⎪⎩

x − xm−1

xm − xm−1
for xm−1 ≤ x ≤ xm

0 elsewhere.

These m + 1 hat functions satisfy the following properties.

Properties 5.2 (hat functions)

(a) The ϕ0, ..., ϕm form a basis of the space of polygons

{g ∈ C0[x0, xm] : g straight line on Dk := [xk, xk+1]
for all k = 0, ...,m − 1} .

That is to say, for each polygon v on D0, ...,Dm−1 there are unique coef-
ficients c0, ..., cm with

v =
m∑

i=0

ciϕi .

(b) On Dk only ϕk and ϕk+1 �= 0 are nonzero. Hence

ϕiϕk = 0 for |i − k| > 1 .

(c) A simple approximation of the integral
∫ xm

x0
fϕj dx can be calculated as

follows:
Substitute f by the interpolating polygon

fp :=
m∑

i=0

fiϕi , where fi := f(xi) ,

and obtain for each j the approximating integral

Ij :=
∫ xm

x0

fpϕj dx =
∫ xm

x0

m∑
i=0

fiϕiϕj dx =
m∑

i=0

fi

∫ xm

x0

ϕiϕj dx︸ ︷︷ ︸
=:bji

The bij constitute a symmetric matrix B and the fi a vector f̄ . If we
arrange all integrals Ij (0 ≤ j ≤ m) into a vector, then all integrals can
be written in a compact way in vector notation as

Bf̄ .

(d) The “large” (m + 1)2–matrix B := (bij) can be set up Dk-elementwise by
(2×2)-matrices (discussed below in Section 5.2.2). The (2×2)-matrices are
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those integrals that integrate only over a single subdomain Dk. For each
Dk in our one-dimensional setting exactly the four integrals

∫
ϕiϕjdx for

i, j ∈ {k, k + 1} are nonzero. They can be arranged into a (2 × 2)-matrix∫ xk+1

xk

(
ϕ2

k ϕkϕk+1

ϕk+1ϕk ϕ2
k+1

)
dx .

(The integral over a matrix is understood elementwise.) These are the
integrals on Dk, where the integrand is a product of the factors

xk+1 − x

xk+1 − xk
and

x − xk

xk+1 − xk
.

The four numbers

1
(xk+1 − xk)2

∫ xk+1

xk

(
(xk+1 − x)2 (xk+1 − x)(x − xk)

(x − xk)(xk+1 − x) (x − xk)2

)
dx

result. With hk := xk+1 − xk integration yields the element-mass matrix
(−→ Exercise 5.2)

1
6
hk

(
2 1
1 2

)
(e) Analogously, integrating ϕ′

iϕ
′
j yields∫ xk+1

xk

(
ϕ′2

k ϕ′
kϕ′

k+1

ϕ′
k+1ϕ

′
k ϕ′2

k+1

)
dx

=
1
h2

k

∫ xk+1

xk

(
(−1)2 (−1)1
1(−1) 12

)
dx =

1
hk

(
1 −1
−1 1

)
.

These matrices are called element-stiffness matrices. They are used to set
up the matrix A.

5.2.2 Assembling

The next step is to assemble the matrices A and B. It might to be tempting
to organize this task as follows: Run a double loop on all i, j and check for
each (i, j) on which Dk the integral∫

Dk

ϕiϕj = 0

is nonzero. It turns out that such a procedure is cumbersome as compared
to the alternative of running a single loop on all k and calculate all relevant
integrals on Dk.

To this end, we split the integrals∫ xm

x0

=
m−1∑
k=0

∫
Dk
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i

j

D

D

D

2

1

0

k

Fig. 5.6. Assembling in the one-dimensional setting

to construct the (m+1)×(m+1)-matrices A = (aij) and B = (bij) additively
out of the small element matrices. For the case of the one-dimensional hat
functions with subintervals

Dk = {x : xk ≤ x ≤ xk+1}

the element matrices are (2 × 2), see above. In this case only those integrals
of ϕ′

iϕ
′
j and ϕiϕj are nonzero, for which i, j ∈ Ik, where

i, j ∈ Ik := {k, k + 1} . (5.10)

Ik is the set of indices of those basis functions that are nonzero on Dk.
The assembling algorithm performs a loop over the subinterval index k =
0, 1, . . . ,m− 1 and distributes the (2× 2)-element matrices additively to the
positions (i, j) ∈ Ik. Before the assembling is started, the matrices A and
B must be initialized with zeros. For k = 0, ...,m − 1 one obtains for A the
(m + 1)2-matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
h0

− 1
h0

− 1
h0

1
h0

+ 1
h1

− 1
h1

− 1
h1

1
h1

+ 1
h2

− 1
h2

− 1
h2

. . . . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.11a)
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The matrix B is assembled in an analogous way. In the one-dimensional
situation the matrices are tridiagonal. For an equidistant grid with h = hk

this matrix A specializes to

A =
1
h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0
−1 2 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.11b)

and B to

B =
h

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0
1 4 1

1 4
. . .

. . . . . . . . .
. . . 4 1

0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.11c)

5.2.3 A Simple Application

In order to demonstrate the procedure, let us consider the simple model
boundary-value problem

Lu := −u′′ = f(x) with u(x0) = u(xm) = 0 . (5.12)

We perform a Galerkin approach and substitute w :=
∑m

i=0 ciϕi into the
differential equation. In view of (5.7) this leads to

m∑
i=0

ci

∫ xm

x0

Lϕiϕj dx =
∫ xm

x0

fϕj dx .

Next we apply integration by parts on the left-hand side, and invoke Property
5.2(c) on the right-hand side. The resulting system of equations is

m∑
i=0

ci

∫ xm

x0

ϕ′
iϕ

′
j dx︸ ︷︷ ︸

aij

=
m∑

i=0

fi

∫ xm

x0

ϕiϕj dx︸ ︷︷ ︸
bij

, j = 0, 1, ...,m . (5.13)

This system is preliminary because the homogenous boundary conditions
u(x0) = u(xm) = 0 are not yet taken into account.

At this state, the preliminary system of equations (5.13) can be written
as

Ac = Bf̄ . (5.14)
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It is easy to see that the matrix A from (5.11b) is singular, because
A(1, 1, ..., 1)tr = 0. This singularity reflects the fact that the system (5.14)
does not have a unique solution. This is consistent with the differential equa-
tion −u′′ = f(x): If u(x) is solution, then also u(x)+α for arbitrary α. Unique
solvability is attained by satisfying the boundary conditions; a solution u of
−u′′ = f must be fixed by at least one essential boundary condition. For
our example (5.12) we know in view of u(x0) = u(xm) = 0 the coefficients
c0 = cm = 0. This information can be inserted into the system of equations
in such a way that the matrix A changes to a nonsingular matrix without
losing symmetry. For c0 = 0 we replace the first equation of the system (5.14)
by (1, 0, . . . , 0)tr c = 0. Adding the first equation to the second produces a
zero in the first column of A. Analogously we realize cm = 0 in the last row
and column of A. Now the c0 and cm are decoupled, and the inner part of
size (m − 1) × (m − 1) of A remains. The matrix B is (m − 1) × (m + 1).
Finally, for the special case of an equidistant grid, the system of equations is⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c1

c2
...

cm−2

cm−1

⎞
⎟⎟⎟⎟⎠ =

h2

6

⎛
⎜⎜⎜⎜⎝

1 4 1 0
1 4 1

. . . . . . . . .
1 4 1

0 1 4 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f̄0

f̄1
...

f̄m−1

f̄m

⎞
⎟⎟⎟⎟⎠

(5.15)

In (5.15) we have used an equidistant grid for sake of a lucid exposition.
Our main focus is the nonequidistant version, which is also implemented eas-
ily. In case nonhomogeneous boundary conditions are prescribed, appropriate
values of c0 or cm are predefined. The importance of finite-element methods
in structural engineering has lead to call the global matrix A the stiffness
matrix, and B is called the mass matrix.

5.3 Application to Standard Options

The flexibility of finite elements is especially advantageous in higher-dimen-
sional spaces (several underlyings). But it works also for the one-dimensional
case of standard options. This is the theme of this section.
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5.3.1 European Options

As emphasized earlier, the valuation of single-asset European options makes
use of the Black–Scholes formula. But for sake of exposition, let us briefly
sketch a finite-element approach. We apply the FE approach to the trans-
formed version yτ = yxx of the Black–Scholes equation. The solution y(x, τ)
is approximated by an ansatz that corresponds to (5.4), namely,

N∑
i=1

wi(τ)ϕi(x) + ϕ0(x, τ) . (5.16)

Here ϕ0(x, τ) is constructed in advance such that ϕ0 satisfies boundary con-
ditions and —if possible— initial condition. So ϕ0 can be considered to be
known, and the sum

∑
wiϕi does not reflect any nonzero (Dirichlet-) bound-

ary conditions. The basis functions ϕ1, . . . , ϕN are chosen to be the hat func-
tions, which incorporate the discretization of the x-axis. Hence, N = m − 1,
and x0 corresponds to xmin and xm to xmax. The functions w1, . . . , wm−1 are
unknown. (5.16) represents a separation of the variables x and τ .

Calculating derivatives of (5.16) and substituting into yτ = yxx leads to
the Galerkin approach

xm∫
x0

[
m−1∑
i=1

ẇiϕi + ϕ̇0

]
ϕj dx =

xm∫
x0

[
m−1∑
i=1

wiϕ
′′
i + ϕ′′

0

]
ϕj dx

for j = 1, . . . ,m−1. The overdot represents differentiation with respect to τ ,
and the prime with respect to x. Arranging the terms that invole derivatives
of ϕ0 into vectors a(τ), b(τ),

a(τ) :=

⎛
⎜⎝

∫
ϕ′′

0(x, τ)ϕ1(x) dx
...∫

ϕ′′
0(x, τ)ϕm−1(x) dx

⎞
⎟⎠ , b(τ) :=

⎛
⎜⎝

∫
ϕ̇0(x, τ)ϕ1(x) dx

...∫
ϕ̇0(x, τ)ϕm−1(x) dx

⎞
⎟⎠

and using the matrices A,B as in (5.11), we arrive after integration by parts
at

Bẇ + b = −Aw − a (5.17)

This completes the semidiscretization, and defines the unknown vector func-
tion w(τ) := (w1, . . . , wm−1)tr as solution of a system of ordinary differential
equations. Initial conditions for τ = 0 are given by (5.16). Assume the initial
condition as y(x, 0) = α(x), then

N∑
i=1

wi(0)ϕi(x) + ϕ0(x, 0) = α(x) .

Specifically for x = xj the sum reduces to wj(0) · 1, leading to
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wj(0) = α(xj) − ϕ0(xj , 0) .

We leave the derivation of a Crank–Nicolson type of discretization as an
exercise to the reader. With the usual notation as in w(ν) := w(tν), the result
can be written

(B +
Δτ

2
A)w(ν+1) =(B − Δτ

2
A)w(ν)

− Δτ

2
(a(ν) + a(ν+1) + b(ν) + b(ν+1))

(5.18)

The structure strongly resembles the finite-difference approach (4.15).
This similarity suggests that the order is the same, because for the finite-
element A’s and B’s we have (compare (5.11))

A = O

(
1

Δx

)
, B = O(Δx) .

The separation of the variables x and τ in (5.16) allows to investigate the or-
ders of the discretizations separately. In Δτ , the order O(Δτ2) of the Crank–
Nicolson type approach (5.18) is clear from the above. It remains to derive
the order of convergence with respect to the discretization in x. Because
of the separation of variables it is sufficient to derive the convergence for a
one-dimensional model problem. This will be done in Section 5.5.

5.3.2 Variational Form of the Obstacle Problem

To warm up for the discussion of the American option, let us return to the
simple obstacle problem of Section 4.5.4 with the obstacle function g(x, τ).
This problem can be formulated as a variational inequality. The function u
can be characterized by comparing it to functions v out of a set K of competing
functions

K := {v ∈ C0[−1, 1] : v(−1) = v(1) = 0 ,

v(x) ≥ g(x) for − 1 ≤ x ≤ 1, v piecewise ∈ C1} .

The requirements on u imply u ∈ K. For v ∈ K we have v − g ≥ 0 and in
view of −u′′ ≥ 0 also −u′′(v − g) ≥ 0. Hence for all v ∈ K the inequality∫ 1

−1

−u′′(v − g) dx ≥ 0

must hold. By (4.26) the integral∫ 1

−1

−u′′(u − g) dx = 0

vanishes. Subtracting yields
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∫ 1

−1

−u′′(v − u) dx ≥ 0 for any v ∈ K .

The obstacle function g does not occur explicitly in this formulation; the
obstacle is implicitly defined in K. Integration by parts leads to

[−u′(v − u)︸ ︷︷ ︸
=0

]1−1 +
∫ 1

−1

u′(v − u)′ dx ≥ 0 .

The integral-free term vanishes because of u(−1) = v(−1), u(1) = v(1). In
summary, we have derived the statement:

If u solves the obstacle problem (4.26), then∫ 1

−1

u′(v − u)′ dx ≥ 0 for all v ∈ K .
(5.19)

Since v varies in the set K of competing functions, an inequality such as in
(5.19) is called variational inequality. The characterization of u by (5.19) can
be used to construct an approximation w: Instead of u, find a w ∈ K such
that the inequality (5.19) is satisfied for all v ∈ K,

1∫
−1

w′(v − w)′ dx ≥ 0 for all v ∈ K

The characterization (5.19) is related to a minimum problem, because the
integral vanishes for v = u.

5.3.3 American Options

Analogously as the simple obstacle problem also the problem of calculating
American options can be formulated as variational problem, compare Prob-
lem 4.7. The class of comparison functions is defined as

K := {v ∈ C0 : ∂v
∂x piecewise C0 ,

v(x, τ) ≥ g(x, τ) for all x, τ , v(x, 0) = g(x, 0) ,

v(xmax, τ) = g(xmax, τ), v(xmin, τ) = g(xmin, τ)} .

(5.20)

For the following, v ∈ K. Let y denote the exact solution of Problem 4.7. As
solution of the partial differential inequality, y is C2-smooth on the continu-
ation region, and y ∈ K. From

v ≥ g,
∂y

∂τ
− ∂2y

∂x2
≥ 0
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we deduce ∫ xmax

xmin

(
∂y

∂τ
− ∂2y

∂x2

)
(v − g) dx ≥ 0 .

Invoking the complementarity∫ xmax

xmin

(
∂y

∂τ
− ∂2y

∂x2

)
(y − g) dx = 0

and subtraction gives∫ xmax

xmin

(
∂y

∂τ
− ∂2y

∂x2

)
(v − y) dx ≥ 0 .

Integration by parts leads to the inequality

∫ xmax

xmin

(
∂y

∂τ
(v − y) +

∂y

∂x

(
∂v

∂x
− ∂y

∂x

))
dx − ∂y

∂x
(v − y)

∣∣∣∣∣
xmax

xmin

≥ 0 .

The nonintegral term vanishes, because at the boundary for xmin, xmax, in
view of v = g, y = g the equality v = y holds. The final result is

I(y; v) :=
∫ xmax

xmin

(
∂y

∂τ
· (v − y) +

∂y

∂x

(
∂v

∂x
− ∂y

∂x

))
dx ≥ 0 for all v ∈ K .

(5.21)
The exact y is characterized by the fact that the inequality (5.21) holds for
all comparison functions v ∈ K. For the special choice v = y the integral
takes its minimal value,

min
v∈K

I(y; v) = I(y; y) = 0 .

A more general question is, whether the inequality (5.21) holds for a ŷ ∈ K
that is not C2-smooth on the continuation region. (Recall that the American
option is widely C2-smooth, except across the early-exercise curve.) The aim
is to construct a ŷ ∈ K such that I(ŷ; v) ≥ 0 for all v ∈ K, and

inf
v∈K

I(ŷ; v) = 0 .

This formulation of our problem is called weak version, because it does not
use ŷ ∈ C2. Solutions ŷ of this minimization problem, which are globally
continuous but only piecewise ∈ C1 are called weak solutions. The original
partial differential equation requires y ∈ C2 and hence more smoothness. Such
C2-solutions are called strong solutions or classical solutions (−→ Section 5.5).

Now we approach the inequality (5.21) with finite-element methods. As a
first step to approximately solve the minimum problem, assume approxima-
tions for ŷ and v in the similar forms
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∑
i

wi(τ)ϕi(x) for ŷ ,

∑
i

vi(τ)ϕi(x) for v .
(5.22)

The reduced smoothness of these expressions match the requirements of K.
The above setting assumes the independent variables τ and x to be separated.
As a consequence of this simple approach, the same x-grid is applied for all τ ,
which results in a rectangular grid in the (x, τ)-plane. The time dependence
is incorporated in the coefficient functions wi and vi. Since the basis functions
ϕi represent the xi-grid, we so far perform a semidiscretization. Plugging into
(5.21) gives

∫ ⎧⎨
⎩
(∑

i

dwi

dτ
ϕi

)⎛
⎝∑

j

(vj − wj)ϕj

⎞
⎠+

(∑
i

wiϕ
′
i

)⎛
⎝∑

j

(vj − wj)ϕ′
j

⎞
⎠
⎫⎬
⎭ dx

=
∑

i

∑
j

dwi

dτ
(vj − wj)

∫
ϕiϕj dx +

∑
i

∑
j

wi(vj − wj)
∫

ϕ′
iϕ

′
j dx ≥ 0.

Translated into vector notation this is equivalent to(
dw

dτ

)tr

B(v − w) + wtrA(v − w) ≥ 0

or

(v − w)tr

(
B

dw

dτ
+ Aw

)
≥ 0 .

The matrices A and B are defined via the assembling described above; for
equidistant steps the special versions in (5.11b), (5.11c) arise.

As a second step, the time is discretized. To this end let us define the
vectors

w(ν) := w(τν), v(ν) := v(τν) .

Upon substituting, and θ-averaging the Aw term as in Section 4.6.1, we arrive
at the inequalities(
v(ν+1) − w(ν+1)

)tr
(

B
1

Δτ
(w(ν+1) − w(ν)) + θAw(ν+1) + (1 − θ)Aw(ν)

)
≥ 0

(5.23a)
for all ν. For θ = 1/2 this is a Crank–Nicolson-type method.

Rearranging (5.23a) leads to(
v(ν+1) − w(ν+1)

)tr (
(B + Δτ θA) w(ν+1) + (Δτ(1 − θ)A − B)w(ν)

)
≥ 0 .
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With the abbreviations

r : = (B − Δτ(1 − θ)A)w(ν)

C : = B + Δτ θA
(5.23b)

the inequality can be rewritten as(
v(ν+1) − w(ν+1)

)tr (
Cw(ν+1) − r

)
≥ 0 . (5.23c)

This is the fully discretized version of I(ŷ; v) ≥ 0.

Side Conditions
ŷ(x, τ) ≥ g(x, τ) amounts to∑

wi(τ)ϕi(x) ≥ g(x, τ) .

For hat functions ϕi (with ϕi(xi) = 1 and ϕi(xj) = 0 for j �= i) and x = xj

this implies wj(τ) ≥ g(xj , τ). With τ = τν we have

w(ν) ≥ g(ν); analogously v(ν) ≥ g(ν) .

For each time level ν we must find a solution that satisfies both the inequality
(5.23) and the side condition

w(ν+1) ≥ g(ν+1) for all v(ν+1) ≥ g(ν+1) .

In summary, the algorithm is

Algorithm 5.3 (finite elements for American standard options)

θ := 1/2. Calculate w(0).

For ν = 1, ..., νmax :

Calculate r = (B − Δτ(1 − θ)A)w(ν−1) and g = g(ν)

Construct a w such that for all v ≥ g

(v − w)tr(Cw − r) ≥ 0, w ≥ g.

Set w(ν) := w

Let us emphasize again the main step, which is the kernel of this algorithm
and the main labor: Construct w such that

(FE)
for all v ≥ g

(v − w)tr(Cw − r) ≥ 0, w ≥ g
(5.24)
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This task (FE) can be reformulated into a task we already solved in Section
4.6. To this end recall the finite-difference equation (4.31), replacing A by C,
and b by r. There the following holds for w:

(FD)
Cw − r ≥ 0, w ≥ g

(Cw − r)tr(w − g) = 0
(5.25)

Theorem 5.4 (equivalence)
The solution of the problem (FE) is equivalent to the solution of problem
(FD).
Proof:
a) (FD) =⇒ (FE):

Let w solve (FD), so w ≥ g, and

(v − w)tr(Cw − r) = (v − g)tr (Cw − r)︸ ︷︷ ︸
≥0

− (w − g)tr(Cw − r)︸ ︷︷ ︸
=0

hence (v − w)tr(Cw − r) ≥ 0 for all v ≥ g

b) (FE) =⇒ (FD):
Let w solve (FE), so w ≥ g, and

vtr(Cw − r) ≥ wtr(Cw − r) for all v ∈ K

Suppose the kth component of Cw − r is negative, and make vk arbi-
trarily large. Then the left-hand side becomes arbitrarily small, which
is a contradiction. So Cw − r ≥ 0. Now

w ≥ g =⇒ (w − g)tr(Cw − r) ≥ 0

Set in (FE) v = g, then (w − g)tr(Cw − r) ≤ 0.
Therefore (w − g)tr(Cw − r) = 0.

Implementation
As a consequence of this equivalence, the solution of the finite-element prob-
lem (FE) can be calculated with the methods we applied to solve problem
(FD) in Section 4.6. Following the exposition in Section 4.6.2, the kernel of
the finite-element Algorithm 5.3 can be written as follows

(FE′) Solve Cw = r such that
componentwise w ≥ g .

The vector v is not calculated. The boundary conditions on w are set up in
the same way as discussed in Section 4.4 and summarized in Algorithm 4.13.
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Consequently, the finite-element algorithm parallels Algorithm 4.13 closely
in the special case of an equidistant x-grid; there is no need to repeat this
algorithm (−→ Exercise 5.3). In the general nonequidistant case, the off-
diagonal and the diagonal elements of the tridiagonal matrix C vary with i,
and the formulation of the SOR-loop gets more involved. The details of the
implementation are technical and omitted. The Algorithm 4.14 is the same
in the finite-element case.

The computational results match those of Chapter 4 and need not be re-
peated. The costs of the presented simple version of a finite-element approach
are slightly lower than that of the finite-difference approach.

1 2 1
S

1

S2 =y

=x

2

Fig. 5.7. Finite element discretization of a domain D into triangles Dk (see Section
5.4)

5.4 Application to an Exotic Call Option

As an example we consider an exotic European-style option, a two-asset
basket-double-barrier call option with payoff

Ψ(S1, S2) = (S1 + S2 − K)+ ,

and V (S1, S2, T ) = Ψ(S1, S2), up to the barriers. Assume two knock-out
barriers B1 and B2, down-and-out with B1, up-and-out with B2. That is, the
option ceases to exist when S1 + S2 < B1, or when S1 + S2 > B2; in both
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cases V = 0. The mathematical model is that of the Black–Scholes market,
see Section 3.5.5. The corresponding PDE for the value function V (S1, S2, t)
is

∂V

∂t
+

1
2
σ2

1S2
1

∂2V

∂S2
1

+ rS1
∂V

∂S1
− rV

+
1
2
σ2

2S2
2

∂2V

∂S2
2

+ rS2
∂V

∂S2
+ ρσ1σ2S1S2

∂2V

∂S1∂S2
= 0 .

