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Preface

This book is intended for readers who are quite familiar with probability
and stochastic processes but know little or nothing about finance. It is
written in the definition/theorem/proof style of modern mathematics and
attempts to explain as much of the finance motivation and terminology as
possible.

A mathematical monograph on finance can be written today only be-
cause of two revolutions that have taken place on Wall Street in the latter
half of the twentieth century. Both these revolutions began at universities,
albeit in economics departments and business schools, not in departments
of mathematics or statistics. They have led inexorably, however, to an esca-
lation in the level of mathematics (including probability, statistics, partial
differential equations and their numerical analysis) used in finance, to a
point where genuine research problems in the former fields are now deeply
intertwined with the theory and practice of the latter.

The first revolution in finance began with the 1952 publication of “Port-
folio Selection,” an early version of the doctoral dissertation of Harry
Markowitz. This publication began a shift away from the concept of try-
ing to identify the “best” stock for an investor, and towards the concept
of trying to understand and quantify the trade-offs between risk and re-
turn inherent in an entire portfolio of stocks. The vehicle for this so-called
mean–variance analysis of portfolios is linear regression; once this analysis
is complete, one can then address the optimization problem of choosing
the portfolio with the largest mean return, subject to keeping the risk (i.e.,
the variance) below a specified acceptable threshold. The implementation
of Markowitz’s ideas was aided tremendously by William Sharpe, who de-
veloped the concept of determining covariances not between every possible
pair of stocks, but between each stock and the “market.” For purposes of
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the above optimization problem each stock could then be characterized by
its mean rate of return (its “α”) and its correlation with the market (its
“β”). For their pioneering work, Markowitz and Sharpe shared with Mer-
ton Miller the 1990 Nobel Prize in economics, the first ever awarded for
work in finance.

The portfolio-selection work of Markowitz and Sharpe introduced math-
ematics to the “black art” of investment management. With time, the
mathematics has become more sophisticated. Thanks to Robert Merton
and Paul Samuelson, one-period models were replaced by continuous-
time, Brownian-motion-driven models, and the quadratic utility function
implicit in mean–variance optimization was replaced by more general in-
creasing, concave utility functions. Model-based mutual funds have taken a
permanent seat at the table of investment opportunities offered to the pub-
lic. Perhaps more importantly, the paradigm for thinking about financial
markets has become a mathematical model. This affects the way we now un-
derstand issues of corporate finance, taxation, exchange-rate fluctuations,
and all manner of financial issues.

The second revolution in finance is connected with the explosion in the
market for derivative securities. Already in 1992, this market was esti-
mated by the Bank for International Settlements to be a $4 trillion business
worldwide, involving every sector of the finance industry. According to this
estimate, the size of the derivative securities market had increased eight-
fold in five years. The foundational work here was done by Fisher Black,
Robert Merton, and Myron Scholes in the early 1970s. Black, Merton, and
Scholes were seeking to understand the value of the option to buy one share
of a stock at a future date and price specified in advance. This so-called
European call-option derives its value from that of the underlying stock,
whence the name derivative security. The basic idea of valuing a European
call-option is to construct a hedging portfolio, i.e., a combination of shares
from the stock on which the call is written and of shares from a money mar-
ket, so that the resulting portfolio replicates the option. At any time, the
option should be worth exactly as much as the hedging portfolio, for other-
wise some astute trader (“arbitrageur”) could make something for nothing
by trading in the option, the stock, and the money market; such trading
would bring the prices back into line. Based on this simple principle, called
absence of arbitrage, Black and Scholes (1973) derived the now famous for-
mula for the value of the European call-option, which bears their name
and which was extended by Merton (1973) in a variety of very significant
ways. For this foundational work, Robert Merton and Myron Scholes were
awarded the 1997 Nobel Prize in economics.

While options and other derivative securities can be used for speculation,
their primary appeal is to investors who want to remove some of the risk
associated with their investments or businesses. The sellers of derivative
securities are faced with the twin problems of pricing and hedging them,
and to accomplish this, current practice is to use Brownian-motion-based
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models of asset prices. Without such models and the analytical tractability
that they provide, the market for derivative securities could not have grown
to its present mammoth proportions.

Before proceeding further in this brief description of modern finance,
there are two myths about the mathematical theory of finance that we
need to explode.

The first myth is that this research is only about how to “beat the
market.” It is true that much of the portfolio optimization work growing
out of the first revolution in finance is about how to “beat the market,”
but a substantial component is about how to understand the market for
other purposes, such as regulation. The second revolution in finance, the
derivative securities explosion, is not about beating the market at all.

The second myth maintains that since the finance industry does not man-
ufacture tangible commodities, such as refrigerators or automobiles, it can
be engaged in nothing but a zero-sum game, “robbing Peter to pay Paul.”
In fact, the role of financial institutions in a decentralized economy is to
facilitate the flow of capital to sectors of society engaged in production. An
efficient finance industry will facilitate this flow at the least possible cost,
making available to the manufacturing sector a wide variety of instruments
for borrowing and investing.

Consider, for example, a manufacturer who contemplates expansion of
his production facilities and who chooses to finance this expansion by bor-
rowing capital, in effect taking a mortgage on the new facilities. The terms
(e.g., fixed or variable interest rate, term, prepayment options, collateral-
ization) under which the manufacturer is willing to borrow money may not
neatly match the terms under which any particular lender is willing to pro-
vide it. The finance industry should take the investments that lenders are
willing to make, restructuring and recombining them as necessary, so as to
provide a loan the manufacturer is willing to accept. The finance industry
should perform this function in a wide variety of settings and manage its
affairs so as to be exposed to minimal risk.

Let us suppose that the manufacturer is unable to plan effectively if he
takes out a variable-rate mortgage, and so insists on a fixed-rate mortgage.
Imagine also that an investment bank makes the mortgage, using money
invested with it by depositors expecting to receive payments at the current
(variable) interest rate. The bank is obliged to make monthly payments to
these investors; the amounts of these payments fluctuate with the prevailing
interest rates, and may be larger or smaller than what the bank receives
from the manufacturer. To remove the risk associated with this position, the
bank constructs a hedge. It may, for example, choose to sell short a number
of bonds, i.e., receive money now in exchange for a promise to deliver bonds
that it does not presently own and will have to buy eventually. If interest
rates rise, the bank will have to pay its investors more than it receives on
the loan from the manufacturer, but the cost of buying the bonds it has
promised to deliver will fall. If the bank chooses its position carefully, its
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additional liability to its investors will be exactly offset by the downward
movement of bond prices, and it will thus be protected against increases
in the interest rate. Of course, decreases in interest rates will cause bond
prices to rise, and the bank should choose its hedging position so as to be
protected against this eventuality as well.

As one can see from this overly simplistic example, a proliferation of
financial instruments can enhance the efficiency of an economy. The bank
in this example “synthesizes” a fixed-rate mortgage using variable-rate in-
vestments and a position in the bond market. Such synthetic securities
are the “products” of investment banks; while no one would claim that
every “product” of this type contributes to the well-being of the nation,
there is no doubt that an economy that has available a large variety of
such products has a comparative advantage over one with a more limited
offering. The firm that “manufactures” such products can do so only if
it has reliable models for pricing and hedging them. Current models are
built using stochastic calculus, are fit to the data by careful statistical
estimation procedures, and require accurate and fast real-time numerical
analysis.

This book is about some of these models. It treats only a small part of
the whole picture, leaving completely untouched the issues of estimation
and numerical analysis. Even within the range of models used in finance,
we have found it necessary to be selective. Our guide has been to write
about what we know best, namely areas of research in which we have had
some level of personal involvement. Through the inclusion of an extensive
bibliography and of notes at the end of each chapter, we have tried to
point the reader toward some of the topics not touched. The bibliography
is necessarily incomplete. We apologize to those whose work should have
been included but is not. Such omissions are unintentional, and due either
to ignorance or oversight.

In order to read this book one should be familiar with the material
contained in the first three chapters of our book Brownian Motion and
Stochastic Calculus (Springer-Verlag, New York, 1991). There are many
other good sources for this material, but we will refer to the source we
know best when we cite specific results.

Here is a high-level overview of the contents of this monograph. In Chap-
ter 1 we set up the generally accepted, Brownian-motion-driven model for
financial markets. Because the coefficient processes in this model are them-
selves stochastic process, this is nearly the most general continuous-time
model conceivable among those in which prices move continuously. The
model of Chapter 1 allows us to introduce notions and results about port-
folio and consumption rules, arbitrage, equivalent martingale measures, and
attainability of contingent claims; it divides naturally into two cases, called
complete and incomplete, respectively.

Chapter 2 lays out the theory of pricing and hedging contingent claims
(the “synthetic” or “derivative” securities described above) in the context



Preface xi

of a complete market. To honor the origins of the subject and to acquaint
the reader with some important special cases, we analyze in some detail the
pricing and hedging of a number of different options. We have also included
a section on “futures” contracts, derivative securities that are conceptually
more difficult because their value is defined recursively.

Chapter 3 takes up the problem of a single agent faced with optimal con-
sumption and investment decisions in the complete version of the market
model in Chapter 1. Tools from stochastic calculus and partial differential
equations of parabolic type permit a very general treatment of the asso-
ciated optimization problem. This theory can be related to Markowitz’s
mean–variance analysis and is ostensibly about how to “beat the market,”
although another important use for it is as a first step toward understand-
ing how markets operate. Its latter use is predicated on the principle that
a good model of individual behavior is to postulate that individuals act in
their own best interest.

Chapter 4 carries the notions and results of Chapter 3 to their logical
conclusion. In particular, it is assumed that there are several individuals
in the economy, each behaving as described in Chapter 3; through the
law of supply and demand, their collective actions determine the so-called
equilibrium prices of securities in the market. Characterization of this equi-
librium permits the study of questions about the effect of interventions in
the market.

In Chapter 5 we turn to the more difficult issue of pricing and hedg-
ing contingent claims in markets with incompleteness or other constraints
on individual investors’ portfolio choices. An approach based on “fictitious
completion” for such a market, coupled with notions and results from con-
vex analysis and duality theory, permits again a very general solution to
the hedging problem.

Finally, Chapter 6 uses the approach developed in Chapter 5 to treat
the optimal consumption/investment problem for such incomplete or con-
strained markets, and for markets with different interest rates for borrowing
and investing.

Note to the Reader

We use a hierarchical numbering system for equations and statements.
The k-th equation in Section j of Chapter i is labeled (j.k) at the place
where it occurs and is cited as (j.k) within Chapter i, but as (i.j.k) outside
Chapter i. A definition, theorem, lemma, corollary, remark, or exercise is
a “statement,” and the k-th statement in Section j of Chapter i is labeled
j.k Statement at the place where it occurs, and is cited as Statement j.k
within Chapter i but as Statement i.j.k outside Chapter i.
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1
A Brownian Model of
Financial Markets

1.1 Stocks and a Money Market

Throughout this monograph we deal with a financial market consisting
of N + 1 financial assets. One of these assets is instantaneously risk-free,
and will be called a money market. Assets 1 through N are risky, and
will be called stocks (although in applications of this model they are often
commodities or currencies, rather than common stocks). These financial
assets have continuous prices evolving continuously in time and driven by
a D-dimensional Brownian motion. The continuity of the time parameter
and the accompanying capacity for continuous trading permit an elegance
of formulation and analysis not unlike that obtained when passing from
difference to differential equations. If asset prices do not vary continuously,
at least they vary frequently, and the model we propose to study has proved
its usefulness as an approximation to reality. Our assumption that asset
prices have no jumps is a significant one. It is tantamount to the assertion
that there are no “surprises” in the market: the price of a stock at time t
can be perfectly predicted from knowledge of its price at times strictly prior
to t. We adopt this assumption in order to simplify the mathematics; the
additional assumption that asset prices are driven by a Brownian motion is
little more than a convenient way of phrasing this condition. Some literature
on continuous-time markets with discontinuous asset prices is cited in the
notes at the end of this chapter. The extent to which the results of this
monograph can be extended to such models has not yet been fully explored.
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Let us begin then with a complete probability space (Ω,F , P ) on
which is given a standard, D-dimensional Brownian motion W (t) =
(W (1)(t), . . . ,W (D)(t))′, 0 ≤ t ≤ T . Here prime denotes transposition, so
that W (t) is a column vector. We assume that W (0) = 0 almost surely. All
economic activity will be assumed to take place on a finite horizon [0, T ],
where T is a positive constant.† Define

FW (t)
�
= σ{W (s); 0 ≤ s ≤ t}, ∀ t ∈ [0, T ], (1.1)

to be the filtration generated by W (·), and let N denote the P -null subsets
of FW (T ). We shall use the augmented filtration

F(t)
�
= σ(FW (t) ∪N ), ∀ t ∈ [0, T ]. (1.2)

One should interpret the σ-algebra F(t) as the information available to
investors at time t, in the sense that if ω ∈ Ω is the true state of nature
and if A ∈ F(t), then at time t all investors know whether ω ∈ A. Note
that F(0) contains only sets of measure one and sets of measure zero, so
every F(0)-measurable random variable is almost surely constant.

Remark 1.1: The difference between {FW (t)}0≤t≤T and {F(t)}0≤t≤T is
a purely technical one. The filtration {F(t)}0≤t≤T is left-continuous, in the
sense that

F(t) = σ

 ⋃
0≤s<t

F(s)

 , ∀ t ∈ (0, T ], (1.3)

and {FW (t)}0≤t≤T is also left-continuous. The filtration {F(t)}0≤t≤T is
right-continuous in the sense that

F(t) =
⋂

t<s≤T

F(s), ∀ t ∈ [0, T ), (1.4)

but {FW (t)}0≤t≤T is not right-continuous (see Karatzas and Shreve (1991),
Section 2.7, for more details). Equations (1.3), (1.4) express the notion
alluded to in the first paragraph of this section, that “there are no surprises
in the flow of information” in this model.

Remark 1.2: Every local martingale relative to the filtration {F(t)} has
a modification whose paths are continuous (Karatzas and Shreve (1991),
Problem 3.4.16); we shall always use this continuous modification. We shall
also encounter processes Y (·) that are right-continuous with left-hand lim-
its and whose total variation Y (t) is finite on each interval [0, t], 0 ≤ t ≤ T .
We shall refer to these as finite-variation RCLL processes. In our context,

†There are a few places in this book, namely, Sections 1.7, 2.6, 3.9, and 3.10,
where the planning horizon is [0, ∞).
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an {F(t)}-semimartingale will be the sum of a (continuous) local mar-
tingale and a finite-variation RCLL process. The decomposition of such a
semimartingale into a local martingale and a finite-variation RCLL process
is unique, up to an additive constant.

We introduce now a money market and N stocks. The precise conditions
on these assets are given in Definition 1.3; here we content ourselves with
giving the main properties of these objects.

A share of the money market has price S0(t) at time t, with S0(0) = 1.
The price process S0(·) is continuous, strictly positive, and {F(t)}-adapted,
with finite total variation on [0, T ]. Being of finite variation, S0(·) can
be decomposed into absolutely continuous and singularly continuous parts
Sac

0 (·) and Ssc
0 (·), respectively. We can then define

r(t)
�
=

d
dtS

ac
0 (t)

S0(t)
, A(t)

�
=
∫ t

0

dSsc
0 (u)

S0(u)
, (1.5)

so that

dS0(t) = S0(t)[r(t) dt + dA(t)], ∀ t ∈ [0, T ], (1.6)

or equivalently,

S0(t) = exp
{∫ t

0
r(u)du + A(t)

}
, ∀ t ∈ [0, T ]. (1.7)

In the special case that S0(·) is itself absolutely continuous, so that
A(·) ≡ 0, the price of the money market evolves like the value of a savings
account whose instantaneous (risk-free) interest rate at time t is r(t). This
is the case the reader should keep in mind. The risk-free rate process r(·)
is random and time-dependent, but r(t) is F(t)-measurable, so the current
risk-free rate is known to all investors.

Next we introduce N stocks with prices-per-share S1(t), . . . , SN (t)
at time t and with S1(0), . . . , SN (0) positive constants. The processes
S1(·), . . . , SN (·) are continuous, strictly positive, and satisfy stochastic
differential equations

dSn(t) = Sn(t)

[
bn(t) dt + dA(t) +

D∑
d=1

σnd(t) dW (d)(t)

]
, (1.8)

∀ t ∈ [0, T ], n = 1, . . . , N.

We show in Appendix B that every continuous, strictly positive, and
{F(t)}-adapted semimartingale satisfies a stochastic differential equation
of this form, where A(·) is some {F(t)}-adapted, singularly continuous pro-
cess. In (1.8), however, A(·) is not an arbitrary such process, but rather it
is the one defined in (1.5). We also show in Appendix B that if the ({F(t)}-
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adapted, singularly continuous) process A(·) in (1.8) were not given by the
expression of (1.5), then an arbitrage opportunity would exist. The notion
of arbitrage is defined in Section 4.

The solution of the equation (1.8) is

Sn(t) = Sn(0) exp

{∫ t

0

D∑
d=1

σnd(s) dW (d)(s) +
∫ t

0

[
bn(s)

− 1
2

D∑
d=1

σ2
nd(s)

]
ds + A(t)

}
, ∀ t ∈ [0, T ], n = 1, . . . , N. (1.9)

Consequently, the singularly continuous process A(·) does not enter the
discounted stock prices

Sn(t)
S0(t)

= Sn(0) exp

{∫ t

0

D∑
d=1

σnd(s) dW (d)(s) +
∫ t

0

[
bn(s)− r(s)

− 1
2

D∑
d=1

σ2
nd(s)

]
ds

}
, ∀ t ∈ [0, T ], n = 1, . . . , N. (1.10)

In some applications, the stocks have associated dividend rate processes.
We model these as real-valued processes δn(·), where δn(t) is the rate of
dividend payment per dollar invested in the stock at time t. Adding the
dividend rate process into (1.8), we can define the yield (per share) processes
by Yn(0) = Sn(0) and

dYn(t) = Sn(t)

[
bn(t) dt + dA(t)

+
D∑

d=1

σnd(t) dW (d)(t) + δn(t) dt

]
, n = 1, . . . , N, (1.11)

or equivalently,

Yn(t) = Sn(t) +
∫ t

0
Sn(u)δn(u) du, ∀ t ∈ [0, T ], n = 1, . . . , N. (1.12)

We set Y0(t) = S0(t), 0 ≤ t ≤ T .
We formalize this discussion with the following definition.

Definition 1.3: A financial market consists of

(i) a probability space (Ω,F , P );
(ii) a positive constant T , called the terminal time;
(iii) a D-dimensional Brownian motion {W (t),F(t); 0 ≤ t ≤ T} defined

on (Ω,F , P ), where {F(t)}0≤t≤T is the augmentation (by the null
sets in FW (T )) of the filtration {FW (t)}0≤t≤T generated by W (·);
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(iv) a progressively measurable risk-free rate process r(·) satisfying∫ T

0 |r(t)| dt <∞ almost surely (a.s.);
(v) a progressively measurable, N -dimensional mean rate of return

process b(·) satisfying
∫ T

0 ‖b(t)‖ dt <∞ a.s.;
(vi) a progressively measurable, N -dimensional dividend rate process

δ(·) satisfying
∫ T

0 ‖δ(t)‖ dt <∞ a.s.;
(vii) a progressively measurable, (N×D)-matrix-valued volatility process

σ(·) satisfying
∑N

n=1
∑D

d=1

∫ T

0 σ2
nd(t) dt <∞ a.s.;

(viii) a vector of positive, constant initial stock prices S(0) = (S1(0), . . . ,
SN (0))′;

(ix) a progressively measurable, singularly continuous, finite-variation
process A(·) whose total variation on [0, t] is denoted by Ǎ(t).

We refer to this financial market asM = (r(·), b(·), δ(·), σ(·), S(0), A(·)).

Given a financial marketM as above, the money market and stock price
processes are determined by (1.7), (1.9), and then (1.5), (1.6), (1.8), and
(1.10) hold. The initial conditions of the asset prices are nearly irrelevant.
For investment purposes, the essential feature of an asset is its rate of
price change and dividend payment relative to the current price, and these
relative rates are captured by r(·), b(·), σ(·), δ(·), A(·). Thus, for notational
simplicity we have taken the liberty of declaring S0(0) = 1. We could also
have set the initial prices of the stocks equal to one, but have chosen not to
do so because some of the formulas developed later are more informative
when the dependence on S1(0), . . . , SN (0) is explicitly displayed.

Remark 1.4: Much of the existing finance literature is based on Markov
models, and exploits the connections between such models and partial
differential equations. Such a model typically has a K-dimensional state-
process ψ(·) with a given initial condition ψ(0), and is driven by a stochastic
differential equation of the form

dψ(t) = µ(t, ψ(t)) dt + ρ(t, ψ(t)) dW (t), (1.13)

where µ : [0, T ]× RK → RK and ρ : [0, T ] × RK → L(RD; RK) (the set of
K ×D matrices) are jointly Borel measurable and satisfy conditions (e.g.,
Lipschitz continuity in their second argument) that guarantee the existence
of a unique solution to (1.13). The coefficients of the market model are taken
to be measurable functions r : [0, T ] × RK → R, b : [0, T ] × RK → RN ,
δ : [0, T ] × RK → RN , and σ : [0, T ] × RK → L(RD; RK) with A(·) ≡ 0,
so that the dependence of r(t, ψ(t)), b(t, ψ(t)), δ(t, ψ(t)), and σ(t, ψ(t)) on
the sample point ω ∈ Ω occurs only through the dependence of ψ(t) on ω.
The simplest Markov model is the one with constant coefficients; in this
model r, b, δ, and σ are constants, A(·) ≡ 0, and there is no need for a
state-process. From time to time we shall specialize the results of our more
general model to obtain various classical Markov model results.
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1.2 Portfolio and Gains Processes

In this section we model portfolio decisions and their consequences for an
investor faced with the market in Definition 2.1. We begin with an informal
discussion of an investor who makes decisions in discrete time, and this
leads us eventually to Definition 2.1, which pertains to continuous trading.

Let 0 = t0 < t1 < · · · < tM = T be a partition of [0, T ]. For n = 1, . . . , N
and m = 0, . . . ,M − 1, let ηn(tm) denote the number of shares of stock n
held by the investor over the time interval [tm, tm+1). Let η0(tm) denote the
number of shares held in the money market. For n = 0, 1, . . . , N the random
variable ηn(tm) must be F(tm)-measurable; in other words, anticipation of
the future (insider trading) is not permitted.

Let us define the associated gains process by the stochastic difference
equation

G(0) = 0, (2.1)

G(tm+1)−G(tm) =
N∑

n=0

ηn(tm)[Yn(tm+1)− Yn(tm)], (2.2)

m = 0, . . . ,M − 1.

Then G(tm) is the amount earned by the investor over the time interval
[0, tm]. On the other hand, the value of the investor’s holdings at time tm
is
∑N

n=0 ηn(tm)Sn(tm). We have

G(tm) =
N∑

n=0

ηn(tm)Sn(tm), m = 0, . . . ,M,

if and only if there is no infusion or withdrawal of funds over [0, T ]. In this
case the trading is called “self-financed.”

Now suppose that η(·) = (η0(·), . . . , ηN (·))′ is an {F(t)}-adapted process
defined on all of [0, T ], not just the partition points t0, . . . , tM . The associ-
ated gains process is now defined by the initial condition G(0) = 0 and the
stochastic differential equation

dG(t) =
N∑

n=0

ηn(t) dYn(t). (2.2)′

We take this equation as an axiom; references related to this point are
cited in the Notes, Section 1.8. Defining πn(t)

�
= ηn(t)Sn(t), π(·) �

=
(π1(·), . . . , πN (·))′, and recalling (1.6), (1.11), we may rewrite (2.2)′ as

dG(t) = [π0(t) + π′(t)1
˜
](r(t) dt + dA(t)) + π′(t)[b(t) + δ(t)− r(t)1

˜
] dt

+ π′(t)σ(t) dW (t), (2.3)

where 1
˜

denotes the N -dimensional vector with every component equal to
one. Note that πn(t) is the dollar amount invested in security n, not the
number of shares held.
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Definition 2.1: Consider a financial market M = (r(·), b(·), δ(·), σ(·),
S(0), A(·)) as in Definition 1.3. A portfolio process (π0(·), π(·)) for this
market consists of an {F(t)}-progressively measurable, real-valued pro-
cess π0(·) and an {F(t)}-progressively measurable, RN -valued process
π(·) = (π1(·), . . . , πN (·))′ such that∫ T

0
|π0(t) + π′(t)1

˜
|[|r(t)| dt + dǍ(t)] <∞, (2.4)∫ T

0
|π′(t)(b(t) + δ(t)− r(t)1

˜
)| dt <∞, (2.5)∫ T

0
‖σ′(t)π(t)‖2 dt <∞ (2.6)

hold almost surely. The gains process G(·) associated with (π0(·), π(·)) is

G(t)
�
=
∫ t

0
[π0(s) + π′(s)1

˜
](r(s) ds + dA(s)) +

∫ t

0
π′(s)[b(s) + δ(s)

− r(s)1
˜
] ds +

∫ t

0
π′(s)σ(s) dW (s), 0 ≤ t ≤ T. (2.7)

The portfolio process (π0(·), π(·)) is said to be self-financed if

G(t) = π0(t) + π′(t)1
˜
, ∀ t ∈ [0, T ]. (2.8)

In other words, the value of the portfolio at every time is equal to the gains
earned from investments up to that time.

Remark 2.2: Define the N -dimensional vector of excess yield (over the
interest rate) processes

R(t)
�
=
∫ t

0
[b(u) + δ(u)− r(u)1

˜
] du +

∫ t

0
σ(u) dW (u), 0 ≤ t ≤ T, (2.9)

and simplify (2.7) as

G(t) =
∫ t

0
(π0(s) + π′(s)1

˜
)[r(s) ds + dA(s)] +

∫ t

0
π′(s) dR(s), 0 ≤ t ≤ T.

(2.10)

If (π0(·), π(·)) is self-financed, then (2.10) reads in differential form

dG(t) =
G(t)
S0(t)

dS0(t) + π′(t) dR(t), (2.10)′

and has the solution

G(t) = S0(t)
∫ t

0

1
S0(u)

π′(u) dR(u); 0 ≤ t ≤ T. (2.11)
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The integrand b(·)+δ(·)−r(·)1
˜

appearing in (2.9) is called the risk premium
process; its nth component is regarded as the compensation, in terms of
mean growth rate, received by an agent willing to incur the risk of investing
in the nth stock.

If we are given only an {F(t)}-progressively measurable, RN -valued pro-
cess π(·) satisfying (2.5) and (2.6), we can consider the process G(·) of (2.11)
and then define π0(·) by the self-financing condition (2.8). Because G(·) de-
fined by (2.11) is continuous, each of its paths is bounded on [0, T ], and
(2.4) follows from Definition 1.3 (iv) and (ix). It develops that (π0(·), π(·))
is a self-financed portfolio process. Thus, in order to specify a self-financed
portfolio, we need only specify π(·). Slightly abusing terminology, we will
refer sometimes to π(·) alone as a portfolio process.

As defined above, a portfolio process (π0(·), π(·)) is subject to few re-
strictions. In particular, π0(·) may take negative values, which corresponds
to borrowing from the money market. The investor is subject to the same
“interest rate” regardless of whether he is a borrower or a lender. Finally,
the position πn(·) in stock n may be negative, for n = 1, . . . , N ; such short-
selling of stocks is permitted in real markets, subject to some restrictions.
In Chapters 5 and 6 we study models in which short-selling is either pro-
hibited or constrained and/or the interest rate for borrowing exceeds r(t).
Other related work is cited in the Notes.

The definition of the gains process in (2.7) does not take into account any
cost for trading. An idealized market in which there are no transaction costs
is called frictionless, and most of the existing theory of finance pertains only
to frictionless markets. Models with transaction costs are reviewed in the
Notes to Chapters 2 and 3.

The conditions (2.4)–(2.6) are imposed on portfolio processes in Defini-
tion 2.1 in order to ensure the existence of the integrals in (2.7). If these
were the only conditions imposed on portfolio processes, then “outrageous”
behavior could occur, as the following example demonstrates.

Example 2.3 (Doubling strategy): In a discrete-time betting situation,
a doubling strategy is to place an initial bet and then to double the size of
the bet after each loss until a win is finally obtained. If the initial stake
is $1 and the first win occurs on the nth bet, then the accumulated losses∑n−1

k=0 2k = 2n− 1 (prior to the win) are more than offset by the win of 2n.
When the outcomes of successive bets are independent and identically dis-
tributed, and the probability of winning on any one bet is positive, then
the probability of an eventual win is one. In such a situation, a doubling
strategy offers a sure way to make money. Unfortunately, a gambler us-
ing a doubling strategy must be prepared to bet arbitrarily many times,
and to incur arbitrarily large accumulated losses, while waiting for the
eventual win.

In continuous time, the analogue of a doubling strategy can be imple-
mented on a finite time interval. Consider a financial market with one
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stock driven by a one-dimensional Brownian motion (N = D = 1) and
with r(·) ≡ 0, b(·) ≡ 0, σ(·) ≡ 1, δ(·) ≡ 0, A(·) ≡ 0. For a self-financed
portfolio process (π0(·), π(·)) the gains process is

G(t) =
∫ t

0
π(s) dW (s), ∀ t ∈ [0, T ].

We show that for each α > 0, it is possible to construct a self-financed
portfolio (π0(·), π(·)) such that G(T ) = α a.s. Thus, by investing in a
money market with constant price per share and a stock with zero mean
rate of return and zero dividends, the investor can make arbitrarily large
amounts of money almost surely!

