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Chapter 0

Introduction

This book concerns the analysis of models for financial markets, particularly
the assets traded there. We pay particular attention to financial derivatives
such as options and futures. These are financial instruments which derive their
value from some associated asset. For example a call option is written on a
particular stock, and its value at expiry depends on the price of the stock at
expiry. But there are many other types of financial derivatives, traded on assets
such as bonds, currency markets or foreign exchange markets, and commodities.
Indeed there is a growing interest in so-called “real options”, those written on
some real-world physical process such as the temperature or the amount of
rainfall.

In general, an option gives the holder a right, not an obligation, to sell or
buy a prescribed asset (the underlying asset) at a price determined by the
contract (the exercise or strike price). For example if you own a call option on
shares of IBM  with expiry date Oct. 20, 2000 and exercise price $120, then
on October 20, 2000 you have the right to purchase a fixed number , say 100
shares of IBM at the price $120. If IBM is selling for $130 on that date, then
your option is worth $10 per share on expiry. If IBM is selling for $120 or less,
then your option is worthless. We need to know what a fair value would be
for this option when it is sold, say on February 1, 2000. Determining this fair
value relies on sophisticated models both for the movements in the underlying
asset and the relationship of this asset with the derivative, and is the subject of
a large part of this book. You may have bought an IBM option for two possible
reasons, either because you are speculating on an increase in the stock price,
or to hedge a promise that you have made to deliver IBM stocks to someone
in the future against possible increases in the stock price. The second use of
derivatives is similar to the use of an insurance policy against movements in
an asset price that could damage or bankrupt the holder of a portfolio. It is
this second use of derivatives that has fueled most of the phenomenal growth
in their trading. With the globalization of economies, industries are subject to
more and more economic forces that they are unable to control but nevertheless
wish some form of insurance against. This requires a hedges against a whole
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litany of disadvantageous moves of the market such as increases in the cost of
borrowing, decreases in the value of assets held, changes in a foreign currency
exchange rates, etc.

The advanced theory of finance, like many areas where advanced mathemat-
ics plays an important part, is undergoing a revolution aided and abetted by
the computer and the proliferation of powerful simulation and symbolic math-
ematical tools. This is the mathematical equivalent of the invention of the
printing press. The numerical and computational power once reserved for the
most highly trained mathematicians, engineers is now available to all.

One of the first hurdles faced before adopting stochastic or random models
in finance is the recognition that for all practical purposes, the prices of equities
in an efficient market are random variables, that is while they may show some
dependence on fiscal and economic processes and policies, they have a compo-
nent of randomness that makes them unpredictable. This appears on the surface
to be contrary to the training we all receive that every effect has a cause, and
every change in the price of a stock must be driven by some factor in the com-
pany or the economy. But we should remember that random models are often
applied to systems that are essentially causal when measuring and analyzing
the various factors influencing the process and their effects is too monumental
a task. Even in the simple toss of a fair coin, the result is predetermined by
the forces applied to the coin during and after it is tossed. In spite of this, we
model it as a random variable because we have insufficient information on these
forces to make a more accurate prediction of the outcome. Most financial pro-
cesses in an advanced economy are of a similar nature. Exchange rates, interest
rates and equity prices are subject to the pressures of a large number of traders,
government agencies, speculators, as well as the forces applied by international
trade and the flow of information. In the aggregate there is an extraordinary
number of forces and information that influence the process. While we might
hope to predict some features of the process such as the average change in price
or the volatility, a precise estimate of the price of an asset one year from today
is clearly impossible. This is the basic argument necessitating stochastic mod-
els in finance. A stochastic model does not militate against some ability to
forecast. It is adopted whenever we acknowledge that a process is not perfectly
predictable and the non-predictable component of the process is of sufficient
importance to attempt to model.

Now if we accept that the price of a stock is a random variable, what are
the constants in our model? Is a dollar of constant value, and if so, the dollar
of which nation? Or should we accept one unit of a index what in some sense
represents a share of the global economy as the constant? This question concerns
our choice of what is called the “numeraire” in deference to the French influence
on the theory of probability, or the process against which the value of our assets
will be measured. We will see that there is not a unique answer to this question,
nor does that matter for most purposes. We can use a bond denominated in
Canadian dollars as the numeraire or one in US dollars. Provided we account
for the variability in the exchange rate, the price of an asset will be the same.
So to some extent our choice of numeraire is arbitrary- we may pick whatever
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is most convenient for the problem at hand.

One of the most important modern tools for analyzing a stochastic system
is simulation. Simulation is the imitation of a real-world process or system. It
is essentially a model, often a mathematical model of a process. In finance,
a basic model for the evolution of stock prices, interest rates, exchange rates
etc. would be necessary to determine a fair price of a derivative security.
Simulations, like purely mathematical models, usually make assumptions about
the behaviour of the system being modelled. This model requires inputs, often
called the parameters of the model and outputs a result which might measure the
performance of a system, the price of a given financial instrument, or the weights
on a portfolio chosen to have some desirable property. We usually construct the
model in such a way that inputs are easily changed over a given set of values,
as this allows for a more complete picture of the possible outcomes.

Why use simulation? The simple answer is that is that it transfers work
to the computer. When compared with a purely mathematical analysis, models
with more complexity and fewer assumptions, models that are closer to the
real-world, are possible. By changing parameters we can examine interactions,
and sensitivities of the system to various factors. Experimenters may either
use a simulation to provide a numerical answer to a question, assign a price
to a given asset, identify optimal settings for controllable parameters, examine
the effect of exogenous variables or identify which of several schemes is more
efficient or more profitable. The variables that have the greatest effect on a
system can be isolated. We can also use simulation to verify the results obtained
from an analytic solution. For example many of the tractable models used in
finance to select portfolios and price derivatives are wrong. They put too little
weight on the extreme observations, the large positive and negative movements
(crashes), which have the most dramatic effect on the results. Is this lack of
fit of major concern when we use a standard model such as the Black-Scholes
model to price a derivative? Questions such as this one can be answered in part
by examining simulations which accord more closely with the real world, but
which are intractable to mathematical analysis.

Simulation is also used to answer questions starting with “what if”. For
example, What would be the result if interest rates rose 3 percentage points
over the next 12 months? In engineering, determining what would happen under
more extreme circumstances is often referred to as stress testing and simulation
is a particularly valuable tool here since the scenarios we are concerned about are
those that we observe too rarely to have a substantial experience of. Simulations
are used, for example, to determine the effect of an aircraft of flying under
extreme conditions and is used to analyse the flight data information in the
event of an accident. Simulation often provides experience at a lower cost than
the alternatives.

But these advantages are not without some sacrifice. Two individuals may
choose to model the same phenomenon in different ways, and as a result, may
have quite different simulation results. Because the output from a simulation
is random, it is sometimes harder to analysis- some statistical experience and
tools are a valuable asset. Building models and writing simulation code is not
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always easy- time is required both to construct the simulation, validate it, and to
analysis the results. And simulation does not render all mathematical analysis
unnecessary- if a reasonably simple analytic expression for a solution exists
it is always preferable to a simulation. While a simulation may provide an
approximate numerical answer at one or more possible parameter values, only
an expression for the solution provides insight to the way in which it responds
to the individual parameters, the sensitivities of the solution.

In constructing a simulation, you should be conscious of a number of distinct
steps;

1. Formulate the problem at hand. Why do we need to use simulation?

2. Set the objectives as specifically as possible. This should include what
measures on the process are of most interest.

3. Suggest candidate models. Which of these are closest to the real-world?
Which are fairly easy to write computer code for? What parameter values
are of interest?

4. If possible, collect real data and identify which of the above models is
most appropriate. Which does the best job of generating the general
characteristics of the real data?

5. Implement the model. Write computer code to run simulations.

6. Verify (debug) the model. Using simple special cases, insure that the code
is doing what you think it is doing.

7. Validate the model. Ensure that it generates data with the characteristics
of the real data.

8. Determine simulation design parameters. How many simulations are to
be run and what alternatives are to be simulated?

9. Run the simulation. Collect and analyse the output.

10. Are there surprises? Do we need to change the model or the parameters?
Do we need more runs?

11. Finally we document the results and conclusions in the light of the simula-
tion results. Tables of numbers are to be avoided. Well-chosen graphs are
often better ways of gleaning qualitative information from a simulation.

In this book, we will not always follow our own advice, leaving some of
the above steps for the reader to fill in. Nevertheless, the importance of model
validation, for example, cannot be overstated. Particularly in finance where data
is often plentiful, highly complex mathematical models are too often applied
without any evidence that they fit the observed data adequately. The reader is
advised to consult and address the points in each of the steps above with each
new simulation (and many of the examples in this text).



Example

Let us consider the following example illustrating a simple use for a simu-
lation model. We are considering a buy-out bid for the shares of a company.
Although the company’s stock is presently valued at around $11.50 per share, a
careful analysis has determined that it fits sufficiently well with our current as-
sets that if the buy-out were successful, it would be worth approximately $14.00
per share in our hands. We are considering only three alternatives. An imme-
diate cash offer of $12.00, $13.00 or $14.00 per share for outstanding shares of
the company. Naturally we would like to bid as little as possible. Unfortunately
we expect a competitor to also make a bid for the company, and the competitor
values the shares differently. Moreover there are costs associated with losing a
given bid to the competitor. Suppose the payoff to our firm depends on the
amount bid by the competitor and the possible scenarios are as given in the
following table.

Competitor
Bid A B C
Your | 12 3 2 -2
Co. 13 1 -4 4
14 0 -5 5

The payoffs to the competitor are somewhat different and given below

Competitor | Bid
A B C
Your | 12 -1 -2 3
Bid 13 0 4 -6
14 0 5 -5

Define the 3 x 3 matrix of payoffs listed in Table 1 by A and that in
Table 1 by B. Provided that you play strategy ¢ = 1,2,3 (i.e. bid $12,$13,$14
with probabilities py, p2, p3 respectively and the probabilities of the competitor’s
strategies are ¢;,j = 1,2,3, then we can write the expected payoff to you in
the form E?=1 Z?=1 p;Ai;q;., which, when written as a vector-matrix product,
takes the form p” Ag. This can be thought of as the average return to your firm
in the long run if this game were repeated many times. In this case you would
clearly choose p; =1 for the row ¢ corresponding to the maximum component
of Aq, if the vector ¢ were known to you. Similarly your competitor would
choose g; = 1 for the column j corresponding to the maximum component
of p” B. Over the long haul, if this game were indeed repeated may times, you
would likely keep track of your opponent’s frequencies and replace the unknown
probabilities by the frequencies. This would seem to be a reasonable approach
to building a simulation model for this game. Play the game repeatedly with
each of the two players updating the estimated probabilities with which their
opponent uses their available strategies and record the number of times each
strategy is used. In this case we run the function

function [p,q]=nonzerosum(A,B,nsim)

% A and B are payoff matrices to the two participants in a game. Outputs

Y%mixed strategies p and q determined by simulation conducted nsim times
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n=size(A); % A and B have the same size
p=ones(1,n(1)); q=ones(n(2),1); % initialize with positive weights on all
strategies

for i=1:nsim

m,s]=max(A*q); p(s)=p(s)+1;
m,s]=max(p*B); q(s)=q(s)+1;
end
p=p-ones(
q=q-ones(

L,n(1)); p=p/sum(p);
n(2),1); q=q/sum(q);

The following output results from running this function for 50,000 simula-
tions.

[p,q]=nonzerosum(A,B,50000)

p = 0.6667 0.2222  0.1111

q =0 0.5000 0.5000
and this seems to indicate that the strategies will be “mixed” or random. You
should choose a bid of $12.00 with probability around 2/3; $13.00 with prob-
ability about 2/9 and $14.00 with probability 1/9. It appears that the com-
petitor need only toss a fair coin and select between B and C based on its
outcome. Why randomize your choice? If you were to choose a single strategy
as your “best” then your competitor could presumably determine what your
“best” strategy is and act to reduce your return while increasing theirs. Ounly
randomization provides the necessary insurance that neither player can guess
the strategy to be employed by the other. This is a rather simple example of
a two-person game with non-constant sum (in the sense that A+B is not a
constant matrix). Mathematical analysis of such games can be quite complex.
Participants may compete or cooperate for a greater total return.

While there is no assurance that the solution is optimal, it is in this case
easily seen to be sensible solution, achieved with little effort. Indeed in a game
such as this, there is no clear definition of what an optimal strategy would
be. Do you plan your play based on the worst case or the best case scenario
or something in between such as some form of average? Do you attempt to
collaborate with your competitor for greater total return and then subsequently
divide this in some fashion? Here the simulation has emulated a simple form
of competitor behaviour and arrived at a reasonable solution.

There remains the question of how we actually select a bid with probabilities
2/3,2/9 and 1/9 respectively. First let us assume that we are able to choose
a “random number” U in the interval [0,1] so that the probability that it falls
in any given subinterval is proportional to the length of that subinterval. This
means that the random number has a uniform distribution on the interval [0,1].
Then we could determine our bid based on the value of this random number
from the following table;

[ [U<2B]2B3<U<8/9][89<U<1]
[ Bid [[ 12 13 [ 14 |
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The way in which U is generated on a computer will be discussed in more
detail in chapter 2, but for the present note that each of the three alternative
bids have the correct probability.
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Chapter 1

Some Basic Theory of
Finance.

1.1 Introduction to Pricing: Single Period Mod-
els.

Let us begin with a very simple example designed to illustrate the no-arbitrage
approach to pricing derivatives. Consider a stock whose price at present is $s.
Over a given period, the stock may move either up or down, up to a value su
where u > 1 with probability p or down to the value sd where d < 1 with
probability 1 —p. In this model, these are the only moves possible for the stock
in a single period. Over a longer period, of course, many other values are
possible. In this market, we also assume that there is a so-called risk-free bond
available returning a guaranteed rate of r% per period. Such a bond cannot
default; there is no random mechanism governing its return which is known
upon purchase. An investment of $1 at the beginning of the period returns a
guaranteed $(1 + r) at the end. Then a portfolio purchased at the beginning
of a period consisting of y stocks and x bonds will return at the end of the
period an amount $x(1 + r) + ysZ where Z is a random variable taking
values u or d with probabilities p and 1—p respectively. We permit owning
a negative amount of a stock or bond, corresponding to shorting or borrowing
the correspond asset for immediate sale.

An ambitious investor might seek a portfolio whose initial cost is zero (i.e.
x+ys =0) such that the return is greater than or equal to zero with positive
probability. Such a strategy is called an arbitrage since with a net investment
of 80, we are able to achieve non-negative return (i.e. the possibility of future
profits with no down-side risk). In mathematical terms, the investor seeks a
point (x,y) such that z +ys =0 (net cost of the portfolio is zero) and

x(1+7)+ysu > 0,
z(14+r)+ysd > 0
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with at least one of the two inequalities strict (so there is never a loss and a
non-zero chance of a positive return). Alternatively, is there a point on the line

y = —%x which lies above both of the two lines
147
y = —=
su
147
= - x
Y sd

and strictly above one of them? Since all three lines pass through the origin,
we need only compare the slopes; an arbitrage will NOT be possible if

1+7r 1 1+7r
_ < o< = 1.1
sd - (1.1)

S sU

and otherwise there is a point (z,y) permitting an arbitrage. The condition for
no arbitrage 77 reduces to

d <l< e
1+r 1+r

(1.2)

So the condition for no arbitrage demands that (1 +7 —u) and (1 +7 —d)
have opposite sign or d < (1 +7) < w. Unless this occurs, the stock always
has either better or worse returns than the bond, which makes no sense in a
free market where both are traded without compulsion. Under a no arbitrage
assumption since d < (1 4 r) < u, the bond payoff is a convex combination or
a weighted average of the two possible stock payoffs; i.e. there are probabilities
0<¢<1 and (1 —¢q) suchthat (1+7r)=gqu+(1—q)d. In fact it is easy to
solve this equation to determine the values of ¢ and 1 — ¢.

(1+7r)—d

u—(1+7)
w—d '

and 1—¢q= ]
w—

q:

Denote the probability measure which puts probabilities ¢ and 1— ¢ on the
same points su, sd by (). Then note that if S; is the value of the stock at the
end of the period,

1
1+7r

1
1+7r

(gsu+ (1 —q)sd) =

BO(8) = - ! s(147)=s

+r
where E€  denotes the expectation assuming that . describes the probabilities
of the two outcomes.
In other words, if there is to be no arbitrage, there exists a probability measure
@ such that the expected price of future value of the stock S1  discounted to the
present using the return from a risk-free bond is exactly the present value of the
stock. The measure () is called the risk-neutral measure and the probabilities
that it assigns to the possible outcomes of S are not necessarily those that
determine the future behaviour of the stock. The risk neutral measure embodies
both the current consensus beliefs in the future value of the stock and the
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consensus investors’ attitude to risk avoidance. It is not necessarily true that
ﬁEP (S1) = s with P denoting the actual probability distribution describing
the future probabilities of the stock. Indeed it is highly unlikely that an investor
would wish to purchase a risky stock if he or she could achieve exactly the same
expected return with no risk at all using a bond. We generally expect that
to make a risky investment attractive, its expected return should be greater
than that of a risk-free investment. Notice in this example that the risk-neutral
measure ) did not use the probabilities p, and 1 — p that the stock would
go up or down and this seems contrary to intuition. Surely if a stock is more
likely to go up, then a call option on the stock should be valued higher! Let
us suppose for example that we have a friend willing to value a stock using the
actual distribution P different from ). Then discounted to the present, the
friend believes that the stock is worth

1
Efs
1+7r ! 1+7r

1-— d
_psut(opsd e p £

Such a friend offers their assets as a sacrifice to any investor. If the friend’s
assessed price is greater than the current market price, buy on the market and
sell to the friend. Otherwise, do the reverse. In any case, you are richer (except
of course by the loss of one friend)!

So why should we use the () measure to determine the price of a given asset
in a market (assuming, of course, there is a risk-neutral ) measure and we are
able to determine it)? Not because it precisely describes the future behaviour
of the stock, but because if we use any other distribution, we offer an intelligent
investor (there are many!) an arbitrage opportunity, or an opportunity to make
money at no risk and at our expense.

Derivatives are investments which derive their value from that of a corre-
sponding asset, such as a stock. A Furopean call option is an option which
permits you (but does not compel you) to purchase the stock at a future time
for a given predetermined price, the exercise price of the option). For example
a call option with exercise price $10 on a stock whose future value is denoted
S1, is worth on expiry S; — 10 if Sy > 10 . This is the difference between
the value of the stock on expiry and the exercise price of the option or your
profit on purchasing the stock for $10 and selling it on the open market at $S;.
However, if S; < 10, there is no point whatever in exercising your option as
you are not compelled to do so and your return is $0. In general, your payoff
from purchasing the option is a simple function of the future price of the stock,
such as V(S1) = max(S; — 10, 0). The future value of the option is itself a
random variable but it derives its value from that of the stock, hence it is called
a derivative.

Now consider an arbitrary function of the stock, X = V(S;) representing
the payoff to an investor from a certain financial instrument (derivative) when
the stock price at the end of the period is S;. Any function of the stock price is
called a contingent claim. In our example above, the random variable takes only
two possible values V(su) and V(sd). We will show that there is a portfolio,
called a replicating portfolio, consisting of an investment solely in the above
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stock and bond which reproduces these values V(su) and V(sd) exactly. We
can determine the corresponding weights on the bond and stocks (z,y) simply
by solving the two equations in two unknowns

z(l+7r)+ysu = V(su)
z(1+7r)+ysd = V(sd)

Solving: y* = Lﬁ%ﬂ and z* = Lsul% Upon solving these two equa-
tions we are able to replicate the contingent claim V(S1) exactly- i.e. buy z*
units of bond and y* of stock, we produce a portfolio of stocks and bonds with
exactly the same return as the contingent claim. So in this case at least, there
can be only one possible present value for the contingent claim and that is
the present value of the replicating portfolio * +y*s. If the market placed any
other value on the contingent claim, then a trader could guarantee a positive re-
turn by a simple trade, shorting the contingent claim and buying the equivalent
portfolio or buying the contingent claim and shorting the replicating portfolio.
Thus this is the only price that precludes an arbitrage opportunity. There is
a simpler expression for the current price of the contingent claim in this case:
Note that

B (S) = (V) + (- )V (sd)
B 1 1+r—d u—(14r)
= T og g Visd)
= z*+y*s.

In words, the discounted expected value of the contingent claim is equal to
the no-arbitrage price of the derivative where the expectation is taken using the
Q —measure. Indeed any contingent claim that is attainable must have its price
determined in this way. While we have developed this only in an extremely
simple case, it extends more generally to complete markets, or markets in which
any contingent claim is attainable by an investment in other marketable instru-
ments. The following theorem provides a more general proof of this result, the
proof due to Chris Rogers.

Suppose we hae a total of N risky assets whose prices at times ¢ = 0,1,
are given by (S§(w), S7(w)),j =1,2,...,N for possible states w. For simplicity
assume that these states have positive probability P(w) > 0. Assume also a
riskless asset (a bond) paying interest rate r over one unit of time. Suppose
we borrow (i.e. short bonds) at the risk-free rate to buy w; units of stock j at
time O for a total cost of ) w; Sg (w). The value of this portfolio at time ¢t =1 is
> w; (S (w)—(1 +7")Sg (w)). Then we say there are no arbitrage opportunities if
for all weights w; this is either identically O for all w or it takes both positive
and negative values.
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Theorem 1 A necessary and sufficient condition that there be no arbitrage
opportunities is that there exists a measure @ equivalent to P such that
Eq(S]) = ﬁS(J) forallj=1,..,N.

Problem 2 Proof. Define M(w) = Elexp(d>_ w; (S{—(l—l—r)Sg))] and consider
the problem

min In(M (w)).

w

If there is no arbitrage opportunity then there is a unique minimum satisfying

OM __
B, =0 or

Elexp(Y_w;(S] = (1+7)55))8]] = (1 +7)S§Elexp(Y_ w; (] — (1 +71)5p))].

or

o _Blexo(Suw;shs)
"7 0+ ) Blexp(3 w;S)

Define a measure @ equivalent to the original probability measure such that

) SR 0 S{ ()]

Qw) = :
Elexp(3-w;S57)]
Then note that for each j,
Eo(S9) = L
Q\P1 1+r°0

so the current price of each stock is the discounted expected value of the future
price under the risk-neutral measure Q. Conversely if

1

=—9
1+70

EqQ(S)
holds for some measure Q) then Eq[Y wj(S{ -1+ T)Sg)] =0 for all w; and
this implies that the random variable > w;(S] — (14 1)SY) is either identically
0 or admits both posiive and negative values. Therefore the existence of the
measure () implies that there are not arbitrage opportunities. m

So the theory of pricing derivatives in a complete market is based on a rather
trivial observation. If we can reproduce exactly the same (random) returns as
the derivative provides using a linear combination of other marketable securities
(which have prices signed by the market) then the derivative must have the
same price as the linear combination of other securities. Any other price would
provide arbitrage opportunities.

Of course in the real world, there are costs associated with trading, these
costs usually represented by a bid-ask spread. In other words there is a different
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price for buying a security and for selling it. The argument above assumes a
frictionless market with no trading costs, with borrowing any amount at the
risk-free bond rate possible, and a completely liquid market- any amount of any
security can be bought or sold. Moreover it assumes a complete market and it
is questionable whether such a market can exist. For example if a derivative
security can be perfectly replicated using other marketable instruments, then
what is the purpose of the derivative security in the market? So like all models,
this one has its deficiencies and its critics. Like all reasonable models, its merit is
that it provides an approximation to a real-world phenomenon, one that permits
further study and improvement.

1.2 Multiperiod Models.

When an asset price evolves over time, we normally allow the investor to make
decisions about an investment at various periods during the life of that in-
vestment. Such decisions are made with the benefit of information, and this
information, whether used or not, includes the price of the asset and any re-
lated assets at all previous time periods, beginning at some time ¢ =0 when
we began observation of the process. We denote this information available for
use at time t as H;. Formally, H; is what is called a sigma-field generated
by the past, and there are two fundamental properties of this sigma-field that
will use. The first is that the sigma-fields increase over time. In other words,
our information about this and related processes increases over time because
we have observed more of the relevant history. In the mathematical model, we
do not “forget” relevant information, though regrettably this is an increasingly
important factor in real-life. The second property of H; that we use is that it
includes the value of every asset price at time ¢, or, in measure-theoretic lan-
guage, S; is adapted to or measurable with respect to Hy;. Now the analysis
above shows that when our investment life began at time ¢t = 0, and we were
planning for the next period of time, there was defined a risk-neutral measure
@ such that EQ(ﬁsl) = Sp. Imagine now that we are in a similar position
at time ¢, planning our investment for the next unit time. All expected values
should be taken in the light of our current knowledge, i.e. given the informa-
tion Hy. An identical analysis to that above shows that under the risk neutral
measure (), if S; represents the price of the stock after ¢ periods, and r; the
risk-free one-period interest rate offered that time, then

1

E9(
1+7"t

Sev1|Hy) = Si. (1.3)

Suppose we let B; be the value of $1 invested at time t = 0 after a total
of t periods. Then By = (14 rg), Ba = (1 +1r9)(1 + 1), and in general
B = (14+rg)(1 +7)...(1 +7:1). IfT were to promise you exactly $1.00
payable at time ¢ (and if you believed me), then to cover this promise T would
require an investment at time ¢ = 0 of $1/B;, which we might call (at least in
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the case when the interest rates r; are known) the present value of the promise.
In general, at time ¢, the present value of a certain amount $V promised at
time 7T (i.e. the present value or the value discounted to the present of this
payment) is VE%?. Now suppose we divide (?7) above by B;. We obtain

Si+1 1 1 S

E?(Z=|H,) = E®(———S,.1|H;) = —E° Sii1|Hy) = —=.

(Bt-)—l‘ ¢) (Bt(l—i-rt) 41| Hy) B (1+Tt t+1]He) B
(1.4)

Notice that we are able to take the divisor B; outside the expectation since
B; is known at time ¢t and therefore a constant with respect to the history
H;. This equation (??) describes an elegant mathematical property shared by
all marketable securities in a complete market. Under the risk-neutral measure,
the discounted price Y; = S;/B; forms a martingale. A martingale is a process
Y; for which the expectation of a future value given the present is equal to the
present i.e.

E(Yr|Hy) =Y, for all T > t. (1.5)

A martingale is a fair game in a world with no inflation, no need to con-
sume and no mortality. Your future fortune if you play the game is a ran-
dom variable whose expectation, given everything you know at present, is your
present fortune. Now the condition (?? implies of the process Y; = S;/B; that
E(Yi41|Hy) =Y, for all T > ¢ and this implies the martingale condition (?7)
since E(YT‘Ht) = E[...E[E(YT‘HT_l)‘HT_Q]...‘Ht] = }/t

Thus, under a risk-neutral measure () in a complete market, all marketable
securities discounted to the present form martingales. For this reason, we often
refer to the risk-neutral measure as a martingale measure. And the fact that
prices of marketable commodities must be martingales under the risk neutral
measure has many consequences to the canny investor. Suppose, for example,
you believe that you are able to model the history of the price process nearly
perfectly, and it tells you that the price of a share of XXX computer systems
increases on average 2% per year. Should you use this P—measure in valuing
a derivative, even if you are confident it is absolutely correct, in pricing a call
option on XXX computer systems with maturity one year from now? If you do
so, you are offering some arbitrager another free lunch at your expense. The
measure (), not the measure P, determines derivative prices in a no-arbitrage
market. This also means that there is no advantage when pricing derivatives in
using some elaborate statistical method to estimate the expected rate of return.

What have we discovered? In general, prices in a market are determined as
expected values, but expected values with respect to the measure (). This is
true in any complete market, regardless of the number of assets traded in the
market; for any future time 7" > ¢, and for any derivative defined on the traded
assets in a market, EQ(%V(ST)\HLL] = V; = the market price of the asset at
time ¢. So in theory, determining a reasonable price of a derivative should be
a simple task, one that could be easily handled by simulation. In order to
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determine a suitable price for a derivative simply generate many simulations of
the future value V(St) of the derivative given the current store of information
H, simulations conducted under the measure (), and then average the values,
discounted to the present, over all simulations. The catch is that the () measure
is neither obvious from the present market prices nor statistically estimable
from its past. It is given implicitly by the fact that the expected value of the
discounted future value of traded assets must produce the present market price.
In other words, a first step in valuing any asset is to determine a measure @)
which has this property. Now in a simple model involving a single stock, this
is a fairly simple job, and there is a unique such measure (). This is the case,
for example, for the stock model above in which the stock moves in simple
steps, either increasing or decreasing at each step. But as the number of traded
assets increases, and as the number of possible jumps per period changes, a
measure () which completely describes the stock dynamics and which has the
necessary properties for a risk neutral measure becomes potentially much more
complicated.

Solving for the () Measure.

Let us consider the following simple example. Over each period, a stock price
provides greater or less or the same return as a risk free investment. Assume
for simplicity that increases are by the factor u(1+r) and decreases by factor
(1 +r)/u where u > 1 and otherwise the stock price increases by the risk free
rate factor (1 4+ 7). The ) probability of increases and decreases is unknown,
and may vary from one period to the next. Over two periods, the possible paths
executed by this stock price process are displayed below assuming that the stock
begins at time ¢t =0 with price sg.

In general in such a tree there are three branches from each of the nodes
at times ¢ = 0,1 and there are a total of 1 +3 = 4 such nodes. Thus, even
if we assume that probabilities of up and down movements do not depend on
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how the process arrived at a given node, there is a total of 3 x 4 = 12 unknown
parameters. Of course there are constraints; for example the sum of the three
probabilities on branches exiting a given node must add to zero and the price
process must form a martingale. For each of the four nodes, this provides two
constraints for a total of 8 constraints, leaving 4 parameters to be estimated.
We would need the market price of 4 different derivatives or other contingent
claims to be able to generate 4 equations in these 4 unknowns and solve for
them. Provided we are able to obtain prices of four such derivatives, then we
can solve these equations. Consider the following special case, with the risk-free
interest rate per period=r = 1%, u = 1.089, sp = $1.00. We also assume that
we are given the price of four call options expiring at time 7" = 2. The possible
values of the price at time T" = 2 corresponding to two steps up, one step up
and one constant, one up one down, are the values of S(T) in the set

{ 1.1859,1.0890,1.0000,0.9183,0.8432}. Recall that a call option expiring
at time 7' = 2 has price the value E9(S; — K)T discounted to the present,
where K is the exercise price of the option and S5 is the price of the stock at
time 2. We have market prices E@ (S — K)* /(1 + )2 of four call options with
the same expiry and different exercise prices in the following table;

The price of the call options are in the following table

Exercise Price | Maturity | Call Option Price
0.867 2 0.154
0.969 2 .0675
1.071 2 .0155
1.173 2 .0016

Since in general the price of a call option with exercise price K and maturity
date T' = 2 is given by E%(Sy— K )T /(1+r)%, The equations to be solved equate
the observed price of the options to their theoretical price E(Ss — K)T/(1+1)?2
and are as follows;

1
. = 1.186 — 1.1
0.0016 e (1.186 73)p1p2
1
0.0155 = e [(1.186 — 1.071)p1p2 + (1.089 — 1.071){p1(1 — 2p2) + (1 — 2p1)p2}]
1
00675 = fropyz 0-217pipe +0.12{pa (1~ 2p2) + (1~ 2p1)p2}
+0.031{(1 — 2p1)(1 — 2p2) + p1p2 + p1pa) }
1
0.154 = W[Oﬁl%lpz +0.222{p1(1 — 2p2) + (1 — 2p1)p2}

+0.133{(1 — 2p1)(1 — 2p2) + p1p2 + p1pa)}
+0.051{{p1(1 — 2p4) + (1 — 2p1)p3}]

While it is not too difficult to solve this system in this particular case (in this case
the solution is given by p; = 0.2, p3 = 0.22,p3 = 0.2,p4 = 0.3) one can see that
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with more branches and more derivatives, this non-linear system of equations
becomes difficult very quickly. What do we do if we only have market prices for
two derivatives defined on this stock, and therefore only two parameters which
can be obtained from the market information? This is an example of what is
called an incomplete market, a market in which the risk neutral distribution is
not uniquely specified by market information. In general when we have fewer
equations than parameters in a model, there are really only two choices

(a) simplify the model so that the number of parameters and the number of
equations match.

(b) Determine additional natural criteria or constraints that the parameters
must satisfy.

In this case, for example, one might prefer a model in which the probability of
a step up or down depends on the time, but not on the current price of the stock.
This assumption would force equal all of po = p3 = p4 and simplify the system of
equations above. For example using only the prices of the first two derivatives,
we obtain equations, which, when solved, determine the probabilities on the
other branches as well.

(1.01)2

0015 = 7 [(1.186 — 1.071)p1pa + (1.089 — 1.071) {p1 (1 — 2p2) + (1 — 2p1)p2}]

This example reflects a basic problem which occurs often when we build a
reasonable and flexible model in finance. Frequently there are more parameters
than there are marketable securities. It is quite common to react by simplifying
the model. For example, it is for this reason that binomial trees (with only
two branches emanating from each node) are often preferred to the trinomial
tree example we use above, even though they provide a substantially worse
approximation to the actual distribution of stock returns.

In general if there are n different securities (excluding derivatives whose
value is a function of one or more of these) and if each security can take
any one of m different values, then there are a total of m™ possible states
of nature at time ¢ = 1. The (¢ measure must assign a probability to each of
them. This results in a total of m™ unknown probability values, which, of course
must add to one, and result in the right expectation for each of n marketable
securities. To uniquely determine () we would require a total of m™ —n — 1
equations or m"™ —n —1 different derivatives. For example for m = 10, n = 100,
approximately one with a hundred zeros, a prohibitive number, are required to
uniquely determine (). But in a complete market, () is uniquely determined by
marketable securities. No real market can be complete. And in real markets,
one asset is not perfectly replicated by a combination of other assets. This is
true whether one asset is a derivative defined as a function of another marketed
security (and interest rates and volatilities). The most we can probably hope
for in practice is to find a model or measure () in a subclass of measures with

—_ O =

o
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desirable features under which

B
EQ(B—tV(ST)|Ht] ~V; for all marketable V
T

Now if these were equalities, this would represent a number of equations in
the unknown () probabilities, typically fewer equations than unknowns so some
simplification of the model is required before settling on a measure ). One
could, at one’s peril, ignore the fact that certain factors in the market depend
on others. Similar stocks behave similarly, few are really independent. Can
we, with any reasonable level of confidence, accurately predict the effect that a
lowering of interest rates will have on a given bank stock? Perhaps the best
model for the future behaviour of most processes is the past, except that as
we have seen the historical distribution of stocks do not generally produce a
risk-neutral measure. Even if historical information provided a flawless guide
to the future, there is too little of it to accurately estimate the large number
of parameters required for a simulation of a market of reasonable size. Some
simplification of the model is clearly necessary. Are some baskets of stocks
independent of other combinations? What independence can we reasonably
assume over time?

As a first step in simplifying a model, consider some of the common measures
of behaviour. Stocks can go up, or down. The drift of a stock is a tendency in
one or other of these two directions. But it can also go up and down- by a lot
or a little. The measure of this, the variance or variability in the stock returns
is called the wolatility of the stock. Our model should have as ingredients these
two quantities. It should also have as much dependence over time and among
different asset prices as we have evidence to support.

1.3 Determining the Process B;.

We have seen in the last section that given the () or risk-neutral measure, we
can (at least in theory) determine the price of a derivative if we are given the
“numeraire” or the price B; of a risk-free investment at time ¢t. Unfortunately
no such investment is traded on the open market. There are government trea-
sury bills which, depending on the government, one might wish to assume are
almost risk-free, and there are government bonds, usually with longer terms,
which complicate matters by paying dividends periodically. The question dealt
with in this section is whether we can estimate the process B; given information
on the prices of these bonds.

We begin with what we know. We assume we know the current prices,
components of the vector, Sy of marketable securities. We also know the price
of certain risk-free bonds with face value F', the value of the bond on maturity at
time T'. These pricesP; provide some information on the bank account process
B;. In particular since a dividend-paying bond is a linear combination of
payments at certain times ¢ < T plus a final payment of F', each current bond
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price provides a value of the form P, =3, _,d,B;/Bs+ FB;/Bp. This can
be written as a system of linear equations

P/Bi= > d./B.+F/Br
T>s>t

and provided that we have a sufficient number of bond prices P;, possibly with
different maturities, this system permits solving for certain values of 1/Bs,
s > t. Now the catch here is that there are typically too few risk-free bond
maturities to get a detailed picture of the process 1/Bs,s > 0. We could use
government bonds for this purpose. But are these genuinely risk-free? Might
not the additional use of bonds in large highly rated companies provide a more
detailed picture of the bank account process Bs.

Can incorporate information on bond prices from lower grade debt? To do
so, we need a simple model linking the debt rating of a given bond and the
probability of default and payoff to the bond-holders in the event of default. To
begin with, let us assume that a given basket of companies, say those with a
common debt rating from one of the major bond rating organisations, have a
common distribution of default time. We will also assume in this preliminary
model that once default occurs, provided it occurs before the maturity date T’
of the bond, the payoff is a constant proportion p of the principal amount F'
owing. Then if 7 denotes the time of default, a bond with face value $F which
promises dividend payments ds; at time s <7 has price at time ¢ given by

B FB FB
Po= Y ZLdP(r> st > t) + L P(r < Tlr > t) + ——P(r > T|r > t)

B; Br Br

t<s<T
B FB, 1—-—p)FB

= Z —tdSP(T>S|T>t)+p Ly (1=p) tP(T>T‘T>t).

B; Br Br

t<s<T

All probabilities are conditional on the event [T > t] because unless this is true
the debt has already defaulted and therefore its value is known. Unknowns in
this equation are P(17 > s|7 > t)/Bs, t < s < T, BLT and pP(T > T'|t > t). Now
if we died and went to investors’ heaven, a bond of every maturity 7' would be
sold and we could solve this system of equations simply using the given bond
prices. We might also hope that the probabilities of default are very small and
follow a simple pattern. If the pattern is not perfect, then little harm results
provided that indeed the default probabilities are small. Suppose for example
that the time of default follows a geometric or exponential distribution so that
the probability of a default occurring in any period of fixed length is constant.
Then P(1 > s|T > t) = exp{—Fk(s —t)} for some k > 0. Suppose we define a
new bank account process

— Bs

B, = m = Bgexp{ks} for s > t.

Clearly this bank account grows faster than the original, and it grows faster as
the probability of default increases. The effective interest rate on this account
is k£ units per period higher. Then rewriting the above equation for F;,
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pEB: _ 3 B -2
t<ser Bs Br

This equation has a simple interpretation. The left side is the price of the
bond reduced by the present value of the guaranteed payment on maturity F'p.
The right hand side is the current value of a risk-free bond paying the same
dividends, with interest rates augmented by k& and with face value F'(1—p). So
to value a defaultable bond, augment the interest rate, change the face value to
the potential loss of face value on default and then add the present value of the
guaranteed payment on maturity. Given only three bond prices with the same
default characteristics, for example, and assuming constant interest rates so that
B;s = exp(rs}, we may solve for the values of the three unknown parameters

(ryk,p).

1.4 Minimum Variance Portfolios and the Cap-
ital Asset Pricing Model.

Let us begin by building a model for portfolios of securities that capture more
or less of the major market movements. We have solved above for the values
of 1/B, only for certain values of s, but let us assume for the present that by
interpolation, B is known for all s > t.

To begin with, define a common measure on investments that is equivalent
to price, but from many perspectives, more convenient and stable statistically.
For a security that has price S(¢) and S(t+1) at times ¢ and ¢+ 1, we define
the return R;(t 4 1) on the security over this increment by

Si(t+1) — Si(t)
Si(t)
Returns can be measured in units that are easily understood (for example
5% or 10% per unit time) and independent of the amount invested. It is also

easy to obtain the price at time ¢ from the initial price at time 0 and the
sequence of returns.

Si(t) = S;(0)(1 + Ri(1))(1 + Ri(2))...(1 + Ri(t)).

When we buy a portfolio the return on the portfolio is simply a weighted
average of the individual stock returns and the weights are the relative amounts
invested in each stock. For example if our portfolio is such that w;(¢) is the
proportion of our total investment of $I invested in stock ¢ at time ¢ then the
number of shares of stock ¢ purchased is %I and the portfolio return over
the next period is ‘

SISt + 1) - Sit
o wi(t)]

Rq;(t + 1) =

) =3 wi(t)Ri(t +1).
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When time is measured continuously, the instantaneous return process might
be defined by a limit of the above form R;(t) = limy, o SE=2E or formally
dS;/S; = d(In(S;(t)) provided these are well-defined. More generally, the re-
turns process is a process whose product integral results in the original stock

price. process.

1.4.1 The Capital Asset Pricing Model (CAPM)

In the Capital Asset Pricing model it is assumed at the outset that investors
concentrate on two measures of return, its expected value p and its standard
deviation 0. We consider the expected values and variances under the real-
world probability measure P not under the risk-neutral ) measure. Suppose,
for example we were to plot the set of all possible pairs (o, 1) for portfolios of
risky stocks. Let us assume for the present that the vector of all stock returns
has mean return column vector given by 77 and covariance matrix of returns
given by . If a portfolio is such that we invest proportion w; of our wealth
in stock i, then defining w = (wy,...,w,)", the total return on the portfolio
has mean 77w and covariance matrix wTXw. The set of all possible pairs
of standard deviation and mean return (Vw?Yw,nTw) has a semi-elliptical
boundary as in the following figure.

Fez

=

sigma.

Now assuming that investors prefer higher expected return for the same
standard deviation, only the upper envelope or roof of this region is efficient
in the sense that no other portfolio has higher expected return for the same
standard deviation. This is called the efficient frontier. Now the picture changes
substantially if there is also a risk-free investment that all investors are able to
include, because in this case there is also a point on the p—axis corresponding to
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o = 0. If this point is added, then the efficient frontier is now the region below
the line L in the following figure. The point (0,7) corresponds to the risk free
investment whose return is r, and the point P is the point at which this line
is tangent to the efficient frontier determined from the risky investments.

(0.

sigma

If all investors have access to the same risk free rate, then the line L is the
unique efficient frontier for all investors, and P is the only efficient point in the
risky portfolio. It must therefore represent the total market in the sense that
the proportions [Sw; represents the proportion of the total market invested in
stock 7. Suppose the market portfolio P has standard deviation cp and mean
pp. Then this line is described by the relation

n=r-+ Ep T o
op

For any stock ¢ with mean and standard deviation of return (u;, ;) to be
competitive, it must lie on this efficient frontier, i.e. it must satisfy the relation

w; —r =p0;,(up —r), where g, = i
op
This is the most important result in the capital asset pricing model. The con-
stant (3, called the beta of a stock is both the change in the expected stock
return for each unit change in the market expected return and also the ratio
of the standard deviations of return of the stock and the market. Such a model
is a reasonable basis for simplifying the covariance structure of stock returns
to some manageable number of parameters. Analogous to the relation above
describing the expected returns is a regression model relating the returns from
the stock R; and from the market portfolio Rp.

Ri—TZﬁi(Rp—r)—i—ei
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where €; is a zero-mean random error uncorrelated with the market return.
Taking variance on both sides, we obtain
var(R;) = ﬁ?var(RP) + var(e;) = 02 + var(e) > o2
which appears to indicate that the variance of the return from stock ¢ is greater
than the value 02 assumed earlier. What is the cause of this contradiction? We
assumed earlier that the stock ¢ lay on the efficient frontier, but this is not
a necessary condition for investors to choose it. All that is required is that it
form a part of a portfolio which lies on the efficient frontier. We cannot expect
a higher rate of return to compensate for additional risk that can be diversified
away. In an efficient market, not all risk need be rewarded with additional
return. Suppose, for example, we had many stocks with similar 3, then we could
presumably invest equally in all of them and end up with the average of many
returns R. Notationally,

R—r=pB(Rp—r)+e

where, provided that we have sufficiently many such investments to average over,
€ has mean zero and variance close to 0 and is itself almost 0. By averaging
or diversifying, we are able to provide an investment with the same average
return characteristics but smaller variance than the original stock, implying
that the original stocks could not have been on the efficient frontier. We say
that the specific risk (i.e. var(e;)) associated with stock i can be diversified
away, and should not therefore be rewarded with increased return. Only the
systematic risk o; is rewarded with increased expected return.

The capital asset pricing model provides a simplified form of the covariance
matrix ¥ of the vector of stock returns. Notice that under the model

R,—r=0,Rp—r)+e, var(e)=270;
we have
cov(Ri, Ry) = B;B;0%,i #j,  var(R;) = B;oh + 6.

Whereas N stocks would otherwise require a total of N(N +1)/2 parameters
in the covariance matrix 3 of returns, the Capital Asset Pricing Model allows
us to reduce this to the N 4+ 1 parameters 0%7 and §;, i = 1,..., N. There is
the disadvantage in this formula however that every pair of stocks in the same
market must be positively correlated, a feature that seems to contradict some

observations at least over substantial periods of time.

Minimum Variance under ().

Suppose we wish to find a portfolios of securities which has the smallest possible
variance under (). . For example for a given set of weights, define the portfolio
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TI(t) = > w;(t)Si(t). For any weights w;(t) this produces a portfolio with
exactly the same conditional rate of return under the () measure as any one of
the constituent stocks, for

E [H t-‘r 1 ‘Ht sz EQ t—‘r 1 |Ht Zwl )Sl(t) = %H(i).

In terms of returns, this equation says that all securities have the same expected
return under Q as does the portfolio II. If we are interested in hedging our
investment, we wish to minimize the instantaneous variance of the return of the
portfolio since the conditional mean is unaffected by the choice of weights. The
natural constraint is that the cost of the portfolio is determined by the amount
c(t), say, that we presently have to invest. Several choices of the function ¢(t)
present themselves as possible. For example you might wish to compare, at time
t, the benefits of liquidating a risk free investment of B(t) for investment in this
portfolio, in which case we could take ¢(t) = B(t). Since ¢(t) is purely a matter
of rescaling the results, one might also scale so that ¢(t) = 1. Alternatively, we
might wish to study a self-financing portfolio II(¢), one for which past gains
(or perish the thought, past losses) only are available to pay for the current
portfolio. In this case ¢(t) = II(t). We wish to minimise

varg[II(t + 1)|Hy] subject to the contraint Zwi (£)S;(t) = e(t).
i
The solution is quite easy to obtain, and in fact the weights are given by the
vector

wq (t)
)

w9 (t

B ) B c(t) _
Wy (t) = . = —S/(t)zt_ls(t) Et 1S(t).

wn#)

where 3; = varg(S(t + 1)|H) is the instantaneous conditional covariance of
S(t) under the measure Q. If my objective were to minimize risk under the @
measure, then this portfolio is optimal for fixed cost. The conditional variance
of this portfolio is given by

c(t)
S(8)2 S (t)
Once again we express this relation in terms of the return Rp(t + 1) =

m%%ﬁfrom the portfolio II. Assume for the present that the portfolio is
self-financing so that ¢(t) = II(t). Then the above relation states that the

conditional variance of the return Ryr(t 4+ 1) given the past is simply
1
St S(t)

varg(I(t + 1)|Hy) = W{(t)SW(t) =

varg(Ru(t + 1)|Hy) =
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The covariances between returns for individual stocks and the portfolio TT
as it turns out are given by exactly the same quantity, namely

1

cov(R;(t + 1), Ru(t + 1)|Hy) = W

By this formula, note that all such covariances are positive and therefore in the
definition of II(t), all weights are positive and so no stocks are shorted. Now
suppose that we wish to model the individual stock returns using a model for the
minimum variance portfolio II. Under the risk neutral measure @, recall that
every stock (and portfolio) has the risk-free rate of return r(t+1) = BUH B

B
Then we have by standard regression formulae,
Ri(t+1) —r(t+1) = B(Ru(t+1) —r(t+1)) +ei(t +1)

where €;(t + 1) is a (random) error whose expected values under ) are
all zero. The regression coeflicient 8 = ((t) = m is the same for
t

all stocks. Of course the usual “beta” in the CAPM model in finance is the
regression coeflicient with a market rate of return under the actual measure P
and these do vary from stock to stock, as do the expected returns.

Let us summarize our findings so far. We assume that the conditional co-
variance matrix ¥; of the vector of stock prices is non-singular. Under the risk
neutral measure, all stocks have exactly the same expected returns equal to the
risk-free rate. There is a unique self-financing minimum-variance portfolio TI(t)
and all stocks have exactly the same conditional covariance 3 with I1. All stocks
have exactly the same regression coefficient (3 when we regress on the minimum
variance portfolio.

The question arises whether there are other minimum variance portfolios un-
correlated with this one. Suppose we define II5(#) similarly to minimize the vari-
ance subject to the condition that the weights Wa(t) satisfy Wi(¢)2,Wi(t) = 0.
This implies that the corresponding portfolio IIy(t) satisfies Covg(Ia(t +
1),II(t + 1)|H¢) = 0. In view of the definition of Wy(t), this implies that
W4(t)S(t) =0 or that the cost of such a portfolio at the beginning of periods
is 0. This means that the portfolio is such that there is a perfect balance be-
tween long and short stocks, or that the value of the long and short stocks are
equal. Subject to this restriction it is possible to make the conditional variance
as large or as small as we wish, simply by scaling up or down by a common
factor the amount of our investments.

The above analysis assumes that our objective is minimizing the variance of
the portfolio. However, under the risk neutral measure (), every stock has the
same risk-free rate of return and so it is equally logical to minimize the variance
of the portfolio return. By the same analysis as above, this is achieved when
the proportion of our total investment at each time period in stock 7 is chosen

as components of the vector where now ; is the conditional covariance

=1
12,
matrix of the stock returns. This may appear to be a different criterion and
hence a different solution, but since at each step the stock price is a linear
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function of the return S;(t + 1) = S;(t)(1 + R;(t)) the variance minimizing
portfolios are essentially the same.

Before we continue, let us examine how practical the above decomposition
is for a large market. Note that it requires knowledge of X; and worse still,
it requires inverting this matrix. We will try to avoid estimating all @
parameters in Y3; by using the form implied by the Capital Asset Pricing Model
Y = BB 0%(t) + A(t), where 0%(t) is the market volatility at time ¢, A(t) is
the diagonal matrix with the §; (t) along the diagonal and 3 is the vector of
individual stock betas. In this case Et_l =A"1 4+ cA71358 A=t where

-1 9 1
= —_————_l_lll™ IR YE_E—— = fo- ————————————eee
”52"‘21'5?/61' pl"‘zzﬂ?”g/éi

and consequently the optimal investment in each stock ¢ is proportional to

1
5—i + Cﬂi(Zﬁj/‘SJ’)
J

or 5 + ;
toebi(X2;85/65)

The conditional variance of R;(t + 1) given the market at time ¢ 4 1 is
0;. Let us call this the excess volatility for stock i. Then the weights for the
optimal portfolio are linear in the beta for the stock and the reciprocal of the
excess volatility.

1.5 Entropy: choosing a () measure

Typically market information does not completely determine the risk-neutral
measure () . We will argue that while the historical data should not strictly
determine the () measure, it should be used to fill in the information that is
not dictated by no-arbitrage considerations. In order to relate the real world to
the risk-free world, we need either sufficient market data to completely describe
a risk-neutral measure ) (such a model is called a complete market) or we need
to limit our candidate class of () measures somewhat. We may either define
the joint distributions of the stock prices or their returns, since from one we can
pass to the other. For convenience, suppose we describe the joint distribution
of the returns process. The conditions we impose on the martingale measure
are the following;

1. Under @, each normalized stock price S;(t)/B; and derivative price
V;/B; forms a martingale. Equivalently, EQ[S;(t 4+ 1)|H,] = S;(t)r(t +1)
where r(¢t + 1) is the risk free interest rate over the interval (¢,¢ + 1).
(Recall that this risk-free interest rate r(¢ + 1) is defined by the equation
B(t+1)=(1+r(t+1))B(t).)

2. () is a probability measure.
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A slight revision of notation is necessary here. We will build our joint distri-
butions conditionally on the past and if P denotes the joint distribution stock
prices S(1),5(2),...S(T) over the whole period of observation 0 < ¢ < T then
P,y1 denotes the conditional distribution of S(t + 1) given H;. Let us denote
the conditional moment generating function of the vector S(¢ + 1) under the
measure P by

me(u) = Eplexp(u/S(t + 1)|Hy| = Ep[exp(ZuiSl'(t + 1)) |Hy]

We implicitly assume, of course, that this moment generating function exists.
Suppose, for some vector of parameters 7 we choose (;11 to be the exponential
tilt of Pt+1, l.e.

exp(n's)

my(n)

The division by my(n) is necessary to ensure that (Q;11 is a probability measure.

Why transform a density by multiplying by an exponential in this way?
There are many reasons for such a transformation. Exponential families of
distributions are built in exactly this fashion and enjoy properties of sufficiency,
completeness and ease of estimation. But we also argue that the measure
@ is the probability measure which is closest to P in a certain sense while
still satisfying the required moment constraint. We must begin with the notion
of entropy which underlies considerable theory in Statistics and elsewhere in
Science.

dQu11(s) = dPyy1(s)

1.5.1 Cross Entropy

Consider two probability measures P and (). Then the cross entropy or
Kullbach-Leibler distance between the two measures is given by

Q(E;)
P(E;)

H(Q|P) = Q(E;)1
(@|P) {S;I;Z (E;)log

where the supremum is over all finite partitions { E;} of the probability space.
It is not hard to show that this measure is always non-negative and if ) is
absolutely continuous with respect to P this can be rewritten in the form
dQ
H(Q|P) = E%log(—==).
(@IP) = B?log(55)
If, however, () is not absolutely continuous with respect to P then the cross
entropy is infinite. We should also remark that the cross entropy is not really
a metric in the usual sense (although we unashamedly use the term distance in
reference to it) since in general H(Q|P) # H(P|Q). Now the following result
asserts that the probability measure () which is closest to P but satisfies a

constraint on its mean is generated by an exponential tilt of the distribution of
P.
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Theorem 3 : Minimizing cross-entropy.
Consider the problem

win H(Q|P)

subject to the constraint EQ(f(X)) = p. Then the solution, if it evists, is given
by

_ exp(' £(X))

m(m)

dQ

where m(n) = Ep[exp(n’f(X))] and n s chosen so that 4—2"7::(:) = L.

The proof of this result, in the case of a discrete distribution P is a straight-
forward use of Lagrange multipliers. We leave it as a problem at the end of the
chapter.

Now let us return to the constraints on the vector of stock prices. In order
that EQ[S(t + 1)|H] = (1 +r(t+1))S(t) we require that 5 =7, be chosen so
that

exp(n's) Comi(y)  d B
/s—mt(n) dPpi(s) = —= = %log(mt(n)) = (1+4r({t+1)S().

Of course, the parameter n =7, is dependent on time since it depends on the
conditional distribution given H;. Now consider a measure () given by

exp (3, mpd)

dP
My (n,)

dQ =
Theorem 1.4.5 shows that this exponentially tilted distribution has the prop-
erty of being the closest to the original measure P while satisfying the condition
that the normalized sequence of stock prices forms a martingale. There is a con-
tinuous time analogue of this result, which, for completeness, we simply state
below and reserve the proof for the problem set. The statement requires un-
derstanding of the continuous time models of the next section, and so can be
skipped on first reading.

Theorem 4 .

Suppose under a probability measure P, the stock price process S; satisfies
an Ito equation of the form

dSt = ‘LLtdt + (Ttth
Then the measure () which satisfies

min H(Q|P)
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subject to the constraint that the drift of the process is given by the risk free
interest rate, (formally written E?[dS;|H;| = r;Sydt) is such that

dQ = exp( / 17,dS; — / (e +mios/2)dt)dP

where

1 = Sire — g
t —J?
The effect of this change of measure is such that under @), S; satisfies an Ito
equation with the same diffusion term and drift determined by the risk-free
interest rate

dSt == ’I"tStdt + (Ttth

1.5.2 Maximum Entropy

In 1948 in a fundamental paper on the transmission of information, C. E. Shan-
non proposed the following idea of entropy. The entropy of a distribution at-
tempts to measure the expected number of steps required to determine a given
outcome of a random variable with a given distribution when using a simple
binary poll. For example suppose that a random variable X has distribution
given by

In this case, if we ask first whether the random variable is > 2 and
then, provided the answer is no, if it is > 1, the expected number of queries to
ascertain the value of the random variable is 1 + 1(1/2) = 1.5. There is no
more efficient scheme for designing this binary poll in this case so we will take
1.5 to be a measure of entropy of the distribution of X. In general for a discrete
distribution, such that P[X = z] = p(x), the entropy may be defined to be

H(p) = E{~Iln(p(X)) = — Y p() In(p(x)).

In the case of the above distribution, if we were to replace the natural
logarithm by the log base 2, (In and log, differ only by a scale factor and
are therefore the corresponding measures of entropy are equivalent up a scale
multiple) notice that — >~ p(x)log,(p(x)) = .5(1) +.5(2) = 1.5, so this formula
correctly measures the difficulty in ascertaining a random variable from a se-
quence of questions with yes-no or binary answers. This is true in general in
fact. The complexity of a distribution as measured by the expected number
of questions in a binary poll to determine the value of a random variable with
that distribution can be measured by the
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Many statistical distributions have an interpretation in terms of maximizing
entropy. For example, what discrete distribution p has values on a certain set
and yet maximizes the entropy H(p)? First notice that if p is uniform on n
points, p(x) = 1/n for all # and so the entropy is — Y, 2In(L) = In(n). Now
consider the problem of maximizing the entropy H(p) for any distribution on n
points (subject to the constraint, of course, that the probabilities add to one).
The Lagrangian for this problem is — > p(x) In(p(x)) — MY, p(x) —1} where
A is a Lagrange multiplier. Upon differentiating with respect to p(x) we obtain
—In(p(z)) =1 — X =0 or p(x) = e~ I+tN. Applying the constraint that the
sum of the probabilities is one results in p(z) = 1/n for all . This shows that
the discrete distribution with maximum entropy is the uniform distribution.
What if we repeat this analysis using additional constraints, for example on the
moments of the distribution? Suppose for example that we require that the
mean of the distribution is some fixed constant ;¢ and the variance fixed at 2.
The problem is similar to that treated above but with two more terms in the
Lagrangian for each of the additional constraints. The Lagrangian becomes

=S p@) n(p() ~ A ple) — 1) Ao Y ap(@) — ) As{ Y a%ple) — 2 0?)

whereupon setting the derivative with respect to p(x) equal to zero and ap-
plying the constraints we obtain

p(z) = exp{—A; — Aow — Agz?},

with constants Ap, Ao, A3 chosen to satisfy the three constraints. Since the
exponent is a quadratic function of x, this is analogous to the normal dis-
tribution except that we have required that it be supported on a discrete set
of points x. Let us call such a distribution the discrete normal distribution.
In fact if we drop the requirement that the distribution is discrete, the same
kind of argument shows that the maximum entropy distribution is the normal
distribution.