(5.26)

(For the general case see Section 6.2.) The computational domain D is
bounded by the two lines S1 + S2 = B1 and S1 + S2 = B2. This shape
of D naturally suggests applying a structured grid of triangular elements Dk.
One possible triangulation is sketched in Figure 5.7. For this example we
choose the parameters

K = 1 , T = 1 , σ1 = σ2 = 0.25 , ρ = 0.7 , r = 0.05 , B1 = 1 , B2 = 2 .

The boundary conditions for S1 → 0 and S2 → 0 are given by the one-
dimensional Black–Scholes equation; just set either S1 = 0 or S2 = 0 in
(5.26). Hence the boundary conditions for (5.26) are the values of single-
asset double-barrier options and can be evaluated by a closed-form formula,
see [Haug98].

1

ϕ

Fig. 5.8. Two-dimensional hat function ϕl(x, y) (zero ouside the shaded structure)

It is convenient to solve the Black–Scholes equation in a divergence-free
version. To this end, use standard PDE variables x := S1, y := S2, τ := T − t
for the independent variables, and u(x, y, τ) for the dependent variable, and
derive the PDE for u
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−∇ · (D(x, y)∇u) + b(x, y)∇u + ru = − ∂

∂τ
u , (5.27a)

where the · corresponds to the scalar product, similar as tr for vectors. ∇u is
the gradient of u. This makes use of

D(x, y) :=
1
2

(
σ2

1x2 ρσ1σ2xy
ρσ1σ2xy σ2

2y2

)
,

b(x, y) := −
(

(r − σ2
1 − ρσ1σ2/2)x

(r − σ2
2 − ρσ1σ2/2) y

)
,

∇ :=

⎛
⎜⎜⎝

∂

∂x

∂

∂y

⎞
⎟⎟⎠ .

(5.27b)

The reader is invited to check the equivalence with (5.26). (−→ Exercise 5.5)
To separate time τ and “space” (x, y), substitute u by the ansatz∑

i

wi(τ)ϕi(x, y) .

Compared to (5.22) the basis functions ϕi are defined on planar regions D ⊂
IR2. The Galerkin ansatz creates integrals over D∫

ϕi ∇ · D∇ϕj ,

∫
ϕi btr∇ϕj ,

∫
ϕi r ϕj .

For basis functions, we choose the two-dimensional analogon of the hat func-
tions, which matches perfectly triangular elements. The situation is shown
schematically in Figure 5.8. There the central node l is node of several adja-
cent triangles, which are the support (shaded) on which ϕl is built by planar
pieces. This approach defines a tent-like hat function ϕl, which is zero “out-
side.” By linear combination of such basis functions, piecewise planar surfaces
above the computational domain can be constructed. Locally, for one triangle,
this may look like the element in Figure 5.3.

In this two-dimensional situation, the element matrices are 3 × 3. For
each number k of a triangle, there are three nodes of the triangle, i, j, l in
Figure 5.8. Hence the table that assigns nodes to triangles includes the entry
Ik := {i, j, l}. Accordingly, for each matrix, the assembling loop distributes
9 local integrals for each Dk. For the calculation of the local integrals on an
arbitrary triangle Dk consult the special FE literature. Basic ingredients are
the relations in Exercise 5.6. The Figure 5.91 shows a FE solution with 192
triangles.

1 Courtesy of A. Kvetnaia.
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Fig. 5.9. Value function of a basket-barrier call option, Example of Section 5.4

5.5 Error Estimates

The similarity of the finite-element equation (5.18) with the finite-difference
equation (4.15) suggests that the errors might be of the same order. In fact,
numerical experiments confirm that the finite-element approach with the lin-
ear basis functions from Definition 5.1 produces errors decaying quadratically
with the mesh size. Applying the finite-element Algorithm 5.3 and entering
the calculated data into a diagram as Figure 4.14, confirms the quadratic
order experimentally. The proof of this order of the error is more difficult
for finite-element methods because weak solutions assume less smoothness.
For standard options, the separation of variables in (5.16) also separates the
discussion of the order, and so the one-dimensional situation suffices. This
section explains some basic ideas of how to derive error estimates. We begin
with reconsidering some of the related topics that have been introduced in
previous sections.
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5.5.1 Strong and Weak Solutions

Our exposition will be based on the model problem (5.12). That is, the simple
second-order differential equation

−u′′ = f(x) for α < x < β (5.28a)

with homogeneous Dirichlet-boundary conditions

u(α) = u(β) = 0 (5.28b)

will serve as illustration. The differential equation is of the form Lu = f , com-
pare (5.2). The domain D ⊆ IRn on which functions u are defined specializes
for n = 1 to the open and bounded interval D = {x ∈ IR1 : α < x < β}. For
continuous f , solutions of the differential equation (5.28a) satisfy u ∈ C2(D).
In order to have operative boundary conditions, solutions u must be continu-
ous on D including its boundary, which is denoted ∂D. Therefore we require
u ∈ C0(D̄) where D̄ := D∪∂D. In summary, classical solutions of second-order
differential equations require

u ∈ C2(D) ∩ C0(D̄) . (5.29)

The function space C2(D) ∩ C0(D̄) must be reduced further to comply with
the boundary conditions.

For weak solutions the function space is larger (−→ Appendix C3). For
functions u and v we define the inner product

(u, v) :=
∫
D

uv dx . (5.30)

Classical solutions u of Lu = f satisfy

(Lu, v) = (f, v) for all v . (5.31)

Specifically for the model problem (5.28) integration by parts leads to

(Lu, v) = −
∫ β

α

u′′v dx = −u′v
∣∣∣β
α

+
∫ β

α

u′v′ dx .

The nonintegral term on the right-hand side of the equation vanishes in case
also v satisfies the homogeneous boundary conditions (5.28b). The remaining
integral is a bilinear form, which we abbreviate

b(u, v) :=
∫ β

α

u′v′ dx . (5.32)

Bilinear forms as b(u, v) from (5.32) are linear in each of the two arguments u
and v. For example, b(u1+u2, v) = b(u1, v)+b(u2, v) holds. For several classes
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of more general differential equations analogous bilinear forms are obtained.
Formally, (5.31) can be rewritten as

b(u, v) = (f, v) , (5.33)

where we assume that v satisfies the homogeneous boundary conditions
(5.28b).

The equation (5.33) has been derived out of the differential equation, for
the solutions of which we have assumed smoothness in the sense of (5.29).
Many “solutions” of practical importance do not satisfy (5.29) and, accord-
ingly, are not classical. In several applications, u or derivatives of u have
discontinuities. For instance consider the obstacle problem of Section 4.5.4:
The second derivative u′′ of the solution fails to be continuous at α and β.
Therefore u /∈ C2(−1, 1) no matter how smooth the data function is, compare
Figure 4.10. As mentioned earlier, integral relations require less smoothness.

In the derivation of (5.33) the integral version resulted as a consequence
of the primary differential equation. This is contrary to wide areas of applied
mathematics, where an integral relation is based on first principles, and the
differential equation is derived in a second step. For example, in the calculus
of variations a minimization problem may be described by an integral perfor-
mance measure, and the differential equation is a necessary criterion [St86].
This situation suggests considering the integral relation as an equation of
its own right rather than as offspring of a differential equation. This leads
to the question, what is the maximal function space such that (5.33) with
(5.30), (5.32) is meaningful? That means to ask, for which functions u and v
do the integrals exist? For a more detailed background we refer to Appendix
C3. For the introductory exposition of this section it may suffice to sketch
the maximum function space briefly. The suitable function space is denoted
H1, the version equipped with the boundary conditions is denoted H1

0. This
Sobolev space consists of those functions that are continuous on D and that
are piecewise differentiable and satisfy the boundary conditions (5.28b). This
function space corresponds to the class of functions K in (5.20). By means
of the Sobolev space H1

0 a weak solution of Lu = f is defined, where L is a
second-order differential operator and b the corresponding bilinear form.

Definition 5.5 (weak solution)
u ∈ H1

0 is called weak solution [of Lu = f ], if b(u, v) = (f, v) holds for all
v ∈ H1

0.

This definition implicitly expresses the task: find a u ∈ H1
0 such that

b(u, v) = (f, v) for all v ∈ H1
0. This problem is called variational problem.

The model problem (5.28) serves as example for Lu = f ; the corresponding
bilinear form b(u, v) is defined in (5.32) and (f, v) in (5.30). For the integrals
(5.30) to exist, we in addition require f to be square integrable (f ∈ L2, com-
pare Appendix C3). Then (f, v) exists because of the Schwarzian inequality
(C3.7). In a similar way, weak solutions are introduced for more general prob-
lems; the formulation of Definition 5.5 applies.
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Fig. 5.10. Approximation spaces

5.5.2 Approximation on Finite-Dimensional Subspaces

For a practical computation of a weak solution the infinite-dimensional space
H1

0 is replaced by a finite-dimensional subspace. Such finite-dimensional sub-
spaces are spanned by basis functions ϕi. The simplest examples are the hat
functions of Section 5.2. Reminding of the important role splines play as basis
functions, the finite-dimensional subspaces are denoted S. The hat functions
ϕ0, ..., ϕm span the space of polygons, compare Property 5.2(a). Recall that
each polygon v can be represented as linear combination

v =
m∑

i=0

ciϕi .

The coefficients ci are uniquely determined by the values of v at the nodes,
ci = v(xi). The hat functions are called linear elements because they con-
sist of piecewise straight lines. Apart from linear elements, for example, also
quadratic or cubic elements are used, which are piecewise polynomials of sec-
ond or third degree [Zi77], [Ci91], [Sc91]. The attainable accuracy is different
for basis functions consisting of higher-degree polynomials. The spaces S are
called finite-element spaces.

Since by definition the functions of the Sobolev space H1
0 fulfill the homo-

geneous boundary conditions, each subspace does so as well. The subscript 0

indicates the realization of the homogeneous boundary conditions (5.28b)2.
A finite-dimensional subspace of H1

0 is defined by

2 In this subsection the meaning of the index 0 is twofold: It is the index of
the “first” hat function, and serves as symbol of the homogeneous boundary
conditions (5.21b).
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S0 := {v =
m∑

i=0

ciϕi : ϕi ∈ H1
0} . (5.34)

The properties of S0 are determined by the basis functions ϕi. As mentioned
earlier, basis functions with small supports give rise to sparse matrices. The
partition (5.3) is implicitly included in the definition S0 because this infor-
mation is contained in the definition of the ϕi. For our purposes the hat
functions suffice. The larger m is, the better S0 approximates the space H1

0,
since a finer discretization (smaller Dk) allows to approximate the functions
from H1

0 better by polygons. We denote the largest diameter of the Dk by
h, and ask for convergence. That is, we study the behavior of the error for
h → 0 (basically m → ∞).

In analogy to the variational problem expressed in connection with Def-
inition 5.5, a discrete weak solution w is defined by replacing the space H1

0

by a finite-dimensional subspace S0:

Problem 5.6 (discrete weak solution)
Find a w ∈ S0 such that b(w, v) = (f, v) for all v ∈ S0.

The quality of the approximation depends on the discretization fineness h of
S0. This is emphasized by writing wh. The transition from the continuous
variational problem following Definition 5.5 to the discrete Problem 5.6 is
sometimes called the principle of Rayleigh–Ritz.

5.5.3 Céa’s Lemma

Having defined a weak solution u and a discrete approximation w, we turn
to the error u − w. To measure the distance between functions in H1

0 we use
the norm ‖ ‖1 (−→ Appendix C3). That is, our first aim is to construct a
bound on ‖u − w‖1. Let us suppose that the bilinear form is continuous and
H1-elliptic:

Assumptions 5.7 (continuous H1-elliptic bilinear form)
(a) There is a γ1 > 0 such that

|b(u, v)| ≤ γ1‖u‖1‖v‖1 for all u, v ∈ H1

(b) There is a γ2 > 0 such that
b(v, v) ≥ γ2‖v‖2

1 for all v ∈ H1

The assumption (a) is the continuity, and the property in (b) is called H1-
ellipticity. Under the Assumptions 5.7, the problem to find a weak solution
following Definition 5.5, possesses exactly one solution u ∈ H1

0; the same holds
true for Problem 5.6. This is guaranteed by the Theorem of Lax–Milgram,
see [Ci91], [BrS02]. In view of S0 ⊆ H1

0,

b(u, v) = (f, v) for all v ∈ S0 .

Subtracting b(w, v) = (f, v) and invoking the bilinearity implies
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b(w − u, v) = 0 for all v ∈ S0 . (5.35)

The property of (5.35) is called error projection property. The Assumptions
5.7 and the error projection are the basic ingredients to obtain a bound on
the error ‖u − w‖1:

Lemma 5.8 (Céa)
Suppose the Assumptions 5.7 are satisfied. Then

‖u − w‖1 ≤ γ1

γ2
inf

v∈S0
‖u − v‖1 . (5.36)

Proof: v ∈ S0 implies ṽ := w − v ∈ S0. Applying (5.35) for ṽ yields

b(w − u,w − v) = 0 for all v ∈ S0 .

Therefore

b(w − u,w − u) = b(w − u,w − u) − b(w − u,w − v)
= b(w − u, v − u) .

Applying the assumptions shows

γ2‖w − u‖2
1 ≤ |b(w − u,w − u)| = |b(w − u, v − u)|
≤ γ1‖w − u‖1‖v − u‖1 ,

from which
‖w − u‖1 ≤ γ1

γ2
‖v − u‖1

follows. Since this holds for all v ∈ S0, the assertion of the lemma is
proven.

Let us check whether the Assumptions 5.7 are fulfilled by the model problem
(5.28). For (a) this follows from the Schwarzian inequality (C3.7) with the
norms

‖u‖1 =

(∫ β

α

(u2 + u′2) dx

)1/2

, ‖u‖0 =

(∫ β

α

u2 dx

)1/2

,

because (∫ β

α

u′v′ dx

)2

≤
(∫ β

α

u′2 dx

)(∫ β

α

v′2 dx

)
≤ ‖u‖2

1 ‖v‖2
1 .

The Assumption 5.7(b) can be derived from the inequality of the Poincaré-
type ∫ β

α

v2 dx ≤ (β − α)2
∫ β

α

v′2 dx ,
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which in turn is proven with the Schwarzian inequality. Adding
∫

v′2 dx on
both sides leads to

‖v‖2
1 ≤ [(β − α)2 + 1] b(v, v) ,

from which the constant γ2 of Assumption 5.7(b) results. So Céa’s lemma
applies to the model problem.

The next question is, how small the infimum in (5.36) may be. This is
equivalent to the question, how close the subspace S0 can approximate the
space H1

0. (−→ Figure 5.10) We will show that for hat functions and S0 from
(5.34) the infimum is of the order O(h). Again h denotes the maximum mesh
size, and the notation wh reminds us that the discrete solution depends on
the grid. Following Céa’s lemma, we need an upper bound for the infimum
of ‖u − v‖1. Such a bound is found easily by a specific choice of v, which is
taken as an arbitrary interpolating polygon uI. Then by (5.36)

‖u − wh‖1 ≤ γ1

γ2
inf

v∈S0
‖u − v‖1 ≤ γ1

γ2
‖u − uI‖1 . (5.37)

It remains to bound the error of interpolating polygons. This bound is pro-
vided by the following lemma, which is formulated for C2-smooth functions
u:

Lemma 5.9 (error of an interpolating polygon)
For u ∈ C2 let uI be an arbitrary interpolating polygon and h the maximal
distance between two consecutive nodes. Then
(a) max

x
|u(x) − uI(x)| ≤ h2

8 max |u′′(x)|
(b) max

x
|u′(x) − u′

I(x)| ≤ h max |u′′(x)|

We leave the proof to the reader (−→ Exercise 5.4). The assumption u ∈ C2

in Lemma 5.9 can be weakened to u′′ ∈ L2 [SF73]. Lemma 5.9 asserts

‖u − uI‖1 = O(h) ,

which together with (5.37) implies the claimed error statement

‖u − wh‖1 = O(h) . (5.38)

Recall that this assertion is based on a continuous and H1-elliptic bilinear
form and on hat functions ϕi. The O(h)-order in (5.38) is dominated by the
unfavorable O(h)-order of the first-order derivative in Lemma 5.9(b). This
low order is at variance with the actually observed O(h2)-order attained by
the approximation wh itself (not its derivative). So the error statement (5.38)
is not yet the final result. In fact, the square order can be proven with a tricky
idea due to Nitsche, which we omit here. The final result is

‖u − wh‖0 ≤ Ch2‖u‖2 (5.39)

for a constant C.
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The derivations of this section have been focused on the model problem
(5.28) with a second-order differential equation and one independent variable
x (n = 1), and have been based on linear elements. Most of the assertions can
be generalized to higher-order differential equations, to higher-dimensional
domains (n > 1), and to nonlinear elements. For example, in case the elements
in S are polynomials of degree k, and the differential equation is of order 2l,
S ⊆ Hl, and the corresponding bilinear form on Hl satisfies the Assumptions
5.7 with norm ‖ ‖l, then the inequality

‖u − wh‖l ≤ Chk+1−l‖u‖k+1

holds. This general statement includes for k = 1, l = 1 the special case of
equation (5.39) discussed above. For the analysis of the general case, we refer
to [Ci91], [Ha92]. This includes boundary conditions more general than the
homogeneous Dirichlet conditions of (5.28b).

Notes and Comments

on Section 5.1:
As an alternative to the piecewise defined finite elements one may use poly-
nomials ϕj that are defined globally on D, and that are pairwise orthogonal.
Then the orthogonality is the reason for the vanishing of many integrals.
Such type of methods are called spectral methods. Since the ϕj are glob-
ally smooth on D, spectral methods can produce high accuracies. On other
context, spectral methods were applied in [Fru08]. Rayleigh–Ritz approaches
choose the ϕj as eigenfunctions of L. For symmetric L this leads to diagonal
matrices A.

on Section 5.2:
In the early stages of their development, finite-element methods have been
applied intensively in structural engineering. In this field, stiffness matrix and
mass matrix have a physical meaning leading to these names [Zi77].

The construction of the global matrices by assembling the local element
matrices is easy for the one-dimensional application (x ∈ IR1), because the
numbering of the subintervals (with k) and the numbering of the nodes (with i
or j) interlace in a unique way. In the two-dimensional case, with for instance
triangles Dk, the assignment of the element is more complicated, and the
index set Ik does not have such a simple structure as in (5.10). For two-
dimensional hat functions (3 × 3)-element matrices must be distributed. To
this end, for each Dk the index set of all adjoining nodes must be stored. For
example, for triangles Dk each index set is of the form

Ik = {i1, i2, i3} ,
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where i1, i2, i3 are the numbers of the three nodes in the corners of Dk. This
generalizes (5.10), see for instance [Sc91].

on Section 5.3:
The approximation

∑
wi(τ)ϕi(x) for ŷ is a one-dimensional finite-element

approach. The geometry of the grid and the accuracy resemble the finite-
difference approach. A two-dimensional approach as in∑

wiϕi(x, τ)

with two-dimensional hat functions and constant wi is more involved and
more flexible. The exposition of Section 5.3.3 widely follows [WDH96].

on Section 5.5:
The finite-dimensional function space S0 in (5.34) is assumed to be subspace
of H1

0. Elements with this property are called conforming elements. A more
accurate notation for S0 of (5.34) is S1

0 . In the general case, conforming
elements are characterized by Sl ⊆ Hl. In the respresentation of v in equation
(5.34) we avoid discussing the technical issue of how to organize different
types of boundary conditions.

There are also smooth basis functions ϕ, for example, cubic Hermite
polynomials. For sufficiently smooth solutions, such basis functions produce
higher accuray than hat functions do. For the accuracy of finite-element meth-
ods consult, for example, [SF73], [Ci91], [Ha92], [BaS01], [BrS02], [AcP05].

on other methods:
Finite-element methods are frequently used for approximating exotic options,
in particular in multidimensional situations. For different types of derivatives
special methods have been developed. For applications, computational results
and accuracies see also [Top00], [Top05], [AcP05]. Front-fixing has been ap-
plied with finite elements in [HoY08]. The accuracy aspect is also treated in
[FuST02]. Galerkin methods are used with wavelet functions in [MaPS02].

Exercises

Exercise 5.1 Cubic B-Spline

Suppose an equidistant partition of an interval be given with mesh-size
h = xk+1 − xk. Cubic B-splines have a support of four subintervals. In
each subinterval the spline is a piece of polynomial of degree three. Apart
from special boundary splines, the cubic B-splines ϕi are determined by the
requirements
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ϕi(xi) = 1
ϕi(x) ≡ 0 for x < xi−2

ϕi(x) ≡ 0 for x > xi+2

ϕ ∈ C2(−∞,∞) .

To construct the ϕi proceed as follows:
a) Construct a spline S(x) that satisfies the above requirements for the spe-

cial nodes
x̃k := −2 + k for k = 0, 1, ..., 4 .

b) Find a transformation Ti(x), such that ϕi = S(Ti(x)) satisfies the require-
ments for the original nodes.

c) For which i, j does ϕiϕj = 0 hold?

Exercise 5.2 Finite-Element Matrices
For the hat functions ϕ from Section 5.2 calculate for arbitrary subinterval
Dk all nonzero integrals of the form∫

ϕiϕj dx,

∫
ϕ′

iϕj dx,

∫
ϕ′

iϕ
′
j dx

and represent them as local 2 × 2 matrices.

Exercise 5.3 Calculating Options with Finite Elements
Design an algorithm for the pricing of standard options by means of finite
elements. To this end proceed as outlined in Section 5.3. Start with a simple
version using an equidistant discretization step Δx. If this is working properly
change the algorithm to a version with nonequidistant x-grid. Distribute the
nodes xi closer around x = 0. Always place a node at the strike.

Exercise 5.4
Prove Lemma 5.9, and for u ∈ C2 the assertion ‖u − wh‖1 = O(h).

Exercise 5.5
Prove the equivalence of (5.26) and (5.27).

Exercise 5.6
In the three-dimensional (x, y, w)-space let the plane w(x, y) = c1+c2 x+c3 y
interpolate the three points (xi, yi, wi), i = 1, 2, 3. Show⎛

⎝ 1 x1 y1

1 x2 y2

1 x3 y3

⎞
⎠
⎛
⎝ c1

c2

c3

⎞
⎠ =

⎛
⎝w1

w2

w3

⎞
⎠ .

By inversion, establish a formula for ∇w = (c2, c3)tr.



Chapter 6 Pricing of Exotic Options

In Chapter 4 we discussed the pricing of vanilla options (standard options)
by means of finite differences. The methods were based on the simple partial
differential equation (4.2),

∂y

∂τ
=

∂2y

∂x2
,

which was obtained from the Black–Scholes equation (4.1) for V (S, t) via the
transformations (4.3). These transformations could be applied because ∂V

∂t in
the Black–Scholes equation is a linear combination of terms of the type

cjS
j ∂jV

∂Sj

with constants cj , j = 0, 1, 2.
Exotic options lead to partial differential equations that are not of the

simple structure of the basic Black–Scholes equation (4.1). In the general
case, the transformations (4.3) are no longer useful and the PDEs must be
solved directly. Thereby numerical instabilities or spurious solutions may oc-
cur, which do not play any role for the methods of Chapter 4. To cope with
the “new” difficulties, Chapter 6 introduces ideas and tools not needed in
Chapter 4. Exotic options often involve higher-dimensional problems. This
significantly adds to the complexity. The aim of this chapter will not be to
formulate algorithms, but to give an outlook and lead the reader to the edge
of several aspects of recent research. Some of the many possible methods will
be exemplified on Asian options.