To construct such a portfolio, we consider the stochastic integral I(t)
�
=∫ t

0

√
1

T−u dW (u), which is a martingale on [0, T ) with quadratic variation

〈I〉(t) =
∫ t

0

du

T − u
= log

( T

T − t

)
, ∀ t ∈ [0, T ).

The inverse of 〈I〉(·) is the mapping s �→ T − Te−s from [0,∞) to [0, T ).
The time-changed stochastic integral Ĩ(s)

�
= I(T − Te−s) has quadratic

variation 〈Ĩ〉(s) = s and is thus a Brownian motion defined for 0 ≤ s <∞
(Karatzas and Shreve (1991), Theorem 3.4.6). Consequently,

limt↑T I(t) = lims↑∞Ĩ(s) =∞, limt↑T I(t) = lims↑∞Ĩ(s) = −∞,

and therefore

τα
�
= inf{t ∈ [0, T ); I(t) = α} ∧ T

satisfies 0 < τα < T a.s. Define π(t) = ( 1
T−t )

1
2 1{t≤τα} and π0(t) = I(t ∧

τα) − π(t) for all t ∈ [0, T ]. Then (π0(·), π(·)) is a self-financed portfolio
with corresponding gains process

G(t) =
∫ t∧τα

0

1
(T − u)

1
2

dW (u) = I(t ∧ τα), ∀ t ∈ [0, T ]. (2.12)

In particular, we have G(T ) = α almost surely.

The gains process of (2.12) is not bounded from below; indeed, we have
limt↑T G(t) = G(T ) a.s. and EG(t) = 0∀ t ∈ [0, T ), so that if G(·) were
bounded from below, then Fatou’s lemma would imply EG(T ) ≤ 0 (im-
possible, since G(T ) = α > 0 a.s.). To rule out the behavior evident in
Example 2.3 we impose the following conditions on portfolio processes.

Definition 2.4: An {F(t)}-adapted, RN -valued process π(·) satisfying
(2.5) and (2.6) is said to be tame if the discounted gains semimartingale

G(t)
S0(t)

= Mπ
0 (t)

�
=
∫ t

0

1
S0(u)

π′(u) dR(u), 0 ≤ t ≤ T, (2.13)
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is almost surely bounded from below by a real constant that does not
depend on t (but possibly depends on π(·)). If (π0(·), π(·)) is a portfolio
process and π(·) is tame, we say that the portfolio process (π0(·), π(·)) is
tame.

As already noted, the portfolio process π(·) of Example 2.3 is not tame,
since the corresponding gains process G(·) = Mπ

0 (·) of (2.12) is not bounded
from below. The assumption of tameness rules out doubling strategies such
as the one encountered in Example 2.3; see Remark 5.7 for a stronger
assertion along these lines. Observe, however, that even a tame portfolio can
exhibit the “opposite” of the behavior encountered in Example 2.3. Indeed,
for the same market as in that example and for any α > 0, one can easily
construct a tame, self-financed portfolio process for which G(T ) = −α
almost surely, for any given real number α > 0. Such a suicide strategy
need not be ruled out by model assumptions; it will be eliminated from
consideration by “hedging” criteria or optimality criteria, to be formulated
and imposed later.

1.3 Income and Wealth Processes

An investor may have sources of income and expense other than those due
to investments in the assets discussed so far. In this section, we include this
possibility in the model.

Definition 3.1: Let M be a financial market (Definition 1.3). A cumu-
lative income process Γ(t), 0 ≤ t ≤ T , is a semimartingale, i.e., the sum of
a finite-variation RCLL process and a local martingale.

We interpret Γ(t) as the cumulative wealth received by an investor on the
time interval [0, t]. In particular, the investor is given initial wealth Γ(0).
Consumption by the investor can be captured by a decrease in Γ(·).

Definition 3.2: Let M be a financial market, Γ(·) a cumulative income
process, and (π0(·), π(·)) a portfolio process. The wealth process associated
with (Γ(·), π0(·), π(·)) is

X(t)
�
= Γ(t) + G(t), (3.1)

where G(·) is the gains process of (2.7). The portfolio (π0(·), π(·)) is said
to be Γ(·)-financed if

X(t) = π0(t) + π′(t)1
˜
, ∀ t ∈ [0, T ]. (3.2)

Remark 3.3: For a Γ(·)-financed portfolio (π0(·), π(·)), using the vector
of excess yield process R(·) of (2.9) we may write the wealth equation (3.2)
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in differential form as

dX(t) = dΓ(t) +
X(t)
S0(t)

dS0(t) + π′(t) dR(t)

= dΓ(t) + X(t)[r(t) dt + dA(t)] + π′(t)[b(t) + δ(t)− r(t)1
˜
] dt

+ π′(t)σ(t) dW (t) (3.3)

by analogy with (2.10)′, and therefore the discounted wealth process is given
by

X(t)
S0(t)

= Γ(0) +
∫

(0,t]

dΓ(u)
S0(u)

+
∫ t

0

1
S0(u)

π′(u) dR(u), 0 ≤ t ≤ T. (3.4)

This formula does not involve π0(·), which can be recovered from π(·)
and its corresponding wealth process X(·) of (3.4) via (3.2). As with self-
financed portfolios (Remark 2.2), we will sometimes refer to π(·) alone as
a portfolio process.

1.4 Arbitrage and Market Viability

Definition 4.1: In a financial marketM we say that a given tame, self-
financed portfolio process π(·) is an arbitrage opportunity if the associated
gains process G(·) of (2.11) satisfies G(T ) ≥ 0 almost surely and G(T ) > 0
with positive probability. A financial marketM in which no such arbitrage
opportunities exist is said to be viable.

Here is an example of a market M that is not viable. Take N = D = 1,
T = 1, r(·) ≡ 0, δ(·) ≡ 0, σ(·) = 1, and b(·) ≡ 1

Q(·) , where Q(·) is the Bessel
process with drift given by

dQ(t) =
(

1
Q(t)

− 2
)

dt + dW (t), Q(0) = 1.

Just as for the classical Bessel process (e.g. Karatzas and Shreve (1991),
pp. 158–163) we have P [Q(t) > 0,∀ 0 ≤ t ≤ 1] = 1. Indeed, Q(·) is the
classical Bessel process with dimension d = 3 under the probability measure
P̃ that makes W (t) − 2t a Brownian motion and is equivalent to P . The
gains process G(·) corresponding to the constant portfolio π(·) ≡ 1 satisfies

dG(t) =
1

Q(t)
dt + dW (t), G(0) = 0,

and thus G(t) = Q(t)+2t−1. Now, this process satisfies P [G(t) ≥ −1,∀ 0 ≤
t ≤ 1] = 1 (so that π(·) is a tame portfolio) as well as G(1) = 1 + Q(1) ≥ 1
a.s. (so that π(·) is also an arbitrage opportunity).

A theory of mathematical finance must be restricted to viable mar-
kets. If an arbitrage opportunity exists in a market, the portfolio process
that exploits it can be scaled to make EG(T ) arbitrarily large and still
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keep G(T ) ≥ 0 almost surely. An investment opportunity in which there
is no possibility of loss and the expected gain is arbitrarily large does
not correspond to the reality available to most of us. Furthermore, it
makes optimization meaningless. This section explores the mathematical
ramifications of the assumption of market viability.

Theorem 4.2: If a financial market M is viable, then there exists a
progressively measurable process θ(·) with values in RD, called the market
price of risk, such that for Lebesgue-almost-every t ∈ [0, T ] the risk premium
b(t) + δ(t)− r(t)1

˜
is related to θ(t) by the equation

b(t) + δ(t)− r(t)1
˜

= σ(t)θ(t) a.s. (4.1)

Conversely, suppose that there exists a process θ(·) that satisfies the above
requirements, as well as ∫ T

0
‖θ(s)‖2 ds <∞ a.s. (4.2i)

E

[
exp

{
−
∫ T

0
θ′(s) dW (s) − 1

2

∫ T

0
‖θ(s)‖2 ds

}]
= 1. (4.2ii)

Then the market M is viable.

The idea behind Theorem 4.2 is the following. Suppose that for all (t, ω)
in some subset of [0, T ]×Ω with positive product measure, one can find π(t)
such that π′(t)σ(t) = 0 but π′(t)[b(t)+δ(t)−r(t)1

˜
] �= 0. It is clear from (3.4)

that this portfolio holds a combination of stocks that entails no risk but has
a nonzero mean rate of return and hence exposes an arbitrage opportunity.
Thus, for a viable market, every vector in the kernel K(σ′(t)) of σ′(t) should
be orthogonal to b(t) + δ(t)− r(t)1

˜
. But from linear algebra we know that

the orthogonal complement of the kernel of σ′(t) is the range of σ(t). Except
for the issue of progressive measurability, Theorem 4.2 is just the assertion
that b(t) + δ(t)− r(t)1

˜
is in the range of σ(t). The following lemmas make

this argument rigorous by addressing the relevant measurability issues; the
reader may wish to skip these on first reading and proceed directly to
Corollary 4.8.

Notation 4.3: Let L(RD; RN ) denote the space of N × D matrices.
For such a matrix σ, let K(σ) and K(σ′) denote the kernels of σ and σ′,
respectively:

K(σ) = {x ∈ RD;σx = 0}, K(σ′) = {y ∈ RN ;σ′y = 0}.
Let R(σ) and R(σ′) denote the range spaces of these matrices:

R(σ) = {σx;x ∈ RD}, R(σ′) = {σ′y; y ∈ RN}.
Then K⊥(σ) = R(σ′) and K⊥(σ′) = R(σ), where the superscript ⊥ de-
notes orthogonal complement. Let projM denote the orthogonal projection
mapping onto a subspace M .
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Lemma 4.4: The mappings (x, σ) �→ projK(σ)(x) and (x, σ) �→
projK⊥(σ)(x) from RD×L(RD; RN ), and the mappings (y, σ) �→ projK(σ′)(y)
and (y, σ) �→ projK⊥(σ′)(y) from RN × L(RD; RN ) are Borel measurable.

Proof. We treat only the first of the four mappings under considera-
tion. Let L(RD; RN ) be endowed with the operator norm and with the
Borel σ-algebra generated by the associated topology. Let RD and RN

have their Borel σ-algebras, and let all product spaces have the product
Borel σ-algebras. Finally, let QN be the set of vectors in RN with rational
coordinates, so QN is a countable, dense subset of RN .

Define the Borel-measurable function F : RD × L(RD; RN )→ R by

F (z, σ)
�
= inf

q∈QN
‖z − σ′q‖, ∀z ∈ RD, σ ∈ L(RD; RN ).

Then {(z, σ); z ∈ R(σ′)} ⊂ {(z, σ);F (s, σ) = 0}. On the other hand, if
F (z, σ) = 0, then there is a sequence {qn}∞n=1 ⊂ QN such that limn→∞ ‖z−
σ′qn‖ = 0. Because RN = K(σ′) ⊕ K⊥(σ′), we can decompose each qn as
qn = pn + rn, where pn ∈ K(σ′), rn ∈ K⊥(σ′). Restricted to K⊥(σ′), the
linear mapping σ′ is invertible. Since σ′rn → z, the sequence {rn}∞n=1
converges to some r ∈ K⊥(σ′) that satisfies σ′r = z. Therefore, z ∈ R(σ′).
We have shown that

{(z, σ); z ∈ R(σ′)} = {(z, σ);F (z, σ) = 0}, (4.3)

and thus this is a Borel set. Consequently,

{(x, σ, ξ) ∈ RD × L(RD; RN )× RD; ξ = projK(σ)(x)}
= {(x, σ, ξ); ξ ∈ K(σ), (x− ξ) ⊥ K(σ)}
= {(x, σ, ξ); ξ′σ = 0, x− ξ ∈ R(σ′)} (4.4)

is also a Borel set. Define Q : RD × L(RD; RN )→ RD by

Q(x, σ)
�
= projK(σ)(x), ∀x ∈ RD, σ ∈ L(RD; RN ).

The set in (4.4) is the graph

Gr(Q)
�
= {(x, σ, ξ); (x, σ) ∈ RD × L(RD; RN ), ξ = Q(x, σ)}

of Q. Having a Borel graph, Q must be a Borel-measurable function. Indeed,
for any Borel set B ⊂ RD, we have

{(x, σ);Q(x, σ) ∈ B} = projRD×L(RD ;RN ) Gr(Q) ∩ (RD ×L(RD; RN )×B),

and the one-to-one projection of a Borel set is Borel (Parthasarathy (1967),
Chapter I, Theorem 3.9). �

Corollary 4.5: The process projK(σ′(t))[b(t) + δ(t)− r(t)1
˜
], 0 ≤ t ≤ T , is

progressively measurable.
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Lemma 4.6: If the financial marketM is viable, then b(t)+δ(t)−r(t)1
˜
∈

R(σ(t)) for Lebesgue-almost-every t ∈ [0, T ] almost surely.

Proof. We define for 0 ≤ t ≤ T ,

p(t) = projK(σ′(t))[b(t) + δ(t)− r(t)1
˜
],

π(t) =

{ p(t)
‖p(t)‖ if p(t) �= 0,

0 if p(t) = 0,

so that π(·) is a bounded, progressively measurable process. Condi-
tions (2.5), (2.6) are satisfied by π(·) because of conditions (iv) and
(vi)–(viii) of Definition 1.3. Using Remark 2.2, we develop from π(·) a
self-financed portfolio (π0(·), π(·)) with associated gains process

G(T ) = S0(T )
∫ T

0

‖p(t)‖
S0(t)

1{p(t) 
=0} dt.

Because G(T ) ≥ 0 almost surely, viability implies that G(T ) must be zero
almost surely. It follows that p(t) = 0 for Lebesgue-almost-every t almost
surely, and this is equivalent to the assertion that b(t) + δ(t) − r(t)1

˜
∈

K⊥(σ′(t)) = R(σ(t)) for Lebesgue-almost-every t almost surely. �

Lemma 4.7: Consider the mapping ψ1 : {(y, σ) ∈ RN × L(RD; RN ); y ∈
R(σ)} → RD defined by the prescription that ψ1(y, σ) is the unique ξ ∈
K⊥(σ) such that σξ = y. Consider also the mapping ψ2 : {(x, σ) ∈ RD ×
L(RD; RN );x ∈ R(σ)} → RN defined by the prescription that ψ2(x, σ)
is the unique η ∈ K⊥(σ′) such that σ′η = x. Both ψ1 and ψ2 are Borel
measurable.

Proof. We establish the Borel measurability of ψ1 only. Define

∆ = {(y, σ, ξ) ∈ RN × L(RD; RN )× RD; y ∈ R(σ), ξ ∈ R(σ′), σξ = y}.

The set {(σ, ξ); ξ ∈ R(σ′)} was shown in the proof of Lemma 4.4 to be
Borel, and the same argument applies to {(y, σ); y ∈ R(σ)}. Therefore,
∆ is a Borel set. But ∆ is the graph of ψ1, and just as in Lemma 4.4 we
conclude that ψ1 is a Borel-measurable function. �

Proof of Theorem 4.2. According to Lemmas 4.6 and 4.7, the
progressively measurable process

θ(t)
�
= ψ1

(
b(t) + δ(t)− r(t)1

˜
, σ(t)

)
(4.5)

is defined and satisfies (4.1) for Lebesgue-almost-every t ∈ [0, T ], almost
surely. This proves the first part of the theorem.

On the other hand, suppose that the RN -valued process θ(·) is progres-
sively measurable and satisfies the conditions (4.1) and (4.2). For any tame
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portfolio π(·) the associated discounted gains process can be written as

Mπ(t)
�
=

G(t)
S0(t)

=
∫ T

0

π′(u)
S0(u)

dR(u) =
∫ t

0

π′(u)
S0(u)

σ(u) dW0(u), 0 ≤ t ≤ T

(cf. (2.11)). Here W0(t)
�
= W (t)+

∫ t

0 θ(s) ds, 0 ≤ t ≤ T , is Brownian motion
under the probability measure

P0(A)
�
= E

[
1A · exp

{
−
∫ T

0
θ′(s) dW (s) − 1

2

∫ T

0
‖θ(s)‖2 ds

}]
, A ∈ F(T )

(from the Girsanov theorem, §3.5 in Karatzas and Shreve (1991)). Thus,
the lower-bounded process Mπ(·) is a local martingale under P0, hence
also a supermartingale: E0

(
G(T )
S0(T )

)
≤ E0M

π(0) = 0. This shows that it
is impossible to have an arbitrage opportunity (i.e., we cannot have both
P [G(T ) ≥ 0] = 1 and P [G(T ) > 0] > 0). �

Corollary 4.8: A viable market can have only one money market, and
hence only one risk-free rate. In other words, if the nth stock pays no divi-
dends and entails no risk (i.e., the nth row of σ(·) is identically zero), then
bn(·) = r(·) and Sn(·) = Sn(0)S0(·).

Proof. If the nth stock were as described, Theorem 4.2 would then imply
that bn(t) = r(t) for Lebesgue-almost-every t almost surely, so Sn(·) =
Sn(0)S0(·). �

Corollary 4.9: For a viable market, the excess-yield process R(·) of (2.9)
is given by

R(t) =
∫ t

0
σ(u)[θ(u) du + dW (u)], 0 ≤ t ≤ T, (4.6)

where θ(·) satisfies (4.1).

Remark 4.10: Within the framework of a viable market, when char-
acterizing the wealth processes that can be achieved through investment,
one can assume—without loss of generality—that the number N of stocks
is not greater than the dimension D of the underlying Brownian motion.
The intuitive basis for this claim is that if there are more than D stocks,
then some of them can be duplicated by forming mutual funds (i.e., (t, ω)-
dependent linear combinations) of others, and thus the number of stocks
in the model can be reduced.

To make this intuition precise, letM be a viable market with N > D, and
let θ(·) be as in Theorem 4.2. Define a progressively measurable, (D×D)-
matrix-valued process σ̃(·) by specifying that the rows of σ̃(t) be obtained
by deleting the first N − D rows of σ(t) that can be written as linear
combinations of their predecessors. Then the subspace of RD spanned by
the rows of σ(t) is the same as the subspace spanned by the rows of σ̃(t),
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and thus for every Γ(·)-financed portfolio process (π0(·), π(·)) in the market
M, there is a D-dimensional, progressively measurable process π̃(·) such
that π′(t)σ(t) = π̃′(t)σ̃(t) for every t ∈ [0, T ]. Therefore,

π′(t) dR(t) = π′(t)σ(t)[θ(t) dt + dW (t)] = π̃′(t)σ̃(t)[θ(t) dt + dW (t)],

and the discounted wealth process corresponding to a Γ(·)-financed
portfolio can be written as

X(t)
S0(t)

= Γ(0) +
∫

(0,t]

dΓ(u)
S0(u)

+
∫ t

0

1
S0(u)

π̃′(u)σ̃(u)θ(u) du

+
∫ t

0

1
S0(u)

π̃′(u)σ̃(u) dW (u) (4.7)

(see (3.4)). This discounted wealth process can be achieved in the D-stock
market M̃ = (r(·), r(·)1

˜D + σ̃(·)θ(·), 0, σ̃(·), S̃(0), A(·)), where S̃(0) is a
D-dimensional vector of initial stock prices and 1

˜D is the D-dimensional
vector with every component equal to 1. In particular, the vector of excess
yield processes for the reduced model is

R̃(t) =
∫ t

0
σ̃(u)θ(u) du +

∫ t

0
σ̃(u) dW (u)

(cf. (2.9)), and in terms of it the representation (4.7) for the discounted
wealth process becomes

X(t)
S0(t)

= Γ(0) +
∫

(0,t]

dΓ(u)
S0(u)

+
∫

(0,t]

1
S0(u)

π̃′(u) dR̃(u), 0 ≤ t ≤ T.

The D stocks in this reduced market form a subset of the N stocks available
in the original market; the composition of this subset may depend on (t, ω),
albeit in a progressively measurable fashion.

Remark 4.11: For a viable market, the progressively measurable process
θ(·) constructed in (4.5) satisfies both (4.1) and

θ(t) ∈ K⊥(σ(t)) a.s. (4.8)

for Lebesgue-almost-every t ∈ [0, T ]. Elementary linear algebra shows that
θ(·) is uniquely determined by these conditions. If Rank(σ(t)) = N , then

θ(t) = σ′(t)(σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1
˜
]. (4.9)

1.5 Standard Financial Markets

Motivated by the developments of the previous section, in particular The-
orem 4.2 and Remark 4.10, we introduce here the notion of a standard
financial market model. It is mostly with such models that we shall be
dealing in the sequel.
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Definition 5.1: A financial market model M is said to be standard if

(i) it is viable;
(ii) the number N of stocks is not greater than the dimension D of the

underlying Brownian motion;
(iii) the D-dimensional, progressively measurable market price of risk

process θ(·) of (4.1), (4.8) satisfies∫ T

0
‖θ(t)‖2 dt <∞ (5.1)

almost surely; and
(iv) the positive local martingale

Z0(t)
�
= exp

{
−
∫ t

0
θ′(s) dW (s) − 1

2

∫ t

0
‖θ(s)‖2 ds

}
, 0 ≤ t ≤ T,

(5.2)
is in fact a martingale.

For a standard market, we define the standard martingale measure P0 on
F(T ) by

P0(A)
�
= E[Z0(T )1A], ∀A ∈ F(T ). (5.3)

Note that a set in F(T ) has P0-measure zero if and only if it has P -measure
zero. We say that P0 and P are equivalent on F(T ).

Remark 5.2: The process Z0(·) of (5.2) is a local martingale, because

dZ0(t) = −Z0(t)θ′(t) dW (t), Z0(0) = 1 (5.4)

or equivalently,

Z0(t) = 1−
∫ t

0
Z0(s)θ′(s) dW (s), ∀ t ∈ [0, T ]. (5.5)

A well-known sufficient condition for Z0(·) to be a martingale, due to
Novikov, is that E[exp{1

2

∫ T

0 ‖θ(t)‖2 dt}] <∞ (Karatzas and Shreve (1991),
Section 3.5.D). In particular, if θ(·) is bounded in t and ω, then Z0(·) is a
martingale.

Remark 5.3: According to Girsanov’s theorem (Karatzas and Shreve
(1991), Section 3.5) the process

W0(t)
�
= W (t) +

∫ t

0
θ(s) ds, ∀ t ∈ [0, T ] (5.6)

is a D-dimensional Brownian motion under P0, relative to the filtration
{F(t)} of (1.2). In terms of W0(·), the excess yield process of (2.9) and (4.6)
can be rewritten as R(t) =

∫ t

0 σ(u) dW0(u), the discounted gains process
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becomes

G(t)
S0(t)

= Mπ
0 (t)

�
=
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u) (5.7)

(see (2.11) and (2.13)), and the discounted wealth process of (3.4)
corresponding to a Γ(·)-financed portfolio is

X(t)
S0(t)

= Γ(0) +
∫

(0,t]

dΓ(u)
S0(u)

+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t ≤ T.

(5.8)

We see that P0 permits a presentation of the excess yield process in which
the risk premium term

∫ t

0 [b(u)+δ(u)−r(u)1
˜
]du has been absorbed into the

stochastic integral. This term represents the difference in return, including
dividends, between the stocks and the money market. See Remark 5.11 for
an elaboration of this point.

Remark 5.4: By definition, a cumulative income process Γ(·) is a semi-
martingale under the original measure P ; i.e., Γ(t) = Γ(0)+Γfv(t)+Γ�m(t),
where Γfv(·) is a finite-variation RCLL process and Γ�m(·) is a P -local mar-
tingale, both beginning at zero. The process Γ(·) is also a semimartingale
under P0, i.e., has the unique decomposition

Γ(t) = Γ(0) + Γfv
0 (t) + Γ�m

0 (t), 0 ≤ t ≤ T,

where Γfv
0 (·) is a finite-variation RCLL process with total variation on

[0, t] denoted by Γ̌fv
0 (t), and Γ�m

0 (·) is a P0-local martingale, again with
Γfv

0 (0) = Γ�m
0 (0) = 0. Indeed, according to Theorem 3.5.4 in Karatzas and

Shreve (1991),

Γ�m
0 (t) = Γ�m(t) +

∫ t

0
θ′(s)d〈Γ�m,W 〉(s),

Γfv
0 (t) = Γfv(t)−

∫ t

0
θ′(s)d〈Γ�m,W 〉(s).

In particular, Γ�m(·) ≡ 0 if and only if Γ�m
0 (·) ≡ 0, in which case Γfv(·) =

Γfv
0 (·).

Definition 5.5: A cumulative income process is said to be integrable if

E0

∫ T

0

dΓ̌fv
0 (u)

S0(u)
<∞, E0

∫ T

0

1
S2

0(u)
d〈Γ�m

0 〉(u) <∞, (5.9)

where we use the notation of Remark 5.4 and E0 denotes the expectation
corresponding to P0.
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Theorem 5.6: Under the standard martingale measure P0, the process of
discounted wealth minus discounted cumulative income

X(t)
S0(t)

− Γ(0)−
∫

(0,t]

dΓ(u)
S0(u)

, 0 ≤ t ≤ T, (5.10)

corresponding to any tame Γ(·)-financed portfolio is a local martingale and
bounded from below, hence a supermartingale. In particular,

E0

[
X(T )
S0(T )

−
∫

(0,T ]

dΓ(u)
S0(u)

]
≤ Γ(0). (5.11)

The process in (5.10) is a martingale under P0 if and only if equality holds
in (5.11).

Proof. From (5.7), (5.8) we see that the process in (5.10) has the
stochastic integral representation

Mπ
0 (t) =

∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t ≤ T.

This process is a local martingale, and because π(·) is tame, it is bounded
from below. A local martingale which is bounded from below is a super-
martingale because of Fatou’s lemma. A supermartingale is a martingale if
and only if it has constant expectation. �

Remark 5.7: The proof of Theorem 5.6 shows that the expectation on
the left-hand side of (5.11) is defined and finite. For an integrable cumula-
tive income process, the P0-expectations of the individual terms X(T )

S0(T ) and∫
(0,T ]

dΓ(u)
S0(u) =

∫
(0,T ]

dΓfv(u)
S0(u) +

∫ T

0
dΓlm(u)

S0(u) are also defined and finite.

Remark 5.8: The process

H0(t)
�
=

Z0(t)
S0(t)

, 0 ≤ t ≤ T, (5.12)

often called the state price density process, will play a key role in subse-
quent chapters (e.g., Remark 2.2.4). Using H0(·), we can rewrite conditions
involving the martingale measure P0 in terms of the original probability
measure P . For example, when Γ�m(·) ≡ 0, (5.9) can be rewritten as

E

∫ T

0
H0(u) dΓ̌fv(u) <∞. (5.13)

Applying Itô’s rule to the product of Z0(t) and X(t)
S0(t)

, we obtain from (5.8)
that

H0(t)X(t)−
∫

(0,t]
H0(u) dΓ(u) = Γ(0) +

∫ t

0
H0(u)[σ′(u)π(u)

−X(u)θ(u)]′ dW (u), 0 ≤ t ≤ T (5.14)
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is a local martingale under the original measure P . If this local martingale
is also a supermartingale, we obtain the restatement of (5.11) in terms of P :

E

[
H0(T )X(T )−

∫
(0,T ]

H0(u) dΓ(u)

]
≤ Γ(0). (5.15)

We already know that this inequality holds under the conditions of The-
orem 5.6; but because of Fatou’s lemma it also holds whenever π(·) is
Γ(·)-financed and

H0(t)X(t)−
∫

(0,t)
H0(u) dΓ(u) ≥ 0, ∀ t ∈ [0, T ],

holds a.s., even if π(·) is not tame and even if Z0(·) of (5.2) is not a
martingale (so that the measure P0 of (5.3) is not a probability).

The concept of a tame portfolio (π0(·), π(·)) (Definition 2.4) was intro-
duced to get some control on the semimartingale Mπ

0 (·). Under P0, this
semimartingale is in fact a local martingale, and this suggests a new,
noncomparable concept.

Definition 5.9: An {F(t)}-adapted, RN -valued process π(·) satisfying
(2.5) and (2.6) is said to be martingale-generating if under the probability
measure P0 of (5.3), the local martingale Mπ

0 (·) of (5.7) is a martingale. If
(π0(·), π(·)) is a portfolio process and π(·) is martingale-generating, we say
that the portfolio process (π0(·), π(·)) is martingale-generating.

Remark 5.10: If Γ(·) ≡ 0, then the wealth process is the gains process.
For a tame portfolio process π(·), (5.11) shows that E0

[ G(T )
S0(T )

]
≤ 0. For a

martingale-generating portfolio process π(·), E0
[ G(T )

S0(T )

]
= 0. In either case,

arbitrage (Definition 4.1) is ruled out.

Remark 5.11: In the notation of (5.6) and (4.1), we may rewrite (1.10)
in differential form as

d

(
Sn(t)
S0(t)

)
+

Sn(t)
S0(t)

δn(t) dt

=
Sn(t)
S0(t)

{
D∑

d=1

σnd(t) dW (d)(t) + [bn(t) + δn(t)− r(t)] dt

}

=
Sn(t)
S0(t)

D∑
d=1

σnd(t) dW
(d)
0 (t).
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This shows that under the martingale measure P0 of (5.3), the process

Sn(t)
S0(t)

· exp
{∫ t

0
δn(u) du

}
(5.16)

= Sn(0) exp

{
D∑

d=1

∫ t

0
σnd(u) dW

(d)
0 (u)− 1

2

D∑
d=1

∫ t

0
σ2

nd(u) du

}
,

0 ≤ t ≤ T,

is an exponential local martingale, and hence a supermartingale. If the
entries of the volatility matrix σ(·) satisfy the Novikov condition

E0

[
exp

{∫ T

0

1
2

D∑
d=1

σ2
nd(u)du

}]
<∞ (5.17)

(e.g., Karatzas and Shreve (1991), Section 3.5D), then the exponential local
martingale (5.16) is in fact a martingale under P0, and this justifies calling
P0 a “martingale measure.”