So here, at least, are two simple distributions arising out of maximum en-
tropy considerations. The maximum entropy distribution on a discrete set of
points is the uniform distribution. The maximum entropy subject to a constraint
on the mean and the variance is a (discrete) normal distribution.

1.6 Models in Continuous Time

We begin with some oversimplified rules of stochastic calculus which can be
omitted by those with a background in Brownian motion and diffusion. First,
we define a stochastic process W; called the standard Brownian motion or
Wiener process having the following properties;

1. For each h > 0, the increment W (t+h)—W (t) has a N(0,h) distribution
and is independent of all preceding increments W(u) — W (v),t > u > v >
0.
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The Standard Brownian Motion Process

The fact that such a process exists is by no means easy to see. It has been an
important part of the literature in Physics, Probability and Finance at least since
the papers of Bachelier and Einsten, about 100 years ago. A Brownian motion
process also has some interesting and remarkable theoretical properties; it is
continuous with probability one but the probability that the process has finite
variation in any interval is 0. With probability one it is nowhere differentiable.
Of course one might ask how a process with such apparently bizarre properties
can be used to approximate real-world phenomena, where we expect functions
to be built either from continuous and differentiable segments or jumps in the
process. The answer is that a very wide class of functions constructed from those
that are quite well-behaved (e.g. step functions) and that have independent
increments converge as the scale on which they move is refined either to a
Brownian motion process or to a process defined as an integral with respect to a
Brownian motion process and so this is a useful approximation to a broad range
of continuous time processes. For example, consider a random walk process
Sy = Z?:l X; where the random variables X; are independent identically
distributed with expected value E(X;) =0 and var(X;) = 1. Suppose we plot
the graph of this random walk (n,S,) as below. Notice that we have linearly
interpolated the graph so that the function is defined for all n, whether integer
or not.
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Random Walk
T

Sn

3 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Now if we increase the sample size and decrease the scale appropriately on
both axes, the result is, in the limit, a Brownian motion process. The vertical
scale is to be decreased by a factor 1/y/n and the horizontal scale by a factor
n~!' . The theorem concludes that the sequence of processes

Yo (t) = Sht

n
converges weakly to a standard Brownian motion process as n — oo. In practice
this means that a process with independent stationary increments tends to look
like a Brownian motion process. As we shall see, there is also a wide variety
of non-stationary processes that can be constructed from the Brownian motion
process by integration. Let us use the above limiting result to render some
of the properties of the Brownian motion more plausible, since a serious proof
is beyond our scope. Consider the question of continuity, for example. Since
Yo (t + h) — Yo(t)] = |ﬁ Z?Z(ij;h) X; | and this is the absolute value of an
asymptotically normally(0, 2) random variable by the central limit theorem, it
is plausible that the limit as h — 0 is zero so the function is continuous at t.
On the other hand note that

Nim Yo 1L
h T hy/n ’

i=nt

should by analogy behave like =% times a N (0, h) random variable which blows
up as h — 0 so it would appear that the derivative at ¢ does not exist. To
obtain the total variation of the process in the interval [t,¢ + h] , consider the
lengths of the segments in this interval, i.e.

n(t+h)

% > x|

i=nt
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and notice that since the law of large numbers implies that -1- Z:L:(ij;h) | X |

converges to a positive constant, namely E|X;|, if we multiply by \/nh the
limit must be infinite, so the total variation of the Brownian motion process is
infinite.

Continuous time process are usually built one small increment at a time
and defined to be the limit as the size of the time increment is reduced to zero.
Let us consider for example how we might define a stochastic (Ito) integral of

the form fOT h(t)dWy. An approximating sum takes the form

T n—1
/ BEYAWs = S h(E) (W (ti1) — W(8)),0 = to <ty < . <t =T,
0 i=0

Note that the function h(t) is evaluated at the left hand end-point of the in-
tervals [t;,t;11], and this is characteristic of the Ito calculus, and an important
feature distinguishing it from the usual Riemann calculus studied in undergrad-
uate mathematics courses. There are some simple reasons why evaluating the
function at the left hand end-point is necessary for stochastic models in finance.
For example let us suppose that the function A(#) measures how many shares
of a stock we possess and W (t) is the price of one share of stock at time ¢.
It is clear that we cannot predict precisely future stock prices and our decision
about investment over a possibly short time interval [¢;, ;1] must be made
at the beginning of this interval, not at the end or in the middle. Second, in
the case of a Brownian motion process W(t), it makes a difference where in
the interval [t;,%;41] we evaluate the function h to approximate the integral,
whereas it makes no difference for Riemann integrals. As we refine the parti-
tion of the interval, the approximating sums Y7~ h(tig1) (W (ti1) — W(ts)),
for example, approach a completely different limit. This difference is essentially
due to the fact that W(t), unlike those functions studied before in calculus, is
of infinite variation. As a consequence, there are other important differences in
the Ito calculus. Let us suppose that the increment dW is used to denote
small increments W (t;11) — W(t;) involved in the construction of the integral.
If we denote the interval of time ¢;;1 — ¢; by dt, we can loosely assert that dWW
has the normal distribution with mean 0 and variance dt. If we add up a large
number of independent such increments, since the variances add, the sum has
variance the sum of the values dt and standard deviation the square root. Very
roughly, we can assess the size of dW since its standard deviation is (dt)'/2.
Now consider defining a process as a function both of the Brownian motion and
of time, say V; = g(Wy,t). If W, represented the price of a stock or a bond,
Vi might be the price of a derivative on this stock or bond. Expanding the
increment dV using a Taylor series expansion gives
2 2

dv, = %Q(Wt,t)dw + %Q(Wt,t)d% + %Q(Wt,t)dt (1.6)

+(stuff) x (dW)3 + (more stuff) x (dt)(dW)? + ...

Loosely, dW is normal with mean 0 and standard deviation (dt)l/ 2 and

so dW is non-negligible compared with dt as dt — 0. We can define each of the
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differentials dW and dt essentially by reference to the result when we integrate
both sides of the equation. If I were to write an equation in differential form

dX; = h(t)dW,

then this only has real meaning through its integrated version
t
X = Xo —|—/ h(t)dWy.
0

What about the terms involving (dWW)? ? What meaning should we assign to a
term like [ h(t)(dW)?? Consider the approximating function Y h(t;)(W (t;41)—
W (t;))?. Notice that, at least in the case that the function i is non-random we
are adding up independent random variables h(t;)(W (t;11) — W (t;))? each with
expected value h(t;)(t;41 —t;) and when we add up these quantities the limit
is f h(t)dt by the law of large numbers. Roughly speaking, as differentials, we
should interpret (dW)2 as dt because that is the way it acts in an integral.
Subsequent terms such as (dW)3? or (dt)(dW)? are all o(dt), i.e. they all
approach 0 faster than does dt as dt — 0. So finally substituting for (dWW)?
in 77 and ignoring all terms that are o(dt), we obtain a simple version of Ito’s
lemma

1 92
2 ow2Y

(W, t) + 2g(VVt, t) }dt.

dg(Wtat) ot

= Wg(Wt,t)dW + {

This rule results, for example, when we put g(W;,t) = W2 in
d(W?) = 2W,dW; + dt

or on integrating both sides and rearranging,
/ W dW; = =(WZ — W?2) — -/ dt.
a 2 2 a

The term ff dt above is what distinguishes the Ito calculus from the Riemann
calculus, and is a consequence of the nature of the Brownian motion process,
a continuous function of infinite variation.

There is one more property of the stochastic integral that makes it a valuable
tool in the construction of models in finance, and that is that a stochastic
integral with respect to a Brownian motion process is always a martingale. To
see this, note that in an approximating sum

T n—1
/0 h(£)dWy ~ > " h(t) (W (ti1) — W(t:))
=0

each of the summands has conditional expectation 0 given the past, i.e.

En(t:)(W (tir1) = W(t:)) [ Hy,] = h(t:) E[(W (i1) — W (t:))|Hp,] = 0
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since the Brownian increments have mean 0 given the past and since h(t) is
measurable with respect to H;.

We begin with an attempt to construct the model for an Ito process or dif-
fusion process in continuous time. We construct the price process one increment
at a time and it seems reasonable to expect that both the mean and the vari-
ance of the increment in price may depend on the current price but does not
depend on the process before it arrived at that price. This is a loose description
of a Markov property. The conditional distribution of the future of the process
depends only on the current time ¢ and the current price of the process. Let us
suppose in addition that the increments in the process are, conditional on the
past, normally distributed. Thus we assume that for small values of h, con-
ditional on the current time ¢ and the current value of the process X;, the
increment X, — X; can be generated from a normal distribution with mean
a(X¢,t)h and with variance 02(Xy,t)h for some functions @ and 02 called the
drift and diffusion coefficients respectively. Such a normal random variable can
be formally written as a(X;,t )dt+ o?(X;,t)dW;. Since we could express X7 as
an initial price Xg plus the sum of such increments, Xp = Xo+3",(X,,, —X¢,).

The single most important model of this type is called the Geometric Brow-
nian motion or Black-Scholes model. Since the actual value of stock, like the
value of a currency or virtually any other asset is largely artificial, depending on
such things as the number of shares issued, it is reasonable to suppose that the
changes in a stock price should be modeled relative to the current price. For
example rather than model the increments, it is perhaps more reasonable to
model the relative change in the process. The simplest such model of this type
is one in which both the mean and the standard deviation of the increment in
the price are linear multiples of price itself; viz. dX; is approximately nor-
mally distributed with mean aX;dt and variance o2 X2dt. In terms of stochastic
differentials, we assume that

dXt = aXtdt + (TXtth. (17)

Now consider the relative return from such a process over the increment dY; =
dXy/X;. Putting Yy = g(X;) = In(X;) note that analogous to our derivation of
Ito’s lemma

dg(Xt) = gl(Xt)dXt -+ %g”(Xt)(dX)2 + ...

1 1
= —{aX,dt+ X, dW;.}) — —= 2 X2dt
Xt{ ¢ edWi.} 2x2 't

02
= (af?)dt—i—ath

which is a description of a general Brownian motion process, a process with
increments dY; that are normally distributed with mean (a — %)dt and with
variance o2dt. This process satisfying dX; = aXydt + 0 X;dW; is called the
Geometric Brownian motion process (because it can be written in the form
X; = et for a Brownian motion process Y;) or a Black-Scholes model.
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Many of the continuous time models used in finance are described as Markov
diffusions or Ito processes which permits the mean and the variance of the
increments to depend more generally on the present value of the process and
the time. The integral version of this relation is of the form

T T
XT :X0+/ a(Xt,t)dt+/ O'(Xt,t)th.
0 0
We often write such an equation with differential notation,
dXt = CL(Xt, t)dt + O'(Xt, t)th (18)

but its meaning should always be sought in the above integral form. The coeffi-
cients a(Xy,t) and o(Xy,t) vary with the choice of model. As usual, we inter-
pret 77 as meaning that a small increment in the process, say dX; = Xy — Xy
(h very small) is approximately distributed according to a normal distribution
with conditional mean a(X;,t)dt = a(X;,t)h and conditional variance given
by 02(Xy, t)var(dW;) = o?( Xy, t)var(Wyiip, — W) = 02(X;, t)h. Here the mean
and variance are conditional on Hy, the history of the process X; up to time ¢.

Various choices for the functions a(Xz,t),0(X¢,t) are possible. For the
Black-Scholes model or geometric Brownian motion, a(X¢,t) = aX; and 0(Xy, t) =
oX; for constant drift and volatility parameters a,o. The Coz-Ingersoll-Ross
model, usesd to model spot interest rates, corresponds to a(Xy,t) = A(b — Xy)
and o(Xy,t) = ¢y/X; for constants A,b,c. The Vasicek model, also a model
for interest rates, has a(Xy,t) = A(b — X;) and o(Xy,t) = ¢. There is a large
number of models for most continuous time processes observed in finance which
can be written in the form 77. So called multi-factor models are of similar form
where X is a vector of financial time series and the coefficient functions a (X, t)
is vector valued, o(Xy,t) 1is replaced by a matrix-valued function and dW; is
interpreted as a vector of independent Brownian motion processes. For techni-
cal conditions on the coefficients under which a solution to 77 is guaranteed to
exist and be unique, see Karatzas and Shreve, sections 5.2, 5.3.

As with any differential equation there may be initial or boundary condi-
tions applied to ?? that restrict the choice of possible solutions. Solutions to
the above equation are difficult to arrive at, and it is often even more diffi-
cult to obtain distributional properties of them. Among the key tools are the
Kolmogorov differential equations (see Cox and Miller, p. 215). Consider the
transition probability kernel

p(s,z,t,x) = P[Xy = 2| Xs = 2]

in the case of a discrete Markov Chain. If the Markov chain is continuous (as it
is in the case of diffusions), that is if the conditional distribution of X; given X,
is absolutely continuous with respect to Lebesgue measure, then we can define
p(s, z,t,x) to be the conditional probability density function of Xy given X, = z.
The two equations, for a diffusion of the above form, are:
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Kolmogorov’s backward equation

a 0 1 5 H?
%p = —af(z, s)ap — §rr (z, s)@p (1.9)
and the forward equation
0 0 10?2, ,
5l = *%(a(ﬂ?,m)) + 5@(0 (z,t)p) (1.10)

Note that if we were able to solve these equations, this would provide the
transition density function p, giving the conditional distribution of the process.
It does not immediately provide other characteristics of the diffusion, such as
the distribution of the maximum or the minimum, important for valuing various
exotic options such as look-back and barrier options. However for a European
option defined on this process, knowledge of the transition density would suffice
at least theoretically for valuing the option. Unfortunately these equations are
often very difficult to solve explicitly.

Besides the Kolmogorov equations, we can use simple ordinary differential
equations to arrive at some of the basic properties of a diffusion. To illustrate,
consider one of the simplest possible forms of a diffusion, where a(Xy,t) =
a(t) + B(t) X, where the coefficients «(t), [(t) are deterministic (i.e. non-
random) functions of time. Note that the integral analogue of 77 is

¢ ¢
Xt =Xo+ / a(Xs,s)ds + / o(Xs,s)dWs (1.11)
0 0

and by construction that last term f(f (X5, 8)dWy is a zero-mean martingale.
For example its small increments o (X, t)dWy are approximately N (0, o(Xy, t)dt).
Therefore, taking expectations on both sides conditional on the value of X,
and letting m(t) = F(X;), we obtain:

¢
m(t) = Xo + / [a(s) + B(s)m(s)]ds (1.12)
0
and therefore m(t) solves the ordinary differential equation
m'(t) = at)+ B(E)m(t). (1.13)
m(0) = X (1.14)

Thus, in the case that the drift term a is a linear function of X;, the mean or
expected value of a diffusion process can be found by solving a similar ordinary
differential equation, similar except that the diffusion term has been dropped.
These are only two of many reasons to wish to solve both ordinary and
partial differential equations in finance. The solution to the Kolmogorov partial
differential equations provides the conditional distribution of the increments of
a process. And when the drift term a(Xy,t ) is linear in X3, the solution of an
ordinary differential equation will allow the calculation of the expected value of



1.6. MODELS IN CONTINUOUS TIME 31

the process and this is the first and most basic description of its behaviour. The
appendix provides an elementary review of techniques for solving partial and
ordinary differential equations.

However, that the information about a stochastic process obtained from a
deterministic object such as a ordinary or partial differential equation is nec-
essarily limited. For example, while we can sometimes obtain the marginal
distribution of the process at time ¢ it is more difficult to obtain quantities such
as the joint distribution of variables which depending on the path of the pro-
cess, and these are important in valuing certain types of exotic options such
as lookback and barrier options. For such problems, we often use Monte Carlo
methods.

The Black-Scholes Formula

Before discussing methods of solution in general, we develop the Black-Scholes
equation in a general context. Suppose that a security price is an Ito process
satisfying the equation

dSt - CL(St, t)dt + O'(St, t) th (115)

Assumed the market allows investment in the stock as well as a risk-free bond
whose price at time ¢ is B;. It is necessary to make various other assumptions
as well and strictly speaking all fail in the real world, but they are a resonable
approximation to a real, highly liquid and nearly frictionless market:

1. partial shares may be purchased
there are no dividends paid on the stock

There are no commissions paid on purchase or sale of the stock or bond

- W N

There is no possibility of default for the bond

ot

Investors can borrow at the risk free rate governing the bond.

6. All investments are liquid- they can be bought or sold instantaneously.
Since bonds are assumed risk-free, they satisfy an equation
dBt = ’I"tBtdt

where r; is the risk-free (spot) interest rate at time t.

We wish to determine V' (S, t), the value of an option on this security when
the security price is Sy, at time t. Suppose the option has expiry date 7' and
a general payoff function which depends only on S7, the process at time 7.

Ito’s lemma provides the ability to translate an a relation governing the
differential dS; into a relation governing the differential of the process dV (S, t).
In this sense it is the stochastic calculus analogue of the chain rule in ordinary
calculus. It is one of the most important single results of the twentieth century
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in finance and in science. The stochastic calculus and this mathematical result
concerning it underlies the research leading to 1997 Nobel Prize to Merton and
Black for their work on hedging in financial models. We saw one version of it
at the beginning of this section and here we provide a more general version.

Ito’s lemma.

Suppose S; is a diffusion process satisfying
dSt = CL(SLL7 t)dt + (T(St, t)th

and suppose V (S, t) is a smooth function of both arguments. Then V(Si,t)
also satisfies a diffusion equation of the form

aVv 2(8,t) 9°V oV oV

Proof. The proof of this result is technical but the ideas behind it are

simple. Suppose we expand an increment of the process V (S, t) ( we write V
in place of V (S, t) omitting the arguments of the function and its derivatives.
We will sometimes do the same with the coefficients @ and o.)

ov 10%V
V(St+h,t + h) ~V+ %(Sﬂ.h — St) + 5@

(Sern — Si)? + v, (1.17)
ot
where we have ignored remainder terms that are o(h). Note that substituting
from ?7 into 77, the increment (S;, —S;) is approximately normal with mean
a(S¢, t) h and variance 02(S;, t ) h. Consider the term (Syy, — S¢)%. Note
that it is the square of the above normal random variable and has expected
value 02(Sy, t)h + a®(Sy, t)h?. The variance of this random variable is O(h?) so
if we ignore all terms of order o(h) the increment V(Syip,t + h) — V(S t) is
approximately normally distributed with mean
oV %Sy, t) 0’V OV

[a(St, t)%-‘r B W-‘rﬁ}

?a?nd standard deviation o (S, t)g—‘g\/ﬁ justifying (but not proving!) the relation
S0, m

By Ito’s lemma, provided V' issmooth, it also satisfies a diffusion equation of
the form ?7. We should note that when V represents the price of an option, some
lack of smoothness in the function V' is inevitable. For example for a European
call option with exercise price K, V(Sp,T) = max(Sy — K,0) does not have a
derivative with respect to St at S = K, the exercise price. Fortunately, such
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exceptional points can be worked around in the argument, since the derivative
does exist at values of t < T

The basic question in building a replicating portfolio is: for hedging pur-
poses, is it possible to find a self-financing portfolio consisting only of the se-
curity and the bond which exactly replicates the option price process V (S, t)?
The self-financing requirement is the analogue of the requirement that the net
cost of a portfolio is zero that we employed when we introduced the notion of
arbitrage. The portfolio is such that no funds are needed to be added to (or re-
moved from) the portfolio during its life, so for example any additional amounts
required to purchase equity is obtained by borrowing at the risk free rate. Sup-
pose the self-financing portfolio has value at time ¢ equal to V; = Sy + wy By
where the (predictable) functions u, wy represent the number of shares of stock
and bonds respectively owned at time ¢. Since the portfolio is assumed to be
self-financing, all returns obtain from the changes in the value of the securities

and bonds held, i.e. it is assumed that dV; = u;dS; + wydB;. Substituting from
77,

dv% = utdSt + ’U.)tdBt = [uta(St7 t) + ’U.)t’l"tBt}dt + ’U,t(T(St, t)th (118)

If V; is to be exactly equal to the price V(S;,t ) of an option, it follows on
comparing the coefficients of dt and dW; in 7?7 and ??, that u; = g—v, called
the delta corresponding to delta hedging. Consequently,

ov
Vi= %St + w By
and solving for w; we obtain:
1 aVv
=—V - =5
o =gV - 5gs

The conclusion is that it is possible to dynamically choose a trading strategy, i.e.
the weights wy, us so that our portfolio of stocks and bonds perfectly replicates the
value of the option. If we own the option, then by shorting (selling) Delta= ‘g—g
units of stock, we are perfectly hedged in the sense that our portfolio replicates
a risk-free bond. Surprisingly, in this ideal word of continuous processes and
continuous time trading commission-free trading, the perfect hedge is possible.
In the real world, it is said to exist only in a Japanese garden. The equation we
obtained by equating both coefficients in 77 and 77 is;

2 2
Rewriting this allows an interpretation in terms of our hedged portfolio. If we
own an option and are short delta units of stock our net investment at time ¢
is given by (V — Stg—g) where V' =V, = V (S, t). Our return over the next time
increment dt if the portfolio were liquidated and the identical amount invested
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in a risk-free bond would be r4(V; — St‘g—‘g)dt. On the other hand if we keep this
hedged portfolio, the return over an increment of time dt is
ov oV
dV —-—8S—) = dV —(=—=)d
(V- Si5g) = v - (55)ds

oV 029%V OV ov

— + ——+4a—=)dt —d
or T3 ag gt ogg

ov
—%[adt + (Tth]

ov o2 9%V
— + ———=)dt
G t 2357

Therefore

2 2
ri(V — Sta_v) :8—V + KRG AL (5.1) 8_V

as ot 2 052

The left side r4(V — Stg—g) represents the amount made by the portion of our
portfolio devoted to risk-free bonds. The right hand side represents the return
on a hedged portfolio long one option and short delta stocks. Since these
investments are at least in theory identical, so is their return. This fundamental
equation is evidently satisfied by any option price process where the underlying
security satisfies a diffusion equation and the option value at expiry depends
only on the value of the security at that time. The type of option determines
the terminal conditions and usually uniquely determines the solution.

It is extraordinary that this equation in no way depends on the drift co-
efficient a(Sy,t). This is a remarkable feature of the arbitrage pricing theory.
Essentially, no matter what the drift term for the particular security is, in order
to avoid arbitrage, all securities and their derivatives are priced as if they had
as drift the spot interest rate. This is the effect of calculating the expected values
under the martingale measure Q).

This PDE governs most derivative products, European call options, puts,
futures or forwards. However, the boundary conditions and hence the solution
depends on the particular derivative. The solution to such an equation is possi-
ble analytically in a few cases, while in many others, numerical techniques are
necessary. One special case of this equation deserves particular attention. In
the case of geometric Brownian motion, a(S¢,t) = pS; and (S, t) = oS, for
constants p, 0. Assume that the spot interest rate is a constant r and that a
constant rate of dividends Dy is paid on the stock. In this case, the equation
specializes to

aVv ov 0252 9%v
—rV + Bt +(r *Do)S% + 5 952

Note that we have not used any of the properties of the particular derivative
product yet, nor does this differential equation involve the drift coeflicient pu.
The assumption that there are no transaction costs is essential to this analysis,
as we have assumed that the portfolio is continually rebalanced.

= 0. (1.20)
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We have now seen two derivations of parabolic partial differential equations,
so-called because like the equation of a parabola, they are first order (deriva-
tives) in one variable (t) and second order in the other (). Usually the solution
of such an equation requires reducing it to one of the most common partial
differential equations, the heat or diffusion equation, which models the diffusion
of heat along a rod. This equation takes the form

82

%u = k@u (1.21)
A solution of 7?7 with appropriate boundary conditions can sometime be found
by the separation of variables. We will later discuss in more detail the solution
of parabolic equations, both by analytic and numerical means. First, however,
when can we hope to find a solution of ?? of the form wu(x,t) = g(x/v/1).
By differentiating and substituting above, we obtain an ordinary differential
equation of the form

1
" (w) + %wg'(w) =0,w= x/\/f (1.22)
Let us solve this using MAPLE.
eqn := diff(g(w),w,w)+(w/(2*k))*diff (g(w) ,w)=0;
dsolve(eqn,g(w));

and because the derivative of the solution is slightly easier (for a statistician)
to identify than the solution itself,
> diff (%,w);
giving
9 2 2
a—g(w) = Oy exp{—w*/4k} = Cyexp{—a*/4kt} (1.23)
w
showing that a constant plus a constant multiple of the Normal (0, 2kt) cumu-
lative distribution function or

u(z,t) = C1 + Cy exp{ —2%/4kt}dz (1.24)

1 X
is a solution of this, the heat equation for ¢ > 0. The role of the two constants is
simple. Clearly if a solution to ?? is found, then we may add a constant and/or
multiply by a constant to obtain another solution. The constant in general is
determined by initial and boundary conditions. Similarly the integral can be
removed with a change in the initial condition for if u solves 77 then so does %.
For example if we wish a solution for the half real x > 0 with initial condition
u(z,0) =0,u(0,¢) =1 all £ > 1, we may use

u(z,t) = 2P(N(0,2kt) > z) exp{—2%/4kt}dz,t > 0,2 > 0.

1 o
B vkt /m
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Figure 1.1: The function u(x,t)

Let us consider a basic solution to ?77:

exp{ —a? /4kt} (1.25)

(2,1) .
u(z,t) =
2V mkt

This connection between the heat equation and the normal distributions is fun-
damental and the wealth of solutions depending on the initial and boundary
conditions is considerable. We plot a fundamental solution of the equation as
follows:

> u(x,t) := (.5/sqrt(Pixt))*exp(-x~2/(4*t));

> plot3d(u(x,t),x=-4..4,t=.02..4,axes=boxed) ;

As t — 0, the function approaches a spike at x = 0, usually referred to as
the “Dirac delta function” (although it is no function at all) and symbolically
representing the derivative of the “Heaviside function”. The Heaviside function
is defined as H(x) = 1,# > 0 and is otherwise 0 and is the cumulative distri-
bution function of a point mass at 0. Suppose we are given an initial condition
of the form w(z,0) = ug(x). To this end, it is helpful to look at the solu-
tion u(x,t) and the initial condition ug(x) as a distribution or measure (in this
case described by a density) over the space variable x. For example the density
u(x,t) corresponds to a measure for fixed ¢ of the form v (A) = [, u(x,t)dz.
Note that the initial condition compatible with the above solution ?7? can be
described somewhat clumsily as “u(x,0) corresponds to a measure placing all
mass at * = xg = 0 7.In fact as £ — 0, we have in some sense the following
convergence u(z,t) — 6(x) = dH(x), the Dirac delta function. We could just as
easily construct solve the heat equation with a more general initial condition of
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the form u(x,0) = dH (x — x) for arbitrary xo and the solution takes the form

1
u(z,t) = Wi exp{ —(z — x0)?/4kt}. (1.22)

Indeed sums of such solutions over different values of xg, or weighted sums, or
their limits, integrals will continue to be solutions to ?77. In order to achieve the
initial condition ug(x) we need only pick a suitable weight function. Note that

ug(x) = /uo(z)dH(z —x)
Note that the function
u(z,t) = 2\/% /0:0 exp{—(z — z)? /4kt }uo(2)dz (1.22)

solves 77 subject to the required boundary condition.

Solution of the Diffusion Equation.

We now consider the general solution to the diffusion equation of the form 77,
rewritten as

ov OV a%(S,t) 9?V
— =V -rS— - ———— 1.26
or YT 79s 2 05 (1.26)

where S; is an asset price driven by a diffusion equation
dSt - CL(St, t)dt + U(St, t)th, (127)

V(Sg,t) is the price of an option on that asset at time ¢, and r, = r(¢) is the
spot interest rate at time ¢. We assume that the price of the option at expiry
T is a known function of the asset price

V(St,T) = Vo(Sr). (1.28)

Somewhat strangely, the option is priced using a related but not identical process
(or, equivalently, the same process under a different measure). Recall from the
backwards Kolmogorov equation 77 that if a related process X, satisfies the
stochastic differential equation

dX, = r(Xy, t) Xodt + o(Xy, t)dW, (1.29)

then its transition kernel p(t,s, T, z) = %P[XT < z|X; = | satisfies a partial
differential equation similar to ?77;

@77( )8;0 o2(s,t) 0°p

9t 95 2 92 (1.30)
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For a given process X; this determines one solution. For simplicity, consider
the case (natural in finance applications) when the spot interest rate is a function
of time, not of the asset price; r(s,t) = r(t). To obtain the solution so that
terminal conditions is satisfied, consider a product

f(t,s,T,2z) =p(t,s,T,2)q(t,T) (1.31)

where

qt,T) = exp{—/t r(v)dv}

is the discount function or the price of a zero-coupon bond at time ¢ which
pays 1$ at maturity.

Let us try an application of one of the most common methods in solving
PDE’s, the “lucky guess” method. Counsider a linear combination of terms of
the form 77 with weight function w(z). i.e. try a solution of the form

V(s,t) = /p(t,s,T, 2)q(t, T)w(z)dz (1.32)

for suitable weight function w(z). In view of the definition of p as a transition
probability density, this integral can be rewritten as a conditional expectation:

V(t,s) = Elw(X7)q(t,T)| X = 5| (1.33)

the discounted conditional expectation of the random variable w(Xr) given the
current state of the process, where the process is assumed to follow (2.18). Note
that in order to satisfy the terminal condition 7?7, we choose w(z) = Vo(z).
Now

ov 0
-5 = E/p(t7s7T7 2)q(t, T)w(z)dz
0 2(8,,t) 62
= /[—T(Smt)sta—i _Znh) (2t )—8S§}q(t,T)w(z)dz

+7r(S, 1) /p(t,St7T, 2)q(t, T)w(z)dz by 7?

OV 02(S,,t) 2V
= 7T(St,t)st% — TW +7"(St,t)V(St,t)

where we have assumed that we can pass the derivatives under the integral
sign. Thus the process

V(t,s) = E[Vo(X7)q(t, T)| Xy = 5] (1.34)

satisfies both the partial differential equation 7?7 and the terminal conditions
77 and is hence the solution. Indeed it is the unique solution satisfying certain
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regularity conditions. The result asserts that the value of any European option
is simply the conditional expected value of the discounted payoff (discounted
to the present) assuming that the distribution is that of the process ??. This
result is a special case when the spot interest rates are functions only of time of
the following more general theorem.

Theorem 5 ( Feynman-Kac)

Suppose the conditions for a unique solution to (?7,7?) (see for example
Duffie, appendix E) are satisfied. Then the general solution to (2.15) under the
terminal condition 77 is given by

T
V(S,t) = E[VO(XT)e;Ep{—/t r(Xy,v)dv} | Xy = 5] (1.35)

This represents the discounted return from the option under the distribution
of the process X; . The distribution induced by the process X; is referred to
as the equivalent martingale measure or risk neutral measure. Notice that when
the original process is a diffusion, the equivalent martingale measure shares the
same diffusion coefficient but has the drift replaced by (X, ¢)X;. The option
is priced as if the drift were the same as that of a risk-free bond i.e. as if the
instantaneous rate of return from the security if identical to that of bond. Of
course, in practice, it is not. A risk premium must be paid to the stock-holder
to compensate for the greater risk associated with the stock.

There are some cases in which the conditional expectation 77 can be deter-
mined explicitly. In general, these require that the process or a simple function
of the process is Gaussian.

For example, suppose that both 7(t) and o(t) are deterministic functions
of time only. Then we can solve the stochastic differential equation (2.22) to
obtain

X T o(u)
Xr o) + /t 2. T) dW,, (1.36)
The first term above is the conditional expected value of X7 given X;. The
second is the random component, and since it is a weighted sum of the normally
distributed increments of a Brownian motion with weights that are non-random,
it is also a normal random variable. The mean is 0 and the (conditional) vari-

2
ance is ftT %du. Thus the conditional distribution of X7 given X; is normal
. . . X o . T o%(u)
with conditional expectation W‘T_) and conditional variance ft mdu.

The special case of 77 of most common usage is the Black-Scholes model:
suppose that o(S,t) = So(t) for o(t) some deterministic function of t. Then
the distribution of X; is not Gaussian, but fortunately, its logarithm is. In
this case we say that the distribution of X; is lognormal.
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Lognormal Distribution

Suppose Z is a normal random variable with mean j and variance o2. Then we
say that the distribution of X = e is lognormal with mean 7 = exp{p+0?/2}
and volatility parameter o. The lognormal probability density function with
mean 77 > 0 and volatility parameter o > 0 is given by the probability density
function

g(z|n, o) = Ia\l/%exp{—(log x—logn —o2/2)%/202}. (1.37)

The solution to (2.18) with non-random functions o(t),r(t) is now

T T
Xp = Xtexp{/t (r(u) — 0(u)/2)du —|—/t o(u)dWy }. (1.38)

Since the exponent is normal, the distribution of X7 is lognormal with
mean log(X;) + ftT(r(u) — 02(u)/2)du and variance ftT o?(u)du. It follows
that the conditional distribution is lognormal with mean 7 = X;q(¢,7) and

volatility parameter 4/ ftT o?(u)du.

We now derive the well-known Black-Scholes formula as a special case of
?7?. For a call option with exercise price E, the payoff function is Vp(St) =
max(St — E,0). Now it is helpful to use the fact that for a standard normal
random variable Z and arbitrary o > 0, —00 < p < 0o we have the expected
value of maz(e?Z+H 0) is

e#+oz/2q)(§ + O’) o (I)(

SERS

) (1.39)

where ®(.) denotes the standard normal cumulative distribution function. As
a result, in the special case that » and o are constants, (?77) results in the
famous Black-Scholes formula which can be written in the form

V(S,t) = S®(dy) — Ee " T d(dy) (1.40)

where d; < dy are the values 02 /2 standardized by adding log(S/E)+r(T—t)
and dividing by o+/T — t. This may be derived by the following device; Assume
(i.e. pretend) that, given current information, the distribution of S(T) at
expiry is lognormally distributed with the mean 7 = S(t)e” ™% .

The mean of the log-normal in the risk neutral world S(t)e”™ =% is exactly
the future value of our current stocks S(t) if we were to sell the stock and
invest the cash in a bank deposit. Then the future value of an option with
payoff function given by Vy(St) is the expected value of this function against
this lognormal probability density function, then discounted to present value

) / Vo()g(x]S(t)e" @9, o/T — f)da. (1.41)
0
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Notice that the Black-Scholes derivation covers any diffusion process gov-
erning the underlying asset which is driven by a stochastic differential equation
of the form

dS = a(S)dt + o SdW, (1.42)

regardless of the nature of the drift term a(S). For example a non-linear
function a(S) can lead to distributions that are not lognormal and yet the
option price is determined as if it were.

Example: Pricing Call and Put options.

Consider pricing an index option on the S&P 500 index an January 11, 2000 (the
index SPX closed at 1432.25 on this day). The option SXZ AE-A is a January
call option with strike price 1425. The option matures (as do equity options in
general) on the third Friday of the month or January 21, a total of 7 trading
days later. Suppose we wish to price such an option using the Black-Scholes
model. In this case, T'— ¢ measured in years is 7/252 = 0.027778. The annual
volatility of the Standard and Poor 500 index is around 19.5 percent or 0.195
and assume the very short term interest rates approximately 3%. In Matlab we
can value this option using

[CALL,PUT] = BLSPRICE(1432.25,1425,0.03,7/252,0.195,0)
CALL = 23.0381
PUT = 14.6011

Arguments of the function BLSPRICE are, in order, the current equity price,
the strike price, the annual interest rate r, the time to maturity 7'—1¢ in years,
the annual volatility ¢ and the last argument is the dividend yield in percent
which we assumed 0. Thus the Black-Scholes price for a call option on SPX
is around 23.03. Indeed this call option did sell on Jan 11 for $23.00. and
the put option for $14 5/8. From the put call parity relation (see for example
Wilmott, Howison, Dewynne, page 41) S + P — C = Ee~"T=t)  or in this
case 1432.25 4 14.625 — 23 = 1425¢ "(7/252) We might solve this relation to
obtain the spot interest rate . In order to confirm that a different interest rate
might apply over a longer term, we consider the September call and put options
(SXZ) on the same day with exercise price 1400 which sold for $152 and 718
respectively. In this case there arel71 trading days to expiry and so we need to
solve 1432.25 + 71 — 152 = 1400e~"(171/252)  whoese solution is r = 0.0522.
This is close to the six month interest rates at the time, but 3% is low for the
very short term rates. The discrepancy with the actual interest rates is one of
several modest failures of the Black-Scholes model to be discussed further later.
The low implied interest rate is influenced by the cost of handling and executing
an option, which are non-negligible fractions of the option prices, particularly
with short term options such as this one.
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1.7 Review Problems

1.

It is common for a stock whose price has reached a high level to split or
issue shares on a two-for-one or three-for-one basis. What is the effect of
a stock split on the price of an option?

If a stock issues a dividend of exactly D (known in advance) on a certain
date, provide a no-arbitrage argument for the change in price of the stock
at this date.

Suppose X is a positive definite covariance matrix and n a column vector.
Show that the set of all possible pairs of standard deviation and mean
return (Vw?Xw,nTw)  for weight vector w such that > . w; = 1is a
convex region with an elliptical boundary.

The current rate of interest is 5% per annum and you are offered a random
bond which pays either $210 or $0 in one year. You believe that the
probability of the bond paying $210 is one half. How much would you
pay now for such a bond? Suppose this bond is publicly traded and a
large fraction of the population is risk averse so that it is selling now for
$80. Does your price offer an arbitrage to another trader? What is the
risk-neutral measure for this bond?

Which would you prefer, a gift of $100 or a 50-50 chance of making $2007
A fine of $100 or a 50-50 chance of losing $2007 Are your preferences
self-consistent and consistent with the principle that individuals are risk-
averse?

Compute the stochastic differential dX; (assuming W; is a Wiener pro-
cess) when
(a) Xy =exp(rt)
¢
(b) = Jo h(t)dW;
(¢) = Xgexp{at + bW, }
(d) Xy =exp(Y;) where dY; = pdt + odW,.

Xy
Xy

Show that if X; is a geometric Brownian motion, so is Xf for any real
number (.

Suppose a stock price follows a geometric Brownian motion process
dSt - /J/Stdt + O'Stth

Find the diffusion equation satisfied by the processes (a) f(S:) = St ,(b)
log(Sy), (¢) 1/S; . Find a combination of the processes S; and 1/S; that
does not depend on the drift parameter . How does this allow constructing
estimators of o that do not require knowledge of the value of u?
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11.

12.

13.

14.

15.
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. Consider an Ito process of the form

dSt - a(St)dt + O'(St)th

Is it possible to find a function f(S;) which is also an Ito process but with
zero drift?

Consider an Ito process of the form

dS; = a(Sy)dt + o (Sy)dW;
Is it possible to find a function f(S;) which has constant diffusion term?
Consider approximating an integral of the form fOT g(t)dWy = > g(t){W (t+

h) — W (t)} where g(t) is a non-random function and the sum is over val-
ues of t =nh,n =0,1,2,...T/h—1. Show by considering the distribution

of the sum and taking limits that the random variable fOT g(t)dW; has a
normal distribution and find its mean and variance.

Give an example of a function g(t,W;) such that the random variable

fol g(t, W;)dW; does not have a normal distribution but has larger tails
than does the normal distribution.

Consider two geometric Brownian motion processes X; and Y; both driven
by the same Wiener process

dXt = aXtdt + bXtth
dY; = pYdt+ oY,dW,.

Derive a stochastic differential equation for the ratio Z; = X;/Y;. Suppose
for example that X; models the price of Telecom stock in $NZ and Y; is
the exchange rate (SNZ/$US) at time ¢. Then what is the process Z;?

Verify that for any pair of constants a # 0 and b > 0
dXy = (X; ! + ab) Xdt + bXdW,

does not have a solution in the form X; = f(t,Y}:), where f(t,y) is, say, a
real function and Y; is a Gaussian process.

Consider solving the problem
: di
min q; log(—
in ) qilog(- )
subject to the constraints ) ,¢; =1 and ) ¢;f(i) = p. Show that the

solution, if it exists, is given by

exp(nf(i))

")

Di

where m(n) = 3", piexp(nf(i))] and n is chosen so that 4_27:;(7777) = L.
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16. Consider a defaultable bond which pays a fraction of its face value Fp
on maturity in the event of default. Suppose the risk free interest rate
continuously compounded is 7 so that B, = exp(sr). Suppose also that a
constant coupon $d is paid at the end of every period s =t+1,...,7 — 1.
Then show that the value of this bond at time ¢ is

exp{—(r + )} — expl—(r + ){T — 1)}
1 —exp{—(r+k)}
+pFexp{—r(T —t)} + (1 —p)Fexp{—(r + k)(T —t)}

P = d

17. (a) Show that entropy is always positive and if Y = ¢g(X) is a function
of X then Y has smaller entropy than X, i.e. H(py) < H(px)-

(b) Show that if X has any discrete distribution over n values, then its
entropy is < log(n).



Chapter 2

Basic Monte Carlo Methods

2.1 Simulation and Monte Carlo Methods

Consider as an example the following very simple problem. We wish to price
a European call option with exercise price $22 and payoff function V(St) =
(St —22)T. Assume for the present that the interest rate is 0% and S can
take only the following five values with corresponding (@) probabilities
S 20 21 22 23 24
Q[Sr=s] 1/16 4/16 6/16 4/16 1/16
In this case, since the distribution is very simple, we can price the call option
explicitly;
1 3
6~ 5
However, the ability to value an option explicitly is a rare luxury. An alternative
would be to generate a large number (say n = 1000) independent simulations of
the stock price S under the measure @) and average the returns from the option.
Say the simulations yielded values for St of 22,20, 23,21, 22,23, 20, 24, .... then
the estimated value of the option is

4
ERV(Sy) = E9(Sy —22)t = (23 — 22) 15 + (2422

1
V(Sr) = m[(22 —22)t (20 - 22)T + (23— 22)T + ...].
1

The law of large numbers assures us for a large number of simulations n, the
estimator V (St) will approximate the true expectation E®V (St). Now while
it would be foolish to use simulation a simple problem like this, there are many
models in which it is much easier to randomly generate values of the process St
than it is to establish its exact distribution. In such a case, simulation is the
method of choice.

Randomly generating a value of St in the above discrete distribution is easy,
provided that we can produce independent random uniform random numbers

45
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on a computer. For example, if we were able to generate a random number Y;
which has a uniform distribution on the integers {0,1,2,....,15} then we could
define Sp for the i’th simulation as follows:

IfY; is in set | {0} | {1,2,3,4} | {5,6,7,8,9,10} | {11,12,13,14} | {15}

define S = | 20 | 21 22 23 24

Of course, to get a reasonably accurate estimate of the price of a complex
derivative may well require a large number of simulations, but this is decreas-
ingly a problem with increasingly fast computer processors. The first ingredient
in a simulation is a stream of uniform random numbers Y; used above. In prac-
tice all other distributions are generated by processing discrete uniform random
numbers. Their generation is discussed in the next section.

2.2  Uniform Random Number Generation

The first requirement of a stochastic model is the ability to generate “random”
variables or something resembling them. Early such generators attached to com-
puters exploited physical phenomena such as the least significant digits in an
accurate measure of time, or in the amount of background cosmic radiation as
the basis for such a generator, but these suffer from a number of disadvantages.
While they may well be “random” in some more general sense than are the
pseudo-random number generators that we use now, their properties are diffi-
cult to establish, and the sequences are impossible to reproduce, the latter being
important for debugging a simulation program and for reducing the variance
therein. Quite remarkably, it was discovered that very simple recursion formulae
defined sequences that for practical purposes looked like sequences of indepen-
dent random numbers and seemed (although the theorems rarely allow a proof
of this fact) to more or less obey the major laws of probability such as the law
of large numbers, the central limit theorem, the Glivenko-Cantelli theorem, etc.
This would seem to indicate that the conclusions of probability hold under much
more general circumstances than the relatively restrictive conditions on these
theorems indicate. Indeed, one would intuitively expect an enormous difference
between the behaviour of independent random variables X,, and a sequence sat-
isfying a recursion of the form z, = g(x,—1) for a simple function g and so
it is surprising that for a large class of such functions ¢ it is quite difficult to
determine the difference between such a sequence and an independent sequence.
Of course, any sequence of numbers generated from a simple recursion such as
this is neither random, nor are x,—; and x, independent. Often we will empha-
size this failure by referring to the sequence of pseudo-random numbers. While
they are in no case independent, we will nevertheless attempt to find simple
functions ¢ which provide behaviour similar to that of independent uniform
random numbers.

Definition: reduction modulo m. For positive integers £ and m, the value
amod(m) is the remainder (between 0 and m —1 ) obtained when a is divided
by m. So for example Tmod(3) =1 since 7=2 x 3+ 1.
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The single most common class of random number generators are of the form
Ty := (aTp—_1 + ¢) mod(m)

for given integers a,c, and m which we select in advance. This generator is
initiated with a “seed” xy and then run to produce a whole sequence of values.
When ¢ = 0, these generators are referred to as multiplicative congruential gen-
erators and in general as mized congruential generators or linear congruential
generators. The “seed”, xq, is usually updated by the generator with each call
to it. There are two common choices of m , either m prime or m = 2F for
some k (usually 31 for 32 bit machines).

Example: Mixed Congruential generator

Define z,, = (bxp—1 +3) mod 8 , and the seed zg = 3. Note that by this
recursion

7 = (5x3+4+3)mod8 =18mod8 =2
ro = 13mod8 =5
r3 = 28mod8 =4

and x4, x5, v6,27,78 = 7,6,1,0,3 respectively

and after this point (for n > 8) the recursion will simply repeat again the
pattern already established, 3,2,5,4,7,6,1,0,3,2,5,4, .......

The above repetition is inevitable for a linear congruential generator. There
are at most m possible numbers after reduction mod m and once we arrive
back at the seed the sequence is destined to repeat itself. In the example
above, the sequence cycles after 8 numbers. The length of one cycle, before the
sequence begins to repeat itself again, is called the period of the generator. For a
mixed generator, the period must be less than or equal to m. For multiplicative
generators, the period is shorter, and often considerably shorter.

Multiplicative Generators.

For multiplicative generators, ¢ = 0. Counsider for example the generator
T, = 5z, 1 mod 8 and xg = 3. This produces the sequence 3,7,3,7, ....
In this case, the period is only 2, but in general it is clear that the maximal
possible period is m—1 because it generates values in the set {1,...,m—1}. The
generator cannot generate the value 0 because if it did, all subsequent values
generated are identically 0. Therefore the maximum possible period corresponds
to a cycle through non-zero integers exactly once. But in the example here,
the period is far from attaining its theoretical maximum, m — 1. When is this
maximal period achieved? The following Theorem shows that the period of a
multiplicative generator is maximal when m is a prime number and a satisfies
some conditions.

Theorem 6 : period of multiplicative generator.
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If m is prime, the multiplicative congruential generator x,, = ax,_1 mod m, a #
0, has mazimal period m — 1 if and only if a™ ' = 1(mod m) and a' #
1(mod m) for all i <m —1.

Consider the multiplicative congruential generator x,, = 2x,_1modll. It
is easy to check that 2'mod 11 = 2,4,8,5,10,9,7,3,6,1 asi = 1,2,...10. Since
the value i = m — 1 is the first for which 2*mod11 = 1, this is a maximal
period generator having period 10. When m = 11, only the values a =2,6,7,8
produce full period (10) generators.

One of the more common moduli on 32 bit machines is the prime m = 23" 1.
In this case, the following values of a (among many others) all produce full
period generators:

a= 7, 16807, 48271, 69621, 630360016, 742938285, 950706376,

1226874159, 62089911, 1343714438, 39373

Let us suppose now that m is prime and as is the multiplicative inverse
(mod(m)) of a; by which we mean ajaz mod(m) = 1. When m is prime, the
set of integers {0,1,2,...,m — 1} together with the operations of addition and
multiplication mod(m) forms a finite field and this allows essentially the same
operations as we enjoy in the real number system. Suppose for two integers
x1,x0 € {0,1,2,...,m—1}, x9 = a;z1 mod(m). Then multiplying by as we have

asxo mod(m) = agayx; mod(m) = agay mod(m)z; mod(m) =

and this shows that x; = agre mod(m). In other words, if as is the multiplica-

tive inverse of aj(mod m), then the multiplicative generator with multiplier
az generates exactly the same sequence as that with multiplier a; except in
reverse order.

Theorem 7 Period of Multiplicative Generators with m = 2F

If m = 2F > 8, the multiplicative congruential generator has mazximal
period m/4 if amod8= 3 or 5 andif xg isodd. T

For the proof of these results, see Ripley(1987), chapter 2. The follow-
ing simple Matlab code allows us to compare linear congruential generators
with small values of m. It generates a total of n such values for user defined
a,c,m,z0 = seed. The efficient implementation of a generator for large values
of m of approximately the same size as the machine precision depends very
much on the architecture of the computer.

function x=lcg(x0,a,c,m,n)

y=x0;

x=x0;

for i=1:n

y=rem(a*y+c,m);

x=[x y];

end
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Theorem 8 Period of Mixed Congruential Generators.

The Mized Congruential Generator,
Ty = (aTp_1 + c)mod(m) (2.1)

has full period m if and only if
(i) ¢ and m are relatively prime.
(i) Each prime factor of m is also a factor of a —1.
(i) If 4 divides m it also divides a — 1.

Consider m = 23! — 1 which is a prime. When m is prime, by (i) together
with the assumption that a < m, m must divide a — 1 which implies a = 1. So
for prime m the only full-period generators correspond to a = 1.

Also by Theorem 3.2.5, if m = 2F, k > 2, the conditions become that ¢ is
odd, and 4 divides a — 1. Then the generator x,, = (ax,—1 + ¢)rmod(m) has full
period 2%

Among the common linear or multiplicative generators are the following;:

m a C

231 _1 75 =16807 0 Lewis,Goodman, Miller (1969)IBM,
231 —1 630360016 0 Fishman (Simscript IT)

231 65539 0 RANDU

232 69069 1 Super-Duper (Marsaglia)

235 513 = 1220703125 0 APPLE

232 134775813 1 Turbo-Pascal,Version 7.(period=232)
259 1313 0 NAG

231 —1 630360016 0 Fishman (Simscript IT)

231 _ 1 742938285 0 Fishman and Moore

232 3934873077 Fishman and Moore

1012 — 11 427419669081 0 MAPLE

232 3141592653 1 DERIVE

232 663608941 0 Ahrens (C-RAND)

Matrix Congruential Generators.

We consider a generator of k—dimensional vectors X. Suppose the components
of X are to be integers between 0 and m — 1 where m is a power of a prime
number. If A is an arbitrary k£ x £ matrix with integral elements also in the
range {0,1,...,m — 1} then one simple generator is to begin with a seed Xy a
vector, a constant vector C and define recursively

X, = (AX,_ 1+ C) mod(m)

Such generators are most common when C = the zero vector and called
matriz multiplicative congruential generators .
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In many cases, the uniform random number generator in packages such as
Splus and Matlab are not completely described in the package documentation
For example, in Splus, the multiplicative congruential generator is used, and
then the sequence is “ shuffled” using a Shift-register generator (a special case
of the matrix congruential generator described above). This secondary process-
ing of the sequence can increase the period. In general, shuffling is conducted
according to the following steps

1. Generate a sequence X; using X;11 = a1 X;(mod mq) .

For fixed k put (T3,...,T%) = (X1,..., Xg)-

Generate, using a different generator, a sequence Y;y1 = aY;(modms).
Output the random number 77 where I = ceiling(Y;k/msz).

Increment ¢, replace 177 by the next value of X, and return to 3.

One generator is used to produce the sequence as numbers are needed to fill
k holes. The other generator is then used select which hole to draw the next
number from.

Oul LN

Example: A shuffled generator

Consider a generator described by the above steps with k = 4,m; =19, mo = 29

X(i)

2 14 7 13 11 18 6 3 9

Y(i)

11 26 17 4 16 28 14 0 3

We start by filling four pigeon-holes with the numbers produced by the first
generator so that (71,... ,7y) = (2,14,7,13). Then use the second generator to
select a random index I telling us which pigeon-hole to draw the next number
from. Since these holes are numbered from 1 through 4, we use I = [4x11/29] =
2. Then the first number in our random sequence is drawn from box 2, i.e.
z1 = To = 14, so z; = 14. This element of the vector is now replaced by 11,
the next number in the X sequence. Proceeding in this way, the next index is
I =1[4x25/29] =4 and so the next number drawn is zo = Ty = 13.  Of course,
when we have finished generating the values zq, z2, ... all of which lie between
0 and m; =19, we will usually transform them in the usual way (e.g. z;/mq)
to produce something approximating continuous uniform random numbers on
[0,1]. Because of the small value we chose for mq, this approximation will not
be very good in this case. But the advantage of shuffling is that the period of
the generator is greatly extended.

There is another approach, summing pseudo-random numbers, which is also
used to extend the period of a generator. This is based on the following theo-
rem (see L’Ecuyer (1988)). For further discussion of the effect of taking linear
combinations of the output from two or more random number generators, see

Fishman (1995, Section 7.13).

Theorem 9 summing mod m.
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If X s random variable uniform on the integers {0,... ,m—1} and if Y is
any integer-valued random variable independent of X, then the random variable
W = (X 4+ Y)(mod m) is uniform on the integers {0,...,m —1}.

Theorem 10 (period of generator summed mod m )

If X,;11 = a1 X;(mod mq) has period m; —1 and Y;11 = asY;(mod mg) has
period mg — 1, then (X; 4 Y;)(mod my) has period the least common multiple
of (m1 — 1,m2 — 1)

Example: a shuffled generator
If X;pq = 16807X;mod(23! — 1) and Vi1 = 40692Y;mod(23! — 249), then the
period of (X; — Y;)mod(23! —1) is

(231 — 2)(231 — 250)

~T.4 % 10
2 x 31 7410

This is much greater than the period of either of the two constituent generators.

Other generators.

There is, in addition to those mentioned above, a wide variety of generators
in the literature that have been proposed. Some, like the Tausworthe gen-
erators, generate pseudo-random bits {0,1} according based on a primitive
polynomial over a Galois Field and then map these bits into uniform (0,1)
numbers. Others use a non-linear map to replace a linear one. For example
we might define x,,11 = 22 mod(m) (called a quadratic residue generator) or
ZTp+1 = h(x,) mod(m) for any function h designed to result in large values and
more or less random low order bits.

Uniform (0,1) generators:

In general, random integers should be mapped into the unit interval in such a
way that the values 0 and 1, each of which have probability 0 for a continuous
distribution are avoided. For a multiplicative generator, since values lie between
1 and m—1, we may divide the random number by m. For a linear congruential
generator taking possible values {0,1,...,m — 1}, it is suggested that we use
(x4 0.5)/m.

2.3 Apparent Randomness of Pseudo-Random
Number Generators

In order that one of the above generators be reasonable approximations to inde-
pendent uniform variates it should satisfy a number of statistical tests. Suppose
we reduce the uniform numbers on {0,1,...m — 1} to values approximately
uniformly distributed on the unit interval [0, 1] by dividing through by m ( it
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may sometimes be better to eliminate 0 by first adding 1/2 and then dividing
through by m but for a multiplicative generator, since 0 does not occur, this is
unnecessary). There is a large number of tests that can be applied to deter-
mine whether the hypothesis of independent uniform variates is credible (not,
of course, whether the hypothesis is true since we know in advance it is not!).

Runs Test

Consider the hypothesis Hy : {U;, ¢ = 1,2,...} are independent identically
distributed random variables. The runs test seeks rums, either in the origi-
nal sequence or in its differences. For example, suppose we denote a posi-
tive difference between consecutive elements of the sequence by + and a neg-
ative difference by —. Then we regard may regard a sequence of the form
21 .24 .34 .37 41 .49 .56 .51 .21 .25 .28 .56 .92 .96 as unlikely because the
corresponding differences + + + + ++ — — + + + + 4+ has too few "runs”
(here R = 3 ). Under the assumption of independence, E(R) = Q"T_l and
var(R) = % and we may approximate the distribution of R with the
normal distribution for n > 25 . We can look for runs of length n in batches
in a longer sequence of variates.

Another alternative is the serial correlation test. The above test checks for
the uniformity of the marginal distribution of (z, , %,y1) and this could
obviously be generalized to variables separated by any number; say (z;, ®it;) -
One could also use the sample correlation or covariance as the basis for such a
test. For example, for j > 0,

1
Oj = E(l‘lxl_i_j + XToxoy; + .. Tp—jTn T Tpt1—5T1+ . .. :Enﬂij) (22)

The test may be based on the normal approximation to the distribution of Cj}
with mean E(C;) = 1/3, j=0, 1/4 for j > 1. Also var(C;) = %, j>
1,  war(Cy) =4/45n .

Chi-squared test.

The chi-squared test can be applied to the sequence in any dimension, for ex-
ample £ = 2. We use the generator to produce a sequence of uniform(0,1)
variables, U;,j = 1,2,...2n, and then for a partition {A;;¢ = 1,..., K} of the
unit square, we count N;, the number of pairs of the form (Us;_1,Us;) € A;.
Clearly this should be related to the area or probability P(A;) of the set A;.
Pearson’s chi-squared statistic is

K
NI A e (23)

which should be compared with a chi-squared distribution with degrees of free-
dom K —1 or one less than the number of sets in the partition. Observed values
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of the statistic that are unusually large for this distribution should lead to re-
jection of the uniformity hypothesis. The partition usually consists of squares
of identical area but could, in general, be of arbitrary shape.