Sections 6.1 and 6.2 give a brief overview on important types of exotic
options. An exhaustive discussion of the wide field of exotic options is far
beyond the scope of this book. Section 6.3 introduces approaches for path-
dependent options, with the focus on Asian options. Then numerical aspects
of convection-diffusion problems are discussed (in Section 6.4), and upwind
schemes are analyzed (in Section 6.5). After these preparations the Section
6.6 arrives at a state of the art high-resolution method.

R.U. Seydel, Tools for Computational Finance, Universitext, 235
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6.1 Exotic Options

So far, this book has mainly concentrated on standard options. These are
the American or European call or put options with payoff functions (1.1C)
or (1.1P) as discussed in Section 1.1, based on a single underlying asset. The
options traded on official exchanges are mainly standard options; there are
market prices quoted in relevant newspapers.

All nonstandard options are called exotic options. That is, at least one
of the features of a standard option is violated. One of the main possible
differences between standard and exotic options lies in the payoff; examples
are given in this section. Another extension from standard to exotic is an in-
crease in the dimension, from single-factor to multifactor options; this will be
discussed in Section 6.2. The distinctions between put und call, and between
European and American options remain valid for exotic options. Financial
institutions have been imaginative in designing exotic options to meet the
needs of clients. Many of the products have a highly complex structure. Ex-
otic options are traded outside the exchanges (OTC), and often there are no
market prices. Exotic options must be priced based on models. In general,
their parameters are taken from the results obtained when standard options
with comparable terms are calibrated to market prices. The simplest models
extend the Black–Merton–Scholes model summarized by Assumption 1.2.

Next we list a selection of some important types of exotic options. For
more explanation we refer to [Hull00], [Wi98].

Compound Option: Compound options are options on options. Depending on
whether the options are put or call, there are four main types of compound
options. For example, the option may be a call on a call.

Chooser Option: After a specified period of time the holder of a chooser option
can choose whether the option is a call or a put. The value of a chooser option
at this time is

max{VC, VP}
Binary Option: Binary options have a discontinuous payoff, for example

VT = Ψ(ST ) := C ·
{

1 if ST < K
0 if ST ≥ K

for a fixed amount C. See Section 3.5.5 for a two-dimensional example.

Path-Dependent Options

Options where the payoff depends not only on ST but also on the path of St

for previous times t < T are called path dependent. Important path-dependent
options are the barrier option, the lookback option, and the Asian option.

Barrier Option: For a barrier option the payoff is contingent on the underlying
asset’s price St reaching a certain threshold value B, which is called barrier.
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Barrier options can be classified depending on whether St reaches B from
above (down) or from below (up). Another feature of a barrier option is
whether it ceases to exist when B is reached (knock out) or conversely comes
into existence (knock in). Obviously, for a down option, S0 > B and for an
up option S0 < B. Depending on whether the barrier option is a put or a
call, a number of different types are possible. For example, the payoff of a
European down-and-out call is

VT =
{

(ST − K)+ in case St > B for all t
0 in case St ≤ B for some t

In the Black–Merton–Scholes framework, the value of the option before the
barrier has been triggered still satisfies the Black–Scholes equation. The de-
tails of the barrier feature come in through the specification of the boundary
conditions, see [Wi98].

Lookback Option: The payoff of a lookback option depends on the maximum
or minimum value the asset price St reaches during the life of the option. For
example, the payoff of a lookback option is

max
t

St − ST .

Average Option/Asian Option: The payoff from an Asian option depends on
the average price of the underlying asset. This will be discussed in more detail
in Section 6.3.

The exotic options of the above short list gain complexity when they are
multifactor options.

Pricing of Exotic Options
Several types of exotic options can be reduced to the Black–Scholes equation.
In these cases the methods of Chapter 4 are adequate. For a number of
options of the European type the Black–Scholes evaluation formula (A4.10)
can be applied. For related reductions of exotic options we refer to [Hull00],
[WDH96], [Kwok98]. Approximations are possible with binomial methods or
with Monte Carlo simulation. The Algorithm 3.6 applies, only the calculation
of the payoff (step 2) must be adapted to the exotic option.

6.2 Options Depending on Several Assets

The options listed in Section 6.1 depend on one underlying asset. Options
depending on several assets are discussed next. Two large groups of multi-
factor options are the rainbow options and the baskets. The subdivision into
the groups is by their payoff. Assume n assets are underlying, with prices
S1, . . . , Sn. Different from the notation in previous chapters, the index refers
to the number of the asset. Recall that two examples of exotic options with



238 Chapter 6 Pricing of Exotic Options

two underlyings occurred earlier in this text: Example 3.8 of a binary put,
and Section 5.4 with a basket-barrier call.

Rainbow options compare the value of individual assets [Smi97]. Examples
of payoffs are

max (S1, . . . , Sn) “n-color better-of option”
min (S1, S2) “two-color worse-of option”
max (S2 − S1, 0) “outperformance option”
max (min (S1 − K, . . . , Sn − K), 0) “min call option”

A basket is an option with payoff depending on a portfolio of assets. An
example is the payoff of a basket call,(

n∑
i=1

ciSi − K

)+

,

where the weights ci are given by the portfolio. It is recommendable to sketch
the above payoffs for n = 2.

For the pricing of multifactor options the instruments introduced in the
previous chapters apply. This holds for the four large classes of methods dis-
cussed before, namely, the PDE methods, the tree methods, the evaluation
of integrals by quadrature, and the Monte Carlo methods. Each class sub-
divides into further methods. For the choice of an appropriate method, the
dimension n is crucial. For large values of n, in particular PDE methods suf-
fer from the curse of dimension. When in any one dimension m nodes are
required, then in IRn already mn nodes are involved —at least for standard
finite difference methods. At present state it is not possible to decide at what
level the threshold of n might be, above which PDE standard discretizations
are too expensive. At least for n = 2 and n = 3, such elementary PDE ap-
proaches are competitive. Otherwise sparse-grid technology or multigrid are
better choices, see the references in Section 3.5.1 and at the end of Chapter
4. Generally in a multidimensional situation, finite elements are recommend-
able. But FE methods suffer from the curse of dimension too.

PDE methods require relevant PDEs and boundary conditions. Often a
Black–Merton–Scholes scenario is assumed. To extend the one-factor model,
an appropriate generalization of geometric Brownian motion is needed. We
begin with the two-factor model, with the prices of the two assets S1 and S2.
The assumption of a constant-coefficient GBM is then expressed as

dS1 = μ1S1 dt + σ1S1 dW (1)

dS2 = μ2S2 dt + σ2S2 dW (2)

E( dW (1) dW (2)) = ρdt ,

(6.1a)

where ρ is the correlation between the two assets, −1 ≤ ρ ≤ 1. Note that the
third equation in (6.1a) is equivalent to Cov( dW (1), dW (2)) = ρdt, because
E( dW (1)) = E( dW (2)) = 0. Compared to more general systems as in (1.41),
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the version (6.1a) with correlated Wiener processes has the advantage that
each asset price has its own growth factor μ and volatility σ, which can be
estimated from data. The correlation ρ is given by the correlation of the
returns dS

S , since

Cov

(
dS1

S1
,

dS2

S2

)
= E(σ1 dW (1)σ2 dW (2)) = ρσ1σ2 dt . (6.1b)

Note that following Section 2.3.3 and Exercise 2.9, the correlated Wiener
processes are given by

dW (1) = dZ1

dW (2) = ρdZ1 +
√

1 − ρ2 dZ2 ,
(6.1c)

where Z1 and Z2 are independent standard normally distributed processes.
This was used already in (3.28). The resulting two-dimensional Black–Scholes
equation was applied in Section 5.4, see equation (5.26). This is derived by
the two-dimensional version of the Itô-Lemma (−→ Appendix B2) and a
no-arbitrage argument. The resulting PDE (5.26) has independent variables
(S1, S2, t). Usually, the time variable is not counted when the dimension is
discussed. In this sense, the PDE (5.26) is two-dimensional, whereas the clas-
sic Black–Scholes PDE (1.2) is considered as one-dimensional.

The general n-factor model is analogous. The appropriate model is a
straightforward generalization of (6.1a),

dSi = (μi − δi)Si dt + σiSi dW (i) , i = 1, . . . , n

E(dW (i)dW (j)) = ρij dt , i, j = 1, . . . , n
(6.2a)

where ρij is the correlation between asset i and asset j, and δi denotes the
dividend flow paid by the ith asset. For a simulation of such a stochastic
vector process see Section 2.3.3. The Black–Scholes-type PDE of the model
(6.2a) is

∂V

∂t
+

1
2

n∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑
i=1

(r − δi)Si
∂V

∂Si
− rV = 0 . (6.2b)

Boundary conditions depend on the specific type of option. For example
in the two-dimensional situation, one boundary can be defined by the plane
S1 = 0 and the other by the plane S2 = 0. It may be appropriate to apply
the Black–Scholes vanilla formula (A4.10) along these planes, or to define
one-dimensional sub-PDEs only for the purpose to calculate the values of
V (S1, 0, t) and V (0, S2, t) along the boundary planes.

For tree methods, the binomial method can be generalized canonically
[BoEG89]. But already for n = 2 the recombining standard tree with M time
levels requires 1

3M3 + O(M2) nodes, and for n = 3 the number of nodes is of
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the order O(M4). Tree methods also suffer from the curse of dimension. But
obviously not all of the nodes of the canonical binomial approach are needed.
The ultimate aim is to approximate the lognormal distribution, and this can
be done with fewer nodes. Nodes in IRn should be constructed in such a way
that the number of nodes grows comparably slower than the quality of the
approximation of the distribution function. An example of a two-dimensional
approach is presented in [Lyuu02]. Generalizing the trinomial approach to
higher dimensions is not recommendable because of storage requirements,
but other geometrical structures as icosahedral volumes can be applied. For
different tree approaches, see [McW01]. For a convergence analysis of tree
methods, and for an extension to Lévy processes, see [FoVZ02], [MaSS06].

An advantage of tree methods and of Monte Carlo methods is that
no boundary conditions are needed. The essential advantage of MC meth-
ods is that they are much less affected by high dimensions, see the notes
on Section 3.6. An example of a five-dimensional American-style option is
calculated in [BrG04], [LonS01]. It is most inspiring to perform Monte Carlo
experiments on exotic options. For European-style options, this amounts to
a straightforward application of Section 3.5 (−→ Exercise 6.1).

6.3 Asian Options

The price of an Asian option1 depends on the average price of the underlying
and hence on the history of St. We choose this type of option to discuss
some strategies of how to handle path-dependent options. Let us first define
different types of Asian options via their payoff.

6.3.1 The Payoff

There are several ways how an average of past values of St can be formed.
If the price St is observed at discrete time instances ti, say equidistantly
with time interval h := T/n, one obtains a times series St1 , St2 , . . . , Stn

. An
obvious choice of average is the arithmetic mean

1
n

n∑
i=1

Sti
=

1
T

h

n∑
i=1

Sti
.

If we imagine the observation as continuously sampled in the time period
0 ≤ t ≤ T, the above mean corresponds to the integral

Ŝ :=
1
T

∫ T

0

St dt (6.3)

1 Again, the name has no geographical relevance.
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The arithmetic average is used mostly. Sometimes the geometric average is
applied, which can be expressed as(

n∏
i=1

Sti

)1/n

= exp

(
1
n

log
n∏

i=1

Sti

)
= exp

(
1
n

n∑
i=1

log Sti

)
.

Hence the continuously sampled geometric average of the price St is the
integral

Ŝg := exp

(
1
T

∫ T

0

log St dt

)
.

The averages Ŝ and Ŝg are formulated for the time period 0 ≤ t ≤ T , which
corresponds to a European option. To allow for early exercise at time t < T ,
Ŝ and Ŝg are modified appropriately, for instance to

Ŝ :=
1
t

∫ t

0

Sθ dθ .

With an average value Ŝ like the arithmetic average of (6.3) the payoff of
Asian options can be written conveniently:

Definition 6.1 (Asian option)

With an average Ŝ of the price evolution St the payoff functions of Asian
options are defined as

(Ŝ − K)+ average price call
(K − Ŝ)+ average price put
(ST − Ŝ)+ average strike call
(Ŝ − ST )+ average strike put

The price options are also called rate options, or fixed strike options; the
strike options are also called floating strike options. Compared to the vanilla
payoffs of (1.1P), (1.1C), for an Asian price option the average Ŝ replaces S

whereas for the Asian strike option Ŝ replaces K. The payoffs of Definition
6.1 form surfaces on the quadrant S > 0, Ŝ > 0. The reader may visualize
these payoff surfaces.

6.3.2 Modeling in the Black–Scholes Framework

The above averages can be expressed by means of the integral

At :=
∫ t

0

f(Sθ, θ) dθ , (6.4)

where the function f(S, t) corresponds to the type of chosen average. In par-
ticular f(S, t) = S corresponds to the continuous arithmetic average (6.3), up
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to scaling by the length of interval. For Asian options the price V is a func-
tion of S,A and t, which we write V (S,A, t). To derive a partial differential
equation for V using a generalization of Itô’s Lemma we require a differential
equation for A. But this is given by (6.4), it lacks a stochastic dWt-term,2

dA = aA(t) dt + bA dWt ,

with aA(t) := f(St, t) , bA := 0 .

For St the standard GBM of (1.33) is assumed. By the multidimensional
version (B2.1) of Itô’s Lemma adapted to Yt := V (St, At, t), the two terms
in (1.44) or (1.45) that involve bA as factors to ∂V

∂A , ∂2V
∂A2 vanish. Accordingly,

dVt =
(

∂V

∂t
+ μS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+ f(S, t)

∂V

∂A

)
dt + σS

∂V

∂S
dWt .

The derivation of the Black–Scholes-type PDE goes analogously as outlined
in Appendix A4 for standard options and results in

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0 . (6.5)

Compared to the original vanilla version (1.2), only one term in (6.5) is new,
namely,

f(S, t)
∂V

∂A
.

As we will see below, the lack of a second-order derivative with respect to A
may cause numerical difficulties. The transformations (4.3) cannot be applied
advantageously to (6.5). — As an alternative to the definition of At in (6.4),
one can scale by t. This leads to a different “new term” (−→ Exercise 6.2).

6.3.3 Reduction to a One-Dimensional Equation

Solutions to (6.5) are defined on the domain

S > 0 , A > 0 , 0 ≤ t ≤ T

of the three-dimensional (S,A, t)-space. The extra A-dimension leads to sig-
nificantly higher costs when (6.5) is solved numerically. This is the general
situation. But in some cases it is possible to reduce the dimension. Let us
discuss an example, concentrating on the case f(S, t) = S of the arithmetic
average.

We consider a European arithmetic average strike call with payoff

2 The ordinary integral At is random but has zero quadratic variation
[Shr04].
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(
ST − 1

T
AT

)+

= ST

(
1 − 1

TST

∫ T

0

Sθ dθ

)+

.

An auxiliary variable Rt is defined by

Rt :=
1
St

∫ t

0

Sθ dθ ,

and the payoff is rewritten

ST

(
1 − 1

T
RT

)+

= ST · function(RT , T ) .

This motivates trying a separation of the solution in the form

V (S,A, t) = S · H(R, t) (6.6)

for some function H(R, t). In this role, R is an independent variable. But
note that the integral Rt satisfies an SDE. From

Rt+ dt = Rt + dRt

dSt = μSt dt + σSt dWt

the SDE
dRt = (1 + (σ2 − μ)Rt) dt − σRt dWt (6.7)

follows.
Substituting the separation ansatz (6.6) into the PDE (6.5) leads to a

PDE for H,
∂H

∂t
+

1
2
σ2R2 ∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0 (6.8)

(−→ Exercise 6.2). To solve this PDE, boundary conditions are required.
Their choice in general is not unique. The following considerations suggest
boundary conditions.

A right-hand boundary condition for R → ∞ follows from the payoff

H(RT , T ) = (1 − 1
T RT )+ ,

which implies H(RT , T ) = 0 for RT → ∞. The integral Rt is bounded, hence
S → 0 for R → ∞. For S → 0 a European call option is not exercised, which
suggests

H(R, t) = 0 for R → ∞ . (6.9)

At the left-hand boundary R = 0 we encounter more difficulties. Even if
R0 = 0 holds, the equation (6.7) shows that dR0 = dt and Rt will not stay
at 0. So there is no reason to expect RT = 0, and the value of the payoff
cannot be predicted. Another kind of boundary condition is required.

To this end, we start from the PDE (6.8), which for R → 0 is equivalent
to
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∂H

∂t
+

1
2
σ2R2 ∂2H

∂R2
+

∂H

∂R
= 0 .

Assuming that H is bounded, one can prove that the term

R2 ∂2H

∂R2

vanishes for R → 0. The resulting boundary condition is

∂H

∂t
+

∂H

∂R
= 0 for R → 0 . (6.10)

The vanishing of the second-order derivative term is shown by contradiction:
Assuming a nonzero value of R2 ∂2H

∂R2 leads to

∂2H

∂R2
= O

(
1

R2

)
,

which can be integrated twice to

H = O(log R) + c1R + c2 .

This contradicts the boundedness of H for R → 0.
For a numerical realization of the boundary condition (6.10) in the finite-

difference framework of Chapter 4, we may use the second-order formula

∂H

∂R

∣∣∣
0ν

=
−3H0ν + 4H1ν − H2ν

2ΔR
+ O(ΔR2) . (6.11)

The indices have the same meaning as in Chapter 4. We summarize the
boundary-value problem of PDEs to

∂H

∂t
+

1
2
σ2R2 ∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0

H = 0 for R → ∞

∂H

∂t
+

∂H

∂R
= 0 for R = 0

H(RT , T ) =
(
1 − RT

T

)+

(6.12)

Solving this problem numerically for 0 ≤ t ≤ T , R ≥ 0, gives H(R, t), and
via (6.6) the required values of V .
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Fig. 6.1. Asian European fixed strike put, K = 100, T = 0.2, r = 0.05, σ = 0.25,
payoff (t = 0.2) and three solution surfaces for t = 0.14, t = 0.06, and t = 0. (Figure
continued on facing page)

6.3.4 Discrete Monitoring

Instead of defining a continuous averaging as in (6.3), a realistic scenario is
to assume that the average is monitored only at discrete time instances

t1, t2, . . . , tM .

These time instances are not to be confused with the grid times of the numer-
ical discretization. The discretely sampled arithmetic average at tk is given
by
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Fig. 6.1. continued

Atk
:=

1
k

k∑
i=1

Sti
, k = 1, . . . , M . (6.13)

A new average is updated from a previous one by

Atk
= Atk−1 +

1
k

(Stk
− Atk−1)

or
Atk−1 = Atk

+
1

k − 1
(Atk

− Stk
) .
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The latter of these update formulas is relevant to us, because we integrate
backwards in time. The discretely sampled At is constant between sampling
times, and it jumps at tk with the step

1
k − 1

(Atk
− Stk

) .

For each k this jump can be written

A−(S) = A+(S) +
1

k − 1
(A+(S) − S), where S = Stk

. (6.14a)

A− and A+ denote the values of A immediately before and immediately
after sampling at tk. The no-arbitrage principle implies continuity of V at
the sampling instances tk in the sense of continuity of V (St, At, t) for any
realization of a random walk. In our setting, this continuity is written

V (S,A+, tk) = V (S,A−, tk) . (6.14b)

But for a fixed (S,A) this equation defines a jump of V at tk.
The numerical application of the jump condition (6.14) is as follows: The

A-axis is discretized into discrete values Aj , j = 1, . . . , J . For each time period
between two consecutive sampling instances, say for tk+1 → tk, the option’s
value is independent of A because in our discretized setting At is piecewise
constant; accordingly ∂V

∂A = 0. So J one-dimensional Black–Scholes equations
are integrated separately and independently from tk+1 to tk, one for each
j. Each of the one-dimensional Black–Scholes problems has its own terminal
condition. For each Aj , the “first” terminal condition is taken from the payoff
surface for tM = T . Proceeding backwards in time, at each sampling time
tk the J parallel one-dimensional Black–Scholes problems are halted because
new terminal conditions must be derived from the jump condition (6.14). The
new values for V (S,Aj , tk) that serve as terminal values (starting values for
the backward integration) for the next time period tk → tk−1, are defined
by the jump condition, and are obtained by interpolation. Only at these
sampling times the J standard one-dimensional Black–Scholes problems are
coupled; the coupling is provided by the interpolation. In this way, a sequence
of surfaces V (S,A, tk) is calculated for tM = T, . . . , t1 = 0. Figure 6.1 shows3

the payoff and three surfaces calculated for an Asian European fixed strike
put. As this illustration indicates, there is a kind of rotation of this surface
as t varies from T to 0.

3 After interpolation; MATLAB graphics; courtesy of S. Göbel; similar
[ZFV99].
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Fig. 6.2. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Crank-Nicolson
approximation V (S, 0) with Δt = 0.01, ΔS = 0.1 and centered difference scheme
for ∂V

∂S
. Comparison with the exact Black–Scholes values (dashed).

6.4 Numerical Aspects

A direct numerical approach to the PDE (6.5) for functions V (S,A, t) de-
pending on three independent variables requires more effort than in the
two-dimensional case. For example, a finite-difference approach uses a three-
dimensional grid. And a separation ansatz as in Section 5.3 applies with
two-dimensional basis functions. Although much of the required technology
is widely analogous to the approaches discussed in Chapters 4 and 5, a thor-
ough numerical treatment of higher-dimensional PDEs is beyond the scope of
this book. Here we confine ourselves to PDEs with two independent variables,
as in (6.8).

6.4.1 Convection-Diffusion Problems

Before entering a discussion on how to solve numerically a PDE like (6.8)
without using transformations like (4.3), we perform an experiment with
our well-known “classical” Black–Scholes equation (1.2). In contrast to the
procedure of Chapter 4 we directly apply finite-difference quotients to (1.2).
Here we use the second-order differences of Section 4.2.1 for a European call,
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, otherwise the same data as in Figure 6.2

and compare the numerical approximation with the exact solution (A4.10).
Figure 6.2 shows the result for V (S, 0). The lower part of the figure shows
an oscillating error, which seems to be small. But differentiating magnifies
oscillations. This is clearly visible in Figure 6.3, where the important hedge
variable delta= ∂V

∂S is depicted. The wiggles are even worse for the second-
order derivative gamma. These oscillations are financially unrealistic and are
not tolerable, and we have to find its causes. The oscillations are spurious
in that they are produced by the numerical scheme and are not solutions
of the differential equation. The spurious oscillations do not exist for the
transformed version yτ = yxx, which is illustrated by Figure 6.4.

In order to understand possible reasons why spurious oscillations may oc-
cur, we recall elementary fluid dynamics, where so-called convection-diffusion
equations play an important role. For such equations, the second-order term
is responsible for diffusion and the first-order term for convection. The ratio
of convection to diffusion —scaled by a characteristic length— is the Péclet
number, a dimensionless parameter characterizing the convection-diffusion
problem. It turns out that the Péclet number is relevant for the understand-
ing of underlying phenomena. Let us see what the Péclet number is for PDEs
discussed so far in the text.

As a first example we take the original Black–Scholes equation (1.2), with
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Fig. 6.4. European put, K = 10, r = 0.06, σ = 0.30, T = 1. Approximation
delta= ∂V

∂S
(S, 0) based on yτ = yxx with m = 40. Comparison with the exact

Black–Scholes values (dashed).

diffusion term:
1
2
σ2S2 ∂2V

∂S2

convection term: rS
∂V

∂S

length scale: ΔS

When the coefficients —not the derivatives— enter the Péclet number, its
value is

ΔSrS /
1
2
σ2S2 =

2r

σ2

ΔS

S
Since this dimensionless parameter involves the mesh size ΔS it is also called
mesh Péclet number. (In case of a continuous dividend flow δ, replace r by
r − δ.) Experimental evidence indicates that the higher the Péclet number,
the higher the danger that the numerical solution exhibits oscillations.