1.6 Completeness of Financial Markets

An important purpose of a financial market, perhaps even the principal
purpose, is to afford investors the opportunity to hedge risk inherent in
their other activities. Consider an agent who knows, at time t = 0, that
at some future time T he must make a payment B(ω), but the size of the
payment depends on a number of factors that are still undetermined and
not within his control. This agent would like to set aside a fixed amount of
money x at time t = 0 and be assured that this will enable him to make
the payment at time T . A conservative strategy would be to set aside an
amount equal to the maximal possible payment size, supω∈Ω B(ω), if this
maximal size is finite! A more reasonable strategy entails setting aside less
money, but investing it in such a way that if the actual payment size turns
out to be large, the capital has in the meantime grown to match it. This
is the process of hedging the risk inherent in the random payment, which
leads to the following definition.

Definition 6.1: Let M be a standard financial market, and let B be an
F(T )-measurable random variable such that B

S0(T ) is almost surely bounded
from below and

x
�
= E0

[
B

S0(T )

]
<∞. (6.1)

(i) We say that B is financeable, if there is a tame, x-financed port-
folio process (π0(·), π(·)) whose associated wealth process satisfies
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X(T ) = B; i.e.,

B

S0(T )
= x +

∫ T

0

1
S0(u)

π′(u)σ(u) dW0(u) (6.2)

almost surely.
(ii) We say that the financial market M is complete if every F(T )-

measurable random variable B, with B
S0(T ) bounded from below and

satisfying (6.1), is financeable. Otherwise, we say that the market is
incomplete.

Proposition 6.2: A standard financial marketM is complete if and only
if for every F(T )-measurable random variable B satisfying

E0

[
|B|

S0(T )

]
<∞ (6.3)

and with x defined by (6.1), there is a martingale-generating, x-financed
portfolio process (π0(·), π(·)) satisfying (6.2).

Proof. Suppose the market is complete and B is an F(T )-measurable
random variable that satisfies (6.3). Then there exist tame, x±-financed
portfolio processes (π±

0 (·), π±(·)) with

B±

S0(T )
= x± +

∫ T

0

1
S0(u)

(π±(u))′σ(u) dW0(u) (6.4)

almost surely, where B± �
= max{±B, 0} and x±

�
= E0

[
B±

S0(T )

]
. Taking

expectations in (6.4) with respect to P0, we see that the lower-bounded
local martingale (hence supermartingale)

∫ t

0
1

S0(u) (π
±(u))′σ(u) dW0(u), 0 ≤

t ≤ T , has constant expectation (equal to zero) under P0. Hence, π±(·) is
martingale-generating. Subtracting one version of (6.4) from the other, we
obtain (6.2), where π(·) �

= π+(·)− π−(·) is also martingale-generating.
Now suppose that for any F(T )-measurable random variable B, such that
B

S0(T ) is almost surely bounded from below and satisfies (6.1), there exists
a martingale-generating x-financed portfolio process (π0(·), π(·)) satisfying
(6.2). Taking conditional expectations in (6.2), we obtain that∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u) = −x + E0

[
B

S0(T )

∣∣∣ F(t)
]

, 0 ≤ t ≤ T,

is bounded from below. It follows that (π0(·), π(·)) is tame, B
S0(T ) is

financeable, and thusM is complete. �

Remark 6.3: In the context of Definition 6.1, if an x-financed, tame
portfolio (π0(·), π(·)) can be found whose associated wealth process X(·)
satisfies X(T ) = B almost surely, then E0

[
X(T )
S0(T )

]
= x, and the last

sentence in Theorem 5.6 asserts that X(·)
S0(·) is a martingale under P0.
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Consequently, X(·) is uniquely determined by the equation

X(t)
S0(t)

= E0

[
B

S0(T )

∣∣∣ F(t)
]

, 0 ≤ t ≤ T. (6.5)

Equation (6.5) also holds if (π0(·), π(·)) is martingale-generating.

The remark and example that follow offer additional insights on the
notion of financeability; they can be skipped on first reading.

Remark 6.4: The question arises why Definition 6.1 permits only x-
financed portfolios with x defined by (6.1). We first argue that for y < x,
there can be no tame, y-financed portfolio whose associated wealth process
satisfies X(T ) ≥ B almost surely. Indeed, if X̃(·) is the wealth associated
with a tame, y-financed portfolio and X̃(T ) ≥ B, then (5.11) implies

x = E0

[
B

S0(t)

]
≤ E0

[
X̃(T )
S0(T )

]
≤ y. (6.6)

It is sometimes possible to find a representation of B
S0(T ) of the form

B

S0(T )
= y +

∫ T

0

1
S0(u)

π̃′(u)σ(u) dW0(u), (6.7)

where y > x and (π̃0(·), π̃(·)) is a tame, y-financed portfolio, even when B
is not financeable in the sense of Definition 6.1 (see Example 6.5); but the
associated discounted wealth process X̃(t)

S0(t)
= y +

∫ t

0
1

S0(u) π̃
′(u)σ(u) dW0(u)

cannot then be a martingale, because

E0

[
X̃(0)
S0(0)

]
= y > x = E0

[
X̃(T )
S0(T )

]
.

The properties of random variables B that permit a representation of the
form (6.7) with y > x are not well understood. Moreover, one could argue
that y-financed portfolio processes leading to discounted wealth processes
that are not martingales under P0 are undesirable and should be excluded
from consideration.

Example 6.5: Consider a financial market M with one stock, with an
underlying two-dimensional Brownian motion (N = 1, D = 2) and with
r(·) ≡ 0, b(·) ≡ 0, δ ≡ 0, σ(·) ≡ [1, 0], A(·) ≡ 0. For a portfolio process π(·)
the discounted gains process is G(t) =

∫ t

0 π(s) dW (1)(s). As in Example 2.3,
define

I(t)
�
=
∫ t

0

√
1

T − s
dW (1)(s), 0 ≤ t < T, (6.8)
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so that limt↑T I(t) =∞ and limt↑T I(t) = −∞ almost surely. Set

τ
�= inf{t ∈ [0, T ); 2 + I(t) = exp(W (2)(t)− t/2)} ∧ T,

B
�
= 2 + I(τ) = 2 +

∫ T

0
1{s≤τ}

√
1

T − s
dW (1)(s), (6.9)

and notice that P [τ < T ] = 1 and that the portfolio π(t) = (T−t)− 1
2 1{t≤τ}

is tame, because G(·) ≥ −2. Equation (6.9) provides a representation for
B of the form (6.7) with y = 2. In this example, P0 = P and

E(B) = E
[
exp
(
W (2)(τ)− τ/2

)]
= 1 < y.

If B had a representation of the form (6.2), then from (6.5) there would
exist a tame portfolio process π(·) satisfying

1 +
∫ t

0
π(s) dW (1)(s)

= E[exp(W (2)(τ)− τ/2) | F(t)]

= exp
(
W (2)(t ∧ τ)− t ∧ τ

2

)
= 1 +

∫ t

0
1{s≤τ} exp

(
W (2)(s)− s/2

)
dW (2)(s). (6.10)

This is clearly impossible (e.g., the martingale on the left-hand side of (6.10)
has zero cross-variation with W (2)(·), but the martingale on the right-hand
side of (6.10) has nonzero cross-variation with W (2)(·)).

The theory of complete markets is simpler and much better developed
than the theory of incomplete markets. Chapters 2–4 are devoted to com-
plete markets, while Chapters 5 and 6 explore incomplete markets. For a
standard financial market, the two cases are easily distinguished by the
following theorem.

Theorem 6.6: A standard financial market M is complete if and only
if the number of stocks N is equal to the dimension D of the underlying
Brownian motion and the volatility matrix σ(t) is nonsingular for Lebesgue-
a.e. t ∈ [0, T ] almost surely.

The remainder of this section is devoted to the proof of Theorem 6.6.
A standard financial market M is fixed throughout, (Ω,F , P ) and
{F(t)}0≤t≤T are as in Definition 1.3, the processes θ(·), Z0(·) and the
measure P0 are as in Definition 5.1, and W0(·) is given by (5.6).

Lemma 6.7 (Martingale representation property under P0): Let {M0(t),
F(t); 0 ≤ t ≤ T} be a martingale under P0. Then there is a progressively
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measurable, RN -valued process ϕ(·) such that∫ T

0
‖ϕ(s)‖2 ds <∞, (6.11)

M0(t) = M0(0) +
∫ t

0
ϕ′(s) dW0(s), 0 ≤ t ≤ T, (6.12)

hold almost surely.

Proof. This lemma is almost a restatement of the standard representa-
tion theorem for martingales as stochastic integrals (Karatzas and Shreve
(1991), Theorem 3.4.15 and Problem 3.4.16). The only complication is that
the filtration {F(t)} is the augmentation by null sets of the filtration gen-
erated by W (·), not W0(·). Therefore, we revert to the original probability
measure P and represent the Lévy P -martingale

N(t)
�= E[Z0(T )M0(T )|F(t)], 0 ≤ t ≤ T,

as a stochastic integral with respect to W (·), namely

N(t) = N(0) +
∫ t

0
ψ′(s) dW (s), 0 ≤ t ≤ T,

where ψ(·) is a progressively measurable, RN -valued process satisfying
(6.11). A simple calculation known as “Bayes’s rule” (e.g., Karatzas and
Shreve (1991), Lemma 3.5.3) shows that M0(t) = E0[M0(T )|F(t)] =
N(t)/Z0(t), and Itô’s formula yields

dM0(t) =
1

Z0(t)
[ψ′(t) + N(t)θ′(t)] dW0(t),

so that (6.11), (6.12) hold with

ϕ(t) =
1

Z0(t)
[ψ(t) + N(t)θ(t)].

Condition (6.11) for ϕ(·) follows from the same condition for ψ(·), (5.1),
and the fact that the paths of 1

Z0(·) and N(·) are continuous on [0, T ] almost
surely. �

Corollary 6.8 (Sufficiency in Theorem 6.6): If N = D and σ(t) is
nonsingular for Lebesgue-almost-every t ∈ [0, T ] almost surely, then the
financial market is complete.

Proof. We verify the condition of Proposition 6.2. Let B be an
F(T )-measurable random variable satisfying (6.3), and define the Lévy
P0-martingale

M0(t) = E0

[
B

S0(T )

∣∣∣ F(t)
]

, 0 ≤ t ≤ T.
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This martingale has a representation as in (6.12), and with

π′(t)
�
= S0(t)ϕ′(t)σ−1(t), 0 ≤ t ≤ T,

we have (6.2). Condition (2.6) follows from (6.11); condition (2.5) follows
from the almost sure inequalities∫ T

0
|π′(s)(b(s) + δ(s)− r(s)1

˜
)| ds

=
∫ T

0
S0(u)ϕ′(u)θ(u) du

≤ max
0≤u≤T

S0(u) ·
∫ T

0
‖ϕ(u)‖2 du ·

∫ T

0
‖θ(u)‖2 du <∞,

where we have used (4.9) and the Cauchy–Schwarz inequality. We construct
π0(·) as in Remark 2.2. �

Lemma 6.9: There is a bounded, Borel-measurable mapping ψ3 :
L(RD; RN )→ RD such that

ψ3(σ) ∈ K(σ), (6.13)
ψ3(σ) �= 0 if K(σ) �= {0} (6.14)

for every σ ∈ L(RD; RN ).

Proof. Let {e1, e2, . . . , eD} be a basis for RD, and define

n(σ) =

{
min{i; projK(σ)(ei) �= 0} if K(σ) �= {0},
1 if K(σ) = {0},

ψ3(σ) = projK(σ)(en(σ)).

The Borel-measurability of ψ3 follows from Lemma 4.4. �

Proof of necessity in Theorem 6.6. Using the function ψ3 from
Lemma 6.9, define the bounded, progressively measurable process ϕ(t) =
ψ3(σ(t)) that satisfies ϕ(t) ∈ K(σ(t)) for all t ∈ [0, T ], and ϕ(t) �= 0
whenever K(σ(t)) �= {0}. Next, define the F(T )-measurable random
variable

B
�
= S0(T )

[
1 +

∫ T

0
ϕ′(u) dW0(u)

]
.

Clearly, E0[
|B|

S0(T ) ] < ∞ and E0[ B
S0(T ) ] = 1. Market completeness and

Proposition 6.2 imply the existence of a martingale-generating portfolio
process π for which∫ T

0

1
S0(u)

π′(u)σ(u) dW0(u) =
B

S0(T )
− 1 =

∫ T

0
ϕ′(u) dW0(u). (6.15)
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The stochastic integrals
∫ t

0
1

S0(u)π
′(u)σ(u) dW0(u) and

∫ t

0 ϕ′(u) dW0(u) are
both martingales under P0. Conditioning both sides of (6.15) on F(t), we
see that these stochastic integrals agree. This implies that the integrands
agree, so σ′(t)π(t) = S0(t)ϕ(t) for Lebesgue-a.e. t ∈ [0, T ] almost surely.
This shows that ϕ(t) ∈ R(σ′(t)) = K⊥(σ(t)). By construction, ϕ(t) ∈
K(σ(t)), so ϕ(t) = 0, which happens only if K(σ(t)) = {0}. Thus, N = D
and σ(t) is nonsingular for Lebesgue-a.e. t ∈ [0, T ] almost surely. �

Remark 6.10: In a complete market M, there is a unique market price
of risk process θ(·) satisfying (4.1), defined by

θ(t) = (σ(t))−1[b(t) + δ(t)− r(t)1
˜
], 0 ≤ t ≤ T. (6.16)

1.7 Financial Markets with an Infinite
Planning Horizon†

The time parameter in the financial market of Definition 1.3 takes values
in the interval [0, T ], where the planning horizon T is finite. In order to
consider certain financial instruments such as perpetual American options,
we introduce in this section the notion of a financial market on [0,∞).

For the construction of this section, we need to work with Wiener mea-
sure on the “canonical” space of continuous, RD-valued functions, rather
than with a general probability space on which D-dimensional Brownian
motion is defined. Let Ω = C([0,∞))D be the space of continuous func-
tions ω : [0,∞) → RD. On this space we define the coordinate mapping
process W (t, ω) = ω(t), 0 ≤ t < ∞, ω ∈ Ω. As in Section 1, we denote by
FW (t) = σ{W (s); 0 ≤ s ≤ t} the σ-field generated by W (·) on [0, t], i.e.,
the smallest σ-algebra containing all sets of the form {ω ∈ Ω; ω(s) ∈ Γ},
where s ranges over [0, t] and Γ ranges over the collection of Borel subsets
of RD. We set FW (∞)

�
= σ(

⋃
0≤t<∞ FW (t)).

Let P be Wiener measure on FW (∞), i.e., the probability measure under
which {W (t); 0 ≤ t < ∞} is a D-dimensional Brownian motion. Let F be
the completion of FW (∞) under P ; i.e., F �

= σ(FW (∞) ∪N ), where

N �
= {N ⊆ Ω; ∃B ∈ FW (∞) with N ⊆ B and P (B) = 0}

is the collection of P -null sets of FW (∞). We call (Ω,F , P ) the canonical
probability space for D-dimensional Brownian motion.

For each T ∈ [0,∞), we define

N T = {N ⊆ Ω; ∃B ∈ FW (T ) with N ⊆ B and P (B) = 0}

†This section can be omitted on first reading; its results will be used only in
Sections 2.6, 3.9, and 3.10.
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to be the collection of P -null sets in FW (T ), and we define the augmented
filtration

F (T )(t) �= σ(FW (t) ∪N T ), 0 ≤ t ≤ T.

This is the filtration we have called {F(t); 0 ≤ t ≤ T} heretofore; in this
section we indicate explicitly its dependence on T .

Definition 7.1: A stochastic process Y = {Y (t); 0 ≤ t < ∞} is said
to be restrictedly progressively measurable or restrictedly adapted if for ev-
ery T ∈ [0,∞), there exists T̃ ∈ [T,∞) such that the restricted process
{Y (t); 0 ≤ t ≤ T} is {F (T̃ )(t); 0 ≤ t ≤ T}-progressively measurable or
adapted, respectively.

Definition 7.2: A financial market M = (r(·), b(·), δ(·), σ(·), S(0), A(·))
on the infinite planning horizon [0,∞) consists of

(i) a D-dimensional Brownian motion W = {W (t); 0 ≤ t < ∞} that is
the coordinate mapping process on the canonical probability space
(Ω,F , P );

(ii) restrictedly progressively measurable processes r(·), b(·), δ(·), σ(·),
and A(·), as described in Definition 1.3, satisfying the integrability
conditions of Definition 1.3 for every finite T ;

(iii) a vector of positive, constant initial stock prices S(0) = (S1(0), . . . ,
SN (0))′.

It is easily verified that the asset price processes in M are restictedly
progressively measurable. In order to simplify the presentation, we define
a standard, complete financial market in terms of the conditions obtained
in Theorem 6.6.

Definition 7.3: A financial market M = (r(·), b(·), δ(·), σ(·), S(0), A(·))
on an infinite planning horizon is standard and complete if

(i) the number of stocks N equals the dimension D of the driving
Brownian motion;

(ii) the volatility matrix σ(t) is nonsingular for Lebesgue-a.e. t ∈ [0,∞)
almost surely;

(iii) the positive local martingale

Z0(t)
�
= exp

{
−
∫ t

0
θ′(s) dW (s) − 1

2

∫ t

0
‖θ(s)‖2 ds

}
, 0 ≤ t <∞,

(7.1)
is in fact a P -martingale, where

θ(t)
�
= σ−1(t)[b(t) + δ(t)− r(t)1

˜
], 0 ≤ t <∞. (7.2)

Of course, a process is a martingale only relative to some filtration. In
Definition 7.3 (iii) we mean that for each T ∈ [0,∞), there is a T̃ ∈ [T,∞)
such that the restricted process {Z0(t); 0 ≤ t ≤ T} is a P -martingale
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relative to {F (T̃ )(t); 0 ≤ t ≤ T}. (One should say, more precisely, that Z0(·)
is “restrictedly” a martingale; one could likewise speak of processes being
“restricted” semimartingales, submartingales, etc.) As in Definition 7.3, we
shall generally omit the modifier “restricted.”

With θ(·) defined by (7.2), we set

W0(t)
�
= W (t) +

∫ t

0
θ(s) ds, 0 ≤ t <∞. (7.3)

By analogy with (5.3), we may define for each T ∈ [0,∞) the martingale
measure PT

0 on FW (T ) by

PT
0 (A)

�
= E[Z0(T )1A], ∀A ∈ FW (T ). (7.4)

Under PT
0 , the restricted process {W0(t); 0 ≤ t ≤ T} is a Brownian motion.

Furthermore, for 0 ≤ t ≤ T , the probability measure PT
0 is equivalent to P

on F (T )(t); i.e., a set in F (T )(t) is a PT
0 -null set if and only if it is a P -null

set.

Proposition 7.4: There is a unique probability measure P0 on

FW (∞)
�
= σ(W (s); 0 ≤ s <∞)

such that P0 agrees with each PT
0 on FW (T ), for any T <∞. In particular,

{W0(t); 0 ≤ t <∞} is a D-dimensional Brownian motion under P0.

Proof. The family {PT
0 }0≤T<∞ given by (7.4) is consistent: if 0 ≤ T ≤

S < ∞, then PT
0 and PS

0 agree on FW (T ). Thus, a (finitely additive)
set function P0, with P0(∅) = 0, P0(Ω) = 1, is well-defined on the algebra
G =

⋃
0≤T<∞FW (T ) by the recipe

P0(A)
�
= E[Z0(T )1A]; A ∈ FW (T ), 0 ≤ T <∞.

The question is whether this P0 is also countably additive on G, and thus, by
the Carathéodory extension theorem, uniquely extendable to a probability
measure on FW (∞) = σ(G).

The countable additivity of P0 on G is a consequence of the extension
theorems in Parthasarathy (1967), pp. 140–143, as we now explain. For
each T ∈ [0,∞), the measurable space (Ω,FW (T )) is σ-isomorphic to the
complete, separable metric space ΩT

�
= C([0, T ])D of RD-valued, continu-

ous functions on [0, T ], equipped with the supremum norm and the Borel
σ-algebra BT generated by the collection of open subsets of ΩT . Indeed,
the “truncation mapping” πT : Ω→ ΩT defined by

πT (ω)(t)
�
= ω(t), ∀ t ∈ [0, T ], ω ∈ Ω,

places FW (T ) and BT into a one-to-one correspondence. Therefore,
(Ω,FW (T )) is a “standard Borel space” (Parthasarathy (1967), pp. 133–
134). Let {Tn}∞n=1 be a strictly increasing sequence in (0,∞) and {An}∞n=1
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a decreasing sequence in FW (∞) such that each An is an atom of FW (Tn).
Then, for every n,

An = {ω ∈ Ω; ω(t) = ωn(t), ∀ t ∈ [0, Tn]}

for some ωn ∈ ΩTn
. Setting T0 = 0 and

ω∞(t) = ωn(t), ∀ t ∈ [Tn−1, Tn), n = 1, 2, . . . ,

we see from the inclusions A1 ⊇ A2 ⊇ · · · that ω∞ ∈ ∩∞
n=1An, so that

∩∞
n=1An �= ∅. From Theorem 4.2, p. 143 of Parthasarathy (1967), we con-

clude that there is a unique probability measure P0 on (Ω,FW (∞)) such
that PT

0 (A) = P0(A) for all A ∈ FW (T ) and 0 ≤ T <∞. �

Remark 7.5: For each T ∈ [0,∞) and t ∈ [0, T ], the σ-algebra F(T )(t) is
a sub-σ-algebra of the completion of FW (T ) with respect to P0, and so P0
is defined for all sets in F (T )(t). On F (T )(t), the two measures P and P0
are equivalent.

The infinite-horizon model is made difficult by the fact that P and P0
are not necessarily equivalent on FW (∞). In fact, it is not hard to check
that P and P0 are equivalent on FW (∞) if and only if the P -martingale
Z0(·) of (7.1) is uniformly integrable. To see how things can go wrong if
this condition fails, consider the following example.

Example 7.6: Suppose N = D = 1, r(·) ≡ r > 0, b(·) ≡ b > r + 1
2 ,

δ(·) ≡ 0, σ(·) ≡ 1, A(·) ≡ 0. Then W0(t) = W (t) + (b− r)t and

S1(t)
S0(t)

= S1(0) exp
[
W (t) +

(
b− r − 1

2

)
t

]
= S1(0) exp

[
W0(t)−

1
2
t

]
, 0 ≤ t <∞.

According to the law of large numbers for Brownian motion (Karatzas and
Shreve (1991), Problem 2.9.3 and solution, p. 124), as t→∞ we have

W (t)
t
→ 0 P -a.s.;

W0(t)
t
→ 0 P0-a.s.

This means that the event A
�
= {limt→∞

S1(t)
S0(t)

= ∞} satisfies P (A) = 1,

P0(A) = 0, whereas the event B
�
= {limt→∞

S1(t)
S0(t)

= 0} satisfies P (B) = 0,
P0(B) = 1. Notice also that the P -martingale Z0(t) = exp[−(b− r)W (t)−
(b− r)2t/2] of (7.1) is not uniformly integrable. Indeed, limt→∞ Z0(t) = 0,
P -almost surely, but EZ0(t) = 1 for all t ∈ [0,∞).

Example 7.6 shows that if for t ∈ [0,∞) we were to augment FW (t) by the
P0-null sets of FW (∞), we would obtain a σ-algebra F0(t) on which P and
P0 would disagree. Indeed, there may exist sets A ∈ F0(t) for which P (A) is
not defined and for which B1 ∈ FW (t), B2 ∈ FW (t) can be found satisfying
P0(A�B1) = P0(A�B2) = 0 but P (B1) �= P (B2). For this reason, we
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choose to work with the family of filtrations {F (T )(t)}0≤t≤T , indexed by
T ∈ [0,∞), rather than with the augmentation of {FW (t)}0≤t<∞ by the
P0-null sets of FW (∞).

Definition 7.7: Consider a financial market M = (r(·), b(·), δ(·), σ(·),
S(0), A(·)) on [0,∞). A portfolio process (π0(·), π(·)) is as described in
Definition 2.1, except that now we require π0(·) and π(·) to be restrict-
edly progressively measurable and we require (2.4)–(2.6) to hold for every
finite T . We say that π(·) is tame if the P0-local martingale

Mπ(t)
�
=
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t <∞, (7.5)

is almost surely bounded from below by a constant not depending on t.
We say that π(·) is martingale-generating if {Mπ(t); 0 ≤ t < ∞} is a
P0-martingale.

A cumulative income process Γ(·) = {Γ(t); 0 ≤ t < ∞} is a P -
semimartingale and hence a “restricted” P0-semimartingale. We say that
Γ(·) is integrable if (5.9) is satisfied for every T ∈ [0,∞). We say that
(π0(·), π(·)) is Γ(·)-financed if (3.3) holds for every T ∈ [0,∞). In this case
the wealth process is given by

X(t)
S0(t)

= Γ(0) +
∫

(0,t]

dΓ(u)
S0(u)

+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t <∞.

(7.6)

1.8 Notes

Sections 1–3: Finance models that allow continuous trading constitute a
burgeoning field of mathematical research. In the notes to Chapter 3 we
discuss the origin of these models within the capital asset pricing con-
text. Their application to the hedging of contingent claims is presented in
Chapter 2, and the related history is summarized in the notes to that chap-
ter. For broad and exhaustive surveys of the issues of finance, including
continuous-time models, one may consult the books of Cox and Rubin-
stein (1985), Dothan (1990), Duffie (1988, 1992), Huang and Litzenberger
(1988), Hull (1993), Ingersoll (1987), Jarrow (1988), Merton (1990), Jarrow
and Turnbull (1995), Baxter and Rennie (1996), Pliska (1997), Musiela and
Rutkowski (1997). The book by Malliaris and Brock (1982) surveys stochas-
tic models used in economics and finance. Additional surveys and/or lecture
notes include Malliaris (1983), Müller (1985), Karatzas (1989, 1996), Lam-
berton and Lapeyre (1991); this latter text, along with Duffie (1992) and
Wilmott, Dewynne, and Howison (1993, 1995), can be consulted for numer-
ical and computational aspects of the theory. Questions of convergence of
discrete-time and/or discrete-state models to their continuous-time coun-
terparts are discussed, among others, by Cox, Ross, and Rubinstein (1979),
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Madan, Milne, and Shefrin (1989), Nelson and Ramaswamy (1990), He
(1990, 1991), Amin (1991), Amin and Khanna (1994), Cutland, Kopp, and
Willinger (1991, 1993a,b), Kind, Liptser, and Runggaldier (1991), Willinger
and Taqqu (1991), Duffie and Protter (1992), Eberlein (1992), Dengler
(1993), and Bick and Willinger (1994). Recent books on numerical meth-
ods of general applicability in this area are Kloeden and Platen (1992),
Kushner and Dupuis (1992), Talay and Tubaro (1997).

For early work on the subject, it is instructive to see the articles in the
volume edited by Cootner (1964), in particular the translation of the fa-
mous dissertation by Bachelier (1900); this work is the first instance of
both a mathematical treatment of Brownian motion and its application to
finance. The use of Brownian-motion-based models of stock prices derives
from the efficient market hypothesis, which asserts that all public infor-
mation useful for making investment decisions is already incorporated in
market prices. According to the efficient market hypothesis, past stock
prices may be useful for purposes of estimating parameters in the distri-
bution of future prices, but do not provide information that permits an
investor to outperform the market. In particular, if there is public informa-
tion which implies that a stock price is certain to rise, then it would have
already risen. The efficient market hypothesis is still subject to some debate,
although a substantial amount of empirical and theoretical justification has
accumulated in its favor; see, e.g., Kendall (1953), Osborne (1959), Sprenkle
(1961), Boness (1964), Alexander (1961), and Fama (1965). Originally, the
mathematical content of the efficient market hypothesis was expressed as
the belief that returns on stock prices follow a discrete-time random walk.
Samuelson (1965a) proposed a discrete-time martingale model of security
prices, a mathematical concept also in keeping with the efficient market
hypothesis. A more recent theoretical examination of this matter is given
by Samuelson (1973); see also Black (1986). The discrete-time martingale
model is criticized on the basis of empirical studies by LeRoy (1989). Non-
technical discussions can be found in Bernstein (1992), Chapters 5–7, and
Malkiel (1996).

The model presented in this chapter is an outgrowth of the “geometric”
Brownian motion model introduced by Samuelson (1965b) to capture the
limited-liability nature of corporation ownership. It was formulated within
the framework of Itô’s stochastic calculus by Merton (1969, 1971) and of
the calculus for more general stochastic processes by Harrison and Kreps
(1979), Harrison and Pliska (1981, 1983). The independence between past
and future increments of the driving Brownian motion enforces the effi-
cient market hypothesis in this model, provided that the model is viable
(Definition 4.1). The efficient market hypothesis does not claim any par-
ticular distribution for stock prices, although it is often confused with the
assumption of stock prices modeled by geometric Brownian motion and
hence having a log-normal distribution. This distribution provides a rea-
sonable fit to the data, but other distributions are known to be better (see,
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e.g., Fama (1965), Officer (1972), Hsu et al. (1974), Hagerman (1978), Kon
(1984), Madan and Seneta (1990), Lo (1991)). For the huge subjects of
statistical estimation and econometrics in the context of financial markets,
we send the reader to the April 1994 volume of the journal Mathematical
Finance, and to the recent monograph by Campbell, Lo, and MacKinley
(1997).