Spectral Test

Consecutive values plotted as pairs (2, n+1) , when generated from a multi-
plicative congruential generator z,41 = ax, mod m fall on a lattice. A lattice
is a set of points of the form ti1e; + toes where tq,to range over all integers
and ey, eg are vectors, (here two dimensional vectors since we are viewing these
points in pairs of consecutive values (%, zn+1)) called the “basis” for the lat-
tice. A given lattice, however, has many possible different bases, and in order to
analyze the lattice structure, we need to isolate the most “natural” basis, e.g.
the one that we tend to see in viewing a lattice in two dimensions. Consider,
for example, the lattice formed by the generator z, = 23z,,_1mod 97 when we
plot adjacent pairs in 2-dimensional space. This plot is given below in Figure
?7
We could use e = (1,23) and ea = (4,—6) , or we could replace e;

by (5,18) or (9,13) etc. Beginning at an arbitrary point on the lattice as
origin (in this case, since the original point (0,0) is on the lattice, we will leave
it unchanged), we choose an unambiguous definition of e; to be the shortest
vector in the lattice, and then define e, as the shortest vector in the lattice
which is not of the form te; for integer ¢. Such a basis will be called a natural
basis. The extension to a lattice ink-dimensions is done similarly. All linear
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congruential random number generators result in points which when plotted as
consecutive k-tuples lie on a lattice. The best generators are those for which
the cells in the lattice are as close as possible to squares so that e; and ey are
approximately the same length. Note that the area of the parallelogram with
sides e; and eg is approximately a constant (1/m) whatever the multiplier a
so that a longer vector e; is associated with a shorter vector e; and therefore
the two vectors of reasonably similar length. The spectral test statistic v is the
renormalized length of the first basis vector ||e1|| . In general, for k consecu-
tive points, it is equal to min (b3 + b2 +. + .+ .+ b%)l/ 2 under the constraint
by +bya+ ... bga" ' = mq, ¢ # 0. Large values of the statistic indicate
that the generator is adequate and Knuth suggests as a minimum threshold
the value m=1/2[(k/2)!m/10]}/%. One of the generators that fails this test most
spectacularly with & = 3 1is the generator RANDU, used commonly in sim-
ulations until the 1980’s and notorious for the fact that very few hyperplanes
fit through all of the points (see Marsaglia, 1968). For RANDU, successive
triplets tend to remain on the plane z, = 6z, 1 — 92, o . This may be
seen by rotating a 3-dimensional graph of the sequence of triplets of the form
{(tn—2,Tn-1,2n);n =2,3,4,...N} as in figure 77

Lattice Structure of RANDU

For example consider the following plot of 5000 consecutive triplets from
a linear congruential random number generator with a = 383,¢ = 263, m =
10, 000.

Linear planes are evident from some angles in this view, but not from others.
In many problems, particularly ones in which random numbers are processed in
groups of three or more, this phenomenon can lead to highly misleading results.
The spectral test is the most widely used test which attempts to insure against
lattice structure. The table below gives some values of the spectral test statistic
for some linear congruential random number generators in dimension k < 7.
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3d plot for linear congruential generator,a=383,c=263,m=10000

Lt o ! « 00 LN PY
10000, - ge ® T e s .
) o ° o0 ..’."70.0‘—‘—...‘ i ."oo b
8000 - eoe ®00 . ge00®® .‘._.0' e
o ®  Leme®® °® APRRTY TR .
®° ) ao® s .
s000]. - *° v -000‘.""" R J“;.—“ e . ‘
e Tew e ot RS ece ® |
4000{.--® "'." .,-90:”.‘”.0":“‘.‘... *o_‘
® eee ® -..00“\ * . os®®
2000{ e B0 me "'.‘.Q..r . e °
ae o A
. ;

10000

Figure 2.2:
T« I e e e |
i T0[034 [04d o058 [Jord [065 [ 057 |

[2% 1] 630360016 JJOJ0.82 [ 043 [J0.78 [J0.80 ] 0.57 [ 0.68 ]
[25 1] 742938285 [ O] 0.87 [ 0.86 [ 0.86 ] 0.83 [ 0.83 [ 0.62 ]

2T 66539 [0 093 JJool [[006 016 o029 [ 045 |
252 | 69069 [TOJ046 [031 [[046 [ 055 ] 038 ] 0.50 |
[2°2 3934873077 [ 0 ]| 0.87 ] 0.83 ] 083 ] 0.84 ] 082 ] 0.72 |
[2°2 663608941 [ 0] 0.88 ] 0.60 ] 0.80 ] 0.64 ] 0.68 ] 0.61 |
2% [ 57 O] 047 037 064 JJ0.61 ] 0.74 ] 0.68 |
[29 [ 138 ToJos4 073 [J0.74 [ 058 ] 0.64 [ 052 |

2.4 Non-Uniform Random Number Generation

By far the simplest and most common method for generating non-uniform vari-
ates is based on the inverse cumulative distribution function. For arbitrary c.d.f.
F(z) , define F~Y(y) = min {x; F(x) >y} . This defines a pseudo-inverse
function which is a real inverse (i.e. F(F~!(y)) = F~}(F(y)) =y ) only in the
case that the c.d.f. is continuous and strictly increasing. However, in the general
case of a possibly discontinuous non-decreasing c.d.f. the function continues to
enjoy some of the properties of an inverse. In particular, in the general case,
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L

Figure 2.3:

Theorem 11 (: inverse transform,)

If F s an arbitrary c.d.f. and U is uniform[0,1] then X = F~Y(U)
has c.d.f. F(x) .

Proof:

The proof is a simple consequence of the fact that

U< F(z)]C[X <z]C[U<F(zx)] for all x, (2.4)

evident from Figure ?7. Taking probabilities throughout ??, and using the
continuity of the distribution of U so that P[U = F(z)] = 0, we obtain

F(z) < PX <] < F(x).

Examples of Inverse Transform
Exponential (6)

This distribution, a special case of the gamma distributions, is common in most
applications of probability. For example in risk management, it is common to
model the time between defaults on a contract as exponential (so the default
times follow a Poisson process). In this case the probability density function is
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flz) = %6_‘”/97 x>0 and f(z) =0 for x <0. The cumulative distribution

function is F(z) = 1— e */% 2 > 0. Then taking its inverse,
X = —0ln(1-U) or
X = —0lnU since U and 1 — U have the same distribution.

Cauchy (a,b)

This distribution is a member of the “stable family ” of distributions. It is

similar to the normal only substantially more peaked in the center and with
more area in the extreme tails of the distribution. The probability density
function is

b

1@ = T e

,—00 < & < 00.

See the comparison of the probability density functions in Figure 77.

Comparison of the Normal and Cauchy Probability Densities

0.4 T T T

0.35

0.3

0.25

0.2

0.15

0.1

0.05

% -3 2 1 0 1 2
The cumulative distribution function is F(z) = 3+ < arctan(Z;2) . Then

the inverse transform generator is

1
X =a+btan{r (U — 5)} or X =a+b/tan(nU)

where the second expression follows from the fact that tan(r (x—%)) = (tan )7L

Geometric (p)

The probability function is f(z) = p(1-p)*, 2 =1,2,3,.... and the cumulative
distribution function is F(x) =1 — (1 —p)i?l, 2 >0 where [z] denotes the
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integer part of x. Then

log(1-"TU) or E
log(1—p) ] b [109(1 —p)

where we write log(1 —U) = E, an exponential(1) random variable.

X = 1+] ]

Pareto (a,b)

This is one of the simpler families of distributions used in econometrics for
modeling quantities with lower bound b (often equal to 0).
F(z) = 1—[%]", @ >b>0. Then
b b

X = (17U)1/a or Ul/a

Logistic

This is again a distribution with shape similar to the normal but closer than is
the Cauchy. Indeed as can be seen in Figure 77, the two densities are almost
indistinguishable, except that the logistic is very slightly more peaked i the
center and has slightly more weight in the tails.

0.4 T

0.25 -

02

0.15 -

01

0.05 logistic(0,1.6)

normal(0,1)
0 | | | | |

-4 -3 -2 -1 0 1 2 3

The logistic cumulative distribution function is
B 1
 1+exp{—(x—a)/b}

and on taking its inverse, the logistic generator is

F()

X =a+binU/(1-U)).
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Extreme Value
F(x) =1 — exp{—exp|(x — a)/b]}. Then
X =a+blog log(U)

In Matlab, the exponential and geometric random number generators are
called exprnd, geornd respectively and the Cauchy distribution can be gener-
ated using the central student’s t generator trnd. For example, trnd(V,m,n)
generates an m X n matrix of student’s t random variables having V degrees
of freedom.

The generators of certain distributions are as described below. In each case
we produce a vector of length n with the associated parameter values.

” DISTRIBUTION ” SPLUS ” MATLAB ”
” normal ” rnorm(n, (&, o) ” normrnd (g, o, 1,n) or randn(1,n) if p=1,0 =1 ”
Student’s t rt(n,v) trnd(v, 1,n)
exponential rexp(n, A) exprnd (A, 1,n)
” uniform ” runif(n, a, b) ” unifrnd(a, b, 1,n) or rand(1,n) if a = 0,b =1 ”
” Weibull ” rweibull(n, a, b) ” weibrnd(a, b, 1,n) ”

~—

|| gamma ” rgamma(n, a, b || gamrnd(a,b, 1,n)

~—

|| Cauchy || rcauchy(n,a,b

~

( binomial | rbinom(n,m, p) || binornd(m, p, 1, n)

|| Poisson ” rpois(n, \) || poissrnd(\, 1, 1)

Inversion performs reasonably well for any distribution for which the cumu-
lative distribution function and its inverse can be found in closed form and com-
puted reasonably efficiently. This includes, as well as the distributions above,
the Weibull, the logistic distribution and most discrete distributions which are
reasonably well concentrated about the mode. However, for other distributions
such as the Poisson with large mean, or the normal, chi-squared, beta etc. other
methods need to be used.

In some circumstances, when both the c.d.f. and the probability density are
known, we might attempt to invert the c.d.f. by numerical methods. For exam-
ple, if we use the Newton-Ralphson method, we would iterate until convergence
the equation

F(X)-U
f(X)
beginning with a good approximation to X . For example we might choose the
initial value of X = X (U) by using an easily inverted c.d.f. to approximate the

true c.d.f.

Suppose F(z) is a cumulative distribution function and f(x) is the corre-
sponding probability density function. Consider the transformation

X=X- (2.5)

z(u,v) = FYu), ylu,v) = vf(F '(u),0<u<1,0<v<1
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This maps a pair of random variables (U,V) which is uniform on the unit
square into points uniformly distributed under the graph of the probability
density f. This is most easily seen by examining the inverse transformation:
U=F(X),V=Y/f(X). The variate V is not needed here if our only objective
is producing X with given c.d.f. This is standard inversion. Nevertheless,
the fact that the point (X,Y) is uniform under the density underlies one of
the simplest yet most useful methods of generating non-uniform variates, the
rejection or acceptance-rejection method. It is based on the following simple
result.

Theorem 12 . (Acceptance-Rejection)

(X,Y) is uniformly distributed in the region between the probability density
function y = f(x) and the axis y = 0 if and only if the marginal distribution of
X has density f(x) and the conditional distribution of Y given X is uniform

on [0, f(X)].
Proof

If a point (X,Y) is uniformly distributed under the graph of f(x) notice
that the probability Pla < X < b] s proportional to the area under the graph
betwen the lines at * = a and v = b. In other words Pla < X < b] is pro-

portional to f: f(x)dx. This implies that f(x) is proportional to the probability
density function of X and provided that ffooo f(x)dax =1, f(x) is the probability
density function of X. The converse and the rest of the proof is similar.

The acceptance-rejection method works as follows. Suppose g¢(z) is some
easy density for which we can generate variates say by inversion. Suppose we
wish to generate a variate X from the harder density f(z) where f(z) < cg(x)
for some ¢ >1 and for all x. We generate a point uniformly under the graph
of cg(z) and then accept that point (in particular X , the z-coordinate of the
point) if it turns out to be also below the graph of f(x) . Otherwise generate
a new point (X,Y), repeating until the condition is satisfied. See Figure 77
where it is assumed that g(z) is the uniform probability density function on
the interval [a,b]. In algorithmic form, the acceptance-rejection method is;

REPEAT: Generate independent random variables X,U where X has
density g and U is uniform on [0, 1].

: /(X)
UNTIL: U < 2%

THEN RETURN X.
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f(x)

reject

accept

a X
The Acceptance-Rejection Algorithm

The rejection method is useful if the density ¢ is considerably simpler than
f both to evaluate and to generate distributions from and if the constant ¢
is close to 1. The number of iterations through the above loop until a point
satisfies the condition has a geometric distribution with parameter p = 1/c
and mean ¢ so when c is large, the rejection method is not very effective.

Most schemes for generating non-uniform variates are based on a transforma-
tion of uniform with or without some rejection step. We have seen that the rejec-
tion algorithm is a special case. Suppose, for example, that T = (u(z,y), v(z,y))
is a one-one area-preserving transformation of the region —oco < = < 00,0 <
y < f(x) into a subset A of the unit square [0,1]? . Notice that any such
transformation defines a random number generator for the density f(x) since
we can generate a uniform variable in the set A by rejection and when the point
falls inside A apply the inverse transformation 7' to this point. The first
coordinate X will then have density f. We can think of inversion as a mapping
on [0,1] and acceptance-rejection algorithins as an area preserving mapping
on [0,1]2.

The most common distribution required for simulations in finance and else-
where is the normal distribution. Recall that if (X,Y) are independent stan-
dard normal variates, then expressed in polar coordinates,

(R,©) = (VX2+7Y2 arctan(Y/X)) (2.6)

are distributed as independent variates. /X2 4 Y2 has the distribution of the
square root of a chi-squared(2) or exponential(2) variable. The distribution of
arctan(Y /X)) is uniform on [0,27].
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It is easy to show that if (X,Y) are independent standard normal variates,
then X2 +Y?2 has the distribution of the square root of a chi-squared(2) (i.e.
exponential(2)) variable and arctan(Y/X)) is uniform on [0,2x]. This result
is left as a problem.

This observation is the basis of two of the most common normal generators.
The Box-Muller algorithm uses two uniform|0, 1] variates U, V to generate
R and © with the above distributions as

R = {=2ln(U)}?, © = 27V (2.7)
and then defines two independent normal(0,1) variates as
(X,Y) = R(cosO, sin®©) (2.8)

Note that normal variates must be generated in pairs, which makes simulations
involving an even number of normal variates convenient. If an odd number are
required, we will generate one more than required and discard one.

Theorem 13 (Normal Random Number generator)

Suppose (R,©) are independent random variables such that R? has an
exponential distribution with mean 2 and © has a U|0,2x] distribution. Then
(X,Y) = R(cos O, sin ©) is distributed as a pair of independent normal vari-
ates.

Proof. Since R? has an exponential distribution, R has probability density
function

fr(r) = di(l — 6_7’2/2) = re_”’z/z, for r > 0.
r

and © has probability density function fg(f) = % for 0 < 8 < 2m. The
Jacobian of the transformation is

a(r,0) % % 2 2\y—1/2
ey |8 o

Consequently the joint probability density function of (X,Y") is given by

9 2 2
folarctan(y/z)) fr((z* + yz)_l/z)g((;7 y)) | = %e—(w +vy°)/2

and this is joint probability density function of two independent standard nor-
mal random variables. ®

An alternative algorithm for generating standard normal variates is the
Marsaglia polar method. This is a modification of the Box-Muller generator
and avoids the calculation of sin or cos. Here we generate a point (71, Z2)
from the uniform distribution on the unit circle. This is done by rejection, gen-
erating the point initially from the square —1<2z <1, —1< 2, <1 and
accepting it when it falls in the unit circle or if 27 + 23 < 1. Note that we
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Marsaglia Polar Normal Generator
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Figure 2.4:

can replace R? by —2log(Z% + Z3) and cos(©),sin(0) by —=Z— and

NG 7

ZZ:—ZQ respectively. Thus the pair of independent standard normal variables
1 2
is given by
Z VA
(X,Y) = \/—2log(Z2 + 73) L Z__) when 72+ 72 <1

(\/Zf+Z§’\/Zf+Z§

The probability that a point generated inside the square falls inside the unit
circle is /4, so that on average around 4/7 ~ 1.27 pairs of uniforms are needed
to generate a pair of normal variates.

The speed of the Marsaglia polar algorithm compared to that of the Box-
Muller algorithm depends on the relative speeds of generating uniform variates
versus the sine and cosine transformations. The Box-Muller and Marsaglia polar
method are illustrated in Figure 77:

The normal random number generator in Matlab is called normrnd or for
standard normal randn. For example normrnd(u,o, m,n) generates a matrix
of m x n pseudo-independent normal variates with mean p and standard
deviation ¢ and rand(m,n) generates an m X n matrix of standard normal
random numbers.
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The Lognormal Distribution

If Z is a normal random variable with mean g and variance o2, then we say
that the distribution of X = e is lognormal with mean 7 = exp{u + 02/2}
and volatility parameter o. Note that a random variable with a lognormal
distribution is strictly positive, making it a good candidate for modelling stock
prices. The lognormal probability density function with mean 7 > 0 and
volatility parameter o > 0 is given by the probability density function

g(z|n, o) = Ia\l/%exp{—(log x—logmn — 02/2)2/202}. (2.9)

A random variable with a lognormal distribution is easily generated by gen-
erating an appropriate normal random variable Z and then exponentiating.

A Discrete Time Black-Scholes Model

Suppose that a stock price S;,¢ = 1,2,3,... has a lognormal distribution such
that the returns over non-overlapping independent periods are independent. Let
us assume that there is a total of N such periods in a year. In other words, we
require that S; = Sy eXP{Z§:1 Z;} for independent normal random variables
Z; which have an expected value which may depend on i. We assume that
var(Z;) = 0?/N so that the parameter o2 represents the volatility parameter
of the stock price after one year. This is a fairly natural model since S; =
Soﬂtzlezi is the product of independent returns over the ¢ periods. Assume
that the annual interest rate on a risk-free bond is  (so that the interest rate
per period is 7/N). Recall that the risk-neutral measure ) is such that the
stock price discounted to the present forms a martingale, and let us assume for
the present that under the risk neutral measure, the stock price process has a
similar lognormal representation S; = Spexp{>_'_, Z;} for independent normal
random variables Z; where the Z; may have a different mean. Full justification
of this process really relies on the continuous time version of the Black Scholes
described in Section 1.6. Note that if the process

t
—rt/N _ L L
e S, = So eXp{;(ZZ N) }

is to form a martingale, it is necessary that

t+1 t
B2Soexp{ Y (Zi = HH] = Soexp()_(Zi = ) EClexp{Zis — 57}

= Soew(L(%4 - )

and s0 exp{Zyy1 — %} must have a lognormal distribution with expected value
1. In other words, for each i the expected value of Z; — & is, under @), equal to
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—0? /2N and variance o? /N. Notice then that under @, St has a lognormal
distribution with mean

SoerT/N

and volatility parameter o4/T/N. We can price a call option with maturity T
periods from now by generating the random path S¢,t = 1,2,...T using the
lognormal distribution for St and then discounting the payoffs to the present
and then averaging the results; i.e. the value of a call with exercise price K is
an average of simulated values of

T
e TN (S, exp{z Ziy — K)T, where Z; are independent N(% —0%/(2N),0%/N).
=1

The following function simulates the stock price over the whole period until
maturity and then values a European call option on the stock by averaging.

Example 14 (simulating a call option)

Consider simulating a call option on a stock whose current value is $1.00.
The option expires in 7' days and the strike price is K. We assume constant
spot interest rate r and the stock price follows a lognormal distribution with
annual volatility o. The following Matlab function provides a simple simulation
and graph of the path of the stock over the life of the option and then outputs
the discounted payoft from the option.

function z=plotlogn(r,sigma,T, K)

% outputs the discounted simulated return on expiry of a call option (per
dollar pv of stock).

% Expiry =T days from now,

% current stock price=$1.

% r = annual spot interest rate

% sigma=annual vol. K= strike price.

N=250 ; % N is the assumed number of periods in a year.

s = sigma/sqrt(N); %s is volatility per period

mn = r/N - 5°2/2; % mean of the normal increments per period

y=exp(cumsum(normrnd(mn,s,T,1)));

y=[1y7;

x = (0:T)/N;

plot(x,y,’-’ x,K*ones(1,T+1),’y’)

xlabel("time (in years)’)

ylabel(’value of stock’)

titleCSIMULATED RETURN FROM CALL OPTION’)

7 = exp(-r*T/N)*max(y(T+1)-K, 0); % payoff from option discounted
to present



66 CHAPTER 2. BASIC MONTE CARLO METHODS

SIMULATED RETURN FROM CALL OPTION
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Figure 2.5:

Figure 77 resulted from one simulation run with » = .05,7 = 63 (about 3
months), o = .20, K = 1.

The return on this run was the discounted difference between the terminal
value of the stock and the strike price or 0.113. We may repeat this many times,
averaging the result and then discounting these returns to the present as in the
following function.

function z = simcall(r, sigma, T, K, m)

% repeats plotlogn a total of m times and averages discounted return to the
present.

z=|];

hold on

for i=1:m

z = [z plotlogn( r, sigma, T, K )J;

end

optionval=mean(z);

disp([’ option val= "num2str(optionval)])

hold off

For example to value an at the money call option with exercise price=the
initial price of the stock=$1, we type

simeall(.05,.2,63,1,100); and obtain the output option val= 0.044978. If we
repeat the identical statement, the output is different, i.e. option val= 0.049117
because each is an average obtained from only 100 simulations. Averaging over
more simulations would result in greater precision, but this function is not
written with computational efficiency in mind. We will provide more efficient
simulations for this problem later. For the moment we can compare the price of
this option as determined by simulation with the exact price according to the

0.35
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Black-Scholes formula. This formula was developed in Section 1.6. The price of
a call option at time ¢ = 0 given by

V(Sp,T) = Sp®(dy) — Ke " T/Nd(dy)
where
_ log(Sr/K) +(r + )TN log(Sr/K) + (r = G)T/N

or/T/N ? or/T/N

dq

and the Matlab function which evaluates this is the function blsprice which
gives, in this example, and exact price on entering

[CALL,PUT] =BLSPRICE(1,1,.05,63/250,.2,0)

of CALL=0.0464. With these parameters, 4.6 cents on the dollar allows
us to lock in the present price of a stock (or commodity if the lognormal model
fits) for a period of about three months. The fact that this can be done cheaply
and with ease is part of the explanation for the popularity of derivatives as tools
for hedging.

We turn now to algorithms for generating the Gamma distribution with
density

pa—1lo—z/b
f(x\a,b) = W , T > 0 (210)

Recall that the exponential (a = 1) and the chi-squared (a = v/2, b =
2, v integer) are special cases of the Gamma distribution. The following
result lists some of the properties of the Gamma distributions.

Theorem 15 (Gamma distribution,)

If X1, Xo are independent Gamma (a1,b) and Gamma (ag,b) wvariates,
then Z = X_l}—(i-]X_g and 'Y = X; 4 Xo are independent variates with the
beta (ay,az) and the Gamma (a1 +ag, b) distributions respectively. Conversely,
if (Z, Y) are independent variates with the latter pair of distributions, then
X1 =YZ Xy = Y(—Z) have the indicated Gamma distributions.

Proof. Assume that X1, Xo are independent Gamma (a1,b) and Gamma

(ag,b) wvariates. Then their joint probability density function is
fx,x, (x1,m2) = kx‘fl_lmgz_le*(mﬁzz)/b,:1:1 > 0,22 >0

where k s the constant [['(ay)[(az) |~1. Consider the change of variables x1 =

gz Oz
zy,xe = (1 — 2)y. Then the Jacobian &z %z =y. The joint probability
Oz oy
density function of (z,y) is given by
9z 9z
a o
fz,y(z,y) = fX1Xz (Zy,(l 7Z)y) B_xzz_ B_xyz_
Oz oy

= kzal*l(l — z)arlyaﬁarle*y/b,O <z<l,y>0.



68 CHAPTER 2. BASIC MONTE CARLO METHODS

and this is easily seen to be the product of two probability density functions, the
Beta(ay,as) density for Z and the Gamma(ay + az,b) probability density
function for Y. m

This result is a basis for generating gamma variates with integral shape
parameter a since this can be done by adding independent exponential variates.
Thus —log([];—, U;) generates a gamma (n, 1) variate for independent uniform
U; . The computation required for this algorithm, however, increases linearly
in the parameter a = n , and therefore alternatives are required, especially for
large a .

For large a one successful algorithm is due to Cheng (1977) and involves
rejection from the Burr XII density of the form

IAfl

= M———— 2.11
g(z) =y (2.11)
generated by inverse transform as {-1"%}1/ A . Assume that the scale parameter
of the Gamma b = 1. Matching the modes of these two distributions for large
a results in choosing 1 = a* and choosing A to minimize maz {f(x)/g(z)|—

00 < x < oo} resultsin A = /2a—1. In this case, ¢ = % and this
approaches /4/m as a — 0.

A much simpler function for dominating the gamma densities is a minor
extension of that proposed by Ahrens and Dieter (1974). It corresponds to
using

xafl
= <b 2.12
ola) = Fray o < (212)
and
baflefm
= —, >b 2.13
o) = o @ (213)
where the efficiency is determined by ¢ = [cg(z) = F(i—:_l) + f(b) and
we would clearly try to choose b corresponding as closely as possible to a
minimum of this quantity. Ahrens and Dieter use b = 1. Other distributions

that have been used as dominating functions for the Gamma are the Cauchy
(Ahrens and Dieter), the Laplace (Tadakamalla), the exponential (Fishman),
the Weibull, the relocated and scaled t distribution with 2 degrees of freedom
(Best), a combination of normal density (left part) and exponential density
(right part) (Ahrens and Dieter), and a mixture of two Erlang distributions
(Gamma with integral shape parameter « ).

Best’s algorithm generates a Student’s t variate as

Y = M (2.14)
uv1-U
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where U ~ UJ0,1] . Then Y has the Student(2) density

9(y) = ( . (2.15)

24 y2)3/2°

We then generate X as (a—1)+Yy/ 3a/2 — 3/8 and apply a rejection step
to X . See Devroye (p. 408) for details.

Most of the above algorithms are reasonably efficient only for « > 1 with
the one main exception being the combination of power of x and exponential
density suggested by Ahrens and Dieter above. Cheng and Feast (1979) also
suggest a ratio of uniforms algorithm for the gamma distribution, « > 1.

A final alternative for the case « <1 is the use of Stuart’s theorem which
states that XU'Y® has a gamma (a,1) distribution when U is uniform
[0,1] and X is Gamma (a+1,1). The Matlab function gamrnd uses Best’s
algorithm and acceptance rejection for a > 1 and for a < 1, it uses Johnk’s
generator. This consists of generating U and V' both independent U[0,1] and
setting

Ul/a

X = Ul/e 1 yi/(i—a)

conditional on the denominator UY® 4+ V1/(1=2) < 1 Multiplying by an
independent exponential (1) results in a Gamma(c, 1) random variable.
We now turn to generating the beta distribution which has density given by

flz) = %xalu —2)bh 0<a <1 (2.16)

The beta density obtains as a transformation of an F-distribution (the basis of
the transformation is the theorem on page ..), or as the distribution of order
statistics in a sample from independent uniform [0,1] variates. The variable
Z = X—I)j_ix—z indicates one method of using a gamma generator to produce
beta variates, and this is highly competitive as long as the gamma generator is
reasonably fast. The MATLAB generator is betarnd(a,b,1,n) Alternatives are,
as with the gamma density, rejection from a Burr XII density (Cheng, 1978)

and use of the following theorem as a generator (due to Johnk).
Theorem 16 (Beta distribution)

Suppose U,V are independent uniform [0,1] wvariates. Then the conditional
distribution of

Ul/a
X = s (2.17)

given that UY*+V1/® <1 is Beta (a,b). Similarly the conditional distribution
of UYe given that U'* +V1/* <1 is Beta (a+1,b) .
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Proof. Define a change of variables

X = —Ul/a Y :Ul/a + Vl/b
Ul/a + V1i/b’
oo U = (YX)®and V =[(1-X)Y]°

so that the joint probability density function of (X,Y) is given by

du  Ju
fxy(@y) = fov(ye),[(1-2)y°) % %‘
ox oy

= aby®™ 1271 — 2)*7! provided 0 < # <1 wheny <1

orprovidedlfé < x<§ when 1 <y < 2.
Notice that in the case y < 1, the range of values of x is the unit interval
and does not depend on y and so the conditional probability density function of
X given Y =y is a constant times 2*71(1 — z)*~1, i.e. is the Beta(a,b)
probability density function. The rest of the proof is similar. m

A generator exploiting this theorem produces pairs (U, V) until the condi-
tion is satisfied and then transforms to the variable X. However, the probability
that the condition is satisfied is %%Q which is close to 0 unless «a,b are
small, so this procedure should be used only for small values of both parame-
ters. Theorems 3.3.12 and 3.3.15 together provide an algorithm for generating
Gamma variates with non-integral « from variates with integral ones. For
example if X is Gamma (4,1) and Z is independent Beta (3.4,.6) then
XZ is Gamma (3.4,1).

There are various other continuous distributions commonly associated with
statistical problems. For example the Student’s t-distribution with v degrees

of freedom is defined as a ratio 4/ %Z where Z is standard normal and X is

. X-1/2 .
gamma (%, 2). Alternatively, we may use \/17\/? where X is generated
X(1-X)

as a symmetric beta (v/2, v/2) variate.

The Symmetric Stable Laws.

A final family of distributions of increasing importance in modelling is the sym-
metric stable family. These are unimodal densities, symmetric about their mode,
and roughly similar in shape to the normal or Cauchy distribution (both spe-
cial cases). They are of considerable importance in finance as an alternative
to the normal distribution, because they tend to fit observations better in the
tail of the distribution than does the normal. However, this is a more com-
plicated family of densities to work with; neither the density function nor the
cumulative distribution function can be expressed in a simple closed form. Both
require a series expansion. They are most easily described by their character-
istic function, which, upon setting location equal to 0 and scale equal to 1 is

EeXt — ¢ 111" where here i is the complex number i2 = —1. The parameter
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0 < a < 2 indicates what moments exist, for except in the special case a = 2
(the normal distribution), moments of order less than « exists while moments
of order « or more do not. Of course, for the normal distribution, moments
of all orders exist. The stable laws are useful for modelling in situations in
which variates are thought to be approximately normalized sums of indepen-
dent identically distributed random variables. To determine robustness against
heavy-tailed departures from the normal distribution, tests and estimators can
be computed with data simulated from a symmetric stable law with « near 2.
The probability density function does not have a simple closed form except in
the case @ = 1 (Cauchy) and o = 2 but can be determined from the series
expansion of the probability density

fulw) = SO (e EUEE D) o by

meak! c e
k=0

where ¢ is a scale parameter. Especially for large values of x, this probability
density function converges extremely slowly. According to Chambers, Mallows
and Stuck, (1976), such a variate can be generated in the case « %1,

cos(U(1 — a))

1 /
—1/a
= ] (cos U ) (2.18)

X = sin(aU){

where U is uniform [-7/2, /2] and E is standard exponential and inde-
pendent. The case « =1 is the Cauchy X = tan(U). Since the tan
is a relatively slow operation, this is sometimes replaced by the ratio of Nor-
mal variates produced by Marsaglia’s polar algorithm. In other words we use
X =V1/Va where V; ~ U[-1,1] conditional on V2 + VZ < 1 as a standard
Cauchy variate.

Example: Stable random walk.

Generate a random walk with 10,000 time steps where each increment is dis-
tributed as independent stable random variables having parameter 1.7.
The following Matlab function was used

function s=stabrnd(a,n)

u=(unifrnd(0,1,n,1)*pi)-.5%pi;

e = exprnd(1,n,1);

s=sin(a*u).*(cos((1-a)*u)./e) . (1/a-1) .*(cos(u)) . (-1/a)

Then the command

plot(1:10000, cumsum(stabrnd(1.7,10000)));
resulted in the Figure 77. Note the occasional very large jump which dominates
the history of the process up to that point.
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2.5 Generating Discrete Distributions

Many of the methods described above such as inversion and rejection for gen-
erating continuous distributions work well for discrete random variables. For
example, if X is a discrete distribution taking values on the integers with
probability function f(x), x = 0, 1, ... we may use rejection to generate a
continuous variate Y which has the same cumulative distribution function at
the integers Fy(j) = Fx(j) and thenset X = [Y]| the integer part of Y.

Inversion for discrete variates often requires, for reasonable efficiency, some
setup costs. For example if X hasc.d.f. F(x), x = 0, 1, ... we wish to output
an integer X satisfying F(X —1) < U < F(X) and the most obvious technique
for finding such a value of X is to search sequentially through the potential
values0,1,2,. ... Figure 77 is the search tree for inversion for the distribution on
the integers 1,...5 given by (p1,p2,p3,p4,p5) = (0.11,0.30,0.25,0.21,0.13)
We generate an integer by repeatedly comparing a uniform [0,1] variate U with
the value at each node, taking the right branch if it is greater than this threshold
value, the left if it is smaller. The number of values searched will average to
E(X) which for many discrete distributions can be unacceptably large.

An easy alternative is to begin the search at the median m (or mode or
mean) of the distribution, searching to the left or right depending on the value
of U asin Figure 77.

This results in searching an average of E[|X + 1 —m|] before obtaining the
generated variable often substantially smaller than F(X) when the mean is



2.5. GENERATING DISCRETE DISTRIBUTIONS

A1
N
41
N
/ :
3

66

AN
.87
4/ \5

istribution: .11 .30 .25 21 .13

Figure 2.7:

1

/

87

/ NN
\2

[m

Figure 2.8:

73



74 CHAPTER 2. BASIC MONTE CARLO METHODS
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large but still unacceptably large when the distribution has large variance. An
optimal binary search tree for this distribution is graphed in Figure ?7. This
tree has been constructed by joining the two smallest probabilities to form a
new node with weight a combination of the two, and hence working from the
leaves to the root of the tree. Equivalently, we use inversion after a re-ordering
of the values from those with smallest to those with largest probability.

The leaves of the tree are the individual p; and the internal nodes are sums
of the weights of the children. If D; represents the depth of the ¢'th leaf, then
the average number of comparisons to generate a single X is ) . p;D; and
the procedure for constructing this tree provides an optimal algorithm in the
sense that this quantity is minimized. It is interesting to note that an optimal
binary search tree will reduce the average number of comparisons from F(X)
for ordinary inversion to less than 1-+4[loge(1+ E(X))] .

Another general method for producing variates from a discrete distribution
was suggested by Walker (1974, 1977) and is called the alias method. Apart
from the time required to set up an initial table of aliases and aliasing proba-
bilities, the time required to generate values from a discrete distribution with
K supporting points is bounded in K, unlike inversion or binary search which
increase as E(X) increases. The idea is to reduce any discrete distribution to
a uniform mixture of two-point distributions. For a discrete distribution of the
form pi,po,. .. pg on the integers 1, 2, ... K , we seek a table of values
of A(i) and associated alias probabilities ¢(i) so that the following algorithm
generates the desired discrete distribution.

GENERATE I UNIFORM ON ({1,... K}.
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WITH PROBABILITY ¢(I),OUTPUT X = I, OTHERWISE, X = A(I).

An algorithm for producing these values of A(i) , ¢(i) is suggested by
Walker(1977) and proceeds by reducing the number of non-zero probabilities
one at a time.

1. Put ¢ = Kp; for all i.

2. LET m be the index of min{q;;q; > 0} and let M be the index of the
maximuin.

3. SET A(m) = M and fix q(m) .

4. Replace (q1,...qx) by (q1, ., @m—1,9m+1, a0 — (1 — qm). . . (so the
component with index m is removed).

5. Return to 2 unless all remaining ¢; = 1 or the vector of g¢;’s is empty.

Figure 7?7 shows the way in which aliasing iteratively adjusts a probability
histogram to form a rectangle with base K. We construct the vector of aliasing
probabilities and aliases for the distribution vector

pi = (17 '27 '37 4)7 Z - 1,. 4

This results in A7) = (4,3,z,z) and ¢; = (.4,.8,1,1) respectively.
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The Poisson Distribution.
Consider the Poisson distribution
ATe—?
flz) = 25— 2 = 0,1,... (2.19)

z!

The simplest generator is to use the Poisson process. Recall that if points are
distributed on the line in such a way that the spacings between consecutive
points are independent exponential(1), then the resulting process is a Pois-
son process with rate 1. Thus, the number of points in an interval of length
A has the desired Poisson () distribution. So for small A, we could use
inf{X;Z‘;:il(fln U;) > A} or equivalently

X+1

inf{X; [[ Ui < e} (2.20)

i=1

Once again this generator requires time which grows linearly with A and
so an alternative for large A\ is to use rejection. Various possibilities have
been suggested for dominating function, from the logistic distribution(Atkinson
(1979)) to a normal distribution with exponential right tail (cf. Devroye, lemma
3.8, page 509). A simple all-purpose alternative seems to be a table-mountain
function (cf. Stadlober (1989)), essentially a function with a flat top and tails
that decrease as 1/z2.

A simple alternative for generating Poisson variates that is less efficient but
simpler to implement is to use the Lorentzian, or truncated Cauchy distribution
with probability density function

Co

g(x|a,b) =
where ¢ is the normalizing constant. A random variable is generated from this
distribution using the inverse transform method; X = a+ b tan(nU), , where
U ~ U[0,1]. Provided that we match the modes of the distribution a = A and
put b= V2 , this function may be used to dominate the Poisson distribution
and provide a simple rejection generator. The Matlab Poisson random number
generator is poissrnd(A, m,n) which generates an m X n matrix of Poisson(\)
variables. This uses the simple generator 77 and is not computationally efficient
for large values of \.

The Binomial Distribution

For the Binomial distribution, we may use any one of the following alternatives:
(1) >0, I(U; <p), U; ~ uniform|0,1]
(2) inf{X; Z;X:l_l G; >n}, G; ~ Geometric(p)

(3) inf{X; Z;X:l_l n—_}iﬁ > —log(1 —p)}, E; ~ Exponential(l).
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Methods (1) and (2) are more efficient when n is large but np fairly small.
Of course for large n and np sufficiently small (e.g. <1), we can replace
the Binomial distribution by its Poisson (A = mp) approximation. For large
mean, a rejection method is required. Again we may use rejection beginning
with a Lorentzian distribution, choosing a = np, b = /2np(1 —p) in the
case p < 1/2. When p > 1/2, we simply reverse the roles of “failures”
and “successes”. Alternatively, a dominating table-mountain function may be
used (Stadlober (1989)). The binomial generator in Matlab is the function
binornd(n,p,j,k) which generates an n x k matrix of binomial(n,p) random
variables. This uses the simplest form (1) of the binomial generator and is not
computationally efficient for large n.

2.6 Simulating Stochastic Partial Differential
Equations.

Consider a derivative product whose underlying asset has price X; which
satisfies a diffusion equation. Then if the derivative payoff function depends
only on the current time and the current value of the asset, the Feynman- Kac
theorem indicates that its value is an expectation of the form

V(S,t) = E[VO(XT)exp{—/t r(Xy,v)dv} | Xy = 9] (2.22)

where r(Xy,t) is the current spot interest rate at time t. In most cases,
this expectation is impossible to evaluate analytically and so we need to resort
to numerical methods. If the spot interest rate is function of both arguments
(Xy,v) and not just a function of time, then this integral is over the whole
joint distribution of the process X,, 0 < v < T and simple one-dimensional
methods of numerical integration do not suffice. In such cases, we will usually
resort to a careful simulation. The simplest version requires simulating a number
of sample paths for the process X, , evaluating 77 and averaging the results
over all simulations. We begin by discussing the simulation of the process X,,.

Many of the stochastic models in finance reduce to simple diffusion equation
(which may have more than one factor or dimension). Since most of the models
in finance are Markovian, we restrict to the Markov diffusion model of the form

dXt = CL()(LL7 t)dt + (T(Xt, t)th (223)

with initial value for Xy where W is a driving standard Brownian motion pro-
cess. Solving deterministic differential equations can sometimes provide a solu-
tion to a specific problem such as finding the arbitrage-free price of a derivative.
In general, for more complex features of the derivative such as the distribution
of return, important for considerations such as the Value at Risk, we need to
obtain a solution {X;, 0 <t < T} to an equation of the above form which is
a stochastic process. Typically this can only be done by simulation. One of the
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simplest methods of simulating such a process is to adopt the crudest interpre-
tation of the above equation, that is that a small increment X;i;, — Xy in the
process is approximately normally distributed with mean given by a(Xy,t)h
and variance given by o02(X,,t)h. We generate these increments sequentially,
beginning with an assumed value for Xy, and then adding to obtain an ap-
proximation to the value of the process at discrete times t =0, h,2h,3h,....
Between these discrete points, we can linearly interpolate the values. Approxi-
mating the process by assuming that the conditional distribution of X, — X
is N(a(Xg,t)h, 02(Xy,t)h) is called Euler’s method by analogy to a simple
method by the same name for solving ordinary differential equations. Given
simulations of the process satisfying (3.2) together with some initial conditions,
we might average the returns on a given derivative for many such simulations,
(provided the process is expressed with respect to the risk-neutral distribution),
to arrive at an arbitrage-free return for the derivative.

In this section we will discuss the numerical solution, or simulation of the
solution to stochastic differential equations.

Letting t; = iAx, the equation ?? in integral form implies

tit1 tit1
X, = X, + 1 a(X,, s)ds + /t (X, 8)dIW, (2.24)

TIto’s lemma can be written in terms of two operators on twice (with respect to
x) differentiable functions f: In particular,

df (X, t) = L°fdt + L' fdW, where

s 9 1,9 0
L=y 3% g T
and
0
L'=0—.
(75';1:

Then for any twice differentiable function f,

tit1

L (Kas)ds+ [ L (X s)aW
t;
(2.25)

tit1

f(th+Lati+1) = f(Xtuti) + /

t;

By substituting in each of the integrands in 77?7 using the above identity and
iterating this process we arrive at the Ito-Taylor expansions (e.g. Kloeden and
Platen, 1992). For example,

tit1 tit1 s s
/ a(X,, s)ds — / {a(Xo, ) + / L0a(Xy, u)du + / La(Xy, u)dW, ds
t t

i t; t; i
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tit1 s tit1 s
~a(Xy,, t) At + Loa(Xt“ti) / / duds + Lla(Xt,L, tz)/ / dW,ds
1 7] t; t; t;
(2.26)

The first term in 7?7, a(Xy,)At , is an initial approximation to the desired inte-
gral. The rest, we may regard as an error term for the moment, and it has smaller
order. For example it is easy to see that the second term is O(At)? because
the integral j:f“ ftSL duds = (At)?/2. The third term in ?? is O(At)3/2  since

f;_”l fts dW,ds = ;_”1 (t;41—u)dW, and this is a normal random variable with

mean () and variance [, tiHl (tir1 —u)?du = (At)3/3. The simplest Euler approxi-
mation to the distribution of the increment assumes that AX has conditional
mean a(Xy,,t;)At. Similarly

tit1

ti+1 S S
/ 0(Xs, 8)dW, = {o(X,, t:) + / L0 ( Xy, u)du + / L'o(Xy,u)dW, ydW,

t; t; t; t;
tit1 s tit1 s
~ U(Xti , ti)AWt + LOU(X“ , ti) / / dudWg + LIU(X“ , ti) / / AW, dW
1 7] t; 1 7] 1 7]

{T(Xti s tz)%U(XtL s tz)
2

= 0(Xy,, ;) AW, + [(AW,)? — At] + O(At)3/?

Since the integral [/"' [ dW,dW, = 1[(AW,)? — At]. and [/ [ dudW, =
O(At)%/2. Putting these terms together, we arrive at an approximation to the

increment of the form

o (X, ti) Zo(Xy,, ts)
2

AXy = a(Xy,, t) At + o(Xy, 1) AW + [(AW;)? — At] + O(At)3/2

(2.27)

which allow an explicit representation of the increment in the process X in terms
of the increment of a Brownian motion process AWy ~ N(0, At). This is called
the Milstein approximation. After the Euler scheme, it is the second Ito-Taylor
approximation to a diffusion process. Obviously, the increments of the process
are quadratic functions of a normal random variable and are no longer normal.
The error approaches 0 at the rate O(At)3/2 in probability only. This does not
mean that the trajectory is approximated to this order but that the difference
between the Milstein approximation to a diffusion and the diffusion itself is
bounded in probability when divided by At3/2  and as we let At — 0. Higher
order Taylor approximations are also possible, although they grow excessively
complicated very quickly. See the book by Kloeden and Platten for details.
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Example: Down-and-out-Call.

Consider an asset whose price follows a geometric Brownian motion process
dSt = ,LLStdt + O'Stth (228)

for a standard Brownian motion process W; . A down-and-out call option with
exercise price E provides the usual payment of a call option if the asset never
falls below a given out barrier b . Use simulation to price such an option with
exercise price FE , current asset price S , time to maturity 7 — ¢ , and out
barrier b < S. Assume constant interest rate r, and evaluate the expected
return from the risk neutral process, the one with the drift term replaced by
rSidt. Then discount this return to the present by multiplying by e~r(T=10),
Compare with the Black-Scholes formula as b — 0.

A geometric Brownian motion is most easily simulated by taking logarithms.
For example if S; satisfies the risk-neutral specification

dSt - TStdt + O'Stth (229)
then Y; =log(S;) satisfies
dY, = (r — 02 /2)dt + cdW;. (2.30)

This is a Brownian motion and is simulated with a normal random walk. Inde-
pendent normal increments are generated AY; ~ N((r — 02/2)At, 02At) and
their partial sums used to simulate the process Y; . The return for those options
that are in the money is the average of the values of (e¥” — E)* over those
paths for which min{Ys;t < s < T} > log(b). The following Matlab functions
were used.

function z=barrier(r,sigma,dt,T, e,b)
n=T/dt;
sigma = sigma*sqrt(dt);
mn = rxdt - sigma~2/2;
y=exp (cumsum(normrnd (mn, sigma,n,1)));
x = (1:n).*dt;
plot(x,y,’-’,x,e*ones(1,n),’y’,x,b*xones(1,n),’b’)
z = max(y(n)-e, 0);
if min(y) < b

z=0;
end;

function z = simbarr(r, sigma, dt,T, e,b, m)
hold on
for i=1:m
z(i) = barrier( r, sigma,dt,T,e,b);
end
disp([‘mean value=’ num2str(exp(-r*T)*sum(z)/m)])
hold off
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For example when r = .05,0 = .2, At =.004,T —t = .25, E = 1,b = .9, this
is run with the command

simbarr(.05, .2, .004, .25, 1, .9, 2)

for a total of 2 simulations, both, in this case, (see Figure ??) ending in the
money.

2.7 Problems

1. Counsider the mixed generator z, = (axp—1 + 1)mod(m) with m = 64.
What values of a result in the maximum possible period and which
generators appears more random?

2. Consider the multiplicative generator with m = 64. What values of
a result in the maximum possible period and which generators appears
more random?

3. Consider a shuffled described in section XXX with &£ =4,m; = 19,my =
20X(1)) =2147131118639,Y(1) =11251741628140 3.

We start by filling four pigeon-holes with the numbers produced by the
first generator so that (71,...,7y) = (2,14,7,13). Then use the second
generator to select a random index I telling us which pigeon-hole to draw
the next number from. Since these holes are numberd from 1 through
4, we use I = [4 x 11/29] = 2. Then the first number in our random
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sequence is drawn from box 2, i.e. z1 =T, = 14, so z; = 14. This element
of the vector is now replaced by 11, the next number in the X sequence.
Proceeding in this way, the next index is I = [4 x 25/29] =4 and so the
next number drawn is zo = Ty = 13. Of course, when we have finished
generating the values z1, z2,... all of which lie between 0 and m; = 19,
we will usually transform them in the usual way (e.g. z;/m1) to produce
something approximating continuous uniform random numbers on [0,1].
Because of the small value we chose for my, this approximation will not be
very good in this case. But the advantage of shuffling is that the period
of the generator is greatly extended. Determine the period of the shuffled
random number generator above and compare with the periods of the two
constituent generators.

. Prove: If X is random variable uniform on the integers {0,... ,m—1}

and if Y is any integer-valued random variable independent of X, then
the random variable W = (X +Y)(mod m) is uniform on the integers
{0,... ,m—1}.

. Consider the above quadratic residue generator z,; = 22 mod(m) with

m = 4783 x 4027. What is the period of the generator starting with seed
xg = 196, or with seed xg = 4007

. Verify that for the serial correlation statistic C; wvar(C;) = =, j>

Tddn>
1,  war(Coy) =4/45n .

. Consider the turbo-pascal generator x,1 = (134775813x,, + 1) mod 232,

Generate a sequence of length 5000 and apply the serial correlation test.
Is there evidence of dependence?

. Generate 1000 daily “returns” X;,i = 1,2,...,1000 from each of the two

distributions, the Cauchy and the logistic. In each case, assume that
a = 0,b = 0.1. Graph the total return over an n day period versus n. Is
there a qualitative difference in the two graphs? Repeat with a graph of
the average daily return.

. Briefly indicate an efficient algorithm for generating one random vari-

able from each of the following distributions and generate such a ran-
dom variable using one or more of the uniform[0,1] random numbers.

(Ui ] 0.794 [ 0-603

04121 0.874 [ 0.268 ] 0.990 [ 0.059 | 0.112 | 0.395 |

(a) X~ U[-1,2].
. . 1. . . 3
(b) ararldom variable X with probability density function f(z) = 1—6;1:1/ 2
T <

(c) A discrete random number X having probability function P[X =
z]=(1—-p)*p, ©=0,1,2,....p=0.3.

(d) A random variable X with the normal distribution, mean 1 and
variance 4.
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(e) A random variable X with probability density function
f(x) =ca?e™, 0<z < 1
for constant ¢ = 1/(2 — 5e71).

(f) A random variable X with the following probability function: PIX=a 01 02 03

10. Consider the multiplicative pseudo-random number generator

Tpy1 = axy, mod(150)

starting with seed xg = 7. Try various values of the multiplier ¢ and
determine for which values the period of the generator appears to be max-
imal.

11. Consider the linear congruential generator
Tpy1 = (axy, + ¢) mod(28)

What is the maximal period that this generator can achieve when ¢ =1
and for what values of a does this seem to be achieved? Repeat when
c=0.

12. Evaluate the following integral by simulation:
1
/ (1—22)32da.
0

13. Let U be a uniform random variable on the interval [0,1]. Find a function
of U which is uniformly distributed on the interval [0,2]. The interval
[a,b]?

14. Evaluate the following integral by simulation:

2
/ 2324 — )% de.

0

15. Evaluate the following integral by simulation:

o0 2
/ e ¥ dx.
—Oo0

(Hint: Rewrite this integral in the form 2 fooo e~ dr and then change
variables to y = z/(1 + z))

0.4
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Evaluate the following integral by simulation:

1,1 i
/ / etV dudy.
0 JO

(Hint: Note that if Uy, Us are independent Uniform[0,1] random variables,
E[g(Uy,Us)] = fol fol g(x,y)dzdy for any function g).

Find the covariance cov(U,eV) by simulation where U is uniform|0,1]
and compare the simulated value to the true value.

Find by simulation the area of the region {(z,y);—1 <z <1, y > 0,

V1 —222 <y < +/1—2z%}. The boundaries of the region are graphed
below.

For independent uniform random numbers U;,Us .. define the random
variable N = minéimum{n;y ., U; > 1}.

Estimate E(N) by simulation. Repeat for larger and larger numbers of
simulations. What do you think is the value of E(N)?

Give a precise algorithm for generating observations from a distribution

with probability density function
(- 1)3

for 1 <z < 3. Record the time necessary to generate the sample mean
of 5,000 random variables with this distribution. .
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Give a precise algorithm for generating observations from a distribution
with probability density function KCUZ_—OQOQ for 20 < x < 40. Record the
time necessary to generate the sample mean of 5,000 random variables

with this distribution. .

Give a precise algorithm for generating observations from a distribution
with a density function of the form f(z) = cazle*/? for z > 0 and
appropriate constant c. Record the time necessary to generate the sample
mean of 5,000 random variables with this distribution. .

Give a precise algorithm for generating observations from a discrete dis-
tribution with P[X = j] = (2/3)(1/3)); j = 0,1,...Record the time
necessary to generate the sample mean of 5,000 random variables with
this distribution. .

Give a precise algorithm for generating observations from a distribution
with probability density function f(z) = e *,0 <z < co. Record the
time necessary to generate the sample mean of 5,000 random variables
with this distribution. Compute as well the sample variance and compare
withe the sample mean. How large would the simulation need to be if
we wanted to estimate the mean within 0.01 with a 95% confidence
interval?

Give a precise algorithm for generating observations from a distribution
which has probability density function f(z) = 23,0 < z < v/2 . Record
the time necessary to generate the sample mean of 5,000 random variables
with this distribution. Determine the standard error of the sample mean.
How large would the simulation need to be if we wanted to estimate the
mean within 0.01 with a 95% confidence interval?

Give a precise algorithm for generating observations from a discrete dis-
tribution with probability function

x= o 1 2 3 4 5
PX=x]= 0.1 02 025 03 01 0.05

Record the time necessary to generate the sample mean of 5,000 random
variables with this distribution. Compare the sample mean and variance
with their theoretical values. How large would the simulation need to be
if we wanted to estimate the mean within 0.01 with a 95% confidence
interval?

Give an algorithm for generating observations from a distribution which
has cumulative distribution function function F(z) = E'L;"’m—a, 0<
x < 1. Record the time necessary to generate the sample mean of 5,000
random variables with this distribution. (Hint: Suppose we generate X

with c.df. Fi(z) and Xo with c.d.f. Fyp(x) , X3 with c.d.f. Fs(z) We
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then generate J = 1,2, or 3 such that P[J = j| = p; and output the
value Xy. What is the c.d.f. of the random variable output?)

Consider independent random variables X; with c.d.f.

Fi(z) = a2 i=1
x
-1
G N
e—1
= xze®1 1=3

)

for 0 <z < 1. Explain how to obtain random variables with c.d.f.G(z) =
03, Fi(x)  and G(X) =115, (1 - Fy(x)).

(Hint: consider the c.d.f. of the minimum and maximum).

Suppose we wish to estimate a random variable X having c.d.f. F(x)
using the inverse transform theorem, but the exact cumulative distribution
function is not available. We do, however, have an unbiased estimator
ﬁ(m) of F(x) sothat 0 < ﬁ(m) <1 and F ﬁ(m) = F(x) for all z. Show
that provided the uniform variate U is independent of F (z), the random
variable X = ﬁ_l(U) has c.d.f. F(x).

Give an algorithm for generating a random variable with probability den-
sity function

f(x) =30(z® — 223 +2%), O0<z<1
Discuss the efficiency of your approach.

The interarrival times between consecutive buses at a certain bus stop are
independent uniform|0, 1] random variables starting at clock time ¢ = 0.
You arrive at the bus stop at time ¢ = 1. Determine by simulation the
expected time that you will have to wait for the next bus. Is it more than
1/2 7 Explain.

What is the probability density function of X = a(l — VU ) where U ~
Ulo,1]?
Develop an algorithm for generating variates from the density:

flz) = 2/ymere=" =/ s

Develop an algorithm for generating variates from the density:

2

eTT 4 7T ?

flx) =

—o<r<x

Explain how the following algorithm works and what distribution is gen-
erated.
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36.

37.

38.

39.

40.

.LET I =0
b) Generate U ~ U[0,1] andset T =U.

a)

)
(¢c) Generate U* . IF U <U* return X =1 +1T.
(d)

)

(
(
d) Generate U . If U <U* go toc.
() I=I+1. Gotobh

.Obtain generators for the following distributions:

(a) Rayleigh

T _22/202
(b) Triangular
fa)=20-50<a< (2.32)
z) =~ ~),0<z<a .

Show that if (X,Y) are independent standard normal variates, then
VX2 4+Y?2 has the distribution of the square root of a chi-squared(2) (i.e.
exponential(2)) variable and arctan(Y/X)) is uniform on [0, 27].

Generate the pair of random variables (X,Y)
(X,Y) = R(cosO, sinO) (2.33)

where we use a random number generator with poor lattice properties
such as the generator z,+1 = (383z, + 263) mod(10,000) to generate
our uniform random numbers. Use this generator together with the Box-
Mueller algorithm to generate 5000 pairs of independent random normal
numbers. Plot the results. Do they appear independent?

Assume that a option has payoff at expiry one year from now (T = 1)
given by the function ¢(St) = 0, St < 20, and g(St) = %,ST > 20.
What is the approximate present value of the option assuming that the
risk-neutral interest rate is 5 percent, the current price of the stock is 20,
and the annual volatility is 20 percent. Determine this by simulating 1000
stock prices S and averaging the discounted return from a corresponding
option. Repeat with 100000 simulations. What can you say about the
precision?

(Log-normal generator)Describe an algorithm for generating log-normal
random variables with probability density function given by

g(xn, o) = ﬁewp{—(logm —logn — 0%/2)? /252 }. (2.34)
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(hedging with futures). T need to buy 1000 barrels of heating oil on Novem-
ber 11998. On June 1, I go long a December futures contract which allows
me to purchase 1000 barrels of heating oil on December 1 for $20 per bar-
rel. Suppose we have observed that the price of heating oil is lognormally
distributed with monthly volatility 2 percent. The spot interest rate is
presently 5 percent per annum

(a) What is the value of the oil future on November 1 as a function of
the current price of oil?

(b) Determine by simulation what is the standard deviation of the value
of my portfolio on November 1 assuming I sell the futures contract
at that time.

(¢) How much difference would it have made if T had purchased the op-
timal number of futures rather than 10007

(Multivariate Normal generator) Suppose we want to generate a mul-
tivariate normal random vector (Xi,Xs, ..., Xx) having mean vector
(ft1, -, ftpy) and covariance matrix the N x N matrix X. The usual
procedure involves a decomposition of X into factors such that A’A = X.
For example, A could be determined from the Cholesky decomposition,
in Matlab, A=chol(sigma), which provides such a matrix A which
is also upper triangular, in the case that X is positive definite. Show
that if Z = (73, ..., Zy) is a vector of independent standard normal ran-
dom variables then the vector X = (pq,...,tpy) + ZA has the desired
distribution.