The PDE yτ = yxx has no convection term, hence its Péclet number is
zero. Asian options described by the PDE (6.5) have a cumbersome situation:
With respect to A there is no diffusion term (i.e., no second-order derivative),
hence its Péclet number is ∞! For the original Black–Scholes equation the
Péclet number basically amounts to r/σ2. It may become large when a small
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volatility σ is not compensated by a small riskless interest rate r. For the
reduced PDE (6.8), the Péclet number is

ΔR(1 − rR)
1
2σ2R2

,

here a small σ can not be compensated by a small r.
These investigations of the Péclet numbers do not yet explain why spurious

oscillations occur, but should open our eyes to the relation between convection
and diffusion in the different PDEs. Let us discuss causes of the oscillations
by means of a model problem. The model problem is the pure initial-value
problem for a scalar function u defined on t ≥ 0, x ∈ IR,

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, u(x, 0) = u0(x) . (6.15)

We assume b ≥ 0. This sign of b does not contradict the signs in (6.8) since
there we have a terminal condition for t = T , whereas (6.15) prescribes an
initial condition for t = 0. The equation (6.15) is meant to be integrated in
forward time with discretization step size Δt > 0. So the equation (6.15)
is a model problem representing a large class of convection-diffusion prob-
lems, to which the equation (6.8) belongs. For the Black–Scholes equation,
the simple transformation S = Kex, t = T − τ , which works even for vari-
able coefficients r, σ, produces (6.15) except for a further term −ru on the
right-hand side (compare Exercise 1.2). And for constant r, σ the transformed
equation yτ = yxx is a member of the class (6.15), although it lacks convec-
tion. Discussing the stability properties of the model problem (6.15) will help
us understanding how discretizations of (1.2) or (6.8) behave. For the anal-
ysis assume an equidistant grid on the x-range, with grid size Δx > 0 and
nodes xj = jΔx for integers j. And for sake of simplicity, assume a and b are
constants.

6.4.2 Von Neumann Stability Analysis

First we apply to (6.15) the standard second-order centered space difference
schemes in x-direction together with a forward time step, leading to

wj,ν+1 − wjν

Δt
+ a

wj+1,ν − wj−1,ν

2Δx
= bδ2

xwjν (6.16)

with δ2
xwjν defined as in (4.13). This scheme is called Forward Time Centered

Space (FTCS). Instead of performing an eigenvalue-based stability analysis
as in Chapter 4, we now apply the von Neumann stability analysis. This
method expresses the approximations wjν of the ν-th time level by a sum of
eigenmodes or Fourier modes,

wjν =
∑

k

c
(ν)
k eikjΔx , (6.17)
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where i denotes the imaginary unit and k are the wave numbers. Substituting
this expression into the FTCS-difference scheme (6.16) leads to a correspond-
ing sum for wj,ν+1 with coefficients c

(ν+1)
k . The linearity of the scheme (6.16)

allows to find a relation
c
(ν+1)
k = Gkc

(ν)
k ,

where Gk is the growth factor of the mode with wave number k. In case
|Gk| ≤ 1 holds, it is guaranteed that the modes eikx in (6.17) are not ampli-
fied, which means the method is stable.

Applying the von Neumann stability analysis to (6.16) leads to

Gk = 1 − 2λ +
(

γ
2 + λ

)
e−ikΔx +

(
λ − γ

2

)
eikΔx ,

where we use the abbreviations

γ :=
aΔt

Δx
, λ :=

bΔt

Δx2
, β :=

aΔx

b
. (6.18)

Here γ = βλ is the famous Courant number, and β is the mesh Péclet number.
For a finite value of the latter, assume b > 0. Using eiα = cos α + i sin α and

s := sin
kΔx

2
, cos kΔx = 1 − 2s2 , sin kΔx = 2s

√
1 − s2

we arrive at
Gk = 1 − 2λ + 2λ cos kΔx − iβλ sin kΔx (6.19)

and
|Gk|2 = (1 − 4λs2)2 + 4β2λ2s2(1 − s2) .

A straightforward discussion of this polynomial on 0 ≤ s2 ≤ 1 reveals that
|Gk| ≤ 1 for

0 ≤ λ ≤ 1
2 , λβ2 ≤ 2 . (6.20)

The inequality 0 ≤ λ ≤ 1
2 brings back the stability criterion of Section 4.2.4.

The inequality λβ2 ≤ 2 is an additional restriction to the parameters λ and
β. Because of

λβ2 =
a2Δt

b

this restriction depends on the discretization steps Δt, Δx, and on the con-
vection parameter a and the diffusion parameter b as defined in (6.18). The
restriction due to the convection becomes apparent when we, for example,
choose λ = 1

2 for a maximal time step Δt. Then |β| ≤ 2 is a bound imposed
on the mesh Péclet number, which restricts Δx to Δx ≤ 2b/|a|. A violation
of this bound might be an explanation why the difference schemes of (6.16)
applied to the Black–Scholes equation (1.2) exhibit faulty oscillations.4 The
bounds on |β| and Δx are not active for problems without convection (a = 0).

4 In fact, the situation is more subtle. We postpone an outline of how dis-
persion is responsible for the oscillations to the Section 6.5.2.
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Note that the bounds give a severe restriction on problems with small values
of the diffusion constant b. For b → 0 (no diffusion) and a �= 0 we encounter
the severe consequence Δt → 0, and the scheme (6.16) can not be applied at
all. Although the constant-coefficient model problem (6.15) is not the same
as the Black–Scholes equation (1.2) or the equation (6.8), the above anal-
ysis reflects the core of the difficulties. We emphasize that small values of
the volatility represent small diffusion. So other methods than the standard
finite-difference approach (6.16) are needed.

6.5 Upwind Schemes and Other Methods

The instability analyzed for the model combination (6.15)/(6.16) occurs when
the mesh Péclet number is high and because the symmetric and centered
difference quotient is applied to the first-order derivative. Next we discuss
the extreme case of an infinite Péclet number of the model problem, namely,
b = 0. The resulting PDE is the prototypical equation

∂u

∂t
+ a

∂u

∂x
= 0 . (6.21)

6.5.1 Upwind Scheme

The standard FTCS approach for (6.21) does not lead to a stable scheme.
The PDE (6.21) has solutions in the form of traveling waves,

u(x, t) = F (x − at) ,

where F (ξ) = u0(ξ) in case initial conditions u(x, 0) = u0(x) are incorpo-
rated. For a > 0, the profile F (ξ) drifts in positive x-direction: the “wind
blows to the right.” Seen from a grid point (j, ν), the neighboring node
(j−1, ν) lies upwind and (j+1, ν) lies downwind. Here the j indicates the node
xj and ν the time instant tν . Information flows from upstream to downstream
nodes. Accordingly, the first-order difference scheme

wj,ν+1 − wjν

Δt
+ a

wjν − wj−1,ν

Δx
= 0 (6.22)

is called upwind discretization (a > 0). The scheme (6.22) is also called For-
ward Time Backward Space (FTBS) scheme.

Applying the von Neumann stability analysis to the scheme (6.22) leads
to growth factors given by

Gk := 1 − γ + γe−ikΔx . (6.23)

Here γ = aΔt
Δx is the Courant number from (6.18). The stability requirement

is that c
(ν)
k remains bounded for any k and ν → ∞. So |Gk| ≤ 1 should hold.

It is easy to see that
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γ ≤ 1 ⇒ |Gk| ≤ 1 .

(The reader may sketch the complex G-plane to realize the situation.) The
condition |γ| ≤ 1 is called the Courant–Friedrichs–Lewy (CFL) con-
dition. The above analysis shows that this condition is sufficient to ensure
stability of the upwind-scheme (6.22) applied to the PDE (6.21) with pre-
scribed initial conditions.

In case a < 0, the scheme in (6.22) is no longer an upwind scheme. The
upwind scheme for a < 0 is

wj,ν+1 − wjν

Δt
+ a

wj+1,ν − wjν

Δx
= 0 (6.24)

The von Neumann stability analysis leads to the restriction |γ| ≤ 1, or
λ|β| ≤ 1 if expressed in terms of the mesh Péclet number, see (6.18). This
again emphasizes the importance of small Péclet numbers.

We note in passing that the FTCS scheme for ut + aux = 0, which is
unstable, can be cured by replacing wjν by the average of its two neighbors.
The resulting scheme

wj,ν+1 = 1
2 (wj+1,ν + wj−1,ν) − 1

2γ(wj+1,ν − wj−1,ν) (6.25)

is called Lax–Friedrichs scheme. It is stable if and only if the CFL condition
is satisfied. A simple calculation shows that the Lax–Friedrichs scheme (6.25)
can be rewritten in the form

wj,ν+1 − wjν

Δt
= −a

wj+1,ν − wj−1,ν

2Δx
+

1
2Δt

(wj+1,ν − 2wjν + wj−1,ν) .

(6.26)
This is a FTCS scheme with the additional term

(Δx)2

2Δt
δ2
xwjν ,

representing the PDE

ut + aux = ζuxx with ζ = Δx2/2Δt .

That is, the stabilization is accomplished by adding artificial diffusion ζuxx.
The scheme (6.26) is said to have numerical dissipation.

We return to the model problem (6.15) with b > 0. For the discretization
of the a∂u

∂x term we now apply the appropriate upwind scheme from (6.22) or
(6.24), depending on the sign of the convection constant a. This noncentered
first-order difference scheme can be written

wj,ν+1 = wjν − γ 1−sign(a)
2 (wj+1,ν − wjν)

−γ 1+sign(a)
2 (wjν − wj−1,ν) + λ(wj+1,ν − 2wjν + wj−1,ν)

(6.27)
with parameters γ, λ as defined in (6.18). For a > 0 the growth factors are
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Fig. 6.5. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Approximation V (S, 0),
calculated with upwind scheme for ∂V

∂S
and Δt = 0.01, ΔS = 0.1. Comparison with

the exact Black–Scholes values (dashed)

Gk = 1 − λ(2 + β)(1 − cos kΔx) − iλβ sin kΔx .

The analysis follows the lines of Section 6.4 and leads to the single stability
criterion

λ ≤ 1
2 + |β| . (6.28)

This inequality is valid for both signs of a (−→ Exercise 6.3). For λ 
 β
the inequality (6.28) is less restrictive than (6.20). For example, a hypothetic
value of λ = 1

50 leads to the bound |β| ≤ 10 for the FTCS scheme (6.16) and
to the bound |β| ≤ 48 for the upwind scheme (6.27).

The Figures 6.5 and 6.6 show the Black–Scholes solution (dashed curve)
and an approximation obtained by using the upwind scheme as in (6.27). No
oscillations are visible, but the low order of the approximation can be seen
from the moderate gradient, which does not reflect the steep gradient of the
reality. The spurious wiggles have disappeared but the steep profile is heavily
smeared. So the upwind scheme discussed above is a motivation to look for
better methods (in Section 6.6).
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Fig. 6.6. Delta= ∂V
∂S

(S, 0), same data as in Fig. 6.5

6.5.2 Dispersion

The spurious wiggles are attributed to dispersion. Dispersion is the phe-
nomenon of different modes traveling at different speeds. We explain disper-
sion for the simple PDE ut + aux = 0. Consider for t = 0 an initial profile u
represented by a sum of Fourier modes, as in (6.17). Because of the linearity
it is sufficient to study how the kth mode eikx is conveyed for t > 0. The
differential equation ut +aux = 0 conveys the mode without change, because
eik[x−at] is a solution. For an observer who travels with speed a along the
x-axis, the mode appears “frozen.”

This does not hold for the numerical scheme. Here the amplitude and the
phase of the kth mode may change. That is, the special initial profile

1 · eik[x−0]

may change to
c(t) · eik[x−d(t)] ,

where c(t) is the amplitude and d(t) the phase (up to the traveler distance
at). Their values must be compared to those of the exact solution.

To be specific, apply Taylor’s expansion to the upwind scheme for ut +
aux = 0 (a > 0),
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w(x, t + Δt) − w(x, t)
Δt

+ a
w(x, t) − w(x − Δx, t)

Δx
= 0 ,

to derive the equivalent differential equation

wt + awx = ζwxx + ξwxxx + O(Δ2) ,

with

ζ :=
a

2
(Δx − aΔt) =

a

2
Δx(1 − γ) ,

ξ :=
a

6
(−Δx2 + 3aΔtΔx − 2a2Δt2) =

a

6
Δx2(1 − γ)(2γ − 1) .

A solution can be obtained for the truncated PDE wt + awx = ζwxx + ξxxx.
Substituting w = ei(ωt+kx) with undetermined frequency ω gives ω and

w = exp{−ζk2t} · exp{ik[x − t(ξk2 + a)]} .

This defines the relevant amplitude c(t) and phase shift d(t), or rather

ck(t) = exp{−ζk2t}
dk(t) = ξk2t .

The w = ck(t)eik[x−at−dk(t)] represents the solution of the applied upwind
scheme. It is compared to the exact solution u = eik[x−at] of the model prob-
lem, for which all modes propagate with the same speed a and without decay
of the amplitude. The phase shift dk in w due to a nonzero ξ becomes more
relevant if the wave number k gets larger. That is, modes with different wave
numbers drift across the finite-difference grid at different rates. Consequently,
an initial signal represented by a sum of modes, changes its shape as it travels.
The different propagation speeds of different modes eikx give rise to oscilla-
tions. This phenomenon is called dispersion. (Note that in our scenario of the
simple model problem with upwind scheme, for γ = 1 and γ = 1

2 we have
ξ = 0 and dispersion vanishes.)

A value of |c(t)| < 1 amounts to dissipation. If a high phase shift is
compensated by heavy dissipation (c ≈ 0), then the dispersion is damped
and may be hardly noticable.

For several numerical schemes, related values of ζ and ξ have been in-
vestigated. For the influence of dispersion or dissipation see, for example,
[St86], [Th95], [QSS00], [TR00]. Dispersion is to be expected for numerical
schemes that operate on those versions of the Black–Scholes equation that
have a convection term. This holds in particular for the θ-methods as de-
scribed in Section 4.6.1, and for the upwind scheme. Numerical schemes for
the convection-free version yτ = yxx do not suffer from dispersion.
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6.6 High-Resolution Methods

The naive FTCS approach of the scheme (6.16) is only first-order in t-
direction and suffers from severe stability restrictions. There are second-order
approaches with better properties. A large class of schemes has been devel-
oped for so-called conservation laws, which in the one-dimensional situation
are written

∂u

∂t
+

∂

∂x
f(u) = 0 . (6.29)

The function f(u) represents the flux in the equation (6.29), which originally
was tailored to applications in fluid dynamics. We introduce the second-order
method of Lax and Wendroff for the flux-conservative equation (6.29) because
this method is too valuable to be discussed only for the simple special case
ut + aux = 0. Then we present basic ideas of high-resolution methods.

6.6.1 Lax–Wendroff Method

The Lax–Wendroff scheme is based on

uj,ν+1 = ujν + Δt
∂ujν

∂t
+ O(Δt2) = ujν − Δt

∂f(ujν)
∂x

+ O(Δt2) .

This expression makes use of (6.29) and replaces time derivatives by space
derivatives. For suitably adapted indices this basic scheme is applied three
times on a staggered grid. The staggered grid (see Figure 6.7) uses half steps
of lengths 1

2Δx and 1
2Δt and intermediate mode numbers j− 1

2 , j + 1
2 , ν + 1

2 .
The main step is the second-order centered step (CTCS) with the center in
the node (j, ν + 1

2 ) (square in Figure 6.7). This main step needs the flux
function f evaluated at approximations w obtained for the two intermediate
nodes

(
j ± 1

2 , ν + 1
2

)
, which are marked by crosses in Figure 6.7.

 ν +1 Δx

t

ν

j-1 j j+1

Δ  

Fig. 6.7. Staggered grid for the Lax–Wendroff scheme.
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Algorithm 6.2 (Lax–Wendroff)

wj+ 1
2 ,ν+ 1

2
:= 1

2 (wjν + wj+1,ν) − Δt
2Δx (f(wj+1,ν) − f(wjν))

wj− 1
2 ,ν+ 1

2
:= 1

2 (wj−1,ν + wjν) − Δt
2Δx (f(wjν) − f(wj−1,ν))

wj,ν+1 := wjν − Δt
Δx

(
f(wj+ 1

2 ,ν+ 1
2
) − f(wj− 1

2 ,ν+ 1
2
)
) (6.30)

In this algorithm the half-step values wj+ 1
2 ,ν+ 1

2
and wj− 1

2 ,ν+ 1
2

are provisional
and discarded after wj,ν+1 is calculated. A stability analysis for the special
case f(u) = au in equation (6.29) (that is, of equation (6.21)) leads to the
CFL condition as before. The Lax–Wendroff algorithm fits well discontinuities
and steep fronts as the Black–Scholes delta-profile in Figures 6.3 and 6.6. But
there are still spurious wiggles in the vicinity of steep gradients. The Lax–
Wendroff scheme produces oscillatons near sharp fronts. We need to find a
way to damp out the oscillations.

6.6.2 Total Variation Diminishing

Since ut +aux convects an initial profile F (x) with velocity a, a monotonicity
of F will be preserved for all t > 0. So it makes sense to require also a
numerical scheme to be monotonicity preserving. That is,

wj0 ≤ wj+1,0 for all j ⇒ wjν ≤ wj+1,ν for all j, ν ≥ 1
wj0 ≥ wj+1,0 for all j ⇒ wjν ≥ wj+1,ν for all j, ν ≥ 1 .

A stronger requirement is that oscillations be diminished. To this end we
define the total variation of the approximation vector w(ν) at the ν-th time
level as

TV(w(ν)) :=
∑

j

|wj+1,ν − wjν | . (6.31)

The aim is to construct a method that is total variation diminishing (TVD),

TV(w(ν+1)) ≤ TV(w(ν)) for all ν .

Before we come to a criterion for TVD, note that the schemes discussed in
this section are explicit and of the form

wj,ν+1 =
∑

i

ciwj+i,ν . (6.32)

The coefficients ci decide whether such a scheme is monotonicity preserving
or TVD.

Lemma 6.3 (monotonicity and TVD)
(a) The scheme (6.32) is monotonicity preserving if and only if ci ≥ 0 for

all ci.
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(b) The scheme (6.32) is total variation diminishing (TVD) if and only if

ci ≥ 0 for all ci , and
∑

i

ci ≤ 1 .

The proof of (a) is left to the reader; for proving (b) the reader may find
help in [We01], see also [Kr97]. As a consequence of Lemma 6.3 note that
TVD implies monotonicity preservation. The Lax–Wendroff scheme satisfies
ci ≥ 0 for all i only in the exceptional case γ = 1. For practical purposes, in
view of nonconstant coefficients a, the Lax–Wendroff scheme is not TVD. For
f(u) = au, the upwind scheme (6.22) and the Lax–Friedrichs scheme (6.25)
are TVD for |γ| ≤ 1 (−→ Exercise 6.4).

6.6.3 Numerical Dissipation

For clarity we continue to discuss the matters for the linear scalar equation
(6.21),

ut + aux = 0 , for a > 0 .

For this equation it is easy to substitute the two provisional half-step values
of the Lax–Wendroff algorithm into the equation for wj,ν+1. Then a straight-
forward calculation shows that the Lax–Wendroff scheme can be obtained
by adding a diffusion term to the upwind scheme (6.22). The details are
discussed next. For ease of notation, we define the difference

δ−x wjν := wjν − wj−1,ν . (6.33)

Then the upwind scheme is written

wj,ν+1 = wjν − γδ−x wjν , γ =
aΔt

Δx
.

The reader may check that the Lax–Wendroff scheme is obtained by adding
the term

−δ−x { 1
2γ(1 − γ)(wj+1,ν − wjν)} . (6.34)

So the Lax–Wendroff scheme is rewritten

wj,ν+1 = wjν − γδ−x wjν − δ−x { 1
2γ(1 − γ)(wj+1,ν − wjν)} .

That is, the Lax–Wendroff scheme is the first-order upwind scheme plus the
term (6.34), which is

− 1
2γ(1 − γ)(wj+1,ν − 2wjν + wj−1,ν) .

Hence the added term is —similar as for the Lax–Friedrichs scheme (6.26)—
the discretized analogue of the artificial diffusion

− 1
2aΔt(Δx − aΔt)uxx .
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Adding this artificial dissipation term (6.34) to the upwind scheme makes the
scheme a second-order method.

The aim is to find a scheme that will give us neither the wiggles of the Lax–
Wendroff scheme nor the smearing and low accuracy of the upwind scheme.
On the other hand, we wish to benefit both from the second-order accuracy of
the Lax–Wendroff scheme and from the smoothing capabilities of the upwind
scheme. The idea is not to add the same amount of dissipation everywhere
along the x-axis, but to add artificial dissipation in the right amount where
it is needed. The resulting hybrid scheme will be of Lax–Wendroff type when
the gradient is flat, and will be upwind-like at strong gradients of the solution.
The decision on how much dissipation to add will be based on the solution.

In order to meet the goals, high-resolution methods control the artificial
dissipation by introducing a limiter �jν such that

wj,ν+1 = wjν − γδ−x wjν − δ−x { �jν
1
2γ(1 − γ)(wj+1,ν − wjν)} . (6.35)

Obviously this hybrid scheme specializes to the upwind scheme for �jν = 0
and is identical to the Lax–Wendroff scheme for �jν = 1. Accordingly, �jν = 0
may be chosen for strong gradients in the solution profile and �jν = 1 for
smooth sections. To check the smoothness of the solution one defines the
smoothness parameter

qjν :=
wjν − wj−1,ν

wj+1,ν − wjν
. (6.36)

The limiter �jν will be a function of qjν . We now drop the indices jν. For
q ≈ 1 the solution will be considered smooth, so we require the function
� = �(q) to satisfy �(1) = 1 to reproduce the Lax–Wendroff scheme. Several
strategies have been suggested to choose the limiter function �(q) such that
the scheme (6.35) is total variation diminishing. For a thorough discussion
of this matter we refer to [Sw84], [Kr97], [Th99]. One example of a limiter
function is the van Leer limiter, which is defined by

�(q) =
{

0 , q ≤ 0
2q

1+q , q > 0 (6.37)

The above principles of high-resolution methods have been successfully
applied to financial engineering. The transfer of ideas from the simple problem
(6.21) to the Black–Scholes world is quite involved. The methods are TVD
for the Black–Scholes equation, which is in nonconservative form. Further
the methods can be applied to nonuniform grids, and to implicit methods.
The application of the Crank-Nicolson approach can be recommended. This
amounts to solve nonlinear equations for each time step because the limiter
introduces via (6.36), (6.37) a nonlinearity in w(ν+1). Newton’s method is
applied to calculate the approximation w(ν+1) in each time step ν [ZFV98].
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Notes and Comments

on Section 6.1:
For barrier options we refer to [ZFV99], [SWH99], [Ave00], [PFVS00], [ZVF00].
For lookback options we mention [Kat95], [FVZ99], [Dai00]. Many formulas
for pricing options are found in [Haug98].

on Section 6.2:
To see how the multidimensional volatilities of the model enter into a lumped
volatility, consult [Shr04]. Other multidimensional PDEs arise when stochas-
tic volatilities are modeled with SDEs, see [BaR94], [ZvFV98a], [Oo03],
[HiMS04]. A list of exotic options with various payoffs is in Section 19.2
of [Deu01]. Also the n-dimensional PDEs can be transformed to simpler
forms. This is shown for n = 2 and n = 3 in [Int07]. For the n-dimensional
Black–Scholes problem, see [Kwok98], [AcP05]. An ADI method is applied
to American options on two stocks in [ViZ02]. Further higher-dimensional
PDEs related to finance can be found in [TR00].

on Section 6.3:
PDEs in the context of Asian options were introduced in [KeV90], [RoS95].
A reduction as in (6.8) from V (S,A, t) to H(R, t) is called similarity reduc-
tion. The derivation of the boundary-value problem (6.12) follows [WDH96].
For the discrete sampling discussed in Section 6.3.4 see [WDH96], [ZFV99].
The strategies introduced for Asian options work similarly for other path-
dependent options.

on Section 6.4:
The von Neumann stability analysis is tailored to linear schemes and pure
initial-value problems. It does not rigorously treat effects caused by bound-
ary conditions. In this sense it provides a necessary stability condition for
boundary-value problems. For a rigorous treatment of stability see [Th95],
[Th99]. The stability analysis based on eigenvalues of iteration matrices as
used in Chapter 4 is an alternative to the von Neumann analysis.