The model of this chapter allows for the stock-price coefficients to be
themselves random processes, which affords much greater generality than
the log-normal model. Various special cases of this model besides the
constant-coefficient case of Samuelson (1965b) have been studied. Cox and
Ross (1976) examined a constant elasticity of variance model, in which
stock prices have the form

dS(t) = bS(t) dt + σSγ/2(t) dW (t),

where b, σ > 0 and 0 ≤ γ < 2 are constant and W (·) is a Brownian mo-
tion; see also Beckers (1980), Schroder (1989). Another alternative, due to
Föllmer and Schweizer (1993), contains the geometric Ornstein–Uhlenbeck
process as a special case. Some works on hedging and/or optimization in
models that allow for jumps in the stochastic equations (1.8), and thus do
not fall within the purview of this text, are Aase (1993), Back (1991), Bates
(1988, 1992), Beinert and Trautman (1991), Dritschel and Protter (1997),
Elliott and Kopp (1990), Jarrow and Madan (1991b,c), Jones (1984), Jar-
row and Rosenfeld (1984), Jeanblanc-Picqué and Pontier (1990), Madan
and Seneta (1990), Madan and Milne (1991), Mercurio and Runggaldier
(1993), Merton (1976), Naik and Lee (1990), Pham (1995), Schweizer (1988,
1991, 1992a,b), Scott (1997), Shirakawa (1990, 1991), Xue (1992), Zhang
(1993).

A nonnegativity constraint on wealth was used by Harrison and Pliska
(1981) to rule out doubling strategies. The notion of a tame portfolio, used
here for the same purpose, also appears implicitly in Karatzas, Lehoczky,
and Shreve (1987) and Dybvig and Huang (1988). Heath and Jarrow (1987)
achieve the same end by imposing margin requirements.

Sections 4–6: The example of a nonviable market, which is based on the
three-dimensional Bessel process and appears right after Definition 4.1, is
due to A.V. Skorohod (private communication by S. Levental). Related
results can be found in Delbaen and Schachermeyer (1995b).

The absence of arbitrage opportunities is implied by the existence of
an equivalent probability measure, under which discounted prices (plus
discounted cumulative dividends, if dividends are present) become martin-
gales. This is essentially a rephrasing of the classical principle behind the
optional sampling and martingale systems theorems, according to which
“one cannot win for certain by betting on a martingale” (e.g., Doob (1953),
Chung (1974)).

To what extent is the converse true? In other words, if “one cannot
win for certain by betting on a given process” (i.e., if the process does not
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support arbitrage opportunities), then is this process a martingale, perhaps
under an equivalent probability measure? For discrete-parameter processes,
affirmative answers to this question were provided by Harrison and Kreps
(1979), Harrison and Pliska (1981), and Taqqu and Willinger (1987) for
finite probability spaces (see also Ross (1976) and Cox and Ross (1976)
for earlier work along similar lines), and by Dalang, Morton, and Willinger
(1990) for general probability spaces and multidimensional processes. This
last work uses arguments based on measurable selection results and on
the separating hyperplane theorem of convex analysis; the same result has
since been derived, using somewhat simpler arguments, by Kabanov and
Kramkov (1994a) and by Rogers (1995a). Related papers are Willinger and
Taqqu (1988), Back and Pliska (1991), Kusuoka (1992), Schachermayer
(1992). All these results on the relation between “no arbitrage” and the
existence of an equivalent martingale measure bear a striking similarity to
de Finetti’s (1937, 1974) theory of coherent subjective probabilities and
inferences; see Heath and Sudderth (1978), Boykov (1996), and the survey
papers of Sudderth (1994), Ellerman (1984).

For general continuous-parameter processes, the question at the begin-
ning of the previous paragraph becomes significantly more complex, and
the results much harder and deeper. Absence of arbitrage is in general
not sufficient for the existence of an equivalent martingale measure, and
stronger conditions are needed; cf. Kreps (1981), Schachermayer (1993,
1994). Work related to the results of Sections 4 and 5 has been done by
Stricker (1990), Delbaen (1992), Lakner (1993), Delbaen and Schacher-
mayer (1994a,b, 1995a–c, 1996b, 1997a–c), Fritelli and Lakner (1994, 1995)
who use rather refined functional-analytic tools (see also the earlier work
by Duffie and Huang (1986)), and Levental and Skorohod (1995).

In particular, Levental and Skorohod (1995) consider a marketM as in
Definition 1.3 with N = D and invertible volatility matrix σ(·), and define
θ(·) via (6.16), W0(·) via (5.6) whenever θ(·) is integrable,

ζ(r) �= inf
{

t ∈ (r, T );
∫ t

r

‖θ(s)‖2 ds =∞
}
∧ T, (8.1)

Z(r)(t) �= 1{t≤ζ(r)} exp

[
−
∫ t

0
1{r≤s}θ

′(s) dW (s)

− 1
2

∫ t

0
1{r≤s}‖θ(s)‖2 ds

]
, 0 ≤ t ≤ T, (8.2)

for r ∈ [0, T ], as well as

α
�
= inf

{
t ∈ [0, T );

∫ t+h

t

‖θ(s)‖2 ds =∞,∀h ∈ (0, T − t]

}
∧ T. (8.3)
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They show that M is viable if and only if both

P [α = T ] = 1 and EZ(r)(T ) = 1,∀ r ∈ [0, T ] (8.4)

hold. In particular, under the condition (5.1),M is viable if and only if{
there exists a probability measure P0, equivalent to P ,
under which W0(·) becomes Brownian motion.

}
(8.5)

In the absence of condition (5.1), they define approximate arbitrage as a
sequence of tame portfolios {πn(·)}∞n=1 with corresponding gains processes
{Gn(·)}∞n=1 satisfying limn→∞ P [Gn(T ) ≥ 0] = 1 and limn→∞ P [Gn(T ) >
δ] ≥ δ, ∀n ∈ N for some δ > 0 (cf. Stricker (1990), Duffie (1992), Kabanov
and Kramkov (1994b) for related notions); then they show that (8.5) is
equivalent to the absence of approximate arbitrage. This latter condition
is stronger than viability (absence of arbitrage), as these authors demon-
strate by example. In a similar vein, see the recent results of Delbaen and
Schachermayer (1997b) for general semimartingale price processes, which
might well be the “last word” on this subject.

The relations between market completeness and uniqueness of the equiv-
alent martingale measure were brought out in the fundamental papers of
Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and more
recently in Ansel and Stricker (1992, 1994), Artzner and Heath (1995),
Chatelain and Stricker (1992, 1994), Delbaen (1992), Jacka (1992), Jarrow
and Madan (1991a,b), Müller (1989), and Taqqu and Willinger (1987).

In the context of a complete market as in Section 6, what happens if the
agent starts at t = 0 with initial capital y > 0 strictly less than the quantity
x = E0[B/S0(T )] of (6.1)? Remark 6.4 shows that there can exist no tame,
y-financed portfolio with corresponding wealth process Xy,π(·) satisfying
P [Xy,π(T ) ≥ B] = 1 for 0 < y < x. In other words, it is then not possible
to hedge the contingent claim B without risk, and the agent might wish
simply to maximize the probability P [Xy,π(T ) ≥ B] of achieving a perfect
hedge, over a suitable subclass of tame y-financed portfolios π(·). One is
thus led to a stochastic control problem of the so-called “goal type.” Such
problems have been studied by Kulldorff (1993); see also Heath (1993),
Karatzas (1996), pp. 55–59, Föllmer & Leukert (1998), and Spivak (1998).



2
Contingent Claim Valuation in a
Complete Market

2.1 Introduction

A derivative security (also called contingent claim; cf. Definition 2.1 and
discussion following it) is a financial contract whose value is derived from
the value of another underlying, more basic, security, such as a stock or a
bond. Common derivative securities are put options, call options, forward
contracts, futures contracts, and swaps. These securities can be used for
both speculation and hedging, but their creation and marketing are based
much more on the latter use than the former. Some derivative securities
are traded on exchanges, while others are arranged as private contracts
between financial institutions and their clients. The world-wide market in
derivative securities is in the trillions of dollars.

In order better to understand the concept of derivative securities, let
us begin by considering one of the older derivative securities, a forward
contract. Under this contract, one agent agrees to sell to another agent
some commodity or financial asset at a specified future date at a specified
delivery price. Corporations that need a certain amount of a commodity at
a future date often buy a forward contract for delivery of that commodity.
Corporations that expect to be paid at a future date in a foreign currency
sell forward contracts on that currency. In the first case the corporation
would promise to receive delivery of the commodity, whereas in the second
case it would promise to deliver the currency. In both cases, the corporation
is using the forward contract to lock in a price in advance, i.e., to hedge
uncertainty. Forward contracts can also be used for speculation; a forward
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contract on an asset requires no initial cash outlay by either party, and for
this reason allows speculators much higher leverage than can be obtained
by purchasing and holding the underlying assets.

Futures contracts are like forward contracts, except that unlike forwards,
futures are traded on exchanges and are consequently subject to a number
of regulations. The principal rule is that an agent must deposit money
into a margin account at the time the contract is entered, and this margin
account is credited or debited daily to reflect movement in the futures’ price.
If the margin-account balance falls too low, the agent must replenish it.
This whole process is called marking-to-market. Unlike the case of options
discussed below, forward and futures contracts are designed so that their
initial cost to both parties is zero.

Derivative securities that became popular more recently are the various
options on stocks. Options have been traded on public exchanges since 1973.
The holder of a European call option has the right, but not the obligation,
to buy an underlying security at a specified date (expiration date) for a
contractually specified amount (strike price), irrespective of the market
value of the security on that date. The European put option is the same
as the European call option, except that it entitles the holder to sell. The
American call option and the American put option entitle the holder to
buy or sell, respectively, at any time prior to a specified expiration date.
Besides the European and American options (which, incidentally, are both
traded worldwide, although exchange-traded stock options are typically
American), there is a variety of more “exotic” options. Options allow risk
to be hedged in various ways. The most obvious one is that an investor who
owns a security but intends to sell it by a known future date can buy a put
option on the same security and thus be guaranteed at least the strike price
when the security is sold. If the security price rises above the strike price,
the investor is still able to sell the security at its market value. By taking
combinations of long and short positions in puts and calls, investors can
create a variety of customized contingent claims. Because one of the likely
possibilities available to the holder of an option is to “receive a positive
amount and pay nothing,” arbitrage-based considerations suggest that the
option’s present worth should be positive.

First appearing in 1981, a swap is a contract between two agents in
which cash flows are traded. A common situation is that one agent has
income due to variable-rate interest on some investment, and the other
has income due to fixed-rate interest on a different investment. Because
of their different financial situations, the agents may wish to trade some
part of their income streams. This trade is usually arranged by a financial
institution, which guarantees the contract.

The existence of derivative securities leads to two mathematical ques-
tions: pricing and hedging. The price of publicly traded derivative securities
is set by the law of supply and demand, but many derivative securities are
private contracts in which both parties would like to be assured that a “fair”
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price has been reached. Even for publicly traded derivative securities, the
fact that they are described in terms of an underlying security, whose price
and price history are known, suggests that there should be some way of
theoretically determining a “fair” price. Arbitrageurs are vigilant for dis-
crepancies between the market price of derivatives and their estimation of
the fair price, and immediately take positions in the derivative security
when they perceive such a discrepancy.

More recently, model-based pricing of derivative securities has become
the basis of risk management. A typical risk-management question is how
much a portfolio value will be affected by a certain movement in underlying
asset prices. If the portfolio contains derivative securities, a mathematical
model is needed to answer this question.

The hedging of a derivative security is the problem faced by a financial
institution that sells to a client some contract designed to reduce the client’s
risk. This risk has been assumed by the financial institution, which would
now like to take a position in the underlying security, and perhaps in other
instruments as well, so as to minimize its own exposure to risk. Assumption
of client risk is a principal service of financial institutions; managing this
risk well is a necessary prerequisite for offering this service.

In a complete market model, as set forth in Definition 1.6.1, there are
definitive solutions to both the problem of pricing and the problem of hedg-
ing derivative securities. This method of solution is known as arbitrage
pricing theory, because it proceeds from the observation that an incor-
rectly priced derivative security in a complete market presents an arbitrage
opportunity. A correctly priced derivative security in a complete market
is redundant, in the sense that it can be duplicated by a portfolio in the
nonderivative securities. The portfolio that achieves this duplication is the
hedging portfolio, which the seller of the derivative security can use to re-
move the risk incurred by the sale. Of course, the existence of the hedging
portfolio prompts one to ask why an agent would buy rather than duplicate
a derivative security. It appears that this occurs because markets are not
frictionless. In order to duplicate a derivative security by portfolio manage-
ment, an agent would have to develop a mathematical model, pay brokerage
fees, and gather information about the statistics of the market. Agents avoid
these costs by striking a deal with another agent (intermediated by an ex-
change or a financial institution) or by paying a fee to a financial institution.
A financial institution has modeling expertise and smaller transaction costs
than its clients because of the volume of its transactions and the fact that
many of these take place in-house.

We present the arbitrage pricing theory for European contingent claims
in Section 2.2, and for American contingent claims in Section 2.5. Special
cases of European contingent claims, such as forward and futures contracts,
are treated in Section 2.3, whereas Section 2.4 computes the prices and
hedging portfolios for European call and put options as well as for a certain



2.2 European Contingent Claims 39

type of path-dependent option (Example 4.5) in the context of a model
with constant coefficients. In particular, Example 4.1 derives the celebrated
Black and Scholes (1973) formula for the price of a European call option
in a model with constant interest rate and volatility. The development of
the arbitrage pricing theory for American contingent claims (Section 2.5) is
based on the theory of optimal stopping, which we survey in Appendix D;
special cases, such as the American call and put options, are studied in
detail in Sections 2.6 and 2.7, respectively.

2.2 European Contingent Claims

Throughout this chapter we shall operate in the context of a complete, stan-
dard financial marketM (Definitions 1.1.3, 1.5.1, 1.6.1 and Theorem 1.6.6).
In particular, the price of the money market is governed by

dS0(t) = S0(t)[r(t) dt + dA(t)] (2.1)

and the prices of the stocks satisfy

dSn(t) = Sn(t)

[
bn(t) dt + dA(t) +

N∑
d=1

σnd(t) dW (d)(t)

]
, n = 1, . . . , N,

(2.2)
with σ(t) = (σnd(t))1≤n,d≤N nonsingular for Lebesgue-almost-every t ∈
[0, T ] almost surely. Recall that S0(0) = 1 and S1(0), . . . , SN (0) are positive
constants.

Definition 2.1: A European contingent claim (ECC) is an integrable
cumulative income process C(·). To simplify the notation, we shall always
assume that C(0) = 0 almost surely.

European contingent claims are bought and sold. The buyer, who is said
to assume a long position in the claim, pays some nonrandom amount Γ(0)
at time zero and is thereby entitled to the cumulative income process C(·).
The seller (writer, issuer), who is said to assume a short position, receives
Γ(0) at time zero and must provide C(·) to the buyer. Thus, the seller has
cumulative income process

Γ(t) = Γ(0)− C(t), 0 ≤ t ≤ T . (2.3)

The seller’s objective is to choose a martingale-generating, Γ(·)-financed
portfolio process (π0(·), π(·)) such that his corresponding wealth satisfies
X(T ) ≥ 0 almost surely. In other words, the seller wants to “hedge” the
short position in the contingent claim by trading in the market in such a
way as to make the necessary payments and still be solvent at the final
time, almost surely. Recall from (1.5.8) that the seller’s discounted wealth
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process satisfies

X(t)
S0(t)

= Γ(0)−
∫

(0,t]

dC(u)
S0(u)

+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u) , 0 ≤ t ≤ T .

(2.4)

If π(·) is martingale-generating and if X(T ) ≥ 0 holds almost surely, we
have, upon taking P0-expectations in (2.4), that

x
�
= E0

[∫
(0,T ]

dC(u)
S0(u)

]
≤ Γ(0) . (2.5)

This provides a lower bound on the time-zero price Γ(0) the seller must
charge for the ECC C(·).

Suppose the seller charges the amount x. Because the market was as-
sumed to be complete and the cumulative income process C(·) is integrable
(Definition 1.5.5), the random variable S0(T )

[∫
(0,T ]

dC(u)
S0(u)

]
is financeable:

there is a martingale-generating portfolio π̂(·) satisfying∫
(0,T ]

dC(u)
S0(u)

= x +
∫ T

0

1
S0(u)

π̂′(u)σ(u) dW0(u) a.s. (2.6)

(see Proposition 1.6.2). Define X̂(·) by (2.4) with x replacing Γ(0) and π̂(·)
replacing π(·), namely,

X̂(t)
S0(t)

= x−
∫

(0,t]

dC(u)
S0(u)

+
∫ t

0

π̂′(u)
S0(u)

σ(u) dW0(u), 0 ≤ t ≤ T . (2.4′)

Then (2.6) shows that X̂(T ) = 0 almost surely. With π̂0(t)
�
= X̂(t)− π̂′(t)1

˜
,

the seller has found a martingale-generating, Γ(·)-financed “hedging” port-
folio (π̂0(·), π̂(·)) that results in nonnegative wealth at time T , with
Γ(0) = x. Thus, the seller of the contingent claim can charge x (but no less)
for the ECC C(·) and use the portfolio (π̂0(·), π̂(·)) to hedge his position.

Now let us take conditional expectations with respect to F(t) under the
probability measure P0 in (2.6) to obtain

x +
∫ t

0

1
S0(u)

π̂′(u)σ(u) dW0(u) = E0

[∫
(0,T ]

dC(u)
S0(u)

∣∣∣ F(t)

]
, 0 ≤ t ≤ T .

Substitution into (2.4′) yields

X̂(t)
S0(t)

= E0

[∫
(t,T ]

dC(u)
S0(u)

∣∣∣ F(t)

]
, 0 ≤ t ≤ T . (2.7)

This provides a simple representation for the seller’s wealth process
corresponding to the hedging portfolio.

The buyer of the contingent claim can, if he wishes, hedge his position
by the reverse strategy. He has income process −Γ(·), and (−π̂0(·),−π̂(·))
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is a (−Γ(·))-financed portfolio process corresponding to the wealth process
−X̂(·) (and, in particular, final wealth −X̂(T ) = 0 almost surely).

The above discussion shows that the “fair price” at time zero for the ECC
C(·) is x given by (2.5). To wit, if the ECC were traded at any other price,
then either the seller or the buyer would have an arbitrage opportunity.

We are also interested in the price of the ECC at other times t ∈ [0, T ].
Subtracting (2.4) evaluated first at T and then at t, we obtain

X(T )
S0(T )

=
X(t)
S0(t)

−
∫

(t,T ]

dC(u)
S0(u)

+
∫ T

t

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t ≤ T .

(2.8)

We imagine that at time t, an agent sells the remainder (excluding any pay-
ment at time t) of the ECC C(·) for a price X(t) (measurable with respect
to F(t)), invests X(t) in the market, pays out the contingent claim between
times t and T , and wants to have X(T ) ≥ 0 almost surely. Prompted by
these considerations, we make the following definition.

Definition 2.2: Let C(·) be a European contingent claim. For t ∈ [0, T ]
the value of C(·) at t, denoted by V ECC(t), is the smallest (in the sense of
a.s. domination) F(t)-measurable random variable ξ such that if X(t) = ξ
in (2.8), then for some martingale-generating portfolio process π(·) we have
X(T ) ≥ 0 almost surely. The value V ECC(0) at time t = 0 is called the
(arbitrage-based) price for the ECC at t = 0.

Proposition 2.3: The value at time t of a European contingent claim
C(·) is

V ECC(t) = S0(t) · E0

[∫
(t,T ]

dC(u)
S0(u)

∣∣∣ F(t)

]
, 0 ≤ t ≤ T . (2.9)

In particular, V ECC(0) = x as in (2.5).

Proof. If X(T ) ≥ 0 in (2.8) and π(·) is martingale-generating, then

X(t)
S0(t)

≥ E0

[∫
(t,T ]

dC(u)
S0(u)

∣∣∣ F(t)

]
, 0 ≤ t ≤ T , (2.10)

which shows that V ECC(t) must be at least as large as the right-hand side
of (2.9). But the wealth process X̂(·) of (2.4′), corresponding to the pair
(π̂0(·), π̂(·)) whose existence was established above, satisfies (2.10) with
equality (see (2.7)). It follows that V ECC(t) = X̂(t), which is (2.9). �

Remark 2.4: We may use “Bayes’s rule” (Karatzas and Shreve (1991),
Lemma 3.5.3) to convert (2.9) to a conditional expectation with respect to
the original probability measure P , namely

V ECC(t) =
1

H0(t)
E

[∫
(t,T ]

H0(u) dC(u)
∣∣∣ F(t)

]
, 0 ≤ t ≤ T ,
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where H0(u) �= Z0(u)/S0(u) is the state price density process. In particular,
the fair price of the claim at t = 0 is

V ECC(0) = E

∫
(0,T ]

H0(u) dC(u).

Remark 2.5: Unlike much of the finance literature, our definition of
V ECC(·) is set up so that V ECC(T ) = 0 almost surely. This is consistent
with our convention that processes have RCLL paths, a convention that
requires the integral

∫
(t,T ]

dC(u)
S0(u) in (2.9) to be over the half-open interval

(t, T ]. From (2.9) we have V ECC(T−) = C(T ) − C(T−), so a final jump
in C(·) causes the same final jump in V ECC(·). In particular, if B is an
F(T )-measurable random variable satisfying

E0

[
|B|

S0(T )

]
<∞ (2.11)

and C(·) is given by

C(t) =
{

0 if 0 ≤ t < T ,
B if −t = T , (2.12)

then we have

V ECC(t) = S0(t) · E0

[
B

S0(T )

∣∣∣ F(t)
]

, 0 ≤ t ≤ T , (2.13)

V ECC(T−) = B, V ECC(T ) = 0. (2.14)

Definition 2.6: Let C(·) be a European contingent claim, and define
Γ(·) = V ECC(0)−C(·). The martingale-generating, Γ(·)-financed portfolio
process (π̂0(·), π̂(·)) satisfying

V ECC(t)
S0(t)

= Γ(0)−
∫

(0,t]

dC(u)
S0(u)

+
∫ t

0

1
S0(u)

π̂′(u)σ(u) dW0(u), 0 ≤ t ≤ T , (2.15)

π̂0(t) = V ECC(t)− π̂′(t)1
˜
, 0 ≤ t ≤ T , (2.16)

is called the hedging portfolio for (a short position in) C(·).

Remark 2.7: The representation (2.9) allows us to write (2.15) as∫ t

0

1
S0(u)

π̂′(u)σ(u) dW0(u) = E0

[∫
(0,T ]

dC(u)
S0(u)

∣∣∣ F(t)

]

− E0

[∫
(0,T ]

dC(u)
S0(u)

]
, 0 ≤ t ≤ T ,
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or, in differential form,

π̂′(t)σ(t) dW0(t) = S0(t) · dt

(
E0

[∫
(0,T ]

dC(u)
S0(u)

∣∣∣ F(t)

])
. (2.17)

This formula sometimes enables us to determine π̂(·) explicitly.

2.3 Forward and Futures Contracts

Consider an F(T )-measurable random variable B satisfying (2.11). We re-
gard B as the market value at time T of some asset, such as a stock or
commodity. In this section, we define the forward and futures prices for
this asset.

Suppose that at time zero an agent buys a contract obligating him to
purchase the above asset for the nonrandom delivery price q on the delivery
date T . The seller of this contract, who is taking the short position, agrees
to deliver the asset at time T in exchange for q, even though the market
value at time T is B. According to Remark 2.5, the value process for this
contract is

V FC(t; q) = S0(t) · E0

[
B − q

S0(T )

∣∣∣ F(t)
]

, 0 ≤ t ≤ T (3.1)

provided that

E0

[
1

S0(T )

]
<∞. (3.2)

Example 3.1 (Forward contract to purchase a stock that pays no divi-
dends): Suppose the contract is to purchase one share of the first stock,
i.e., B = S1(T ). If the first stock pays no dividends and σ(·) satisfies the
Novikov condition (1.5.17) with n = 1, then Remark 1.5.11 implies

V FC(t; q) = S1(t)− qS0(t) · E0[1/S0(T )|F(t)], 0 ≤ t ≤ T . (3.3)

If in addition S0(T ) is nonrandom, the hedging portfolio is particularly
simple. The agent assuming the short position sells the contract for
V FC(0; q) = S1(0) − q

S0(T ) at time zero, buys one share of the stock at
cost S1(0), and borrows q

S0(T ) from the money market. At time T , his
money-market debt has grown to q. He delivers the first stock, receives the
delivery price q, and pays off his money-market debt.

The quantity of interest in finance is the forward price of an asset, defined
as follows.

Definition 3.2: Let B be an F(T )-measurable random variable, and
assume that (2.11), (3.2) hold. The forward price process f(·) for B is
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defined by

f(t)
�
=

E0[B/S0(T )|F(t)]
E0[1/S0(T )|F(t)]

, 0 ≤ t ≤ T . (3.4)

From (3.1) we see immediately that f(t) is the unique, F(t)-measurable
solution to the equation

V FC(t; f(t)) = 0. (3.5)

In other words, at time t the value is zero for the contract to buy at date
T the asset at delivery price f(t).

Example 3.3 (Forward price of a stock that pays no dividends): If B =
S1(T ), the first stock pays no dividends, and σ(·) satisfies the Novikov
condition (1.5.17) with n = 1, then (3.3) and (3.5) yield

f(t) =
S1(t)/S0(t)

E0[1/S0(T )|F(t)]
, 0 ≤ t ≤ T . (3.6)

Example 3.4 (Forward price of a stock with nonrandom dividend rate):
If B = S1(T ), the dividend rate process δ1(·) is nonrandom and the pro-
cesses σ11(·), . . . , σ1N (·) are uniformly bounded, then the forward price
is

f(t) =
S1(t)/S0(t)

E0[1/S0(T )|F(t)]
exp

{
−
∫ T

t

δ1(u) du

}
, 0 ≤ t ≤ T . (3.7)

To see this, observe from (1.5.16) that the process S1(t)
S0(t)

exp
{∫ t

0 δ1(u)du
}

is a P0-martingale, so the numerator of (3.4) is

E0[S1(T )/S0(T )|F(t)] =
S1(t)
S0(t)

exp

{
−
∫ T

t

δ1(u) du

}
.

Example 3.5 (Forward price of a stock with nonrandom dividend pay-
ments, when the money market is nonrandom): If B = S1(T ), if the
dividend-payment ρ(·) �

= δ1(·)S1(·) and money-market prices S0(·) are non-
random, and if σ(·) satisfies the Novikov condition (1.5.17) with n = 1, then
according to Remark 1.5.11 the process

S1(t)
S0(t)

+
∫ t

0

ρ(u)
S0(u)

du, 0 ≤ t ≤ T ,

is a martingale under P0. From (3.4) we have

f(t) = S0(T )

[
S1(t)
S0(t)

−
∫ T

t

ρ(u)
S0(u)

du

]
. (3.8)

When a commodity rather than a stock is being priced, there can be a
storage cost, which corresponds to negative ρ(·) in this example. In that
case, (3.8) is called the cost-of-carry formula.
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Forward contracts on assets are not always available, and if they are, they
are available only with delivery price equal to the forward price. Thus, at
the time of purchase, the forward contract has value zero. After purchase,
the value of the contract is typically nonzero. In particular, just before the
delivery date T , a forward contract bought at time zero has value

V FC(T−; f(0)) = B − f(0) = B − E0[B/S0(T )]
E0[1/S0(T )]

.

As the value of a forward contract moves away from zero, one of the
parties to the contract might become concerned about the possibility of
default by the other party. The worried party might wish to see the other
party deposit money into an escrow account. Any such stipulation would,
of course, change the nature of the contract and render inappropriate the
reasoning that led to the forward price formula (3.4).

This leads us to the concept of the futures price ϕ(t) for an asset with
market value B at time T . This futures price process is set such that at
every time t ∈ [0, T ), the futures contract has value zero. Suppose one party
sells (for $0) such a contract to another party at time t. At time t+ dt, the
futures price has moved by an amount ϕ(t + dt) − ϕ(t). According to the
provisions of the contract, if ϕ(t + dt)− ϕ(t) is positive, the party holding
the short position must transfer this amount of money to the party holding
the long position. If ϕ(t + dt) − ϕ(t) is negative, the transfer of money
is in the other direction. This way, the futures contract is “continuously
resettled”† and the value of the contract is always zero. The futures price
for an asset must agree with the market price on the delivery date. We are
now ready for a precise definition.

Definition 3.6: Let B be an F(T )-measurable random variable, and let
ϕ(·) be a European contingent claim whose value is zero for all t ∈ [0, T ]
almost surely, and that satisfies ϕ(T ) = B. Then we say that ϕ(·) is a
futures price process for B.