(Ahrens-Dieter) Show that the rejection algorithm of Ahrens and Dieter
(b = 1) has rejection constant ¢ that is bounded for all e(0,1] and
approaches 1 as a — 0.

What distribution is generated by the following algorithm where U is
uniform[0, 1] and V is uniform [—+/2/e, \/2/e]?

(a) GENERATE U,V

(b) PUT X =V/U

(c) IF —In(U) < X2/4, GO TO a.; ELSE RETURN X.

(Euler vs. Milstein Approximation) Use the Milstein approximation with
step size .001 to simulate a geometric Brownian motion of the form

dS; = .078dt + .25, dW;

Compare both the Euler and the Milstein approximations using different
step sizes, say At = 0.01,0.02,0.05,0.1 and use each approximation to
price an at-the-money call option assuming Sy = 50 and expiry at T' =
0.5. How do the two methods compare both for accurately pricing the call
option and for the amount of computing time required?
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46. (Cox, Ingersoll, Ross model for interest rates) Use the Milstein approxi-
mation to simulate paths from a CIR model of the form

d’f‘t = k(b - Tt) + 0'\/7"_tth

and plot a histogram of the distribution of r; assuming that rg = .05 for
b=0.10. What is the effect of the parameters k& and b?
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Chapter 3

Variance Reduction
Techniques.

3.1 Introduction.

Suppose you are assigned the task of simulating the behaviour of the following
model used to describe an asset price.

Example.

A stock market opens at 10 a.m. and closes at 4:00 p.m. Qwver that period, it
is assumed the market price of the asset follows a geometric Brownian motion
with parameters (r,o02). However, during market hours a significant news event
breaks (e.g. a change in interest rates, a statement from the Federal Reserve,
a political event, a relevant major announcement, weather event etc. ) occa-
stonally according to a Poisson process with parameter A and when it does
there is an immediate adjustment or “shock” altering the price of the asset by
a an amount which is lognormally distributed with mean 1, and parameter o3.
When the market is closed, there is still trading on the global market, although
at a lower level, say as a geometric Brownian motion with parameters r, 0[2).
The “shocks” occur in this period at a lower rate, say Ag. Ezxplain how you
would simulate this process, say for a 30 day period, and use the simulation to
price a FEuropean Put option on this asset.

In such a problem, the quantity of interest, often called the performance
measure in the simulation literature, is an expected value of complex function.
The function is usually written as a computer program involving some simulated
random variables, and whether our random variables are generated by inverse
transform, or acceptance-rejection or some other method, it is ultimately a
function of a number of uniform variates Uj,Us,. .. which are input to the
simulation. These uniform random variables determine such quantities as the
normally distributed increments of the logarithm of the process and the time

91



92 CHAPTER 3. VARIANCE REDUCTION TECHNIQUES.

and the magnitude of the “shocks”. The simulation is being used to estimate
an integral

E(T) = // /T(ul,u2,...ud)du1du2...dud (3.1)

over the unit cube in say d dimensions where d is large, and where T is, for
example, the expected return from the option under the risk-neutral measure.
We now study techniques for evaluating such integrals, beginning with the much
simpler case of an integral in one dimension.

Discrete Event Simulation.

Simulation of processes such as networks or queues are examples of discrete event
simulations(DES), designed to describe systems that are assumed to change
instantaneously in response to sudden or discrete events. These are models
that can be categorized by a state, with changes only at discrete time points.
In modeling an inventory system, for example, the arrival of a batch of raw
materials can be considered as such an event which changes the state of the
system. A system driven by a system of differential equations in continuous
time is an example of a system that is not a DES because the changes occur
continuously in time. Typically in a system we identify one or more performance
measures by which the system is to be judged, and parameters which may be
adjusted to improve the system performance. Examples are the delay for an air
traffic control system, waiting times for bank teller scheduling system, delays
or throughput for computer networks, response times for the location of fire
stations or supply depots, etc.

One approach to DES is future event simulation which proceeds by schedul-
ing one or more future events, choosing the future event in the future event set
which has minimum time, updating the state of the system and the clock accord-
ingly and then repeating this whole procedure. A stock price which moves by
discrete amounts may be considered a DES. In fact this approach is often used
in valuing american options by monte Carlo methods when we use a binomial
or trinomial tree.

3.2 Variance reduction for one-dimensional Monte-
Carlo Integration.

Consider evaluating an integral of the form 6 = f01 f(u)du by Monte-Carlo
methods. One simple approach, called crude Monte Carlo is to randomly sample
U; ~ U[0,1] and then average to obtain 6 = L5 f(U;) . This average is
obviously an unbiased estimator of the integral and the variance of the estimator

is wvar(f(Uy))/n.
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integrand for valuing a call option
4 T T

35

25

f(u)
N
T

15 -

Figure 3.1:

Example: A crude simulation

For a simple example that we will use throughout, consider an integral which
might be used to price a call option. Indeed we saw in section 2.8 that if a
European option has payoff function given by V,(z) as a function of the future
value of the stock, then the option can be valued using the discounted future
payoff from the option under the risk neutral measure; e "% E[Vy(SpeX) | where
the random variable X has a normal distribution with mean T —027/2 and
variance 027 . We have also seen that any random variable can, in theory,
be generated by inverse transform (although this is not recommended for the
normal distribution). Let us for the moment ignore this recommendation and
suppose that we have generated X from a single uniform random variable U
using X = F~1(U) where Fis the normal (r7' — 027/2, 0?T) cumulative
distribution function. = Then the value of the option can be written as an
expectation with respect to the uniform random variable U,

e "TEVo(Soexp{ F~1(U)})] = /0 flu)du  with f(u) = e ""Vo(So exp{F *(u)})

This function is graphed in Figure ?7.

We have seen that a simple crude Monte Carlo estimator corresponds to
evaluating this function and a large number of randomly selected values of
U; ~ UJ0,1] and then averaging the results. For example the following function
in Matlab evaluates f(u).

function v=callopt2(u,S0,ex,r,sigma,T)

% value of the integrand for a call option with exercise price ex, r=annual interest

% rate, sigma=annual vol, SO=current stock price. u=uniform (0,1) input to
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Y%generate normal variate by inverse transform. T=maturity

%For Black-Scholes, integrate over (0,1).

x=S0*exp(norminv(u,r*T-sigma”2*T/2,sigma*sqrt(T))); % stock price at time
T=Sgexp{® 1 (U;rT — %2T, a?T)}

v=exp(-r*T)*max((x-ex),0); % This is the discounted to
present value of the call option

In the case of initial stock price $10, exercise price=$10, annual vol=0.20,
r= 5%, T = .25 (three months), this is run as

U=unifrnd(0,1,1,10000);
mean(callopt2(U,10,10,.05,.2,.25))

and this provides an approximate value of the option of 0.4743. We may
confirm this with the black-scholes formula, again in Matlab, [CALL,PUT] =
BLSPRICE(S0,ex,r, T,sigma,0). The last argument is the dividend yield which
we assumed 0. This provides the result CALL = 0.4615 indicating that our
simulation was reasonably accurate- out by 2 percent or so. In fact one of the
advantages of simulation is that it provides a simple estimator of accuracy. In
general, when n simulations are conducted, the accuracy is measured by the
standard error of the sample mean; oy/y/n  where a% =wvar(f(U)). In this
case, this is easily estimated.

Sf=sqrt(var(callopt2(U,10,10,.05,.2,.25)));

St/sqrt(length(U))

giving the standard deviation or standard error of 0.0067. Since approx-
imately normal variables are within 2 standard deviations of their mean (with
probability around 95%) we can assert with confidence 95% that the true price
of the option is within the interval 0.474342(0.0067). and this interval does, in
this case, capture the true value of the option. We will look at the efficiency
of various improvements in this method, and to that end, we record the value
of the variance of the estimator based on a single uniform variate in this case;

02 uge = 03 = var(f(U)) ~ 0.4467.

Then the crude Monte Carlo estimator using n function evaluations or n
uniform variates has variance approximately .0.4467/n. If T were able to ad-
just the method so that the variance in the numerator were halved, then I could
achieve the same accuracy from a simulation using half the number of function
evaluations. For this reason, when we compare two different methods for con-
ducting a simulation, the ratio of variances corresponding to a fixed number of
function evaluations can also be interpreted roughly as the ratio of computer
time required for a given predetermined accuracy. We will often compare vari-
ous new methods of estimating the same function based on variance reduction
schemes and quote the efficiency gain over crude Monte-Carlo sampling.



3.2. VARIANCE REDUCTION FOR ONE-DIMENSIONAL MONTE-CARLO INTEGRATION.95

5 uniform variates at 0.1, 0.3, 0.5, 0.6, 0.8

4 ‘ : ‘ ‘ ‘
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2 |
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1 |
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Figure 3.2:
. variance of Crude Monte Carlo Estimator
Efficiency = (3.2)

Variance of new estimator

where both numerator a denominator correspond to estimators with the same
number of function evaluations (since this is usually the more expensive part
of the computation). An efficiency gain of 100 would indicate that the crude
Monte Carlo estimator would require 100 times the number of function evalua-
tions to achieve the same variance.

Consider a crude estimator obtained from 5 U0, 1] variates, 0.1, 0.2, 0.5,0.6, 0.8.
The crude Monte Carlo estimator in the case n =5 is displayed in Figure 3.2,
the estimator being the sum of the areas of the marked rectangles. For this
particular choice of 5 uniform variates, note that there appears to be an under-
estimate of the integral because two of random numbers generated were smaller
than 0.5 (and contributed 0) and the other three appear to be on average slightly
too small. Of course another selection of 5 uniform random numbers may prove
to be even more badly distributed.

There are various ways of improving the efficiency of this estimator, many of
which partially emulate numerical integration techniques. First we should note
that most numerical integrals, like 6 , are weighted averages of the values of
the function at certain points U; but choice of these points is normally made
to attempt reasonable balance in values, and the weights to provide accurate
approximations for polynomials of certain degree. For example, the trapezoidal
rule corresponds to the U; equally spaced and the weights are % so that the
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Figure 3.3:

“estimator” of the integral is

0=—3"fG/n) (3.3)

=1

or more precisely, incorporating different weights at the boundary points, % {f(0)+
2f(1/n) + ...+ 2f(1 — %) + f(1)}. The balance in large and small values of
the function is evident in such a rule, as shown in Figure 3.3. In this case the
observations are equally spaced.

Simpson’s rule is to generate equally spaced points and weights that( except
for endpoints) alternate 2/3n, 4/3n, 2/3n . ... In this case, when n is even,
the integral is estimated with

b %{f(o) FAf(1/n) +2f(2/n) + . .. +4f(an1) + (1)} (3-4)

The trapezoidal rule is exact for linear functions and Simpson’s rule, for quadratic
functions.

The analogy between variance reduction techniques and numerical integra-
tion methods is a useful one, since it indicates in what direction we should
move in order to provide increased accuracy over simple random sampling. We
may either vary the weights attached to the individual points or vary the U;
themselves. Notice that as long as the U; have marginal distribution that is
U[0,1] , we can introduce any degree of dependence among them (in order to
come closer to equal spacing) and 6 as defined above will continue to be an
unbiased estimator.
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Using Antithetic Variates.

Consider the case n = 2. Then § = L{f(U1)+ f(Us2)} has mean fol f(u)du
and variance given by %{varf(Ul) +cov[f(Uy), f(U2)]} assuming both Uy, Us
are uniform. In the independent case the covariance term disappears. Notice,
however, that if we are able to introduce a negative covariance, the resulting
variance of @ will be smaller than that of a crude Monte Carlo estimator.
When f is monotone, f(1—U;) decreases when f(U7) increases, substituting
Us = 1—U; has the desired effect (in fact we will show later that we cannot do
any better when the function is monotone). Such a value of Us , balancing by a
negative correlation the variability in Uy, is termed an antithetic variate. In our
example, because the function to be integrated is monotone, there is a negative
correlation between f(U;) and f(1 —Up) and the variance is decreased over
simple random sampling. To determine the extent of the variance reduction
using antithetic random numbers, suppose we generate 100, 000 uniform variates
U and use as well the values of 1 — U as (for a total of 200,000 function
evaluations as before).

F=(callopt2(U,10,10,.05,.2,.25)+callopt2(1-U,10,10,.05,.2,.25) ) /2;

This results in mean(F)=0.46186 and var(F)=0.1121. Since each of the
100000 components of F results from two function evaluations, the variance
should be compared with o2, . /2 = .2234. The efficiency gain due to the
use of antithetic random numbers is .2234/.1121 or about two so roughly half
as many function evaluations give the same precision as obtainable with crude
Monte Carlo. The introduction of antithetic variates has had the same effect
as increasing the sample size by a factor of 2 with the added benefit that only

one half as many uniform variates are required.

Stratified Sample.

One of the reasons for the inaccuracy of both crude and antithetic Monte Carlo
estimators in the above example is the large interval in which the function is
zero, but we nevertheless sample there. We would prefer to concentrate our
sample in the region where the function is positive- indeed where it varies more,
use larger sample sizes. A method also designed to achieve a better balance, is
the use of a stratified sample. Suppose, for example, we choose Uy ~ UJ0,a]
and Uz ~ Ula,1] . Then the estimator Oy = af(Uy) + (1 —a)f(Us) is
unbiased for 6. Moreover,

var(@st) = a2var[f(U1)] +(1- a)zvar[f(Ug)] + 2a(1 — a)cov[f(Uy), f(U(Q?Z}S)

Even when U; ,Us are independent, there may be a dramatic improvement in
variance if the variability of f in the intervals [0,a] and [a, 1] is substantially
less than in the whole interval [0, 1].
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Let us return to the example above. Suppose for simplicity we choose in-
dependent values of Uy, Us. In this case

var(tz)st) = avar[f(U1)] + (1 — a)®var[f(Us)). (3.6)

For example for a = .7, this results in a variance of around 0.0440 obtained
from the following

var(a*callopt2(unifrnd(0,a,1,50000),10,10,.05,.2,.25)+(1-a) *callopt2(unifrnd(a,1,1,50000),10,10,.05,.2,.25))

which gives a variance of about 0.0440. Since each componento the vector
above coresponds to two function evaluations we should compare with a crude
Monte Carlo estimator with n = 2 having variance afc /2 = 0.2234.This cor-
responds to an efficiency gain of .2234/.0440 or around 5. We can afford to
use one fifth the sample size by simply stratifying the sample into two strata.
The improvement is limited by the fact that we are still sampling in a region in
which the function is 0 (although now slightly less often).

A general stratified sample estimator is constructed as follows. We subdivide
the interval [0,1] into convenient subintervals 0 = zg < 1 < ...z = 1,
select n; variates V;; ~ Ulx;—1,x;]. Then the unbiased estimator of 6 is

k n;
N 1 (3
Ost = P — Ti1)— i .
st Z(Iz T 1)717; Z f(Vzg) (3 7)
=1 j=1
with variance, in the case of independent V;;:

k
var(fg) = Z(mifxi_l)Qi'var[f(Vi ). (3.8)

i=1 v

Once again, if we choose our intervals so that the variation within intervals is
small, this provides a substantial improvement over crude Monte Carlo. The
optimal choice of sample sizes within intervals are

n; o (z; — xi_1)\/var|f(Vi1)]

and the intervals should be chosen so that the variances var[f(V;1)] are small.
n; o (x; — xi—1)\/var[f(Vi1)]. In general, optimal sample sizes are proportional
to the length of interval times the standard deviation of function evaluated at a
uniform random variable on the interval. The following function was designed
for a given selection of intervals to first estimate the variances, then determine
appropriate sample sizes, and finally compute the stratified random sample
estimator 7?7 and its variance 77.

function [est,v,n]=stratified(x,nsample)
est=0;

n=[;
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m=length(x);

for i=1:m-1

v= var(callopt2(unifrnd(x(i),x(i+1),1,1000),10,10,.05,.2,.25));

n=fn (x(i+1)x(i)*sart(v)};

end

n=floor(nsample*n/sum(n));

v=0;

for i=1:m-1

F=callopt2(unifrnd(x(i),x(i+1),1,n(i)),10,10,.05,.2,.25);

est=est+(x(i+1)-x(i))*mean(F);

vev-pvar(F)* (x(i41)x(0)) 2/n(3);

end

A call to [est,v,n]=stratified([0 .6 .85 1],100000) for example generates a
stratified sample with the strata the three intervals[0, 0.6],[0.6, 0.85],[0.8, 051]
and outputs the estimate 0.4617, its variance 3.5 x 107 and the approximately
optimal choice of sample sizes n = 26855, 31358,41785. To compare this with
a crude Monte Carlo estimator, note that a total of 99998 function evaluations
are used so the efficiency gain is 02, ,./(99998 x 3.5 x 1077)=12.8 so this
stratified random sample can account for an improvement in efficiency of about
a factor of 13.

Within a stratified random sample we may also introduce antithetic variates
designed to provide negative covariance. For example we may use antithetic
pairs within an interval if we believe that the function is monotone in the interval
and also between intervals as well. For example we may set V;; = x;,_1 +
(v —2;-1)U  and Vijy1y; = @41 — (w441 — 2;)U  to obtain antithetic pairs
within intervals. For a simple example of this applied to the above call option
valuation, consider the estimator based on strata [0.47 0.84],[0.84 1]. Here we
have not bothered to sample to the left of 0.47 since the function is O there.

Bt = 0;’7 [F (AT + 370) + f(.84 — 370)] + 0';6[ (844 16U) + f(1— .160)]

To assess this estimator, we shortened the call callopt?2 to a function of one
argument fn,

function f=fn(u)
f=callopt2(u,10,10,.05,.2,.25);

and then evaluated, for U a vector of 100000 uniform,

mean(F) % gives 0.46156.

var(F) % gives 0.00146.

to obtain the result 0.46156. and the variance of the same vector is 0.00146.
This should be compared with the crude Monte-Carlo estimator having the same
number n = 4 of function evaluations as each of the components of the vector
F:o02  ../]4=0.4467/4 = 1117. The gain in efficiency is therefore .1117/.0014
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or approximately 80. The above stratified-antithetic simulation with 100,000
input variates and 400,000 function evaluations is equivalent to a crude Monte
Carlo simulation with sample size 32 million! Variance reduction makes the
difference between a simulation that is feasible on a laptop and one that would
require a very long time on a mainframe computer..

Control Variates.

There are two techniques that permit using knowledge about a function with
shape similar to that of f . First, we consider the use of a control variate.
Notice that for arbitrary function g(u) ,

/fwMu: /gwMu+(/uw»meMw (3.9)

If the integral of g is known, then we may substitute it for the first term above
and calculate the second by crude Monte Carlo, resulting in estimator

n

o = [ otudu + 231~ o0 (3.10)

i=1
and the variance is reduced over that of crude Monte Carlo by a factor
var[f(U)]/var[f(U) = g(U)], U ~U[0,1]. (3.11)

Let us return to our example. By some experimentation, (which could in-
volve a preliminary crude simulation) we note that the function

g(u) = 6[(u— A7)F? + (u — 47)F

provides a reasonable approximation to the function f(u). Moreover, the integral
of the function g(.) is easy to obtain. The comparison is seen in Figure 3.4.

The improvement in variance is seen in the figure. By crude Monte Carlo,
the variance of the estimator is determined by the variability in the function
f(u) over its full range. By using a control variate, the variance of the estimator
is determined by the variance of the difference between the two functions, which
in this case is quite small. We used the following matlab functions;

function g=GG(u) % the function g(u)

% control variate for callopt2.

u=max(0,u-.47);

g=6%u."2+uy;

function [est,varl,var2]=control(f,g,intg,n)

%lest,var1,var2]=control(f,g,intg,n)

%runs a simulation on the function f using control variate g (both character
strings) n times.

% intg is the integral of g % in‘cg:fo1 g(u)du
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comparison of the function and control variate
3 T T T T
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Figure 3.4:

Y%outputs estimator est and variances varl,var2, with and without control

variate.
U=unifrnd(0,1,1,n);
FN=eval(strcat(f,’(U)")); % f(u)
CN=eval(strcat(g,’(U)")); % g(u)

est=intg-+mean(FN-CN);
varl=var(FN);
var2=var(FN-CN);

and then the call [est,varl,var2]/=control(’fn’,’GG’,2*(.53) "3+(.53) "2/2,100000)
yielding the estimate 0.4602 and variances varl = 0.4371, var2 = 0.0138 for an
efficiency gain of around 32.

Importance Sampling.

A second technique that is similar is that of importance sampling. Again we
depend on having a manageable function g that is similar to f but in this case,
rather than minimize the difference between the two functions, we choose g(u)
such that f(u)/g(u) has little variability over the unit interval. We also require
that ¢ is of sufficiently tractable form that we can generate variates from a
density proportional to it, i.e. a density of the form cg(u) ,0 <u < 1. This
implies, of course, that the function ¢ must be non-negative and have a finite
integral. Note that

/f(U)du = E[f(Z)] (3.12)
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where Z has the density function cg(z) and this can be estimated by

Oim = %i f(Z) (3.13)

for independent Z; ~ cg(z). The variance is

var{fim} — Svar{ L2, :% {/ Z;((“)dan}. (3.14)

n c9(Z;) u)

Returning to our example, we might consider using the same function as
before for g(u). However, it is not easy to generate variates from a density
proportional to this function g by inverse transform since this would require
solving a cubic equation. Instead, let us consider something much simpler, the
density function cg(u) = ¢1(u — .47)" having cumulative distribution function
co [(u — 47)T)? and inverse c.d.f. F~!(u) = 0.47 4+ 0.53,/u. The following
function simulates an importance sample estimator:

function [est,v]=importance(f,U)

Y%runs a simulation on the function f using importance density g (defined herein)
n times.

% f should be ’fn’ obtained from callopt2.

%outputs all the individual estimators (should be averaged) and variance.

%U=unifrnd(0,1,1,n);

%IM is the inverse cf of the importance distribution

IM=.47+.53*sqrt(U);

%IMdens is the density of the importance sampling distribution at IM

IMdens=2*(IM-.47)/(.53)"2;

FN=eval(strcat(f,’(IM)’));

est=FN./IMdens;

v=var(FN./IMdens);

The function was called with [est,v/=importance(’frn’,unifrnd(0,1,1,100000));
giving estimate mean(est) = (.4610 with variance v = (.0128 for an efliciency
gain of around 35 over crude Monte Carlo.

Combining Monte Carlo Estimators.

We have now seen a number of different variance reduction techniques (this is
far from an exhaustive list). With each is a variance formula that would tell us
what the gain in efficiency is over crude Monte Carlo if we were able to calculate
the integrals appearing in the variance formula. Normally these, too, must be
estimated from the sample. Thus it is often not clear a priori which sampling
procedure and estimator is best. For example if a function f is monotone on
[0,1] then an antithetic variate can be introduced with an estimator of the form

f(O)+f1-0), U~U[0,1] (3.15)

| =

eal -
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but if the function is increasing to a maximum somewhere around % and then
decreasing thereafter we might prefer

bor = ZIFU/2)+ F(A-0)/2)+ (A4 D)/2)+ FO U] . (3.16)
Notice that any weighted average of these two unbiased estimators would also
provide an unbiased estimator of # . The large number of potential variance
reduction techniques is an embarrassment of riches causing the usual dilemna;
which tool do I use and how do I know it is better than the others? Fortunately,
choosing a single method is rarely necessary or desirable. Instead it is preferable
to use a weighted average of the available estimators with the optimal choice of
the weights provided by regression. More generally suppose that we have n
estimators or statistics Y; , ¢ = 1, .. n, all unbiased estimators of the same
parameter § so that that E(Y;) = 6 for all i . In vector notation, letting
Y =(Y3,...,Y,), wewrite E(Y) = Z6 where Z is the vector Z/ = (1,1, ...,1).
Let us suppose for the moment that we know the variance-covariance matrix
V' of the vector Y7,...Y, .

Theorem 17 (best linear combinations of estimators)

The linear combination of the Y; which is an unbiased estimator of 6 and
has minimum vartance among all linear unbiased estimators is Zz b;Y; where
the vector b is given by

o= (Ztviz)yTtztv L
The variance of the resulting estimator is b'Vb=1/(Z'V~1Z7).

In practice, of course, we almost never know the variance-covariance matrix
of a vector of estimators Y . However, with independent replicated values of
these estimators, this covariance matrix can easily be estimated from data and
the above weights leading to the optimal linear combination computed.

Let us return to the example and attempt to find the best combination of
the many estimators we have considered so far. To this end, let

0.53

Y, = T[f(.47 +.53u) + f(1 — .53u)] an antithetic estimator,
0.37 0.16
Yo = oo[f(AT+3Tu) + F(84 — 3Tw)] + == [f(:84+ 16u) + F(1 - 16u)]
Ys = 0.37[f(AT + .37u)] + 0.16[f(1 — .16u))],
vio— [e@de + (1) - gt
Ys = 0y, the importance sampling estimator (?7).

Y5 is an antithetic and stratified estimator, Y3 a simpler version of a stratified-
antithetic estimator, Y4 is a control variate estimator and Y; the importance
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sampling estimator all for a single input random variate. In order to determine
the optimal linear combination we need to generate simulated values of all 5
estimators using the same uniform random numbers as inputs. We determine
the best linear combination of these estimators using

function [o,v,b,V]=optimal(U)

% generates optimal linear combination of five estimators and outputs

% average estimator, variance and weights

Y1=(.53/2)*(fn(47+.53%U)+n(1-.53*U));

Y2=.37*.5%(fn(.474+.37*U)+{n(.84-.37*U))+.16*.5*(fn(.84+.16*U)+in(1-.16*U));

Y3=.37*n(.47+.37*U)+.16*n(1-.16*U);

intg=2%(.53)"3+.53°2/2;

Y4=intg+in(U)-GG(U);

Y5=importance(’fn’,U);

X=[Y1"Y2' Y3 Y4 Y5;

mean(X)

V=cov(X);

Z=ones(5,1);

V1=inv(V);

b=V1*Z/(Z'*V1*Z);

o=mean(X*b);

v=1/(Z'*V1*Z);

and one run of this estimator, called with [o,v,b, V]= optimal(unifrnd(0,1,1,100000))
yields o = 0.4615, v = 1.1228x 1075, br = [—0.5505, 1.4490,0.0998, 0.0491, —0.0475].
The answer is accurate to at least four decimals which is not surprising since the
variance per uniform random number is v = 1.1228¢ — 005. Consequently the
variance of the mean of 100,000 estimators is 1.1228x 10710, the standard error
is around .00001 so we should expect accuracy to at least 4 decimal places.
Note that some of the weights are negative and others are greater than one.
This is common since the technique being used is regression. The effect of
some estimators may be, on subtraction, to render the function more linear and
accommodate it to another estimator, for example. The efficiency gain is an
impressive 0.4467/0.000011228 or about 40,000. However since there are 10
function evaluations for each uniform variate, the efficiency when we adjust for
the number of function evaluations is 4,000. This simulation using 100,000
uniform random numbers and taking a couple of minutes on a Pentium (233
Mhz) is equivalalent to four billion simulations by crude Monte Carlo, a major
task on the largest computers available!

If I were intending to use this simulation method repeatedly, I might well
wish to see whether some of the estimators can be omitted without too much
loss of information. Since the variance of the optimal estimator is 1/(Z¢V~1Z7),
we might choose an estimator for deletion (for example deleting the i'th row
and column of V') which has the least effect on this quantity or its reciprocal
Z'V~1Z. In particular, if we let V(i be the matrix V' with the i'th row and
column deleted and Y~ V7% as the sum of all elements of the matrix V! then
we can identify Y VIk — z:V(jz;c as the loss of information when the i'th



3.2. VARIANCE REDUCTION FOR ONE-DIMENSIONAL MONTE-CARLO INTEGRATION.105

estimator is deleted. Since not all estimators have the same number of function
evaluations, we should adjust this information by FE(i) =number of function
evaluations required by the i’th estimator. In other words, if an estimator 7 is
to be deleted, it should be the one corresponding to

£Vt vu
. K3

min{ ——————=}.

i { FE(%) }

Since we know the variance of thecombined estimator per function evaluation,
we should drop the i'th estimator if this minimum is less than the information
per function evaluation in the combined estimator. In the above example with
all five estimators included, > V7% = 88757 (with 10 function evaluations per
uniform variate) so the information per function evaluation is 8, 876.

13 7%
i | vt oyt | pea) | B RN
T 88,043 2 44024
2 87,989 4 21,997
3 28,017 2 14,008
4 55,725 1 55,725
5 32,323 1 32,323

In this case, if we were to elimate one of the estimators, our choice would
likely be number 3 since it contributes the least information per function eval-
uation. However, since all contirube more than 8,876 per function evaluation,
we should likely retain all five.

Common Random Numbers.

We now discuss another variance reduction technique, closely related to control
and antithetic variates called common random numbers. It is a common problem
to need to estimate the difference in performance between two systems. For
example, we know the variance of the sample mean and we wish to estimate
by Monte Carlo the difference between the variance of a robust estimator of
location and that of the mean. Alternatively we may be considering investing
in a new piece of equipment that will speed up processing at one node of a
network and we wish to estimate the expected improvement in performance.
In general, suppose that we wish to estimate by Monte Carlo the difference
between two expectations, say

Ehi(X) — Eha(Y) (3.17)

where X has cumulative distribution function Fx and Y has c.d.f. Fy.
Notice that

var[hi(X) — ha(Y)] = var[hy(X)] + var[he(Y)] — 2cov{hi(X), ha(Y)}
(3.18)



106 CHAPTER 3. VARIANCE REDUCTION TECHNIQUES.

and this is small if we can induce a high degree of positive correlation between
the generated variates X and Y. This is precisely the opposite problem that
led to antithetic random numbers, where we wished to induce a high degree of
negative correlation. The following theorem supports the use of both common
and antithetic random numbers.

Theorem 18 (mazimum/minimum covariance)

Suppose hy and ha are both non-decreasing (or both non-increasing) func-
tions. Subject to the constraint that X | Y have cumulative distribution func-
tions Fx, Fy respectively, the covariance

cov[hy (X)), heo(Y)]

is mazimized when Y = FyYU) and X = F3'(U) (ie. for common
uniform|0, 1] random numbers ) and is minimized when Y = FyY(U) and
X = F);l(l —U) (i.e. for antithetic random numbers).

Proof. We will sketch a proof of the theorem. The following representation

of covariance is useful: define
H(z,y) = P(X >z,Y >y)— P(X >2)P(Y >y). (3.19)

Then the covariance between hq(X) and ho(Y) , in the case of both h; and
ho monotone differentiable functions, is given by the formula:

cov(h1(X),he(Y)) = /_00 /_00 H(z,y)hy(z)h(y)dxdy. (4.20)

This formula can be verified by twice integrating by parts. The formula shows
that our objective in the case of increasing functions h; and maximizing the
covariance is the maximization of P(X > z,Y > y) subject to the constraint
that they have the required marginal distributions. Suppose, for example, the
distribution were discrete, at the points indicated in the following figure. We
wish to maximize P[X > z,Y > y| subject to the constraint that the prob-
abilities P[X > 2] and P[Y > y] are held fixed. Note that if there is
any weight attached to the points in the lower right quadrant (labelled “LR”),
this weight can be reassigned to the points in the upper right quadrant without
affecting P[X > z] and by so doing, increasing P[X > z,Y > y|. Similarly,
any points in the upper left quadrant with positive probability can have this
probability moved as well to the upper right quadrant. For the maximum, then,
there should be no weight in the quadrants UL and LR for any choice of x.
In other words, X > x if and only if Y > y or equivalently, X is a monotone
increasing function of Y or they are both increasing functions of a common
uniform variate. m

We now consider a simple but powerful generalization of control variates.
The general method is to achieve a reduction in variance by writing an estimator
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redistributing weight increases P[X>x,Y>y]
10 T T

UR

PX>X,Y>y]

LR

Figure 3.5:

T as the sum of two uncorrelated components, the second of which has mean
0, say.

T =T1+1T, (320)

where FE(T5) = 0and cov(Ty,T2) = 0. Then it is easy to see that T
has the same mean as 7 and variance that is smaller (unless 7, = 0 with
probability 1).

One special case is variance reduction by conditioning. In order to define
conditional expectation, assume random variables X, Y, Z all have finite
variances and define E[X|Y] as the unique (with probability one) function of
Y which minimizes E{X — g(Y)}? . Define cov(X,Y|Z) = E[XY|Z] —
E[X|Z|E[Y|Z] . The variance reduction is based on the following theorem:

Theorem 19 (a¢) E(X) = E{E[X]|Y]}
(b) cov(X,Y) = E{cov(X,Y|Z)} + cov{E[X|Z], E[Y|Z]}

The theorem is used as follows. Suppose we are given 9, an unbiased estima-
tor of 0 and Z is some arbitrary conditioning variate. Then 1T} = E[@|Z] ,
also an unbiased estimator of 0, and wvar(1}) = var(0) — wvar{d — Ty} .
In other words, any variable Z , when conditioned on, can only decrease the
variance of the estimator, with the decrease most significant if Z is minimally
correlated with 6 . Reducing variance by conditioning involves searching for a
variate whose conditional expectation with the original estimator is computable
and which explains most of the variability in 6.
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3.3 Simulations from the Stationary Distribu-
tion of a Markov Chain.

It is often the case that we wish to simulate from a finite ergodic Markov chain
in its equilibrium or stationary state, but this stationary distribution does not
take a simple form permitting one of the standard techniques. We do assume
that we are able to generate transitions in the Markov Chain, however. In
other words if the chain is presently in state ¢, we are able to generate from the
distribution proportional to P;;,j = 1,...K. One possibility that is often used is
to begin the Markov chain in some initial state and run it for a long time (called
the initial transient) until we are quite sure that it is in equillibrium, and then
use a subsequent portion of this chain, discarding the initial transient. Clearly
this is not an efficient use of resources if the initial transient is long, but if it
is shortened, we run the risk of introducing bias into our simulations. There
is, however, a method which permits simulation directly from the stationary
distribution of the Markov chain due to Propp and Wilson (1995). Let us
suppose we are able to generate transitions in the Markov chain using a function
of the form ¢(i,U;) where Uy is a uniform[0, 1] distribution, so if X; = ¢, then
the next state of the chain at time ¢t +1 is generated as Xiy1 = ¢(¢,Uz). Note
that by composition we can generate the chain over an interval, for example
Fi(i) = ¢(...d(p(Pp(d(i,Us), Usy1), Ust2), Usss)...,Us—1) will generate the value
of X; given that Xy =i. Now imagine an infinite sequence U of independent
uniform Uy, t = ..., —3,—2, —1 used to generate the state of a chain at time 0.
Let us imagine for the moment that there is a value of M such that F°,,(i) is
a constant function of ¢. In this case we say that coalescence has occurred in
the interval. This means that no matter where we start the chain at time —M
it ends up at the same point at time 0. In this case, it is quite unnecesary to
simulate the chain over the whole infinite time interval —oo < ¢t < 0 since it had
to be somewhere at time t = —M and no matter where it was, it ended up at
the same point at time t = 0. In this event, we can safely consider the common
value of the chain at time 0 to be generated from the stationary distribution
since it is exactly the same value as if we had run the chain from ¢ = —co. Now
there is an easy way to check whether coalescence has occurred in an interval
if the state space of the Markov chain is ordered. For example suppose the
states are numbered 1,2, ..., K. Then it is often possible to arrange that the
function ¢(,U) is monotonic in its first argument for each value of U. This
is the case, for example when we use inverse transform to generate the value,
for'example #(i,U) = inf{j;> J_, Py > U} provided that the partial sums
>7_, P are monotonic functions of i. Notice then that the functions F°, (i)
are all monotonic functions of i and so if F°,,(1) = F°,,(K) then it must be
a constant function. Notice also that if there is any time in an interval [s,#] at
which coalescence occurs so that F! is a constant function, the same will be
true of any interval containing it [S,T] D [s, t].

It is easy to prove that coalescense occurs for sufficiently large M. For
an ergodic finite Markov chain, there is some step size L such that every
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transition has positive probability P[Xs.1r = j|X¢; =i > € for all 4,5. Then
the probability of coalescence in an interval of length L is at least e > 0
and since there are infinitely many intervals disjoint of length L in [—o00,0] and
the event that there is a coalescense in each are independent, the probability
that coalescense occurs somewhere in [—o0,0] is 1..

We now detail the Propp Wilson algorithm

1. Set M =1, Xy =K, X, =1
2. Generate U—]VI----U—]V[/2+1

3. Fort = —M to —1 repeat

(a) obtain X = ¢(Xr,U) and Xy = ¢(Xy,U)
(b) If X; = Xy stop and output X (0) = X,

4. M =2M
5. Go to 2.

It is important to notice in this algorithm that the random variable U; once
generated is NOT generated again on a subsequent pass when M is doubled. If
it were the algorithm would be biased. It is reused at each pass until coalescense.

3.4 Coupling and Perfect Simulations.

A very elegant and simple method of generating two correlated simulations is
that of coupling. This is similar to the method of control variates; it generates
a positive correlation, but it has one remarkable advantage. In some cases,
only approximate information about the parameter is necessary to generate
the random variable X.

Let us begin with a simple example. Suppose we wish to generate ran-
dom variables, say M(u) having a N(u, 1) distribution. If we wish a maximum
possible correlation with A/(0) for example, then the simplest possibility, equiv-
alent to the use of common random numbers, is to use N () = p+ Z where
Z is N(0,1). This provides a correlation of 1  with N(0). Coupling is re-
lated to acceptance-rejection. The idea is to generate N (1) and N(0) by
acceptance-rejection, ensuring that provided that the point chosen lies under
both densities, the same point is used. More precisely, we use the following
algorithm:

(1) Choose a point (z,y) uniformly distributed under the N (0, 1) probability
density function.

(2) Define N () = x provided that the point also lies under the N(u,1)
p.d.f. Otherwise define N'(u) = +iW where W = the width of the normal

p-d.f. at height y =24/ —2In(v/27y) and i is the unique whole number chosen
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so that the point (z + iW,y) does lie under the N(u,1) probability density
function.

For a particular value of y, note that N'(u) is a piecewise constant, non-
decreasing function of u. For example the following graph.

FIGURE

We could, of course, generalize to an arbitrary variance generating N (u, 02)
using o (;/7). let us denote such a random variable by N(u, 02|z, y).

Now the fact that this graph is piecewise constant means in fact we do not
always need precise information concerning the value of p in order to generate
the random variable A/ (i). Suppose for example we were given an upper and
lower bound on the mean a < p < b. Suppose furthermore that we generated
N(a) and N (b) and note that they are identical. The monotonicity insures
that then N (u) will take on this common value. Of course it is quite possible
that A(a) and M (b) are not identical, and in this case it may be necessary to
find a tighter bound on on the value of p of the above form. But when there
is some computational effort involved in tightening this bound, we have saved
this effort with some (hopefully large) probability.

(FINISH........ )

3.5 Some Multivariate Applications in Finance.

3.5.1 Asian Options.

Consider as an example a discretely sampled Asian call option on an asset with
price process S(t) . An Asian option is like a European option but with the
value function dependent not on the closing price of the underlying but on
an average. An Asian call options pays an amount equal to max(0, S, — K)

where S), = %Zle S(iT/k). Here k depends on the frequency of sampling
(e.g. if T'= .25 and sampling is weekly, then & = 13). If S(¢) follows a
geometric Brownian motion, this is the sum of lognormally distributed random
variables (rather than normally distributed ones) and as a result the distribution
of the partial sums is very difficult to obtain. However, the distribution of the
geometric mean is relatively simpler where the geometric mean of n  values
Ty, Ty 1S (m1m2...xn)1/”. Our objective is to determine the value of the
option E(Vy) = E{e "Tmax(0,S;, — K)}. Since we expect geometric means
to be close to arithmetic means, we may use as a control variate the random
variable Vo = e_TTmaa:(QS'k — K) where S, = {Hle S(iT/k)}l/k. Assume
that Vi and V5 obtain from the same simulation and are therefore possibly
correlated. Of course V5 is only useful as a control variate if its expected value
can be determined analytically or numerically more easily than V;. Fortunately,
in this case, we may use the relation between a geometric Brownian motion and
the normal random walk to determine the distribution of the geometric mean.
Since S(t) = Spe¥® where Y(t) is a Brownian motion with drift r — o2/2



3.5. SOME MULTIVARIATE APPLICATIONS IN FINANCE. 111

and diffusion o, it follows that S';m has the same distribution as does

k
So exp{% > Y (iT/k)}. (3.21)
=1

This is a weighted average of the independent normal increments of the process
and therefore normally distributed. In particular if

_ 18,
vy o= - ;Y(ZT/k)
= %[k(Y(T/k)) + (k=Y (©2T/k) = Y(T/k)} + (k = 2{Y (3T/k) = Y (2T /k)}

o H{Y(T) — Y ((E— 1)T/k)}],

then
py = B(V) = L2 STk — (- Zyktlr
=1
and
02 = war(Y) = %{kzvar(Y(T/k)) + (k= 1)20ar{Y (2T /k) = Y(T/k)} + ...}
_ Tk_(j Z’“:ZQ _ Tk +6]1€)2(2k +1)

The closed form solution for the price E(V2) in this case is therefore easily
obtained because it reduces to the same integral over the lognormal density
that leads to the Black-Scholes formula. Recall that the Black-Scholes formula
gives

E(e_rT(SO exp{N((r — %2)T, 02T)} — K)T = E(Sy exp{N(—nQTT7 nzT)} — Ke_rT)+.

In fact
2 2
B T Y gy T ot k+1, To®(k+1)(2k+1)
E(Vé) - E{e (S()e K) },Y N((?" 9 ) 2% ) 62 )
_ 2701 _ .2 =2
= BlSverT(5) + T e (N(-TL7T) — ke ) )
with

=2 o?(k+1)(2k +1)
B 642
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Thus E(V3) is given by the Black-Scholes formula with Sy replaced by Sg exp{rT'(

%} and 02 by %. Of course when k = 1, this gives exactly
the same result as the basic Black-Scholes because in this case, the asian option

corresponds to the average of a single observation.

Now the most elementary form of control variate suggests using the estimator
E(Vo) + Vi — V3 (3.22)

where the random variables Vi, V5, result from the same simulation. This
expression may be regarded as a simple approximation to V; when observations
on Vs are available. A better approximation is obtained by regression. Since
elementary regression yields

Vi—EWV) =08(Va— E(W))+e (3.23)
where
_ cov(Vy, Va)
g= (3.24)

and the errors e have expectation 0, it follows that E(Vi) +e=V; — (V2 —
E(V3)) an unbiased estimator of E(V;) having smallest variance among all
linear combinations of V; and V5. Now when (3 = 1 this reduces to the
simpler form of the control variate technique. However, this form is generally
better in terms of maximizing efficiency. Of course it is necessary to estimate
the covariance and the variances in the definition of 3 from the simulations
themselves.

In practice, of course, there is not a single simulation but many and the
random variables Vi, Vs, above are replaced by their averages over many sim-
ulations. The following table is similar to that in Boyle, Broadie and Glasser-
man(1995), compares the variance of the crude Monte Carlo estimator with that
of an estimator using a simple control variate. In this case, K = 100,k = 50,7 =
0.10,7 = 0.2 and standard errors are estimated from 10,000 simulations. Since
the efficiency is the ratio of the number of simulations required for a given de-
gree of accuracy, or alternatively the ratio of the variances, this table indicates
efficiency gains due to the use of a control variate of several hundred. Further
gains can be achieved using the modified control variate described above.

Table 4.1. Standard Errors for Arithmetic Average Asian Op-
tions.

1—-k
2k

)+
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STANDARD ERROR STANDARD ERROR

SIGMA K/8 OF CRUDE OF CONTROL
0.2 0.9  0.0558 0.0007

10 00334 0.00064

11 0.00636 0.00046
0.4 09 0105 0.00281

10 0.0659 0.00258

11 0.0323 0.00227

The following function implements the control variate for an asian option
and was used to produce the above table. We avoid looping in the function in
order to speed up computations.

function [v1,v2,sc]=asian(r,S0,sig, T, K k,n)

Y%computes the value of an asian option V1 and control variate V2

%S0=initial price, K=strike price

%sig = sigma, k=number of time increments in interval [0.T]

%sc is value of the score function for the normal inputs with respect to

% r the interest rate parameter.

%Repeats for a total of n simulations.

vi=[]; v2=[; se=[};

mn=(r-sig"2/2)*T/k;

sd=sig*sqrt(T/k);

Y=normrnd(mn,sd,k,n);

sc= (T/k)*sum(Y-mn)/(sd"2);

Y =cumsum([zeros(1,n); Y]);

S = S0*exp(Y);

v1l= exp(-r*T)*max(mean(S)-K,0);

v2=exp(-r*T)*max(S0*exp(mean(Y))-K,0);

disp([’standard errors > num2str(sqrt(var(vl)/n)) > num2str(sqrt(var(v1-v2)/n))])

For example we might confirm the last row of the above table using the

command
asian(.1,100/1.1,.4,.2,100,50,10000);.

3.5.2 Girsanov’s Lemma.

In the above, we implemented just one variance reduction scheme. There are
many other possibilities. We expect the option to have a payoff closely related
to the closing value of the stock S(7°). It might be reasonable to stratify the
sample; i.e. sample more often when S(7') is large, and there are several ways
to implement this. One is to use importance sampling and generate S(7) from
a geometric Brownian motion with drift larger than rS; so that it is more likely
that S(T) > K. But if we do this we need to then multiply by the ratio of the
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two probability density functions or the density of one process with respect to
the other. This density is given by a result called Girsanov’s lemma and a very
simple form of this lemma appears below.

Theorem 20 (Girsanov) Consider an Ito process generated by the equation

Let the distribution of this process be P. Suppose we generate a similar process
with the same diffusion term but different drift term

Assume that in both cases, the process starts at the same initial value Sy and let
the distribution of this process be Py. Then the "likelihood ratio” or the density

42 of P with respect to Py is

dPy
ar T (S = mo(Se) . [T H2(Se) — p3(Sy)
ar, ~ &Pt /0 205, 0o /0 2025 H

Proof. Despite the claim to the left, this is not technically a proof, but
an argument in favour of the above formula. Let us consider the conditional
distribution of a small increment in the process S; under the model (?77).
Since this distribution is conditionally normal distributed it has conditional
probability density function given the past

ﬁ exp{—(dS; — u(S1)dt)?/(20%(S,)d) (3.27)

and under the model (??), it has the conditional probability density

\/;m exp{—(dS, — po(Sy)dt)/(20%(S,)dt) (3.28)

The ratio of these two probability density functions is

— 2 _ 2
oxp( L1050 g5, 1) I8E0

But the joint probability density function over a number of disjoint intervals is
obtained by multiplying these conditional densities together and this results in

St — St 2 St — 12 St
(5) —pa(8) 5, 2190 15

T (Sy) — (S, 208, — (S,
~ ol [ ERs s - [

I1; exp{ K
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where the product of exponentials results in the sum of the exponents, or, in
the limit as the increment dt approaches 0, the corresponding integrals. m

Girsanov’s result is very useful in conducting simulations because it permits
us to change the distribution under which the simulation is conducted. In
general, if we wish to determine an expected value under the measure P, we
may conduct a simulation under Py and then multiply by ;lTPO or if we use a
subscript on E to denote the measure under which the expectation is taken,

dP

EpV(St) = Ep, [V(ST)d—H)]-

Suppose for example I wish to determine by simulation the expected value of
V(rr) for an interest rate model

dry = p(ry)dt + odW, (3.29)

for some choice of function p(r¢). Then according to Girsanov’s theorem, we may
simulate under the much simpler Brownian motion model dr, = pydt + odW;
and then average the values of

dpr T () — o T u2(ry) — 13
Vv — =V —_——dr; — —_—
T e e

We can then choose the constant ji, to (approximately) produce minimum
variance of the above average.

Call option with stochastic interest rates.

Consider for an example the pricing of an option, say a call option under an
assumption of stochastic interest rates. We will use the method of conditioning,
although there are other potential variance reduction tools here. Suppose the
asset price, (under the risk-neutral probability measure, say) follows a model of
the form

dS; = rSydt + oS dw Y (3.30)
where the spot interest rate model is the Brennan-Schwartz model,

dry = a(b— r)dt + ooredW,” (3.31)

where Wt(l)7 Wt(z) are independent Brownian motion processes. Here b is
the long run average of the interest rates and the parameter a > 0 governs
how quickly reversion to b occurs.

We wish to use simulation to price a derivative, say a call option.
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Control Variates. The first method might be to use crude Monte Carlo; i.e.
to simulate both the process S; and the process r;, evaluate the option at
expiry, say V(Sp,T) and then discount to its present value by multiplying

by exp{— fOT r¢dt}. However, in this case we can exploit the knowledge that

the interest rates are independent of the Brownian motion process Wt(l) which
drives the asset price process. For example, suppose that the interest rate
function r; were known (equivalently: condition on the value of the interest
rate process). While it may be difficult to obtain the value of an option under
the model (?7?),(??) it is easier under the model which assumes constant interest
rate c. Let us call this constant interest rate model for asset prices with the
same initial price Sy and driven by the equation

dZ, = cZydt + o Z dw D (3.32)

model “0” and denote expectations under this distribution by E°. The value
of the constant ¢ will be determined later. Assume that we simulated the asset
prices under this model and then valued a call option, say. Then since

2
In(Z1/Sy) has a N((c— %)T, o2T)  distribution

we could use the Black-Scholes formula to determine the conditional expected
value

T
Elexp{— / redt} (Zr — K)Tre,0 < s <T| = E[(Soe T — e T K)T|7|
0
= BS(SOe(CfF)T,K,Eﬂn)

where W has a N(—02T/2,02T) distribution and 7 = % fOT r¢dt is the average
interest rate over the period. The function BS is the Black-Scholes formula
with arguments in the same order as the Matlab function blsprice. In other
words by replacing the the interest rate by its average over the period and the
initial value of the stock by Spel¢™™7T the Black-Scholes formula provides the
value for an option on an assset driven by (??) conditional on the value of 7.
This is a useful control variate for the problem. Its unconditional expected value
can be determined by generating the interest rate processes and averaging values
of BS(Spele M7 K, 7,T,0). Finally we may estimate the required option price
using an average of values of

T
exp|— /0 rdt}[(S7 — K)Y — (Zr — K)T)|} + E{BS (ST K, 7, T,0)}

for Sp and Zp generated from the same simulation (i.e. using common random
numbers).
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The choice of the costant ¢ can be made either for convenience or to
minimize the variance of the estimators exp{— fOT ridt}[(ST — K)t — (Zr —
K)T]}. One simple and effective choice is ¢ = T since this means that the
second term is E{BS(Sy, K,7,T,0)}.

Importance Sampling The expectation under the correct model could also
be determined by multiplying this random variable by the ratio of the two
likelihood functions and then taking the expectation under E°. In other words,
by Girsanov’s Theorem, EV(St,T) = EO{V(ST,T)g—g) where P and P
are the measures corresponding to the P and Py processes respectively. The
required Radon-Nykodym derivative is

dP T ry—cC T2 _ o2
— = dry — L dt :
ar exp{ /0 5—dry /0 5 } (3.33)

o2r, o2

The resulting estimator of the value of the option is therefore an average
over all simulations of the value of

T Ty —c Ty2 2
V(rp, T)e;z:p{—/ redt + / dSy — / L ——dt} (3.34)
0 0 0

ory 202

where the trajectories r; are simulated under the constant interest rate model

(??). In other words, ; = exp{(c — 02/2)t + aWt(l)} for standard Brownian
motion Wt(l).
The drift parameter in this model ¢ can be chosen to minimize the variance

of the estimator.

3.6 Simulating Barrier and lookback options

Suppose we observe a stochastic process X; over the interval 0 <t <7T. As
is often done with financial time series we record the initial value or open of
the time series O = Xj the terminal value or close C = Xp, the maximum
over the period or the high H = maxz{X;; 0 < ¢t < T} and the minimum
or the low L = min{Xy;0 < ¢t < T} The recording of all four variables
is common in practice but the use of all is rare. For example, the variance
or volatility parameter is commonly estimated using only the open and close
O, C' although the information available for this parameter in the four random
variables O, C, H, L is about seven times as great for Brownian motion. More
commonly, in fact, volatility is determined as the “implied volatility” from the
price of a derivative sold on the open market which has X; as the underlying
asset price. The implied volatility is the value of the volatility parameter
which produces the market price of a given option (usually a heavily-traded or
benchmark option). For example suppose a particular option with strike price
K, maturity 7', and initial value of the stock Sy is traded on the market at
a price given by V. Then we may solve the equation BS(Sy, K,r,T,0) =V
for the implied volatility parameter o. This estimate of volatiliy may differ
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substantially from the historical volatility obtained in the Black-Scholes model
by computing the sample variance of the returns log(S¢;+1/S¢). Nevertheless
since it agrees with the market price of the option it expected to more closely
reflect the risk-neutral distribution () and is therefore used. The disadvantage
of this method of calibrating the parameter is that its value will depend on the
strike price of the option, as well as the time and maturity parameters.

For many of the properties of the process, both for calibrating volatility
parameters and for valuing products that depend on the tail behaviour of the
distributions, the vector of values (H,L,O,C) is substantially more informa-
tive than is (O, C) and should generally be used, particularly if the product
may be a function of the maximum or the minimum. Clearly the extreme ob-
servations of a process is not only highly informative for the volatility but also
for important measures related to the risk associated with a given investment.
In general, measures of risk such as VaR (Value at Risk) should also be adapted
to observations of the high and low of a process.

Properties of the joint distribution of these random variables conditional on
O are well-known in certain special cases. For example when X; is a Brownian
motion with zero drift the joint distribution is given in Billingsley(1968). Such
results permit us to calculate the joint distribution for the single most impor-
tant model for security prices, the geometric Brownian motion model. This
joint distribution is important for the valuation of derivatives that involve the
maximum of the process; options such as barrier options, look-back options,
caps, floors, etc. The assumption that the underlying asset follows a geometric
Brownian motion is standard in the valuation of such derivative products. How-
ever, it has also been well-known for some time that the distribution of asset
prices do not follow a geometric Brownian motion, and at best this is a fairly
crude approximation applicable only on a large scale. Many alternatives have
been suggested which attempt to accommodate the larger-than-Gaussian tails
experienced in the market, including mixtures of normal distributions, processes
with jumps, geometric Brownian motion subordinated to a random clock, and
the stable processes.

The application of the joint distribution to option pricing is well developed,
and there are many path-dependent options whose valuation requires both the
close and the extrema of a process. For example a barrier option has payoff
function a value of the close C' conditional on the extrema (H, L) lying in some
region, usually an interval. The option may be knocked-out (i.e. the option
has value 0 if the process leaves the interval) or knocked in (the option only
has value if the process enters the interval at some point). Look-back options
have payoff that is a function of both the high and the close or the low and
the close. For example a look-back put option has payoff given by (H — C)
equivalent to the return obtained by selling the stock at its high and covering
the short position at the close. A look-back call option is similar, with payoff
of the form (C' — L). Hindsight options, sometimes called fixed-strike look-back
options, have payoff which depends only on the distribution of the high or low,
for example (H — K)T in the case of a hindsight call option. There is a large
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number of papers devoted to the valuation of such options. For details, see the
references in Broadie, Glasserman and Kou (1996). We begin with the result
on the distribution of highs and lows.

Theorem 21 Suppose o(x) and \(t) are positive real-valued functions such
that g(z) = [* ﬁdy and T(t) = fg N2(s)ds are well defined on Rt and
let 77Y(t) denote the inverse function of T. Suppose a process X; having

real parameters v and diffusion coefficient o(x) > 0 satisfies the stochastic
differential equation:

X, = v+ %a’(Xt)}a(Xt))\z(t)dt + o(X)A(E)AW,. (3.35)

Define H = max{X;0 <t < T} to be the high over the period [0,T], O =
Xo, X7 =C.

(a) Then with fy representing the probability density function of Xy = C — O
in the case v =0, we have

fo(29(H) — g(0) — g(C))
fo(g(C) —9(0))

and Uy is independent of C. (b) For each value of T, Zg =(g(H)—g(0))(g(H)—
9(C)) is independent of O, C, and has an exponential distribution with mean
%fOT 22 (s)ds. Similarly for the low,

v, = £029) ~9(0) ~9(C)) _ 175 5

fo(g(C) — 9(0))

and Zg =(g(L) — g(0))(g(L) — g(C)) s independent of O, C, and has an
exponential distribution with mean 4 fOT A2(s)ds.