Spurious oscillations are special solutions of the difference equations and
do not correspond to solutions of the differential equation. The spurious os-
cillations are not related to rounding errors. This may be studied analytically
for the simple ODE model boundary-value problem au′ = bu′′, which is the
steady state of (6.15), along with boundary conditions u(0) = 0, u(1) = 1.
Here for mesh Péclet numbers aΔx

b > 2 the analytical solution of the discrete
centered-space analog is oscillatory, whereas the solution u(x) of the differ-
ential equation is monotone, see [Mo96]. The model problem is extensively
studied in [PT83], [Mo96]. The mesh Péclet number is also called “algebraic
Reynold’s number of the mesh.”
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on Section 6.5:
It is recommendable to derive the equivalent differential equation in Section
6.5.2.

on Section 6.6:
The Lax–Wendroff scheme is an example of a finite-volume method. Another
second-order scheme for (6.21) is the leapfrog scheme δ2

t w + aδ2
xw = 0, which

involves three time levels. The discussion of monotonicity is based on investi-
gations of Godunov, see [Kr97], [We01]. The Lax–Wendroff scheme for (6.21)
and γ ≥ 0 can also be written

wν+1
j = wν

j − 1
2γ(wν

j+1 − wν
j−1) + 1

2γ2(wν
j+1 − 2wν

j + wν
j−1) .

(This version adopts the frequent notation wν
j for our wjν .) Here the diffusion

term has a slightly different factor than (6.34). The numerical dissipation
term is also called artificial viscosity. In [We01], p. 348, the Lax–Wendroff
scheme is embedded in a family of schemes. A special choice of the family
parameter yields a third-order scheme. The TVD criterion can be extended
to implicit schemes and to schemes that involve more than two time levels.
For the general analysis of numerical schemes for conservation laws (6.29) we
refer to [Kr97].

on other methods:
Computational methods for exotic options are under rapid development. The
universal binomial method can be adapted to exotic options [Kl01], [JiD04].
[TR00] gives an overview on a class of PDE solvers. For barrier options
see [ZFV99], [ZVF00], [FuST02]. For two-factor barrier options and their
finite-element solution, see [PFVS00]. PDEs for lookback options are given
in [Bar97]. Using Monte Carlo for path-dependent options, considerable effi-
ciency gains are possible with bridge techniques [RiW02], [RiW03]. For Lévy
process models, see, for example, [ConT04], [AlO06]. We recommend to con-
sult, for example, the issues of the Journal of Computational Finance.

Exercises

Exercise 6.1 Project: Monte Carlo Valuation of Exotic Options
Perform Monte Carlo valuations of barrier options, basket options, and Asian
options, each European style.

Exercise 6.2 PDEs for Asian Options
a) Use the higher-dimensional Itô-formula (→ Appendix B2) to show that

the value function V (S,A, t) of an Asian option satisfies

dV =
(

∂V

∂t
+ S

∂V

∂A
+ μS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2

)
dt + σS

∂V

∂S
dW ,
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where S is the price of the asset and A its average.
b) Construct a suitable riskless portfolio and derive the Black–Scholes equa-

tion
∂V

∂t
+ S

∂V

∂A
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

c) Use the transformation V (S,A, t) = Ṽ (S,R, t) = SH(R, t), with R = A
S

and transform the Black–Scholes equation to

∂H

∂t
+

1
2
σ2R2 ∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0 .

d) For

At :=
1
t

t∫
0

Sθ dθ

show dA = 1
t (S − A) dt and derive the PDE

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
+

1
t
(S − A)

∂V

∂A
− rV = 0 .

Exercise 6.3 Upwind Scheme

Apply von Neumann’s stability analysis to

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, b > 0

using the upwind scheme for the left-hand side and the centered second-order
difference quotient for the right-hand side.

Exercise 6.4 TVD of a Model Problem

Analyze whether the upwind scheme (6.22), the Lax–Friedrichs scheme (6.25)
and the Lax–Wendroff scheme (6.30) applied to the scalar partial differential
equation

ut + aux, a > 0, t ≥ 0, x ∈ IR

satisfy the TVD property.
Hint: Apply Lemma 6.3.



Appendix A Financial Derivatives

A1 Investment and Risk

Basic markets in which money is invested trade in particular with
equities (stocks),
bonds, and
commodites.

Front pages of The Financial Times or The Wall Street Journal open with
charts informing about the trading in these key markets. Such charts sym-
bolize and summarize myriads of buys and sales, and of individual gains
and losses. The assets bought in the markets are collected and held in the
portfolios of investors.

An easy way to buy or sell an asset is a spot contract, which is an agree-
ment on the price assuming delivery on the same date. Typical examples are
furnished by the trading of stocks on an exchange, where the spot price is
paid the same day. On the spot markets, gain or loss, or risks are clearly
visible. The spot contracts are contrasted with those contracts that agree
today (t = 0) to sell or buy an asset for a certain price at a certain future
time (t = T ). Historically, the first objects traded in this way have been com-
modities, such as agricultural products, metals, or oil. For example, a farmer
may wish to sell in advance the crop expected for the coming season. Later,
such trading extended to stocks, currencies and other financial instruments.
Today there is a virtually unlimited variety of contracts on objects and their
future state, from credit risks to weather prediction.

The future price of the underlying asset is usually unknown, it may move
up or down in an unexpected way. For example, scarcity of a product will
result in higher prices. Or the prices of stocks may decline sharply. But the
agreement must fix a price today, for an exchange of asset and payment that
will happen in weeks or months. At maturity, the spot price usually differs
from the agreed price of the contract. The difference between spot price and
contract price may be significant. Hence contracts into the future are risky.
Investors and portfolio managers hope their shares and markets perform well,
and are concerned of risks that might weigh on their assets.

Different investments vary in their degree of uncertainty. The price of a
stock may fall, and the company might default. The issuer of a bond may fail

265
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to meet the obligations in that he does not pay coupons or even fails to repay
the principal amount. Some commodities like agricultural produce may spoil.

Financial risk of assets is defined as the degree of uncertainty of their
return. Market risks are those risks that cannot be diversified away. Market
risks are contrary to default risks (credit risks).

No investment is really free of risks. But bonds can come close to the
idealization of being riskless. If the seller of a bond has top ratings, then
the return of a bond at maturity can be considered safe, and its value is
known today with certainty. Such a bond is regarded as “riskless asset.” The
rate earned on a riskless asset is the risk-free interest rate. To avoid the
complication of re-investing coupons, zero-coupon bonds are considered. The
interest rate, denoted r, depends on the time to maturity T . The interest rate
r is the continuously compounded interest which makes an initial investment
S0 grow to S0erT . We shall often assume that r > 0 is constant throughout
that time period. A candidate for r is the LIBOR1, which can be found in
the financial press. In the mathematical finance literature, the term “bond”
is used as synonym for a risk-free investment. Examples of bonds in real
bond markets that come close to our idealized risk-free bond are provided by
Treasury bills, which are short-term obligations of the US government, and
by the long-term Treasury notes. See [Hull00] for further introduction, and
consult for instance The Wall Street Journal for market diaries.

All other assets are risky, with equities being the most prominent ex-
amples. Hedging is possible to protect against financial loss. Many hedging
instruments have been developed. Since these financial instruments depend
on the particular asset that is to be hedged, they are called derivatives. Main
types of derivatives are futures, forwards, options, and swaps2. They are ex-
plained below in some more detail. Tailoring and pricing derivates is the
core of financial engineering. Hedging with derivatives is the way to bound
financial risks and to protect investments.

The risks will play an important role in fixing the terms of the agreements,
and in designing strategies for compensation.

A2 Financial Derivatives

Derivatives are instruments to assist and regulate agreements on transactions
of the future. Derivatives can be traded on specialized exchanges.

Futures and forwards are agreements between two parties to buy or sell
an asset at a certain time in the future for a certain delivery price. Both par-
ties make a binding commitment, there is nothing to choose at a later time.

1 London Interbank Offered Rate.
2 A comprehensive glossary of financial terms is provided by

www.bloomberg.com/analysis.
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For forwards no premiums are required and no money changes hands until
maturity. A basic difference between futures and forwards is that futures con-
tracts are traded on exchanges and are more formalized, whereas forwards are
traded in the over-the-counter market (OTC). Also the OTC market usually
involves financial institutions. Large exchanges on which futures contracts
are traded are the Chicago Board of Trade (CBOT), the Chicago Mercantile
Exchange (CME), and the Eurex.

Options are rights to buy or sell underlying assets for an exercise price
(strike), which is fixed by the terms of the option contract. That is, the
purchaser of the option is not obligated to buy or sell the asset. This decision
will be based on the payoff, which is contingent on the underlying asset’s
behavior. The buying or selling of the underlying asset by exercising the
option at a future date (t = T ) must be distinguished from the purchase of the
option (at t = 0, say), for which a premium ist paid. After the Chicago Board
of Options Exchange (CBOE) opened in 1973, the volume of the trading
with options has grown dramatically. Options are discussed in more detail in
Section 1.1.

Swaps are contracts regulating an exchange of cash flows at different
future times. A common type of swap is the interest-rate swap, in which two
parties exchange interest payments periodically, typically fixed-rate payments
for floating-rate payments. Counterparty A agrees to pay to counterparty B
a fixed interest rate on some notional principal, and in return party B agrees
to pay party A interest at a floating rate on the same notional principal. The
principal itself is not exchanged. Each of the parties borrows the money at
his market. The interest payment is received from the counterparty and paid
to the lending bank. Since the interest payments are in the same currency,
the counterparties only exchange the interest differences. The swap rate is the
fixed-interest rate fixed such that the deal (initially) has no value to either
party (“par swap”). For a currency swap, the two parties exchange cash flows
in different currencies.

An important application of derivatives is hedging. Hedging means to
eliminate or limit risks. For example, consider an investor who owns shares
and wants protection against a possible decline of the price below a value K
in the next three months. The investor could buy put options on this stock
with strike K and a maturity that matches his three months time horizon.
Since the investor can exercise his puts when the share price falls below K, it
is guaranteed that the stock can be sold at least for the price K during the life
time of the option. With this strategy the value of the stock is protected. The
premium paid when purchasing the put option plays the role of an insurance
premium. — Hedging is intrinsic for calls. The writer of a call must hedge his
position to avoid being hit by rising asset prices. Generally speaking, options
and other derivatives facilitate the transfer of financial risks.

What kind of principle is so powerful to serve as basis for a fair valua-
tion of derivatives? The concept is arbitrage, or rather the assumption that
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arbitrage is not possible in an idealized market. Arbitrage means the exis-
tence of a portfolio, which requires no investment initially, and which with
guarantee makes no loss but very likely a gain at maturity. Or shorter: arbi-
trage is a self-financing trading strategy with zero initial value and positive
terminal value.

If an arbitrage profit becomes known, arbitrageurs will take advantage and
try to lock in.3 This makes the arbitrage profits shrink. In an idealized market,
informations spread rapidly and arbitrage opportunites become apparent. So
arbitrage cannot last for long. Hence, in efficient markets at most very small
arbitrage opportunities are observed in practice. For the modeling of financial
markets this leads to postulate the no-arbitrage principle: One assumes
an idealized market such that arbitrage is ruled out. Arguments based on
the no-arbitrage principle resemble indirect proofs in mathematics: Suppose
a certain financial situation. If this assumed scenario enables constructing an
arbitrage opportunity, then there is a conflict to the no-arbitrage principle.
Consequently, the assumed scenario is impossible. See Appendix A3 for an
example.

For valuing derivatives one compares the return of the risky financial
investment with the return of an investment that is free of risk. For the
comparison, one calculates the gain the same initial capital would yield when
invested in bonds. To compare properly, one chooses a bond with time horizon
T matching the terms of the derivative that is to be priced. Then, by the
no-arbitrage principle, the risky investment should have the same price as
the equivalent risk-free strategy. The construction and choice of derivatives
to optimize portfolios and protect against extreme price movements is the
essence of financial engineering.

The pricing of options is an ambitious task and requires sophisticated
algorithms. Since this book is devoted to computational tools, mainly con-
centrating on options, the features of options are part of the text (Section 1.1
for standard options, and Section 6.1 for exotic options). This text will not
enter further the discussion of forwards, futures, and swaps, with one excep-
tion: We choose the forward as an example (below) to illustrate the concept
of arbitrage. For a detailed discussion of futures, forwards and swaps we refer
to the literature, for instance to [Hull00], [BaR96], [MR97], [Wi98], [Shi99],
[Lyuu02].

3 This assumes that investors prefer more to less, the basis for a rational
pricing theory [Mer73].
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A3 Forwards and the No-Arbitrage Principle

As stated above, a forward is a contract between two parties to buy or sell an
asset to be delivered at a certain time T in the future for a certain delivery
price K. The time the parties agree on the forward contract (fixing T and
K) is set to t0 = 0. Since no premiums and no money change hands until
maturity, the initial value of a forward is zero.

The party with the long position agrees to buy the underlying asset; the
other party assumes the short position and agrees to sell the asset.

For the subsequent explanations St denotes the price of the asset in the
time interval 0 ≤ t ≤ T . To fix ideas, we assume just one interest rate r for
both borrowing or lending risk-free money over the time period 0 ≤ t ≤ T .
By the definition of the forward, at time of maturity T the party with the
long position pays K to get the asset, which is then worth ST .

Arbitrage Arguments

As will be shown next, the no-arbitrage principle enforces the forward price
to be

K = S0 erT . (A3.1)

Thereby it is assumed that the asset does not produce any income (dividends)
and does not cost anything until t = T .

Let us see how the no-arbitrage principle is invoked. We ask what the fair
price K of a forward is at time t = 0, when the terms of a forward are settled.
Then the spot price of the asset is S0.

Assume first K > S0erT . Then an arbitrage strategy exists as follows: At
t = 0 borrow S0 at the interest rate r, buy the asset, and enter into a
forward contract to sell the asset for the price K at t = T . When the time
instant T has arrived, the arbitrageur completes the strategy by selling
the asset (+K) and by repaying the loan (−S0erT ). The result is a riskless
profit of K − S0erT > 0. This contradicts the no-arbitrage principle, so
K − S0erT ≤ 0 must hold.
Suppose next the complementary situation K < S0erT . In this case an
investor who owns the asset4 would sell it, invest the proceeds at interest
rate r for the time period T , and enter a forward contract to buy the asset
at t = T . In the end there would be a riskless profit of S0erT − K > 0.
The conflict with the no-arbitrage principle implies S0erT − K ≤ 0.
Combining the two inequalities ≤ and ≥ proves the equality. [S0er1T ≤
K ≤ S0er2T in case of different rates 0 ≤ r1 ≤ r2 for lending or borrowing]

One of the many applications of forwards is to hedge risks caused by foreign
exchange.

4 Otherwise: short sale, selling a security the seller does not own.



270 Appendix A Financial Derivatives

Example (hedging against exchange rate moves)
A U.S. corporation will receive one million euro in three months (on December
25), and wants to hedge against exchange rate moves. The corporation con-
tacts a bank (“today” on September 25) to ask for the forward foreign ex-
change quotes. The three-month forward exchange rate is that $1.1428 will
buy one euro, says the bank.5 Why this? For completeness, on that day the
spot rate is $1.1457. If the corporation and the bank enter into the corre-
sponding forward contract on September 25, the corporation is obligated to
sell one million euro to the bank for $1,142,800 on December 25. The bank
then has a long forward contract on euro, and the corporation is in the short
position.

Let us summarize the terms of the forward:
asset: one million euro
asset price St: the value of the asset in US $ (S0 = $1, 145, 700)
maturity T= 1/4 (three months)
delivery price K: $1,142,800 (forward price)

To understand the forward price in the above example, we need to generalize
the basic forward price S0erT to a situation where the asset produces income.
In the foreign-exchange example, the asset earns the foreign interest rate,
which we denote δ. To agree on a forward contract, Ke−rT = S0e−δT , so

K = S0e(r−δ)T . (A3.2)

(See [Hull00].) On that date of the example the three-month interest rate in
the U.S. was r = 1%, and in the euro world δ = 2%. So

S0e(r−δ)T = 1145700e−0.01 1
4 = 1142800

which explains the three-month forward exchange rate of the example.

A4 The Black–Scholes Equation

The Classical Equation

This appendix applies Itô’s lemma to derive the Black–Scholes equation. The
first basic assumption is a geometric Brownian motion of the stock price.
According to Model 1.13 the price S obeys the linear stochastic differential
equation (1.33)

dSt = μSt dt + σSt dWt (A4.1)

with constant μ and σ. Further consider a portfolio consisting at time t of αt

shares of the asset with value St, and of βt shares of the bond with value Bt.
The bond is assumed riskless with

5 September 25, 2003.
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dBt = rBt dt . (A4.2)

At time t the wealth process of the portfolio is

Πt := αtSt + βtBt . (A4.3)

The portfolio is supposed to hedge a European option with value Vt, and
payoff VT at maturity T . So we aim at constructing αt and βt such that the
portfolio replicates the payoff,

ΠT = VT = payoff . (A4.4)

The European option cannot be traded before maturity; neither any invest-
ment is required in 0 < t < T for holding the option nor is there any payout
stream. To compare the values of Vt and Πt, and to apply no-arbitrage argu-
ments, the portfolio should have an equivalent property. Suppose the portfo-
lio is “closed” for 0 < t < T in the sense that no money is injected into or
removed from the portfolio. This amounts to the self-financing property

dΠt = αt dSt + βt dBt . (A4.5)

That is, changes in the value of Πt are due only to changes in the prices S or
B. Equation (A4.5) is equivalent to S dαt + B dβt = 0 , indicating that the
quantities of stocks and bonds are continuously rebalanced.

Now the no-arbitrage principle is invoked. Replication (A4.4) and self-
financing (A4.5) imply

Πt = Vt for all t in 0 ≤ t ≤ T , (A4.6)

because both investments have the same payout stream. So the replicating
and self-financing portfolio is equivalent to the risky option. How this fixes
dynamically the quantites αt and βt of stocks and bonds is described next.

Assuming a sufficiently smooth value function Πt = V (S, t), we infer from
Itô’s lemma (Section 1.8)

dΠ =
(

μS
∂V

∂S
+

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

)
dt + σS

∂V

∂S
dW . (A4.7)

On the other hand, substitute (A4.1) and (A4.2) into (A4.5) and obtain
another version of dΠ, namely,

dΠ = (αμS + βrB) dt + ασS dW . (A4.8)

Because of uniqueness, the coefficients of both versions must match. Com-
paring the dW coefficients leads to the hedging strategy

αt =
∂V (St, t)

∂S
. (A4.9)
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Matching the dt coefficients gives a relation for β, in which the stochastic
αμS terms drop out. The βB term is replaced via (A4.3) and (A4.6), which
amounts to

S
∂V

∂S
+ βB = V .

This results in the renowned Black–Scholes equation (1.2),

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

The terminal condition is given by (A4.4).
Choosing in (A4.9) the delta hedge Δ(S, t) := α = ∂V

∂S provides a dynamic
strategy to eliminate the risk that lies in stochastic fluctuations and in the
unknown drift μ of the underlying asset. The corresponding number of units of
the underlying asset makes the portfolio (A4.3) riskless. Hence the delta Δ =
∂V
∂S plays a crucial role for hedging portfolios. Of course, this delta hedging
works under the stringent assumption that the market is correctly described
by the model. Having a model at hand as the Black–Scholes equation, it
can be used inversely to calculate a probability distribution that matches
underlying market prices (−→ Exercise 1.5). See [Dup94] for this aspect.
Symbolically, this application of the methods can be summarized by

V mar −→ σ −→ Δ .

The methods of option valuation are intrinsic to this process. (In reality,
hedging must be done in discrete time.)

In the above sense of eliminating risk, the modeling of V is risk neutral.
The only remaining parameter reflecting stochastic behavior in the Black–
Scholes equation is the volatility σ. Note that in the above derivation the
standard understanding of constant coefficients μ, σ, r was actually not used.
In fact the Black–Scholes equation holds also for time-varying deterministic
functions μ(t), σ(t), r(t) (−→ Exercise 1.19). For reference see, for example,
[BaR96], [Du96], [Irle98], [HuK00], [Ste01]. As will be shown below, there is
a simple analytic formula for Δ in case of European options in the Black–
Scholes model.

The Solution and the Greeks

The Black–Scholes equation has a closed-form solution. For a European call
with continuous dividend yield δ as in (4.1) (in Section 4.1) the formulas are

d1 :=
log S

K +
(
r − δ + σ2

2

)
(T − t)

σ
√

T − t
(A4.10a)

d2 := d1 − σ
√

T − t =
log S

K +
(
r − δ − σ2

2

)
(T − t)

σ
√

T − t
(A4.10b)

VC(S, t) = Se−δ(T−t)F (d1) − Ke−r(T−t)F (d2) , (A4.10c)
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where F denotes the standard normal cumulative distribution (compare Exer-
cise 1.3 or Appendix D2). The value VP(S, t) of a put is obtained by applying
the put-call parity on (A4.10c), see Exercise 1.1. For a continuous dividend
yield δ as in (4.1) the put-call parity of European options is

VP = VC − Se−δ(T−t) + Ke−r(T−t) (A4.11a)

from which

VP = −Se−δ(T−t)F (−d1) + Ke−r(T−t)F (−d2) (A4.11b)

follows.
For nonconstant but known coefficient functions σ(t), r(t), δ(t), the closed-

form solution is modified by introducing integral mean values [Kwok98],
[Øk98], [Wi98], [Zag02]. For example, replace the term r(T − t) by the more
general term

∫ T

t
r(s) ds, and replace

σ
√

T − t −→

⎛
⎝ T∫

t

σ2(s) ds

⎞
⎠

1/2

Differentiating the Black–Scholes formula gives delta, Δ = ∂V
∂S , as

Δ = e−δ(T−t) F (d1) for a European call,

Δ = e−δ(T−t) (F (d1) − 1) for a European put.
(A4.12)

The delta of (A4.9) is the most prominent example of the “Greeks.” Also
other derivatives of V are denoted by Greek sounding names:

gamma =
∂2V

∂S2
, theta =

∂V

∂t
, vega =

∂V

∂σ
, rho =

∂V

∂r

In case of the Black–Scholes model, analytic expressions can be obtained by
differentiating (A4.10). The Greeks are important for a sensitivity analysis.
— The essential parts of a derivation of the Black–Scholes formula (A4.10)
can be collected from this book; see for instance Exercise 1.8 or Exercise 3.9.