Theorem 3.7: Let B be an F(T )-measurable random variable satisfying
E0(B2) <∞, and assume that S0(·) is bounded from above and away from
zero, uniformly in (t, ω) ∈ [0, T ]× Ω. Then the futures price process for B
exists, is unique, and is given by

ϕ(t) = E0[B|F(t)], 0 ≤ t ≤ T. (3.9)

†The mechanism for the transfer of money is provided by the margin ac-
counts set up by brokers dealing in futures. Money is credited or debited to these
accounts daily, depending on the movement of futures prices. Investors can with-
draw money when the balance exceeds a certain threshold, and are subject to a
margin call if the balance falls too low.
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Proof. We first show that the square-integrable P0-martingale ϕ(·)
defined by (3.9) satisfies the conditions of Definition 3.6. Define

I(t)
�
=
∫ t

0

1
S0(u)

dϕ(u), 0 ≤ t ≤ T , (3.10)

which is also a square-integrable martingale under P0. From Proposi-
tion 2.3, the value process for ϕ(·) is

V ϕ(t) = S0(t) · E0[I(T )− I(t)|F(t)] = 0, 0 ≤ t ≤ T. (3.11)

It is obvious that ϕ(T ) = B.
We next prove uniqueness. Suppose ϕ(·) is any ECC satisfying the condi-

tions of Definition 3.6. With I(·) as in (3.10) we have (3.11), which implies
that I(·) is a martingale under P0. Hence ϕ(t) =

∫ t

0 S0(u)dI(u), 0 ≤ t ≤ T

is also a local martingale, so ϕfv(·) ≡ 0, ϕ�c(·) = ϕ(·), and

E0〈I〉(T ) = E0

∫ T

0

1
S2

0(u)
d〈ϕ〉(u) <∞

by (1.5.9). Since I(·) is a square-integrable martingale, ϕ(·) is also. In
particular, ϕ(t) = E0[ϕ(T )|F(t)] = E0[B|F(t)], 0 ≤ t ≤ T . �

Remark 3.8: Because the value of a futures contract is always zero, an
investor who holds a position in futures can “close out” that position at any
time and at no cost. This is in fact the fate of most futures contracts; the
position is closed out before maturity. If a long position in a futures contract
is not closed out prior to maturity T , then in actual markets the investor
must receive delivery of the asset at market price B. Since purchasing the
futures at some time t ∈ [0, T ], the investor has received a total cash flow of∫ T

t
dϕ(s) = B − ϕ(t), and so after the terminal payment of B the investor

has paid the net amount ϕ(t) between times t and T . In this sense, the
investor has purchased the asset for the futures price ϕ(t) prevailing at the
time the futures contract was entered. However, the payment of ϕ(t) occurs
continuously prior to maturity, whereas for a forward contract the payment
occurs at maturity.

It is common in finance to approximate futures prices by forward prices.
The relationship between these two quantities is described in the following
corollary.

Corollary 3.9 (Forward-futures spread): Under the conditions of Theo-
rem 3.7, we have

f(t) = ϕ(t) +
Cov0[B, 1/S0(T )|F(t)]

E0[1/S0(T )|F(t)]
, 0 ≤ t ≤ T ,

where

Cov0[X, Y |F(t)]
�
= E0

{
[X −E0(X|F(t))] · [Y − E0(Y |F(t))]

∣∣∣ F(t)
}

.
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In particular, the forward price f(0) agrees with the future price ϕ(0) if
and only if B and 1/S0(T ) are uncorrelated under P0.

Proof. Because

Cov0[X, Y |F(t)] = E0[XY |F(t)]− E0[X|F(t)] · E0[Y |F(t)],

we may rewrite (3.4) as

f(t) = E0[B|F(t)] +
Cov0[B, 1/S0(T )|F(t)]

E0[1/S0(T )|F(t)]
.

The result follows from Theorem 3.7. �

Clearly, f(t) = ϕ(t)∀ 0 ≤ t ≤ T if the money-market price S0(T ) is
deterministic (nonrandom).

2.4 European Options in a
Constant-Coefficient Market

In this section we present examples of European options in the context of
a complete, standard market with constant risk-free rate r(·) ≡ r, dividend
rate vector δ(·) ≡ δ = (δ1, . . . , δN )′, volatility matrix σ(·) ≡ σ, and with
A(·) ≡ 0:

dS0(t) = S0(t)r dt (4.1)

dSn(t) = Sn(t)

[
bn(t) dt +

N∑
d=1

σnd dW (d)(t)

]

= Sn(t)

[
(r − δn) dt +

N∑
d=1

σnd dW
(d)
0 (t)

]
, n = 1, . . . , N (4.2)

(see (1.5.6) and (1.6.16)). One of these is the Black–Scholes formula. Com-
pleteness of the market is equivalent to nonsingularity of σ. For this
analysis, it is not necessary to assume that the vector b(·) of mean rates of
return is constant, and consequently, the market price of risk process

θ(t) = σ−1[b(t) + δ − r1
˜
] (4.3)

is not necessarily constant either.
Solving (4.1), (4.2), we obtain S0(t) = ert and

Sn(u) = hn (u− t, S(t), σ(W0(u)−W0(t))) , 0 ≤ t ≤ u ≤ T,

n = 1, . . . , N, (4.4)

where h : [0,∞)× RN
+ × RN → RN

+ is the function defined by

hn(t, p, y)
�
= pn exp

[(
r − δn −

1
2
ann

)
t + yn

]
, n = 1, . . . , N, (4.5)
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and a
�= (an�)1≤n≤�≤N = σσ′. Here we denote by S(t) = (S1(t), . . . , SN (t))′

the vector of stock prices.
Consider an ECC of the type C(t) = 0, 0 ≤ t < T , and C(T ) = ϕ(S(T ));

here ϕ : RN
+ → R is a continuous function satisfying E0|ϕ(S(T ))| < ∞.

According to Proposition 2.3, the value process for this claim is

V ECC(t) = e−r(T−t)E0[ϕ(S(T ))|F(t)]

= e−r(T−t)E0

[
ϕ (h(T − t, S(t), σ(W0(T )−W0(t))))

∣∣∣ F(t)
]

= e−r(T−t)
∫

RN

ϕ(h(T − t, S(t), σz))
1

(2π(T − t))N/2

exp
{
− ‖z‖2

2(T − t)

}
dz

because W0(·) is a Brownian motion under P0, relative to the filtration
{F(t)}0≤t≤T . From these considerations, we see that with

u(s, x)
�
=

 e−rt
∫

RN ϕ(h(s, x, σz)) 1
(2πs)N/2 exp{−‖z‖2

2s }dz, s > 0, x ∈ RN
+ ,

ϕ(x), s = 0, x ∈ RN
+ ,

(4.6)

the value process of the ECC is

V ECC(t) = e−r(T−t)E0[ϕ(S(T ))|F(t)] = u(T−t, S(t)), 0 ≤ t ≤ T . (4.7)

Using Remark 2.7, it is possible to compute the hedging portfolio. Indeed,
under appropriate growth conditions on the function ϕ (e.g., polynomial
growth in both ‖x‖ and 1/‖x‖), the function u of (4.6) is the unique classical
solution of the Cauchy problem

1
2

N∑
n=1

N∑
�=1

an�xnx�
∂2u

∂xn∂x�

+
N∑

n=1

(r − δn)xn
∂u

∂xn
− ru =

∂u

∂s
, on (0, T ]× RN

+ ,

u(0, x) = ϕ(x), ∀x ∈ RN
+ , (4.8)

by the Feynman–Kac theorem (e.g., Karatzas and Shreve (1991), Theo-
rem 5.7.6 and Remark 5.7.8). Applying Itô’s rule and invoking the second
representation of dSn(t) in (4.2), we obtain

du(T−t, S(t)) = ru(T−t, S(t)) dt+
N∑

n=1

N∑
�=1

σn�Sn(t)
∂u

∂xn
(T−t, S(t)) dW

(�)
0 (t)

or equivalently,

S0(t) · dt

(
u(T − t, S(t))

S0(t)

)
= π̂′(t)σ dW0(t)
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with π̂(·) = (π̂1(·), . . . , π̂N (·))′ given by

π̂n(t) = Sn(t)
∂u

∂xn
(T − t, S(t)), 0 ≤ t < T, (4.9)

for n = 1, . . . , N. Recalling (4.7) and Remark 2.7, we conclude that π̂(·) is
indeed the hedging portfolio of Definition 2.6. At any time t, this portfolio
holds ∂u

∂xn
(T − t, S(t)) shares of the nth stock, n = 1, . . . , N . The hedging

portfolio also has a component

π̂0(t) = u(T − t, S(t))−
N∑

n=1

π̂n(t), 0 ≤ t < T, (4.10)

recording holdings in the money market.
It should be noted in (4.6), (4.7) and (4.9), (4.10) that the value of the

ECC and the hedging portfolio depend on r, δ, and σ, but not on the vector
b(·) of mean rates of return of the stocks. This fact makes the formulae
particularly attractive, because the mean rates of return can be difficult to
estimate in practice.

Example 4.1 (European call option): A European call option on the
first stock in our market is the ECC given by C(t) = 0, 0 ≤ t < T and
C(T ) = (S1(T ) − q)+. The nonrandom constant q > 0 is called the strike
price, and T is the expiration date. The random variable (S1(T ) − q)+ is
the value at time T of the option to buy one share of the first stock at
the (contractually specified) price q. If S1(T ) > q, this option should be
exercised by its holder; the stock can be resold immediately at the market
price, at a profit of S1(T ) − q. If S1(T ) < q, the option should not be
exercised; it is worthless to its holder.

With ϕ(x)
�
= (x1 − q)+, the Gaussian integration in (4.6) can be carried

out explicitly, to yield

uECC(s, x1; q) =

x1e
−δ1s Φ(ρ+(s, x1; q))
−qe−rsΦ(ρ−(s, x1; q)), 0 < s ≤ T, x1 ∈ (0,∞),

(x1 − q)+, s = 0, x1 ∈ (0,∞),
(4.11)

where

ρ±(s, x1; q)
�
=

1√
sa11

[
log
(

x1

q

)
+
(

r − δ1 ±
1
2
a11

)
s

]
,

Φ(z)
�
=

1√
2π

∫ z

−∞
e−u2/2 du.

This is the celebrated Black and Scholes (1973) option pricing formula.
The hedging portfolio is (see (4.9), (4.10))
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πECC
1 (t) = S1(t)

∂V ECC

∂x1
(T − t, S1(t); q), πECC

2 (t) = · · · = πECC
N (t) = 0,

πECC
0 (t) = V ECC(T − t, S1(t); q) − S1(t)

∂V ECC

∂x1
(T − t, S1(t)q), 0 ≤ t < T.

(4.12)

Exercise 4.2: Show that the function u(s, x1) ≡ uECC(s, x1; q) of (4.11)
satisfies

x1 ·
∂u

∂x1
(s, x1) ≥ u(s, x1), 0 < s ≤ T, x1 ∈ (0,∞),

and hence that we have

πECC
0 (t) ≤ 0, 0 ≤ t < T, (4.12′)

from (4.12). In other words, the hedging portfolio for a (short position in
a) European call option always borrows.

Example 4.3 (European put option): The European put option confers
to its holder the right to sell a stock at a future time at a prespecified
price. We model a put on the first stock as the ECC with C(t) = 0 for
0 ≤ t < T and C(T ) = (q − S1(T ))+. Because (q − S1(T ))+ = −(S1(T )−
q) + (S1(T )− q)+, holding a long position in a European put is equivalent
to holding simultaneously a short position in a forward contract and a long
position in a European call. This is the so-called put–call parity relationship.
We have already priced the European call; the forward contract is easily
priced, as we now describe.

First note from Remark 1.5.11 that

e−(r−δ1)tS1(t) = S1(0) +
∫ t

0
e−(r−δ1)u[dS1(u)− (r − δ1)S1(u) du]

= S1(0) +
∫ t

0
eδ1u

[
d

(
S1(u)
S0(u)

)
+

S1(u)
S0(u)

δ1 du

]
is a martingale under P0. Consequently, the forward contract value process
(see (3.1)) is

S0(t) · E0

[
S1(T )− q

S0(T )

∣∣∣ F(t)
]

= e−δ1(T−t)S1(t)− e−r(T−t)q

= uFC(T − t, S1(t); q),

where

uFC(s, x1; q)
�
= e−δ1sx1 − e−rsq. (4.13)

The hedging portfolio is (see (4.9), (4.10))

πFC
1 (t) = e−δ1(T−t)S1(t), πFC

2 (t) = · · · = πFC
N (t) = 0,

πFC
0 (t) = −e−r(T−t)q, 0 ≤ t < T. (4.14)
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In other words, at time t = 0 the contract is sold for e−δ1T S1(0)− e−rT q.
The seller invests the proceeds in the first stock and in the money market,
respectively, buying e−δ1T shares of stock and borrowing e−rT q from the
money market. Dividends are reinvested in the stock. The yield per share
of the stock is Y1(·) defined by (1.11), and the number of shares owned is
πF C
1 (·)
S1(·) , so we have the stochastic differential equation

dπFC
1 (t) =

πFC
1 (t)
S1(t)

dY1(t) = πFC
1 (t)

[
(b1 + δ1)dt +

N∑
d=1

σnd dW (d)(t)

]
,

whose solution is

πFC
1 (t) = πFC

1 (0)eδ1t S1(t)
S1(0)

= e−δ1(T−t)S1(t).

At time T , the agent owns one share of the stock, which he delivers at
price q. This q is the amount of money needed to pay off the debt to the
money market.

Returning to the European put option, we define

uEP (s, x1; q)
�
= −uFC(s, x1; q) + uEC(s, x1; q). (4.15)

The value process for the European put is uEP (T−t, S1(t); q). The hedging
portfolio is

πEP
n (t) = −πFC

n (t) + πEC
n (t), 0 ≤ t < T, n = 0, 1, . . . , N. (4.16)

Example 4.4: Consider an ECC of the form C(t) = 0, 0 ≤ t < T
and C(T ) = ϕ(S1(T )), where ϕ : [0,∞) → R is a convex function. Such a
function has a nondecreasing, right-continuous derivative D+ϕ satisfying

ϕ(x) = ϕ(0) +
∫ x

0
D+ϕ(q) dq, x ≥ 0 (4.17)

(e.g., Karatzas and Shreve (1991), Problems 3.6.20 and 3.6.21).
We establish an integration-by-parts formula for D+ϕ. There is a unique

measure µ on the Borel subsets of [0,∞) characterized by

µ((a, b]) = D+ϕ(b)−D+ϕ(a), 0 ≤ a ≤ b.

Let ρ : R → [0,∞) be a function of class C∞, with support in [0, 1] and
satisfying

∫ 1
0 ρ(z)dz = 1. Define a sequence of mollifications of ϕ by

ϕn(q) =
∫ 1

0
ϕ
(
q +

z

n

)
ρ(z) dz = n

∫ ∞

−∞
ϕ(y)ρ(ny − nq) dy.

Then each ϕn is of class C∞, and limn→∞ ϕn(q) = ϕ(q), limn→∞ ϕ′
n(q) =

D+ϕ(q) for all q ≥ 0. Furthermore, for any bounded, Borel-measurable
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function g : [0,∞)→ R, we have

lim
n→∞

∫ b

a

g(q)ϕ′′
n(q) dq =

∫
(a,b]

g(q)µ(dq), 0 ≤ a ≤ b,

a fact that can be proved by first considering functions g that are indicators
of intervals. If g is a C1(R)-function, we may let n→∞ in the integration-
by-parts formula

g(b)ϕ′
n(b)− g(a)ϕ′

n(a)−
∫ b

a

g′(q)ϕ′
n(q) dq =

∫ b

a

g(q)ϕ′′
n(q) dq

to obtain

g(b)D+ϕ(b)− g(a)D+ϕ(a)−
∫ b

a

g′(q)D+ϕ(q) dq =
∫ b

a

g(q)µ (dq). (4.18)

We now fix x1 ≥ 0 and apply (4.18) with g(q) = (x1 − q)+, a = 0 and
b = x1, to obtain

ϕ(x1)− ϕ(0)− x1D
+ϕ(0) =

∫
(0,∞)

(x1 − q)+µ (dq) (4.19)

in conjunction with (4.17). Formula (4.19) allows us to compute the value
process for the contingent claim C(T ) = ϕ(S1(T )) at the beginning of this
example. Indeed, this contingent claim has the value process

e−r(T−t)E0[ϕ(S(T ))|F(t)] = e−r(T−t)E0

[
ϕ(0) + D+ϕ(0) · S1(T )

+
∫

(0,∞)
(S1(T )− q)+µ(dq)

∣∣∣∣F(t)

]
= e−r(T−t)ϕ(0) + D+ϕ(0) · uFC(T − t, S1(t); 0)

+
∫

(0,∞)
uEC(T − t, S1(t); q)µ(dq)

(cf. (4.7)), where uFC is defined by (4.13) and uEC by (4.11).

Example 4.5 (A path-dependent option): Let us take N = 1, σ = σ11 >
0 and assume that b1(·) is deterministic, so the one-dimensional Brow-
nian motions W (·) and W0(·) both generate the filtration {F(t)}0≤t≤T .
We assume without loss of generality that we are on the canonical space
Ω = C([0, T ]), the space of real-valued continuous functions on [0, T ], and
that W0 is the coordinate mapping process W0(t) = ω(t), 0 ≤ t ≤ T , for all
ω ∈ Ω.

Consider an ECC of the form C(t) = 0 for 0 ≤ t < T and C(T ) = G(ω),
where G : C([0, T ])→ R is a functional satisfying under P0 the conditions
(E.4)–(E.6) of Appendix E. Then from the Clark formula (E.7), the value
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process (2.9) for the above ECC is

V ECC(t) = e−r(T−t)E0[G(W0)|F(t)]

= e−r(T−t)E0G(W0)

+e−r(T−t)
∫ t

0
E0[∂G(W0; (s, T ])|F(s)]dW0(s).

From Remark 2.7 we see that the hedging portfolio is

π1(t) =
1
σ

e−r(T−t)E0[∂G(W0; (t, T ])|F(t)],

π0(t) = V ECC(t)− π1(t).

In particular, if

C(T ) = max
0≤t≤T

S1(t) = S1(0) · max
0≤t≤T

{
exp

[(
r − σ2

2

)
t + σW0(t)

]}
,

(4.20)

we have a so-called look-back option (LBO).
For the look-back option of (4.20), we have G(W0) = S1(0) ·

exp[σ max0≤t≤T (W0(t) + νt)], where ν
�
= r

σ −
σ
2 . With W̃ (t)

�
= W0(t) +

νt, M̃ (t) �= max0≤s≤t W̃ (s), we obtain from Example E.5 of Appendix E:

π1(t) = e−r(T−t)S1(0)
[
eσM̃(t)f(T − t, M̃(t)− W̃ (t))

+ σeσW̃ (t)
∫ ∞

M̃(t)−W̃ (t)
f(T − t, ξ)eσξdξ

]
,

V LBO(t) = e−r(T−t)E0 [G(W0)|F(t)]

= e−r(T−t)S1(0)

[
eσM̃(t) + σeσW̃ (t)

∫ ∞

M̃(t)−W̃ (t)
f(T − t, ξ)eσξdξ

]
,

where f is defined in (E.11). We deduce from this last formula that the
look-back option of (4.20) has value

V LBO(0) = e−rT S1(0)
{

1 + σ

∫ ∞

0
eσbf(T, b)db

}
= e−rT S1(0)

{
1 + σ

∫ ∞

0
eσb

[
1− Φ

(
b− νT√

T

)]
db

+ σ

∫ ∞

0
eb(2ν+σ)

[
1− Φ

(
b + νT√

T

)]
db

}
at time t = 0.
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2.5 American Contingent Claims

American contingent claims differ from European contingent claims in that
the buyer of an American contingent claim can opt, at any time of his
choice, for a lump-sum settlement of the claim. The amount of this set-
tlement is specified by a stochastic process, which is part of the claim’s
description. In this section, we define the value of an American contingent
claim and characterize it in terms of the Snell envelope of the discounted
payoff for the claim.

Definition 5.1: An American contingent claim (ACC) consists of a cu-
mulative income process C(·) satisfying C(0) = 0 almost surely, and of an
{F(t)}-adapted, RCLL lump-sum settlement process L(·). We assume that
the discounted payoff process

Y (t)
�
=
∫

(0,t]

dC(u)
S0(u)

+
L(t)
S0(t)

, 0 ≤ t ≤ T, (5.1)

is bounded from below, uniformly in t ∈ [0, T ] and ω ∈ Ω, and continuous
(jumps in C(·) and L(·) occur at the same time and offset one another, i.e.,
they are of equal size and opposite direction), and satisfies

E0

[
sup

0≤t≤T
Y (t)

]
<∞. (5.2)

Just as with a European contingent claim, the buyer (or holder) of an
ACC, who is said to assume a long position in the claim, pays some nonran-
dom amount γ at the initial time and is thereby entitled to the cumulative
income process C(·). The seller, who is said to assume a short position,
receives γ at time zero and provides C(·) to the buyer. Here, however, the
buyer also gets to choose an {F(t)}-stopping time τ : Ω→ [0, T ], called the
exercise time. At time τ , the buyer forgoes all future income from C(·) and
receives instead the lump-sum settlement L(τ). Thus, once τ is chosen, the
cumulative income process to the seller is

Γ(t) = γ − C(t ∧ τ)− L(τ)1{t≥τ}, 0 ≤ t ≤ T. (5.3)

In particular, on the event {τ = 0}, the seller receives γ(0) = γ − Γ(0)
at the initial time and nothing more. The buyer has cumulative income
process −Γ(·).

For many American contingent claims, C(·) ≡ 0. This is the case, for ex-
ample, with American options. An American call option entitles its holder
to buy one share of a stock, say the first one, at any time prior to T
at a specified strike price q > 0; it is modeled by setting C(·) ≡ 0,
L(t) = (S1(t)− q)+.

A prepayable mortgage is a more complex American contingent claim.
We model this by assigning the long position to the borrower, since the
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borrower gets to choose the time of prepayment. The original principal is
−γ, −C(t) is the cumulative mortgage payment made up to time t, −L(t)
is the remaining principal after any payment at time t, and T is the term
of the mortgage. Every upward jump in −C(·) corresponds to a regularly
scheduled payment and creates a downward jump of equal magnitude in
−L(·), so the discounted payoff process Y (·) is continuous.

As with a European contingent claim, the seller of an ACC must choose a
portfolio to hedge the risk associated with his short position. This hedging is
complicated by his uncertainty about the exercise time τ appearing in (5.3).
The simplest case is when τ = T , because then the hedging and pricing are
like those of a European claim. In this case, the seller’s cumulative income
process is given by γ − C(t) − L(T )1{t=T} for 0 ≤ t ≤ T, and if π(·) is a
martingale-generating portfolio, the wealth process is given by

X(t)
S0(t)

= γ −
∫

(0,t]

dC(u)
S0(u)

− L(T )
S0(T )

1{t=T}

+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t ≤ T (5.4)

(see (1.5.8)). The seller wants X(T ) ≥ 0, or equivalently,

Y (T ) =
∫

(0,T ]

dC(u)
S0(u)

+
L(T )
S0(T )

≤ γ +
∫ T

0

1
S0(u)

π′(u)σ(u) dW0(u) (5.5)

almost surely. To ensure that he can make the lump-sum payment if the
buyer should stop prematurely, the seller also wants X(t) ≥ L(t) a.s. for
0 ≤ t < T . This condition, coupled with (5.5), yields

Y (t) =
∫

(0,t]

dC(u)
S0(u)

+
L(t)
S0(t)

≤ γ +
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u) a.s. ∀ t ∈ [0, T ]. (5.6)

Suppose (5.6) holds. Since both sides are continuous in t, the probability-
zero event on which the inequality is violated can be chosen not to depend
on t. Therefore, the inequality holds if t is replaced by any random time τ
taking values in [0, T ]:

Y (τ) =
∫

(0,τ ]

dC(u)
S0(u)

+
L(τ)
S0(τ)

≤ γ +
∫ τ

0

1
S0(u)

π′(u)σ(u) dW0(u) a.s.

(5.6′)
This is just the statement that the seller, with cumulative income pro-
cess (5.3), has nonnegative wealth after settling the ACC at any exercise
time τ chosen by the buyer.

Definition 5.2: Let (C(·), L(·)) be an American contingent claim. The
value of the claim at time zero is
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V ACC(0)
�
= inf{γ ∈ R; there exists a martingale-generating

portfolio process π(·) satisfying (5.6)}.

A hedging portfolio for (C(·), L(·)) is a martingale-generating portfolio
process π̂(·) satisfying (5.6) when γ = V ACC(0).

Theorem 5.3: We have

V ACC(0) = sup
τ∈S0,T

E0Y (τ), (5.7)

where S0,T is the set of stopping times taking values in [0, T ]. Furthermore,
there is a stopping time τ∗ attaining this supremum and there is a hedging
portfolio π̂(·) such that

Y (τ∗) = V ACC(0) +
∫ τ∗

0

1
S0(u)

π̂′(u)σ(u) dW0(u) a.s. (5.8)

Remark 5.4: Equation (5.8) asserts that if the seller uses the hedging
portfolio π̂(·) and the buyer chooses the stopping time τ∗, then after settle-
ment the seller has wealth X(τ∗) = 0. The buyer, whose cumulative income
process is the negative of that of the seller, can hedge his long position with
−π̂(·) and after settlement have wealth −X(τ∗) = 0. The stopping time τ∗

is an optimal exercise time for the buyer of the ACC.

Proof of Theorem 5.3. By the addition of a constant, if necessary,
the process Y (·) can be assumed nonnegative, and we can bring the
results of Appendix D to bear. According to Theorem D.7, there is a P0-
supermartingale {ξ(t),F(t); 0 ≤ t ≤ T} with RCLL paths, called the
Snell envelope of Y (·), such that

ξ(t) ≥ Y (t) for all t ∈ [0, T ]

almost surely, and

ξ(v) = ess supτ∈Sv,T
E0[Y (τ)|F(v)] a.s., ∀ v ∈ S0,T , (5.9)

where Sv,T
�
= {τ ∈ S0,T ; v ≤ τ ≤ T a.s.}. In particular, ξ(0) =

supτ∈S0,T
E0Y (τ). According to Theorem D.12, the stopping time

τ∗ �
= inf{t ∈ [0, T ); ξ(t) = Y (t)} ∧ T

satisfies ξ(0) = E0Y (τ∗).
Theorem D.13 asserts that ξ(·) = M(·)−Λ(·), where M(·) is a uniformly

integrable RCLL martingale under P0, and Λ(·) is an adapted, continu-
ous, nondecreasing process with Λ(0) = Λ(τ∗) = 0 a.s. Because of our
assumption of market completeness, the F(T )-measurable random vari-
able B

�
= S0(T )M(T ) is financeable; i.e., there is a martingale-generating
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portfolio process π̂(·) satisfying

M(T ) = ξ(0) +
∫ T

0

1
S0(u)

π̂′(u)σ(u) dW0(u) (5.10)

(cf. Proposition 1.6.2). Taking conditional expectations with respect to F(t)
in (5.10), we obtain

Y (t) ≤ ξ(t) = M(t)− Λ(t)

= ξ(0)− Λ(t) +
∫ t

0

1
S0(u)

π̂′(u)σ(u) dW0(u)

≤ ξ(0) +
∫ t

0

1
S0(u)

π̂′(u)σ(u) dW0(u), 0 ≤ t ≤ T. (5.11)

It follows immediately that V ACC(0) ≤ ξ(0).
Now suppose that (5.6) is satisfied for some γ ∈ R and some martingale-

generating portfolio process π(·); take expectations in (5.6′) to obtain
E0Y (τ) ≤ γ,∀ τ ∈ S0,T . It develops that ξ(0) ≤ γ, and thus ξ(0) ≤
V ACC(0).

Having thus established ξ(0) = V ACC(0), we see from (5.11) that π̂(·) is
a hedging portfolio and (5.8) holds. ��

Remark 5.5: The martingale M(·) in the proof of Theorem 5.3 is actually
continuous, as one can see by considering the second equality in (5.11).
Hence, the Snell envelope ξ(·) is also continuous.

Remark 5.6: If γ = V ACC(0), and π(·) = π̂(·) is the hedging portfolio
of Theorem 5.3, then (5.6) holds and implies (5.6′) for any random time
τ taking values in [0, T ]. Thus, even if the purchaser of the contingent
claim is allowed to choose τ with knowledge of future prices, the seller of
the claim is not exposed to any risk if he uses the hedging portfolio of
Theorem 5.3. �

We wish to extend the notion of the value of an ACC to times other than
zero. Suppose that an ACC is given, and consider that at time s ∈ [0, T ]
a buyer pays the amount γ(s) (an F(s)-measurable random variable) to
receive the remaining income process {C(t) − C(s); t ∈ [s, τ ]} up to a
stopping time τ ∈ Ss,T , at which time he receives the lump sum L(τ). The
argument that led to (5.6) now leads to the condition for the seller’s desired
hedging:

Y (t)−
∫

(0,s]

dC(u)
S0(u)

=
∫

(s,t]

dC(u)
S0(u)

+
L(t)
S0(t)

≤ γ(s)
S0(s)

+
∫ t

s

1
S0(u)

π′(u)σ(u) dW0(u) a.s.,

∀ t ∈ [s, T ]. (5.12)
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Definition 5.7: Let (C(·), L(·)) be an American contingent claim. The
value of the claim at time s ∈ [0, T ], denoted by V ACC(s), is the smallest
F(s)-measurable random variable γ(s) such that (5.12) is satisfied by some
martingale-generating portfolio process π(·).

Theorem 5.8: For s ∈ [0, T ], we have

V ACC(s) = S0(s)

[
ξ(s)−

∫
(0,s]

1
S0(u)

dC(u)

]
, (5.13)

where ξ(·) is the Snell envelope of Y (·) and satisfies (5.9). Furthermore,
the stopping time

τ∗
s

�
= inf{t ∈ [s, T ); ξ(t) = Y (t)} ∧ T

satisfies ξ(s) = E[Y (τ∗
s )|F(s)] a.s., and with π̂(·) the hedging portfolio of

Theorem 5.3, equality holds in (5.12) at τ∗
s :

Y (τ∗
s )−

∫
(0,s]

dC(u)
S0(u)

=
V ACC(s)

S0(s)
+
∫ τ∗

s

s

1
S0(u)

π̂′(u)σ(u) dW0(u) a.s.