Uy =

~U[0,1]

Proof. First note that under the monotonically increasing transformation
Zy = g(X;) and using Ito’s lemma, Z; satisfies a stochastic differential equation
of the form;

dZ, = v X2 (t)dt + Nt)dW,, 0<t<T (3.36)

If we now apply a time change and consider the process Z.-1( it is easy to see
that this process is a Brownian motion with drift, i.e. it satisfies the equation

dZ; = vdt +dW;, 0<t<77YT). (3.37)

Therefore it is sufficient to prove the result for a Brownian motion process with
T replaced by 77 1(T'). Assume without loss of generality that Zy = 0. Now
let P, E denote probabilities and expectations in model (4.35) and Py, Ey be
probabilities and expectations in the same model with zero drift i.e. v = 0.
Assume without loss of generality that Zg = 0. Now a Brownian motion process
can be considered as a limit of a sequence of simple random walks so the first
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step is to verify a result for simple random walks, one in which the process
jumps up or down with equal probability 1/2. Suppose that Figure 3.6 is a
rescaled sample path from such a process. Consider two values z and s both
possible values for the process. Notice that for each sample path ending at
s which passes above a barrier at the point z there is a corresponding path
ending at 2z — s obtained by reflecting the original path from the first time it
crosses the barrier at z. In fact there is a one-one correspondence between such
paths. It follows that there is the same number of paths ending at s < z and
with maximum > z as paths ending at the reflection of s,namely 2z — s. Since
for a simple random walk all paths have the same probability, it follows that
for a simple random walk

Plmax Z; > z, Zp = s8] = P[Zp =2z — s].

t<T
Now since the Brownian motion process with drift » = 0 is a limit of such
simple random walks, the same result holds provided we interpret objects like
P[Zp =2z—s| as a probability density function. Note also that the conditional
distribution of a Brownian motion process satisfying dZ, = vdt + dW, given
Z7r does not depend on the value of the drift term v. Therefore
Pmax Z; > z|Zp =s] = PylmaxZ; > z|Zp = s]
t<T t<T
Pylmaxyer Zy > 2, Zp =8| PolZr =2z — §]

= , for s < z.
P() [ZT = 8} P()[ZT = 8]

Now recall that by the inverse transform property, if a random variable X
has a continuous cumulative distribution function F(z), then F(X) has a
uniform|0, 1] distribution. The same is true if we replace F(z) by the survivor
function P[X > z]. It follows if we denote H = maxy.p Z;, that conditional
on Zr = s, the random variable fo(2H — s)/fo(s) has a uniform [0,1] dis-
tribution where fj is the normal (0,7) probability density function. Since this
distribution does not depend on the value of s, the uniform random variable
fo(2H — Z7)/ fo(Z7) is independent of the the value Zr.(b) Now assume that
X, satisfies equation (??) with Xy = 0. We have seen that the random vari-
able Uy = fo(2H — C)/ fo(C) has a uniform[0, 1] distribution independent of
C where fy is the normal(0, 7—(7")) probability density function. On taking
logarithms and simplifying

—In(Ug) = _2

Tl—(T)H(HfC')

has an exponential distribution with mean 1 and therefore H(H — C') has an

exponential distribution with mean %T_l(T). More generally if we remove the

assumption that O =0,
(H-0O)H-C) ~ exp(%T_l(T)) independently of O, C.

The results for the low follow by symmetry. m
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The reflection principle

4 T

2z-8

Figure 3.6:

Corollary 22 For a Brownian motion process,

(H-0O)H-C) ~ exp(%erT) independently of O, C and

(L-0)(L-C) ~ exp(%fsz) independently of O, C.

Corollary 23 For a Geometric Brownian motion process,

In(H/O)In(H/C) ~ exp(%ozT) independently of O, C and
In(L/O)In(L/C) ~ exp(%ozT) independently of O, C.

These two corollaries may be used to directly simulate a value for the high
given the value of the close. For example, for a Brownian motion process, we

need only generate a random exponential variate E ~ exp(%azT) and then
solve the equation (H — O)(H — C) = E for H > max(C, O).

The joint probability density function of the high and the close of a Brownian
motion is easily obtained from the above theorem. In particular if X = (C —
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O)/VT, n=vyT and Y = (H — O)/\/T, then the joint probability density
function of (Y, X) takes the form;

_(2y—=x)? _n2
2(2y — 5 +ne—=5;
f(yﬂﬂ):\/_( y-ze , for —oco<z<y, y>0. (3.38)

N
Note that X is a complete sufficient statistic for the parameter n . Moreover,
the probability density function of Y|X =z is

fyix(ylz) =2(2y — z)e” =Ty >y (3.39)
With Z =Y (Y — X), the conditional density of Z is
fzix(z|z) = 272 2>0 (3.40)

and so is exponential with mean 1/2, providing an another simple derivation
of the exponentially distributed random variable.

Note that by symmetry,

_ fo29(L) — 9(Xr) —9(Xo))

Ve Fol9(Xr) — 9(X0))

Ulo,1] (3.41)

and Zr =(g(Lt)— 9(X0))(9(LT) — g(X7)) has an exponential distribution
where L denotes the low.

There is a uniform statistic related to Ug used by Redekop (1995) to test the
local Brownian nature of various financial time series. For a Brownian motion
process, the statistic

H-0
2H—-0-C
is uniformly [0, 1] distributed. Redekop observes that the observations on this

statistic are far too often close to or equal the extreme values 0 or 1. Equiva-
lently, we may use the statistic

(3.42)

c-0
2H—0—C
The uniformity of the statistics Uy and Uy, is useful for simulating the val-
ues of the high or low and the close of the Brownian motion process without
replicating its path. This may be used, for example, to price a European op-
tion with knock-out barrier at the point m. Suppose the process is geometric
Brownian motion, possibly under a time change.

Ul-1,1]. (3.43)

dX; = [v+ 1/20 X% (t) Xydt + o A(t) X, dW,. (3.44)

In this case 0(X;) = 0X; for constant ¢ and g(z) = In(x). Then In(X7/Xy)
has a normal distribution under P, with mean 0 and variance o fOT A2(s)ds.
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3.6.1 One Barrier

Without generating a path for the process, we may simulate the high and the
close geometrically as follows. We begin by generating both high and close
under Py in the case of zero drift. Consider a graph of the Py probability
density function fo(z) of In(C) as shown in Figure 3.7.

If we chose to simulated the close using acceptance-rejection, we would
choose a point Py at random uniformly distributed in the region below the
graph of this density. Then the x-coordinate of this point is a variate generated
from the probability density function fo(x). Remarkably, the y-coordinate of
such a randomly selected point can be used to generate the value of the high.
Assume that z-coordinate is the simulated value of In(C). Suppose that we
extend a line horizontally to the right from this point until it strikes the graph of
the probability density and then consider the abscissa of this point- this value is
the simulated value of 2In(H) —In(C). It is clear that the corresponding value
of In(H) does not exceed a boundary at the point m if and only if the point
P is below the graph of the probability density function but not in the shaded
region obtained by reflecting the right hand tail of the density about the vertical
line = m —In(O) in Figure 3.8. Thus a knock-out option with payoff function
given by ¢ (In(C))I(H < e™) can be considered a vanilla European option with
payoff function ¢*(z) =¢¥(x), x <m, ¥*(z)=—-Y2m—=z), =z >m.
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Figure 3.8:

Indeed any option whose value depends on the high and the close of the
process can be similarly valued. Either of the points Py, Pr, may be sampled by
generating its x coordinate In(C') from the density fo(«) and then subsequently
the y coordinate as U fo(In(C)), U ~ U|0,1].

We now consider briefly the case of non-zero drift. If the original process
is a Brownian motion, then the martingale measure will necessarily have zero
drift and this consideration is unnecessary. However, for valuing options on a
geometric Brownian motion, the drift in the process log(X;), though typically
small, is non-zero. Fortunately, all that needs to be changed in the above is the
marginal distribution of In(C) since all conditional distributions given the value
of C' are the same as in the zero-drift case. For example, in Figure 3.9, a point
P has been selected uniformly distributed in the shaded region under f(z), the
graph of the probability density function of In(C). If this point had been also
under the graph of fy(x) as well, we would have used it as Py exactly as before
to generate the value of the high H. However, in this case, the point was not
below the graph of fo(z) and so we replaced the y-coordinate of the point by
another U fo(C) where U is U|0, 1].

If we wish to price an option with a more general payoff function ¢ (H,C)
increasing in C, it may be preferable to use importance sampling, for example
generate C from a density with more weight in the right tail. In fact since option
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payoff functions are generally simpler functions than many probability densities,
it is often desirable to use them as importance sampling distributions. As an
example below, we consider a European knock-out call option with exercise price
E and knock-out upper barrier at €. Assume for simplicity in the remainder
of this example zero drift and that we have already transformed the problem to
Brownian motion (i.e. E,C,m, etc are logarithms of the prices). The payoff
function is the triangular region below in Figure 3.10. Suppose we generate a
point C at random with probability density proportional to this function. If we
repeat this, averaging the length of the line segments fo(C) — fo(2m — C), we
obtain an estimator of the value of the option.

We similarly show how to value a down and in put option using the figure.
Consider a knock-in boundary at m < E where E is the option exercise price.
Then the payoff function is max(0, E—C') when L < m, and otherwise the payoff
is 0. In order to breach the boundary, a point must be selected from the shaded
region in Figure 3.11. The piecewise linear function is the payoff function. Note
that the integral of the payoff function over points chosen from the shaded
region is equivalent to the integral for points chosen under the normal curve
with mean 2m — O. In other words, in the case of geometric Brownian motion,
we can establish the value of this option using the Black-Scholes formula for the
price of a call option with the same parameters but with current price of the
stock (on a log scale) 2m — O.

There is a similar geometric view of the conditional distribution of the close
C given the high H. Suppose we wish to generate a point from the conditional
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Figure 3.12:

distribution of C' given H = m . Then a point is chosen uniformly on the interval
[0, f(m)] and then projected horizontally to the left until it strikes the graph of
f(2m — x). The x-coordinate of the point of intersection is the generated value
of the close. This is illustrated in Figure 3.12.

A similar figure illustrates the distribution of two simple statistics that figure
prominently in the test of fit of Redekop (1995).

In figure 3.13, consider the distribution of the close given the value of 2H—C.
Clearly the close is distributed uniformly along the horizontal stripe, i.e. U[O —
(2H — C), (2H — C)]. Since the value of H is half way between the point C' and
2H —C, it follows that the conditional distribution of H is uniform U [0, 2H —C].
One advantage of this uniformity is that it is independent of the distribution fy.
For example it holds whatever the scale parameter of the normal distribution
is, or even if the distribution is a variance mixture of normal random variables.
Thus it applies to a Brownian motion subordinated to an independent random
clock.

This example simply indicates that simulating look-back and barrier options
can often be reduced a problem of finding a certain integral or area in a figure.
Thus, the array of variance reduction tools that are discussed in this chapter
may be applied to problems of this type.

We close this section with a brief discussion of a similar figure which applies
to the discrete case. Suppose that the stock price can onl move up or down by
a fixed increment A  as for a simple random walk. Consider the probability
histogram of the increment C' — O supported by a lattice
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Once again consider a point chosen uniformly and at random under this
histogram. The closest point on the lattice to the x-coordinate of this point can
be considered a generated value of the close. Moreover, if we run a horizontal
line to the right, then the last bar, say y, passed through before it leaves the
histogram corresponds, with one small adjustment, to the generated value of
2H — C as in the continuous case. The adjustment stems from the fact that the
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difference between this point and the close is 2(H — C') which is an even multiple
of the size of a jump. Thus, if we define H = A[%], where the square brackets
indicate “the integer part of ”, then H is a simulated value of the high.

3.6.2 One Factor, Two barriers

We have discussed a simple device above for generating jointly the high and the
close or the low and the close of a process given the value of the open. The joint
distribution of H, L, C given the value of O or the distribution of C in the case
of upper and lower barriers is more problematic. Consider a single factor model
and two barriers- an upper and a lower barrier. Note that the high and the
low in any given interval is dependent, but if we simulate a path in relatively
short segments, by first generating n increments and then generating the highs
and lows within each increment, then there is an extremely low probability
that the high and low of the process will both lie in the same short increment.
For example for a Brownian motion with the time interval partitioned into 5
equal subintervals, the probability that the high and low both occur in the
same increment is less than around 0.011 whatever the drift. If we increase the
number of subintervals to 10, this is around 0.0008. This indicates that provided
we are willing to simulate highs, lows and close in ten subintervals, pretending
that within subintervals the highs and lows are conditionally independent, the
error in our approximation is very small.

An alternative, more computationally intensive, is to differentiate the infinite
series expression for the probability P(H < b,L > —a,C = u|O = 0] (see
for example Billingsley, (1968), p. 79) to obtain the joint probability density
and attempt to generate from this density. C can be generated by acceptance
rejection in the presence of the barriers since the density is dominated by the
density in the absence of any barriers. This requires evaluation of the infinite
series.

An alternative allows generating simulated values of the close with absorb-
ing barriers at —a , b without using an infinite series. It is well-known that
the reflection principle applies to the two-boundary case as well. Assume that
the process is standard Brownian motion with drift zero.The above results are
primarily useful for an option that depends only o the closing price and either
the high or the low over a period. More generally we would like to simulate a
closing under the condition that the process remains within a certain interval,
e.g. that H < b and L > —a. To this end, define a function fract(z) = z— |z]
if # >0 and otherwise fract(z) = 0.

Theorem 24 For a Brownian motion process, P[—a < L < H < b|C =u] =
1— P[frac'*‘(ai_i_b) > a%—b‘c =u|— P[frac'*‘(;—fb) > 2450 =1

Proof. The following formula is useful for a case in which all three of H, L, C
are required . Assume for simplicity that X (¢) is a Brownian motion with
c=1,X(0) =0and H=max{X(t);0 <t < 1},L = min{X(¢);0 < t < 1}
and C = X (1).Then (see for example He, Keirsted, Rebholz, Theorem 2.1) for
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—a < u <b,

u—2n(a+ D)) B d(u —2n(a + b) + 2a)
P(u) b (u)

Plca<L<H<HC=ul= > {d)(
n=-—00
Note that for n > 0,

d(u —2n(a + b))
P(u) ’

P[H > n(a+b)|C=u]=

PH > n(a+b)—a|lC=u]=

and for n = —m < 0,

d(u + 2m(a + b))
P(u)
d(u+ 2m(a +b) + 2a)
o)

PI[L < —m(a+b)|C=u]=

PI[L < —m(a+b)—alC=u]=

With these substitutions,

o(u+ 2a)

Pl-a < L<H<bHC=ul=1- o)

fZP[n(a—l—b) > H>n(a+0b)—a|C =ul
+ZP[—m(a+b)—a < L<—-m(a+0b)|C=1]
= 1—P[L< —a|C =14]

-
a+b a+b

a —L
+ZP[m+a+b > a+b>m|C:u]

m=1

H b —L a
— _ Sl _ 1 +
= 1—P[frac (a+b)>a+b} P[frac™(

since

ip[ L2 s o=y ip[ b Zhzazb o=y
m m|C =u] = m — m— —u
a+b a+b — a+b a+b

m=1

—L a
— + —_— _ =
= P|frac (_a+b)< pat and — L > (a+b)|C =u]
—L a
_ o — _ + - - — =
= P[—-L> (a+0b)|C =u]— P[frac (a+b)>a+b’ and —L> (a+0)|C
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|

The most important feature of this result is that the two probabilities on
the right side depend only on the joint distribution of two random variables H
and C' or L and C.

Let us now assume that we are interested in a barrier or path dependent
option whose underlying follows a Geometric Brownian motion. This result
can be used to simulate an option that depends on the closing price of a stock
in one way if the stock price remains in a given interval Oe™® < L < H < Oe?,
but if it breaches a lower barrier at Oe~? or upper barrier at Oe® it pays a
different amount possibly also a function of the closing price. These payofts could
be positive or negative. If it breaches an upper barrier at Oe® it pays another
amount V. If both barriers are breached then the payoff is a third amount V.
For example, suppose the payoff is V(C) if Oe™® < L < H < Oe®. Assume
that given the value of C, the payoff of the option is given by

(C) if Oe < L<H<Oe

(C) if Oe™®>1L and H < Oe®
(C) if Oe @< L and H > Oc®
Va(C) if Oe > L and H > Oe®

~—

1%
V(C,H,L,0) = ‘X;Z

~—

Define random weights as follows: suppose for given C, we may generate
H and L either independently of one another or with an arbitrary degree of
dependence. These generate random weights

W, (C)y=1 if L < Qe

. —ln L a
wrHC)=1 if frac'*‘(ﬁb—l) > 5
Wy(C) =1 it H> Oct

. In
W;_(C) =1 if fract( a(_g))) > ai—&-b

and otherwise, each of these weights is 0. Then the above theorem shows
that 1 — W7 (C) — W, (C) is an unbiased estimator conditional on C of the
probability P[Oe=® < L < H < 0e®|C] and therefore W (C) + W, (C) is an
unbiased estimator of P[Oe~® > L or H > Oe’|C]. Similarly, the conditional
expected value of W (C) +W;H(C) —Wy(C) is P[Oe™® > L and H < O¢e®|C]
and of W (C)+ W, (C)—W,(C) is P[Oe @ < L and H > Oe®|C] . Therefore
the weighted average

V(C) (1 =W, (C) — W, (C)) + Va(CHWF(C) + WH(C) — Wi (C))
FV(O) W (C) + Wi (C) — Wo(O)) + Vi (C)(Wo(C) — Wi (C) + Wy(C) — W (C))

provides an unbiased estimator of E[V(C, H,L,0)|C] for each C. These
random weights may be replaced by an average of a number of such randomly
generated weights for each value of C. The weights can be negative- for example
(1-Wi(C) - le' (C)) can equal —1. These values are adjustment for a small
degree of overcounting that occurs when both barriers are crossed. We have
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found that this scheme is particularly efficient if H and L are generated using
antithetic uniform random numbers; for example solving for H > max(C,O)
the equation

a?T
In(H/O)In(H/C) = 5 In(U)

gives an adjustment to the geometric mean of the open and close:

H= @exp{é\/ln(C/O)Q 22T IO}

and similarly

L= measp{f%\/ln(C/O)z —202T1n(1 — U)}

where U is Uniform[0,1]. This choice leads to a very small probability that
the weights (1 — W (C) — W, (C)) are equal to —1.

3.7 Problems

1. Use both crude and antithetic random numbers to integrate the function

1 u
e —1
/ du.
0 e—1
What is the efficiency gain attributed to the use of antithetic random
numbers?

2. How large a sample size would I need, using antithetic and crude Monte
Carlo, in order to estimate the above integral, correct to four decimal
places, with probability at least 95%?

3. Under what conditions on f does the use of antithetic random numbers
completely correct for the variability of the Monte-Carlo estimator? i.e.

When is var(f(U) + f(1=U)) =0?

4. Show that if we use antithetic random numbers to generate two normal
random variables X7, X9, having mean rT — 02T/ 2 and variance 02T,
this is equivalent to setting Xo = 2(rT —02T/2) — X;. In other words, it
is not necessary to use the inverse transform method to generate normal
random variables in order to permit the use of antithetic random numbers.

5. Use a stratified random sample to integrate the function

What do you recommend for intervals (two or three) and sample sizes? What
is the efficiency gain?
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1. Use a combination of stratified random sampling and an antithetic random
number in the form

S/ + 71~ U/2)]

to integrate the function

What is the efficiency gain?

2. In the case f(z) = E::ll , use g(x) = x as a control variate to
integrate over [0,1]. Show that the variance is reduced by a factor of
approximately 60. Is there much additional improvement if we use a more

general quadratic function of =7

3. In the case f(z) = % , consider using g(z) = x as a control variate
to integrate over [0,1]. Note that regression of f(U) on g(U) yields
fU)=E(f(U)) =PB[g(U)—Eg(U)]+¢e where the error term ¢ has mean
0 and is uncorrelated with g(U) and 8 = cov(f(U),g(U))/var(g(U).
Therefore, taking expectations on both sides and reorganising the terms,

E(f(U)) = f(U) = Blg(U) — E(g(U))]. The Monte-Carlo estimator
LY U ~ Blo(:) - B}

is an improved control variate estimator, equivalent to the one discussed
above in the case § = 1. Determine how much better this estimator is
than the basic contol variate case 8 = 1 by performing simulations. Show
that the variance is reduced by a factor of approximately 60. Is there
much additional improvement if we use a more general quadratic function
of x?

4. A call option pays an amount V(S) = 1/(1 + exp(S(T) — k)) at time T
for some predetermined price k. Discuss what you would use for a control
variate and conduct a simulation to detemine how it performs, assuming
geometric Brownian motion for the stock price, interest rate 5%, annual
volatility 20% and various initial stock prices, values of k and T.

5. It has been suggested that stocks are not log-normally distributed but the
distribution can be well approximated by replacing the normal distribu-
tion by a student t distribution. Suppose that the daily returns X; are
independent with probability density function f(x) = c(1+ (x/b)?)~2 (the
re-scaled student distribution with 3 degrees of freedom). We wish to esti-
mate a weekly Var gs, a value —p such that P[Z?Zl X; < p] =.05.If we
wish to do this by simulation, suggest an appropriate method involving
importance sampling. Implement and estimate the variance reduction.
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6. Suppose, for example, I have three different simulation estimators Y7, Y5, Y3

whose means depend on two unknown parameters 6¢, 0. In particular,
suppose Y7, Y, Y3, are unbiased estimators of 61,60 + 64, 02 respectively.
Let us assume for the moment that wvar(Y;) =1, cov(Y; Y;) = —1/2.
I want to estimate the parameter 6. Should I use only the estimator
Y: which is the unbiased estimator of 6, or some linear combination
of Y7,Y5,Y3?7 Compare the number of simulations necessary for a certain
degree of accuracy.

Consider the systematic sample estimator based on the trapezoidal rule:

|
—

"

@):% FV i), V~UD Y

n

Il
o

k2

Discuss the bias and variance of this estimator. In the case f(z) = x2,

how does it compare with other estimators such as crude Monte Carlo and
antithetic random numbers requiring n function evaluations. Are there
any disadvantages to its use?

In the case f(z) = e::ll ,use g(x) = x as a control variate to integrate

over [0,1]. Find the optimal linear combination using estimators (4.15) and
(4.16), an importance sampling estimator and the control variate estimator

above. What is the efficiency gain over crude Monte-Carlo?




Chapter 4

Quasi- Monte Carlo
Multiple Integration

4.1 Introduction

When integrating in one dimension, a numerical method with N equally spaced
points will generally have bias that approaches 0 at the rate 1/N when the
function has one derivative. This is because

(G+1)/N 1 1
[, T i) < g 1) (1)

for y in the interval j/N <y < (j+ 1)/N. If the function is known to have
more bounded derivatives, then numerical integrals can be found which use
N points but which have smaller error. Indeed quadrature formulae permit
approximating an integral of a polynomial of degree 2N — 1 exactly using only
N points together with (non-constant) weights attached to those points. By
contrast, a Monte Carlo integral with N points has zero bias but standard
deviation that is a constant multiple of 1/ V/N. Thus the numerical integral
has a faster rate of decrease of bias then the rate at which the Monte Carlo
integral decreases its standard deviation, and this is a large part of the reason
we may prefer numerical integration to Monte Carlo methods in one dimension.

The situation changes substantially in 2 dimensions. Now, if N points are
to be distributed over a uniform lattice in some region, the distance between
adjacent points will be of order 1/ VN and this is the order of the bias in a
numerical integral. This is the same order as the standard deviation of a Monte
Carlo integral. Furthermore, the situation results in a preference for the Monte
Carlo integral over such numerical methods for an s—dimensional integral when
s > 3. However, there are methods of improving on the placement of the points
in a numerical integral to decrease the bias. Quasi-random samples, analogous
to equally spaced points in one dimension, are discussed by Niederreiter (1978).

135
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Niederreiter shows that for sufficiently smooth functions and intelligent choice
of points, one can achieve the much better rate of convergence.

We have seen a number of methods designed to reduce the dimensionality
of the problem. Perhaps the most important of these is conditioning, which can
reduce an s dimensional integral to a one-dimensional one. In the multidimen-
sional case, variance reduction has an increased importance because of the high
variability induced by the dimensionality of crude methods. The other vari-
ance reduction techniques such as regression and stratification carry over to the
multivariable problem with little change, except for the increased complexity of
determining a reasonable stratification in such problems.

4.2 Errors in numerical Integration

We consider the problem of numerical integration in s dimensions. For s = 1
there are classical integration methods, like the trapezoidal rule:

1 m
/0 Fluydu 3" wnf (), (4.2)
n=0

where w, = w,, = 1/(2m), and w,, = 1/m for 1 <n <m —1. The trapezoidal
rule is exact for any function that is linear and so we can assess the error of
integration by using a linear approximation through the points (;%, f (;%)) and
(L2, F(55H) For
] j+1

R

m m
analogous to the Taylor series expansion, if the function has a continuous second
derivative,

Jj+1 J

F@) = (L) + (@ = Lymlf (=) = f(£)] + O — )2
Integrating both sides between % and j%l, notice that
G+1/m ; ; ; itl i
J J jtt J )+ IGR)
[ UG e D - s = o)

is the area of the trapezoid and the error in the approximation is
(G+1)/m i 5
of =L = 0.
i/m m

Adding these errors of approximation over the m trapezoids gives O(m~2). Con-
sequently, the error in the trapezoidal rule approximation is O(m_2), provided
that f has a continuous second derivative on [0, 1].
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We now consider the multidimensional case, s > 2. Suppose we evaluate
the function at all of the (m + 1)® points of the form (2, ... 2+) and use this
to approximate the integral. The classical numerical integration methods use
Cartesian product of one-dimensional integration rules. For example, the s-fold
Cartesian product of the trapezoidal rule is

m m
ny Ng
f(u)du = Wy, Wy, f(—,. .., —), (4.3)
Is H;O H;O ! m m
where I° = [0,1]° is the closed s-dimensional unit cube and the w, are as

before. The total number of nodes is N = (m + 1)°. From the previous error
bound it follows that the error now is O(m~2), provided that the second partial
derivatives of f are continuous on I° . We know that the error cannot be smaller
as the above formula can be applied to the case where the function depends on
only one variable. In terms of the number N of nodes or function evaluations,
since m = O(N'/#), the error is O(N~2/%), which with increasing dimension s
changes drastically. For example if we required N = 100 nodes to achieve a
required precision in the case s = 1, to achieve the same precision for a s =5
dimensional integral using this approach we would need to evaluate the function
at a total of 100° = 10'° or ten billion nodes. This phenomena is often called
the “curse of dimensionality”.

A decisive step in overcoming the problem of dimensionality was the devel-
opment of the Monte Carlo method which is based on random sampling. By
the central limit theorem, even a crude Monte Carlo estimate for numerical
integration yields a probabilistic error bound of the form Op(N~'/2) in terms
of the number N of nodes (or function evaluations) and this holds under a very
weak regularity condition on the function f. The remarkable feature here is
that this order of magnitude does not depend on the dimension s. This is true
even if the integration domain is complicated. Note however that the definition
of “O7 has changed from one that essentially considers the worst case scenario
to one that measures the average or probabilistic behaviour of the error.

However, the Monte Carlo method has several deficiencies which may limit
its usefulness:

1. There are only probabilistic error bounds (there is no guarantee that the
expected accuracy is achieved in a particular case -an alternative approach
would optimize the “worst-case” behaviour);

2. The regularity of the integrand is not reflected. The probabilistic error
bound Op(N—1/2) holds under a very weak regularity condition but no
extra benefit is derived from any additional regularity of the integrand.
For example the estimator is no more precise if we know that the function
f has several continuous derivatives. Of course in many cases we do not
know whether the integrand is smooth and so this property is sometimes
an advantage.
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3. Generating truly independent random numbers is virtually impossible - in
practice we use pseudorandom numbers to approximate independence.

4.2.1 Low discrepancy sequences

The quasi-Monte Carlo method places attention on the objective, approximating
an integral, rather than attempting to imitate the behaviour of independent
uniform random variates. Our objective is to approximate the integral using a
average of the function at N points, and we may attempt to choose the points
so that the approximation is more accurate.

. f(u)du ~ %Zf(xn)

Quasi Monte-Carlo yields a much better result, giving us the deterministic error
bound O(N~1(logN)*~1) for suitably chosen sets of nodes and for integrands
with a relatively low degree of regularity. Even smaller error bounds can be
achieved for sufficiently regular integrands. The sets of nodes producing this
high accuracy are obtained from various well-known sequences.

Suppose, as with a crude Monte Carlo estimate, we approximate

N

.. f(u)du ~ %Zf(xn)

n=1

with x1,... ,xN € I°. The difference is that now the nodes are deterministic,
chosen so as to guarantee a small error. The criterion for the choice of deter-
ministic points depends on the numerical problem at hand. For the problem
of numerical integration, the selection criterion is easy to find and leads to the
concepts of uniformly distributed sequence and discrepancy, which can be
viewed as a quantitative measure for the deviation from uniform distribution.

A basic requirement for a low discrepancy sequence is that we obtain a conver-
gent method:

and this should hold for a reasonable class of integrands. This suggests that the
desirable nodes x1,... ,xn are those which are “evenly distributed” over I°.
Various notions of discrepancy have been considered as quantitative measures
for the deviation from the uniform distribution and we will discuss only two.
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4.2.2 Definition: Measures of Discrepancy.

If B is a nonempty family of Lebesgue-measurable subsets of I°, then a general
notion of discrepancy of the set P = {x3,... ,xn} is given by

ints in B
DN(B,P):sup|#ofpmnS”L

sup N — As(B)], (4.4)

where A\;(B) denotes the Lebesgue measure of B in R®. By suitable
specialization of the family B we obtain the most important concepts of
discrepancy:

The star discrepancy:

where J* is the family of all subintervals of I° of the form [];_;[0,u;).
The extreme discrepancy:

where J is the family of all subintervals of I° of the form []7_, [u;, v;).
Note that the star discrepancy is a natural one in statistics, since it measures
the maximum difference between the empirical cumulative distribution function
of the points {x1,... ,xn} and the uniform distribution of measure on the unit

cube. In order to provide error bounds for the quasi-Monte Carlo approximation
we need a notion of total variation.

4.2.3 Definition: Total Variation

If f is sufficiently differentiable then the variation of f on I*® in the sense of
Hardy and Krause is

ViN=> > VO, i), (4.7)

k=11<1 < <ip<s

where

. 1 1 8k:f
V( )(f;llv' . ,’Lk) :A A |m|m_7=lyj7éily---yikdxil dfu (48)

We have the following inequality:
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4.2.4 Theorem: Koksma - Hlawka inequality

If f has bounded variation V(f) on I® in the sense of Hardy and Krause, then,
for any x;1,...,xNn € I°, we have

=3 Flxn) - [ swdul < V(DR Ga ). (4.9)

Since D% (P) < Dy (P), we also have

N

%Zf(xn)—/ls f(wdu| < V(f)Dy(x1,... ,xN). (4.10)

n=1

This result allows us to separate the effects of the integrand from those of
the sequence and explains why the discrepancy plays a central role in the theory
of quasi-Monte Carlo methods.

The error analysis based on this result demonstrates that small errors are
guaranteed if point sets with small star or extreme discrepancy are used. Such
sequences are called low-discrepancy sequences

In the one dimensional case the best rate of convergence is O(N~!log N),
N > 2. It is achieved, for example, by the van der Corput sequence.

4.2.5 Examples of low discrepancy sequences

In higher dimensions there exist several constructions:

4.2.6 Halton Sequences.

A Halton sequence is obtained by reversing the digits in the representation
of some sequence of integers in a given base. To begin with, consider one-
dimensional case s = 1 (this is the so-called van der Corput sequence) and
base b = 2. Take the base b representation of the sequence of natural numbers;
1,10,11,100,101,110,111,1000, 1001, 1010, 1011,1100, 1101, ... and then map
these into the unit interval [0, 1]. In general, the integer ZZ:O apb® is mapped
into the point 3 _, apb® L.
the following three steps;

These binary digits are mapped into (0,1) in

1. Write n using its binary expansion. e.g. 13 = 1(8) + 1(4) + 0(2) + 1(1)
becomes 1101.

2. Reverse the order of the digits. e.g. 1101 becomes 1011.

3. Determine the number that this is the binary decimal expansion for. e.g.
1101 =1(3) + 1(3) + 0(3) + 1(55) = 13-
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Thus 1 generates 1/2, 10 generates 0(3) = 1(1), 11 generates 1(3)+1(4) and

the sequence of positive integers generates the points 1/2,1/4,3/4,1/8,5/8,3/8,7/8, ....

which are fairly evenly spaced, and perfectly spaced if the number of nodes IV
is of the form 2 — 1. In higher dimensions, say in s dimensions, we choose s
distinct primes, b1,bo,...bs (usually the smallest) and generate, from the same
integer m , the s components of the vector according the above method. For
example, we consider the case s = 3 and use bases by = 2, by = 3,b3 = 5.
The first few vectors , (%, %, %), (%, %, %), (%7 %7 %)7 ...are generated in the table

below.

m repres first repres. second repres third
base 2 component base 3 comp base 5 comp

1 1 1/2 1 1/3 1 1/5

2 10 1/4 2 2/3 2 2/5

3 11 3/4 10 1/9 3 3/5

4 100 1/8 11 4/9 4 4/5

5 101 5/8 12 7/9 10 1/25

6 110 3/8 20 2/9 11 6/25

7 111 7/8 21 5/9 12 11/25

9 1000 1/16 22 8/9 13 16/25

10 1001 9/16 100 1/27 14 21/25

Figure 4.1 provides a plot of the first 500 points in the above Halton sequence
of dimension 3.

There appears to be greater uniformity than a sequence of random points
would have. Some patterns are discernible on the two dimensional plot of the
first 100 points, for example see Figures 4.2, 4.3.

.However, notice that the plot of 100 pairs of independent uniform random
numbers in Figure 4.4 shows more clustering and more holes in the point cloud.

These points were generated with the following function for producing the
Halton sequence.

function x=halton(n,s)

%x has dimension n by s and is the first n terms of the halton sequence of

%dimension s.

p=primes(s*6); p=p(1:s); x=[];

for i=1:s
x=[x (corput(n,p(i)))];
end

function x=corput(n,b)
% converts integers 1:n to from van den corput number with base b
m=floor(log(n)/log(b));

n=1:n; A=][);
for i=0:m
a=rem(n,b); n=(n-a)/b;

A=[A ja];



142 CHAPTER 4. QUASI- MONTE CARLO MULTIPLE INTEGRATION

Figure 4.1:
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Halton sequence of dimension 3
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Halton sequence of dimension 3
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end

x=((1./b).”(1:(m+1)))*A;

The Halton sequence is reasonably uniform for small dimensions, but it is
easy to see that if s is large, the uniformity degrades rapidly. The performance
is enhanced by permuting the coefficients a; prior to mapping into the unit
interval. The Faure sequence is obtained in this way. It is similar to the
Sobol’s sequence below in that each dimension is a permutation of a van der
Corput sequence; however, the prime used for the base is chosen as the smallest
prime greater than or equal to the dimension (B.L. Fox, 1996, ACM Trans.
Math. Software). Other suggestions for permuting the digits in a Halton
sequence include using only every I’th term in the sequence so as to destroy the
cycle.

In practice, in order to determine the effect of using one of these low dis-
crepancy sequences we need only substitute such a sequence for the vector of
independent uniform random numbers used by a simulation. For example if we
wished to simulate a process for 10 time periods, then value a call option and
average the results, we could replace the 10 independent uniform random num-
bers that we used to generate one path by an element of the Halton sequence
with s = 10.

Suppose we return briefly to the call option example treated in Chapter 3.
The true value of this call option was 0.4615 according to the Black-Scholes
formula. If however we substitute the van den Corput sequence for the sequence
of uniform random numbers,

mean(fn(corput(100000,2)))

we obtain an estimate of 0.4614 very close to the correct value.

4.2.7 Sobol Sequence

The Sobol sequence is generated such that the first 2™ terms of each dimension
for m = 0,1,... are a permutation of the corresponding terms of the van der
Corput sequence (P. Bratley and B.L. Fox, 1998, ACM Trans. Math. Software).
We begin with a set of direction numbers v; = Z#,i = 1,2, where the m; are
odd positive integers less than 2°. The values of m; are chosen to satisfy
a recurrence relation using the coefficients of a primitive polynomial in the

Galois Field of order 2. For example corresponding to a primitive polynomial

—1
X2l 4 epm1z
is the recursion
2
m; = 2c1mi—1 + 2%com;_o + ... + 2P¢cpmyy

where the addition is carried out using binary arithmetic. For the Sobol
sequence, we then replace the binary digit a; by arvg.

The Sobel and Faure sequences are particular cases of (¢, s) —nets. In order to
define then we need the concept of an elementary interval.
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4.2.8 Definition: elementary interval

An elementary interval in base b is n interval E in I° of the form
S
_ a; (a;+1)
E_Hl[bdx’—bdf : (4.11)
=

with d; > 0,0<a; < b% and aj, d; are integers.

4.2.9 Definition: (¢,m,s) - net

Let 0 <t < m be integers. A (t.m.s) - net in base b is a finite sequence with
b™ points from I° such that every elementary interval in base b of volume b‘="
contains exactly b* points of the sequence.

4.2.10 Definition: (¢,s) - sequence

An infinite sequence of points {x;} € I° is a (t,s)-sequence in base b if for all
k > 0 and m > t, the finite sequence Xypm, ... ,X(k4+1)pm-1 forms a (t,m,s) -
net in base b.

It is known that for a (¢, s)-sequence in base b the low discrepancy is ensured:

(log N)*~!
N )

S
DY < C(logNN) +0( (4.12)

Special constructions of such sequences for s > 2 have the smallest discrep-
ancy that is currently known (H. Niederreiter, 1992, Random Number Genera-
tion and Quasi-Monte Carlo Methods).

The thesis of K.S. Tang (1998) provides a thorough investigation into various
improvements in Quasi-Monte Carlo sampling, as well as the evidence of the high
efficiency of these methods when valuing Rainbow Options in high dimensions.
Papageorgiou and Traub (1996) tested what Tezuka called generalized Faure
points. They concluded that these points were superior to Sobol points for the
model problem. Particularly important for financial computation, a reasonably
small error could be achieved with few evaluations. For example, just 170
generalized Faure points were sufficient to achieve an error of less than one part
in a hundred for a 360 dimensional problem. See also Traub and Wozniakowski,
(1994) and Paskov and Traub,(1995).
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Chapter 5

Sensitivity Analysis,
Estimating Derivatives and
the Greeks.

Estimating the sensitivity of a simulation with respect to changes in the param-
eter values is an important part of establishing the validity of the conclusions.
If a simulation estimates an expected value at certain value of the parameters
with 0.32 £ 0.05 but the derivative with respect to one parameter, say the
volatility parameter o, is 5, this indicates that a change of the volatility of only
0.02 or 2 percent would result in a change in the average of the order of 0.1.
Since volatility typically changes rapidly by far more than one percent, then the
apparent precision of the estimate 0.32 4+ .005 is very misleading.

Of particular importance in finance are certain derivatives of an option price
or portfolio value with respect to the parameters underlying the Black Scholes
model. These are called the “Greeks”, because many of them (not to mention
many parameters and constants used in Statistics, Physics, Mathematics, and
the rest of Science) are denoted by greek letter. Suppose V' denotes the value
of a portfolio based on an asset S(t) whose volatility parameter is 0 when the
current spot interest rate is . Then if V' = V(S(t),¢,0,r), the most important
derivatives are;

Value in

Name | Symbol BS model
Delta A g_g ®(d,)
Gamma r g:g‘g sf (dji)ft
TN I I I A P T

o(d — -

Theta C) %—‘{ S;/T—_lt —rKe " T (dy)
Vega V| ¢ sp(di) VT —t

In some cases there are analytic formulae for these quantities and for a

149
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European call option in the Black-Scholes model, these formulae are given above
where

2

B = )+ P 1)

dz = d170’\/T*

and ¢, ® are the standard normal probability density function and cumula-
tive distribution function respectively. These derivatives are calculated typically
not only because they are relevant to a hedging strategy (especially A and T")
but also because they give an idea as to how rapidly the value of our portfolio
is effected when there is an adverse change in one of the parameters.

As an example of the use of these derivatives, it is common to immunize a
portfolio against changes in one or more parameters. For example suppose I
own a portfolio whose value P(S,t) depends on the price of a stock or index
S. I 'wish to immunize this portfolio against changes in §' by investing directly
in the stock S and in an option on this stock whose value is given by V(S,t)
at time t. Suppose I add to my portfolio g units of the stock and zo units
of the option so that the value of the new portfolio is

P(S,t) +xsS + x,V(S,1).

In order to ensure that this value changes as little as possible when S changes,
set the value of its delta and gamma (first and second derivative with respect
to S) equal to zero. This gives two equations in the two unknown values of
Tg, To.

Ap+as+x9A, = 0
I'p+z,0'y, = 0

where Ap, Ay are the deltas for the original portfolio and option respectively
and I'p, ', are the gammas. The solution gives

_ Lp

T, = T

I'p
s = A,——A
€ FO P
and the hedged portfolio has value
r r
P(S,t) + (A= — Ap)S — (Z2)V(S,1).

r, r,

The availability of two instruments, the stock and a single option on the under-
lying S allow us to adjust a portfolio so that the first two derivatives of its value
function with respect to S are both zero. The portfolio is therefore protected
against reasonably small changes in S. Similarly, with more options on the same
stock, one could arrange that the portfolio is immunized or protected against
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adverse movements in the other parameters as well, including the interest rate
and the volatility parameter. This hedged portfolio clearly requires derivatives
of the value function, and for more complicated models than the Black-Scholes,
we require simulation methods not only for valuing options and portfolios, but
also for determining these derivatives with respect to underlying parameters.

Consider now an important question in stress or sensitivity testing, the prob-
lem of estimating an expected value at many different values of an underlying
parameter. One very surprising feature of importance sampling is that simu-
lations conducted at one value of a parameter 6 can also be used to estimate
and expected value corresponding to all other wvalues of the parameter. The
estimation of an expectation under one value of a parameter using simulations
conducted at another is sometimes called the “what if” problem. Denote the
probability density function of a random variable or vector X wunder 6 by
fo(x) and assume these densities all have common support. An expectation
calculated under this value of the parameter will be denoted Fy(.). If we want
to estimate the expected value of a statistic V(X) , under different values 1 of
the parameter note that

m(y) = EyV(X) = Ep[V(X)fy(X)/fo(X)]. (5.1)

There may be many reasons for our interest in the function m(¢). A derivative
is priced using current values for the asset price, interest rate, volatility param-
eter etc. and we may wish to graph the price over a range of (possible future)
values of the parameters. The necessity for estimating derivatives in order to
immunize of hedge a portfolio is discussed above. The likelihood ratio estimator
V(X)fp(X)/fo(X) where X ~ fg is an unbiased (importance sample) estima-
tor of m(v) . This means that a simulation at 0 permits unbiased estimation
of the whole function m(y) = EyT(X) , and thereby also its derivatives.

However, this simple result must be tempered by a study of the precision of
this estimator. For 6 the true value of the parameter (so X is generated under
¢) and for 1 # 0, the likelihood ratios fy(X)/fo(X) — 0 with probability
one as the sample size (usually the dimension of the observation vector X)
n — oo. This means that the likelihood is very much smaller for some value
of the parameter ¢ far from the true value than it is at the true value. This
would seem to imply that for large sample sizes, the function fy(X)/fs(X)
is very close to zero and so the expectation Ey[V(X)fy(X)/fo(X)]. should
be close to zero. However, if we substitute V(X) = 1, then the expectation
Eolfy(X)/fo(X)] = 1 for all ¢ and all n. So for large n we have found a
random variable fy(X)/fo(X) which is very close to 0 and indeed converges to
0 as n — oo, and yet its expected value remains 1 for all n. This apparent
contradiction is resolved upon recalling that the likelihood ratios are not uni-
formly integrable, and do not behave in the limit as n — oo in the same way in
probability as they do in expectation. This likelihood ratios for large n are close
to 0 with high probability but take larger and larger values with decreasingly
small probabilities.

This means that for fairly large sample sizes, the likelihood ratio fy(X)/fa(X)
is rather unstable. It takes very large values over a small range of values of
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X and is close to zero for others and consequently it has very large vari-
ance. In fact as the sample size — oo, the variance of the likelihood ratio
varg(fy(X)/fo(X)) — oo very quickly. The process of “averaging” in such
a situation takes a long time to approximate an expected value. This argues
against the use of the likelihood ratios as suggested above, at least for large
sample sizes, since moment-type estimators based on these likelihood ratios will
tend to be very unstable in mean and variance, particularly when v is far from
f. This problem may be partially alleviated if variance reduction or alternative
techniques are employed.

5.1 Estimating Derivatives.

Let us begin by examining the estimation of the derivative m/(8) = %E@V(X )
in general when we are only able to evaluate the function V(X) by simulation,
so there is error in its valuation. We could conduct independent simulations at
two different values of the parameters, say at 6+ h, 6§ —h , average the values
of V(X)) under each, resulting say in the estimators /(0 +h) and m(6 —h) and
then take as our estimator the difference

(0 + h) — (0 — h)
2h

(5.2)
but this crude estimator suffers from a number of disadvantages;

e It requires twice as many simulations as we conduct at a single point.
e It is heavily biased if h islarge unless the function m(6) is close to linear.

e It has very large variance it h is small.

Now we have seen some methods for ameliorating the last of these problems.
Since we are estimating a difference, use of common random numbers in the
simulations at the two parameter values 6 + h and ¢ — h should reduce the
variability somewhat, but this still leaves open the problem of estimating the
derivative, essentially the limit of such a slope estimate.

5.1.1 The Score Function Estimator.

There are two alternatives that are popularly used, Perturbation Analysis, which
depends on pathwise differentiation, and the score function or Likelihood ratio
method. Both have the advantage that a simulation at a single parameter value
allows estimation of the function and its derivative both. We begin by intro-
ducing the score function method. The idea behind the score function method
is very simple, and it involves interchanging derivative and integral. We wish
to estimate m/(6) = % [V(«)fo(x)dz and under some regularity conditions
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called the Cramér conditions we may interchange the integral and derivative
(for example as required by the Cramer-Rao inequality)

m'(0) = BT V(z) fo(x)dx (5.3)
- [veEa - mvese)

where S(6) denotes the score function or

Olnlfo )]

S(0)=S800,z) = 50

(5.4)
Since the score function has expected value 0, i.e. FES(f) = 0, the quantity
Ey[V(X)S(0)] is just the covariance between V(X) and S(f) and this can
be estimated using the sample covariance. In particular if we have a total of n
independent simulations at parameter value 6,

n n

con(V(X),5(6, X)) = £ 3 V(XS0 X) - £ 3 V(X)L

"

S0, X;)
1

provides an estimator of the sensitivity %E oV (X).

Example. A Monte-Carlo Estimator of rho.

Suppose are interested in the p for an option with payoff function at maturity
given by V(S(T'),T). Assume the Black-Scholes model so that the distribution
of S(T') under the @@ measure is lognormal with mean n = Syexp{rT} and
volatility o/T. For brevity we denote S (T') by S. Then if S has the log-normal
distribution with mean 7, S =e¥ where Y ~ N(log(n) —02T/2, o*T). Note
that if g 1is the corresponding probability density function,

dlog(g) Y- log(n) + 02T /2
on no2T
dlog(g) Y- log(n) + 02T/2 an (5.5)
or no2T or '
~ log(S/Sp) — rT + o>T/2
= —

Thus an estimator of p can be obtained from the sample covariance, over
a large number of simulations, of the values of V(S,T) and

%ﬁl or equivalently the sample covariance between V (S, T') and o2 1log(S/So).

This score function estimator can be expressed as a limit of likelihood ratio
estimators However, the score function is more stable than is the likelihood
ratio for large sample size because its moment behaviour is, unlike that of the
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likelihood ratio, similar to its behaviour in probability. Under the standard
regularity conditions referred to above, the score function S(0) = S,(0) for
an independent sample of size n satisfies a law of large numbers

~5u(6) — ElSi(6)] = 0 (5.6)

and a central limit theorem;

1
%Sn(g) — N(0,J1(0)) (5.7)
in distribution where the limiting variance Ji(0) = war[S1(#)]. When the

dimension of X is high, however, the score function estimator still suffers from
too much variability.

Among all random functions G(X;¢) which satisfy %Eg)V(X) = E[(V(X)G(X;0)]
for all V', the score function cannot be improved on in the sense that it has the
smallest possible variance.

Conditioning the Score Function Estimator.

Note that
mi() = Eo[V(X)S(0)] = Eo{Ep[V(X)[S()]S(0)} (5.8)

The conditional expectation Ep[V(X)|S(0)] in the above product is to be es-
timated by Monte-Carlo provided that we are able to generate the variates
conditional on the value of the score function. The outside integral Ey{.}over
the distribution of S(f) may be conducted either analytically or numerically,
using our knowledge of the asymptotic distribution of the score function.

For brevity, denote S(6) by S and its marginal probability density function
by fs(s) -

Let Xg,7=1,..n be variates all generated with the conditional distri-
bution of X given S = s for the fixed parameter 6. Then based on a sample
of size n, the suggested estimator is:

G 3 vixasts(e)ds (59)
i=1

There are some powerful advantages to (?77?), particularly when the data is gen-
erated from one of the distributions in an exponential family. The exponential
family of distributions is a broad class which includes most well-known contin-
uous and discrete distribution families such as the normal, lognormal, exponen-
tial, gamma, binomial, negative binomial, geometric, and Poisson distributions.

X, is said to have an exponential family distribution if its density with
respect to some dominating measure (usually a counting measure or Lebesgue
measure) takes the form:
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fo(z1) = en(t‘))Y(wl)h(ml)c(g)

for some functions n(6), ¢(0), Y(z1) and h(z;) .

When the input consists of a random sample of size n from such an expo-
nential family distribution, the statistic Y,, = Y. ;Y (X;) has a distribution
also of the exponential family form and is sufficient for the family of distri-
butions. By this we mean that the conditional distribution of (Xy, ... X,)
given the statistic Y, is independent of the parameter 6. Furthermore, pro-
vided 7/(8) # 0, conditioning on the score function is equivalent to conditioning
on Y, . The score function is always a function of the sufficient statistic. Sup-
pose we denote it by S(Y},,#) . Thus, denoting a conditional variate X given
Y, =y by X, ,we may estimate m/(f) using

mil®) = [ BV OO, = S00)Ga(dn) = [ V(X,)S0.0)Ga(d) (.10

where G, is the distribution of the sufficient statistic Y,, . For general sample
size, V(X,) in the integrand is replaced by an average of the terms of the form
V(Xy) . Similarly, we estimate m(¢) using simulations at the parameter value

0 by

m(y) = /V(Xy)ey(n(w)n(t‘)))@gn(dy)_ (5.11)

c(0)

When we are attempting to estimate derivatives m/(6) simultaneously at
a number of different values of 6 , perhaps in order to fit the function with
splines or represent it graphically, there are some very considerable advantages
to the estimator underlying (?7?). Because the conditional expectation does not
depend on the value of 6 , we may conduct the simulation (usually at two
or more values of t ) at a single convenient 6 . The estimated conditional
expectation will be then used in an integral of the form (??) for all underlying
values of 6. Similarly, a single simulation can be used to estimate m(vy) for
many different values of .

There are a number of simple special cases of exponential family where the
conditional distributions are easily established and simulated. Note that the
variables can be generated sequentially beginning with X; so the following
distributional results are adequate.

5.1.2 Example.

1. (Exponential Distribution). Suppose X, are exponentially dis-
tributed with probability density function fp(x) = %e‘“’/ ¢ . Then given
Z?Zl X; =y the values X, X7+ Xo, ... Z?:_ll X, are distributed as
n —1 Uniform [0,y] order statistics.
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2. (Gamma distribution). Suppose X, are distributed as independent
gamma (o, f) variates with probability density function

xaflefz/é’

= — 5.12
W) = T (.12
Then the distribution of X;/y given Y ., X; =y has the Beta (o, no)

distribution.

3. (Normal distribution). Suppose X; have a N(#,02) distribution.
Then the distribution of X; given Y, X; =y is N(y/n, (1 —1)0?).

4. (Binomial distribution). Suppose X; are distributed as binomial
(n,0) variates. Then given ", X; =y, X; has a hypergeometric
distribution with parameters (mn,n,y).

5. (Poisson distribution). Suppose X; have the Poisson () distribution.
Then given ., X; =y, the distribution of X is binomial (y,1/n).

6. (Geometric distribution). Suppose X; have the geometric distribu-
tion. Then given Z?:l X; = y , the distribution of X; is a negative
hypergeometric with probability function

("a22)

i n—

f(iE) - (yfl)
n—1

7. (log-Normal Distribution) Suppose X; have the log-normal distribu-
tion with mean 7. Recall that X; = e¥¢ where Y; ~ N(log(n)—c?/2, o?).
Note that

dlog(g) Y —log(n) + o2 /2
f— .1
an no? (5:13)

and therefore the conditional distribution of X7 given the sufficient statis-
tic [, X; =z is of the form e?: where Z; ~ N(log(z)/n, (1— %)02)
and so Y; has conditional mean x'/"exp{(1 — %)%2} and volatility pa-

rameter (1 — 1)o2

5.1.3 Example. Estimating Vega.

Suppose we wish to estimate g—g where V is the value of an option on an

asset, and o is the volatility parameter in the asset price equation. Consider for
example a European option whose present value can be written as an expected
value under the risk neutral distribution

V =E{e""v(S7)}



5.1. ESTIMATING DERIVATIVES. 157

where Sp, the terminal value of the asset, is assumed to have a lognormal
distribution with mean Spe™ and variance parameter o2T. Denote the
corresponding lognormal probability density function of S(t) by

g(s) = ﬁexp{—(log(s) —log(Sy) —rT + nzT/2)2/202T}.

For brevity, write

g(s) = exp{—R%/20%T}

1
so\/2nT

where we have denoted R = R(s) = (log(s) — 7T —1log(Sy) + 02T /2). Then the
score function with respect to the parameter o2 is

Olog(g) R?*-o*T R

oo o3T o

Therefore, by (77), an unbiased estimator of vega is the sample covariance, over
all simulations,

R*(St) —o*T  R(St)
o3T o

cov(e " v(ST),

).

Notice that 115% = 7 has the standard normal distribution, and in terms of

Z

St = Spexp{rT — (TZT/Q + (r\/fZ}. (5.14)

Then the covariance in (77?) is

—rT 2 Z? -1
E{e "Tu(Soeap{rT — o*T /2 + oTZ}) [ — \/TZ]}

since Sy is generated from (??7). This reduces to a simple one-dimensional
integral with respect to a normal probability density function and we can either
simulate this quantity or use a numerical integration. Because of the high
variability of the score function, it is desirable to use variance reduction in
evaluating this estimator.One of the simplest numerical integration techniques
when expectation can be written with respect to a normal probability density
function is Gaussian Quadrature mentioned below.

5.1.4 Gaussian Quadrature.

We consider general integrals of the form

/ T htetdt (5.15)

— 00
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where ¢ is the standard normal probability density function. Suppose such an
integral is approximated by a weighted sum,

k
Zwih(ti). (5.16)

The weights, w;, are chosen so that the approximation is exact for the first &
moments of the standard normal distribution. In other words, it is required
that

k
D wit] =g, r=0,1,... k-1 (5.17)

where p1,, = 0 for 7 odd and p, = r!/(r/2)!127/2 for r even. For arbitrary ¢; these
weights give an approximation that is exact for polynomials of degree at most
k—1. However, if we are free not only to choose the weights, but also the points
t; , we can achieve a better approximation, one that is exact for polynomials of
degree 2k — 1. In this case, we must choose the abscissae to be the k roots of
the Hermite polynomials ,

71dk¢’($)

dak

pe(z) = (—1)*[p(x)] (5.18)

to give an approximation which is exact for polynomials of degree 2k — 1. The
Hermite polynomials with degree k£ <5 are:

po(z) =1, pi(e) =z, po(x) = 2> =1, p3(z) =2" -3z,

pa(z) =2t — 622 =3, ps(z) =25 — 1023 — 152,

Finding the roots of these polynomials, and solving for the appropriate weights,
the corresponding approximations to the integral ffooo h(t)p(t)dt are:

/oo h(t)p(t)dt =~ (1/2)h(=1) + (1/2)h(1), k = 2

— 00

/oo h(t)p(t)dt ~ (2/3)h(0) + (1/6)h(+V3), = 3

— 00

In general, if we wish to evaluate the expected value of a function of X ~
N(p, 0?), the approximations are

E[h(X)] = (1/2)h(p — 0) + (1/2) (nto), k 2
E[h(X)] &~ (2/3)h(1) + (1/6)h(p + V30) + (1/6)h( —V30), k = 3

This last formula is exact for h a polynomial of degree 5.
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5.2 Infinitesimal Perturbation Analysis: Path-
wise differentiation.

There is an alternate method for sensitivity analysis which often competes
favourably with the score function method above and which exploits information
on the derivative of the performance measure. As a preliminary example, let
us return to the problem of estimating a greek (e.g. rho, vega, delta or theta)
for a European option. In this case, we wish to estimate the derivative of
the option price V = E{e~"T=¢(Sr)} with respect to some parameter (e.g.
r,0,50,t) where St has a lognormal distribution with mean SpemT=t  and
variance parameter o2(T —t), and v(S7) is the value of the option on expiry
when the stock price is S7. Call the parameter € for the present. Suppose we
generate St = Sy exp(r(T —t)—o%(T —t)/2+0Z+/T —t) for a standard normal
random variable Z. Then differentiating directly with respect to the parameter
provided such a derivative exists and can be moved under the expectation sign,
yields

0

2E{e_rTv(ST)} = e_rTv’(ST)%ST

00

Thus, to estimate the derivative, an average of simulated values of the form

LN~y (5r g
n;[e V' (Sri) 555l (5.19)

where St; = Sqexp(rT — 0?T/2+ 0\/TZ;) is the i’th simulated closing value.
In fact if the function v(.) is close to being constant, then this estimator will
have variance close to zero and will be quite accurate, likely more accurate than
the score function estimator described in the last section. Consider the case of a
European call option with strike K, v(S7) = (Sp—K)* and v/'(S7) = 15,5 k-
Note that the derivative exists everywhere except at the point K, but the deriva-
tive at the point ST = K  does not exist. To see if we can circumvent this
problem, can we find a sequence of everywhere differentiable functions v, (x)
such that v,(z) — v(z) and v, (z) — v'(x) for all x # k? If so then we
can show that with v, replacing v in (??), we obtain a consistent estimator of
{%E {e""Tv,(St)} and then using the Lebesgue dominated convergence theo-
rem, we may carry this consistency over to v(z). In this case, we might choose

(@) n(:c—[(—i—ﬁ)Q7 forK—ﬁ<x<K+ﬁ
vp(x) =

" (r— K), for $>K+ﬁ

and vp(z) =0 for # < K — 4=, a continuously differentiable function which
agrees with v(z) both in its value and its derivative everywhere except in the
diminishing interval (K — ﬁ7 K+ ﬁ) More generally when v(z) increases at
most linearly in x as ¢ — 00, it is possible to find a dominating function, but
if the payoff function v(x) increased at a faster rate, this may not be possible.
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So generally speaking if there are a finite number of points where the derivative
does not exist, and the payoff function is bounded above by linear functions of
the stock price, an estimator of the form (??) can be used.