Hedging a Portfolio in Case of a Jump Process

Next consider a jump-diffusion process as described in Section 1.9, summa-
rized by equation (1.57). The portfolio is the same as above, see (A4.3),
and the same assumptions such as replication and self-financing apply. Itô’s
lemma is applied in a piecewise fashion on the time intervals between jumps.
Accordingly (A4.7) is modified by adding the jumps in V with jumps sizes

ΔV := V (Sτ+ , τ) − V (Sτ− , τ)
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for all jump instances τj . Consequently the term ΔV dJ is added to (A4.7).
On the other hand, (1.57) leads to add the term α(q−1)S dJ to (A4.8). Com-
paring coefficients of the dW terms in both expressions of Π again implies
the hedging strategy (A4.9), namely, α = ∂V

∂S . This allows to shorten both
versions of Π by subtracting equal terms. Let us denote the resulting values
of the reduced portfolios by Π̃. Then (A4.7) leads to

dΠ̃ =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

)
dt + (V (qS, t) − V (S, t)) dJ

and (A4.8) leads to

dΠ̃ =
(

rV − rS
∂V

∂S

)
dt +

∂V

∂S
(q − 1)S dJ

(The reader may check.)
Different from the analysis leading to the classical Black–Scholes equation,

dΠ̃ is not deterministic and it does not make sense to equate both versions.
The risk can not be perfectly hedged away to zero in the case of jump-
diffusion processes. Following [Mer76], we apply the expectation operator
over the random variable q to both versions of Π̃. Denote this expectation E,
with

E(X) =
∫ ∞

−∞
xfq(x) dx (A4.13)

in case qt has a density fq that obeys q > 0. The expectations of both versions
of E(Π̃) can be equated. The result is

0 =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
dt

+ E

(
[V (qS, t) − V (S, t) − (q − 1)S

∂V

∂S
] dJ

)
.

Since all stochastic terms are assumed independent, the second part of the
equation is

E[...]E(dJ) .

Using from (1.55)
E(dJ) = λ dt

and the abbreviation
c := E(q − 1)

this second part of the equation becomes

{E(V (qS, t)) − V (S, t) − cS
∂V

∂S
} λ dt .

The integral c = E(q − 1) does not depend on V . This number c can be cal-
culated via (A4.13) as soon as a distribution for q is stipulated. For instance,
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one may assume a lognormal distribution, with relevant parameters fitted
from marked data. [The parameters are not the same as those in (1.48).]
With the precalculated number c, the resulting differential equation can be
ordered into

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r − λc)S

∂V

∂S
− (λ + r)V + λE(V (qS, t)) = 0 (A4.14)

Note that the last term is an integral taken over the unknown solution func-
tion V (S, t). So the resulting equation is a partial integro-differential equation
(PIDE). The standard Black–Scholes PDE is included for λ = 0. The integral
can be discretized, for example, by the means of the composite trapezoidal
rule (−→ Appendix C1). The infinite-integral term E(V ) challenges the con-
trol of the discretization error. A further discussion requires a model for the
process qt, see for example [Mer76], [Wi98], [Tsay02], [ConT04]. For compu-
tational approaches see [AnA00], [MaPS02], [dHaFV05], [CoV05], [AlO06].

A5 Early-Exercise Curve

This appendix briefly discusses properties of the early-exercise curve Sf of
standard American put and call options, compare Section 4.5.1. The following
holds for the
Put:
(1) Sf is continuously differentiable for 0 ≤ t < T .
(2) Sf is nondecreasing.
(3) A lower bound is

Sf(t) >
λ2

λ2 − 1
K , where

λ2 =
1
σ2

{
−

(
r − δ − σ2

2

)
−

√(
r − δ − σ2

2

)2

+ 2σ2r

} (A5.1)

(4) An upper bound for t < T is given by (4.23P),

Sf(t) < lim
t→T
t<T

Sf(t) = min
(
K,

r

δ
K

)
.

For proofs of (1) see [MR97], [Kwok98]. For the smoothness of the value
function V (S, t) on the continuation region, see [MR97]. Monotonicity of
V (S, t) with respect to time implies (2), as shown for instance in [Kwok98].

The monotonicity of Sf leads to conclude that a lower bound is obtained
by T → ∞. This limiting case is the perpetual option, compare Exercise 4.8.
Specifically for δ = 0, λ2 simplifies, and the lower bound is K q

1+q , where
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Fig. A.1. Early-exercise curve of an American put with K = 10, T = 40, r = 0.06,
σ = 0.3, δ = 0, which leads to λ2 = − 4

3
and a lower bound of 4

7
K (nonsmoothed

output of a finite-difference calculation)

q := 2r
σ2 . For an illustration of a long horizon T = 40 see Figure A.1. Simple

calculus shows that λ2 is the same as the λ2 in Exercise 4.8.

Here we give a proof of property (4). For t = T the value V Am
P equals the

payoff, V Am
P (S, T ) = K−S for S < K. Substitute this into the Black–Scholes

equation gives6
∂V

∂t
+ 0 − (r − δ)S − rV = 0 ,

or
∂V (S, T )

∂t
= rK − δS .

Observe that
∂V (S, T )

∂t
≤ 0

because otherwise for t close to T a contradiction to V ≥payoff results. Hence,
for t = T and S < K,

rK − δS ≤ 0 , S ≥ r

δ
K .

6 Recall the context: V means V Am
P .
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This makes sense only for δ > r, which we assume now. Either

Sf(T ) := lim
t→T
t<T

Sf(t)

satisfies Sf(T ) = r
δ K, or there is one of the two open intervals (i) Sf(T ) < r

δ K,
(ii) r

δ K < Sf(T ):
(i) There is S such that Sf(T ) < S < r

δ K. Then

∂V (S, T )
∂t

= rK − δS > 0 ,

which contradicts ∂V (S,T )
∂t ≤ 0.

(ii) There is S such that r
δ K < S < Sf(T ). Then rK < δS and

K(erdt − 1) < S(eδdt − 1) .

That is, dividend earns more than interest on K, and early exercise is not
optimal. This contradicts the meaning of S < Sf(T ).

Finally we discuss the case δ ≤ r. By the definition of Sf , Sf(T ) > K cannot
happen. Assume Sf(T ) < K. Then for Sf(T ) < S < K and t ≈ T

dV

dt︸︷︷︸
≤0

= rK − δS︸ ︷︷ ︸
>0

leads to a contradiction. So

Sf(T ) = K for δ ≤ r .

Both assertions are summarized to

lim
t→T
t<T

Sf(t) = min
(
K,

r

δ
K

)
.

We conclude with listing the properties of an American
Call:
(1) Sf is continuously differentiable for 0 ≤ t < T .
(2) Sf is nonincreasing.
(3) An upper bound is

Sf(t) <
λ1

λ1 − 1
K , where

λ1 =
1
σ2

{
−

(
r − δ − σ2

2

)
+

√(
r − δ − σ2

2

)2

+ 2σ2r

} (A5.2)

(4) A lower bound for t < T is given by (4.23C),
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Sf(t) > max
(
K,

r

δ
K

)
.

Derivations are analogous as in the case of the American put. We note from
properties (4) two extreme cases for t → T :

put : r → 0 ⇒ Sf → 0
call : δ → 0 ⇒ Sf → ∞ .

The second assertion is another clue that for a call early exercise will never
be optimal when no dividends are paid (δ = 0). Likewise, an American put
is identical to the European counterpart in case r = 0.

By the way, the symmetry of the above properties is reflected by

Sf,call(t; r, δ)Sf,put(t; δ, r) = K2

V Am
C (S, T − t;K, r, δ) = V Am

P (K,T − t;S, δ, r) .
(A5.3)

This put-call symmetry is derived in [McS98]. Note that the put-call symme-
try is derived under the assumptions of the Black–Scholes model, whereas the
put-call parity for European options is independent of the underlying model.



Appendix B Stochastic Tools

B1 Essentials of Stochastics

This appendix lists some basic instruments and notations of probability the-
ory and statistics. For further foundations we refer to the literature, for ex-
ample, [Fe50], [Fisz63], [Bi79], [Mik98], [JaP03], [Shr04].

Let Ω be a sample space. In our context Ω is mostly uncountable, for
example, Ω = IR. A subset of Ω is an event and an element ω ∈ Ω is a
sample point. The sample space Ω represents all possible scenarios. Classes
of subsets of Ω must satisfy certain requirements to be useful for probability.
One assumes that such a class F of events is a σ-algebra or a σ-field1. That is,
Ω ∈ F , and F is closed under the formation of complements and countable
unions. In our finance scenario, F represents the space of events that are
observable in a market. If t denotes time, all informations available until t
can be regarded as a σ-algebra Ft. Then it is natural to assume a filtration
—that is, Ft ⊆ Fs for t < s.

The sets in F are also called measurable sets. A measure on these sets is
the probability measure P, a real-valued function taking values in the interval
[0, 1] with the three axioms

P(A) ≥ 0 for all events A ∈ F , P(Ω) = 1 ,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) for any sequence of disjoint Ai ∈ F .

The triplet (Ω,F ,P) is called a probability space. An assertion is said to hold
almost everywhere (P–a.e.) if it is wrong with probability 0.

A real-valued function X on Ω is called random variable if the sets

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} = X−1((−∞, x])

are measurable for all x ∈ IR. That is, {X ≤ x} ∈ F . This book does not
explicitly indicate the dependence on the sample space Ω. We write X instead
of X(ω), or Xt or X(t) instead of Xt(ω) when the random variable depends
on a parameter t.

1 This notation with σ is not related with volatility.
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For x ∈ IR a distribution function F (x) of X is defined by the proba-
bility P that X ≤ x,

F (x) := P(X ≤ x) . (B1.1)

Distributions are nondecreasing, right-continuous, and satisfy the limits
lim

x→−∞
F (x) = 0 and lim

x→+∞
F (x) = 1. Every absolutely continuous distribu-

tion F has a derivative almost everywhere, which is called density function.
For all x ∈ IR a density function f has the properties f(x) ≥ 0 and

F (x) =

x∫
−∞

f(t) dt . (B1.2)

To stress the dependence on X, the distribution is also written FX and the
density fX . If X has a density f then the kth moment is defined as

E(Xk) :=

∞∫
−∞

xkf(x) dx =

∞∫
−∞

xk dF (x) , (B1.3)

provided the integrals exist. The most important moment of a distribution is
the expected value or mean

μ := E(X) :=
∫ ∞

−∞
xf(x) dx . (B1.4)

The variance is defined as the second central moment

σ2 := Var(X) := E((X − μ)2) =
∫ ∞

−∞
(x − μ)2f(x) dx . (B1.5)

A consequence is
σ2 = E(X2) − μ2 .

The expectation depends on the underlying probability measure P, which is
sometimes emphasized by writing EP. Here and in the sequel we assume that
the integrals exist. The square root σ =

√
Var(X) is the standard deviation

of X. For α, β ∈ IR and two random variables X, Y on the same probability
space, expectation and variance satisfy

E(αX + βY ) = αE(X) + βE(Y )

Var(αX + β) = Var(αX) = α2Var(X) .
(B1.6)

The covariance of two random variables X and Y is

Cov(X,Y ) := E ((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ) ,

from which

Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X,Y ) (B1.7)
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follows. More general, the covariance between the components of a vector X
is the matrix

Cov(X) = E[(X − E(X))(X − E(X))tr] = E(XXtr) − E(X)E(X) , (B1.8)

where the expectation E is applied to each component. The diagonal carries
the variances of the components Xi. Back to the scalar world: Two random
variables X and Y are called independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) .

For independent random variables X and Y the equations

E(XY ) = E(X)E(Y ) ,

Var(X + Y ) = Var(X) + Var(Y )

are valid; analogous assertions hold for more than two independent random
variables. For convex functions φ, Jensen’s inequality holds:

φ(E(X)) ≤ E(φ(X)) .

Normal distribution (Gaussian distribution): The density of the nor-
mal distribution is

f(x) =
1

σ
√

2π
exp

(
− (x − μ)2

2σ2

)
. (B1.9)

X ∼ N (μ, σ2) means: X is normally distributed with expectation μ and vari-
ance σ2. An implication is Z = X−μ

σ ∼ N (0, 1), which is the standard normal
distribution, or X = σZ + μ ∼ N (μ, σ2). The values of the correspond-
ing distribution function F (x) can be approximated by analytic expressions
(−→ Appendix D2) or numerically (−→ Exercise 1.3). For multidimensional
Gaussian, see Section 2.3.3.
Uniform distribution over an interval a ≤ x ≤ b:

f(x) =
1

b − a
for a ≤ x ≤ b ; f = 0 elsewhere. (B1.10)

The uniform distribution has expected value 1
2 (a+b) and variance 1

12 (b−a)2.
If the uniform distribution is considered over a higher-dimensional domain
D, then the value of the density is is the inverse of the volume of D,

f =
1

vol(D)
· 1D

For example, on a unit disc we have f = 1/π.
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Estimates of mean and variance of a normally distributed random variable
X from a sample of M realizations x1, ..., xM are given by

μ̂ : =
1
M

M∑
k=1

xk

ŝ2 : =
1

M − 1

M∑
k=1

(xk − μ̂)2
(B1.11)

These expressions of the sample mean μ̂ and the sample variance ŝ2 satisfy
E(μ̂) = μ and E(ŝ2) = σ2. That is, μ̂ and ŝ2 are unbiased estimates. For the
computation see Exercise 1.4, or [PTVF92].
Central Limit Theorem: Suppose X1,X2, ... are independent and identi-
cally distributed (i.i.d.) random variables, and μ := E(Xi), Sn :=

∑n
i=1 Xi,

σ2 = E(Xi − μ)2. Then for each a

lim
n→∞

P

(
Sn − nμ

σ
√

n
≤ a

)
=

1√
2π

∫ a

−∞
e−z2/2 dz (= F (a)). (B1.12)

As a consequence, the probability that μ̂ hits —for large enough n— the
interval

μ − a
σ√
n
≤ μ̂ ≤ μ + a

σ√
n

is F (a)−F (−a) = 2F (a)− 1. For example, a = 1.96 leads to a probability of
0.95. That is, the 95% confidence interval has a (half) width of about 2σ/

√
n.

The weak law of large numbers states that for all ε > 0

lim
n→∞

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ > ε

)
= 0 ,

and the strong law says P(lim
n

Sn

n = μ) = 1.

For a discrete probability space the sample space Ω is countable. The ex-
pectation and the variance of a discrete random variable X with realizations
xi are given by

μ = E(X) =
∑
ω∈Ω

X(ω)P(ω) =
∑

i

xi P(X = xi)

σ2 =
∑

i

(xi − μ)2 P(X = xi)
(B1.13)

Occasionally, the underlying probability measure P is mentioned in the nota-
tion. For example, a Bernoulli experiment2 with Ω = {ω1, ω2} and P(ω1) = p
has expectation

2 Repeated independent trials, where only two possible outcomes are pos-
sible for each trial, such as tossing a coin.
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EP(X) = pX(ω1) + (1 − p)X(ω2) .

The probability that for n Bernoulli trials the event ω1 occurs exactly k times,
is

P(X = k) = bn,p(k) :=
(

n

k

)
pk(1 − p)n−k for 0 ≤ k ≤ n . (B1.14)

The binomial coefficient defined as(
n
k

)
=

n!
(n − k)!k!

states in how many ways k elements can be chosen out of a population of
size n. For the binomial distribution bn,p(k) the mean is μ = np, and the
variance σ2 = np(1 − p). The probability that event ω1 occurs at least M
times is

P(X ≥ M) = Bn,p(M) :=
n∑

k=M

(
n
k

)
pk(1 − p)n−k . (B1.15)

This follows from the axioms of the probability measure.
For the Poisson distribution the probability that an event occurs exactly
k times within a specified (time) interval is given by

P(X = k) =
ak

k!
e−a for k = 0, 1, 2, . . . (B1.16)

and a constant a > 0. Its mean and variance are both a.
Convergence in the mean: A sequence Xn is said to converge in the
(square) mean to X, if E(X2

n) < ∞, E(X2) < ∞ and if

lim
n→∞

E((X − Xn)2) = 0 .

A notation for convergence in the mean is

l.i.m.n→∞Xn = X .

B2 Advanced Topics

General Itô Formula

Let dXt = a(.)dt + b(.)dWt, where Xt is n-dimensional, a(.) too, and b(.)
(n × m)matrix and Wt m-dimensional, with uncorrelated components, see
(1.42). Let g be twice continuously differentiable, defined for (X, t) with values
in IR. Then g(X, t) is an Itô process with
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dg =
[
∂g

∂t
+ gtr

xa +
1
2

trace (btrgxxb)
]

dt + gtr
xb dWt . (B2.1)

gx is the gradient vector of the first-order partial derivatives with respect
to x, and gxx is the matrix of the second-order derivatives, all evaluated at
(X, t). The matrix btrgxxb is m×m. (Recall that the trace of a matrix is the
sum of the diagonal elements.)

(B2.1) is derived via Taylor expansion. The linear terms gtr
x dX are

straightforward. The quadratic terms are
1
2

dXtrgxx dX ,

from which the order dt terms remain
1
2
(b dW )trgxxb dW =

1
2

dW trbtrgxxb dW =:
1
2
dW trAdW .

These remaining terms are
1
2

trace (A) dt .

A matrix manipulation shows that the elements of btrgxxb are
n∑

i=1

n∑
j=1

gxixj
bilbjk for l, k = 1, . . . ,m

This is different from bbtrgxx, but the traces are equal:

trace (btrgxxb) = trace (bbtrgxx) =
∑
i,j

∂2g

∂xi∂xj

m∑
k=1

bikbjk

︸ ︷︷ ︸
=:cij

.

See also [Øk98].

Exercise: Let X be vector and Y scalar, where dX = a1 dt + b1 dW , dY =
a2 dt + b2 dW , and consider g(X,Y ) := XY . Show

d(XY ) = Y dX + X dY + dX dY

= (Xa2 + Y a1 + b1b2) dt + (Xb2 + Y b1) dW .
(B2.2)

Application:

dS = rS dt + σS dŴ ⇒ d(e−rtS) = e−rtσS dŴ (B2.3)

for any Wiener process Ŵ .

Filtration of a Brownian motion

FW
t := σ{Ws | 0 ≤ s ≤ t} (B2.4)

Here σ{.} denotes the smallest σ-algebra containing the sets put in braces.
FW

t is a model of the information available at time t, since it includes every
event based on the history of Ws, 0 ≤ s ≤ t. The null sets N are included in
the sense Ft := σ(FW

t ∪N ) (“augmented”).
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Conditional Expectation
We recall conditional expectation because it is required for martingales. Let
G be a sub σ-algebra of F .

E(X|G) is defined to be the (unique) G-measurable random variable Y with
the property

E(XZ) = E(Y Z)

for all G-measurable Z (such that E(XZ) < ∞). This is the conditional
expectation of X given G. Or, following [Doob53], an equivalent definition is
via ∫

A

E(Y |G) dP =
∫

A

Y dP for all A ∈ G .

In case E(X|Y ), set G = σ(Y ).
For properties of conditional expectation consult, for example, [Mik98],
[Shr04].

Martingales
Assume the standard scenario (Ω,F ,Ft,P) with a filtration Ft ⊂ F .

Definition: Ft-Martingale Mt with respect to P is a process, which is
“adapted” (that is, Ft-measurable), E(|Mt|) < ∞, and

E(Mt|Fs) = Ms (P-a.s.) for s ≤ t . (B2.5)

The martingale property means that at time instant s with given information
set Fs all variations of Mt for t > s are unpredictable; Ms is the best forecast.
The SDE of a martingale has no drift term.

Examples:
any Wiener process Wt ,
W 2

t − t for any Wiener process Wt ,
exp(λWt − 1

2λ2t) for any λ ∈ IR and any Wiener process Wt ,
Jt − λt for any Poisson process Jt with intensity λ.

For martingales, see for instance [Doob53], [Ne96], [Øk98], [Shi99], [Pro04],
[Shr04].

For an adapted process γ define a process Zγ
t by

Zγ
t := exp

(
−1

2

∫ t

0

γ2
s ds −

∫ t

0

γs dWs

)
. (B2.6)

Since Z0 = 1, the integral equation

log Zt = log Z0 −
1
2

t∫
0

γ2
s ds −

t∫
0

γs dWs
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follows, which is the SDE

d(log Zt) = (0 − 1
2
γ2

t ) dt − γt dWt .

This is the Itô SDE for log Zt when Z solves the drift-free dZt = −Ztγt dWt,
Z0 = 1. In summary, Zt is the unique Itô process such that dZt = −Ztγt dWt,
Z0 = 1. Let Zγ be a martingale. From the martingale properties, E(Zγ

T ) = 1.
Hence the Radon-Nikodym framework assures that an equivalent probability
measure Q(γ) can be defined by

dQ(γ)
dP

= Zγ
T or Q(A) :=

∫
A

Zγ
T dP (B2.7)

Girsanov’s Theorem

Suppose a process γ is such that Zγ is a martingale. Then

W γ
t := Wt +

∫ t

0

γs ds (B2.8)

is a Brownian motion and martingale under Q(γ).

B3 State-Price Process

Normalizing

A fundamental result of Harrison and Pliska [HP81] states that the existence
of a martingale implies an arbitrage-free market. This motivates searching for
a martingale. Since martingales have no drift term, we attempt to construct
SDEs without drift.

Let Xt be a vector representing prices, and bt represents a trading strategy.
Then btr

t Xt represents the wealth of the portfolio. The trading strategy is self-
financing when d(btrX) = btrdX.

Definition: A scalar positive Itô process Yt with the property that the prod-
uct YtXt has zero drift is called state-price process or pricing kernel or
deflator for Xt.

The importance of state-price processes is highlighted by the following theo-
rem.

Theorem: Assume that for Xt a state-price process Yt exists, b is self-
financing, and Y btrX is bounded below. Then
(a) Y btrX is a martingale, and
(b) the market does not admit self-financing arbitrage strategies.
([Nie99], p.148)
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Sketch of Proof:
(a) Y is a state-price process, hence there exists σ such that d(YtXt) = σ dWt

(zero drift). By Itô’s lemma,

d(Y btrX) = Y d(btrX) + dY btrX + dY d(btrX) .

(B2.2) and self-financing imply

d(Y btrX) = Y btr dX + dY btrX + dY btr dX

= btr[Y dX + dY X + dY dX]
= btr d(XY ) = btrσ dW =: σ̂ dW ,

hence zero drift of Y btrX.

It remains to show that Y btrX is a martingale.
Because of the boundedness, Z̃ := Y btrX−c is a positive scalar Itô process
for some c, with zero drift. For every such process there is a γ̃ such that
Z̃ has the form

Z̃t = Z̃0Z
γ̃
t .

Hence Y btrX = Z̃ + c has the same properties as Z γ̃ , namely, it is a
supermartingale. The final step is to show E(Zt) =constant. Now Q is
defined via (B2.7). (The last arguments are from martingale theory.)

(b) Assume arbitrage in the sense

btr
0X0 = 0 , P(btr

t Xt ≥ 0) = 1
P(btr

t Xt > 0) > 0 for some fixed t .

For that t:
btrX > 0 ⇒ Y btrX > 0

Now EQ(Y btrX) > 0 is intuitive. This amounts to

EQ(Y btrX | F0) > 0

Because it is a martingale, Y0b
tr
0X0 > 0. This contradicts btr

0X0 = 0, so
the market is free of arbitrage.