(5.14)

Proof. Replace t in (5.12) by an arbitrary τ ∈ Ss,T and take conditional
expectations, to obtain

E0[Y (τ)|F(s)] −
∫

(0,s]

dC(u)
S0(u)

≤ γ(s)
S0(s)

a.s.

and thus

ξ(s)−
∫

(0,s]

dC(u)
S0(u)

≤ V ACC(s)
S0(s)

a.s. (5.15)

For the reverse inequality, let t ∈ [s, T ] be given and observe from (5.11)
that

ξ(t)− ξ(s) =
∫ t

s

1
S0(u)

π̂′(u)σ(u) dW0(u)− [Λ(t)− Λ(s)].

Because Y (t) ≤ ξ(t) and Λ(t)− Λ(s) ≥ 0, we have

Y (t)−
∫

(0,s]

dC(u)
S0(u)

≤ ξ(t)−
∫

(0,s]

dC(u)
S0(u)

≤ ξ(s)−
∫

(0,s]

dC(u)
S0(u)

+
∫ t

s

1
S0(u)

π̂′(u)σ(u) dW0(u) a.s.

(5.16)

This shows that (5.12) is satisfied with

γ(s)
S0(s)

= ξ(s)−
∫

(0,s]

dC(u)
S0(u)

,
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whence

V ACC(s)
S0(s)

≤ ξ(s)−
∫

(0,s]

dC(u)
So(u)

.

Replacing t by τ∗
s in (5.16), we obtain equality because Y (τ∗

s ) = ξ(τ∗
s )

and Λ(τ∗
s )− Λ(s) = 0 (Theorem D.13, especially (D.34)). ��

Remark 5.9: Just as in Remark 5.4, we see here that the buyer of the
ACC can hedge his position with the portfolio process −π̂(·) if he calls for
settlement at time τ∗

s . Equation (5.14) is the statement that after settle-
ment, both buyer and seller will have zero wealth. The stopping time τ∗

s is
an optimal exercise time in Ss,T for the buyer of the ACC.

Remark 5.10: Let (C(·), L(·)) be an American contingent claim. If the
buyer is forced to choose the exercise time τ = T , then the value of the
claim at time s is determined by formula (2.9) for European claims, namely

V ECC(s) = S0(s)E0

[∫
(s,T ]

dC(u)
S0(u)

+
L(T )
S0(T )

∣∣∣ F(s)

]
, 0 ≤ s ≤ T.

The difference between the “American value”

V ACC(s) = S0(s)

[
ξ(s)−

∫
(0,s]

dC(u)
S0(u)

]
, 0 ≤ s ≤ T,

and this “European value” is called the early exercise premium

e(s) �= V ACC(s)− V ECC(s), 0 ≤ s ≤ T. (5.17)

Because ∫ T

0

dC(u)
S0(u)

+
L(T )
S0(T )

= Y (T ) = ξ(T ) = M(T )− Λ(T ),

we have

e(s)
S0(s)

= ξ(s)−E0[Y (T )|F(s)] = E0[Λ(T )|F(s)] − Λ(s)

= E0

[∫ T

s

S0(u)dΛ(u)
S0(u)

∣∣ F(s)

]
, 0 ≤ s ≤ T. (5.18)

Thus, from (2.9) of Proposition 2.3, the early exercise premium is itself
the value process for an ECC, namely, the cumulative income process∫ t

0 S0(u)dΛ(u), 0 ≤ t ≤ T . We shall offer some precise computations for
e(·) and Λ(·) in the case of the American put option in Section 2.7.

Remark 5.11: Setting s = 0 in (5.18), we see that

e(0) = sup
τ∈S0,T

E0Y (τ)− E0Y (T ).
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It is an easy consequence of the optional sampling theorem (e.g., Karatzas
and Shreve (1991), pp. 19–20) that if the discounted payoff process Y (·)
is a P0-submartingale, then e(0) = 0, and the ACC of Definition 5.1 is
equivalent to its ECC counterpart. Then, of course, the exercise time τ = T
is optimal for the holder of the ACC (although earlier exercise might also
be optimal).

2.6 The American Call Option

This section develops a variety of results for American call options. We
show that the value of an American call does not exceed the price of the
underlying stock. If the call is perpetual, i.e., the expiration time is T =∞,
and the stock pays no dividends, then, regardless of the exercise price, the
value of the call agrees with the price of the stock, but there is no optimal
exercise time. If T <∞ and the stock pays no dividends, the American call
need not be exercised before maturity, and therefore its value is the same
as that of a European call. All these facts are simple consequences of the
optional sampling theorem.

The latter part of this section is devoted to a perpetual American call
on a dividend-paying stock, when most of the coefficient processes in the
model are constant. In this case, it is optimal to wait to exercise the call
until the underlying stock price rises to a threshold, although this may
never happen. The threshold is characterized in Theorem 6.7.

In this section we are concerned with an American call on a single stock,
and we simplify notation by assuming that this is the only stock. Thus,
we set N = D = 1 and we write S(·), σ(·), b(·), and δ(·) in place of S1(·),
σ11(·), b1(·), and δ1(·).

To cast an American call option on the stock, with exercise price q > 0,
into the framework of American contingent claims (Definition 5.1), we set
C(·) ≡ 0, L(t) = (S(t)− q)+, and thus the discounted payoff process is

Y (t) =
(S(t)− q)+

S0(t)
. (6.1)

For a finite planning horizon (expiration date) T , let us denote by V AC(t;T )
the value of the American call at time t ∈ [0, T ]. According to Theorem 5.8,
we have

V AC(t;T )
S0(t)

= ess supτ∈St,T
E0[Y (τ)|F(t)], 0 ≤ t ≤ T, (6.2)

where St,T is the set of {F(t)}-stopping times taking values in [t, T ]. We
note from Remark 1.5.11 that when δ(·) ≥ 0, then

S(t)
S0(t)

= S(0) · exp
{∫ t

0
σ(u) dW0(u)−

∫ t

0

(
1
2
σ2(u) + δ(u)

)
du

}
,

0 ≤ t ≤ T, (6.3)
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is a nonnegative P0-supermartingale, and the optional sampling theorem
(Karatzas and Shreve (1991), Theorem 1.3.22) implies

V AC(t;T ) = S0(t) · ess supτ∈St,T
E0

[(
S(τ)
S0(τ)

− q

S0(τ)

)+ ∣∣∣ F(t)

]

≤ S0(t) · ess supτ∈St,T
E0

[
S(τ)
S0(τ)

∣∣∣ F(t)
]

≤ S(t), 0 ≤ t ≤ T.

In other words, the value of an American call with finite expiration date
never exceeds the price of the underlying stock.

Theorem 6.1: With T < ∞, assume that the stock pays no divi-
dends, S0(·) is almost surely nondecreasing, and σ(·) satisfies the Novikov
condition (cf. (1.5.13))

E0

[
exp

{
1
2

∫ T

0
σ2(u) du

}]
<∞. (6.4)

Then an American call on the first stock need not be exercised before
maturity, and its value is the same as that of a European call (cf. (2.13)):

V AC(t;T ) = S0(t)E0

[(
S(T )
S0(T )

− q

S0(T )

)+ ∣∣∣ F(t)

]
, 0 ≤ t ≤ T.

Proof. Jensen’s inequality and the fact that S0(·) is nondecreasing can
be used to show that Y (·) of (6.1) is a P0-submartingale. The result follows
from Remark 5.11. ��

We now turn our attention to perpetual American call options. Let
us assume that the financial market has an infinite planning horizon
(Definition 1.7.2), and recall the discussion of such markets in Section 1.7.

Definition 6.2: Consider the discounted payoff process Y (·) of (6.1),
defined for all t ∈ [0,∞). Following Definition 5.7, for s ∈ [0,∞) we
define the value at time s of the perpetual American call option on the
stock, denoted by V AC(s;∞), to be the minimal random variable γ(s) that
is F (T )(s)-measurable for some T ∈ [s,∞) and for which there exists a
martingale-generating portfolio process π(·) satisfying almost surely

Y (t) ≤ γ(s)
S0(s)

+
∫ t

s

1
S0(u)

π′(u)σ(u) dW0(u), ∀ t ∈ [s,∞). (6.5)

If (6.5) holds, then the continuity of both sides of (6.5) allows one to
choose, for each k ∈ N, a P -null and P0-null set Nk in F (Tk)(k) for some
Tk ∈ [k,∞), such that (6.5) holds for all t ∈ [s, k] and all ω ∈ Ω\Nk.
Consequently, (6.5) holds for all t ∈ [s,∞) and all ω ∈ Ω\

⋃∞
k=1 Nk. Thus,
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if τ : Ω→ [s,∞] is any random time, we have (cf. (5.6′))

Y (τ) ≤ γ(s)
S0(s)

+
∫ τ

s

1
S0(u)

π′(u)σ(u) dW0(u), P and P0 a.s. on {τ <∞}.

This is the assertion that an agent who sells the option for γ(s) at time
s and, having no further income, invests the amount π(u) in the stock at
all times u ∈ [s,∞), will have sufficient wealth to pay off the option if the
buyer chooses to exercise it at any finite time.

Theorem 6.3: Assume that the stock pays no dividends, that S0(·) is
almost surely nondecreasing with P0[limt→∞ S0(t) = ∞] = 1, and that
σ(·) satisfies the Novikov condition (6.4). Then the value of the perpetual
American call on the stock is equal to the current stock price:

V AC(s;∞) = S(s), 0 ≤ s <∞, a.s.

Proof. For 0 ≤ s < t < ∞, we have immediately from (6.1) and
Remark 1.5.11 that

Y (t) ≤ S(t)
S0(t)

=
S(s)
S0(s)

+
∫ t

s

S(u)
S0(u)

σ(u) dW0(u), (6.6)

which suggests taking π(u) = S(u), i.e., holding one share of stock at all
times. This π(·) is martingale-generating, since S(t)/S0(t) is a martingale.
Thus, from (6.6) and Definition 6.2, we obtain γ(s) ≤ S(s).

On the other hand, whenever (6.5) holds for some random variable γ(s)
and some martingale-generating portfolio π(·), we have for t ∈ [s,∞) and
sufficiently large T ∈ [t,∞):

S(s)
S0(s)

− qE0

[
1

S0(t)

∣∣∣ F (T )(s)
]

= E0

[
S(t)
S0(t)

− q

S0(t)

∣∣∣ F (T )(s)
]

≤ E0[Y (t)|F (T )(s)] ≤ γ(s)
S0(s)

, s ≤ t <∞.

Letting t→∞ we obtain S(s) ≤ γ(s), and thus S(s) is the minimal random
variable that can replace γ(s) in (6.5). ��

Remark 6.4: The proof of Theorem 6.3 reveals that the seller of the
perpetual American call should hedge by holding one share of the stock,
and when this hedging portfolio is used and γ(s) = V AC(s;T ) = S(s), the
inequality (6.5) becomes

S(t)
S0(t)

≥ Y (t)
�
=
(

S(t)
S0(t)

− q

S0(t)

)+

.

This inequality is strict for all finite t, which means that there is no optimal
exercise time (see Remarks 5.4, 5.9) for the purchaser of the option.

For the remainder of this section we shall assume that

σ(·) ≡ σ > 0, δ(·) ≡ δ > 0, r(·) ≡ r > δ (6.7)
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are constant, although b(·) may not be. Then the stock price process is

S(t) = S(0) exp
{

σW (t)− 1
2
σ2t +

∫ t

0
b(u) du

}
= S(0) exp

{
σW0(t) + (r − δ − σ2/2)t

}
. (6.8)

We consider the perpetual American call on the stock with exercise price
q > 0.

The proof of Theorem 5.3 cannot be easily adapted to the present sit-
uation, because here the expiration date is T = ∞; we do not have a
filtration parametrized by t ∈ [0,∞] and satisfying the usual conditions of
right-continuity and augmentation by null sets. Nonetheless, Theorem 5.3
suggests that the value V AC(t;∞) of the perpetual call at time zero can
be found by maximizing E0Y (τ) over “stopping times” τ , where

Y (t)
�
=
{

e−rt(S(t)− q)+, 0 ≤ t <∞,
0, t =∞.

(6.9)

It should be noted from (6.8) that 0 ≤ Y (t) ≤ e−rtS(t) = S(0) exp{σW0(t)−
(δ + 1

2σ2)t}, 0 ≤ t <∞, whence

Y (∞) = 0 = lim
t→∞

Y (t), P0-a.s. (6.10)

From (6.8) we see that the process S(·) is Markovian under P0, so we expect
the maximizing “stopping time” to be a hitting time, i.e., to be of the form

Ha
�
= inf{t ≥ 0;S(t) ≥ a}

= inf
{

t ≥ 0;W0(t) +
(

r − δ

σ
− 1

2
σ

)
t ≥ 1

σ
log
(

a

S(0)

)}
(6.11)

for some a ∈ (0,∞). Because Ha is the first time the P0-Brownian motion
W0(t)+νt with drift ν

�= r−δ
σ −

1
2σ hits or exceeds the level y

�= 1
σ log( a

S(0) ),
we have E0e

−rHa = 1 for a ≤ S(0), and for a > S(0) we have the follow-
ing transform formula for the hitting time of (6.11) (Karatzas and Shreve
(1991), Exercise 3.5.10):

E0
(
e−rHa

)
= exp

[
νy − y

√
ν2 + 2r

]
=
(

S(0)
a

)γ

,

where γ
�
= 1

σ [−ν +
√

ν2 + 2r]. Note that γ satisfies the quadratic equation

1
2
σ2γ2 + σνγ − r = 0 (6.12)

and the inequalities

1 < γ <
r

r − δ
. (6.13)

Let us define

ga(x)
�
=
{

(a− q)+(x/a)γ , 0 < x < a,
(x− q)+, 0 < a ≤ x.
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It is now easily verified that

ga(x) = E0[e−rHa(S(Ha)− q)+|S(0) = x], a > 0, x > 0.

We want to maximize this quantity over a > 0.

Lemma 6.5: We have

ga(x) ≤ gb(x), ∀x > 0, a > 0,

where b
�
= γq/(γ − 1) ∈ (q,∞).

Proof. The function φ(a)
�
= (a− q)/aγ is increasing on (0, b), decreasing

on (b,∞), and thus has its maximum on (0,∞) at b. Let x > 0, a > 0 be
given. We have

a ≤ x, b ≤ x =⇒ ga(x) = (x− q)+ = gb(x);
a ≤ x < b =⇒ ga(x) = (x− q)+ = (φ(x))+xγ ≤ φ(b)xγ = gb(x);
a > x ≥ b =⇒ ga(x) = (φ(a))+xγ ≤ (φ(x))+xγ = (x− q)+ = gb(x);

a > x, b > x =⇒ ga(x) = (φ(a))+xγ ≤ φ(b)xγ = gb(x). ��

Lemma 6.6: The function g = gb is convex, of class C1((0,∞))
⋂

C2

((0,∞)\{b}), and satisfies the variational inequality

max
{

1
2
σ2x2g′′ + (r − δ)xg′ − rg, f − g

}
= 0 on (0,∞)\{b},

where f(x)
�
= (x− q)+. More precisely, we have

1
2
σ2x2g′′(x) + (r − δ)xg′(x)− rg(x) =

{
0, 0 < x < b,
−(δx− rq) < 0, x > b,

(6.14)

g(x) > f(x), 0 < x < b, (6.15)
g(x) = f(x), x ≥ b. (6.16)

Proof. In order for ga to be of class C1(0,∞), we must have a ≥ q.
Even if a ≥ q, we must also have equality between g′

a(a−) = γ
a (a− q) and

g′
a(a+) = 1. This equality is equivalent to a = b, so gb is the only function

in the family {ga}a>0 that is of class C1. (Here we have an instance of the
“smooth fit” condition, common in optimal stopping.)

The remainder of the lemma follows from straightforward computation,
taking (6.12) into account. The positivity of δx − rq when x > b follows
from (6.13). Inequality (6.15) follows from φ(b) > φ(x), valid for 0 < x < b,
where φ is the function used in the proof of Lemma 6.5. ��

Theorem 6.7 (McKean (1965)): Under the assumption (6.7), the value
process for a perpetual American call option is given by

V AC(t;∞) = g(S(t)), 0 ≤ t <∞,
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where the function g is

g(x) =
{

(b− q)(x
b )γ , 0 < x < b,

x− q, x ≥ b
(6.17)

and γ
�
= 1

σ [
√

ν2 + 2r − ν], ν
�
= r−δ

σ −
1
2σ, and b

�
= γq

γ−1 . Furthermore,

g(S(0)) = supτ E0Y (τ) = supτ E0[e−rτ (S(τ)− q)+], (6.18)

where the supremum is over all random times τ satisfying

∀ t ∈ [0,∞), ∃T ∈ [t,∞) such that {τ ≤ t} ∈ F(T )(t). (6.19)

The random time

Hb
�
= inf{t ≥ 0;S(t) ≥ b}

satisfies (6.19) and attains the supremum in (6.18).

Proof. Itô’s rule for convex functions (e.g., Karatzas and Shreve (1991),
Theorem 3.6.22 and Problem 3.6.7(i)) implies

d(e−rtg(S(t))) = e−rtS(t)g′(S(t))σ dW0(t)− e−rt(δS(t)− rq)1{S(t)>b}dt

= dM(t)− dΛ(t), (6.20)

where

M(t)
�
=
∫ t

0
e−ruS(u)g′(S(u))σ dW0(u) (6.21)

is a P0-martingale (because g′ is bounded), and

Λ(t)
�
=
∫ t

0
e−ru(δS(u)− rq)1{S(u)>b}du (6.22)

is nondecreasing (because x > b implies δx − rq > 0). For every random
time τ satisfying (6.19) and every t ∈ [0,∞), we have then

g(S(0)) = E0[e−r(τ∧t)g(S(τ ∧ t))] + E0Λ(τ ∧ t)
≥ E0[e−r(τ∧t)(S(τ ∧ t)− q)+], (6.23)

where we have used (6.15) and (6.16).
To let t→∞ in (6.23), we need to dominate the right-hand side. But

sup
0≤t≤∞

Y (t) = sup
0≤t<∞

[e−rt(S(t)− q)+]

≤ S(0) exp
[
σ · sup

0≤t<∞

{
W0(t)−

(
δ

σ
+

σ

2

)
t

}]
≤ S(0) exp{σW∗},

where W∗ is the maximum value attained by the P0-Brownian motion
W0(t)− βt, 0 ≤ t <∞, with negative drift, where β = δ

σ + σ
2 > 0. Accord-

ing to Karatzas and Shreve (1991), Exercise 3.5.9, W∗ has the exponential
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distribution P0[W∗ ∈ dξ] = 2βe−2βξdξ, ξ > 0, and consequently,

E0

(
sup

0≤t≤∞
Y (t)

)
= E0

[
sup

0≤t<∞
(e−rt(S(t)− q)+)

]
≤ S(0)

∫ ∞

0
2βe(σ−2β)ξ dξ =

S(0)βσ

δ
<∞. (6.24)

Inequality (6.24) and the dominated convergence theorem allow us to let
t→∞ in (6.23) and obtain, thanks to (6.10),

g(S(0)) ≥ E0[1{τ<∞}e
−rτ (S(τ)− q)+] = E0Y (τ) (6.25)

for every random time τ satisfying (6.19).
Let us now consider τ = Hb. We have Λ(Hb) = 0 and g(S(Hb)) = g(b) =

(b− q)+ = (S(Hb)− q)+ almost surely on {Hb <∞}, so (6.23) becomes

g(S(0)) = E0[1{Hb≤t}e
−rHb(S(Hb)−q)+]+E0[1{Hb>t}e

−rtg(S(t))]. (6.26)

But

E0[1{Hb>t}e
−rtg(S(t))] ≤ E0e

−rtS(t) = S(0)e−δt −→ 0

as t→∞, so passage to the limit in (6.26) yields

g(S(0)) = E0[1{Hb<∞}e
−rHb(S(Hb)− q)+] = E0Y (Hb), (6.27)

thanks to (6.10). In conjunction with (6.25), this establishes (6.18) and
shows that τ = Hb attains the supremum in (6.18).

The discounted payoff process for the American call is Y (·) of (6.9), and
according to Definition 6.2 its value at t = 0 is the minimal constant γ(0)
satisfying

e−rt(S(t)− q)+ ≤ γ(0) +
∫ t

0
e−ruπ(u)σ dW0(u), 0 ≤ t <∞, (6.28)

P0-almost surely, for some martingale-generating portfolio π(·). But (6.28)
implies

E0[e−r(Hb∧t)(S(Hb ∧ t)− q)+] ≤ γ(0), 0 ≤ t <∞,

and letting t → ∞ we obtain g(S(0)) ≤ γ(0). Therefore, g(S(0)) ≤
V AC(0;∞). On the other hand, (6.15), (6.16), and (6.20)–(6.22) imply

e−rt(S(t)− q)+ ≤ e−rtg(S(t))

≤ g(S(0)) +
∫ t

0
e−ruS(u)g′(S(u))σ dW0(u), 0 ≤ t <∞,

(6.29)

P0-almost surely, which shows that V AC(0;∞) = g(S(0)). It is an easy
exercise in the Markov property for S(·) to extend this result and obtain
V AC(t;∞) = g(S(t)), 0 ≤ t <∞. ��
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Remark 6.8: From (6.29) we see that a hedging portfolio for the seller
of the American call is

π(u) = S(u)g′(S(u)), 0 ≤ u <∞.

In particular, the seller should hold more of the stock as the price rises,
holding one share whenever the price reaches or exceeds b. The buyer of the
call should exercise it as soon as the price reaches or exceeds b. From (6.8),
(6.11) we see that P [Hb < ∞] can be either one or strictly less than one;
in either case P0[Hb < ∞] can be either one or strictly less than one,
depending on the model parameters.

Remark 6.9: In Theorem 6.7, the process

ξ(t)
�
=
{

e−rtg(S(t)), 0 ≤ t <∞,
0, t =∞

is a continuous supermartingale with decomposition ξ(t) = M(t) − Λ(t)
as in (6.20)–(6.22). Furthermore, ξ(t) ≥ Y (t), 0 ≤ t ≤ ∞, and it can be
shown that ξ(·) is the minimal supermartingale that dominates the process
Y (·) of (6.9) in this way. In other words, ξ(·) is the Snell envelope of Y (·).
Recall, however, that all these processes are only known to be restrictedly
progressively measurable in the sense of Definition 1.7.1, and terms like
“supermartingale” are to be understood only in this restricted sense. For
this reason, the theory of Appendix D is not directly applicable.

Remark 6.10: In the setting of Theorem 6.7, the early exercise premium
for the perpetual American call can be defined as

e(0)
�
= V AC(0;∞)− V EC(0;∞),

where the value of the “perpetual European call”

V EC(0,∞)
�
= lim

T→∞
E0[e−rT (S(T )− q)+]

is zero because of (6.8); hence

e(0) = V AC(0,∞) = g(S(0)). (6.30)

A formal application of (5.18), (6.22) yields the formula

e(0) = E0Λ(∞) =
∫ ∞

0
e−rtE0[(δS(t)− rq)1{S(t)>b}] dt, (6.31)

which agrees with (6.30), although the computational verification is long
and painful.

2.7 The American Put Option

We shall concentrate in this section on the American put option with ex-
ercise price q > 0 and finite expiration date T ∈ (0,∞). As in Section 2.6,
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we set N = D = 1 and suppress the indices on S1(·), σ11(·), b1(·), and δ1(·).
Furthermore, we assume that

σ(·) ≡ σ > 0, δ(·) ≡ δ ≥ 0, r(·) ≡ r > 0 (7.1)

are constant, so that the stock price is given by

S(t) = S(0)H(t), (7.2)

where

H(t)
�
= exp

{
σW (t) − 1

2
σ2t +

∫ t

0
b(u) du

}
= exp{σW0(t) + (r − δ − σ2/2)t}. (7.3)

We shall characterize the value of the American put as the unique solution
to a free boundary problem, and we shall obtain regularity results and some
explicit formulae for this solution.

The discounted payoff process for the American put is

Y (t) = e−rt(q − S(t))+. (7.4)

According to Theorem 5.3, the value of the put with expiration T , when
S(0) = x, is

p(T, x)
�
= sup

τ∈S0,T

E0[e−rτ (q−xH(τ))+], 0 ≤ x <∞, 0 ≤ T <∞, (7.5)

and from the strong Markov property of S(·) we can compute the Snell
envelope of Y (·) as

ξ(t)
�
= sup

τ∈St,T

E0[Y (τ)|F(t)] = e−rtp(T − t, S(t)), 0 ≤ t ≤ T . (7.6)

The proof of Theorem 5.3 shows that the optimal exercise time for the
American put option with initial stock price S(0) = x is given by

τx
�
= inf{t ∈ [0, T ]; p(T − t, S(t)) = (q − S(t))+}. (7.7)

This stopping time takes values in [0, T ] because p(0, S(T )) = (q−S(T ))+,
and it attains the supremum in (7.5). The proof of Theorem 5.3 also shows
that the stopped process

{e−r(t∧τx)p(T − (t ∧ τx), S(t ∧ τx)),F(t); 0 ≤ t ≤ T} (7.8)

is a P0-martingale.

Proposition 7.1: The optimal expected payoff function p : [0,∞)2 →
[0,∞) is continuous and dominates the option’s “intrinsic value”

ϕ(x)
�
= (q − x)+, 0 ≤ x <∞. (7.9)
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Proof. Fix (T, x) ∈ [0,∞)2 and let τx be given by (7.7). Because z+
1 −

z+
2 ≤ (z1 − z2)+ for any z1, z2 ∈ R, we have for any y ∈ [0,∞) that

p(T, x)− p(T, y) ≤ E0[e−rτx{(q − xH(τx))+ − (q − yH(τx))+}]
≤ (y − x)+E0[e−rτxH(τx)] ≤ |x− y|,

because e−rtH(t) is a P0-supermartingale and H(0) = 1. Interchanging
the roles of x and y, we obtain |p(T, x) − p(T, y)| ≤ |x − y|, so p(T, x) is
Lipschitz continuous in x. Now let us define

ψ(t)
�
= E0

[
max
0≤s≤t

(
1− e−rsH(s)

)+]
.

Because of the bounded convergence theorem, limt↓0 ψ(t) = 0. Let 0 ≤
T1 ≤ T2 and x ∈ [0,∞) be given. Set

τ2 = inf{t ∈ [0, T2); p(T2− t, xH(t)) = (q−xH(t))+}∧T2, τ1 = τ2∧T1.

Then with S(t) = xH(t), we have

0 ≤ p(T2, x)− p(T1, x) ≤ E0[e−rτ2(q − S(τ2))+ − e−rτ1(q − S(τ1))+]
≤ E0(e−rτ1S(τ1)− e−rτ2S(τ2))+

≤ E0{e−rτ1S(τ1) · E0[(1− min
T1≤t≤T2

exp{σ(W0(t)−W0(T1))

− (δ + σ2/2)(t− T1)})+|F(T1)]}
= E0{e−rτ1S(τ1)} · ψ(T2 − T1) ≤ xψ(T2 − T1).

It follows that p(T, x) is uniformly continuous in T . The function p
dominates ϕ, because we can always take τ ≡ 0 in (7.5). ��

Although we are primarily interested in p(T, x) for finite T , we digress to
consider the behavior of this function at T = ∞. Let us suppose that the
financial market has infinite planning horizon (Definition 1.7.2). Following
Definition 6.2, we define the value at time s of the perpetual American put
option on the stock, denoted by V AP (s;∞), to be the minimal random
variable γ(s) that is F (T )(s)-measurable for some T ∈ [s,∞) and for which
there exists a martingale-generating portfolio process π(·) satisfying almost
surely

e−rt(q − S(t))+ ≤ e−rsγ(s) +
∫ t

s

e−ruπ′(u)σ(u) dW0(u), s ≤ t <∞.

We have the following counterpart to Theorem 6.7.

Theorem 7.2: Assume (7.1). The value process for the perpetual
American put option is V AP (t;∞) = p(S(t)), 0 ≤ t <∞, where

p(x) �=
{

q − x, 0 ≤ x ≤ c,
(q − c)(x

c )γ̃ , x > c. (7.10)
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Here γ̃
�= − 1

σ [ν +
√

ν2 + 2r], ν = r−δ
σ − 1

2σ, and c
�= γ̃q/(γ̃ − 1) < q.

Furthermore,

p(S(0)) = sup
τ

E0[e−rτ (q − S(τ))+], (7.11)

where the supremum is taken over all random times τ satisfying (6.19) and
is achieved by the random time Kc

�
= inf{t ≥ 0;S(t) ≤ c}.

Proof. Much as in Section 6, we compute

E0e
−rKc = exp

[
νy − |y|

√
ν2 + 2r

]
=
(

S(0)
c

)γ̃

for S(0) > c, where now y = 1
σ log( c

S(0) ) is negative. Note that γ̃ satis-
fies (6.12), but rather than (6.13) we now have γ̃ < 0, γ̃(r − δ) < r (recall
that r − δ is allowed to be negative). The function p is convex, of class
C1((0,∞)) ∩ C2((0,∞)\{c}), and satisfies the variational inequality

1
2
σ2x2p′′(x) + (r − δ)xp′(x)− rp(x) =

{
δx− rq < 0, 0 ≤ x < c,
0, x > c, (7.12)

p(x) = (q − x)+, 0 ≤ x ≤ c, (7.13)
p(x) > (q − x)+, x > c. (7.14)

All the claimed results can now be obtained by simple modifications of the
proof of Theorem 6.7. The convergence arguments are easier than before
because e−rt(q−S(t))+ is bounded. In particular, the bounded convergence
theorem implies

p(S(0)) = lim
T→∞

E0[e−r(Kc∧T )(q − S(Kc ∧ T ))+]. (7.15)

�

Corollary 7.3: With p(T, x) defined by (7.5) and p(x) defined by (7.10),
we have p(T, x) ≤ p(x) for all T ∈ [0,∞), x ∈ [0,∞), and limT→∞ p(T, x) =
p(x).