In general the suggested method corresponds to the foillowing simple steps;

1. write the expected value we wish to determine in terms of the parameters
(as explicit arguments) and random variables whose distribution does not
depend on these parameters (e.g. U[0,1] or N(0,1).) The simplest way
to do this may be to use the inverse transform.

2. Differentiate this expected value with respect to the parameter of interest,
passing the derivative under the expected value sign.

3. Simulate or numerically determine this expected value.

5.2.1 Example. IPA estimate of Vega.

Again consider an estimate of g—g where £ = 0,

V = E{e_rTv(ST)},

and ST, the terminal value of the asset, has a lognormal distribution with mean
Soe™ and volatility parameter o27". We wish to write St in terms of random
variables with distributions that do not depend on the parameters. Recall that

St = Soeap{rT — 0T /2 + oNTZ}

with Z a standard normal random variable. Then provided that we can pass
the derivative through the expected value,

ov

ov 951
do

do
= E{e " (S7)Sr(VTZ — oT)}.

= E{e7"Tv/'(Sy)

This can be simulated by generating values of Z and then Sy = Spexp{rT —
02T /240y/TZ} and averaging the values of e="Tv/(S1)Sp (VT Z —oT). Alter-
natively, since this is a one dimensional integral, we can integrate the function
against the standard normal p.d.f.¢ i.e.

e T / U/(SoerTfazT/Q—)—a\/Tz)SoerTfazT/Q—i-a\/Tz(ﬁz _ UT)(ZS(Z)dZ.

— 00

Note the similarity between this estimator and the score function estimator
in the same problem. The primary difference is that v’ is multiplied by a linear
function of Z in this case, but v by a quadratic function of Z in the case of the
score function. In part because of the higher variability of the score function, the
perturbation analysis estimator is substantially better at least for a standard
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call option. The following function was used to compare the estimators and
their standard errors.

function [price,vega,SE]=estvega(Z,S0,sigma,r,T,K)

% two estimators of vega , vega(1l)=score function estimator, v(2)=IPA estimator
SE(1),SE(2) their standard errors.

% v=payoff function, vprime is its derivative.

%Z=randn(1,n) is a vector of standard normal

ST=S0*exp(r*T+sigma*sqrt(T)*Z-.5*sigma"2*T);

v=max(0,ST-K);

v1l=exp(-r*T)*(v.*((Z.”2-1) /sigma-sqrt(T)*Z));

vprime=ones(1,length(Z)).*(ST>K);

v2=exp(-r*T)*(vprime *ST.*(sqrt(T)*Z-sigma*T));

vega=[mean(v1) mean(v2)];

SE=sqrt([var(v1l) var(v2)]/length(Z));

price=exp(-r*T)*mean(v);

For example the call [price,vega,SE|=estvega(randn(1,500000),10,.2,.1,.25,9) re-
sults in the price of a call option on a stock worth $10 and with 3 months or
one quarter of a year to maturity, interest rate » = .05, annual volatility 0.20.
The estimated price is $1.1653 and the two estimates of vega are 0.8835 and
0.9297 with standard errors 0.0238 and 0.0059 respectively. Since the ratio of
variances is approximately 4, the IPA estimator is evidently about 16 times as
efficient as is the score function estimator in this case, although even the score
function estimator provides reasonable accuracy. Not all derivatives can be es-
timated as successfully using IPA however. For example if we are interested in
the Gamma or second derivative of a European call option with respect to S,
v(St) = (ST — K)T and v"(z) =0 for all x # K. Thus, if we are permitted
to differentiate twice under the expected value in

V= E{eiTTv(ST)}

we obtain

%St

I'= eiTTE[’UH(ST)—asg

=0

which is clearly incorrect. The problem in this case is that the regularity required
for the second interchange of derivative and espectation fails.

The Multivariate Case.

We wish to generate X = (Xi,... X,) with independent components and
let the cumulative distribution function and the probability density function of
X; be denoted Fip(x) and f;g respectively. One again we wish to estimate the
sensitivity or derivative of the expected value

m(8) = EgV (X1, ... X, 0)
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with respect to the parameter 6 for some function V. Notice that to allow for
the most general situation, we permit 6 to not only affect the distribution of the
variables X; but also in some cases be an argument of the function V. Suppose
we generate the random variables X; by inverse transform from a vector of n
independent uniform variates U; according to X; = Figl(Ui). Then note that

80X, _ 1 9Fe(X, . ) _ V(X0 6) _ dV(X,0
B = T 55—~ Thus, with v = JB)T% and V(0 = 469_2 we
have, under conditions permitting the interchange of derivative and integral,

aV X,0)0X;  OV(X,0)
= {Z 90 o0
IV(X,6) X 0) 1 OFp(X))
_ @) 0
=E ZV (X,0) f O (5.20)

This suggests a Monte Carlo estimator, an average over all (independent)
simulations of terms of the form

ZV@ (X, 9 ) OF9(X;)
fz@ 00

The unbiased estimator (?7) is called the Infinitesimal perturbation analysis
estimator (IPA). Unfortunately, the conditions permitting the required inter-
change of derivative and integral are not always met and so the estimator may
in some cases be biased. See Cao (1987a) for some conditions. When the condi-
tions are met, note the relationship between terms in the perturbation analysis
estimator and the score function estimator, obtained by integration by parts:

average{ V¥ (X, 6) } (5.21)

Eolv(x, 02108 eiX)), EQ/V(XI,...%...Xme)ﬁfw(xi)dxi
a0 a0
: 0
= EpV(Xy,..x; Xme)aa Fig () das) >, —EQ/V@)(X1 o X, 0) 50 Fip () s
OFig(X:)/00

—Ep{V@(X,0) b

fie(X)
Notice that for nearly constant functions V, the gradient V(%) is close to zero
and the perturbation analysis estimator has small variance. In general, when it
is unbiased, it seems to provide greater efficiency than the crude score function
estimator. On the other hand, the comparison is usually carried out in spe-
cific cases, and there seems to be no general reason why perturbation analysis
should be preferred. The lack of differentiability of payoff functions V' can be a
problem, introducing potential bias into perturbation analysis estimators. The
infinitesimal perturbation analysis estimator is an infinitesimal or limiting ver-
sion of the use of common random numbers as the following argument shows.
Generating X;p as above, it is reasonable to estimate

m(f+6) =m0 —0)  V(Xpys,0+6) —V(Xg 5,0—9)
25 - 25 '
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Taking limits as 6 — 0 and assuming the gradient exists in a neighborhood of
0 we arrive at the perturbation analysis estimator.

Infinitesimal perturbation analysis (IPA) assumes that the order of events
in the perturbed path is the same as the order in the nominal path for a small
enough 8, allowing a calculation of V(z,#), the sensitivity of the sample per-
formance for a particular simulation. It will generally give satisfactory results
for European options, but may fail in simulations of lookback or barrier options
if common random numbers fail to give payoffs that are close when parameter
values are close.

In the more common circumstance that the function V' does not directly
depend on the parameter, the crude Monte Carlo IPA estimator (77?) is an
average over all (independent) simulations

0 - OFa(X:)/08
~ 2% O (22

where the derivatives of ai)QV(X ) may be derived through analysis of the system
or through the implicit function theorem if the problem is tractable. In examples
where IPA has been found to be unbiased, it has also been found to be consistent.
When compared to the crude score function method for these examples, it has
generally been found to be the more efficient of the two, although exceptions to
this rule are easy to find.

IPA is based on the differentiation of the output process. Because of this,
the conditions required for the exchange of the differentiation and expectation
operators must be verified for each application. This makes IPA unsuitable as a
“black-box” algorithm. By contrast, the score function method, together with
its variance reduced variations, only impose regularity on the input variables
and require no knowledge of the process being simulated. On the other hand,
the score function method requires that the parameter whose sensitivity is in-
vestigated be a statistical parameter; i.e. index a family of densities, whereas
perturbation analysis allows more general types of parameters.

5.2.2 Sensitivity of the value of a spread option to the
correlation.

Consider two stocks or asset prices with closing values S1(T") and S2(T') jointly
lognormally distributed with volatility parameters 01,09, and correlation p. Of
course all of the parameters governing this distribution are subject to change
in the market, including the correlation p. We are interested in the price of
a European call option on the spread in price between the two stocks, and in
particular, the sensitivity of this price to changes in the correlation. Let the
payoff function be

o(S1(T),52(T)) = max(0, (S1(T) — S2(T) — K)) (5.23)
= max(0, [exp{rT — O’%T/Q +01Z1} —exp{rT — O’%T/Q + 0975} — K])
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for strike price K and correlated standard normal random variables 77, Z5.
Perhaps the easiest way to generate such random variables is to generate Z1, Z3
independent standard normal and then set

Zo =pZi1++1— p2Z3. (524)

Then the sensitivity of the option price with respect to p is the derivative
the discounted expected return

%E[C_TT’U(Sl (T)7 SQ(T))} = E[—O’z exp{—(r%T/Q + UQZQ}%ZQIA]

= E|-ogexpl—02T/2+ 05(pZ1 + /1 — p2Z3)H(Z1 — ——oee Z3)14] (5.25)

where 1 4 is the indicator function of the set

A= A(Zy,Zs) = [exp{rT — 03T /2 + 0121} — exp{rT — 03T/2 + 0975} > K]

and where 71, Z3 are independent standard normal random variables and Zs
satisfies (?7). Thus an IPA estimator of the sensitivity is given by an average
of terms of the form

— oy exp{—02T/2 + 02(pZ1 + /1 — PPZ3)}(Z1 — ——oe=Z3) L a( 2, 2

V1 —p?
(5.26)

Of course variance reduction can be easily applied to this estimator, espe-
cially since there is a substantial set on which (77?) is equal to 0.

5.3 Problems.

1. Assume that X has a normal (6,1) distribution and V(X) = X +
bX? + cX?. Show can estimate 2 EpV (X) = 1 + 2b0 + 3¢(1 + 6°) by
randomly sampling n independent values of X;,i =1,2,..n  and using
the estimator £ 37 | V(X;)(X; — #). How would the variance of this
compare with the variance of an alternative estimator < "7 V'(X;).
How do they compare if V' is close to being a linear function, i.e. if b,c

are small?



Chapter 6

Estimation and Calibration.

6.1 Using Historical Data for Diffusion Models.

Typically a diffusion model for financial data includes parameters with unknown
values which require estimation. For example the CIR model for interest rates,
written in the form

dry = (a + Bry)dt + o/ridW,

has three unknown parameters that require estimation in order to use the model
in valuing derivatives. According to the simplest discrete time approximation to
the process, the Euler Scheme, the increments in the process over small intervals
of time are approximately conditionally independent and normally distributed.
Thus, approximately,

Ar — (o + Bry) At ~ N(0, 0%r At)

Thus, the parameters in the drift term can be obtained by weighted least
squares; i.e. by minimizing the sum of the squared standardized normal variates.

ming gw(Ar — (a+ Bry) At)?

where the weights w are proportional to the reciprocal of the variances w =
1/(r¢At). The solution to this is standard in regression textbooks:

& =Ar — fF (6.1)

where 7, Ar denote weighted averages; e.g. 7= > wr¢/ > w.

Girsanov’s Theorem allows us to use maximum likelihood estimation for any
parameters that reside in the drift term of a diffusion. For example consider a
model of the form

dXt = CL(Xt7 Q)dt + (T(Xt)th

165
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We suppose for the moment that the diffusion term o (X%) is known and that the
only unknown parameter(s) is 6. Then the Radon-Nykodym derivative of the
measure induced by this process with respect to the corresponding martingale
measure defined by

dXt = (T(Xt)th

is given (under the usual conditions) by Girsanov’s Theorem

emp{/ %d}g f%/ ()((;t))dt} (6.2)

The maximum likelihood estimate of 6 is obtained by maximizing this function.
Setting the derivative of its logarithm equal to 0 results in the likelihood equation

/ gg 2(X,)dX, — / %U’Q(Xt)dt = 0

or/ (Xt) 5890 (dXy — a(Xy, 0)dt)

I
=

Usually, of course, we have available only observations taken at discete time
points #; < t9 < ... and the above integral will then be replaced by a sum

Z(r (Xz) %’e)m){ti —a(Xs, 0)At) = 0. (6.3)

6.2 Estimating Volatility

While the Euler method permits estimation of parameters in the diffusion co-
efficient as well as those in the drift, there is no likelihood argument based
on continuous time observations which allows estimation of diffusion coefficient
parameters. This is because the infinite variation of a diffusion process in arbi-
trarily small time intervals for continuous time observations theoretically permit
exact estimation of parameters in the diffusion coefficient with an arbitrarily
short observed trajectory of the process. In other words information for esti-
mating the diffusion coefficient obtains much more rapidly than for the drift,
and in this respect the continuous time processes are quite different than their
discrete analogues. Two diffusions (or even Brownian motion processes) with
different diffusion coeflicients are mutually singular so that we can theoreti-
cally determine from a single sample path the exact diffusion term. Practice
is considerably different for several reasons. First, we never observe a process
in continuous time. Second, processes like security prices, interest rates and ex-
change rates are only similar to certain diffusion processes when viewed over a
longer time interval than a single day or week. Their local behaviour is very dif-
ferent; for example they evolve through a series of jumps of varying magnitudes.
Third, there is information on any process for which derivatives are sold in the
derivative market. The usual estimate of volatility is the “implied volatility”
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or the variance parameter which would, in the Black-Scholes formula, make the
theoretical derivative prices equal to their observed values. While this is not
exactly the historical volatility, it (provided that the model holds) is identical
to the instantaneous value of the volatility since the risk neutral measure has
the same diffusion coefficient as does the Ito process we assume derives the asset
price.

Consider as an example the stock price of New Zealand Telecom listed
on the New York Stock Exchange (Ticker NYSE:NZT). We downloaded three
months of daily stock price data (Feb 22, 2000 to May 22, 2000) from the web-
site http://finance.yahoo.com and on the basis of this, wish to estimate the
volatility. The stock price over this period is graphed in Figure 6.1. It was
downloaded to an excel file and loaded into Matlab from this file. Since the
logarithm of daily stock prices is assumed to be a Brownian motion we may
estimate the daily volatility using the sample variance of the first differences in
these logarithms. To obtain the variance over a year, multiply by the number of
trading days (around 252) in a year. Thus the annual volatility is estimated by
sqrt(252*var(diff(log(telecomprice)))) which gives a value around 0.31. How does
this historical estimate of volatility compare with the volatility as determined
by option prices?

Figure 6.2 obtains from the Chicago Board of Options Exchange and provides
the current price of calls and puts on NZT.

For example suppose there was a July put option, strike price $30 that sold
for $2%. Suppose the current interest rate (in US dollars since these are US
dollar prices) is 6%. This is roughly the interest rate on a short term risk free
deposit like a treasury bill. Then the implied volatility is determined by finding
the value of the parameter o so that the Black-Scholes formula gives exactly
this value for an option price, i.e. finding a value of ¢ so that PUT=2.33
where

[CALL,PUT] = BLSPRICE(28.875,30,.06,42/252,0,0).

In this case, we obtain o = .397 larger than the historical volatility over
the past three months. Which value is “correct”? Apparently in this case the
() measure assigns a greater volatility than the stock has. Is there any obvious
explanation? Certainly the market conditions for this company may well have
changed enough to effect a recent change in the volatility. Moreover, remember
that the distribution that matters in pricing an option is the ) measure, a
distribution assigned by the market for the option. If you use any other distri-
bution, you offer others an arbitrage at your expense. So in practice, volatility
is backed out, where possible, from the price of derivatives on the given asset.
Exceptions are made when the market for a given option or the underlying
asset is very thin or when it is a very short time until maturity (in this case,
other considerations affect the option price). In this case there are no traded
options on telecom in the day and we have little choice but to use hisstorical
volatility, perhaps comparing with implied volatility from previous days.

When we decide to uses historical data to estimate volatility there are more
efficient estimators than the sample variance of the returns. Those which use the
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Figure 6.2:

highs and lows in a period offer considerable gains in efficiency using commonly
published data.

Particularly useful statistics in this regard are the exponentially distributed
random variables Zx = log(H/O)log(H/C) and Zp =log(L/O)log(L/C) (in
the case of geometric Brownian motion) introduced in Theorem 4.3.4, where
(O,C,H,L) denote the open, close, high, low price over a period At. In this
case both Zx and Zp have an exponential distribution with mean ('J'2At/ 2
conditionally on the values of O, C. Therefore, it is independent of C. A
similar argument leads to 2y = log(L/O)log(L/C) ~ exp(c?At/2). Thus
both of these statistics leads to an unbiased estimator of the parameter o2 .
An alternative estimator of the scale parameter o2 is obtained from the in-
crement C/O alone. Indeed the maximum likelihood estimator based on the
distribution of this increment is {log(C/0)}2/At. Thus we have three estima-
tors of the volatility parameter, {log(C/O)}2/At,2log(L/O)log(L/C)/At, and
2log(L/0)log(L/C")/At. While the first is independent of the other two given O,
unfortunately the second and third are themselves not uncorrelated. In order to
weight them optimally we need some information about their joint distribution.
It follows that both {log(C/0)}2/At and (Zg+ Z1)/At provide unbiased esti-
mators of the volatility parameter o2 and indeed the latter is independent of the
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dafed =

tan 8 {E-Of _— C+0D)/2 L oarea =

/ tan BZ+ Z)

t

former.

These estimators are areas illustrated in Figure xx. Consider the plot cor-
responding to time t. The vertical scale is logarithmic so that logs are plotted.
This plot is constructed using an arbitrarily chosen angle 6 from the four values
(O,C, H, L) using two lines {1, {5 through the point (¢, %(log(O) + log(C)))
with slopes =+ tan(f). Horizontal lines are drawn at the ordinate values
log(H),log(L),log(0),log(C) and using the points where log(O)and log(C)
strike the two lines as corners, a rectangle is constructed. The area of this rect-
angle tan(0)(log(C/0))? is an unbiased estimator of tan(#)c?At provided the
Brownian motion has no drift. The second region consists of “wings” generated
by the four points at which the horizontal line at log(H),log(L) strike the
lines (1, ls. The total area of this region (both wings) is tan(0)(Zr + Zm)
which is another unbiased estimator of tan(6)o?T independent of the first, and
also independent of whether or not the underlying Brownian motion has drift.
By comparing these areas, we can detect abnormal changes in the volatility,
or changes in the drift of the process that will increase the observed value of
(log(C'/0))? while leaving the second estimator unchanged. Because each es-
timator is based only on a single period, it is useful to provide as well a plot
indicating whether there is a persistent change in either or both of the two
estimators of volatility.

If the Brownian motion does indeed have zero drift we could combine the
two estimators above, and the optimal linear combination is, with weights very
slightly rounded,

1
ohLy m({log(c/o)}2 +6(Zm + Z1)) (6.4)
where the weights have been determined using the fact that Zgz and Zj are

correlated with correlation coefficient =~ —.338.
How much better is this than the usual estimator of volatility (log(C/O))??
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Computation in the case 02T =1 yields
var(6% ) ~ 0.284

while var(log(C/0)?) = 2. The ratio is approximately 7. In other words,
observations on the high, low, open, close permit about seven times the efliciency
for estimating the volatility parameter. Related estimators have been suggested
in the literature. For example, Parkinson ( 1980) in effect suggests the estimator

T (oe(H/ L) (63)

which is about five times as efficient as (log(C/0))?/T and Rogers and Satchell
(1991) suggest the estimator

(Zg + 7Z1) (6.6)

which is nearly the same as O'QB ru- Perhaps the simplest high efficiency esti-
mator, is suggested by Garman and Klass (1980) and takes the form

Otk = %(103;(H/L))2 — (2In(2) — 1)(log(C/0))? (6.7)

We also show empirically the effectiveness of incorporating the high low close
information in a measure of volatility. For example, the plot below gives the
eggtimer plot for the Dow Jones Industrial Index for the months of February
and March 2000. The vertical scale is logarithmic since the Black Scholes model
is such that the logarithm of the index is Brownian motion. A prepondrance of
red rectangles shows periods when the drift dominates, whereas where the green
tails are larger, the volatility is evidenced more by large values of the high or
small values of the low, compared to the daily change. The cumulative sum of
the areas of the regions below, either red or green, provide a measure of volatility.
In the absence of substantial drift, both measure the same quantity. We can
either plot this cumulative sum or a moving average of the above measures as
in the graph below. The curve labelled “intra-day” measures the volatility as
determinined by the high, low, open close for a given day and that labelled inter-
day, the volatility as estimated from only the daily close/open (or close/close-
the second almost identical curve) prices. Apparently for this period, from
January 1999 to March 2000, the intra-day volatility was greater than the inter-
day volatility. This is equally evident from the plot of the cumulative variance
for the same period of time.

A consistent difference between the intra-day and the inter-day volatility
would be easy to explain if the situation were reversed because one could argue
that the inter-day measure contains a component due to the drift of the process
and over this period there was a significant drift. A difference in this direction
is more difficult to explain unless it is a failure of the Black-Scholes model.
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If there is a consistent such failure, one might expect a similar behaviour in
another market. If we generate a similar plot over the identical period of time
for the NASDAQ index we find that the comparison is reversed. This, of course,
could be explained by the greater drift of the technology dependent NASDAQ
(relative to its volatility) compared to the relatively traditional market of the
Dow Jones.

There is no doubt that this difference is real. In fact if we plot the cumulative
value of the range of the index divided by the close (H — L)/C as in Figure X
below it confirms that the daily range as measured by this ratio is consistently
smaller for the NASDAQ than for the Dow Jones for this period.

Although high, low, open, close data is commonly available for many finan-
cial time series, the quality of the recording is often doubtful. When we used
older data from the Toronto Stock Exchange, there were a number of days in
which the high or low were so far from open and close to be explicable only as
a recording error (often the difference was almost exactly $10). When the data
on highs and lows is accurate, there is substantial improvement in efficiency and
additional information available by using it. But there is no guarantee that pub-
lished data is correct. A similar observation on NYSE data is made by Wiggins
(1991); “In terms of the CUPV data base itself, there appear to be a number of
cases where the recorded high or low prices are significantly out of line relative
to adjacent closing prices”.
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6.3 Estimating Hedge ratios and Correlation Co-
efficients.

“The only perfect hedge is in a Japanese garden.” In practice we are usu-
ally faced with requiring to hedge one asset using one or more other assets.
These may include derivatives on the original asset, which are highly correlated
over short periods, or simply similar investments (such as financial institutions)
which react similarly to market conditions.

Suppose we wish to hedge one investment, say in stock Cy using another,
say Cy. Let us suppose that log(C}/O;),log(Ss/02) have variances 02 At, 03 At
and correlation coefficient p. Assume at the open we are long 1 dollar worth
of stock 2 and short h dollars worth of stock 1. Our total investment is 1 — A,

Our total at the end of the period is Co/O2 — hC1/O1.  The optimal hedge
ratio, the value of h minimizing the variance of Co/0Os — h(Cy/O; is given by

_ 600(02/02701/01) _ 6P0'102At -1
= ’UCI,’I”(O]_/O]_) B eofAt 1

~ pog/op  when At is small.

While volatilities o ,02 may be implied by derivatives on each of these assets,
the correlation parameter p 1is typically not known and usually estimated from
historical data.(If spread options on the difference between these two assets
were marketed, then these might allow us to back out correlations from market
prices as well). We consider using full observations on high, low, open, close
data towards estimating p.

Since in the two or multi-factor case the joint distributions of highs, lows
and closing values is unknown, we need to revert to a simpler alternative than
likelihood methodology. One possibility is a semiparametric approach. We have
seen that in the Black-Scholes model, tthe statistics

Zpw = log(H1/O1)log(H1/Ch)
Zpz = log(Hz/Oz)log(Hz/C2)
Zri = log(L1/Oy)log(L1/Ch)
Zrz = log(L2/Osz)log(L2/Cs)

all have marginal exponential distributions and each is independent of the close.

We consider here a semi-parametric approach. As an introduction, let us
consider a simple transformation of the above exponential random variables g
and assume that we can determine the correlation cor(g(Zmg1),9(Zg2)) = a(p)
as a function of p. For simplicity assume a location and scale change so that
E{9(Z1)} = 0,var{g(Zg1)} = 1. Then a simple estimating function for p can
be constructed as

9(Zm1)9(Zm2) + 9(Z11)9(Zr2) — 2a(p) = 0. (6.8)
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TheGodambe information (or reciprocal of asymptotic variance) in this estimat-
ing function for the parameter p is

{24/ (p)}?
var{g(Zm1)9(Zn2) + 9(Z11)9(Z12) } (69)

and this should be a guideline to the choice of transformation g. Larger values
of this ratio correspond to smaller values of the asymptotic variance of the
estimator. Another estimating equation for p that is commonly used is written
in terms of the open and closing prices:

pPo1
(C2 = Oz = po1)[ C1 — Oy — T — 0—2(02 =02 — )| =0

from which, if we use sample variances to estimate the variance parameters, we

obtain the estimator

pc = cor(C2 — Oz, Cp — On) (6.10)

where cor denotes the sample correlation coefficient. By a similar argument
this has Godambe information given by

1
1—p?

The estimating function in (??) is not only unbiased, it is conditionally unbiased
given C1,Cs, 01, 0s. To see this note that the conditional expectation

Elg(Z1)9(Zm2) + 9(Z11)9(Z12) — 2a(p)|Cy — O1,Ca — Os] (6.11)

is a function of the complete sufficient statistic (C; — O1,C2 — O2) for the drift
terms (fq, 1) whose expectation is 0 for any value of these drift terms. Tt
follows that the estimating functions in (??) and (??) are orthogonal. (Note: it
is not difficult to show that the conditional expectation in (??) can be generated
from two correlated Brownian bridges without knowledge of the drift terms
(11, o) and is therefore a bona fide statistic, independent of these parameters.)
Because they are orthogonal, the best linear combination of the two functions
is easily obtained. The weights are proportional to

2a’ 1
“(p) and respectively,

var{g(Zm1)9(Zu2) + 9(Z11)9(Z12)} var(Cy — O1)(1 — p?)

and the information in the optimal linear combination is given by the sum
of the two informations

{2d'(p)}? 1
var{g(Zm)9(Zm2) + 9(Z11)9(Z12)} 1o 2 (6.12)
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The expression (?7) is useful both to determine what transformation g con-
tributes most to the estimation of p as well as to determine the extent of the
contribution of the high-low information relative to an optimal combination
with the open-close data.

There are various possibilities for the transformation g, the simplest being an
ordinary standardization: We consider the class of the form ¢(Z%,) = (2%, —
E(Z%)))/\/var(Z%,) for some suitable value of p > 0. A transformation of
the gamma distributions that make them very nearly normal is the cube root
transformation(p = 1/3). However, we will see later that a slightly different
power p = 0.4 results in a distribution that is still close to normal but produces
somewhat greater efficiency for estimating the correlation across a range of
underlying values of p. See Figure 77 for the comparison of the density of Z%*
and an approximating normal density obtained by equating the two densities at
the mode.

Normal approximation to Z%4

Normal approximation to Z (0.4), Z exponential
1.4 T T T

12+ B

0.8 \ i

06 - y \ i

04 y/ \ B

1/ |

—=
0 0.5 1 15 2 2.5 3

f(x)

Standardization is achieved using the mean and variance

O'%T
2

0.4
6= B2y = B =104 | B — oma(airs

o271%®
v? =var(Zy}) = {['(1.8) —*(1.4)} [T] = .0828(07T)%®.  (6.13)

We begin by choosing a value of p which results in approximate maximiza-
tion of the information in (??) . Since a(p) is unknown, evaluating its deriva-
tive in the numerator of (??7) must be done using either simulation or numerical
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methods. Our approximation leads to the following plot of the information for
versus p for various values of p.

2.5+

1.5

information

The optimal choice of p evidently depends to some degree on the underlying
value of p (see the following figure) but it appears that the choice p ~ 0.4 is
reasonably efficient for most values of p. The level of these curves also indicates
what increase of efficiency to expect by using the estimating function (??) in
addition to (7.9). In fact the relative efficiency of this estimator relative to use
of (7?) is example in the case p = 0.85, the two terms in (??) are about 2.8
and 3.6 respectively indicating roughly an increase of 80 percent due to the
additional information. The gains appear to be smaller for larger values of p.
When p = .4 and p = 0.15, the values are around 0.75 and 0.98 respectively
indicating around a 75 percent gain in efficiency. So although the information
changes with p, the relative efficiency appears more stable. We emphasize
that these efficiency figures are rough at this stage, since the derivative in the
numerator or (3.9) has been estimated by a crude first difference.

In the case p = .4, we may obtain the function a(p) by numerical means
using the known but complicated form of the joint distribution (see He,
Kierstead and xxx ) or alternatively estimate it by simulation. In this case we
used a number of approximations including a smooth regression of the form a(p)
~ ¢(b? —d) to estimate the function from simulations. However a fourth degree
polynomial fit seemed adequate. The polynomial fit was a(p) ~ 0.0903p* +
0.1163p% + 0.1898p% + 0.5867p + 0.0023. The fit to the function is graphed
below. The individual points are estimates of the correlation each based on
25,000 bivariate Brownian motion processes.
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Quartic approximation to a(rho)
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Inverting the simple approximation to a(p) provides a highly simple and
tractible estimator of the correlation between stocks based only on the corre-
lation between the marginally exponential statistics Zp;, Zr;. This estimator
is

1, __ -
pL= a_l(g(cor(z%i Zpy3) + cor(Z11 Z13))) (7.14)

A similar estimator obtains as well from the cross terms since cor,(Z%1, Z%3) =
a(—p).

. Sl _
pr = —a 1(5(007"(Z%‘11, Z93) + cor(Z11, Z33))) (7.15)

where again cor denotes the sample correlation . There are two possible ways
of using these estimators, either as estimators of the correlation between the two
processes that that, unlike (3.5), is independent of any drift within the periods,
or in combination with the the estimator (??). As anticipated, the estimator
(?7?) adds counsiderably to the efficiency of (?7) . The relative efficiencies are
graphed below. We also approximate the gain in efficiency in (??) by assuming
that the distribution of ¢(Zp;), g(Zr;) is multivariate normal so that we can
estimate the denominator of (??7). In this case, (see Anderson, section xxx), if
we put

X = [Xu1, X11, X2, X2

where Xp; = g(Zp;),Xr; = g(Zr;), then X has covariance matrix

{ jg(p) i(p) ]



180 CHAPTER 6. ESTIMATION AND CALIBRATION.

where

Blp) - {a(p) a(—p) ]

a(—p) alp)
and A = [ (11(_1) (11(_1) ]—B(l).

Then the denominator in the first term of (3.7) is approximately (see An-
derson( ), ),

var{g(Zm)9(Zg2) + 9(Z11)9(Z12)} = 2[1 + a®(—1) + a®(p) + a*(—p)]

and (?7) becomes

2d(p)? L1
1T+ (D + a2+ ()] 17

2{a’(p)}*

The ratio of the two terms, (1 — p?) T e InETEEn) provides the rela-

tive efficiency of the estimator p; with respect to (??7). Our approximation
to the function a(.), provides at best a crude approximation to the derivative
in the numerator, but this would seem to indicate efficiencies in excess of 60
percent. An estimator which combines high-low and open-close information can
increase substantially the information and this is confirmed by simulations. Fig-
ure XX shows the relative efficiencies of the estimator p; and the best linear
combination of p; and ps both with respect to po . These efficiencies are
obtained by simulation and a smoothed curve (loess in Splus) is shown through
the points.The points are determined as an average of 500 simulations, each
corresponding to sample size n = 200 having drift 0. The upper set of points
and curve are the efficiencies (as measured by the ratio of sample variances) of
the optimal linear combination of the three estimators, p;, ps, po With respect
to the estimator p, . Efficiency gains of one hundred percent and more are
observed, especially when the true correlation is around 0.75. If we use the
optimal linear combination of the two estimators p., p; only, there is very little
loss of information over using all three. These points are labelled “.” and the
smooth nearly coincides with the upper curve except at the extreme ends. Fi-
nally the points labelled “*” and the lower curve is the efficiency of the estimator
pc alone. Evidently, it is virtually as efficient as p, for values of p around
0.75. Any bias in the estimators is too small to be detected in a simulation of
this magnitude.

FIGURE XX
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6.4 Estimation using the Term Structure of In-
terest rates

Largely for accounting reasons, and for the avoidance of arbitrage, financial
analysts commonly estimate parameters of a model not from historical data but
from some derivative. For example, the volatility parameter of an equity is often
derived from the Black-Scholes price of options on the equity and the parameters
of a diffusion model for interest rates from the term structure of interest rates.
In general, of course, the decision whether to use implied values for parameters
of efficient statistical estimators based on historical data is analogous to the
choice between the real-world probability measure and the risk-neutral one. If
one is interested in valuing derivatives employing a no-arbritrage principle, then
the use of the risk-neutral measure is required. On the other hand, if one wishes
to model the real-world behaviour of a given process, often statistical estimators,
though complicated by the fact that parmaeters may change dynamically over
time, provide a better fit to observed data and may be more useful in predicting
the future.

It is common, for example, to assume a diffusion model for interest rates
that permits time-varying coefficient;

dry = a(ry, t)dt + o (ry, t)dWy.

Consider a 0-coupon bond which, if invested today at time ¢ returns 1$ at
time 7' . Then, if the current short rate is 7 , the value of this bond can be
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written as a function
T
f(re,t) = EQ[exp{—/ rsds}]
t

where E® denotes expectation under the risk-neutral measure. The yield curve
describes the current expectations for average interest rates;

_log(f(re,t))

Yield(T —t) =~

For a given diffusion model, the function f can be determined by solving the
PDE

2 2
1 5 _
ﬁf—i_a(x’t)at&v 37 (r,t)f —xf =0

f+

subject to the boundary condition f(z,7) = 1, all = € R. The more
common models such as the Vasicek, the CIR and the Merton models for interest
rate structure are such that the yield curve is affine or a linear function of the
interest rate. In this case f(z,t) = exp{c(T —1t)+d(T—t)x} for some functions
¢(.), d(.). Generally this linearity occurs provided that both the drift term and
the square of the diffusion coefficient o2(z,t) are linear in .

One of the most popular current approaches to interest rates is the HJM
or Heath-Jarrow-Morton model, which consists of modeling the instantaneous
forward rate  f(t,u), wu > t. Essentially, this function is assumed to follow a
multidimensional diffusion. For details, see Chapter 8 of Duffie (1996).
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Miscellany

There are many othe models proposed for financial data that find support in
some communities, and the debate about which are appropriate shows no sign of
early resolution. The field of artificial intelligence offers Neural Nets, a locally
simple model originally suggested as a design for the brain.

7.1 Neural Nets

A basic premise of much of modern research is that many otherwise extremely
complex phenomena are much simpler when viewed locally. On this local scale,
structures and organisation are substantially simpler. Complex societies of in-
sects, for example, are organized with very simple interactions. Even differential
equations like

dy
dw Y

are used to describe the simple local structure of the more complicated expo-
nential function.

Neural Nets are suggested as devices for processing information as it passes
through a network. For example binary bits by, by, bg entering a given node j
are processed with a very simple processor g;(b1, b2, bs) which outputs a bit and
then transmits it to another node. Thus a neural net consists of a description
of the processors (usually simple functions weighted averages), an architecture
describing the routing, and a procedure for estimating the parameters ( for
example the weights in the weighted average). They have the advantage of
generality and flexibility- they can probably be modified to handle nearly any
problem with some success. However, in specific models for which there are
statistically motivated alternatives, they do not usually perform as well as a
method designed for that model. Nevertheless, their generality makes them a
popular research topic in finance.

183
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7.2 Chaos, Long term dependence and non-
linear Dynamics

Another topic, popularized in finance by books by Peters (...) and Gliek (1987),
is chaos. Chaotic systems are generally purely deterministic systems that may
resemble random or stochastic ones. For example if we define a sequence by a
recursion of the form z; = f(x;—1) for some non-linear function f, the resulting
system may have many of the apparent properties of a random sequence. De-
pending on the nature of the function f, the seqeunce may or may not appear
“chaotic”. Compare for example the bahaviour of the above recursion when
f(z) =ax(l—=z), 0<az<1l, ,a<4 and aissmallor a isnear 4.
Similarly, the recursion

ze=1-— ax%_l +bry_o, a=14, b=0.3

describes a bivariate chaotic system, which, like an autoregressive process of
order 2, requires two predecessors to define the current value. In general, a
system might define z; as a non-linear function of n predecessors. Then de-
tecting chaos( or lack therof) is equivalent to determining whether the sequences
(Tgy eyt .. Tpyn), £ =1,2, fill n+1 dimensional space.

Tests designed to test whether a given sequence of stock returns are inde-
pendent identically distributed generally result in rejecting this hypothesis but
the most plausible explanation of this is not so clear. For example Hsieh (1991)
tests for both chaotic behaviour and for arch-garch effects (predictable vari-
ance changes) and concludes that the latter is the most likely cause of apparent
dependence in the data.

7.3 ARCH AND GARCH

One of the first noticable failures in the application of time series models to
financial data such as a security price is the failure to adequately represent ex-
tended observed periods of high and low volatility. The innovations are supposed
in the conventional ARMA models to be independent with 0 mean and constant
variance 02 and the squared innovations should therefore be approximately
independent (uncorrelated) variates.

The time series models discussed so far basically model the expected value
of the series given the past observations, assuming that the conditional variance
is constant. GARCH, or Generalized Autoregressive Conditional Heteroscedas-
ticity takes this one step further, allowing this conditional variance to also be
modeled by a time series. In particular, suppose that the innovations in an
ARMA model are normally distributed given the past

Qg ~ ]V(O7 ht)

where the conditional variance h; satisfies some ARMA relationship with
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the squared innovations posing as the new innovations process.
BB = ag+ (B)a;

where 8(B) = 1—-0,B—...0,B"and o(B) = auB+ ...+ «as;B*° .

The case r = 0 is the original ARCH Autoregressive Conditional Het-
eroscedasticity model, and the most common model takes r = 0,s =1 so
hiy = oo+ aia? ; . For ARCH and GARCH models the parameters must
be estimated using both the models for the conditional mean and the condi-
tional variance and diagnostics apply to both models. The advantages of these
models are that they provide both for some dependence among the observations
through volatility rather than through the mean, and that they tend to have
heavier tails. As a result, they provide larger estimated prices for deep out-of-
the-money options, for example, which are heavily dependent on an accurate
model for volatility.

7.3.1 ARCH(1)

The basic model investigated by Engle was the simplest case in which the pro-
cess has zero conditional mean (it is reasonable to expect that the market has
removed most or all of this) and but that the squares are significantly auto-
correlated. Much financial data exibits this property to some degree. Engles
ARCH(1) model is: zy ~ N(0, hy) and

2
ht = 040'1‘041557571

whereas an ARCH regression model allows the conditional mean of z; in (7.4)
to depend on some observed predictors. The GARCH-IN-MEAN process fit by
French et. al. allow the mean of z; to be a function of its variance so that
@y ~ N(a+ bhY / 2, ht). This would allow testing the hypotheses of relative risk
aversion, for example. However, there is little evidence that b may be non-
zero, and even less evidence to determine whether the linear relation should be
between mean and standard deviation (p = 1) or between mean and variance

(p=2).
7.3.2 Estimating Parameters

The conditional log likelihood to be maximized with respect to the parameters
a;, B is:

~2

a
log(L) = =5 > llog hu+ 5H
t

N =

Various modifications of the above GARCH model are possible and have been
tried, but the spirit of the models as well as most of the methodology remains
basically the same. There is also a system of Yule-Walker equations that can be
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solved for the coefficients (3, in an ARCH model. If v, is the autocovariance
function of the innovations squared a? , then

s r
Tn = Zai’Ynfi + Zﬂfynfz
=1 i=1

for n > r 4+ 1. These provide the usual PAF for identification of the suitable
order r of the autoregressive part.

7.3.3 Akaike’s Information Criterion

Clearly, a model which leads to small estimated variances for the innovations
is preferred, all else being equal, to one with large residual variation. In other
words we are inclinded to minimize the estimated residual variance ﬁ S a?

(or equivalently its logarithm) in the selection of the model, where k is the
number of autoregressive-+moving average parameters in the model. However,
such a criterion would encourage the addition of parameters for even a marginal
improvement in residual variance, and so a better criterion penalizes against an
increase in the number of parameters.

1 2k
AIC = log[N_k Z&%] + ~
The AIC criterion chooses that model which minimizes this quantity. It should
be noted that the AIC put out by Sis —2log(L) +2xk and this is approximately
N times the above value. The advantge in multiplying by NV is that differences
operate on a more natural scale. When nested models are compared (i.e. one
model is a special case of the other), differences between values of the statistic
— 2log(L) have a distribution which is Chi-squared with degrees of freedom
the difference in the number of parameters in the two models under the null
hypothesis that the simpler model holds.

7.3.4 Testing for ARCH effects

Most of the tests for the adequacy of a given time series model are inherited
from regression, although in some cases the autocorrellation of the series in-
duces a different limiting distribution. For example, if there is an ARCH ef-
fect, then there should be a significant regression of a? on its predecessors
a? 4, a? 4, a7_5.... Suppose we are able to obtain residuals ;, Giy1,...aN
from an ARMA model for the original series. We test for ARCH effect by
regressing the vector (&12 e &?V) on a constant as well as the s “predictors”
(&lz—i-s—la 7&%—1)7 (&12+s—2’ 7&%—2)' T (&125 7&%—3)
and obtaining the usual coefficient of determination or squared multiple correla-
tion coefficient R? . Standardized, (N —1)R? has an approximate chi-squared
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distribution with s degrees of freedom under the null hypothesis of homoscedas-
ticity so values above the 95’th chi-squared percentile would lead to rejecting
the homoscedasticity null hypothesis and concluding arch-like effects. The fol-
lowing table provides the approximate critical values for the chi-squared at the
5% level.

Chi-squared critical values
Conclude ARCH effects if (N — [)R? exceeds:

s Critical Value

.84
.99
.82
.49
11.07
.59
14.07
15.51
16.92
18.31

© N 01w

O O OO ~NO OB WN -
-
N

[y

7.3.5 Example. Deutschmark Exchange

The original exchange rate series is given in Figure 7.1. There are approximately
4700 daily observations of the value of the Deutschmark priced in American
dollars covering a period from May 16, 1972 to December 31, 1990. Fitting an

Figure 7.1: Deutschmark exchange rate
figure=dm.ps,height=3in,width=>5in

AR model by AIC to the first differenced series of DM exchange rates led to an
estimate % = 1.41141 x 1075 and an order AR(21) model with the following
coefficients:

LAG | AR 21 coefficients | LAG | AR 21 coefficients
1 0.017195644 11 0.007974478

2 0.023371179 12 -0.021073932

3 0.017750192 13 0.026812630

4 -0.011688776 14 0.008615040

5 -0.002804700 15 0.037807230 ;iAG —C(J)%];fff)8840
6 0.023669761 16 -0.019937096

7 0.012745515 17 -0.022599909

8 0.040368907 18 -0.017522413

9 0.016654816 19 0.023648366

10 0.041129731 20 0.034871727
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and the following values of the AIC as output from Splus corresponding to

lags 1-37,

14.3662109 14.4160156 13.6240234 14.1992188 15.7988281 17.7529297
16.7841797 17.6533203 12.2275391 12.6582031 6.5322266 8.2451172
8.5869141 6.9638672 8.5751953 4.5263672 4.5263672 4.3544922

5.0292969 4.3935547 0.8105469 0.0000000 1.7773438 3.2275391

4.7246094 5.5156250 5.4570312 7.4218750 9.3662109 6.0908203

4.2158203 ©5.9472656 7.8769531 9.8632812 10.3320312 11.3339844

12.4189453

The minimum AIC has been subtracted from all values so it corresponds
to the order 21 model, and after subtraction, gives tabulated value 0.0000000.
These coefficients can be compared with twice the standard error of 1/N'/2
where N = 4696 and this is around 0.028. Since few of the coeflicients exceed
this value (except the coefficient for lag 10), there is little support for any non-
trivial autoregressive effect. Fortunately, because the estimated coefficients are
generally small as well, there will also be little difference in forecasting whether
we use white noise or the suggested AR(21) model above, since the white noise
model corresponds to putting all of the above (small) coefficients equal to 0.

However, if we save the residuals a; from the above time series, and then

study the series a7 we obtain the following;

LAG Autocorrelation Function LAG Autocorrelation Function

[1,] 0.158922836 [6,1 0.046017088
[2,] 0.101335056 [7,] 0.021516455
[3,1] 0.077508301 [8,1 0.009644603
[4,] 0.008419966 [9,1 0.002976760
[5,]1] 0.032856703 [10,] 0.105071306

[11,]1 -0.030951777

LAG PARTIAL Autocorrelation LAG PARTIAL Autocorrelation

[1,] 2.079889e-01 [6,] 5.511491e-02
[2,] 1.328089e-01 [7,] 3.411203e-02
[3,]1 9.759974e-02 [8,] 2.005137e-02
[4,] 3.005405e-02 [9,1 1.561776e-02
[5,1 4.940604e-02 [10,1 1.002484e-01

[11,] -3.095178e-02
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Since the AF seems to decay somehat more quickly than the PAF with 3
values significantly non-zero, we might try an ARCH(3) model to describe the
process. The large coefficient at lag 10 gives some concern. Does it indicate
some sort of biweekly seasonality that we may wish to remove (if it has any
reasonable explanation)? If an explanation can be found, then the seasonality
can be dealt with by using differences of the form (1 — B9) .

Diebold and Nerlove, in ARCH Models of Exchange Rate Fluctuations con-
firm the ARCH effect on the exchange rate for a number of different currencies.
However, they observe substantially longer effects (e.g. at lag > 12 ) although
their data is weekly.
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Chapter 8

Appendix A: Some Basic
Theory of Probability

8.1 Probability Models.

Basic Definitions.

Probabilities are defined on sets or events, usually denoted with capital letters
early in the alphabet such as A, B, C. These sets are subset of a Sample Space
or Probability Space €2, which one can think of as a space or set containing all
possible outcomes of an experiment. We will say that an event A C Q occurs if
one of the outcomes in A (rather than one of the outcomes in 2 but outside of
A ') occurs. Not only should we be able to describe the probability of individual
events, we should also be able to define probabilities of various combinations
of them including

1.

Union of sets or events AUB = A or B (occurs whenever A occurs or
B occurs or both A and B occur.)

. Intersection of sets ANB = A and B (occurs whenever A and B occur).

Complement : A° =not A (occurs when the outcome is not in A).

Set differences: A\ B = ANB® (occurs when A occurs but B does not)

. Empty set : ¢ = Q¢ (an impossible event-it never occurs since it contains

no outcomes)

Recall De Morgan’s rules of set theory: (U;A;)¢ = N; A and (N;A;)° = U; AS

Events are subsets of Q. We will call F the class of all events (including

¢ and Q).

191
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Axioms of Probability
A probability measure is a set function P : F —[0,1] such that

1. P()=1

2. If Ay is a disjoint sequence of events so Ay NA; =¢, k # j, then

P(UZ A;) =) P(A)
i=1
Proposition
P($) =0.
Proposition

If Ay, k=1,...N is a finite sequence of disjoint events so AxNA; = ¢, k # j,
then

N
P(UY A;) =) P(A)

i=1
Proposition

P(A¢) =1 - P(A)

Proposition

Suppose A C B. Then P(A) < P(B).

Proposition

P(AUB) = P(A) + P(B) — P(AN B)

Proposition

(inclusion-exclusion) P(UrAr) = 375 P(Ar) — D237 P(ANA;) + 32373 5o P(AN
A]' N Ak) — .

Proposition

PUZ A;) <32 P(A).

Proposition

Suppose A; C Ay C .... Then P(UR,A;) = lim;—eoP(A;).
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Example.

A coin is tossed twice. List €2 and the class F of possible events. Define the
probability of an event A to be

number of points in A

P(A) =

number of points in Q

Would this be the correct definition of probability if we defined the sample space
using the number of heads observed 2 = {0,1,2}?

Counting Techniques
Permutations.

The number of ways of arranging n distinct objects in arow is n! =n(n—1)...1
and 0!=1. Define n{") = n(n—1)...(n—r+1) (called “n to r factors”)
for arbitrary n, and r a non-negative integer. Define n(®) = 1.

Example.

How many distinct ways are there of rearranging the 15 letters

AAAAABBBBCCCDDE?

Example

There are ten students seated at a table of which 5 are Pure Math, and 5 are
Impure Math. The organisers are concerned about (intellectual) disputes. How
many arrangements are there such that no two pure math students sit together?
If the students are seated at random, what is the probability no two pure math
students are seated together?

Combinations

Suppose the order of selection is not considered to be important. We wish, for
example, to distinguish only different sets selected, without regard to the order
in which they were selected. Then the number of distinct sets of r objects that
can be constructed from n distinct objects is

<r> !

Note this is well defined for r a non-negative integer for any real number 7 .
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8.2 Independence and Conditional Probabilities.

Independent Events.

Two events A, B are said to be independent if
P(ANnB)=P(A)P(B) (2.1)

Compare this definition with that of mutually exclusive or disjoint events A, B .
Events A, B are mutually exclusive if AN B = ¢.

Independent experiments are often built from Cartesian Products of sample
spaces. For example if €7 and €y are two sample spaces, and A; C
Q1, As C Qo then an experiment consisting of both of the above would have
sample space the Cartesian product

O xQy = {(wl,wg);wl S Ql,LUQ < QQ}

and probabilities of events such as A; x Ay are easily defined, in this case
as P(A; x As) = Py(A1)Pa(As). Verify in this case that an event entirely
determined by the first experiment such as A = A; X )y is independent of one
determined by the second B = ) x As.

Definition.

A fine or countably infinite set of events Aj, Ao, ... .. are said to be mutually
independent if

P(A;, NA;,N...A;,)=P(A;)P(A4,)...P(4;,) (2.2)

forany £ >2 and i1 <ig < ...ip.

Properties.

1. A,B independent implies A, B¢ independent.

2. Any A;; can be replaced by A in equation (2.2).

Why not simply require that every pair of events is independent?

Example:

Pairwise independence does not imply independence. Two fair coins are tossed.
Let A = first coin is heads, B = second coin is heads, C' = we obtain exactly
one heads. Then A is independent of B and A is independent of C' but
A, B, C are not mutually independent.
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Example

Players A and B decide to play chess until one of them wins. The probability
A wins a given game is .3, the probability B wins is .2 and the probability of
a draw is .5. What is the probability A wins first?

Lim Sup of events

For a sequence of events A,,n = 1,2,... we define another event [4,, i.0.] =lim
sup A, = N5_; U2, A,. Note that this is the set of all points & which lie in
infinitely many of the events A1, Ag, ..... The notation i.o. stands for “infinitely
often”.

Borel Cantelli Lemmas

Clearly if events are individually too small, then there little or no probability
that their lim sup will occur, i.e. that they will occur infinitely often.

Lemma 1: For an arbitrary sequence of events A, ,if }° P(A,) < oo then
P[A, i.0]=0.

Lemma 2: For a sequence of independent events A, , >, P(Ay) = oo implies

P[A, i.0] = 1.

Conditional Probability.

Suppose we are interested in the probability of the event A but we are given
some relevant information, namely that another related event B occurred.
How do we revise the probabilities assigned to points of € in view of this
information? If the information does not effect the relative probability of points
in B then the new probabilities of points outside of B should be set to 0 and
those within B simply rescaled to add to 1.

Definition: Conditional Probability:

For B € F with P(B) > 0, define a new probability

P(AN B)

QA) = P(AIB) = —5

(2.3)

This is also a probability measure on the same space (2, F) , and satisfies the
same properties. Note that P(B|B) =1, P(B¢B) =0.
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Theorem: Bayes Rule

If P(UpBy) = 1 for a disjoint finite or countable sequence of events B, all
with positive probability, then
P(A|By,)P(B
P(BylA) = —ABIPBY (2.4)

X, P(A|Bn)P(Bn)

Theorem: Multiplication rule.

If A,...A, are arbitrary events,

P(A1Ay ... Ay) = P(A1)P(As| A1) P(A3|AsAy) ... P(Ap|A1As ... Ap 1) (2.5)

Example. Diagnostic Testing.

Suppose a blood test for HIV tests positive for 95% of the people who are
actually HIV positive and tests negative for 99% of the people who are HIV
negative. Suppose the probability that a male is HIV positive is .0001 and the
probability that a female is HIV positive is .00005. Assume equal proportions
of males and females in the population.

1. Find the probability that a randomly selected person who tested positive
on the diagnostic test is indeed HIV positive.

2. Find the probability that a randomly selected male who tested positive
on the diagnostic test is indeed HIV positive.

Random Variables and Discrete Distributions

Random Variables
Properties of F .

The class of events F (called a 0 — algebra or o — field) should be such that
the operations normally conducted on events, for example countable unions or
intersections, or complements, keeps us within that class. In particular it is
such that

(a) Varphi € F

(b) If A€ F then A° € F .

(c)If A, € F forallm=1,2,..., then U2, € F .

It follows from these properties that Q € F and F is also closed under
countable intersections, or countable intersections of unions, etc.

Definition

Let X be a function from a probability space ) into the real numbers. We
say that the function is measurable (in which case we call it a random variable)
if for x € R, the set {w; X (w) <} € F. Since events in F are those to which
we can attach a probability, this permits us to obtain probabilities for the event
that the random variable X is less than or equal to any number =.



8.2. INDEPENDENCE AND CONDITIONAL PROBABILITIES. 197

Definition: Indicator random variables

For an arbitrary set A € F define I4(w) =1 if w € A and 0 otherwise. This
is called an indicator random variable. (sometimes a characteristic function in
measure theory, but not here).

Definition: Simple Random variables.

Consider events A; € F such that U; A; = Q. Define X(w) = Y, ¢;la,(w)
where ¢; € R. Then X is measurable and is consequently a random variable.
We normally assume that the sets A; are disjoint. Because this is a random
variable which can take only finitely many different values, then it is called
simple. Any random variable taking only finitely many possible values can be
written in this form.

Example.

A coin is tossed 10 times. X is the number of heads. Describe (£, F) and
the function X (w) .

Notation

We will often denote the event {w € ; X(w) < 2} more compactly by [X < z].

Theorem.

If X1, Xo arerandom variables, so is
1. X7+ X,
2. X1Xo
3. min(X1,X2) .

Cumulative Distribution Functions.
Definition.
The cumulative distribution function (c.d.f.) of a Random variable X is defined
to be the function F(z) = P[X <z], z€eR.
Properties of C. D. F.
1. A c.df. F(z) is non-decreasing. i.e. F(z) > F(y) whenever x> y.
2. F(z) —0,as z— —o0.
3. F(z) =1, x— oo.

4. F(x) is right continuous. i.e. F(x) = lim F(x + h) as h decreases
to 0.
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There are two types of distributions that we consider in this course, discrete
distributions and continuous ones. Discrete distributions are those whose cu-
mulative distribution function at any point z can be expressed as a finite or
countable sum of values. For example

F(z) = Zpa;

i<z

for some probabilities p; which sum to one. In this case the cumulative distri-
bution is piecewise constant, with jumps at the values that the random variable
can assume. The values of those jumps are the individual probabilities. For
example P[X = z] is equal to the size of the jump in the graph of the c.d.f.
at the point x . We refer to the function f(x) = P[X = x| as the probability
function of the distribution.

Some Special Discrete Distributions
The Discrete Uniform Distribution

Many of the distributions considered so far are such that each point is equally
likely. For example, suppose the random variable X takes each of the points
a,a+1,...b with the same probability ﬁ. Then the c.d.f. is

z—a—+1

Flo) =307

r=a,a+1,...b
and the probability function is f(z) = ﬁ for © =a,a+1,...b and 0
otherwise.

The Hypergeometric Distribution

Suppose we have a collection (the population) of N objects which can be
classified into two groups S or F' where there are r of the former and N —r
of the latter. Suppose we take a random sample of n items without replacement
from the population. What is the probability that we obtain exactly = S’s?

(2) ()
N bl
()

What is the possible range of values of x 7 Note that as long as N, R,n,z are

integers, this formula gives 0 unless x is in this range. (Note: while attempting
to avoid being too judgemental, S above stands for success and F for Failure)

flz) = x=0,1,...

The Binomial Distribution

The setup is identical to that in the last paragraph only now we sample with
replacement. Thus, for each member of the sample, the probability of an S is



8.2. INDEPENDENCE AND CONDITIONAL PROBABILITIES. 199

p=r/N . Then the probability function is

fz) = <Z>pw(1_p)n—w7 z=0,1,...n

With any distribution, the sum of all the probabilities should be 1. Check that
this is the case for the binomial, i.e. that

The Hypergeometric distribution is often approximated by the binomial dis-
tribution in the case N large. Problem 6 below justifies this approximation.
Note that in the case of the binomial distribution, the two parameters (con-
stants that one needs to determine the distribution) n,p are fixed, and usually
known. For fixed sample size n we have counted X the number of S’sin n
trials of a simple experiment (e.g. tossing a coin).

The Negative Binomial distribution

The binomial distribution was generated by assuming that we repeated trials a
fixed number n of times and then counted the total number of successes X
in those n trials. Suppose we decide in advance that we wish a fixed number
( k) of successes instead, and sample repeatedly until we obtain exactly this
number. Then the number of trials X is random.
r—1\ z—k
f(z) = k_lp(l—p) , r=kk+1,...

A special case of most interest is the case k = 1 called the Geometric

distribution. Then

fl@)=p(l—p)™ ! x=12...

The Poisson Distribution.

Suppose that a disease strikes members of a large population ( of n individuals)
independently, but in each case it strikes with very small probability p . If we
count X the number of cases of the disease in the population, then X has the
binomial (n,p) distribution. For very large n and small p this distribution
can be again approximated as follows:

Theorem. Suppose f,(z) is the probability function of a binomial distri-
bution with p = A/n for some fixed A. Then as n — oo ,

ATe=A

ful@) = f(2) =

!

foreach z=0,1,2,....
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The function f(z) above is the probability function of a Poisson Distri-
bution named after a French mathematician. This distribution has a single
parameter A , which makes it easier to use than the binomial, since the bi-
nomial requires knowledge or estimation of two parameters. For example the
size n of the population of individuals who are susceptible to the disease might
be unknown but the “average” number of cases in a population of this type A
could be obtained.