Existence of a State-Price Process
In order to discuss the existence of a state-price process we investigate the
drift term of the product YtXt. To this end take X as satisfying the vector
SDE

dX = μX dt + σX dW .

The coefficient functions μX and σX may vary with X. If no confusion arises,
we drop the superscript X. Recall (−→ Exercise 1.18) that each scalar positive
Itô process must satisfy

dY = Y α dt + Y β dW
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for some α and β, where β and W can be vectors (β a one-row matrix).
Without loss of generality, we take the SDE for Y in the form

dY = −rY dt − Y γ dW . (B3.1)

(We leave the choice of the one-row matrix γ still open.) Itô’s lemma (B2.1)
allows to calculate the drift of Y X. By (B2.2) the result is the vector

Y (μ − rX − σγtr) .

Hence Y is a state-price process for X if and only if

μX − rX = σXγtr (B3.2)

holds. This is a system of n equations for the m components of γ.

Special case geometric Brownian motion: For scalar X = S and W , μX = μS,
σX = σS, (B3.2) reduces to

μ − r = σγ .

Given μ, σ, r, the equation (B3.2) determines γ. (As explained in Section
1.7.3, γ is called the market price of risk.)

Discussion whether (B3.2) admits a (unique) solution:

Case I: unique solution: The market is complete. Further results below.

Case II: no solution: The market admits arbitrage.

Case III: multiple solutions: no arbitrage, but there are contingent claims
that cannot be hedged; the market is said to be incomplete.

A solution of (B3.2) for full rank of the matrix σ is given by

γ∗ := (μ − rX)tr(σσtr)−1σ ,

which satisfies minimal length γ∗γ∗tr ≤ γγtr for any other solution γ of (B3.2),
see [Nie99].

Note that (B3.2) provides zero drift of Y X but is not sufficient for Y X to
be a martingale. But it is “almost” a martingale; a small additional conditon
suffices. Those trading strategies b are said to be admissible if Y btrX is a
martingale. (Sufficient is that Y btrX be bounded below, such that it can not
become arbitrarily negative. This rules out the “doubling strategy.” For our
purpose, we may consider the criterion as technical. [Gla04] on p.551: “It is
common in applied work to assume that” a solution to an SDE with no drift
term is a martingale.) There is ample literature on these topics; we just name
[RY91], [BaR96], [Du96], [MR97], [Nie99].
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Application: Derivative Pricing Formula for European Options
Let Xt be a vector price process, and b a self-financing trading strategy such
that a European claim C is replicated. That is, for Vt = btr

t Xt the payoff is
reached: VT = btr

T XT = C. (Compare Appendix A4 for this argument.) We
conclude from the above Theorem and from (B2.5)

Ytb
tr
t Xt = EQ(YT btr

T XT | Ft) ,

or
Vt =

1
Yt

EQ(YT C | Ft) .

Specifically for t = 0 the relation EQ(YT C | F0) = EQ(YT C) holds, see
[HuK00] p.136. This gives the value of European options as

V0 =
1
Y0

EQ(YT C) .

This result is basic for Monte Carlo simulation, compare Subsection 3.5.1. Yt

represents a discounting process, for example, e−rt. (Other discounting pro-
cesses are possible, as long as they are tradable. They are called numeraires.)
For a variable interest rate rs,

Vt = EQ(exp(−
∫ T

t

rs ds)C | Ft)

In the special case r and γ constant, Zt = exp(− 1
2γ2t − γWt) and

V (t)
ert

= EQ

(
C

erT
| Ft

)
⇒ V (t) = e−r(T−t)EQ(C | Ft) .

B4 Lévy Processes

For a Lévy process X, all increments Xt+Δt −Xt are stochastically indepen-
dent, and stationary, which means that all increments have the distribution
of Xt. Further, Lévy processes must be “càdlàg” (French for “continu à droite
et limites à gauche”): For all t, the process Xt is right-continuous (Xt = Xt+),
and the left limit Xt− exists.

A simple example of a Lévy process is the Wiener process. Poisson pro-
cesses also satisfiy the requirements of a Lévy process. There are many more
Lévy processes; a classification is based on

φXt
(u) := E(exp(iuXt)) , (B4.1)

which amounts to the Fourier transformation. This singles out characteristic
properties of a random variable X. φXt

(u) is called characteristic function of



290 Appendix B Stochastic Tools

Xt, and ψ(u) defined by exp(tψ(u)) = φXt
(u) is the characteristic exponent.

ψ(u) satisfies

ψ(u) = iγu − 1
2
σ2u2 +

∞∫
−∞

(
exp(iux) − 1 − iux1{|x|≤1}

)
ν(dx) . (B4.2)

γ corresponds to the deterministic trend, σ2 to the variance, and ν is a
measure on IR characterizing the activity of jumps. The three items γ, σ2, ν
(“characteristic triplet”) characterize a Lévy process in a unique way. For a
Lévy process Xt note that

E(eXt) = E(e−iiXt) = φXt
(−i) = etψ(−i) .

As a consequence, for a discounted process e−rteXt to be martingale, require

ψ(−i) = r . (B4.3)

For Wiener processes, ν ≡ 0 (no jump). For the Brownian motion with
drift Yt := (μ − 1

2σ2)t + σWt in (1.54),

ψ(u) = i(μ − 1
2
σ2)u − 1

2
σ2u2 .

Hence the criterion (B4.3) specializes to the well-known μ = r of the Black–
Scholes model. For other models, the risk-neutral growth rate is obtained via
(B4.1) in an analogous way.

For a discussion of Lévy processes consult, for instance, [Sato99], [Shi99],
[ConT04]. The formula (B4.2) is called Lévy-Khintchine formula. For an
overview on properties see Appendix and Chapter 5 in [Sch03]. Specifically
for VG and NIG, see also [Gla04].

The above (B4.2) is a scalar setting; [CaW04] develops analytic expres-
sions for the characteristic function of time-changed Lévy process in a general
vector setting. In this framework, Heston’s stochastic-volatility model can be
represented as time-changed Brownian motion.



Appendix C Numerical Methods

C1 Basic Numerical Tools

This appendix briefly describes numerical methods used in this text. For
additional information and detailed discussion we refer to the literature, for
example to [Sc89], [HH91], [PTVF92], [SB96], [GV96], [QSS00].

Interpolation

Suppose n+1 pairs of numbers (xi, yi), i = 0, 1, ..., n are given, with xi �= xj

for i �= j. These points in the (x, y)-plane are to be connected by a curve. An
interpolating function Φ(x) satisfies

Φ(xi) = yi for i = 0, 1, ..., n .

Depending on the choice of the class of functions Φ we distinguish different
types of interpolation. A prominent example is furnished by polynomials,

Φ(x) = Pn(x) = a0 + a1x + ... + anxn ;

the degree n matches the number n + 1 of points. The evaluation of a poly-
nomial is done by the nested multiplication given by

Pn(x) = (...((anx + an−1)x + an−2)x + ... + a1)x + a0 ,

which is also called Horner’s method. A classical approach of polynomial
interpolation is based on the Lagrange polynomials

Lk(x) :=
n∏

i=0
i�=k

x − xi

xk − xi
,

for k = 0, . . . , n. By construction, the Lk(x) are of degree n, and Lk(xk) = 1,
Lk(xi) = 0 for i �= k. Clearly, the polynomial

P (x) := L0(x)y0 + ... + Ln(x)yn

interpolates P (xi) = yi for i = 0, ..., n. To calculate P (x) for a given x, use
Neville’s algorithm.

291
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In case many points are given, the interpolation with one polynomial is
generally not advisable since the high degree goes along with strong oscil-
lations. A piecewise approach is preferred where low-degree polynomials are
defined locally on one or more subintervals xi ≤ x ≤ xi+1 such that globally
certain smoothness requirements are met. The simplest example is obtained
when the points (xi, yi) are joined by straight-line segments in the order
x0 < x1 < ... < xn. The resulting polygon is globally continuous and linear
over each subinterval. For the error of polygon approximation of a function
we refer to Lemma 5.9. A C2-smooth interpolation is given by the cubic spline
using locally defined third-degree polynomials

Si(x) := ai + bi(x − xi) + ci(x − xi)2 + di(x − xi)3 for xi ≤ x < xi+1

that interpolate the points and are C2-smooth at the nodes xi.
Interpolation is applied for graphical illustration, numerical integration,

and for solving differential equations. Generally interpolation is used to ap-
proximate functions.

Rational Approximation

Rational approximation is based on

Φ(x) =
a0 + a1x + ... + anxn

b0 + b1x + ... + bmxm
. (C1.1)

Rational functions are advantageous in that they can approximate functions
with poles. If the function that is to be approximated has a pole at x = ξ,
then ξ must be zero of the denominator of Φ.

Quadrature

Approximating the definite integral∫ b

a

f(x) dx

is a classic problem of numerical analysis. Simple approaches replace the
integral by ∫ b

a

Pm(x) dx ,

where the polynomial Pm(x) approximates the function f(x). The resulting
formulas are called quadrature formulas. For example, an equidistant partition
of the interval [a, b] into m subintervals defines nodes xi and support points
(xi, f(xi)), i = 0, . . . ,m for interpolation. After integrating the resulting
polynomial Pm(x) the Newton-Cotes formulas result. The simplest case m =
1 defines the trapezoidal rule.

A partition of the interval can be used more favorably. Applying the
trapezoidal rule in each of n subintervals of length
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h =
b − a

n

leads to the composite formula of the trapezoidal sum

T (h) := h

[
f(a)

2
+ f(a + h) + ... + f(b − h) +

f(b)
2

]
. (C1.2)

The error of T (h) satisfies a quadratic expansion

T (h) =
∫ b

a

f(x) dx + c1h
2 + c2h

4 + ... ,

with a number of terms depending on the differentiability of f , and with con-
stants ci independent of h. This asymptotic expansion is fundamental for the
high accuracy that can be achieved by extrapolation. Extrapolation evaluates
T (h) for a few h, for example, obtained by h0, h1 = h0

2 , hi = hi−1
2 . Based on

the values Ti := T (hi), an interpolating polynomial T̃ (h2) is calculated with
T̃ (0) serving as approximation to the exact value T (0) of the integral.

The error behavior reflected by the above expansion can be simplified to

|T (h) −
b∫
a

f(x) dx| ≤ ch2 ,

or written even shorter with the Landau symbol:

The error is of the order O(h2) .

Zeros of Functions

The aim is to calculate a zero x∗ of a function f(x). An approximation is
constructed in an iterative manner. Starting from some suitable initial guess
x0 a sequence x1, x2, . . . is calculated such that the sequence converges to x∗.
Newton’s method calculates the iterates by

xk+1 = xk − f(xk)
f ′(xk)

.

In the vector case a system of linear equations needs to be solved in each
step,

Df(xk)(xk+1 − xk) = −f(xk) , (C1.3)

where Df denotes the Jacobian matrix of all first-order partial derivatives.

Example from Finance

Suppose a three-year bond with a principal of $100 that pays a 6% coupon
annually. Further assume zero rates of 5.8% for the first year, 6.3% for a
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two-year investment, and 6.4% for the three-year maturity. Then the present
value (sum of all discounted future cashflows) is

6e−0.058 + 6e−0.063∗2 + 106e−0.064∗3 = 98.434

The yield to maturity (YTM) is the percentage rate of return y of the bond,
when it is bought for the present value and is held to maturity. The YTM
for the above example is the zero y of the cubic equation

0 = 98.434 − 6e−y − 6e−2y − 106e−3y

which is 0.06384, or 6.384%, obtained with one iteration of Newton’s method
(C1.3), when started with 0.06 .

Convergence

There are modifications and alternatives to Newton’s method. Different meth-
ods are distinguished by their convergence speed. Note that convergence is
not guaranteed for any arbitrary choice of x0. In the scalar case, bisection is a
safe but slowly converging method. Newton’s method for sufficiently regular
problems shows fast convergence locally. That is, the error decays quadrati-
cally in a neighborhood of x∗,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖p for p = 2

for some constant C. This holds for an arbitrary vector norm ‖x‖ such as

‖x‖2 :=
(∑

i

x2
i

)1/2

(Euclidian norm)

‖x‖∞ := max
i

|xi| (maximum norm),
(C1.4)

i = 1, . . . , n for x ∈ IRn.
The derivative f ′(xk) can be approximated by difference quotients. If the

difference quotient is based on f(xk) and f(xk−1), in the scalar case, the
secant method results. The secant method is generally faster than Newton’s
method if the speed is measured with respect to costs in evaluating f(x) or
f ′(x).

Gerschgorin’s Theorem
A criterion for localizing the eigenvalues of a matrix A = (aij) is given by
Gerschgorin’s theorem: Each eigenvalue lies in the union of the discs

Dj := {z complex and |z − ajj | ≤
n∑

k=1
k �=j

|ajk|}

(j = 1, ..., n). The centers of the discs Dj are the diagonal elements of A and
the radii are given by the off-diagonal row sums (absolute values).



C1 Basic Numerical Tools 295

Triangular Decomposition

Let L denote a lower-triangular matrix (where the elements lij satisfy lij = 0
for i < j) and R an upper-triangular matrix (rij = 0 for i > j); the diagonal
elements of L satisfy l11 = ... = lnn = 1. Matrices A, L, R are supposed to be
of size n × n and vectors x, b, ... have n components. Frequently, numerical
methods must solve one or more systems of linear equations

Ax = b .

A well-known direct method to solve this system is Gaussian elimination.
First, in a “forward”-phase, an equivalent system

Rx = b̂

is calculated. Then, in a “backward”-phase starting with the last com-
ponent xn, all components of x are calculated one by one in the order
xn, xn−1, . . . , x1. Gaussian elimination requires 2

3n3 + O(n2) arithmetic op-
erations for full matrices A. With this count of O(n3), Gaussian elimination
must be considered as an expensive endeavor, and is prohibitive for large val-
ues of n. (For alternatives, see iterative methods below in Appendix C2.) The
forward phase of Gaussian elimination is equivalent to an LR-decomposition.
This means the factorization into the product of two triangular matrices L,R
in the form

PA = LR .

Here P is a permutation matrix arranging for the exchange of rows that cor-
responds to the pivoting of the Gaussian algorithm. The LR-decomposition
exists for all nonsingular A. After the LR-decomposition is calculated, only
two equations with triangular matrices need to be solved,

Ly = Pb and Rx = y .

Tridiagonal Matrices

For tridiagonal matrices the LR-decomposition specializes to an algorithm
that requires only O(n) operations, which is inexpensive. Since several of
the matrices in this book are tridiagonal, we include the algorithm. Let the
tridiagonal system Ax = b be in the form⎛

⎜⎜⎜⎜⎝
α1 β1 0
γ2 α2 β2

. . . . . . . . .
γn−1 αn−1 βn−1

0 γn αn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2
...

xn−1

xn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b1

b2
...

bn−1

bn

⎞
⎟⎟⎟⎟⎠ (C1.5)

Starting the Gaussian elimination with the first row to produce zeros in the
subdiagonal during a forward loop, the algorithm is as follows:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α̂1 := α1, b̂1 := b1

(forward loop) for i = 2, . . . , n :

α̂i = αi − βi−1
γi

α̂i−1
, b̂i = bi − b̂i−1

γi

α̂i−1

xn :=
b̂n

α̂n

(backward loop) for i = n − 1, . . . , 1 :

xi =
1
α̂i

(b̂i − βixi+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(C1.6)

Here the “new” elements of the equivalent triangular system are indicated
with a “hat;” the necessary checks for nonsingularity (α̂i−1 �= 0) are omitted.
The algorithm (C1.6) needs about 8n operations. If one would start Gaussian
elimination from the last row and produces zeros in the superdiagonal, an
RL-decomposition results. The reader may wish to formulate the related
backward/forward algorithm as an exercise.

Cholesky Decomposition

For positive-definite matrices A (means symmetric or Hermitian and xHAx >
0 for all x �= 0) there is exactly one lower-triangular matrix L with positive
diagonal elements such that

A = LLH .

Here the diagonal elements of L need not be normalized. For real matrices
A also L is real, hence A = LLtr. (Hint: The Hermitian matrix AH of A
is defined as Ātr, where Ā means elementwise complex conjugate.) For a
computer program of Cholesky decomposition see [PTVF92].

C2 Iterative Methods for Ax = b

The system of linear equations Ax = b in IRn can be written

Mx = (M − A)x + b ,

where M is a suitable matrix. For nonsingular M the system Ax = b is
equivalent to the fixed-point equation

x = (I − M−1A)x + M−1b ,

which leads to the iteration

x(k+1) = (I − M−1A︸ ︷︷ ︸
=:B

)x(k) + M−1b . (C2.1)
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The computation of x(k+1) is done by solving the system of equations
Mx(k+1) = (M −A)x(k) + b. Subtracting the fixed-point equation and apply-
ing Lemma 4.2 shows

convergence ⇐⇒ ρ(B) < 1 ;

ρ(B) is the spectral radius of matrix B. For this convergence criterion there
is a sufficient criterion that is easy to check. Natural matrix norms satisfy
‖B‖ ≥ ρ(B). Hence ‖B‖ < 1 implies convergence. Application to the matrix
norms

‖B‖∞ = max
i

n∑
j=1

|bij | ,

‖B‖1 = max
j

n∑
i=1

|bij | ,

produces sufficient convergence criteria: The iteration converges if

n∑
j=1

|bij | < 1 for 1 ≤ i ≤ n

or if
n∑

i=1

|bij | < 1 for 1 ≤ j ≤ n .

By obvious reasons these criteria are called row sum criterion and column
sum criterion. The preconditioner matrix M is constructed such that rapid
convergence of (C2.1) is achieved. Further, the structure of M must be simple
so that the linear system is easily solved for x(k+1).

Simple examples are obtained by additive splitting of A into the form
A = D − L − U , with

D diagonal matrix
L strict lower-triangular matrix
U strict upper-triangular matrix

Jacobi’s Method

Choosing M := D implies M − A = L + U and establishes the iteration

Dx(k+1) = (L + U)x(k) + b .

By the above convergence criteria a strict diagonal dominance of A is suffi-
cient for the convergence of Jacobi’s method.

Gauß–Seidel Method

Here the choice is M := D − L. This leads via M − A = U to the iteration

(D − L)x(k+1) = Ux(k) + b .
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SOR (Successive Overrelaxation)

The SOR method can be seen as a modification of the Gauß-Seidel method,
where a relaxation parameter ωR is introduced and chosen in a way that
speeds up the convergence:

M :=
1

ωR
D − L =⇒ M − A =

(
1

ωR
− 1
)

D + U

(
1

ωR
D − L

)
x(k+1) =

((
1

ωR
− 1
)

D + U

)
x(k) + b

The SOR-method can be written as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BR : =
(

1
ωR

D − L

)−1(( 1
ωR

− 1
)

D + U

)

x(k+1) = BRx(k) +
(

1
ωR

D − L

)−1

b

The Gauß–Seidel method is obtained as special case for ωR = 1.

Choosing ωR

The difference vectors d(k+1) := x(k+1) − x(k) satisfiy

d(k+1) = BRd(k) . (C2.2)

This is the power method for eigenvalue problems. Hence the d(k) converge
to the eigenvector of the dominant eigenvalue ρ(BR). Consequently, if (C2.2)
converges then

d(k+1) = BRd(k) ≈ ρ(BR)d(k) .

Then |ρ(BR)| ≈ ‖d(k+1)‖
‖d(k)‖ for arbitrary vector norms. There is a class of ma-

trices A with
ρ(BGS) = (ρ(BJ))

2
, BJ := D−1(L + U)

ωopt =
2

1 +
√

1 − ρ(BJ)2
,

see [Va62], [SB96]. Here BJ denotes the iteration matrix of the Jacobi method
and BGS that of the Gauß-Seidel method. For matrices A of that kind a few
iterations with ωR = 1 suffice to estimate the value ρ(BGS), which in turn
gives an approximation to ωopt. With our experience with Cryer’s projected
SOR applied to the valuation of options (Section 4.6) the simple strategy
ωR = 1 is frequently recommendable.

This appendix has merely introduced classic iterative solvers, which are
stationary in the sense that the preconditioner matrix M does not vary with
k. For an overview on advanced nonstationary iterative methods see [Ba94].
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C3 Function Spaces

Let real-valued functions u, v, w be defined on D ⊆ IRn. We assume that D is a
domain. That is, D is open, bounded and connected. The space of continuous
functions is denoted C0(D) or C(D). The functions in Ck(D) are k times
continuously differentiable: All partial derivatives up to order k exist and are
continuous on D. The sets Ck(D) are examples of function spaces. Functions
in Ck(D̄) have in addition bounded and uniformly continuous derivatives and
consequently can be extended to D̄.

Apart from being distinguished by differentiability, functions are also
characterized by their integrability. The proper type of integral is the Lebesgue
integral. The space of square-integrable functions is

L2(D) :=
{

v :
∫
D

v2 dx < ∞
}

. (C3.1)

For example, v(x) = x−1/4 ∈ L2(0, 1) but v(x) = x−1/2 /∈ L2(0, 1). More
general, for p > 0 the Lp-spaces are defined by

Lp(D) :=
{

v :
∫
D
|v(x)|p dx < ∞

}
.

For p ≥ 1 these spaces have several important properties [Ad75]. For example,

‖v‖p :=
(∫

D
|v(x)|p dx

)1/p

(C3.2)

is a norm.
In order to establish the existence of integrals such as∫ b

a

uv dx,

∫ b

a

u′v′ dx

we might be tempted to use a simple approach, defining a function space

H1(a, b) :=
{
u ∈ L2(a, b) : u′ ∈ L2(a, b)

}
, (C3.3)

with D = (a, b). But a classical derivative u′ may not exist for u ∈ L2 or needs
not be square integrable. What is needed is a weaker notion of derivative.

Weak Derivatives

In Ck-spaces classical derivatives are defined in the usual way. For L2-spaces
weak derivatives are defined. For motivation let us review standard integration
by parts ∫ b

a

uv′ dx = −
∫ b

a

u′v dx , (C3.4)
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which is correct for all u, v ∈ C1(a, b) with v(a) = v(b) = 0. For u /∈ C1

the equation (C3.4) can be used to define a weak derivative u′ provided
smoothness is transferred to v. For this purpose define

C∞
0 (D) := {v ∈ C∞(D) : supp(v) is a compact subset of D} .

v ∈ C∞
0 (D) implies v = 0 at the boundary of D. For D ⊆ IRn one uses the

multiindex notation

α := (α1, ..., αn), αi ∈ IN ∪ {0}

with

|α| :=
n∑

i=1

αi .

Then the partial derivative of order |α| is defined as

Dαv :=
∂|α|

∂xα1
1 ...∂xαn

n
v(x1, ..., xn) .

If a w ∈ L2 exists with∫
D

uDαv dx = (−1)|α|
∫
D

wv dx for all v ∈ C∞
0 (D) ,

the weak derivative of u with multiindex α is defined by Dαu := w.

Sobolev Spaces
The definition (C3.3) is meaningful if u′ is considered as weak derivative in
the above sense. More general, one defines the Sobolev spaces

Hk(D) :=
{
v ∈ L2(D) : Dαv ∈ L2(D) für |α| ≤ k

}
. (C3.5)

The index 0 specifies the subspace of H1 that consists of those functions that
vanish at the boundary of D. For example,

H1
0(a, b) :=

{
v ∈ H1(a, b) : v(a) = v(b) = 0

}
.