Proof. For x = 0, the definitions give p(T, 0) = q = p(0) for all T ∈
[0,∞). For x ∈ (0,∞), (7.11) implies p(T, x) ≤ p(x) for all T ∈ [0,∞);
but (7.15) shows p(x) ≤ limT→∞p(T, x), and the result follows. ��

Lemma 7.4: The mappings T �→ p(T, x), x �→ p(T, x), and x �→ x +
p(T, x) are nondecreasing, nonincreasing, and nondecreasing, respectively,
and the latter two are convex.

Proof. The first two monotonicity assertions are obvious, so let us
establish the third. With 0 ≤ x < y <∞, we have

p(T, y)− p(T, x) = p(T, y)− E0[e−rτx(q − xH(τx))+]
≥ E0[e−rτx{(q − yH(τx))+ − (q − xH(τx))+}]
≥ (x− y) · E0[e−rτxH(τx)] ≥ x− y



2.7 The American Put Option 71

because e−rtH(t) is a supermartingale with H(0) = 1. The convexity of
x �→ p(T, x) follows easily from that of x �→ (q − x)+, and leads to the
convexity of x �→ x + p(T, x). ��

Lemma 7.5: For every (T, x) ∈ (0,∞)2, we have 0 < p(T, x) < q.

Proof. Only the positivity needs discussion. For 0 < x < q, we have
p(T, x) ≥ (q − x)+ > 0. For x ≥ q, let τ = T ∧ inf{t ≥ 0;xH(t) ≤ q

2} and
observe that

p(T, x) ≥ E0[e−rτ (q − xH(τ))+] ≥ q

2
E0[e−rτ1{τ<T}] > 0. �

We define the continuation region

C = {(T, x) ∈ (0,∞)2; p(T, x) > (q − x)+}

and consider its sections

CT = {x ∈ (0,∞); p(T, x) > (q − x)+}, T ∈ (0,∞).

Because p is continuous, C is open in (0,∞)2 and each CT is open in (0,∞).

Proposition 7.6: For every T ∈ (0,∞), there is a number c(T ) ∈ (0, q)
such that CT = (c(T ),∞). The function T �→ c(T ) is nonincreasing, upper
semicontinuous, and left continuous on (0,∞); thus it may be extended
by the definitions c(0+)

�
= limT↓0 c(T ), c(∞)

�
= limT→∞ c(T ). We have

c(0+) ≤ q and c(∞) = c, as defined in Theorem 7.2.

Proof. For T ∈ (0,∞), suppose x ∈ CT and y > x. From Lemmas 7.4,
7.5 we have

p(T, y) ≥ p(T, x) + x− y > (q − x)+ + x− y ≥ q − y

and p(T, y) > 0, whence p(T, y) > (q−y)+ and y ∈ CT . This shows that CT
has the form (c(T ),∞). Since T �→ p(T, x) is nondecreasing, we have for
any ε > 0, δ > 0 that p(T + ε, c(T ) + δ) ≥ p(T, c(T ) + δ) > (q− c(T )− δ)+.
Therefore, c(T + ε) < c(T ) + δ. Since δ > 0 is arbitrary, c(T + ε) ≤ c(T ),
which shows that c(·) is nonincreasing.

Now take any sequence {Tn}∞n=1 in (0,∞) with limit T0 ∈ (0,∞) and
limn→∞ c(Tn) = c0. Because C is open and (Tn, c(Tn)) /∈ C for every n, we
have (T0, c0) /∈ C and thus c0 ≤ c(T0). In other words, limT→T0c(T ) ≤ c(T0)
for every T0 ∈ (0,∞). This proves the upper semicontinuity of c(·), and
since c(·) is nonincreasing, c(T−) = c(T ).

From Lemma 7.5 we have p(T, x) > 0 = (q − x)+ for x ≥ q, so c(T ) < q
for all T∈(0,∞). It follows that c(0+) ≤ q. From Corollary 7.3 we have
(q − c)+ ≤ p(T, c) ≤ p(c) = (q − c)+, so c(T ) ≥ c for all T ∈ (0,∞), and
c(∞) ≥ c. But for x > c, limT→∞ p(T, x) = p(x) > (q−x)+ (see (7.14)), so
c(∞) ≤ c. Finally, we have c(T ) ≥ c(∞) = c > 0 for all T ∈ (0,∞). ��

Theorem 7.7: The optimal expected payoff function p of (7.5) is the
unique solution on C̄ of the initial–boundary value problem
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Lf = 0 in C = {(t, x) ∈ (0,∞)2; x > c(t)}, (7.16i)

f(t, c(t)) = q − c(t), 0 ≤ t <∞, (7.16ii)

f(0, x) = (q − x)+, c(0) ≤ x <∞, (7.16iii)

lim
x→∞

max
0≤t≤T

|f(t, x)| = 0 ∀T ∈ (0,∞), (7.16iv)

where Lf
�= 1

2σ2x2fxx + (r − δ)xfx − rf − ft. In particular, the partial
derivatives pxx, px, and pt exist and are continuous in C.

Proof. Clearly, p satisfies the boundary conditions (7.16ii) and (7.16iii).
In order to verify the equation (i) for p, let us take a point (t, x) ∈ C
and a rectangle R = (t1, t2) × (x1, x2) with (t, x) ∈ R ⊂ C. Denote by
∂0R

�
= ∂R\[{t2} × (x1, x2)] the “parabolic boundary” of this rectangle,

and consider the initial–boundary value problem

Lf = 0, in R,

f = p, on ∂0R.

Because x1 ≥ c(t) > 0, the classical theory for parabolic equations (e.g.,
Friedman (1964), Chapter 3) guarantees the existence of a unique solution
f with fxx, fx, and ft continuous. We have to show that f and p agree
on R.

Let (t0, x0) ∈ R be given, and consider the stopping time in S0,t0−t1

given by

τ
�= inf{θ ∈ [0, t0 − t1); (t0 − θ, x0H(θ)) ∈ ∂0R} ∧ (t0 − t1)

and the process

N(θ)
�
= e−rθf(t0 − θ, x0H(θ)), 0 ≤ θ ≤ t0 − t1.

From Itô’s rule, it follows that N(· ∧ τ) is a bounded P0-martingale, and
thus

f(t0, x0) = N(0) = E0N(τ) = E0[e−rτp(t0 − τ, xH(τ))].

But (t0 − τ, x0H(τ)) ∈ C implies

τ ≤ τx
�
= inf{θ ∈ [0, t0); p(t0 − θ, x0H(θ)) = (q − x0H(θ))+} ∧ t0

(cf. (7.7)), and so the optional sampling theorem and (7.8) yield

E0[e−rτp(t0 − τ, x0H(τ))] = p(t0, x0).

Thus f and p agree on R, and hence pxx, px, and pt are defined, continuous,
and satisfy (7.16i) at the arbitrary point (t, x) ∈ C.
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To check (7.16iv), let T ∈ (0,∞) be given. For (t, x) ∈ [0, T ] × (0,∞),
define (cf. (7.7))

τx
�
= inf{θ ∈ [0, t); p(t− θ, xH(θ)) = (q − xH(θ))+} ∧ t

and notice p(t, x) = E0[e−rτx(q − xH(τx))+]. Set ρx
�
= inf{θ ∈

[0,∞); xH(θ) ≤ q}, so that τx ≥ ρx on {ρx ≤ t} and τx = t on {ρx > t}.
Then

0 ≤ p(t, x) ≤ qE0[1{ρx≤t}e
−rρx ] + E0[1{ρx>t}e

−rt(q − xH(t))+]

≤ qP0[ρx ≤ T ]

and limx→∞ P0[ρx ≤ T ] = 0.
For uniqueness, let f defined on C̄ be a solution of (7.16). Note that

for each T∈(0,∞), f is bounded on {(t, x)∈[0, T ] × [0,∞);x ≥ c(t)}. For
x > c(T ) define M(t)

�
= e−rtf(T − t, xH(t)), 0 ≤ t ≤ T , and τx

�
= T ∧

inf{t∈[0, T ];xH(t) ≤ c(T−t)}. Itô’s rule shows that {M(t∧τx), 0 ≤ t ≤ T}
is a bounded P0-martingale. Since τx attains the supremum in (7.5), we
have from optional sampling that

f(T, x) = M(0) = E0M(τx) = E0[e−rτxf(T − τx, xH(τx))]

= E0[e−rτx(q − xH(τx))+] = p(T, x). ��

Theorem 7.7 asserts that p is smooth enough to permit the application
of Itô’s rule to the Snell envelope ξ(t) = e−rtp(T − t, S(t)) of (7.6), as long
as (T − t, S(t))∈ C, or equivalently, S(t) > c(T − t). On the other hand, in
the region {(t, x)∈ [0,∞)2;x < c(t)} we have p(t, x) = q − x, which is also
smooth. At issue then is the smoothness of p across the boundary x = c(t).
We have the following result.

Lemma 7.8: Fix T ∈ (0,∞). The convex function x �→ p(T, x) is of class
C1, even at x = c(T ). In particular, px(T, c(T )) = −1.

Proof. Because p(T, x) = q−x for 0 ≤ x < c(T ), we have px(T, c(T )−) =
−1. The convexity of x �→ px(T, x), which was proved in Lemma 7.4, implies
that px(T, c(T )+) is defined and px(T, c(T )+) ≥ −1.

Thus, it suffices to show px(T, c(T )+) ≤ −1. To this end, set x = c(T )
and define

τx+ε
�
= inf{t∈ [0, T ); (x + ε)H(t) ≤ c(T − t)} ∧ T

for ε ≥ 0, so τx+ε is nondecreasing in ε and τx ≡ 0. Because c(·) is
nonincreasing, we have

τx+ε ≤ inf
{

t∈ [0, T ];H(t) ≤ x

x + ε

}
∧ T.
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The law of the iterated logarithm for the P0-Brownian motion W0(·) implies
that P [min0≤t≤a H(t) < 1] = 1 for every a > 0, and therefore

τx+ε ↓ 0 as ε ↓ 0 (7.17)

almost surely. We also have

p(T, x + ε) = E0[e−rτx+ε(q − (x + ε)H(τx+ε))+]
= E0[e−rτx+ε(q − xH(τx+ε))+]
−E0[e−rτx+ε((q − xH(τx+ε))+ − (q − (x + ε)H(τx+ε))+)]

≤ p(T, x)−E0[1{τx+ε<T}e
−rτx+ε((q − xH(τx+ε))

− (q − (x + ε)H(τx+ε)))]
−E0[1{τx+ε=T}e

−rT ((q − xH(T ))+ − (q − (x + ε)H(T ))+)]

≤ p(T, x)− ε · E0[1{τx+ε<T}e
−rτx+εH(τx+ε)]

= p(T, x)− ε · E0[e−rτx+εH(τx+ε)]
+ ε · E0[1{τx+ε=T}e

−rT H(T )],

for ε > 0, from which it follows that

px(T, x+) ≤ lim
ε↓0

E0[1{τx+ε=T}e
−rT H(T )]− lim

ε↓0
E0[e−rτx+εH(τx+ε)] = −1.

For the last equality we have used (7.17) and the uniform integrability of
the supermartingale e−rtH(t), 0 ≤ t ≤ T , in (7.3). ��

Theorem 7.9: Fix T ∈ (0,∞). The Snell envelope ξ(t) = e−rtp(T −
t, S(t)) of (7.6) has the Doob–Meyer decomposition

ξ(t) = M(t)− Λ(t), 0 ≤ t ≤ T , (7.18)

where

M(t)
�
= p(T, S(0)) + σ

∫ t

0
e−ruS(u)px(T − u, S(u)) dW0(u) (7.19)

is a P0-martingale and

Λ(t) �=
∫ t

0
e−ru(rq − δS(u))1{S(u)<c(T−u)}du (7.20)

is nondecreasing. In particular,

δc(0+) ≤ rq. (7.21)

Proof. We mollify the function p(·, ·) in order to apply Itô’s rule. Let
ζ : R2 → [0,∞) be a C∞ function integrating to 1 and having support in
[0, 1]2. For ε > 0, define

p(ε)(t, x)
�
=
∫ ∞

0

∫ ∞

0
p(t + εu, x + εv)ζ(u, v) du dv

=
1
ε2

∫ ∞

0

∫ ∞

0
p(s, y)ζ

(
s− t

ε
,
y − x

ε

)
ds dy.
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Then p(ε)(·) is of class C∞ on (0,∞)2. Because px(t, ·) is continuous, for
(t, x) ∈ (0,∞)2 we may integrate by parts to obtain

p(ε)
x (t, x) = − 1

ε3

∫ ∞

0

∫ ∞

0
p(s, y)ζ2

(
s− t

ε
,
y − x

ε

)
dy ds

=
1
ε2

∫ ∞

0

∫ ∞

0
px(s, y)ζ

(
s− t

ε
,
y − x

ε

)
dy ds

=
∫ ∞

0

∫ ∞

0
px(t + εu, x + εv)ζ(u, v) du dv,

p(ε)
xx (t, x) =

1
ε4

∫ ∞

0

∫ ∞

0
p(s, y)ζ22

(
s− t

ε
,
y − x

ε

)
dy ds

= − 1
ε3

∫ ∞

0

∫ c(s)

0
px(s, y)ζ2

(
s− t

ε
,
y − x

ε

)
dy ds

− 1
ε3

∫ ∞

0

∫ ∞

c(s)
px(s, y)ζ2

(
s− t

ε
,
y − x

ε

)
dy ds

= − 1
ε2

∫ ∞

0

[
px(s, c(s)−)ζ

(
s− t

ε
,
c(s)− x

ε

)
−
∫ c(s)

0
pxx(s, y)ζ

(
s− t

ε
,
y − ε

ε

)
dy

]
ds

− 1
ε2

∫ ∞

0

[
−px(s, c(s)+)ζ

(
s− t

ε
,
c(s)− x

ε

)
−
∫ ∞

c(s)
pxx(s, y)ζ

(
s− t

ε
,
y − ε

ε

)
dy

]
ds

=
1
ε2

∫ ∞

0

∫ ∞

0
pxx(s, y)ζ

(
s− t

ε
,
y − ε

ε

)
ds dy

=
∫ ∞

0

∫ ∞

0
pxx(t + εu, x + εv)ζ(u, v) du dv,

and

p
(ε)
t (t, x) =

∫ ∞

0

∫ ∞

0
pt(t + εu, x + εv)ζ(u, v) du dv,

where ζi denotes the partial derivative of ζ with respect to its ith variable.
These formulas show that p

(ε)
x and Lp(ε) are bounded on compact subsets

of (0,∞)2 and

px(t, x) = lim
ε↓0

p(ε)
x (t, x),

Lp(t, x) = lim
ε↓0
Lp(ε)(t, x), ∀ (t, x) ∈ (0,∞)2, x �= c(t).
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According to Itô’s rule,

e−rtp(ε)(T − t, S(t)) = pε(T, S(0)) +
∫ t

0
e−ruLp(ε)(T − u, S(u))du

+ σ

∫ t

0
e−ruS(u)p(ε)

x (T − u, S(u))dW0(u), 0 ≤ t ≤ T . (7.22)

For each u∈ (0, T ), we have P0[S(u) = c(T − u)] = 0, so
∫ t

0 e−ruLp(T −
u, S(u))du is defined and equal to

∫ t

0 e−ru(δS(u) − rq)1{S(u)<c(T−u)}du
a.s. Letting ε ↓ 0 in (7.22) we obtain (7.18), first for 0 ≤ t < T and
then, by letting t ↑ T in (7.18), for t = T as well.

The process M(·) in (7.19) is a martingale because −1 ≤ px ≤ 0 and
E0
∫ T

0 S2(u)du < ∞. To see that Λ(·) is nondecreasing, we recall that a
decomposition like (7.18) of a process into a continuous martingale M(·)
and a continuous, bounded-variation process Λ(·) is unique (Karatzas and
Shreve (1991), Problem 3.3.2). But the Snell envelope ξ(·), being a bounded
supermartingale, has a Doob–Meyer decomposition as a continuous mar-
tingale minus a continuous, nondecreasing process (e.g., Theorem D.13 in
Appendix D). Consequently, this Doob–Meyer decomposition must be the
decomposition of (7.18), which shows that Λ(·) is nondecreasing. Since
P0[S(u) < c(T − u)] > 0 for every u∈ (0, T ], this can be the case only if
rq−δc(T−u) ≥ 0 for Lebesgue-almost-every u∈ (0, T ]. In particular, (7.21)
must hold. ��

Proposition 7.10: The free-boundary function c(·) : [0,∞) → (0, q] is
continuous, with c(0+) = q if r ≥ δ, and c(0+) = rq/δ if r < δ.

Proof. Let us define c(0)
�
= q if r ≥ δ and c(0)

�
= rq/δ if r < δ. We know

from Proposition 7.6 that c(·) is left continuous and nondecreasing. To
prove right continuity we shall suppose c(t0) > c(t0+) for some t0∈[0,∞)
and obtain a contradiction.

Under the assumption c(t0) > c(t0+), define x1
�
= 1

2 [c(t0) + c(t0+)] <
c(t0) ≤ c(0). Let t∈ (t0,∞) and x∈ (c(t), x1) be given. From (2.7.16i) and
the fact that p(·, x) is nondecreasing, we have

1
2
σ2x2pxx(t, x) ≥ (δ − r)xpx(t, x) + rp(t, x).

Now, p(t, x) ≥ (q−x)+ ≥ q−x1 > 0, so if r ≥ δ, we may use the inequalities
−1 ≤ px(t, x) ≤ 0 to write 1

2σ2x2pxx(t, x) ≥ r(q − x1) > 0. On the other
hand, if r < δ, we have

1
2
σ2x2pxx(t, x) ≥ −(δ − r)x1 + r(q − x1) = rq − δx1 > 0

because δx1 < δc(0+) = rq (see (7.2)). In either case,

pxx(t, x) ≥ η
�
=

2[rq − (r ∨ δ)x1]
σ2x2

1
> 0, ∀ t∈(t0,∞), x∈(c(t), x1).



2.7 The American Put Option 77

With ϕ(ξ) �= (q − ξ)+, t∈(t0,∞), and x0∈(c(t0+), x1), we compute

p(t, x0)− ϕ(x) =
∫ x0

c(t)

∫ y

c(t)
[pxx(t, ξ)− ϕ′′(ξ)] dξ dy ≥ 1

2
η(x0 − c(t))2,

where we have used the relations

p(t, c(t)) = ϕ(c(t)), px(t, c(t)) = ϕ′(c(t)).

Letting t ↓ t0 and using the continuity of p, we obtain p(t0, x0) ≥ (q−x0)++
1
2η(x0− c(t0+))2 > q−x0. If follows that c(t0) < x0, a contradiction to the
definition of x1. ��

Corollary 7.11: Fix T∈(0,∞). The Snell envelope ξ(t) = e−rtp(T −
t, S(t)) of (7.6) admits the representation

ξ(t) = E0[e−rT (q − S(T ))+|F(t)] + E0[Λ(T )− Λ(t)|F(t)], 0 ≤ t ≤ T ,
(7.23)

where Λ(·) is defined by (7.20).

Proof. From Theorem 7.9 we have

E0[e−rT (q − S(T ))+|F(t)] = E0[ξ(T )|F(t)]
= E0[M(T )|F(t)] −E0[Λ(T )|F(t)]
= M(t)− Λ(t)− E0[Λ(T )− Λ(t)|F(t)]
= ξ(t)− E0[Λ(T )− Λ(t)|F(t)], 0 ≤ t ≤ T. ��

Corollary 7.11 facilitates the explicit computation of the value
uAP (T, x; q) = p(T, x) at time zero of the American put with expiration
T > 0 and exercise price q > 0, when S(0) = x. Of course, the value at
time t∈[0, T ] is just uAP (T − t, S(t); q). According to Corollary 7.11,

uAP (T, x; q) = p(T, x) = uEP (T, x; q) + e(0), 0 < T <∞, (7.24)

where, in the notation of (4.11), (4.13), and (4.15),

uEP (T, x; q) = E0[e−rT (q − S(T ))+]
= −uFC(T, x; q) + uEC(T, x; q)

= qe−rT [1− Φ(ρ−(T, x; q))]− xe−δT [1− Φ(ρ+(T, x; q))]
(7.25)

is the value of the associated European put, and

e(0)
�
=
∫ T

0
E0[e−ru1{S(u)<c(T−u)}(rq − δS(u))] du

=
1√
2π

∫ T

0

∫ γ(T,x;u)

−∞
e−ru− w2

2
[
rq − δx exp

{
σw
√

u

+ (r − δ − σ2/2)u
}]

dw du (7.26)
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with

γ(T, x;u)
�
=

1
σ
√

u

[
log
(

c(T − u)
x

)
− (r − δ − σ2/2)u

]
. (7.27)

In particular, e(0) is the early exercise premium of Remark 5.10. In the
special case of δ = 0 (no dividends), the early exercise premium

e(0) = rq · E0

∫ T

0
e−ru1{S(u)<c(T−u)}du

= rq

∫ T

0
e−ruΦ

(
1

σ
√

u

[
log
(

c(T − u)
x

)
− (r − σ2/2)u

])
du

is the value of an income process that pays at rate rq whenever the stock
price is in the region where the put should be exercised.

The formula (7.24) for the value of the American put still involves the
unknown free-boundary function c(·) via its presence in (7.27). To obtain
information about this free boundary, we can use in (7.24) the fact that
p(T, x) = q − x for 0 ≤ x ≤ c(T ). When δ = 0, this leads to the equation

q − x = qe−rT [1− Φ(ρ−(T, x; q))]− x[1− Φ(ρ+(T, x; q))]

+ rq

∫ T

0
e−ruΦ

(
1

σ
√

u

[
log
(

c(T − u)
x

)
− (r − σ2/2)u

])
du,

∀x ∈ [0, c(T )]. (7.28)

It can be shown (cf. Jacka (1991)) that the equation (7.28) characterizes c(·)
uniquely, among all nonincreasing left-continuous functions with values in
(0, q]. In particular, setting x = c(T ) in (7.28) yields the integral equation

c(T )
q

Φ(ρ+(T, c(T ); q)) = 1− e−rT [1− Φ(ρ−(T, c(T ); q))]

− r

∫ T

0
e−ruΦ

(
1

σ
√

u

[
log
(

c(T − u)
c(T )

)
− (r − σ2/2)u

])
du (7.29)

for c(T ), 0 < T < ∞. The initial condition for c(·) when δ = 0, given in
Proposition 7.10, is c(0) = q. Little (1998) shows further that (7.29) can
be reduced to a nonlinear Volterra integral equation for c(·).

Theorem 7.7 characterizes the optimal expected payoff function p(·, ·)
in terms of the free-boundary function c(·), and this has finally led to
formula (7.24) for p(·, ·), also in terms of c(·). We have seen that (7.24)
indirectly provides information about c(·) (e.g., (7.28), (7.29)). We close
this section with a direct characterization, along the lines of Theorem 7.7,
of the pair of functions (p(·, ·), c(·)).

Consider the problem of finding a pair of functions f : [0,∞)2 → R and
d : [0,∞)→ (0, q] such that:
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f is continuous on [0,∞)2, (7.30i)

d is nonincreasing and left-continuous on [0,∞), (7.30ii)

ft, fx, and fxx are defined and continuous on the

open (because of (7.30ii)) set D �
= {(t, x) ∈ (0,∞)2;x > d(t)}, (7.30iii)

d(0)
�
= d(0+) ≤ rq

δ
if δ > r, (7.30iv)

Lf = 0 in D,where Lf
�
=

1
2
σ2x2fxx + (r − δ)xfx − rf − ft, (7.30v)

f(t, x) ≥ (q − x)+, ∀(t, x) ∈ [0,∞)2, (7.30vi)

f(t, x) = (q − x), ∀t ∈ [0,∞), 0 ≤ x ≤ d(t), (7.30vii)

f(0, x) = (q − x)+, ∀x ∈ [d(0),∞), (7.30viii)

lim
x→∞

max
0≤t≤T

|f(t, x)| = 0, ∀T ∈ (0,∞), (7.30ix)

fx(t, d(t)+) = −1, ∀ t ∈ (0,∞). (7.30x)

Recall the function ϕ(x) = (q − x)+ of (7.9), and define the set

G =
{

[0,∞)× [0, q) if r ≥ δ,
[0,∞)× [0, rq

δ ) if δ > r.

On G, the function ϕ is smooth, and

Lϕ(t, x) = δx− rq < 0, ∀(t, x) ∈ G. (7.31)

If (f, d) satisfies (7.30), then f agrees with ϕ on the set {(t, x) ∈ [0,∞)2; 0 ≤
x < d(t)} ⊆ G. Thus, the free boundary divides (0,∞)2 into two open
regions, D and (0,∞)2\D̄, such that

Lf = 0, f ≥ ϕ; on D, (7.32i)

Lf < 0, f = ϕ; on (0,∞)2\D̄. (7.32ii)

Although we do not know that f is smooth across the boundary between
these regions, (7.30x) guarantees that fx is defined and continuous on
(0,∞)2.

Theorem 7.12: The pair of functions (p(·, ·), c(·)) is the unique solution
to the free-boundary problem (7.30).

Proof. We know from Propositions 7.1, 7.6, the definition of C, The-
orem 7.7, Lemma 7.8, and relation (7.21) that (p(·, ·), c(·)) solves (7.30).
Suppose (f(·, ·), d(·)) is any solution to (7.30). Fix (T, x) ∈ [0,∞)2 and use
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the mollification argument of Theorem 7.9 to obtain the formula

e−rtf(T − t, S(t)) = Mf (t)− Λf (t), 0 ≤ t ≤ T ,

where x = S(0), Mf (·) is the P0-local-martingale Mf (t)
�
= f(T, x) +

σ
∫ t

0 e−ruS(u)fx(T − u, S(u))dW0(u), and Λf (·) is the nondecreasing (be-
cause of (7.31)) process Λf (t)

�
=
∫ t

0 e−ru1{S(u)<d(T−u)}(rq − δS(u))du. Let
{τn}∞n=1 be a sequence of stopping times with τn ↑ T almost surely and
such that {Mf (t ∧ τn); 0 ≤ t ≤ T} is a P0-martingale. For any stopping
time τ ∈ S0,T we have

E0[e−r(τ∧τn)f(T − (τ ∧ τn), S(τ ∧ τn))] = f(T, x)− E0Λf (τ ∧ τn). (7.33)

The function f is bounded on [0, T ]× [0,∞) (see (7.30i, ix), so passage to
the limit in (7.33) yields

E0[e−rτf(T − τ, S(τ))] = f(T, x)−E0Λf (τ), ∀τ ∈ S0,T . (7.34)

From (7.30vi) and the nonnegativity of Λf (τ), we conclude that E0[e−rτ (q−
S(τ))+] ≤ f(T, x) for all τ ∈ S0,T , whence p(T, x) ≤ f(T, x) (recall (7.5)).
On the other hand, defining τx

�
= T ∧ inf{t ≥ 0;S(t) ≤ d(T − t)} to be the

hitting time of the closed set [0,∞)2\D, we have f(T − τx, S(τx)) = (q −
S(τx))+ (from (7.30vii, viii), and Λf (τx) = 0, so (7.34) implies E0[e−rτx(q−
S(τx))+] = f(T, x). It follows that p = f on [0,∞)2.

To show that the functions c(·) and d(·) are equal, it suffices to establish
equality between the open sets

C �
= {(t, x) ∈ (0,∞)2; p(t, x) > (q − x)+} = {(t, x) ∈ (0,∞)2; x > c(t)}

and

D �
= {(t, x) ∈ (0,∞)2;x > d(t)}.

For (t, x)∈C, we have Lp(t, x) = 0, which means that (t, x) �∈ (0,∞)2\D̄
(see (7.30ii). Therefore, C ⊆ D̄, but since both C and D are open, we must
have in fact C ⊆ D. The roles of C and D in this argument may be reversed
to obtain D ⊆ C. ��

2.8 Notes

In order to implement the contingent-claim pricing theory presented in this
chapter, it is necessary not only to know the current interest rate, but also
to have a model for the evolution of interest rates into the future, so that
the statistics of the process S0(·) appearing in pricing formulas such as (2.9)
can be computed. Such a model should be consistent with current observed
yields of default-free bonds of various maturities, each of which is subject to
the same pricing formula (2.9). Furthermore, the model should include ran-
domness in a way that enables it to remain consistent with observed yields
as time evolves. The construction of such models belongs to the study of
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the term structure of interest rates, a subject not developed in this mono-
graph. The most general term-structure model is that of Heath, Jarrow, and
Morton (1992, 1996), although many other models are also popular among
practitioners. For example, we refer the reader to the exhaustive treatment
of this subject in the recent monographs by Musiela and Rutkowski (1997a)
and Bisière (1997), to Chapters 7 and 9 of Duffie (1992), to the papers by
Artzner and Delbaen (1989), Björk, Di Masi, Kabanov, and Runggaldier
(1997), Björk, Kabanov, and Runggaldier (1997), Black, Derman, and
Toy (1990), Brace, Gatarek, and Musiela (1997), Brennan, and Schwartz
(1979, 1982) (but see Hogan (1993)), Chan (1992), Cox, Ingersoll, and Ross
(1985b), Dothan (1978), Duffie and Kan (1994, 1996), Dybvig (1997), El
Karoui, Myneni, and Viswanathan (1992), El Karoui and Rochet (1989),
Ho and Lee (1986), Hull and White (1990), Jamshidian (1990, 1997b), Lit-
terman and Scheinkman (1988), Miltersen (1994), Miltersen, Sandmann,
and Sondermann (1997), Musiela and Rutkowski (1997b), Richard (1978),
Rogers (1997), Sandmann and Sondermann (1993), and Vasicek (1977), and
to the survey papers by Rogers (1995b) and Björk (1997) for up-to-date
overviews. A less mathematical introduction to the issues of interest-rate
instruments is provided by Sundaresan (1997).