Example.

Phone calls arrive at a switchboard at an average rate of one every two minutes.
If the operator nips out for a quick drink (5 minutes) what is the probability
that there are no calls in this interval? What is the probability that there are
more than three calls (in which case the supervisor is alerted).

8.3 Expected Values, Mean, Variances

Expected Value

An indicator random variable 14 takes two values, the value 1 with probability
P(A) and the value 0 otherwise. Its expected value, or average over many
(independent) trials would therefore be 0(1— P(A))+1P(A) = P(A) . This is
the simplest case of an integral or expectation.

Recall that a simple random variable is one which has only finitely many
distinct values ¢; on the sets A; where these sets form a partition of the
sample space (i.e. they are disjoint and their union is €2).

Expectation of simple random Variables.

For a simple random variable X = ). c¢;I4, ,define E(X) = >, ¢;P(A;) .
The form is standard:

E(X) = Z(values of X) x Probability of values

Thus, for example, if a random variable X has probability function f(x) =
P[X =uz],then E(X)=>_ zf(z).

Properties.
For simple random variables X, Y,
1. X(w) <Y(w) for all w implies E(X) < E(Y).
2. For real numbers «, 8, E(aX + (YY) = aE(X) + BE(Y).

Proof. Suppose X = 3. c;l4, < Zj d;Ip, where A; forms a disjoint
partition of the space Q (i.e. are disjoint sets with U; A; = Q) and B, also
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forms a disjoint partition of the space. Then ¢; < d; whenever A;B; # ¢.
Therefore

E(X) =) ¢P(A) = Zc ZP(AiBj) < Z Zde(AiBj) = Zde(Bj) = E(Y)

K3

For the second part, note that aX + Y is also a simple random variable
that can be written in the form . Zj(aci +Bd;)1a,B, where the sets A;B;
form a disjoint partition of the sample space (2. Now take expectation to verify
that this equals a7, ¢; P(4;) + B8, d; P(B;).

Example Find the Expected value of X , a random variable having the
Binomial(n, p) distribution.

Expectation of non-negative measurable random variables.

Definition: Suppose X is a non-negative random variable so that X (w) > 0
for all w € Q. Then we define

E(X) = sup{E(Y); Y simple, Y < X }.

Expected value: discrete case.

If a random variable X has probability function f(z) = P[X = «] , then the
definition of expected value in the case of finitely many possible values of =z
is essentially E(X) = ) «f(x) . This formula continues to hold even when
X may take a countably infinite number of values provided that the series
Y . xf(x) is absolutely convergent.

Example.

Find the expected value of a random variable X having the geometric distri-
bution.

Notation.

Note that by [, XdP we mean E(X1I4) where I4 is the indicator of the
event A.

Properties of Expectation.
Assume X, Y are non-negative random variables. Then ;
LIf X = >, ¢l simple, E(X) = > .c;P(4;) .

2. If X(w)<Y(w) forall w, E(X)<E(Y).
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3.

4.

If X,, increasing to X , then F(X,) increases to E(X) (this is usually
called the Monotone Convergence Theorem).

For non-negative numbers «, 8, E(aX + YY) = aE(X)+ BE(Y).

Proof of Properties.

(1)

(2)

If Z<X and Z is a simple function, then FE(Z) < E(X) . It follows
that since X is a simple function and we take the supremum over all
simple functions Z , that this supremum is E(X).

Suppose Z is a simple function < X. Then Z <Y . It follows that
the set of Z satistying Z < X is a subset of the set satisfying Z <Y
and therefore the supremum of F(Z) over the former cannot be greater.

Since X,, < X if follows form property (2) that F(X,) < E(X). Similarly
E(X,) is monotonically non-decreasing and it therefore converges. Thus
it converges to a limit satisfying

limE(X,) < E(X).

We will now show that lim E(X,) > E(X) and then conclude equality
holds above. Suppose € > 0 is arbitrary and Y = )" ¢;I4, where ¥ < X
is a simple random variable. Define E,, = {w; X (w) > (1 —¢€)Y(w)} Note
that as n — oo , this sequence of sets increases to a set containing
{w; X(w) > (1 —€/2)Y(w)} and since X > Y the latter is the whole
space §2. Therefore,

E(Xn)z/ XndPZ(l—e)/ YdP.
Ey E

n

But

7

/ YdP = ZciP(AiEn) — ZCiP(Ai)
E, i

as n — 0o. Therefore
lim E(X,)>(1—-¢eE®Y)

whenever Y is a simple function satisfying Y < X. Note that the
supremum of the right hand side over all such Y is (1 —€)E(X). We
have now shown that for any € >0, limE(X,) > (1 —¢€)E(X) and it
follows that this is true also as € — 0.

Take two sequences of simple random variables X,, increasing to X and
Y, increasing to Y . Assume « and [ are non-negative. Then by
property 2. of 4.1.2,

E(aX, + BY,) = aBE(X,) + BE(Y;)

By monotone convergence, the left side increases to the limit F(aX +3Y)
while the right side increases to the limit aF(X)+ SE(Y). We leave the
more general case of a proof to later.
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General Definition of Expected Value.

For an arbitrary random variable X , define XT = max(X,0), X~ = maz(0,—X).
Note that X = X — X~. Then we define F(X) = E(XT)— E(X~). This
is well defined even if one of E(X ™) or F(X ™) are equal to oo as long as both
or not infinite since the form oo — oo is meaningless.

Definition.

If both E(XT) < co and E(X ) < co then we say X is integrable.

Example:

Define a random variable X such that P[X = 2] = —Lt— 2 =1,2,.... .

Is this random variable integrable?

General Properties of Expectation.

In the general case, expectation satisfies 1-4 of 4.1.8 above plus the the additional
properties:

L If P(A) = 0, [, X(w)dP = 0
2. If P[X =c¢] =1 for some constant ¢, then F(X) =c.

3.IfP[X >0/ =1 then E(X)>0..

Other interpretations of Expected Value

For a discrete distribution, the distribution is often represented graphically with
a bar graph or histogram. If the values of the random variable are x; < 2 <
xg < ... then rectangles are constructed around each value, z;, with area
equal to the probability P[X = z;]. In the usual case that the z; are equally
spaced, the rectangle around 2; has as base (m‘%"'m”, %) In this case,
the expected value E(X) is the x-coordinate of the center of gravity of the
probability histogram.

We may also think of expected value as a long run average over many in-
dependent repetitions of the experiment. Thus, f(z) = P[X = z| is approx-
imately the long run proportion of occasions on which we observed the value
X = x so the long run average of many independent replications of X is

> a wf () = E(X).
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8.4 Discrete Bivariate and Multivariate Distri-

butions
Definitions.
Example.
Suppose we throw 2 dice and define two random variables X = maximum
of the two numbers observed and Y = minimum. We wish to record the

probability of all possible combinations of values for both X and Y . We may
do so through a formula for these joint probabilities

2/36 x>y
PIX=2,Y =y|=f(z,y) =< 1/36 z=y
0 <y

for z,y=1,2,...6.

Definitions.

The function f(z,y) = P[X = 2,Y = y] giving the probability of all combi-
nations of values of the random variables is called the joint probability function
of X and Y. The function F(z,y) = P[X < z,Y <y is called the joint
cumulative distribution function. The joint probability function allows us to
compute the probability functions of both X and Y. For example

PIX =2 =3 f(ay).

all y

We call this the marginal probability function of X, denoted by fx(z) =
PIX =z =34 Y f(z,y). Similarly, fy(y) is obtained by adding the joint
probability function over all values of x . Finally we are often interested in the
conditional probabilities of the form

PIX =2lY =y| = fxy(zly) =
This is called the conditional probability function of X given Y.

Example Determine all marginal probability functions and conditional prob-
ability functions in Example 5.1.1.
Expected Values

For a single (discrete) random variable we determined the expected value of a
function of X , say h(X) by

EhX)] = Z (value of h) x (Probability of value) = Zh(x)f(x)

all x
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For two or more random variables we should use a similar approach. However,
when we add over all cases, this requires adding over all values of z and y. Thus,
if h is a function of both X and Y,

EhX,Y) = Y hlzy)f(y).

all z and y

Definition: Independent Random Variables

Two random variables X,Y are said to be independent if the events [X = x]
and [Y =y| are independent for all z, y, i.e. if

PX =2,Y=y]=P[X =z|P[Y =y] all z,y
ie. if
f@y) = fx (@) fr(y) all z,y.

This definition extends in a natural way to more than two random variables.
For example we say random variables X, Xo,...X,, are (mutually) indepen-
dent if, for every choice of values x1,22,...x,, the events [X; = x1],[X2 =
xal,...[Xn = x,] are independent events. This holds if the joint probability
function of all n random variables factors into the product of the n marginal
probability functions.

Theorem

If X,Y areindependent random variables, then

E(XY)=E(X)E(Y)

Example

Suppose X and Y are two independent random variables with the same
distribution (i.e. same probability functions)

fx(@)=@1=p)*p, =0,1,...
and
fy(y) =1 —p)¥p, y=0,1,...

where 0 < p < 1. Find the probability function of Z = X + Y and the
conditional probability function fx|z(z|z2).
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Definition: Variance

The variance of a random variable measures its variability about its own ex-
pected value. Thus if one random variable has larger variance than another, it
tends to be farther from its own expectation. If we denote the expected value
of X by E(X) = pu, then

Var(X) = E[(X - n)?]

Adding a constant to a random variable does not change its variance, but mul-
tiplying it by a constant does; it multiplies the original variance by the constant
squared (see 5.1.13, property 2.)

Example

Suppose the random variable X has the binomial (n,p) distribution. Find
E(X) and wvar(X).

Definition:Covariance.

Define the covariance between 2 random variables X, Y as
cov(X,Y) = FE[(X — EX)(Y — EY)]

Covariance measures the linear association between two random variables. Note
that the covariance between two independent random wvariables is 0. If The
covariance is large and positive, there is a tendency for large values of X to be
associated with large values of Y . On the other hand, if large values of X are
associated with small values of Y | the covariance will tend to be negative. There
is an alternate form for covariance, generally easier for hand calculation but more
subject to computer overflow problems: cov(X,Y) = E(XY) — (EX)(EY).

Theorem.

For any two random variables X, Y
var(X +Y) =var(X) + var(Y) + 2cov(X,Y)

One special case is of fundamental importance: the case when X,Y are
independent random variables and var(X +Y) = var(X) + var(Y) since
cov(X,Y) = 0.

Example

A population includes a proportion p of unemployed. An interviewer polls
members of the population (you may assume with replacement since the pop-
ulation is large) at random until exactly k& unemployed have been found and
records X = the total number polled. Find the variance of X when £=1
and use this to determine wvar(X) in general.
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Properties of Variance and Covariance

For any random variables X; and constants a;
1. Var(Xy) = cov(Xy, Xq).
2. wvar(a1 Xy + ag) = a?var(Xy).
3. cov(Xy,X2) = cov(Xa, X1).
4. cov(Xy, Xo + X3) = cov(Xy1, Xa) + cov(Xq, X3).

5. cov(ay Xy, a2Xs) = ajascov(Xy, Xs2).

Correlation Coefficient

The covariance has an arbitrary scale factor because of property 5 above. This
means that if we change the units in which something is measured, (for example
a change from imperial to metric units of weight), the covariance will change.
It is desirable to measure covariance in units free of the effect of scale. To this
end, define the standard deviation of X by SD(X) = y/var(X). Then the
correlation coefficient between X and Y is

cov(X,Y)

P = SD(X)SD(Y)

Theorem

For any pair of random variables XY , we have —1<p<1 with p=41
if and only if the points (X,Y) always lie on a lineso ¥ =aX +b for some
constants a,b.

The Multinomial Distribution

Suppose an experiment is repeated n times (called “trials”) where n is fixed in
advance. On each “trial” of the experiment, we obtain an outcome in one of &
different categﬂories Ay, Ay, ... A with the probability of outcome A; given by
p; - Here 3 7 | p; = 1. At the end of the n trials of the experiment consider
the count of X; =number of outcomes in category i, ¢=1,2,...k. Then the
random variables (X7, Xo,... X)) have a joint multinomial distribution given
by the joint probability function

n

PXi =21, X0 =x9,... Xy = a3 = < >p°flp§2...pi""
T Tg9 ...Tp

whenever »". 2; =n and otherwise this probability is 0. Note that the marginal
distribution of each X; is binomial (n,p;) and so F(X;) = np; .
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Example

In political poll of 1000 respondents, X; = 400 indicated that they would
vote “Yes” in a referendum, X = 360 indicated that they would vote “No”
and the remainder were undecided. Write an expression for the probability of
exactly this outcome assuming that pno = pyes = .38. Find the probability
that X7 =2 given that Xy + X =y.

Covariance of a linear transformation.

Suppose X = (X1, ..., X,,)" is a vector whosse components are possibly depen-
dent random variables. We define the expected value of this random vector
by

EX,
p=EX)=
EX,
and the covariance matrix by a matrix
var(Xy) cov(Xy,X2) . . cov(Xy,Xn)
VvV —
cov(Xp, X1) ) .o var(Xy)

Then if A is a ¢ X n matrix of constants, the random vector Y = AX has
mean Ap  and covariance matrix AV A’ . In particular if ¢ = 1, the variance

of AX is AVA'.

8.5 Continuous Distributions

Definitions

Suppose a random variable X can take any real number in an interval. Of
course the number that we record is often rounded to some appropriate number
of decimal places, so we don’t actually observe X but Y = X rounded to the
nearest A/2 units. So, for example, the probability that we record the number
Y =y is the probability that X falls in the interval y—A/2 < X <y+A/2.
If F(z) is the cumulative distribution function of X this probability is
PlY =y]|=F(y+A/2)— F(y—A/2) . Suppose now that A is very small and
that the cumulative distribution function is piecewise continuously differentiable
with a derivative given in an interval by

f(x) = F'(2).
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Then F(y+A/2)—F(y—A/2) ~ f(y)A and so Y is a discrete random variable
with probability function given (approximately) by P[Y = y] = Af(y). The
derivative of the cumulative distribution function of X , provided it exists, is
called the probability density function of the random variable X . Notice that
an interval of small length A around the point y has approximate probability
given by length of interval x f(y). Thus the probability of a (small) interval is
approximately proportional to the probability density function in that interval,
and this is the motivation behind the term probability density.

Example.

Suppose X is a random number chosen in the interval [0,1]. Any interval of
length A C [0,1] is to have the same probability A regardless of where it is
located. Then the cumulative distribution function is given by

0 =<0
Fz)=¢ = 0<z<1
1 z>1

The probability density function is given by the derivative of the c.d.f. f(z) =1
for 0 < <1 and otherwise f(x) =0 . Notice that F(y) = [ f(«x)dx for all
y and the probability density function can be used to determine probabilities
as follows;

b
P[a<X<b]:P[a§X§b]:/ f(z)dx.

In particular, notice that F(b) = ffoo f(z)dx for all b.

Example.

Is it always true that F(b) = ffoo F'(z)dz? Let F(x) be the binomial (n,1/2)
cumulative distribution function. Notice that the derivative F'(z) exists and
is continuous except at finitely many points =0, 1, 2, 3, 4. Is it true that
Fb) = [° F'(a)da?

Definition (cumulative distribution function)

Suppose the cumulative distribution function of a random variable F(z) is
such that its derivative f(z) = F'(x) exists except at finitely many points.
Suppose also that

b
mm:[_ﬂ@m (6.1)

for all b € . Then the distribution is called (absolutely) continuous and the
function f(x) is called the probability density function.
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Example.

Is it really necessary to impose the additional requirement (6.1) or this just
a consequence of the fundamental theorem of calculus? Consider the case
F(z) =0,z <0, and F(z) =1, 2 > 0. This cumulative distribution function
is piecewise differentiable (the only point where the derivative fails to exist is
the point = 0). But is the function the integral of its derivative?

For a continuous distribution, probabilities are determined by integrating
the probability density function. Thus

Pla< X <b] = /b f(z)dz (6.2)

A probability density function is not unique. For example we may change f(x)
at finitely many points and it will still satisfy (2) above and all probabilities,
determined by integrating the function, remain unchanged. Whenever possible
we will choose a continuous version of a probability density function, but at
a finite number of discontinuity points, it does not matter how we define the
function.

Properties of a Probability Density Function
1. f(z) >0 forall xR

2. [ fla)de =1

The Uniform Distribution.

Consider a random variable X that takes values with a continuous uniform
distribution on the interval [a,b] . Then the cumulative distribution function
is

0 r<a
Flz)= 2 a<x<b
1 x>0

and so the probability density function is f(x) = ﬁ for a < z < b and

elsewhere the probability density function is 0. Again, notice that the definition
of f at the points a and b does not matter.

Example

Let U have a continuous uniform distribution on the interval [0, 1]. Define the
random variable X = In(1/U). Find the cumulative distribution function of
X and determine whether it is absolutely continuous. If so, find its probability
density function.
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Expected Values for Continuous Distributions.

Suppose we were to approximate a continous random variable X having prob-
ability density function f(x) by a a discrete random variable Y obtained by
rounding X to the nearest A units. Then the probability function of Y is

PlY =yl =Ply —A/2< X <y+A/2| = Af(y)
and its expected value is

E(Y)=) yPly—A/2< X <y+A/2]~ ) yAf(y).

Note that as the interval length A approaches 0, this sum approaches the

integral
/ xf(z)dz

and thus we define, for continuous random variables
o0
E(X):/ xf(x)dx
and for any function on the real numbers h(z),

E[h(X)] = /oo h(z)f(z)dz.

—00

Example

Find the expected value and the variance of a random variable having probability
density function

f(x) =Xe ™, x>0.

The Exponential Distribution.

Consider a random variable X having probability density function
1
fla)=—e*/1 2>0
Iz

The cumulative distribution function is given by
F(z)=1—e 2/
and the moments are
E(X) =g, var(X) = 2

Such a random variable is called the exponential distribution and it is com-
monly used to model lifetimes of simple components such as fuses, transistors,
etc that are not subject to wear and tear.
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Example

If the lifetime of a transistor is exponentially distributed, find the probability
that it will survive at least ¢ more months given that it has already survived
for = months. Compare this with the probability that a new transistor lives
for at least ¢t months.

Note: this property is called the memoryless property of the exponential dis-
tribution. A component with this distribution of liffetimes does not exhibit any
evidence of aging.

Example

Show that for a uniform[a,b] random variable X, we have E(X) = %2 and
var(X) = oo

12

Generating Random variables with an Exponential Distribution.

Suppose that a computer has a built-in generator for the uniform[0,1] distri-
bution ( as is the case for nearly every higher-level computer language). How
could I use a Uniform random variable U to generate an exponential random
variable? Let X = —uln(1 — U). Find the cumulative distribution function of
X.

Two methods for Computer Generation of Random Variables.

By far the simplest and most common method for generating non-uniform vari-
ates is based on the inverse cumulative distribution function. For arbitrary c.d.f.
F(z) , define F~l(y) = min {z; F(x) > y} . This defines a pseudo-inverse
function which is a real inverse (i.e. F(F~'(y)) = F~}(F(y)) =y ) only in the
case that the c.d.f. is continuous and strictly increasing. However, in the general
case of a possibly discontinuous non-decreasing c.d.f. the function continues to
enjoy some of the properties of an inverse. In particular, in the general case, If
F is an arbitrary c.d.f. and U is uniform|[0,1] then X = F~Y(U) has
cdf. F(x).

Example: Generating a discrete random variable

Consider generating, using U  a uniform[0,1] random variable, a random
variable X having the following probability function:

X 1 2 3 4 5 6

P[X=x 01 03 02 01 01 0.2
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Figure 8.1:

Example: Generating a Geometric (p) random variable.

In this case, the c.d.f. is given by F(z) = 1— (1 —-p)*l, 2 >0 where [z]
denotes the integer part of z. Then

log(1—"U) —-FE

X = 1+[log(l—p)} . 1+[log( —-p)

}

where E is exponential(1) generates a geometric random variable. Compare
the efficiency of this generator with one defined by X = min{N; Uy < p} where
U1, Us, ... are independent uniform[0,1] random variables.

The rejection method is useful if the density ¢ is considerably simpler than
f both to evaluate and to generate distributions from and if the constant c¢
is close to 1. The number of iterations through the above loop until a point
satisfies the condition has a geometric distribution with parameter p = 1/c
and mean ¢ so when c is large, the rejection method is not very effective.

The Normal distribution

Normal Approximation to the Poisson distribution

Consider a random variable X which has the Poisson distribution with pa-
rameter p . Recall that F(X) =p and var(X) = pso SD(X) = ,/u. We
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Figure 8.2:

wish to approximate the distribution of this random variable for large values of
. In order to prevent the distribution from disappearing off to + oo, consider
the standardized random variable

X—p
Vi
Then P[Z =z]=P[X = p+z/0 = %e‘“ where 2 = p+2,/jt is an integer.
Using Stirling’s approximation z! ~ v/2rzz®e™® and taking the limit of this
as p — 00, we obtain

ﬂe—# ~ 1 =% /2

! 2T
where the symbol ~ is taken to mean that the ratio of the left to the right hand
side approaches 1.

The standard normal distribution
Consider a continuous random variable with probability density function

1 2
flz)=—=—=e/? —co<z<o0

V2T

Such a distribution we call the standard normal distribution or the N(0,1)
distribution. The cumulative distribution function

® 2
F(z) :/ L e 2y

oo V2T
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is not obtainable in simple closed form, and requires either numerical approxi-
mation or a table of values. The probability density function f(z) is symmetric
about 0 and appears roughly as follows:

30

25

20

15

10

Figure 8.3: Standard Normal Probability Density Function

Example.

Prove that the integral of the standard normal probability density function is
1. The normal cumulative distribution function is as given below:

Note, for example that F(—x) = 1— F(x) for all  and if Z has a standard
normal distribution

Pl-1<Z <1~ 68 and P[-2<Z <2~ .95.

Example.

If Z~ N(0,1) find P[Z% < 3.84] .

The General Normal Distribution.

If we introduce a shift in the location in the graph of the normal density as well
as a change in scale, then the resulting random variable is of the form

X =p+0Z Z~N(0,1)

for some constants —oo < pu < oo, o> 0.



216CHAPTER 8. APPENDIX A: SOME BASIC THEORY OF PROBABILITY

Comparison of N(40,24) and Bin(100,.4) probs
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Figure 8.4:

Example.
Show that the probability density function of X is
1

2mo

¢—(e=i)?*/20°

fla;p,o) =

If a random variable X has the above normal distribution, we will denote this
by X ~ N(p,0?).

Moments

Show that the function f(z;u, o) integrates to 1 and is therefore a probability
density function. Find the expected value and variance of a random variable
having the probability deunsity function f(xz;u, o).

Linear Combinations.

Suppose X; ~ N(py,02) and X5 ~ N(pug,03) are independent random
variables. Then Xj + Xo ~ N(uy + fig, 03 + 03).

Example.

Suppose X; ~ N(u,02) are independent random variables. What is the
distribution of the sample mean

X _ E?:l X@?
" n

60
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Figure 8.5:

Assume o = 1 and find the probability P[|X, — x| > 0.1] for various values
of n. What happens to this probability as n — co?

The Central Limit Theorem

The major reason that the normal distribution is the single most commonly
used distibution is the fact that it tends to approximate the distribution of
sums of random variables. For example, if we throw n dice and .S,, is the sum
of the outcomes, what is the distribution of S,,?. The tables below provide the
number of ways in which a given value can be obtained. The corresponding
probabability is obtained by dividing by 6™.

1 2 3 4 5 6

=Ly 1111
L 2 3 4 5 6 7 8 9 10 11 12
"1 2 3 45 6 5 4 3 2 1
n—3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 3 10 15 21 25 27 27 25 21 15 10 6 3
L, 45 6 71 8 .
1 4 10 20 35

The distributions show a simple pattern. For n = 1, the probability function
is a constant (polynomial degree 0). For n = 2, two linear functions spliced
together. For n = 3 a spline consisting of three quadratic pieces (polynomials of
degree n—1). In general the histogram for S,, consists of n. piecewise polynomials
of degree n—1 which approach very rapidly the shape of the normal probability
density function.

Example

Let X; =0 or 1 when the i/th toss of a biased coin is Tails or Heads respec-
tively. What is the distribution of S,, = Z?:l X; 7 Consider the standardized

18
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Figure 8.6:

30
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random variable
* Sn — np
np(l—p)

Approximate the distribution of S} for large values of n.

First let an integer © ~ np + zy/np(1 —p) for fixed z. Then as n — oo ,
x/n—p, 0<p <1, Stirling’s approximation implies that

n Qrnntl/2e—n 1
T

2wt — )= R (1= p)(2) (1 - £)r

Also using the series expansion In(1 + z) = z — %xz + 0 (333), putting o =

1— .
¥7 and noting 0 — 0 as n — oo,

prl-pmr B 1—p
ln{(%)x(l_%)n—m} - xln(p—i—zn)—’_(n x)ln(l—p—zo')
z0 z0
= —zln(l+—)—(n—2)In(1 —
(1+2) = (=)t - )
zo zo
= —np+zo)ln(l+—)—n(l —p—20)In(1 —
( ) In( p) ( ) In( 17p)
20 1 z0 4 20 5
= —nlp+zo){(—)—=(—)"+0(—
( ){(p) 2(p) (p)}
20 1, zo 20
(]l —p— _ 1 2 3
n(1 = p = 20){~(75) = 57 + 05
{ +2202 1 2202 +2202 1 2202
= —ni{zo — = — z0 — =
P 2 p I—p 21-p
= 32PC ) o)
2 1-—
2
— ——+O(n 1/2)
Therefore,

~ n E (1 _ E n—x pm(l _p)n—m
() era- o g
1 L g

This is the standard normal probability density function multiplied by the
distance between consecutive values of S};. In other words, this result says that
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the area under the probabability histogram for S for the bar around the point
z can be approximated by the area under the normal curve between the same

t ints (z £ ——t—).
wo points (z 2\/m)

Theorem.

Let X;, ¢=1,...n be independent random variables all with the same distri-
bution, and with mean p and variance o2 . Then the cumulative distribution
function of

_ D i Xi —np
N no

converges to the cumulative distribution function of a standard normal random
variable.

Sn

The proof of this result we will defer after the discussion of moment gener-
ating functions.

Consider, for example, the case where the X; are indpendent each with a
Bernoulli (p) distribution. Then the sum Z?:1 X; has a binomial distribution
with parameters n,p and the above theorem asserts that if we subtract the
mean and we divide by the standard deviation of a binomial random variable,
then the result is approximately standard normal. In other words, for large
values of n a binomial random variable is approximately normal (np, np(1 —p)).
To veriify this fact, we plot both the binomial(100,0.4) histogram as well as the
normal probability density function below.

Example.

Use the central limit theorem and the normal approximation to a probability
histrogram to estimate the probability that the sum of the numbers on 6 dice
is 20. What is the exact probability?

The Distribution of a Function of a Random Variable.

We have seen that if X has a normal distribution, then a linear function of
X, say aX + b also has a normal distribution. The parameters are easily
determined since E(aX +b) = aE(X) +b and var(aX +b) = a?var(X).
Is this true of arbitrary functions and general distributions? For example is
X? normally distributed? The answer in general is NO. For example, the
distribution of X2 must be concentrated entirely on the positive values of x,
whereas the normal distributions are all supported on the whole real line (i.e.
the probability density functiopn f(z) > 0, all x € R. In general, the safest
method for finding the distribution of the function of a random variable in the
continuous case is to first find the cumulative distribution of the function and
then differentiate to obtain the probability density function.
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Comparison of N(40,24) and Bin(100,.4) probs
00 T T T T T T
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Figure 8.8:

Example.

Find the probability density function of X = Z? where Z has a standard
normal distribution.

Theorem

Suppose a continuous random variable X has probability density function
fx(x). Show that the probability density function of ¥ = h(X) where h(.)
is a continuous monotone increasing function with inverse function h=1(y) is

d

fr(y) = fX(hil(y))d—yhfl(y)

Moment Generating Functions

Consider a random variable X. We have seen several ways of describing its dis-
tribution, using either a cumulative distribution function, a probability density
function (continuous case) or probabililty function or a probability histogram
or table (discrete case). We may also use some transform of the probability
density or probability function. For example, consider the function defined by

Mx(t) = Eet™*

defined for all values of ¢ such that this expectations exists and is finite. This
function is called the moment generating function of the (distribution of the)
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random variable X. It is a powerful tool for detemining the distribution of sums
of independent random variables and for proving the central limit theorem. In
the discrete case we can write Mx (t) =Y e“*P[X = z| and in the continuous
case Mx(t) = [*_e® f(z)dx.

€
—00

Properties of the Moment Generating Function

For these properties we assume that the moment generating function
exists at least in some neighbourhood of the value ¢ = 0, say for
—Varepsilon < t < Varepsilon for some Varepsilon > 0. We also as-
sume that £E[X"eX} = E[£X"!X] for each value of n =0,1,2, for
—Varepsilon < t < Varepsilon. The ability to differentiate under an
integral or infinite sum is justified under general conditions involving
the rate at which the integral or series converges.

1. M'(0) = BE(X)
2. MM™(0) = E(X"),n=1,2,...

3. A moment generating function uniquely determines a distribution. In
other words if Mx(t) = My (t) for all —Varepsilon < t < Varepsilon,
then X and Y have the same distribution.

4. Myxiu(t) = e My (at) for constants a,b.

5. If X andY are independent random variables, Mx v (t) = Mx (t) My (t).

Example

Let X have a Binomial (n,p) distribution. Then the moment generating
function of X is

Mx(t) = (pe! +1 —p)™.

Example

Let X have a Poisson()\) distribution. Then the moment generating
function of X is

Mx (t) = exp{ (e — 1)}.

Example

Let X have an exponential distribution with mean p. Then the moment
generating function of X is

1
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Example

Let X have a Normal (u,0?) distribution. Then the moment generating
function of X is

Mx (t) = exp{ut + 0*t?/2}.

Use this to show that the sum of independent normal random variables is also
normally distributed.

Moment generating functions are useful for showing that a sequence of cu-
mulative distribution functions converge because of the following result, stated
without proof. The result implies that convergence of the moment generat-
ing functions can be used to show convergence of the cumulative distribution
functions ( i.e. convergence of the distributions).

Theorem

Suppose Z,, s a sequence of random variables with moment generating functions
M, (t). Let Z be a random variable Z having moment generating function M ().
If M, (t) — M(t) for all ¢ in a neighbourhood of 0, then

P|Z, <z| — P[Z < Z]

as n — oo for all values of z at which the function Fz(z) is continuous.

Proof of the Central Limit Theorem

We now use the properties of the moment generating function to prove the

central limit theorem; i.e. that the cumulative distribution function of S}, =
;E\/% converges to the c.d.f. of the standard normal distribution as
n — o0o. Note that S} = ﬁXl* where X = (X; —p)/o  and so it is sufficient
to prove this result for standardized random variables with mean 0 and variance
1. In this case, by the above theorem, it is sufficient to show that the moment

generating function of S} converges to the moment generating function of the

standard normal, i.e to m(t) = e/ /2. Now let L,(t) be the logarithm of the
moment generating function

Ly (t) = In[M,(t)] = In[EeS!]

and

L(t) = In[M(t)] = In[EeX "]
Note that
Ln(t) = nL(t/v/n)

and that
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1. L(0) =0
2. L'(0) =0
3. L'(0) =1
Then
Jim Ln(t) = lim L(t/vm)/(n)

7! —-3/2
—  m L'(t//n)n=3/?t

n—00 —2n_2

L'(t t
R
n—o0 271*1/2

—L"(t//n)n=3/2t2

by L’Hospital’s rule

= lim

by L’Hospital’s rule

n— oo —9n—3/2
" 2
AN
t2
-2

It follows on exponentiating that M,(t) converges to et’/2  which is the
N(0,1) moment generating function and therefore the cumulative distribution
function of S} converges to the normal cumulative distribution function point-
wise (since the latter c.d.f. is continuous everywhere).

8.6 Stochastic Processes

A Stochastic process is an indexed family of random variables X, for t ranging
over some index set T such as the integers or an interval of the real line. For
example a sequence of independent random variables is a stochastic process,
as is a Markov chain. For an example of a continuous time stochastic process,
define X; to be the price of a stock at time ¢ (assuming trading occurs
continously over time).

Markov Chains

Consider a sequence of (discrete) random variables X7, Xs,... each of which
takes integer values 1,2,...N (called states). We assume that for a certain
matrix P (called the transition probability matriz), the conditional probabilities
are given by corresponding elements of the matrix; i.e.

P[Xpi1=j|Xp=i=Py, i=1,...N, j=1,...N
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and furthermore that the chain only cares about the last state occupied in
determining its future; i.e. that

P Xpy1 =J|Xn =19, Xpn—1=11,Xn-2=12..Xn_1 =] = P[Xpnt1 = j|Xn =1

for all 7,4,%1,49,.... Then the sequence of random variables X, is called
a Markov Chain. Markov Chain models are the most common simple models
for dependent variables, including weather (precipitation, temperature), move-
ments of security prices etc.

Properties of the Transition Matrix P

Note that P;; > 0 for all 4,7 and Zj P;; =1 for all i. This last property
implies that the N x N matrix P — I (where I is the identity matrix) has
rank at most N —1 because the sum of the N columns of P — I is identically

0.

Example. Rain-No rain

Suppose that the probability that tomorrow is rainy given that today is not is
« and the probability that tomorrow is dry given that today is rainy is 3.

Example. Gambler’s Ruin

A gambler at each play of a game either wins $1 or loses $1 ith probabilities p,
1-p respectively. The gambler quits playing when his fortune reaches either 0
or M. Then the total fortune of the gambler at time ¢ follows a Markov chain.
What is the transition probability matrix?

The distribution of X;

Show that if the chain is started by randomly choosing a state for Xy with
distribution P[Xy = i] = ¢;, ¢ = 1,2,... N, then the distribution of X; is
the vector ¢’P where ¢ is the column vector of values ¢;. Similarly the
distribution of X; is the vector ¢’P* where P! is the product of the matrix
P with itself ¢ times. Under Vgry general conditions, it can be shown that
these probabilities converge and in many such cases, the limit does not depend
on the initial distribution q.

Definition

A limiting distribution of a Markov chain is a vector (z say) of long run prob-
abilities of the individual states so

Ty = lzmt_)ooP[Xt = ’L]
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Definition

A stationary distribution of a Markov chain is the column vector (z say) of
probabilities of the individual states such that
P =

Theorem

Any limiting distribution of a Markov Chain must be a stationary distribution.

Proof.
Note that 7' = lim,—.0o ¢/ P™ = limy—,00(¢' P*) P = (limy,—00 ¢ P*)P = 7' P.

Example

Consider a Markov chain with transition probability matrix

9 1
P= ( 2 8 )
Find limy_ooP? and the limiting distribution of the Markov chain. Show

that in general for a 2 x 2 transition matrix, the stationary distribution is
proportional to (Pay, Pi2).

Example: Binary information:

Suppose that X7, Xs,... is a sequence of binary information (Bernoulli random
variables) taking values either 0 or 1. Suppose that the probability that a 0 is
followed by a 1 is p and the probability that a 1 is followed by a 0 is given by ¢
where 0 < p, ¢ < 1. Find the transition matrix for the Markov chain and the
long run proportion of zeros in the sequence.

When is the limiting distribution of a Markov chain unique and independent
of the initial state of the chain?

Definition: irreducible, aperiodic

We say that a Markov chain is irreducible if every state can be reached from
every other state. In other words for every pair ¢,j there is some m such that
P > 0. We say that the chain is aperiodic if gcd{N; Pi(iN) >0} =1. For
a periodic chain (i.e. one with period>1) returns to a state can occur only at

multiples of the period ged{N; Pi(iN) > 0}.

Theorem

If a Markov chain is irreducible and aperiodic, then there exists a unique limiting

distribution 7. In this case P* — 7’1 the matrix whose rows are all identically

' asn — oo.
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Generating Functions.
Definition: Generating function

Let ag,a1,a2,... be a finite or infinite sequence of real numbers. Suppose the
power series

A(t) = Zaiti
=0

converges for all — e <t < € for some value of € > 0. Then we say that the
sequence has a generating function A(t).

Note. Every bounded seqgence has a generating function since the series
Yoo t’ converges whenever || < 1. Thus, discrete probability functions have
generating functions. The generating function of a random variable X or its
associated probability function fx(z) = P[X = z] is given by

Fx(t) =Y fx(@)t* = BEY).

Note that if the random variable has finite expected value, then this converges
on the interval t € [—1,1].

The joy of generating functions is that they provide a transform of the
original distribution to a space where many operations are made much easier.
We will give examples of this later. The most important single property is
that they are in one-one correspondence with distributions such that the series
converges; for each distribution there is a unique generating function and for
each generating function there is a unique distribution.

As a consequence of this representation and the following theorem we can
use generating functions to determine distributions that would otherwise be
difficult to identify.

Theorem

Suppose a random variable X has generating function Fx(t) and Y has
generating function Fy (t). Suppose that X and Y are independent. Then the
generating function of the random variable W = X+Y is Fy (t) = Fx (t)Fy ().

Example

Find the distributions that corresponds to the following generating functions:
__t
(a) F(t) = 5=
(b) Fit) =X

Example

Find the generating function of the Binomial (n,p) distribution. Suppose X3
and X are independent random variables, both with this binomial distribution.
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Find the distribution of W = X; + X5. Notice that whenever a Moment
generating function exists, we can recover the generating function from it by
replacing et by t.

Example.

One of six defferent varieties of coupons is placed in each box of cereal. Find
the distribution of the number of cereal boxes you need to buy to obtain all six
coupons. (Answer: the (probability) generating function of the number is

518
(6—£)(6 — 2t)(6 — 3t)(6 — 4£)(6 — 5t)

_ 5 46, 25,7 1758 875 49 | 11585 410 875 411 12
= g2t t gast’ + 2916 T Tieea’ T 139968 T T0368¢ +O(t )

and this expansion as a power series provides the probabilities)

The Poisson Process.

One of the simplest continuous time stochastic processes is the Poisson Process.
Suppose N; denotes the total number of arrivals into a system (such as the
number of customers arriving at a queue) untill time ¢ . Note that the number
of arrivals in time interval (a,b] is then N, — N,. Assume the following
properties;

(a) The probability of exactly one arrival in a small interval of length At is
AAt + o(At). (Note that the probability does not depend on where the interval
is, only on its length).

(b) The probability of two or more arrivals in an interval of length At is
o(At) where by definition of the o notation, o(At)/At — 0 as At — 0.

(c) For disjoint intervals I; = (a;,b;] (so I; NI; = ¢, i# j), the number
of arrivals in these intervals Y; = N, — N,, are mutually independent random
variables.

Theorem.

Under the above conditions, (a)-(c), the distribution of the process Ny, t €T
is that of a Poisson process. This means that the number of arrivals N, — N,
in an interval (a,b] has a Poisson distribution with parameter A(b — a) =
AXthe length of the interval, and the number of arrivals in disjoint time intervals
are independent random variables. The parameter A specifies the rate of the
Poisson process.

Example.

1. (a) (a) Show that if N(t) is a Poisson process and 71,75, .... are the
times of the first event, and the time between the first and second
events, etc. then 77, 75, ... are independent random variables, each
with an exponential distribution with expected value 1/A.
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(b) Show that if Ty, T5, ... T}, are independent random variables each
with an exponential (1) distribution, then the sum >"_ 7; has a
(gamma) probability density function

Example.

Suppose emergency calls to 911 follow a Poisson process with an average of 10
calls per hour. What is the probability that there are no calls in a five minute
period? What is the probability that there are more than 100 calls in an 8-hour
shift? Given that there are 5 calls in the first hour, what is the probability that
the first call occurred in the first & minutes?

Poisson Process in space.

In an analogous way we may define a Poisson process in space as a distribution
governing the occurrence of random points with the properties indicated above;
The number of points in a given set S has a Poisson distribution with parameter
A x |S| where |S| is the area or volume of the set, and if Y7,Ys,... are
the number of points occurring in disjoint sets Si,Sa, ..., they are mutually
independent random variables.

Example

Bacteria are immersed in contaminated water at a rate of A per nanolitre (note:
1 nanolitre = 1079 litres). What is the probability that there are no bacteria
in a sample of 1 ml. if A\ = 1073? What is the probability of more than 1200
bacteria in 1 ml if \ = 10737

8.7 Conditional Expectation and Martingales

8.7.1 Conditional Expectation.
Theorem.

Let G C F be sigma-algebras and X arandom variable on (2, F, P). Assume
E(X?) < 0o . Then there exists an almost surely unique G-measurable Y
such that

E[(X —Y)?| = infzE(X — Z)? (6.1)
where the infimum is over all G-measurable random variables. Note. We denote
the minimizing Y by E(X|G).
For two such minimizing Y7, Y3 , i.e. random variables Y which satisfy

(6.1), we have P[Y; = Y] = 1. This implies that conditional expectation is
almost surely unique.
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Example.

Suppose G = {¢,Q} . What is F(X|G)?

Example.

Suppose G = {p, A, A%, Q} for some event A. What is F(X|G)? Consider
the special case: X =1Ip .

Example.

Suppose © = (0,1] and the function X(w) is Borel measurable. Assume that
G is generated by the intervals (%, L] for j=1,2,...,n. Whatis E(X|G)?

Properties of Conditional Expectation.

(a) If a random variable X is G-measurable, F(X|G) = X .

(b) If a random variable X independent of a sigma-algebra G , then
E(X|G) = E(X).

¢) For any square integrable G-measurable Z, E(ZX) = E[ZE(X|G)].
d) (special case of (c)): [, XdP = [, E(X|G]dP forall Acg.
E(X) = E[E(X|9)] .

all other G-measurable random variables Y , then Z = E(X|G).

(g) If Y7, Y2 are distinct G—measurable random variables both minimizing
E(X —Y)?,then P(Y;=Yy)=1.

(h) Additive E(X +Y|G) = E(X|G)+ E(Y|9).
Linearity E(cX +d|G) = cE(X|G) +d.

(i) If Z is G—measurable, E(ZX|G) = ZE(X|G) a.s.

(j) f HC G aresigma-algebras, E[F(X|G)|H] = E(X|H) .

(k) If X <Y, E(X|G)<EY|G) as.

(1) Conditional Lebesqgue Dominated Convergence. If X, — X as. and

|Xn| <Y for some integrable random variable Y | then FE(X,|G) —
E(X|G) in distribution

Notes. In general, we define E(X|Z7) = FE(X|o(Z)) and conditional
variance var(X|G) = E{(X — E(X|G))?|G}. For results connected
with property (1) above providing conditions under which the conditional

expectations converge, see Convergence in distribution of conditional ex-
pectations, (1994) E.M. Goggin, Ann. Prob 22, 2. 1097-1114.
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Conditional Expectation for integrable random variables.

For non-negative integrable X choose simple random variables X,, T X .
Then E(X,|G) T and so it converges. Define FE(X|G) to be the limit.
In general, for random variables taking positive and negative values, we define
E(X|G) = E(X*|G) -~ E(X7|9).

8.7.2 Martingales.

Intuitively, a martingale is the total fortune of an individual participating in
a “fair game”. In order to be fair, the expected value of one’s future fortune
given the history of the process up to and including the present should be equal
to one’s present wealth. Suppose the fortune at time s is denoted X, . The
current process and any other related processes up to time s generate a sigma-
algebra F, . Then the assertion that the game is fair implies F(X;|Fs) = X,
for t > s.

Definition.

{(Xy, F);t €T} is a martingale if
(a) Ft is increasing (in t) family of sigma-algebras
(b) Each X; is JF;— measurable and E|X;| < oco.

(c) Foreach s<t, s,teT, E(XFs) = Xs as.

Example.

Suppose Z; are independent random variables with expectation (. Define
Fi = 0(Z1,%a,. .. Z;) and S; = S._, Zi. Then {(S,,F), t=1,2,...}

is a martingale.

Example.

Let X be any integrable random variable, and F; an increasing family of
sigma-algebras. Put X; = FE(X|F;). Then (X;,F;) is a martingale.

Definition.

{(X¢, F2);t € T} is a reverse martingale if
(a) Fi is decreasing (in t) family of sigma-algebras.
(b) Each X; is J;— measurable and F|X¢| < co.

(c) Foreach s<t, s,teT, E(X:;F) = X; as.
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Example.

Let X be any integrable random variable, F; be any decreasing family of
sigma-algebras. Put X; = E(X|F;) . Then (X, F) is a reverse martingale.

Definition.

{(Xt, Fe);t € T} is a sub (super) martingale if
(a) F: is increasing (in t) family of sigma-algebras.
(b) Each X; is JF;— measurable and E|X;| < oco.

(¢c) Foreach s<t, s,teT, E(X¢Fs) > (<) X, as.

Example.

Let Y; beindependent identically distributed, 7, = o(Y{1), ..., Y(n), Ynt1, Ynyo, o

where (Y(1), ..., Y(n)) denote the order statistics. Then F,, is a decreasing fam-

ily of sigma fields and Y,, = < S Y; = E(Yi|F,) is areverse martingale.

T n

Definition.

A random variable T is a (optional) stopping time for a martingale (X, F%)
if foreach t, [t <t]eF .

Definition.
For an optional stopping time 7 define
Fr ={AeF,An[r<tleF, forallt}.

Then this is a sigma-algebra.

Theorem.

If (X3, F)t=1,2,...n isa (sub) martingale and «, § are stopping times
with values in {1,..,n} , such that « <, then

E(Xp|Fa) (2) = Xa

(Sub)martingale Convergence Theorem.

)

Let (X, Fn); n=1,2,... beasubmartingale such that lim sup,_,.o F|X,| < 00.

Then there is a (finite) random variable X such that X, — X a.s.
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Reverse martingale convergence Theorem.
If (X,,Fn); n=1,2,... isa reverse martingale,

X, — E(Xq| NS, Fr)  a.s.

8.7.3 Martingales and Finance

Let S(t) denote the price of a security at the beginning of period t =0,1,2,...T.
We assume that the security pays no dividends. Define the (cumulative) returns
process associated with this security by Rg where

AS(t) S(t)—S(t-1)

ARs(t) = Rs(t) = Rs(t =1) = 55 = =g Rs(0)=0.

Then 100ARg(t)% is the percentage return in an investment in the stock in the
t — 1’st period. The returns process is a more natural characterisation of stock
prices than the original stock price process since it is invariant under artificial
scale changes such as stock splits etc. Note that we can write the stock price in
terms of the returns process;

t

S(t) = S(0) JJ(1 + ARs(i)).

i=1

Now consider another security, a riskless discount bond which pays no coupons.
Assume that the price of this bond at time ¢ is B(t), B(0) =1 and Rp(t)
is the return process associated with this bond. Then ARp(t) = r(t) is the
interest rate paid over the t — 1’st period. It is usual that the interest paid over
the t—1st period should be declared in advance, i.e. at time t—1 so that if S(t)
is adapted to a filtration F3, then r(t) is predictable, i.e. is JF;_1—measurable.
The discounted stock price process 1is the process given by

S*(t) = S(t)/B(t).

Consider a trading strategy of the form (8(t),a(t)) representing the total
number of shares of bonds and stocks respectively held at the beginning of the
period (¢ — 1,t). Since our investment strategy must be determined by using
only the present and the past values of this and related processes, both [(t) and
a(t) are predictable processes. Then the value of our investment at time ¢—1
is Vi1 =0@)B(t—1)+a(t)S(t—1) and at the end of this period, this changes
to B(t)B(t) + «(t)S(t) with the difference [(t)AB(t) + a(t)AS(t) representing
the gain over this period. An investment strategy is self-financing if the value
after rebalancing the portfolio is the value before- i.e. if all investments are
paid for by the above gains. In other words if V; = ((¢)B(t) + «(t)S(t) for
all t. An arbitrage opportunity is a trading strategy that makes money with no
initial investment; i.e. one such that Vo =0, V; >0forall ¢t=1,...7T and
E(Vr) > 0. The basic theorem of no-arbitrage pricing is the following:
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Theorem

There are no arbitrage opportunities in the above economy if and only if there
is a measure ) equivalent to the underlying measure P ie. P << @ and
Q << P such that under () the discounted process is a martingale; i.e.
Eq(S*(t)|Fi—1] = S*(t — 1) as. forall t <T.

Proof; See Pliska (3.19)) page 94.

Note: The measure QQ is called the equivalent martingale measure and is used
to price derivative securities. For any attainable contingent claim X ; (a for any
random variable X which can be written as a linear function of the avail-
able investments), the arbitrage-free price at time t is given by the conditional
expected value under @ of the discounted return X given F;.



Chapter 9

Appendix B: Stochastic
Integration and Continuous
Time Models

The single most important continuous time process in the construction of finan-
cial models is the Brownian motion process. A Brownian motion is the oldest
continuous time model used in finance and goes back to Bachelier around the
turn of the last century. It is also the most common building block for more
sophisticated continuous time models called diffusion processes.

The Brownian motion process is a random continuous time process W(t)
defined for £ > 0 such that W(0) takes some predetermined value, usually 0,
and for each 0 < s < t, W(t) — W(s) has a normal distribution with mean
u(t—s) and variance o2(t —s). The parameters y and o are the drift and the
diffusion parameters of the Brownian motion and the special case p = 0,0 =1,
W (t) is often referred to as a standard Brownian motion or a Wiener process.
Further properties of the Brownian motion process that are important are:

A Brownian motion process exists such that the sample paths are each contin-
uous functions (with probability one)

The joint distribution of any finite number of increments W (t2)—W (t1), W (ta)—
W(ts),....W(tg) — W(tx—1) are independent normal random variables
for 0 S tl S tQ... S tk.

Further properties can be derived from these. For example suppose we con-
sider a sum of squared increments of the form Zf:ll(W(ti_,_l) — W (t;))? for
for 0 =t; < tg... <t =t If we allow the number of increments k£ to go to
infinity and the mesh size max(t; 1 —t;) to go to zero, then it is easy to show
that the limit of this random sum of squares is a totally non-random value ¢,

235
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this limit taken in probability. A sum of squares process defined in this way
is

The Stochastic Exponential and logarithm.

It is natural to define the exponential of a process

1 c —AX
E(X) =]J(1 +dX) = exp{X — 5 <X°>} [J+ax)e
Then if Y = £(X), we have
dY =Y_dX

and therefore we define the stochastic logarithm
LY) = / Loy
)Y

9.1 Ordinary Differential Equations

Consider a stochastic differential equation of the form ?7 in the special case that
the drift term is linear a(X;) = o + 3X;. Most of the standard models for in-
terest rates, for example, take this form, including the CIR, Vasicek, Geometric
Brownian motion.

Suppose we wish to determine the expected value of the process. We have
seen that if we denote the expected value by m(s) = E(X;|Xo) then it satisfies
the ordinary differential equation m’(t) = a+ fm(t). This is an example of the
simplest form of ordinary differential equation, one in which the derivatives are
of order at most 1 and the coeflicients are constant. Let us consider the general
first order differential equation

Lt ptyy = o)

These are solved by introducing an integrating factor p(t) satisfying

WS + p(e)y) = (e}l

In order that p satisfy this, we require up = p/ or

¢
w(t) = emp{/ p(s)ds}.
Then (uy)’ = pg resulting in the general solution

i)[ / u(s)g(s)ds + c].

y(t) = e
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MAPLE can be used to solve differential equations such as this one. For
example we would first define the differential equation (here we substituted
a,b for «, ) and then request a solution; (:> is the MAPLE prompt)

> deq := diff(y(x),x) - a - b*xy(x) = 0;

> dsolve(deq, y(x));

We might have wished to specify an initial condition in the above equation.
Suppose we wish to specify y(0) =c¢

> dsolve(deq,y(0)=c,y(x));
and we have the solution

y(z) = —afb + emp(bx)[% + . (1.7)

Consider as an example the Cox-Ingersoll-Ross model, here written with a
slightly different specification of parameters. If r; denotes the spot interest
rate at time ¢,

dry = (a+ Bry) dt + thl/Q dWs (1.8)
If we let m(t) denote the mean, taking expectations on both sides gives
m'(t) = (a+ Bm(t))

and therefore the solution is given by (1.7) with a, b replaced by «, .
Non-linear ordinary differential equations are usually somewhat more diffi-
cult to solve. These are equations of the form

dy

where f(x,y) is not a linear function of y. For example if the function f(z,y)
is a quadratic function of y, the equation is called Ricatti’s equation. Suppose
this equation is homogeneous, and can be written in the form

M(z,y)dx + N(z,y)dy = 0. (9.1)
There is sometimes a function u(z,y) called an integrating factor satisfying
0 0
—(uM) = —(uM
99 (uM) = =—(uM)

and in this case the homogeneous equation can be solved explicitly. Note that
after multiplication by u, the equation

uMdx + pNdy =0
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is exact in the sense that it is obtained as the differential of an equation of the
form ¢(x,y) = ¢. When no explicit solution to a differential equation can be
obtained, we may either approximate the solution numerically or obtain a power
series expansion of the solution, to as many terms as are wished.

For example, consider the differential equation

d—2 (15)-5—5i (t) + 6y(t) =0
az? dat? g\ =

This is solved in MAPLE with
> del := diff(y(t),t$2) + 5xdiff(y(t),t) + 6xy(t) = 0;
> dsolve(del, y(t));
yielding:

y(t) = Clexp(—3t) + C2exp(—2t)

and although in this case an analytic solution is available, we might for a
more difficult differential equation wish a series expansion, as obtained by

> dsolve(del, y(t), series);

Suppose the initial condition is 3’(0) = c.

This yields the series expansion of the solution

o) =90+ et (<390 = ) 2+ (5000 + ) £

19y(0) 65¢\ 4 [(13y(0) 211c)\ 5 6
+< 1 24>t+ 1 T 10 >4+ 0 (t°)

Problem:

Solve the ordinary differential equation
3%y (t) — 2ty' (t) + 2y(t) =0

and sketch the possible solutions.

Problem: (Finding the stationary distribution of an Ito process).

Consider an Ito process of the form:

dX; = a(X,)dt + o(X;)dW,. (9.2)
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Suppose there is a stationary density m(z) satisfying
/p(s7 z,t,x)m(z)dz = w(x) for all s < t, and all z.

Multiply Kolmogorov’s forward differential equation (1.3) by 7(z) and integrate
over z. Thus show that the stationary distribution 7(z) must satisfy a differ-
ential equation of the form

a2 5 d
5 (02 (@)7(x)) = 2= (a(z)m(x))

Solve this differential equation to obtain the form of the stationary distribu-
tion assuming that the diffusion models a process (like interest rate, or asset
price) that is positive, so that 7(0) = 7/(0) = 0.

9.2 Systems of Ordinary Differential Equations.

Consider now a system of ordinary differential equations of the form

d
—Y(®) = —p(t)y(t) +g(?) (1.9)
where y(t) is an n-dimensional column vector of functions y;(t)and p(t) is
a n X n matrix of functions and g is an n-dimensional column vector of
functions. Then the solution is exactly analogous to the one-dimensional case.
First, for a square matrix A we define the exponential

A = An
et = — (1.10)
n=0
Then the integrating factor p is defined by integrating componentwise: p(t)

—e ftLO p(s) ds -

Note that this is a matrix. The solution is then given by y(t) = [ u(t)] 7% | ftz (s)
g(s) ds ]. Maple also permits the solution of systems of differential equations.
For example consider the second order differential equation y”(z) = y(z). This
is equivalent to the system y'(z) = z(z), 2/(z) =y(z). Solve as follows:

> sys := diff(y(x),x)=z(x), diff(z(x),x)=y(x)

> fens = y(x), z(x)

> dsolve(sys,y(0)=0,z(0)=1,fcns) ;y(x)=1/2 exp(x -1/2 exp(-x);z(x)
=1/2 exp(x) + 1/2 exp(- x)
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Problem:

Find the general solution to the following system of first order differential equa-
tions:

g@) = —Vf@),

h”(m) M

f(z)
f'@) = exp{-f(=)}

9.3 Partial Differential Equations

Many of the pricing formulae encountered in finance can be derived as solutions
to one or more partial differential equations, including the most important, the
Black-Scholes formula. In general, this is because the most common models for
the underlying asset are diffusion models. Maple provides some facility for the
solution of simple partial differential equations. For example:

:>PDE := x*diff(f(x,y),y)-y*diff(f(x,y),x) = 0;

:>pdsolve(PDE);

provides the solution f(z,y) = F1(x + y) for arbitrary function F1.

Before discussing methods of solution in general, we develop the Black-

Scholes equation in a general context. Suppose that a security price satisfies

dSt = CL(St, t ) dt + (7'(;527 t) th (111)

Our assumed market allows investment in the stock as well as in discount bonds,
whose price at time t is 3;,. There are various other assumptions as well;
for example partial shares may be purchased, there are no dividends paid and
no commissions, and no possibility of default for the bonds. Since bonds are
assumed risk-free, they satisfy an equation

dﬁt = ’I"tﬁtdt

where 1; is the risk-free (spot) interest rate at time .

We wish to determine V' (S, t), the value of an option on this security when
the security price is Sy, at time t. Suppose the option has expiry date T and
a general payoff function which depends only on S7, the process at time T'.

A quick reminder of one of the most important single results of the twentieth
century in finance and in science. This single mathematical result underlies the
research leading to 1997 Nobel Prize to Merton and Black for their work on
hedging in financial models.