The Sobolev spaces Hk are equipped with the norm

‖v‖k :=

⎛
⎝∑

|α|≤k

∫
D
|Dαv|2 dx

⎞
⎠

1/2

, (C3.6)

which is the sum of L2-norms of (C3.2). For the special case discussed in
Chapter 5 with k = 1, n = 1, D = (a, b), the norm is

‖v‖1 :=

(∫ b

a

(v2 + (v′)2) dx

)1/2

.
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Embedding theorems state which function spaces are subsets of other func-
tion spaces. In this way, elements of Sobolev spaces can be characterized and
distinguished with respect to smoothness and integrability. For instance, the
space H1 includes those functions that are globally continuous on all of D
and its boundary and are piecewise C1-functions.

Hilbert Spaces

The function spaces L2 and Hk have numerous properties. Here we just men-
tion that both spaces are Hilbert spaces. Hilbert spaces have an inner product
( , ) such that the space is complete with respect to the norm ‖v‖ :=

√
(v, v).

In complete spaces every Cauchy sequence converges. In Hilbert spaces the
Schwarzian inequality

|(u, v)| ≤ ‖u‖ ‖v‖ (C3.7)

holds. Examples of Hilbert spaces and their inner products are

L2(D) with (u, v)0 :=
∫
D

u(x)v(x) dx

Hk(D) with (u, v)k :=
∑
|α|≤k

(Dαu,Dαv)0

For further discussion of function spaces we refer, for instance, to [Ad75],
[KA64], [Ha92], [Wl87].

C4 Minimization

Minimization methods are developed for a wide range of applications, in-
cluding optimization under constraints or optimal control problems. Here we
confine ourselves to a few introductory remarks on unconstrained minimiza-
tion, setting the stage to solve a calibration problem. For general literature
on minimization/optimization and parameter estimation refer, for example,
to [PTVF92]. For the special application, curve fitting by least squares, see
below.

In what follows, x is a vector in IRn, and x∗ a specific vector that minimizes
a scalar function g locally,

g(x∗) ≤ g(x) for all x in a neighbourhood of x∗ .

A more ambitious task is to find a global minimum on the entire x-space.
The vector x may represent n parameters of a model, and g may stand for
the least-squares function used for calibration, see (1.60). Since the methods
of this appendix neglect possible constraints such as x ≥ 0, we need to check
x∗ for feasibility after its calculation. For simplicity assume that at least one
minimum exists.
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A standard assumption of classical minimization methods is smoothness
of g. In order to set up an iterative process to approach a minimum, one may
look into the direction −grad(g(x)) of steepest descent of g. This seems to
be a convincing idea, but the steepest-descent method often requires a large
number of iterations. A faster approach is obtained by invoking Newton’s
method. Recall that a necessary criterion for a minimum is the vanishing of
all first-order partial derivatives,

grad g(x∗) = 0 .

This suggests to apply a Newton-type method to search for a zero of

f(x) := grad g(x) .

Then a sequence of iterates x1, x2, . . . is defined by (C1.3),

H(xk)(xk+1 − xk) = −grad g(xk) , (C4.1)

where H(x) = Df(x) denotes the Hesse matrix of all second-order partial
derivatives of g,

H(x) =

⎛
⎜⎝

∂2g
∂x1∂x1

· · · ∂2g
∂x1∂xn

...
...

∂2g
∂xn∂x1

· · · ∂2g
∂xn∂xn

⎞
⎟⎠

The method defined by (C4.1) is also called Gauss-Newton method. Locally,
the convergence is fast, namely, of second order.

The evaluation of the Hessian H(x) is cumbersome, in particular in
finance, where g is not given explicitly and is approximated numerically.
Therefore one resorts to cheaper approximations H̃(x) of the Hessian. Such
matrices H̃ are obtained by updates. The resulting method is then called
quasi-Newton. One such approximation method is named BFGS1, see for ex-
ample [Bro70]. This Newton-type method of approximating x∗ iteratively is
a local method. The quality of the initial guess x0 decides on how fast the
convergence is, and to which local minimum the iteration goes. A combina-
tion of a steepest-descent method with a locally fast Newton-type method is
provided by the Levenberg-Marquardt method, see [PTVF92].

When g is not smooth enough, or when differentiability is doubtful, or
when g has many local minima, simulated annealing is applied. This method
works with random numbers searching the entire x-space. For references on
simulated annealing see, for instance, [FaS88], [KiGV83].

Frequently, a two-phase hybrid approach is used. In a first phase the com-
parably slow simulated annealing is applied to single out globally candidates
for minima. In the second phase these rough approximations are then used
as initial vectors for the locally (fast) converging Newton-type method.

1 After Broyden, Fletcher, Goldfarb, Shanno.
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Another class of minimization methods is provided by genetic algorithms,
where the minimum is approximated by constructing an evolution process.
For applications to finance, see [Chen02], [BenHC05].

Least Squares

Assume a set of N points

(xk, yk) , k = 1, . . . , N, xk ∈ IR, yk ∈ IR .

The aim is to construct a smooth curve C(x) passing “nicely” through the
cloud of points. This is the problem of data fitting, or curve fitting, and can be
solved by simple linear algebra. Interpolation would not be the right answer
when N is large. Rather one restricts the shape of C to be of a special kind.
With n+1 free parameters a0, . . . , an and as many basis functions φ0, . . . , φn

we build C,

C(x) :=
n∑

l=0

alφl(x) .

In general, n 
 N . The simplest example is a polynomial,

C(x) = a0 + a1x + . . . + anxn .

The basic strategy (“least squares”) is to determine the parameters ai such
that the sum of squared differences between C and the data

N∑
k=1

(C(xk) − yk)2

gets minimal. Since the a’s enter linearly in C, there is a (N × n)-matrix A
such that

A

⎛
⎝ a0

...
an

⎞
⎠ =

⎛
⎜⎝

C(x1)
...

C(xN )

⎞
⎟⎠ ,

and ‖Aa − y‖2
2 is minimal. Here we arrange the a’s into a vector a, and the

y’s into a vector y, and use the norm from (C1.4). The solution a of the least
squares problem is that of the system of linear equations

AtrAa = Atry ,

and can be calculated via an orthogonal decomposition of A. Least squares
is also called regression, or best fit.
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This appendix lists useful formula without further explanation. Many formu-
las can be found in [Haug98].

D1 Bounds for Options

The following bounds can be derived based on arbitrage arguments, see
[Mer73], [CR85], [In87], [Kwok98], [Hull00]. If neither the subscript C nor
P is listed, the inequality holds for both put and call. If neither the Eur

nor the Am is listed, the inequality holds for both American and European
options. We always assume r > 0.
a) Bounds valid for both American and European options, no matter whether

dividends are paid or not:

0 ≤ VC(St, t) ≤ St

0 ≤ VP(St, t) ≤ K

V Eur(St, t) ≤ V Am(St, t)

St − K ≤ V Am
C (St, t)

K − St ≤ V Am
P (St, t)

V Eur
P (St, t) ≤ Ke−r(T−t)

Lower bounds incorporating a continuous dividend yield δ (set δ = 0 in
case no dividend is paid): The above relations and the put-call parity
(A4.11a) imply

St e−δ(T−t) − Ke−r(T−t) ≤ VC(St, t)

Ke−r(T−t) − St e−δ(T−t) ≤ VP(St, t)

The zero of the lower bound is Ke(δ−r)(T−t).

305
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K

S

S

K

K

call

put

V

V

Fig. D.1. Bounding curves for the value of put and call options (r > 0, δ = 0); for
both put and call a European value function is plotted, with r > 0, δ = 0.

b) For bounds on the early-exercise boundary, see Appendix A5.
c) Monotonicity of the value function:

Monotonicity with respect to S:

VC(S1, t) < VC(S2, t) for S1 < S2

VP(S1, t) > VP(S2, t) for S1 < S2 ,

which implies
∂VC

∂S
> 0 ,

∂VP

∂S
< 0 .

Monotonicity of American options with respect to time:

V Am
C (S, t1) ≥ V Am

C (S, t2) for t1 < t2
V Am

P (S, t1) ≥ V Am
P (S, t2) for t1 < t2 ,

which implies
∂V Am

∂t
≤ 0 .

Options are convex with respect to K and with respect to S.
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To express monotonicity with respect to the strike K or to the time to
expiration T , we indicate dependencies by writing V (S, t;T,K), and only
quote the parameter that is changed.

V Am( . ;T1) ≤ V Am( . ;T2) for T1 < T2

VC( . ;K1) ≥ VC( . ;K2) for K1 < K2

VP( . ;K1) ≤ VP( . ;K2) for K1 < K2

The first of these inequalities implies that the value of a perpetual option
(T → ∞) is an upper bound to the value of an American option.

d) Put-call parity relation for American options:

Ke−r(T−t) + V Am
C (S, t) ≤ S + V Am

P (S, t) .

This holds no matter whether dividends are paid or not. If the asset pays
no dividends, then also the upper bound

S + V Am
P (S, t) − V Am

C (S, t) ≤ K

holds.

D2 Approximation Formula

Distribution Function of the Standard Normal Distribution

f(x) :=
1√
2π

exp
(
−x2

2

)

F (x) :=

x∫
−∞

f(t) dt

Let us define
z :=

1
1 + 0.2316419x

and the coefficients

a1 = 0.319381530 a4 = −1.821255978
a2 = −0.356563782 a5 = 1.330274429
a3 = 1.781477937.

Then

F (x) = 1 − f(x)
(
a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5
)

+ ε(x) ,

for 0 ≤ x < ∞ with an absolute error ε bounded by

|ε(x)| < 7.5 ∗ 10−8
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(see [AS68]). Hence we have the approximating formula

F (x) ≈ 1 − f(x)z((((a5z + a4)z + a3)z + a2)z + a1) ,

which requires 17 arithmetic operations and the evaluation of the exponen-
tial function to obtain an accuracy of about 7 decimals. For x < 0 apply
F (x) = 1 − F (−x). Higher accuracy can be achieved with quadrature meth-
ods (−→ Exercise 1.3).

Inversion Formula

A FORTRAN code for the inversion of the normal distribution can be found
in

http://lib.stat.cmu.edu/apstat/111.
(Many other codes relevant for statistical computation can be obtained via
the .../apstat page.) Here we report the formula of [Moro95] to approx-
imate the inverse function of the standard normal distribution

F (x) :=
1√
2π

x∫
−∞

exp
(
− t2

2

)
dt .

That is, we calculate x = G(u) such that G(u) ≈ F−1(u). The interval
0 < u < 1 is truncated to 10−12 ≤ u ≤ 1 − 10−12. Symmetry with respect
to (x, u) = (0, 0.5) is exploited. The interval is subdivided into two relevant
parts, namely,

0.08 < u < 0.92 and 0.92 ≤ u ≤ 1 − 10−12 .

The part 10−12 ≤ u ≤ 0.08 is obtained by symmetry. For each of the two
subintervals an appropriate approximation is given. In the middle part of the
interval a rational approximation in the form

(u − 0.5)

3∑
j=0

aj(u − 0.5)2j

1 +
3∑

j=0

bj(u − 0.5)2j

is used, whereas the tails are approximated by a polynomial in log(− log r),
where 10−12 ≤ r ≤ 0.08.



D3 Software 309

Algorithm (inversion of the standard normal distribution)

input: u, drawn from U(0, 1)
y := u − 0.5
in case |y| < 0.42:

r := y2

x := y ((a3r+a2)r+a1)r+a0
(((b3r+b2)r+b1)r+b0)r+1

in case |y| ≥ 0.42:
r := u , in case y > 0 set r := 1 − u
r := log(− log r)
x := c0 + r(c1 + r(c2 + r(c3 + r(c4 + r(c5 + r(c6 + r(c7 + rc8)))))))
in case y < 0 set x := −x

output: x

The coefficients of the above algorithm are given by1

a0 = 2.50662823884,
a1 = −18.61500062529,
a2 = 41.39119773534,
a3 = −25.44106049637

b0 = −8.47351093090,
b1 = 23.08336743743,
b2 = −21.06224101826,
b3 = 3.13082909833

c0 = 0.3374754822726147,
c1 = 0.9761690190917186,
c2 = 0.1607979714918209,
c3 = 0.0276438810333863,
c4 = 0.0038405729373609,
c5 = 0.0003951896511919,
c6 = 0.0000321767881768,
c7 = 0.0000002888167364,
c8 = 0.0000003960315187

The rational approximation formula for |y| < 0.42 (that is, 0.08 < u < 0.92)
is reported to have a largest absolute error of 3 · 10−9.

D3 Software

A dedicated computer person will program the mathematics such that the
resulting codes run with utmost possible speed. Such a person will probably
use compilers like C, C++, or FORTRAN to create production codes, where

1 These digits are listed in [Moro95].
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the speed counts. But there are packages available that make programming,
implementing, testing, and graphics more comfortable. For example, MAT-
LAB offers a platform for scientific computation and numerical experiments.

Several programs related to finance have been published. For MATLAB
codes see [Hig04], for MATHEMATICA codes see [Sto03], and C++ programs
are in [AcP05]. For elementary computations, spreadsheets are also used.
Programs in various levels can also found, for example, in [Hull00], [Haug98].

For partial differential equations, the finite-element program PDE2D is
available via the University of Texas, El Paso. See also the finite-element
programs referred to in [AcP05]. The PREMIA project offers codes via www-
rocq.inria.fr/mathfi . For further hints and test algorithms see the plat-
form www.compfin.de .
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51–52, 54–55, 59, 106, 113, 123, 142,
238, 242, 270, 288

Gerschgorin 155, 294
Girsanov 286
Godunov 263
Greek 134, 196, 272–273
Grid 12–18, 46, 66, 88, 112, 144–146,

169, 178–180, 197, 203–204, 213–214,
219, 222–223, 231, 233, 248, 251, 253,
257–258, 261

Halton sequence 91–93, 134



328 Index

Hat function 208–210, 215, 220,
223–224, 228–229, 231, 233–234

Harrison 286
Hedging 6, 23–26, 56–57, 141, 249,
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Heston’s model 42, 55–56, 60, 133,
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Independent random variable 28,
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Interpolation 13, 47, 96, 112–113,

185–187, 204, 208, 210, 231, 234, 247,
291–292

Intrinsic value 2, 4
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Jacobi matrix 80–81, 112, 247, 293
Jacobi method 297–298
Jensen’s inequality 185, 281
Jump 49, 51–53, 55, 59–60, 99, 112,

247, 290
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Kac 136
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Kuhn–Tucker theorem 172
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Lagrange polynomial 196, 291
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Lax–Friedrichs scheme 254, 260
Lax–Milgram 229
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Lemma of Lax–Milgram 229
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LIBOR 266
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Lookback option, see Option
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Minimization 54–55, 172–173, 197,

207, 217–218, 227, 301–303
Mode, see Fourier mode
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Model of the Market 8–11, 53
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294, 302

Ornstein-Uhlenbeck (OU) process 40,
42, 60, 68

Orthogonality 206, 232
Oscillations 193, 196, 249–250, 252,

255, 259, 262, 292
Overfitting 55

Parallelization 93, 136
Parametric method 128–129
Pareto 59
Partial differential equation (PDE)

9–12, 141–144, 160, 164, 171, 178,
190, 192, 196, 223, 235, 239, 243,
248, 254, 257, 262, 264

Partial integro-differential equation
(PIDE) 52, 275

Partition of a domain 205–206, 222
Path (Trajectory) 3, 16, 27, 35, 101,

103, 114–115, 125
Path–(in)dependent, see Option
Payoff 2–5, 7–10, 19–20, 25–26,

45–47, 64, 67, 101, 114-115, 121,
124–125, 127, 129, 131–132, 139,
156, 158–161, 163–165, 177, 185–186,
188–189, 191–192, 195–196, 222,
236–238, 240–243, 247, 262, 267, 271,
276, 289

Péclet number 193, 249–254, 262
Penalty method 197
Period of random numbers 70–71, 75
Phase shift 257
Pliska 286
Poincaré 230
Poisson distribution 49–50, 99, 283
Poisson process 49–52, 285
Pole behavior 78
Polygon 210, 228–229, 231, 292
Polynomial 204–205, 208, 228,

232–233, 252, 291–293, 303, 308
Portfolio 23–26, 30, 57, 60, 67, 199,

238, 268, 270–274
Power method 298

Preconditioner 297–298
Premium 1–2, 4, 188, 196, 267
Probability 14–16, 23, 25–26, 37–39,

49, 58, 71, 77, 83, 87, 98, 111-113,
272, 279–283, 286–287

Profit 4–5, 161
Projection SOR 173, see SOR
Pseudo–random number 69
Put, see Option
Put–call parity 5, 60, 157, 189, 198,

273, 278, 305, 307
Put–call symmetry 182, 278

Quadratic approximation 188-190
Quadrature 47, 61, 90, 115, 238,

292–293, 308
Quasi Monte Carlo 85, 93, 135
Quasi–random number 69, 90, 134

Radial basis function 59
Radical–inverse function 91, 98
Radon–Nikodym 286
Rainbow option, see Option
Random number 28, 35, 42, 51,

69–84, 86–88, 90, 92–93, 95–98, 117,
121, 125, 133–134, 136, 302

Random variable 69, 78–79, 95, 106,
111–112, 116, 120, 126, 138, 274,
279–282, 285

RANDU 74
Rational approximation 78, 96, 292,

308
Rayleigh–Ritz principle 229
Regression 186–187, 303
Regression method 130–133, 136
Relaxation parameter 173, 195, 198,

298
Replication portfolio 57, 68, 271, 273
Residual 206
Return 25, 36, 38, 47–48, 66, 239,

266
Riemann–(Stieltjes–) integral 30, 34
Risk 2, 6, 38, 49, 87, 265–268,

271–274
Risk free, risk neutral 15, 23–26,

37–39, 55, 57–58, 101, 114–115, 131,
161, 266, 270–272, 290

Ross 14, 40, 57
Rounding error 13, 62, 148–151, 179,

262
Rubinstein 14, 57
Runge–Kutta method 110
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Sample 69, 71, 77, 86, 98, 103–105,
115, 128

Sample variance 61, 66, 71
Sampling error 118–119, 126, 133–134
Samuelson 59
Schöbel-Zhu model 60
Scholes 8, see Black
Schwartz 174, 200
Schwarzian inequality 227, 230–231,

301
SDE, see Stochastic Differential

Equation
Secant method 62, 77, 294
Seed 70, 72, 76, 104, 115, 117
Self–financing 57, 68, 268, 271, 273,

286–287
Separation 216, 225, 243, 248
Semidiscretization 145, 190, 200, 215
Short position 4, 23, 60, 269
Short sale 269
Shuffling 75
Similarity reduction 262
Simple process 32–33
Simulated Annealing 302
Simulation 35, 39, 51, 54, 101, 104,

114–118, 126, 131, 239
Singular matrix 214
Smooth, see Differentiable
Smooth pasting 194, 199, see High

contact
Snell envelope 57
Sobol sequence 92, 94–95
Sobolev space 227–228, 300-301
Software 308–310
SOR 172–173, 175–177, 198, 201,

222, 298
Sparse grid 115, 238
Sparse matrix 208, 229
Spectral method 197, 232
Spectral radius 149, 297
Spline 228, 233–234, 292
Spot market 3
Spot price 3, 14, 18, 265
Spurious 235, 249, 251, 255, 259, 262
Square integrable 87, 227, 299
Square root process 40, 60
Stability 12–13, 55–56, 135, 144,

148–153, 155, 179, 193, 196–197, 235,
251–255, 258–259, 262

Staggered grid 258
Standard deviation 6, 87, 117, 280
State–price process 286–288

Step length 35, 102, 117, 146, 151,
177, 251–252, 258

Stiffness matrix 211, 214, 232
Stochastic differential equation (SDE)

34–35, 101–103, 105–107, 109, 113,
115–118, 133-135, 137, 139, 262, 270,
283, 286–287

Stochastic integral 30–33, 111
Stochastic process 6, 11, 26–34 , 42,

49, 58–60, 67–68, 102, 113
Stochastic Taylor expansion 106–111
Stock 1–2, 38, 43, 48, 59, 265, 271
Stopping time 126–128, 132, 160, 177
Stopping region 160–161, 164–165,

177
Stratified sampling 94
Stratonovich integral 58
Strike price K 1–6, 54, 57, 125,

160–161, 179, 185, 193, 234, 267, 307
Strong convergence 105, 110, 135
Strong (classical) solution 103, 134,

218, 226
Subordinator 53, 60
Support 78–80, 98, 208, 229, 233
Swap 266–268
Symmetry of put and call 278

Tail of a distribution 48, 59
Taylor expansion 43, 144–145, 154,

256, 284
Terminal condition 10, 61, 188, 247,

251, 272
Test function, see Weighting function
Time 6, 14, 53, 143, 184, 239
Time-changed process 53, 60, 99, 290
Total variation diminishing (TVD)

259–261, 263–264
Trading strategy 30, 286, 289
Trajectory, see Path
Transaction costs 3–4, 10–11, 56, 60
Transformations 78–80, 82, 84,

142–143, 146, 164, 167, 171, 176, 192,
196–200, 234, 235, 242, 249, 251, 264

Trapezoidal rule 193, 275, 292
Trapezoidal sum (composite rule) 88,

293
Traveling wave, see Wave
Tree 13–19, 22
Tree method 57, see Binomial

method
Trial function, see Basis function
Triangle 204–206, 222–224, 232
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Tridiagonal matrix 148, 150, 152–155,
174, 200, 213, 222, 295–296

Trinomial model 22, 240
Truncation error 179

Underlying 1, 8, 11
Uniform distribution 69–72, 77,

79–82, 86, 88, 96, 99, 281, 309
Upwind scheme 235, 253–257,

260–261, 264

Value at Risk 59, 136
Value function 9–10, 271
Van der Corput sequence 91, 94
Van Leer 261
Variance 15–16, 28, 42, 44, 48, 57–58,

61, 66, 86–87, 97, 105, 111, 119–121,
280–283, 290

Variance Gamma process (VG) 53,
60, 290

Variance reduction 94, 116, 119–123,
133, 136

Variation 30–31
Variational problem 168, 216–217,

227, 229

Vasicek 40

Vieta 17

Volatility 6, 10, 16, 18, 36–37, 39–42,
48, 53–56, 59–60, 66, 118, 133, 181,
193, 239, 251, 253, 262, 272

Volatility smile 63, 193

Von Neumann stability 251–254, 262,
264

Wave 253

Wave number 252, 257

Wavelet 233

Weak convergence 105, 110–112, 119,
121, 135

Weak derivative 299–300

Weak solution 103, 137, 218, 225–229

Weighted residuals 203–205

Weighting function 206–207

Wiener process (Brownian motion)
Wt 26–44, 51–54 , 58–59, 68, 99,
102–104, 112–113, 117, 123, 136–138,
238, 284–286, 289–290

Writer 1–2, 4
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Böttcher, A; Silbermann, B.: Introduction to
Large Truncated Toeplitz Matrices
Boltyanski, V.; Martini, H.; Soltan, P. S.:
Excursions into Combinatorial Geometry
Boltyanskii, V. G.; Efremovich, V. A.: Intuitive
Combinatorial Topology
Bonnans, J. F.; Gilbert, J. C.; Lemarchal, C.;
Sagastizbal, C. A.: Numerical Optimization
Booss, B.; Bleecker, D. D.: Topology and
Analysis
Borkar, V. S.: Probability Theory
Brides/Vita: Techniques of Constructive
Analysis
Bruiner, J. H.: The 1-2-3 of Modular Forms
Brunt B. van: The Calculus of Variations
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