Ito’s lemma.
Suppose S; is a diffusion process satisfying

dSt == CL(St, t ) dt + (7'(;527 t) th
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and suppose V (S, t) is a smooth function of both arguments. Then V(St,t)
also satisfies a diffusion equation of the form

oV 2 Sy, t PV v oV
o ( t ) _A,_—}dt—‘,— (‘J’(St7 t)%

dV=la(8, t)get—5 — 35t 5

dWw,. (1.12)

The proof of this result is technical but the ideas behind it are simple.
Suppose we expand an increment of the process V (S, t) .

oV 10%V , OV
V(St+hvt + h) ~ V(St7t) + %(St—i-h - St) + §W(St+h - St) + 5‘_t(h )
1.13

where we have ignored remainder terms that are o(h). Note that substituting
from (1.11) into (1.13), the increment (Sy1, —S:) is approximately normal with
mean a(S, t ) h and variance 02(S;, t ) h. Consider the term (Siyn — St)2.
Note that it is the square of the above normal random variable and has expected
value 02(S;,t)h + a?(Sy, t)h2. The variance of this random variable is O(h?) so
if we ignore all terms of order o(h) the increment V' (Sgyp,t + h) — V (S, t) is
approximately normally distributed with mean

OV o2(Sy, t) 02V OV

S )gs * 35 — 3 T o

|h

?agld standard deviation o (S, t)‘g—g\/ﬁ justifying (but not proving!) the relation

By Ito’s lemma, provided V is smooth, it also satisfies a diffusion equation
of the form ?77. We should note that when V represents the price of an option,
some lack of smoothness in the function V' is inevitable. For example for a
European call option with exercise price K, V(Sp,T) = max(St — K,0) does
not have a derivative at the exercise price. Fortunately, such exceptional points
can be worked around in the argument. For hedging purposes, is it possible to
find a self-financing portfolio consisting only of the security and the bond which
exactly replicates the option price process V(S ¢)? Suppose such a linear
combination is u.S; + w3, where the predictable functions w;, w; represent
the number of shares of stock and bonds respectively owned at time t. The
portfolio is assumed to be self-financing and this requires that all returns obtain
from the changes in the value of the securities and bonds held, i.e. it is assumed
that dV' = udS; + widy. Substituting from(1.11),

dV = ’U,tdSt + wtdﬂt = [uta(St7 t) + wtrtﬁt]dt + ut(r(St7 t)th (114)
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It follows on comparing the coefficients of dt and dW; in ??7 and (1.14), that

Up = g—g called the delta corresponding to delta hedging. Consequently,
av
V = %St —|— wtﬁt
and solving for w; we obtain:
1 ov
=—[V —==5.
Wy ﬂt[ 98 t]

The conclusion is that it is possible to dynamically choose a trading strategy,
i.e. the weights w¢,u; so that our portfolio of stocks and bonds perfectly
replicates the value of the option. If we own the option, then by shorting Delta
units of stock, we are perfectly hedged in the sense that our portfolio replicates
a risk-free bond. Surprisingly, in this ideal word of continuous processes and
continuous time trading commission-free trading, the perfect hedge (said to exist
only in a Japanese garden), is possible. The equation we obtained by equating
both coefficients in ?? and (1.14) is of the form;
2 2
—r¢V + T‘tstg—‘sf + 88_‘75/ + SClLY) (gt’t) ZTZ = 0. (1.15)
The negative of the first two terms r(V — St‘g—g) represents the amount made by
the portion of our portfolio devoted to risk-free bonds. The last two terms rep-
resents the return on a hedged portfolio long one option and short delta stocks.
This fundamental equation is evidently satisfied by any option price process
where the underlying security satisfies a diffusion equation and the option value
at expiry depends only on the value of the security at that time. The type of
option determines the terminal conditions and usually uniquely determines the
solution. It is extraordinary that this equation in no way depends on the drift
coefficient a(Sy,t). This is the remarkable feature of the arbitrage-free theory.
Essentially, no matter what the drift term for the particular security is, in order
to avoid arbitrage, all securities are priced as if they had drift the spot interest
rate. This PDE governs most derivative products, European call options, puts,
futures or forwards. However, the boundary conditions and hence the solution
depends on the particular derivative. The solution to such an equation is possi-
ble analytically in a few cases, while in many others, numerical techniques are
necessary. One special case of this equation deserves particular attention. In
the case of geometric Brownian motion, a(S¢,t) = pSy and (S, t) = 0S; for
constants u,o Assume that the spot interest rate is a constant r and that a
constant rate of dividends Dy is paid on the stock. In this case, the equation
specializes to
av ov 0252 9%v
—rV + En +(r *Do)S% + 5 952
Note that we have not used any of the properties of the particular derivative
product yet, nor does this differential equation involve the drift coefficient pu.

= 0. (1.16)
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We should also note that the assumption that there are no transaction costs is
essential to this analysis, as we have assumed that the portfolio is continually
rebalanced.

We have now seen two derivations of parabolic partial differential equations,
so-called because like the equation of a parabola, they are first order (deriva-
tives) in one variable (t) and second order in the other (z). Usually the solution
of such an equation requires reducing it to one of the most common partial
differential equations, the heat or diffusion equation, which models the diffusion
of heat along a rod. This equation takes the form

0 0?
A solution of 7?7 with appropriate boundary conditions can sometime be found
by the separation of variables. We will later discuss in more detail the solution
of parabolic equations, both by analytic and numerical means. First, however,
when can we hope to find a solution of ?? of the form wu(x,t) = g(x/v/1).
By differentiating and substituting above, we obtain an ordinary differential
equation of the form

(1.17)

" (w) + %wg'(w) =0,w=2z/Vt (1.18)

Let us solve this using MAPLE.
eqn := diff(g(w),w,w)+(w/(2xk))*diff (g(w) ,w)=0;
dsolve(eqn,g(w));

and because the derivative of the solution is slightly easier (for a statistician)
to identify than the solution itself,
> diff(%,w);
giving
0
a—g(w) = Cyexp{—w?/4k} = Coexp{—x?/4kt} (1.19)
w
showing that a constant plus a constant multiple of the Normal (0, 2kt) cumu-
lative distribution function or

u(z,t) = C1 + Cy exp{—22/4kt}dz (1.20)

1 X
2v/mkt /4>o
is a solution of this, the heat equation for ¢ > 0. The role of the two constants is
simple. Clearly if a solution to ?? is found, then we may add a constant and/or
multiply by a constant to obtain another solution. The constant in general is
determined by initial and boundary conditions. Similarly the integral can be
removed with a change in the initial condition for if u solves 77 then so does %.
For example if we wish a solution for the half real x > 0 with initial condition
u(z,0) =0,u(0,¢) =1 all £ > 1, we may use

u(z,t) = 2P(N(0, 2kt) > z) exp{—2%/4kt}dz,t > 0,2 > 0.

1 o
- vkt /m
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Figure 9.1:

Let us consider a basic solution to 77:

1 2

u(z,t) = Wi exp{—a°/4kt} (1.21)
This connection between the heat equation and the normal distributions is fun-
damental and the wealth of solutions depending on the initial and boundary
conditions is considerable. We plot a fundamental solution of the equation as
follows:

> u(x,t) := (.5/sqrt(Pixt))*exp(-x~2/(4*t));

> plot3d(u(x,t),x=-4..4,t=.02..4,axes=boxed) ;

FIGURE 1.1: u(x,t)

As t — 0, the function approaches a spike at @ = 0, usually referred to as
the “Dirac delta function” (although it is no function at all) and symbolically
representing the derivative of the “Heaviside function”. The Heaviside function
is defined as H(z) = 1,& > 0 and is otherwise 0 and is the cumulative distri-
bution function of a point mass at 0. Suppose we are given an initial condition
of the form wu(z,0) = ug(z). To this end, it is helpful to look at the solu-
tion u(x,t) and the initial condition ug(z) as a distribution or measure (in this
case described by a density) over the space variable x. For example the density
u(z,t) corresponds to a measure for fixed ¢ of the form v (A) = [, u(x,t)dz.
Note that the initial condition compatible with the above solution (1.20) can
be described somewhat clumsily as “u(x,0) corresponds to a measure placing
all mass at « = x¢g = 0 ”.In fact as t — 0, we have in some sense the following
convergence u(z,t) — 6(x) = dH(x), the dirac delta function. We could just as
easily construct solve the heat equation with a more general initial condition of
the form u(x,0) = dH (x — x) for arbitrary zo and the solution takes the form

1
u(z,t) = W exp{ —(z — xq)?/4kt}. (1.22)
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Indeed sums of such solutions over different values of xg, or weighted sums, or
their limits, integrals will continue to be solutions to ?77. In order to achieve the
initial condition ug(z) we need only pick a suitable weight function. Note that

ug(x) = /uo(z)dH(z —x)

Note that the function
1 oo
u(z,t) = —— exp{—(z — x)?/4kt uy(z)dz 1.22
(@8) = 5o [ expl=(e = /dt}uo(2) (1.22)

solves 77 subject to the required boundary condition.

Problem

Use separation of variables to solve the heat equation 7?7 on 0 < z < 1,¢t > 0
subject to initial condition u(x,0) = ug(x) and u(0,t) = u(1,t) = 0,t > 0.

We may also solve the heat equation with given initial/boundary conditions
using the Laplace Transforms. The problem is to solve 77 with k£ = 1 subject
to

u(z,0) = uo(x),u(z,t) bounded.

Define the Laplace transform with respect to the variable ¢t to be U(z,s) =
fooo u(z,t) exp{—st)dt. We suppose that we may differentiate twice under the
integral sign so that 77 implies
82
sU(xz,s) —ug(z) = =—=sU(x,s
(¢ ) ~ uo() = 55Uz, )

which can be solved as an ordinary differential equation for fixed s. The solution
is

U(z,s) = QL\/E /_00 exp{—v/s|z — y|}uo(y)dy

The solution (1.22) to the heat equation can no be found by inverting this
Laplace transform
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Chapter 10

Appendix: Numerical
Solutions of DE’s and
PDE’s

10.0.1 Difference and Differential Operators and solving
ODE’s.

Normally, differential and partial differential equations are solved numerically
by replacing the derivatives by differences. Recall that a Taylor series approxi-
mation to a function f takes the form

f@+h%:ﬂ@+ah+%ﬂ+0w%

where a = f'(z) and b = f”(x) are the first and second derivative of the
function at x respectively.
If we wish to estimate the first derivative a we might use the forward (first)

difference approximation M}L—Mﬁ =a+25h+0(h?) or the backward analogy

w =a— %h + O(h?) but note that the approximation based on
symmetric first differences appears better;

flath)— flz—h)
2h

Similarly, in approximating the second derivative b we can use the second
difference

=a+ O(h?).

[+ h) = 2f(2) + f(z = h)
12
These approximations, generally based on central differences rather than for-

ward or backward differences form the basis of the more precise numerical so-
lutions to differential and partial differential equations.

=b+O(h)

247
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Many of these approximations are easily obtained using difference and dif-
ferential operator notation, designed to permit easy access to various formulae
for approximating derivatives. To begin with, suppose we are interested in ap-
proximating the derivative of a function f(z) of a single variable. Denote by
Df the derivative function f’ , so

Df(x) = f(z), (Df)(z) = f'(z), (D*f)(x)=f",
etc. Then for h small, by a Maclaurin’s series expansion,

f(z+h)= hiz?i f(z) =e"Pf(x)

=0

where the second equality is really the definition of the operator e” . Thus
the forward difference Af(z) = f(x 4+ h) — f(z) can be written in operator
notation Af(z) = e f(z) — f(x) or symbolically A =e"’ —1 and

1 AZ A3
D=>log(1+A)==(A—-=—+=——
og(1+A) h( 5+ )
Similarly
1 11
D?=—=(A? - A3+ =AY
hZ( +12 )

The first term in these expansions provides a simple estimator of the first and
second derivative respectively. Thus, for example, the estimator %—: provides
a simple approximation to the second derivative. The next term in the series
provides an indication of the order of the error. We have seen that central
differences tend to provide more accurate estimates of derivatives. Introducing
the notation for central differences 6f(x) = f(x + h/2) — f(x — h/2), note that

§=(1+A)2 - (1+A)"V2 = (ehP/2 _ ¢=hD/2) = 25inh(hD)

Expanding the inverse of the hyperbolic sine in a series,

L _ Ll 1
D—hsznh (6/2)—h(6 245 +...)

and similarly

1 1

2 2 4

D :ﬁ(é —=8"+...).

The more rapid convergence of the estimators using central differences rather
than forward or backward differences is apparent. Thus, the estimator of first

derivative % has error O(h?) and the estimator of second derivative

ffﬁ f(x+h)—2f(x) + f(z —h)
h2’ h2
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has error  O(h?).

Let us now see how these difference approximations to derivatives can be used
to numerically solve an ordinary differential equation. The first and simplest
method is the Euler method, but there is a hugh number of more sophisticated
alternatives including the trapezoidal rule, or the improved Euler method, the
modified Euler method, and the Runge-Kutta method. Consider the simplest,
the forward Euler method and the simple differential equation of second order

2
%y(t) = 100e™ 19 4 100e!% (2.1)

with initial conditions y(0) = 2,3'(0) = 0. Note that if we replace the second
derivative by a second difference, the equation becomes

L

3 A%y(t) = 100e71% 4 100e'% t = 2h, 3h, ... (2.2)

allowing us to approximate values of the function on the lattice of points of
the form kh,k = 2,3, ... using the initial values. The values corresponding to
k = 0,1 result from the initial conditions.

Problem.

Solve the equation (2.1) with initial conditions y(0) = 2,3/(0) = 0 numerically
using (2.2) recursively and h = 0.1.

Use the simplest Euler approximation for the initial conditions by replacing
y'(0) =0 by the condition Ay(0) = 0. Compare with the exact solution.

Problem.

Solve the equation (2.1) with initial conditions y(0) = 2,3/(0) = 0 numerically
using the recursion

%6231(75) =100e 1% + 100e%, t = 2h, 3h, ... (2.3)

and h = 0.1. Compare with the exact solution.

The improved Euler method is a simple modification of the Euler method
for solving an equation of the form y'(t) = f(¢,y). The problem with Euler’s
method is it uses as slope the derivative at one end only of the interval and
an improved approximation of the derivative using the average slope of at the
two endpoints is usually more accurate. In this case, we make a preliminary
estimate of y((k + 1)h) denoted by y* = hf(kh,y(kh)) + y(kh) and then solve
for y((k + 1)h) the equations

f(kh,y(kh)) + f((k+1)h, y*)

y((k+1)h) = -

h+ f(kh,y(kh)), k=12, ....
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The Runge-Kutta method differs from the above two methods only in the
way in which the slope of the line is estimated. For example we may take an
average of the slope f(t,y) at points t = kh, (k + 1/2)h, (k + 1)h and various
corresponding values of y in the interval. In fact it is possible to select 4 com-
binations of values (¢,y) so that the approximation is perfect when y(t) is a
polynomial of degree 4. In general. we may select k points so that the approxi-
mation is perfect for a polynomial of degree k. This is a general description of
the Runge-Kutta method.

y((k + 1)h) = (weighted average of values of f(¢,y) in the interval)h + f(kh,y(kh)),k =1,2,...

Problem:

Use Euler’s method and the improved Euler’s method to solve the equation
y'(t) = ty(t) using step size h = 0.1 and 0.05 and initial condition y(0) = 1.
Compare the solution with the exact solution on the interval 0 < ¢ < 1. How
does the error change as we (a) increase h, (b) let ¢ get farther away from the
initial condition ¢ = 0.

Example: Numerical Methods for ODE’s in MAPLE:

Consider the second order differential equation

2
&) = ()

with initial conditions y(0) = 0,3'(0) = 1.. We wish a numerical solution. There
are a number of methods available in MAPLE including classical, Isode, mgear,
rfk45, taylorseries,dverk78. Each has a number of options. The simplest method
is classical[foreuler] for forward euler.

> deq := diff(y(t), t32) = y(t)*t;

> ans:=dsolve(deq,y(t),numeric,method=classical[foreuler],

initial=array([0,1]), start=0);

We may then plot the result for 0 < ¢t < 2 as follows;

> with(plots);

> odeplot(ans,[t,y(t)],0..2);

Compare with an alternate more accurate method;

> ans2 := dsolve(deq3, y(t), numeric, method=mgear[msteppart], initial=array([2,0]),
start=0);

> odeplot(ans2,[t,y(t)],0..2, axes=boxed);

> ans(2);

[t =2, y(t) = 3.588338680829067, y’(t) = 4.643239714056109]

> ans2(2);

[t =2, y(t) = 3.611076600977132, y’(t) = 4.676276660728110]
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Figure 10.1:
Stability:

Instability is the possible accumulation of relatively small errors over time, and
results in errors that get larger as t — oo. A stable numerical method is
forgiving of small errors over time, while an unstable method may exaggerate
these errors until they are the dominant part of the function. For an example
of instability, consider the ordinary differential equation

dy

—y—t
a7

with solution given by y = (yo — 1)e! + (t + 1) where the initial value is
y(0) = yp . Suppose that true value of the yg is 1 but it has been approximated
numerically by 14 e with € small. The error might, for example, be the error
due to expressing the initial condition with floating point arithmetic. For partial
differential equations, often the initial condition is also approximated using a
lattice of values, and this results in initial error. Note that even if the computer
were able to obtain the exact analytic solution to the differential equation with
the erroneous initial value, the difference between the true solution ¢+ 1 and
the approximation is ee! (assuming no subsequent errors). This grows without
bound as t — oc.

10.0.2 Numerical Methods for P.D.E.’s. Explicit Finite
Difference Method.

We now return to the heat conduction or diffusion equation

ou  O%u

subject to the initial condition wu(z,0) = ug(x). A simple approach to solving
this equation numerically is to approximate the first derivative on the left and
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the second derivative on the right using finite differences and solve the resulting
system of equations for the approximate value of the function on grid points.
Suppose, for example we replace the derivative on the left side by a forward
difference and the second derivative on the right side by a central second dif-
ference, This allows us to solve for the values of w(z,t+ At) in terms of the

values of u(z,t)for all x = nAxz and t = mAt, m = 0,1,2,.... Denoting
Ui ; = u(iAz, jAt)the equation becomes
At
Uij+1 — Uiy = W(Uiﬂ,j —2U;; +Ui-1,5)
or
Uijtr =rUipr,; + (1 = 2r)Us j + Ui, (255)

where r = (ﬁﬁ. It turns out that this strategy of solving for U; ;.1 in terms
of its predecessors is not stable, i.e. the cumulative error does not converge,
unless 7 < 1/2. This imposes a lower limit on the possible size of Az, viz.
(Az)? > 2At. This method is called the explicit finite difference method, not
because it is uncensored (although this is also true) but because we are able to
solve explicitly for the values at time step j +1 using the values at time step j.
Consider the stability of an equation of the form (2.5). Let U{; be the
solution to (2.5) beginning with the exact initial conditions and U; ; the values
obtained solving (2.5) if we begin with the (slightly) erroneous values Us .
Then the error  due to the error in the initial condition is E; ; = U/; = U, ;. It
is easy to see that this, since it is a linear combination of terms satistying (2.5),
also satisfies the equation (2.5). Suppose, for example, E;; = e\ sin(iw) for
each i, j and for some real X and frequency w and for (small) e. In general it
is possible to show that the general solution of (2.5) is a linear combination of
such terms with different values of A\, w. Substituting in (2.5) and solving,

sin((i + Nw) — 2sin(iw) + sin((i — 1)w)
sin(iw) '

A=1+r

Since sin(A + B) = sin(A)cos(B) + cos(A)sin(B) this results in
A =1+2r[cosw — 1] =1 — drsin®(w/2)

Note that if » > 1/2, it is possible that for some frequencies w, the correspond-
ing value of A\ < —1. This results in N blowing up in magnitude as j — oo,
i.e. the absolute value of at least some of the errors will go to infinity as j — oc.
We have a similar instability if r < 0. However, if 0 < r < 1/2 the errors will
all converge to 0 as j — oo and the solution to (2.5) is stable. For the explicit
method to be stable, we need At < 1(Ax)2.

Problem:

What is the general form for the solution of the difference equation ypio —
3yrr1 + 2yk = (1/2)%, k =1,2,..7
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(Hint: solve as you would a differential equation: first, find the roots of the
characteristic equation and hence all solutions to the homogeneous difference
equation. Then find a particular solution to the homogeneous equation.)

Problem:

Consider solving the partial difference equation (2.5) by separation of variables.
i.e. assume a solution exists of the form U; ; = d;¢; for sequences d;, ¢;. Show

that the general solution is of the form ¢; = e\ for some A and d; = Cy sin(iw)+
C5 cos(iw) for some C1,Co,w.

The next problem shows that if we were to replace the left side of (2.4)
by a central difference that should be more accurate, we nevertheless obtain a
method which is unstable for all values of 7.

Problem:

We have already seen that central differences are generally more precise es-
timates of derivatives than are forward or backward differences. Suppose we
replace (2.2) using a central difference estimator of %. Show that we obtain the
partial difference equation

2At

A2 Uit = 2Uig + Ui1) (2.6)

Uijt1—Usj—1 =
The Fourier method approaches the stability of this difference equation by
mapping the changes in the two directions into the complex plane. For example,
suppose we consider a solution which is a constant multiple of U;; = 2iq? for
some complex z = P22V =T and real g = e where «, § are arbitrary real
numbers. General solutions could be obtained by taking linear combinations of
such terms for different values of « and [ and then taking the real or imaginary
part of the linear combination. Substituting in (2.6), obtain the equation

q- 3 = 4r[cos(BAx) — 1] = —8rsin2(ﬂAx/2).

Show that even for r close to zero but positive, there is a solution for g with
lg] > 1 leading to an exploding solution to the difference equation as j — oo.
This indicates instability in the difference equation (2.6) making it undesirable
for any value of r = AA;._,.

For the explicit finite-difference method it can be proven that if we At and

Az tend to zero in such a way that the ratio r = ﬁ remains between 0

and % then the finite difference approximation converges to the actual solution.
To see this we can consider the difference between the exact solution and the
finite-difference approximation:

Dn,m = Un,m — Vn,n‘u
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where V,, ., is the solution of the explicit finite-difference method. From the
Taylor’s theorem applied to the forward and the central difference approximation
we can find that

Dy = (1 —21) Dy + 7(Dyst,m + Do—1,m) + At(R1 At + Ra(Ax)?),

where R; and Ry are two bounded in absolute value functions. For Dm =
max,, |Dp,m| and D™ = max,, |Dymr1|, the largest errors at time-step m
and m + 1 respectively, we get

D™ < (|1 = 2r] 4 2|r|) D™ + AH(Ry At + Ry(Ax)?).

Provided that 0 < r < %, we have |1 — 2r| + 2|r| = 1, and hence

D™ < D™ 4 AH(Ry At + Ry(Az)?).
By induction it follows
D™ < DO+ (m + 1) AR AL + Ry(Ax)?),

so if we assume zero error at time-step m = 0, which we can do since V}, o = Uy o
from the initial condition, we see that

D™ < (m 4+ 1)At(R1At + Ry(Az)?) — 0 as At — 0,

which proves that the method gives an approximation which converges to the
actual solution. A modification to this argument shows that if r > % the error
actually grows without bound as we let At — 0. Therefore, for explicit finite-
difference method for the diffusion equation the stability and the convergence
problems are equivalent.

The moral of this story is that one should be careful with discrete approxima-
tions to continuous differential equations. The stability of the method and the
convergence of the numerical solution are among the many concerns. Various
methods have been proposed that solve some of the stability problems encoun-
tered above, and these are implemented in many packages. We discuss these
methods further in the following sections.

10.0.3 Implicit Finite Difference Solutions to the Diffu-
sion Equation.

The implicit finite difference scheme for solving (2.4) is similar to the explicit
method in that we use first differences for the derivative on the left hand side
of (2.4) but we use the backward difference instead. This results in a system
of linear equations in wu(x,t) in terms of the values of u(x,t — At)for all x =
nAx and t = mAt, m = 0,1,2,..., and these equations fortunately take a
simple form.

Uq:yj — U/I:yj_]_ = T‘(Ui_;,_l,j — QULJ‘ + Ui—l,j) (2.7)
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or
—rUi1,5+ (L+2r)Usj — Ui,y = Uiy

where 7 = At/(Ax)?. Boundary conditions determine the value of U; jon the
upper and lower boundary of a rectangle, e.g. for « = £V, and all 7, while initial
conditions prescribe the value of the function at time 0.

The implicit method requires solving this system of equations at time j in
terms of the solution at time j — 1. There are three ways in which solutions to
systems such as this can be approached. The first is matrix inversion. For large
matrices this is very difficult. The second method uses an LU decomposition
of the matrix into two components, L , a lower triangular matrix, and U an
upper triangular matrix. The advantage of triangular matrices is that systems
of equations of the form Lz = y , for example, can be easily solved by sim-
ple substitution. A third method, called successive over relaxation (SOR) is a
method for solving the equation

MU, ; = b;

for a matrix M and vector b;. Here U, ; denotes the column vector (U_py ;, U_-N+1,5,--- , UN,j) ,
b depends on U, ;_; and the boundary conditions and

1+ 2r —r 0 . . 0
. —r 1+ 2r —r 0 . 0
M= 0 —r  14+2r —r 0
0 . . . o—=r 1+2r

This is then rewritten

1

Usj = m[bm +7rUi-1,; + Uit1,5)] (2.8)

and then starting with an initial estimate of the solution (always for fixed j),
substitute in the left to obtain an updated estimate on the right. This con-
tinues until there is little change in the components of U, ;. There is one
simple modification of this that is normally applied in practice, motivated
by the fact that sequences often converge in such a way that the errors de-
crease like a geometric series. When this is the case, convergence may be ac-
celerated by over-relaxation (extrapolating the solution). This is most easily
described with an example. Consider the sequence x, = 0.1 + 0.9x,_1 =
0.1000,0.1900,0.2710,0.3439,0.4095, 0.4686,0.5217, ... if we begin with x; =
0.1. Clearly this sequence converges rather slowly to 1. Consider the sequence
defined by y, = 0.1 + 0.92,,—1, and @, = 1 + w(Yyn, — Tn—1) for some over-
relaxation parameter w > 1. How much faster does the sequence converge if
w = 57 The first few terms are(.1,0.595,0.7975,0.8987 which is clearly a sub-

stantial improvement. Of course w ~ 9 provides even faster convergence.
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Problem (SOR):
Consider the sequence

LTp—1 + 1
2 Tpn—1

LTy =

x1 = 10. Investigate the speed of convergence of this sequence and one obtained
by successive over-relaxation. For what value of the parameter w does the speed
of convergence seem to be greatest?

The SOR method consists of first solving

1
Y= T2 0 * (U + Uil

and then putting
Ul = Ul + oVl — Ul k=1.2,3,.

until convergence.

10.0.4 The Crank-Nicolson Method

This method differs from both the forward and backward approach of the ex-
plicit and fully implicit methods primarily in that the first forward or backward
difference is now replaced by a symmetric first difference, improving the accu-
racy to O(At)2. Note that

ou ~u(w,t + At) —u(w,t) 9
e (z,t+ At/2) = ~ +O(At)“.

Similarly, we can obtain an approximation to the right hand side accurate to
the same order by averaging the symmetric second difference at points t and
t + At, i.e. using

u(x + Az, t) — 2u(x,t) + u(x — Az, t)
2(Ax)?

+u(;z: + Az, t+ At) — 2u(z,t + At) + u(x — Az, t + At)
2(Ax)?

Setting these equal results in a system of linear equations in the values of wu(x,t+
At) solvable in terms of the values of w(x,t) for all z. These equations take
the form;

,
Uit = Uij = 5Uit1541 — 2Uigar + Ui s + Uigrj — 2Us5 + Uie 5
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The system of equations that result from the Crank-Nicolson approach is similar
to the form shown of the implicit method

MU j41 = BUsj + bs

where

1+r —r/2 0 . . 0
M —r/2 14r —r/2 0 . 0
o 0 —r/2 14+r —r/2 0 '
0 —r/2 1+r
1—r 1r/2 0 . . 0
B— r/2 1—r r/2 0 . 0
- 0 r/2 1—-r r/2 0 ) ’

0 . . .oor/2 1—r
and b, ; is a vector of zeros in the center, with non-zero elements at the bound-
ary which depend on the boundary conditions.
As we will show in the next section, the Crank-Nicolson method has conver-

gence and stability properties similar to that of the implicit method, the method
is stable if 7 > 0.

10.0.5 Stability and Consistency of the Crank-Nicolson.

We now consider the stability of the Crank-Nicolson method using a matrix
approach. Consider once again the numerical solution to the heat equation

2.,-2,
ot Ox?
on 0 < x < 1 subject to the initial condition wu(z,0) = f(z) and some

boundary conditions wu(1,t) = g1(t), u(0,t) = g2(t) for all ¢ . We have seen
that methods such as the Crank-Nicolson involve discretizing in both the time
and space directions, and then writing a recursive formula of the form

MU j11 = BUs,j + baj
where the matrices M and B are defined in the last section . Note that

U*yj+1 = PU*,j + ]\/filb*yj =...

=P o+ PPM Yhg + PPIM oy . A M (2.9)
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where P is the matrix M™!B. Let the eigenvalues of the matrix P be
A1, A2,... and the corresponding normalized eigenvectors wvi,ve,.... Recall
from linear algebra that P’ has the same eigenvectors with eigenvalues A%.
Then provided that these eigenvectors span the space, we can write U, =
qu a;v; for some constant coefficients «;, and then

PiUo =Y aiXv;. (2.10)
[

Similarly, each of the other terms on the right hand side of (2.9) can also be
written in a similar form with coeflicients involving powers of the eigenvalues
AJ. For stability with respect to small errors in the initial conditions, we would
like to be assured that as j increases, the vector on the right hand side of (2.10)
remains bounded. This is clearly the case if all of the eigenvalues \; are less
than or equal to 1. A similar argument implies stability with respect to small
errors in the initial conditions. Thus the condition for matrix stability is more
generally, for a recursion of the form MU, ;11 = BU, ;+b, j, that the maximum
eigenvalue of P , i.e. the maximum root of the equation det(M — AB) = 0 is
less than one in absolute value. In the case of the Crank Nicolson method, this

results in the same condition as does the Fourier method, i.e. that 0 < r.

Besides stability, which ensures that errors do not tend to grow without
bound, we generally require some indication that the discrete approximation to
a partial DE is close to the continuous solution. Let the difference operator F
correspond to the discrete Crank-Nicolson method.

Uigr1 =Uiy  {Uip1541 = 2Uij41 +Uicag41 + U1,y — 2Ui 5 +Uica 5}

FU; ; =
’J At 2(Ax)?

Then the difference between the discrete Crank-Nicolson and the corresponding
differential operator can be expanded, as was done in section 2.1, to obtain

0 0? 1 0,0 0? 1 0*u
—u— —=u) = =(At) =[=u — —su| — —(Az)’—
gt o) =3Bl gy BB g

1 o (Bu 3 0*u
540 (W - 5—89328152) e

FU;;—( (2.11)

Note that as long as both At and Az approach 0, the error in the ap-
proximation on the right side of (2.11) also approaches 0 (assuming sufficient
smoothness of the solution). Thus the numerical solution is consistent under
these conditions.

10.0.6 The Method of Lines.

In general, the method of lines is a device which reduces a partial differential
equation to a coupled system of ordinary differential equations. Consider for an
example the non-linear equation

0 0? 0 .o

ot~ a2 (g
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Suppose we use symmetric first and second order differences for the deriva-
tives on the right side of this equation, but continue to leave the left side as a
derivative. Then at a given point (z,t) the equation takes the form

0

1 1 )
Eu(m,t) = ﬁ[u(x + h,t) —2u(x,t) + u(x — h,t)] + W[u(x + hyt) —u(x — h,t)]".

If we now denote U;(t) = u(ih,t), i=0,1,2,..., then this becomes a coupled
system of first order differential equations
1 1

Ui(t) = ﬁ[Uz‘H(t) —2U;(t) + U1 ()] + W[Ui—&-l(t) — Ui (0%, i=1,2,...

which, together with the appropriate initial or boundary conditions, may be
solved, for example in MAPLE, to obtain an approximate solution to the PDE.

10.0.7 Finite Elements and the Galerkin Method.

Much of the theory of ordinary and partial differential equations parallels cor-
responding results in linear algebra. We begin with some elementary results
concerning linear operators. Consider a vector space spanned by a complete
set of vectors wvq,vs,.... By this we mean that any element of the vector
space can be written as a limit of a linear combination of the spanning vectors
limy— o0 Z?:1 a;v;. Suppose the vector space has an inner product denoted by
(u,v). A complete inner product space is called a Hilbert Space. In the case of
a finite-dimensional vector space, this inner product is usually the dot product
between the two coefficient vectors. However, we will deal here with an infinite
dimensional vector space in which the vectors are functions. Now let A be
a positive linear operator on the vector space. This means that when v s a
vector, sois Av and it is linear; A(vy+wvs2) = Avy + Avs. Of course we usually
represent linear operators in the finite dimensional case by matrices, but when
the vectors consist of functions, then objects like derivatives of the function, first
differences, etc. are also linear operators. A linear operator is positive definite
if it is symmetric ((Av,u) = (v, Au) for all u,v) and (Av,v) > C|jv||? for all
v and some C > 0.

We now consider a particular minimization problem, easiest to interpret
and prove in the finite dimensional case, but useful in the infinite dimensional
problems in differential equations as well. To motivate the result, pretend for
the moment that the vectors f,u,v are finite-dimensional column vectors and
A is a positive definite matrix. Suppose we wish to minimize the length of
the residuals Av — f over possible vectors v restricted to some linear subspace
of Euclidean space. The notion of distance is adapted to the positive definite
matrix A, so that the squared distance is given by (Av — f)TA™Y(Av — f) =
(Av,v) — 2(f,v) + (f, f). Since we are minimizing over v, it is equivalent to
minimize the quantity (Av,v) — 2(f,v) and this minimization is equivalent to
minimizing the “length” of the residuals Av — f.
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Proposition

Suppose A is a linear operator on a given domain D4 in a Hilbert space.
Suppose we wish to minimize the quadratic functional

(Av,v) —2(f,v) (2.12)

over all vectors v for a given function f € D4. Then the following are
equivalent

(a) v* is the desired minimum.
(b) v* is the unique solution to the equation Av* = f.

¢) Provide 4 is spanned by base vectors vy, ... v, scaled to have leng
Provided D4 i d by b t led to have length
1, then v* => a,v; where aq,as,...a, solves the system of equations

S (v, o)as = (Fr05), G =1,2,...m (2.13)

%

The last equation above can be written in simpler form and applies generally,
even in circumstances in which the operator is not positive definite. Suppose we
wish to solve Av* = f. Suppose there are finitely many basis vectors vy, ... v,
that we think “almost” span the desired space. Then any proposed solution
that is a linear combination of these vectors, say v: = > 1 a;v; must be
assessed through the size of the residuals Av) — f. As in regression, we have
achieved the projection of the solution onto this finite dimensional subspace
only if these residuals are perpendicular to each of the basis vectors, i.e. if
(Avy — f,v;) =0, j=1,2,...n. This is the system of equations (2.13).

Now consider as a simple example the heat equation

9. 9
ot 92

subject to initial and boundary conditions

O<z<l, 0<t

u(z,0)=1, 0<z<1

u(0,t) — %U(O,t) =0, t>0

0]

—u(l,t) =0, t>0

a1 1)

We begin with a base of functions of « that satisfy the boundary conditions.
For example, the polynomials

pitl

@) = (14 7) - 75
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all satisfy the boundary conditions

v;(0) = v3(0) =0, v}(1) =0.

Now consider approximating a solution in the form
a(z,t) = ai(t)vi(z) + az(t)va()

In this example, the space of functions should include (possibly infinite) linear
combinations of twice differentiable functions of x which satisfy the boundary
conditions, with coefficients that are differentiable functions of t. The inner
product is (u,v) = fol u(z, t)v(z, t)de. The residual at time t is

_ o_ 0 _
AU7f:a’UJ7W’UJ,

t>0
and
1—a(z,0), t=0.
Then the conditions (2.13) lead to the fact that the residuals are orthogonal to

the two basis vectors, i.e. that

1
/0 (1 —a(z,0))vj(z)de =0, j=1, 2

1 6 82
/0 [Eu — Wu}vj(x)dx =0, 7=1, 2 (10.1)

These equations reduce to

9 691 4
2a1(0) 4+ ~=ay(0) = =
501(0) + 35502(0) = 3

691 1291 17
220 01(0) + = 05(0) = —
360" (0) + 5357 22(0) = 3
and
9, 691 4 17
Za)(t) + —ay(t) + a1 () + —as(t) =0
20 (1) + oo (1) + gar (1) + Teas(t)
691 , 1291 17 23

—a) (t) + ——ah(t) + —aq (t) + —as(t) =0
360°1(1) + Ggg () + st + 75a2()
and the solution to this system of equations is given by

ay(t) = 0.586e 742 12 448711770 ) — (0.144e T2 _ 2295711770
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and so the approximate solution to the initial-boundary value problem is

u(w,t) = 0.586e ™ 712 1 244871770 (1 4o — 22 /2)

1014467128 22950~ 1LT70 (1 4 5 23 /3).

Of course, because the second exponent is so large and negative, it is clear
that the first term in these coeflicients dominates for moderate or large values
of t.

Example.

The methods we consider here are generally applicable to numerically solving
an equation of the form

%u + A(u) =0

where A(u) is usually required to be a positive definite linear differential
operator with respect to z. An example of a positive definite operator is one
of the form A(u) = f%[a(x,t)%u(m,t)] for a non-negative function a. It
is easy to show, for example, that the operator — 6‘9—; is positive definite
on a suitable subspace determined by the boundary conditions. We return to
solving equation (2.13) on 0 <z < m, 0 <t < 1 under the boundary, initial
conditions u(z,0) =1, 0<ax <7, and u(0,t) = u(m,t) = 0. The method of
separation of variables leads to solutions of the form un(z,t) = e ™ tsin(na)
and it is easy to see in this case that if we try a linear combination of the
form w(z,t) = ), apu, the equation and boundary conditions are satisfied
for a, = 71';477,7 n=1,3,5,..., and otherwise a, = 0. Therefore in this case,
an explicit solution to the equation is known;

4 2
u(x,t) = —e "l .
(z,t) Z —e sin(n)
n=1,3,5,...
Suppose for the moment we did not know this solution. We could attempt a so-
lution as a linear combination of finitely many of the basis vectors v, () =

ﬂnnﬂl, n = 0,1,2,...5 so the attempted solution might take the form
a(x,t) = ap(t) + Zi:l an(t)v,(x). Proceeding as in the last example, if we
require that the residuals are orthogonal to the basis vectors, we obtain the

equations

ap(t) =1

/ﬂ[gu— 8—2ﬂ}v(x)dx =0 i =0,1 5 (2.14)
o Ot ox2 IR )
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Figure 10.2:

which reduces a coupled system of first order differential equations that may
be solved for the coefficients a;(t). Often the system of equations (2.14) is
simplified further by discretizing time, i.e. replacing %ﬂ by a first forward
difference for small (time) step size h . Then the equations are simply linear
equations, with no derivatives involved, and they are solved sequentially in
t=jh, j=1,2,.

There is an alternative for the base functions wv,, commonly used and often
referred to as a finite element method. Suppose, for example, we use the three
simple spline functions represented by the triangles below.

Clearly these functions are continous,

and indeed have piecewise continuous first derivatives. For example, v;(x)
can be recovered by integrating its first derivative. Unfortunately, the second
derivatives do not have this property and if we express u as a linear combi-
nation of these base functions, we still not be able to apply the operator A
to it, since this requires second derivatives with respect to . This seemingly
harmless failure has led to a mountain of mathematical literature providing a
weak interpretation of differential equations. Roughly speaking, functions are
defined by the result upon integration after multiplication by well-behaved test
functions. For example, the dirac delta function could be defined either as a
measure, or as the “function”§ providing [ §(z)d(z)dz = ¢(0) for all smooth
functions ¢. Under a weak interpretation, in order to solve for the coefficients
above, we require integrals of the form f[—aa—;vn(x)]vj (z)dz and this can be
interpreted using integration by parts. For example if we are integrating over a
strip a < < b and if the basis vectors v;(z) are zero at x = a,z = b (because
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boundary conditions imply that the solution is also zero on this boundary),

2
[egmen@lu@is = (@@ 02

even when the second derivative fails to exist. Notice that this identity also

shows that the linear operator A = —33—; satisfies (Av.v) > 0 and is therefore

positive definite.

Summary

We have seen several alternative methods that can be used to numerically solve
a system of the form

0]

—u+ A(u) =

st A(u) = f

for positive definite operator A. We may discretize both time and space, using a
method such as Crank-Nicolson. We may discretize space and not time, resulting
in a system of first order differential equations in ¢. Alternatively, we may
discretize time. Putting wu;(z) = u(jAt, z) this requires solving a system of the
form

wj() —uja(x)

Y + Auj(z) =0

with the inherited boundary conditions. This may result in a system of second
order differential equations in & which may be solved analytically or numerically
(e.g. by finite element methods).

10.0.8 Solution of the Diffusion Equation.

In this section we consider the general solution to the diffusion equation of the
form (1.15), rewritten as

av oV 02(8,t) 0%V
oy _ e S 2 A 2.1
or ~ "V T rSigg 2 052 (2.15)
where S; is an asset price driven by a diffusion equation
dSt = G(St, t)dt + ('7'(5'757 t)th7 (216)

V(S¢,t) is the price of an option on that asset at time ¢, and r, = r(¢) is the
spot interest rate at time ¢. We assume that the price of the option at expiry
T is a known function of the asset price

V(ST,T) = Vo(Sr). (2.17)

Somewhat strangely, the option is priced using a related but not identical process
(or, equivalently, the same process under a different measure). Recall from the
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backwards Kolmogorov equation (1.2) that if a related process X, satisfies the
stochastic differential equation

dXy = r(Xe, t) Xedt + 0 (Xe, t)dW; (2.18)

then its transition kernel p(t,s,T,z) = %P[XT < z| Xy = s| satisfies a partial
differential equation similar to (2.15);

op op  o%(s,t) 0?p
ot (S’t)sas 2 9s?

For a given process X; this determines one solution. For simplicity, consider
the case (natural in finance applications) when the spot interest rate is a function
of time, not of the asset price; r(s,t) = r(t). To obtain the solution so that
terminal conditions is satisfied, consider a product

(2.19)

f(t,s,T,2z) =p(t,s,T,2)q(t,T) (2.20)

where

T
q(t,T) = emp{—/t r(v)dv}

is the discount function or the price of a zero-coupon bond at time ¢ which
pays 1$ at maturity.

Let us try an application of one of the most common methods in solving
PDE’s, the “lucky guess” method. Consider a linear combination of terms of
the form (2.20) with weight function w(z). i.e. try a solution of the form

Vs, t) = /p(t,s,T, 2)q(t, T)w(z)dz (2.21)

for suitable weight function w(z). In view of the definition of p as a transition
probability density, this integral can be rewritten as a conditional expectation:

V(t,s) = Elw(Xr)q(t, T)|X: = 5] (2.22)

the discounted conditional expectation of the random variable w(Xr) given the
current state of the process, where the process is assumed to follow (2.18). Note
that in order to satisfy the terminal condition 7?7, we choose w(z) = Vp(x).
Now

ov 0
E - E/p(t7S7T7 z)q(t,T)w(z)dz
0 2(8,,t) 62
= /[—T(St,t)sta—i _ 2ot (2t )a—sg]q(t,T)w(z)dz

+7r(S, 1) /p(zf,S',g7T7 2)q(t, T)w(z)dz by (2.19)

OV 02(Sit) 02V
= —r(St,t)St% — TW + ’I"(St,t)V(St7t)
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where we have assumed that we can pass the derivatives under the integral
sign. Thus the process

V(t,s) = EVo(XT1)q(t,T)|X¢ = 5] (2.23)

satisfies both the partial differential equation (2.15) and the terminal conditions
7?7 and is hence the solution. Indeed it is the unique solution satisfying certain
regularity conditions. The result asserts that the value of any European option
is simply the conditional expected value of the discounted payoff (discounted to
the present) assuming that the distribution is that of the process (2.18). This
result is a special case when the spot interest rates are functions only of time of
the following more general theorem.

Theorem( Feynman-Kac)

Suppose the conditions for a unique solution to (2.15,2.17) (see for example
Duffie, appendix E) are satisfied. Then the general solution to (2.15) under the
terminal condition 7?7 is given by

T
V(S,t) = E[VO(XT)e;Ep{—/t r(Xy,v)dv} | Xy = S] (2.24)

This represents the discounted return from the option under the distribution
of the process X; . The distribution induced by the process X; is referred to
as the equivalent martingale measure or risk neutral measure. Notice that when
the original process is a diffusion, the equivalent martingale measure shares the
same diffusion coefficient but has the drift replaced by (X, ¢)X;. The option
is priced as if the drift were the same as that of a risk-free bond i.e. as if the
instantaneous rate of return from the security if identical to that of bond. Of
course, in practice, it is not. A risk premium must be paid to the stock-holder
to compensate for the greater risk associated with the stock.

There are some cases in which the conditional expectation (?7?) can be deter-
mined explicitly. In general, these require that the process or a simple function
of the process is Gaussian.

For example, suppose that both 7(t) and o(t) are deterministic functions
of time only. Then we can solve the stochastic differential equation (2.22) to
obtain

X T o(u)
Y=ot | e (2:25)

The first term above is the conditional expected value of X7 given X;. The
second is the random component, and since it is a weighted sum of the normally
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distributed increments of a Brownian motion with weights that are non-random,
it is also a normal random variable. The mean is 0 and the (conditional) vari-

anceis |, T ZJZELdu. Thus the conditional distribution of X given X; is normal
t ¢*(uT)

. .- . D' .. . T o%(u
with conditional expectation W%) and conditional variance ft 2 du.

Problem.

Consider approximating an integral of the form fOT g(t)dWy =~ > g(t){W(t +
h) — W(t)} where g(t) is a non-random function and the sum is over values
of t = nh,n =0,1,2,..T/h — 1. Show by considering the distribution of the
sum and taking limits that the random variable fOT g(t)dW; has a normal
distribution and find its mean and variance.

Problem.

Give an example of a function g(t, W) such that the random variable fol g(t, Wy)dW,
does not have a normal distribution but has larger tails than the normal distri-
bution has.

The special case of (?7) of most common usage is the Black-Scholes model:
suppose that o(S,t) = So(t) for o(t) some deterministic function of ¢t. Then
the distribution of X; is not Gaussian, but fortunately, its logarithm is. In
this case we say that the distribution of X; is lognormal.

Lognormal Distribution

Suppose Z is a normal random variable with mean j and variance o2. Then we
say that the distribution of X = e is lognormal with mean 1 = exp{u+0o?/2}
and volatility parameter o. The lognormal probability density function with
mean 7 > 0 and volatility parameter o > 0 is given by the probability density
function

g(z|n, o) = xa\l/%exp{f(log x—logn — 02/2)2/202}. (2.26)

The solution to (2.18) with non-random functions o(t),r(t) is now

Xr = Xtexp{l (r(u) — nz(u)/Q)du —i—l o(u)dWy,}. (2.27)

Since the exponent is normal, the distribution of X7 is lognormal with
mean log(X¢) + ftT(r(u) — 02(u)/2)du and variance ftT o?(u)du. Tt follows
that the conditional distribution is lognormal with mean 7 = Xuq(t,7) and
volatility parameter 4/ ftT o?(u)du.

We now derive the well-known Black-Scholes formula as a special case of
(??7). For a call option with exercise price FE, the payoff function is Vp(St) =
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max(St — E,0). Now it is helpful to use the fact that for a standard normal
random variable Z and arbitrary o > 0, —00 < p < 0o we have the expected
value of maz(e?Z1H,0) is

erte’ 2oL 4 5y — (L) (2.28)
o o
where <I>() denotes the standard normal cumulative distribution function. As
a result, in the special case that » and o are constants, (?77) results in the
famous Black-Scholes formula which can be written in the form

V(S,t) = S®(dy) — Ee " T (dy) (2.29)

where d; < dy are the values +02/2 standardized by adding log(S/E)+r(T—t)
and dividing by o+/T — t. This may be derived by the following device; Assume
(i.e. pretend) that, given current information, the distribution of S(T°) at
expiry is lognormally distributed with the mean n=.5 (t)e’"(T_t) .

The mean of the log-normal in the risk neutral world S(t)e”T =% is exactly
the future value of our current stocks S(t) if we were to sell the stock and
invest the cash in a bank deposit. Then the future value of an option with
payoff function given by Vy(St) is the expected value of this function against
this lognormal probability density function, then discounted to present value

e T / Vo()g(a|S(t)e" ™Y, ov/T —t)da. (2.30)
0

Notice that the Black-Scholes derivation covers any diffusion process gov-
erning the underlying asset which is driven by a stochastic differential equation
of the form

dS = a(S)dt + o SdW; (2.31)

regardless of the nature of the drift term a(S). For example a non-linear
function a(S) can lead to distributions that are not lognormal and yet the
option price is determined as if it were.

Example.

Consider pricing an index option on the S&P 500 index an January 11, 2000
(the index SPX closed at 1432.25 on this day). The option SXZ AE-A is a
January call option with strike price 1425. The option matures (as do equity
options in general) on the third friday of the month or January 21, a total of
7 trading days later. Suppose we wish to price such an option using the lack-
Scholes model. In this case, T'—t measured in years is 7/252 = 0.027778. The
annual volatility of the Standard and Poor 500 index is around 19.5 percent or
0.195 and the very short term interest rates approximately 3%. In Matlab we
can value this option using
[CALL,PUT] = BLSPRICE(1432.25,1425,0.03,7/252,0.195,0)
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CALL = 23.0381

PUT = 14.6011

Arguments of the function BLSPRICE are, in order, the current equity price,
the strike price, the annual interest rate r, the time to maturity T'—1¢ in years,
the annual volatility ¢ and the last argument is the dividend yield in percent
which we assumed 0. Thus the Black-Scholes price for a call option on SPX
is around 23.03. Indeed this call option did sell on Jan 11 for $23.00. and
the put option for $14 5/8. From the put call parity relation (see for example
Wilmott, Howison, Dewynne, page 41) S + P — C = Ee= Tt  or in this
case 1432.25 4 14.625 — 23 = 1425¢ "(7/252) We might solve this relation to
obtain the spot interest rate r. In order to confirm that a different interest rate
might apply over a longer term, we consider the September call and put options
(SXZ) on the same day with exercise price 1400 which sold for $152 and 718
respectively. In this case there arel71 trading days to expiry and so we need to
solve 1432.25 + 71 — 152 = 1400e~"(171/252)  whoese solution is r = 0.0522.
This is close to the six month interest rates at the time, but 3% is low for the
very short term rates. The discrepancy with the actual interest rates is one of
several modest failures of the Black-Scholes model to be discussed further later.

Problem

Verify that for any pair of constants a # 0 and b > 0
dXy = (X; + ab) X dt + bX AW,

does not have a solution in the form X; = f(¢,Y;), where f(¢,y) is, say, a real
function and Y; is a Gaussian process.

10.0.9 Black-Scholes with Transaction Costs.

We now modify the argument in section 2.8 to accommodate transaction costs.
As in Leland (1985), Hoggard et al. (1993), we assume delta hedging and the
transaction costs in each time interval is a constant proportion k/2 of the
value of the trades in that interval. Suppose we have, at time ¢, wu; units of
the security, and bank deposits or bonds, earning constant interest rate r, to a
total value of B;. Then the value of the portfolio V; = u;S; + B;. Therefore
the change in value over a small time interval is of the form

d‘/t - utdSt + TBtdt - (k/2)5t|dut\

plus terms of smaller order. The last term represents the transaction costs over
this time interval. Using Ito’s lemma on V(S,%) we obtain

ov oV o 82V
dV = —d — 4+ —82— | dt
V=25®* | or t 55 a5z
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Equating terms, wu; = avé%’t) resulting in delta-hedging and

oV o? ,0°V
rBydt — (k/2)S|duy| = |— + ?SQW

7 dt (2.32)

Applying Ito’s lemma to evaluating du; will show that
0?v

duy = —=dS + smaller order terms

052
Therefore

o?V
(k/2)Sdua] ~ (1/2)S1] 525 145 (2:33)

Now we regard this differential equation as an approximation to a discrete pro-
cess for which dS represents the change in the process over a discrete time in-
terval of length dt. In this case, since approximately, dS ~ N(a(Sy)dt, (rszdt)
it follows that E|dS| = \/2/708,\/dt and since, by the law of large numbers,
the sum of many such increments converges to the expected value, the term |dS]|
may be replaced in (2.33) by \/2/70S,V/dt. Therefore, substituting in (2.32),
we obtain the equation

ov o g2 82_V

02V
rBydt — (k/2)st|w\«/2/mstm = + 5555

=5 dt.

Collecting terms, and substituting B; = V; — g—gSt, this reduces to

v o2 LRV oV
E + ?(1 + A sgn(F))S W +7"Sﬁ —rV =0

F:32V
2 k
NN
WU\/E

552 and

is the so-called Leland number. This is exactly the same equation that was
solved to give the Black-Scholes formula except that the volatility o2 is inflated
(deflated) by the factor (1+ A sgn(T'))). In the case 0 < A < 1, this equation
has a solution for arbitrary payoff function Vj. In the case A > 1, if the
payoff function is convex, then again the solution is given by Black-Scholes
with inflated volatility. However, if the payoff function is non-convex, then the
mathematical problem is ill-posed (see Avellanda and Paras (1994)).

where

10.0.10 Methods for American Options

The valuation of American options is what is known as a free boundary problem.
Typically at each time ¢ there is a value S¢(t) which marks the boundary between
two regions: to one side one should hold the option on the other side one should
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exercise it. Since we don’t know a priori S¢(t), however, we cannot apply
boundary conditions in the way we do for European options.

For an American put option, with value P(S,t), the valuation problem can
be written as a free boundary problem as follows. For each time ¢, we must
divide the S axis into two distinct regions: the first, 0 < D < S¢(t), is where
early exercise is optimal and

oP 1
P=FE-S5, E-Fa(fs

o%p oP

2 @2

~— e
aSQ—i-rSaS rP <0,

the second, S¢(t) < S < oo, where early exercise is not optimal and

oP 1 0*pP oP

P>E-S, —+-028?——+rS— —rP=0.
© ot 7277 982 Tas T

The boundary conditions at S = S¢(t) are that P and its slope are continuous:

P(Sy(1).1) = max(E — Sy(1),0), SL(Sy(0).1) = 1.



272CHAPTER 10. APPENDIX: NUMERICAL SOLUTIONS OF DE’S AND PDE’S



Chapter 11

Appendix C: GGlossary.

e Annuity A uniform series of payments or receipts over a specified period
of time

e Asset A Physical or intangible item of value to a company or individual

e Bankruptcy A legal proceeding of the disposal of assets of a business or
individual to satisfy creditors’ claims in full or in part and protecting the
debtor from further action.

e Beta A regression coeflicient indicating the rate at which a given stock
changes for a unit changge in the market as a whole.

e Bond A financial instrument representing a form of corporate long-term
debt issued to investors.

e Bond rating A published ranking of a bond developed by fianancial
organisations to express relative soundness on a defined scale.

e Book value the recorded value of an asset or liability as reflected in
financial statements

e (Call provision a provission permitting the issuing company to redeem
part or all of a bond or preferred stock at a date determined by the com-

pany.

e Capital the funds committed to an ienterprise in the form of onership
equity and long-term financing.

e Capitalization = The sum of all long-term sources of capital of a company.
The difference between current liabilities and total assets.

e Cash flow The postive inflow or negative outflow of cash caused by an
activity over a specifies period of time.
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Common stock (common shares) Securities representing a derect owner-
ship interest in a corporation and a residual claim on its assets.

Compounding  The process of calculating the growing value of a sum of
money over time caused by the reinvestment of earned interest.

Coupon rate  The stated interest rate specifies on the interest coupons
attached to bonds and calculated as a percentage of their face value.

Credit the recognised ability of an individual or corporation to assume
indebtetdness with the prospect of servicing such debt.

Debt (libability) An obligation to pay amounts due under specified terms.
Default failure to make a payment on a debt obligation when due.

Discounting the process of calculating the reduced value of a future sum
of money in proportion to the opportunity of earning interest over that
period.

Diversification the process of investing in a number of unrelated or
partially independent assets or activities to establish a more satisfactory
portfolio and reduce the volatility.

Dividend payout the ratio of the amount of dividends distributed to
the aftertax earnings o a corporation.

Dividend yield The ratio of the total amount of dividends payable on
one share over a specified period to the current market price per share.

Earnings  the difference between revenue and costs and expenses for a
specifies period.

Earnings per share; the total aftertax earnings divided by the number
of common shares outstanding.

Equity the recorded ownership claim of all common and preferred share-
holders as reflected on the balance sheet.

Fair market value the price for an asset on which two rational parties
with sufficient information would agree in the absence of other factors.

Financial Model the representation in a mathematical model or
computer program relating the effect of various input factors to some
measures of performance.

Fixed-income security any security which provides a constant stream
of interest or dividend over its life.

Foreign exchange exposure The potential loss from changes in the ex-
change rate with one or more foreign currencies.
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Hedge a strategy to neutralize the risk of an investment by engaging in
offsetting contracts whereby potential gains and losses will tend to cancel.

Junk bond any bond with risk characteristics higher than normal
investment grade.

Leverage Any transaction which magnifies a given effect.

Liability an obligation to pay a specified amount or perform a specified
service at specifed times.

Liquidity The degree to which a company is readily able to meet its
current obligations, or the ease with which a security can be bought or
sold.

Market value  The value of and asset as determined in an uncontrained
market of many buyers and sellers.

Net present value The difference between the present values of cash
inflows and cash outflows

Nominal amount  Any quantity not adjusted for changes in maket con-
ditions, purchasing powers.

Option A contractual opportunity to purchase or sell an asset or security
at a predetermined price, without obligation to do so.

Par value the nominal value established by the issuer of a security. For
a bond, the issuing company will pay the par value on maturity.

Perpetuity  a series of level periodic payments or receiptss expected to
last forever.

Portfolio  a set of diverse investments held by and individual or company.

Preferred Stock a special class of capital stock that receives a form of
preference over common stock in its claim on earnings and assets.

Present Value the value today of a future sum or a series of sums
calculated by discounting the future amounts.

Principal the original amount of a loan or bond (also called face value)
on which interest is based.

Risk analysis  a process of integrating risk into an analysis.

Risk aversion a subjective unwillingness to accept a given level of risk,
unless there is a trade-off for higher average return.

Risk-free interest rate The assumed yield obtainable on a guaranteed
security.
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e Risk premium The increased return required for an investment to com-
pensate the holder for the level of risk involved.