Section 3: The distinction between forward and futures contracts has been
only relatively recently recognized (see Margrabe (1976), Black (1976a))
and even more recently understood. Cox, Ingersoll, and Ross (1981) and
Jarrow and Oldfield (1981) provide a discrete-time, arbitrage-based analy-
sis of the relationship between forwards and futures, whereas Richard and
Sundaresan (1981) study these claims in a continuous-time, equilibrium
setting. Myneni (1992b) has used stochastic calculus to revisit the formu-
las of Cox et al. (1981). Our presentation of this material is similar to that
of Duffie and Stanton (1992), which also considers options on futures. In
particular, our Corollary 3.9 on the forward-futures spread may be found
in Duffie and Stanton (1992), and also in Chapter 7 of Duffie (1992). For
additional reading on forward and futures contracts, one may consult An-
derson (1984), Dubofsky (1992), Duffie (1989), Edwards and Ma (1992),
Merrick (1990), Musiela and Rutkowski (1997), Sutcliffe (1993).

Sections 2 and 4: The modern theory of the pricing of options (or, more
generally, contingent claims) in a complete market begins with the seminal
articles of Samuelson (1965a), Samuelson and Merton (1969), Black and
Scholes (1973), and Merton (1973a). The arbitrage-based approach of these
sections, which is not restricted to markets with constant coefficients, has
its origins in the articles of Ross (1976) and Cox and Ross (1976), and
matures with Harrison and Kreps (1979); this latter paper, along with
the seminal Harrison and Pliska (1981, 1983), clarified the mathematical
stucture of the problem and worked out its connections with martingale
theory. The early work on option pricing is nicely surveyed in Smith (1976)
and Müller (1985). Nontechnical discussions can be found in Bernstein
(1992), Chapter 11, and Malkiel (1996), Chapter 11. Grabbe (1983), Barron
(1990), Barron and Jensen (1990, 1991), Korn (1992), and Bergman (1995)
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have derived option pricing formulas when the interest rate for borrowing is
greater than the interest rate for investing. See also Section 6.8 of this text.
Cox, Ross, and Rubinstein (1979) provide a simple yet powerful discrete-
time model for option pricing. Ocone and Karatzas (1991) have used the
Malliavin calculus to identify hedging portfolios; Colwell, Elliott, and Kopp
(1991) have relied on the Markov property for the same purpose. Carr and
Jarrow (1990) use Brownian local time to resolve the paradox of hedging
an option using the stop–loss start–gain strategy. Lamberton and Lapeyre
(1993) and Madan and Milne (1993) discuss contingent-claim valuation
when one is investing in a “basis” of assets.

The Black–Scholes option pricing formula (4.11) heralded a revolution
marked by the widespread creation of derivative securities whose prices
are set as much by theoretical considerations as by market forces. One of
the basic insights of this formula is that it singles out the volatility of the
underlying stock-price process as the crucial parameter. The success of the
Black–Scholes model has been such that prices are often quoted now in
terms of the volatility parameters implied by it.

Empirical evidence has shown, however, that the constant volatility
model that supports the pricing formula (4.11) should not be used inju-
diciously (see, for instance, Blattberg and Gonedes (1974), Black (1976b),
MacBeth and Merville (1979), Christie (1982), Bhattacharya (1983), Ru-
binstein (1983, 1985), Scott (1987) and the references cited there). Several
procedures for estimating stock volatilities have been proposed; for pro-
cedures based on the extreme values of stock prices, see Garman and
Klass (1980), Parkinson (1980), Beckers (1983), Rogers and Satchell (1991).
Procedures for estimating stochastic volatility are described by Andersen
(1994), Taylor (1994).

The formulae of Example 4.5 on path-dependent (or “look-back”) op-
tions appear in Goldman, Sosin, and Gatto (1979). Our treatment was
inspired by the preprint of Föllmer (1991), who credits Martin Schweizer
with the idea of using the Clark formula in this context. Shepp and Shiryaev
(1993, 1994) introduced some perpetual American look-back options with
discounted payoff of the type

Y (t) = e−rt max
0≤u≤t

S(u), 0 ≤ t ≤ ∞

with r > 0, which were later also studied by Duffie and Harrison (1993).
For the rather difficult study of Asian options, i.e., path-dependent options
with (terminal) payoff of the type C(·) ≡ 0 on [0, T ) and

C(T ) =

(
1
T

∫ T

0
S(t) dt − q

)+

depending on the average stock price over a given time interval, we refer the
reader to the papers of Carverhill and Clewlow (1990), Kemna and Vorst
(1990), Conze and Viswanathan (1991), Turnbull and Wakeman (1991), Ge-
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man and Yor (1992, 1993), Bouaziz et al. (1994), Kramkov and Vishnyakov
(1994), and Rogers and Shi (1995) or Karatzas (1996), p. 23.

Another example of a path-dependent option is the so-called barrier
option of the type C(·) ≡ 0 on [0, T ) and

C(T ) = (S(T )− q)+ · 1{τh≤T} with τh
�
= inf{t ≥ 0;S(t) ≥ h} (8.1)

and 0 < S(0), q < h <∞; i.e., a European call option that is activated only
if a certain upper barrier is hit before the expiration date. See, for instance,
Merton (1973), Cox and Rubinstein (1985), Rubinstein (1991), Karatzas
(1996), pp. 21–22, and Broadie, Glasserman, and Kou (1996, 1997) for
numerical methods. One can think of several types of barrier options, de-
pending on whether the barrier lies above or below the initial stock price,
and on the function of the barrier (i.e., whether hitting the barrier activates
or deactivates the option); all of these have received attention, as has the
“Parisian option” (cf. Chesney et al. (1997)), a barrier-type option that is
activated only if the price process spends a sufficient, prespecified amount
of time above the upper barrier h of (8.1). There are also the double-barrier
options, which, for example, are deactivated if the stock price hits either an
upper or a lower barrier before expiration; see Kunimoto and Ikeda (1992),
Geman and Yor (1996), Rogers and Zane (1997), Jamshidian (1997a), and
Pelsser (1997). Yet another example of a path-dependent option is the so-
called quantile option, apparently first studied by Miura (1992); see also
Akahori (1995), Dassios (1995), Yor (1995), and Fujita (1997). The reader
can consult Rubinstein (1991) for definitions and pricing formulae for a
number of exotic options, and Carr (1993) and Zhang (1997) for more
comprehensive treatments of the topic.

The notion of compound options, or options on options, is not as far-
fetched as one might think. Stock can be viewed as an option on the value
of a firm; the value of a share of stock in a firm cannot become negative,
because if the value of the firm’s assets falls below its level of debt, the
stockholders have the option of declaring bankruptcy. Thus, a stock option
can be regarded as an option on an option. Analysis of compound options
is contained in Geske (1979) and Selby and Hodges (1987). In theory, one
can price a compound option by simply regarding the underlying option
as generating a European contingent claim C(·) that is substituted into
the pricing formula (2.9). Similarly interesting are the exchange options of
the type C(T ) = (S1(T ) − S2(T ))+, which give their holder the right to
exchange, on their expiration date t = T , one asset for another; in the con-
text of a model with constant volatilities, the pricing of such options admits
closed-form solutions of the Black–Scholes type, as was demonstrated by
Margrabe (1978) (see also Davis (1996) or Karatzas (1996), p. 24).

The “arbitrage-based” approach of these sections is not directly appli-
cable to markets that are incomplete, or subject to portfolio constraints or
frictions (such as transaction costs or taxes); in such markets, contingent
claims typically cannot be replicated exactly using self-financed portfolios.
This problem arises, for example, when the volatility of the underlying
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stock is stochastic in a way that cannot be hedged by investment in the
stock and the money market (e.g., Hull and White (1987, 1988a)). One
possible approach, then, is to relax the requirement that portfolios be self-
financed (Definition 1.2.1), by requiring that the difference of the two sides
in (1.2.8) be a martingale—and not identically equal to zero, as postulated
by (1.2.8). A portfolio with this property was called mean-self-financed by
Föllmer and Sondermann (1986). These authors introduced this notion and
then established that for any square-integrable contingent claim and dis-
counted price processes that are martingales, there exists a portfolio whose
value is almost surely equal to that of the contingent claim at time T
and that possesses a certain “risk-minimizing” optimality property; such
a portfolio is unique and mean-self-financing. The Föllmer–Sondermann
approach was extended by Schweizer (1988, 1990, 1991, 1992a, 1995a)
and Föllmer and Schweizer (1991) to semimartingale price processes; in
these papers, mean-self-financing portfolios were characterized in terms of
a stochastic functional equation, which was shown to have a solution un-
der the assumption that a certain minimal martingale measure exists. This
measure has the property that although it turns prices into martingales, it
does not otherwise change the structure of the model. Using this minimal
equivalent martingale measure, Schweizer (1992b) solved a mean-variance
hedging problem in a particular incomplete market problem, generalizing
earlier results of Richardson (1989) and Duffie and Richardson (1991);
an excellent survey of these results is Schweizer (1993). Numerical algo-
rithms based on this point of view are provided by Hofmann, Platen, and
Schweizer (1992). For these and related quadratic optimization problems,
see also Schäl (1994), Schweizer (1995b), Musiela and Rutkowski (1997),
Section 4.2, for discrete-time results, and Schweizer (1994, 1996), Delbaen
and Schachermayer (1996a), Delbaen, Monat, et al. (1997), Pham et al.
(1997) for continuous-time results.

A different, stochastic-control-based, approach to the pricing and hedging
problems in incomplete markets was pioneered by El Karoui and Quenez
(1991, 1995), building on a duality construction developed by Xu (1990),
who was in turn inspired by Bismut (1973) (see the Notes to Chapters
5 and 6 for a fuller discussion of this history). This approach insists on
self-financeability of portfolios, but abandons the requirement of exact du-
plication of the contingent claim; instead, it requires that the value of
the portfolio at the terminal time T dominate the contingent claim almost
surely. The results of El Karoui and Quenez (1991, 1995) were extended
by Cvitanić and Karatzas (1993) and Karatzas and Kou (1996, 1998) (see
also Kramkov (1996a,b), Föllmer and Kramkov (1997)) to the case of gen-
eral convex constraints on portfolio choice (of which market incompleteness
is but a very special case), and to the case of different interest rates for
borrowing and for lending. We take up this topic in Chapter 5.

The arbitrage pricing theory for contingent claims assumes that there
are no costs for transactions, and typical hedging portfolios require an in-
finite amount of trading. Figlewski (1989) conducted a simulation study
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which shows that transaction costs have a significant impact on the cost
of hedging options. Indeed, Soner, Shreve, and Cvitanić (1995) recently
proved a conjecture, first formalized by Davis and Clark (1994), that in the
presence of proportional transaction costs in the continuous-time model,
the cheapest way to construct a hedge that dominates a European call op-
tion is the trivial and unsatisfactory method of buying one share of the
stock on which the call option is written and holding it until expiration;
this conjecture was also proved independently by Levental and Skorohod
(1997). In anticipation of this negative result, Leland (1985) had consid-
ered a continuous-time model in which trades occur at discrete times, and
thus a certain “hedge slippage” is unavoidable. However, the total cost
of the transaction remains finite, and the Black–Scholes partial differen-
tial equation (the one-dimensional version of (4.8)) remains valid, except
that the volatility σ must be replaced by a larger constant. As the time
between trades approaches zero, the hedge slippage disappears, the ad-
justed volatility approaches infinity, and the value of the European call
approaches the value obtained by Soner et al. (1995). See also Hoggard,
Whalley, and Wilmott (1994), Avellaneda and Parás (1994), Kabanov and
Safarian (1997), for work that builds on and extends Leland’s approach.

Another approach to option pricing in the presence of transaction costs,
initiated by Hodges and Neuberger (1989), is to assign utility to the dis-
crepancy between the terminal value of a portfolio and the terminal value
of the option, and to set up an optimal portfolio control problem. Some
works along these lines are Constantinides (1986, 1993, 1997), Panas (1993),
Davis, Panas, and Zariphopoulou (1993), Davis and Panas (1994), Davis
and Zariphopoulou (1995), Cvitanić and Karatzas (1996), Constantinides
and Zariphopoulou (1997). Barles and Soner (1998) use the utility-based
approach to derive a nonlinear Black–Scholes-type equation for option
pricing with transaction costs.

In the discrete-time binomial model of Cox, Ross, and Rubinstein (1979),
there are replicating and dominating portfolios even in the presence of
transaction costs; see Bensaid, Lesne, Pagès, and Scheinkman (1992), Boyle
and Vorst (1992), Edirisinghe, Naik, and Uppal (1993), as well as Musiela
and Rutkowski (1997), Chapter 2. For additional work on hedging under
transaction costs, see Gilster and Lee (1984), Dermody and Rockafellar
(1991, 1995), Henrotte (1993), Dewynne, Whalley, and Wilmott (1994),
Shirakawa and Konno (1995), Grannan and Swindle (1996), Kusuoka
(1995), Jouini and Kallal (1995b), Cvitanić and Karatzas (1996), Kabanov
(1997), Cvitanić, Pham, and Touzi (1998). Work on optimal investment
and/or consumption in the presence of transaction costs is cited in the
notes to Chapter 3.

A specific kind of incompleteness arises when, due to additional sources
of randomness that cannot be perfectly hedged, the volatility is stochas-
tic. Early work on this subject is by Wiggins (1987), Hull and White
(1987, 1988a), Johnson and Shanno (1987), Scott (1987), Chesnay and
Scott (1989), Schroder (1989), and is nicely surveyed in Hull (1993), Merton
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(1990), Musiela and Rutkowski (1997). El Karoui, Jeanblanc-Picqué, and
Viswanathan (1992) construct dominating portfolios when the (stochas-
tic) volatility is known to take values either inside or outside a given
interval; see also El Karoui, Jeanblanc-Picqué and Shreve (1998), Hob-
son (1998), Eberlein and Jacod (1997), and Frey and Sin (1997). Stein and
Stein (1991) discuss the distribution of asset prices in such models with
stochastic volatility, while Hofman, Platen, and Schweizer (1992), Heston
(1993), Dupire (1993, 1994), Platen and Schweizer (1994), (1998), Lyons
(1995), Avellaneda, Levy, and Parás (1995), Avellaneda and Parás (1996),
Renault and Touzi (1995), Pham and Touzi (1996), Cvitanić, Pham, and
Touzi (1997), Romano and Touzi (1997), Scott (1997), Frey and Sin (1997),
Sin (1996), Lazrak (1997a,b), deal with various aspects of hedging contin-
gent claims in the framework of such models. Hobson and Rogers (1998)
deal with similar questions within stochastic volatility models which are
complete.

Randomness in the volatility can arise also as the result of “feedback
effects” that relate stock price to the value or debt of a firm, or are due
to the trading of large investors or to “finite elasticity” in the market. For
option-pricing results in such models, which need not be incomplete, see
for instance Cox and Ross (1976), Rubinstein (1983), and the more recent
papers by Bensoussan et al. (1994, 1994/95), Cvitanić and Ma (1996), Frey
and Stremme (1997), Frey (1998), Papanicolaou and Sircar (1997), Platen
and Schweizer (1998) and Hobson and Rogers (1998).

For the very important and huge subject of real options—concerning
whether or not a firm should invest in new technology or equipment, or hire
additional workforce, or develop new products, etc.—which is not touched
upon in this book at all, we refer the reader to the monograph by Dixit
and Pindyck (1994).

Sections 5–7: A general arbitrage-based theory for the pricing of Amer-
ican contingent claims and options begins with the articles of Bensoussan
(1984) and Karatzas (1988); see Myneni (1992a) for a survey and additional
references, and Karatzas and Kou (1998) for the hedging of American con-
tingent claims under portfolio constraints. Theorems 6.1, 6.3 are taken
from Merton (1973a), which contains a wealth of information and still
makes excellent reading. Theorem 6.7 is due to McKean (1965), a “com-
panion” paper to Samuelson (1965a). Van Moerbeke (1976) formulates
the free-boundary problem associated with that of Theorem 6.7 but on
a finite-time horizon; no explicit solution seems possible in that case, but
the author obtains results on the existence and smoothness of the optimal
exercise boundary. Peter Carr pointed out that the right-hand sides of for-
mulae (6.30) and (6.31) must agree, and he provided the key part of the
“long and painful” computational verification. The results of Section 7 on
the American put option are taken from Jacka (1991). For related work see
the references in Myneni (1992a), in particular the paper by Carr, Jarrow,
and Myneni (1992), who provide a finance explanation of the early exercise
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premium formula (7.26), as well as Beaghton (1988), Broadie and Detemple
(1995, 1997), Carr and Jarrow (1990), El Karoui and Karatzas (1995), El-
liott, Myneni, and Viswanathan (1990), Jamshidian (1992), Kim (1990),
Zhang (1993), Pham (1995), Mastroeni and Matzeu (1995), Mulinacci and
Pratelli (1996).

Approximations and/or numerical solutions for the valuation of Amer-
ican options have been proposed by several authors, including the early
work of Black (1975) and Brennan and Schwartz (1977); see also Jaillet et
al. (1990) for a treatment of the American option optimal stopping problem
via variational inequalities, which leads to a justification of the Brennan–
Schwartz algorithm. Kramkov and Vishnyakov (1994) work out formulas for
hedging portfolios. Roughly speaking, the most popular methods currently
in use are:

(i) Binomial trees and their extensions; see for example Cox, Ross, and
Rubinstein (1979), and Lamberton (1993, 1995a) for the convergence
of the associated binomial and/or finite difference schemes, as well as
Boyle (1988), Hull and White (1988b), Rogers and Stapleton (1998),
Figlewski and Gao (1997), Reimer and Sandmann (1995).

(ii) Numerical solution of PDEs and Variational Inequalities; see, for
example, Carr and Faguet (1994), Carr (1998), Wilmott, Dewynne,
and Howison (1993, 1995).

(iii) Analytic approximations, such as those in Parkinson (1977), John-
son (1983), Geske and Johnson (1984), MacMillan (1986), Omberg
(1987), Barone-Adesi and Whaley (1987), Bunch and Johnson (1992),
Meyer and Van der Hoek (1995), Broadie and Detemple (1996), Ches-
ney, Elliott, and Gibson (1993), Gao, Huang, and Subrahmanyam
(1996).

(iv) Monte Carlo and quasi–Monte Carlo simulation, as in Tilly (1993),
Barraquand and Pudet (1996), who deal with path-dependent Amer-
ican contingent claims, and Broadie and Glasserman (1997). Other
papers on option price calculation by Monte Carlo simulation are
Boyle (1977), Boyle, Evnine, and Gibbs (1989), Duffie and Glynn
(1995), Paskov and Traub (1995), Barraquand and Martineau (1995),
Boyle, Broadie, and Glasserman (1997), Schoenmakers and Heemink
(1997). Lehoczky (1997) surveys Monte Carlo variance reduction
methods for finance applications.

Barles et al. (1995) and Lamberton (1995b) study asymptotic proper-
ties of the critical stock-price near expirations. For surveys of the extant
numerical work on American and path-dependent contingent claims, the in-
terested reader should consult Carverhill and Webber (1990), Hull (1993),
and Wilmott, Dewynne, and Howison (1993) and Broadie and Detemple
(1996).



3
Single-Agent Consumption
and Investment

3.1 Introduction

This chapter solves the problem of an agent who begins with an initial en-
dowment and who can consume while also investing in a standard, complete
market as set forth in Chapter 1. The objective of this agent is to maxi-
mize the expected utility of consumption over the planning horizon, or to
maximize the expected utility of wealth at the end of the planning horizon,
or to maximize some combination of these two quantities. Except for the
completeness assumption, the market model is quite general, allowing the
coefficient processes to be stochastic processes that are not even assumed
to be Markovian. Specializations of this model to the case of deterministic
and even constant coefficients are provided in Sections 3.8 and 3.9. The
problem of this chapter is revisited in the context of incomplete markets in
Chapter 6.

The agent acting in this chapter is assumed to be a “small investor,” in
the sense that his actions do not influence market prices. Chapter 4 consid-
ers the equilibrium problem of several agents whose joint actions determine
market prices through the law of supply and demand. The model of this
section is a basic building block in such equilibrium models, and these,
in turn, are the basis for a theory of financial markets. Such equilibrium
models can be used, for example, to study possible effects of taxation and
market regulation. The Notes to this chapter contain a further discussion
of the relationship between this material and capital-asset pricing models.
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In addition to its role in theoretical studies of financial markets, the
model of this section can form the basis of portfolio management. This
requires, of course, that the investment manager either assume a utility
function or else elicit a utility function from the client whose money is being
managed. We show in Section 3.10 that maximization of the logarithm of
terminal wealth results in maximization of the growth rate of wealth, and
this is consequently a frequently used utility function. The class of utility
functions of the form U (p)(x) = xp/p for x ≥ 0, where p �= 0 is a number
strictly less than one, are also commonly used. For this one-parameter
family of utility functions, the Arrow–Pratt index of relative risk aversion,

J(x) ∆= −x
∂2

∂x2 U (p)(x)
/ ∂

∂x
U (p)(x),

= 1− p,

decreases with increasing p. One can elicit from an investor some measure
of risk aversion and attempt to determine the corresponding utility function
from this one-parameter family.

Sections 3.2 and 3.3 describe the market model and the set of consump-
tion and portfolio processes from which the investor in this market is free
to choose. Section 3.4 introduces the notion of utility function. We allow
these functions to take the value −∞ on a half-line extending to −∞, which
effectively places a lower constraint on consumption and/or wealth. Section
3.6 solves the problem of an agent who seeks to maximize expected utility
from consumption plus expected utility from terminal wealth. The method
of solution uses the convex dual function (Legendre transform) of the utility
function. Related to this concept, we introduce and study the convex dual
of the value function for the problem of Section 3.6. This foreshadows a du-
ality theory that plays a critical role in the analysis of incomplete markets
in later chapters.

Section 3.7 considers the problem of maximization of expected utility
from consumption only, and the antithetical problem of maximization of
expected utility from terminal wealth only. These problems are related to
that of Section 3.6 in the following way. Given an initial endowment x, an
agent who wishes to maximize the expected utility of consumption plus the
expected utility of terminal wealth can partition his initial endowment into
two parts, x1 and x2, such that x = x1 +x2. Beginning with initial endow-
ment x1, the agent should solve the problem of maximizing expected utility
from consumption only; with x2, he should solve the problem of maximiz-
ing expected utility from terminal wealth only. The superposition of these
two solutions is then the solution to the problem of maximizing expected
utility from consumption plus expected utility from terminal wealth. The
partition of wealth that accomplishes this decomposition of the problems
is derived in Section 3.7.

The results of Sections 3.6 and 3.7 are specialized to models with de-
terministic coefficients in Section 3.8. For such models a Markov-based



90 3. Single-Agent Consumption and Investment

analysis is provided, including the development of the Hamilton–Jacobi–
Bellman equation and the optimal consumption and portfolio processes as
feedback functions of the agent’s wealth. The Hamilton–Jacobi–Bellman
equation of Section 3.8 is a second-order parabolic differential equation.
When the model coefficients are constant and the planning horizon is in-
finite, the Hamilton–Jacobi–Bellman equation is a second-order ordinary
differential equation, and lends itself to very explicit analysis; this is the
subject of Section 3.9.

3.2 The Financial Market

As in Chapter 2, we shall work in this chapter in the context of a complete,
standard financial market M = (r(·), b(·), δ(·), σ(·), S(0), A(·)) (see Defini-
tions 1.1.3, 1.5.1, 1.6.1 and Theorem 1.6.6). In particular, the price of the
money market is governed by

dS0(t) = S0(t) [r(t) dt + dA(t)] , (2.1)

and the prices of the stocks satisfy

dSn(t) = Sn(t)

[
bn(t) dt + dA(t) +

N∑
d=1

σnd(t) dW (d)(t)

]
,

n = 1, . . . , N, (2.2)

with σ(t) = (σnd(t))1≤n,d≤N nonsingular for Lebesgue-almost-every t ∈
[0, T ] almost surely. In Sections 3.9 and 3.10, we place the financial market
on the infinite planning horizon [0,∞) (Definitions 1.7.2, 1.7.3). Recall
that S0(0) = 1 and S1(0), . . . , SN (0) are positive constants, and recall from
(1.6.16), (1.5.6), (1.5.2), and (1.5.12) the processes

θ(t) ∆= σ−1(t)[b(t) + δ(t)− r(t)1
˜
], (2.3)

W0(t)
∆= W (t) +

∫ t

0
θ(s) ds, (2.4)

Z0(t)
∆= exp

{
−
∫ t

0
θ′(s) dW (s) − 1

2

∫ t

0
‖θ(s)‖2 ds

}
, (2.5)

H0(t)
∆=

Z0(t)
S0(t)

. (2.6)

In a standard market, the exponential local martingale Z0(·) is in fact a
martingale, which permits the definition of the standard martingale mea-
sure P0 (see Definition 1.5.1 and equation (1.5.3)). Except in Section 3.8,
we shall present the analysis of this chapter in a way that uses only the
local martingale property of Z0(·) and avoids the use of P0 altogether. This
permits the present analysis also to be used in the study of constrained and
incomplete markets in Chapter 6.
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Until further notice, we take T to be finite and restrict attention to
the finite-horizon model on [0, T ]. For this model, one of the following
conditions will be imposed.

Assumption 2.1: The state price density process H0 satisfies

E

[∫ T

0
H0(t) dt

]
<∞.

Assumption 2.2: The state price density process H0 satisfies

EH0(T ) <∞.

Assumption 2.3: The state price density process H0 satisfies

E

[∫ T

0
H0(t) dt + H0(T )

]
<∞.

A sufficient condition for these assumptions is that S0(·) be bounded
away from zero on [0, T ], so that H0(·) is bounded from above by a constant
times the nonnegative supermartingale Z0(·).

3.3 Consumption and Portfolio Processes

An agent will act in the financial market of the previous section by choosing
a consumption process and a portfolio process. In this section, these entities
are defined, and it is shown as a consequence of the admissibility condi-
tion (3.2) that these processes must satisfy the budget constraint (3.4). It
is further shown that if one starts with a consumption process and a non-
negative random variable that satisfy the budget constraint, then there is a
hedging portfolio that, together with the given consumption process, results
in terminal wealth equal to the given nonnegative random variable.

Definition 3.1: A consumption process is an {F(t)}-progressively mea-
surable, nonnegative process c(·) satisfying

∫ T

0 c(t) dt < ∞, almost
surely.

An agent with initial endowment x ≥ 0 who chooses a consumption
process c(·) will have a cumulative income process Γ(t) ∆= x−

∫ t

0 c(u) du, 0 ≤
t ≤ T . If this investor chooses a Γ(·)-financed portfolio process π(·), then
his corresponding wealth process Xx,c,π(·) will be governed by equation
(1.5.8):

Xx,c,π(t)
S0(t)

= x−
∫ t

0

c(u) du

S0(u)
+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u),

0 ≤ t ≤ T. (3.1)
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Definition 3.2: Given x ≥ 0, we say that a consumption and portfolio
process pair (c, π) is admissible at x, and write (c, π) ∈ A(x), if the wealth
process Xx,c,π(·) corresponding to x, c, π satisfies

Xx,c,π(t) ≥ 0, 0 ≤ t ≤ T, (3.2)

almost surely. For x < 0, we set A(x) = ∅.

Remark 3.3: From (1.5.14), we have

H0(t)Xx,c,π(t) +
∫ t

0
H0(u)c(u) du

= x +
∫ t

0
H0(u) [σ′(u)π(u)−Xx,c,π(u)θ(u)]′ dW (u),

0 ≤ t ≤ T. (3.3)

When (c, π) ∈ A(x), the left-hand side of (3.3) is nonnegative, and so the
Itô integral on the right side is not only a local martingale under P , but
also a supermartingale (Fatou’s lemma). This implies that the so-called
budget constraint

E

[∫ T

0
H0(u)c(u) du + H0(T )Xx,c,π(T )

]
≤ x (3.4)

is satisfied for every (c, π) ∈ A(x). The budget constraint has the satisfy-
ing interpretation that the expected “discounted” terminal wealth plus the
expected “discounted” total consumption cannot exceed the initial endow-
ment. Here the “discounting” is accomplished by the state price density
process H0.

Remark 3.4: Bankruptcy is an absorbing state for the wealth process
Xx,c,π(·) when (c, π) ∈ A(x); if wealth becomes zero before time T , it
stays there, and no further consumption or investment takes place. To see
this, note that because the left-hand side of (3.3) is a supermartingale, so
is the process H0(t)Xx,c,π(t), 0 ≤ t ≤ T , for every (c, π) ∈ A(x). With
τ0

∆= T ∧ inf {t ∈ [0, T ];X(t) = 0}, we have then

Xx,c,π(t, ω) = 0, ∀ t ∈ [τ0(ω), T ] ,

for P -almost-every ω ∈ {τ0 < T} (e.g., Karatzas and Shreve (1991), Prob-
lem 1.3.29). On the other hand, the optional sampling theorem applied to
the left-hand side of (3.3) gives

E

[∫ T

τ0

H0(t)c(t) dt + H0(T )Xx,c,π(T )

∣∣∣∣∣F(τ0)

]
≤ H0(τ0)X(τ0)

almost surely, and thus, for P -a.e. ω ∈ {τ0 < T},

c(t, ω) = 0, π(t, ω) = 0 for Lebesgue-a.e. t ∈ [τ0(ω), T ] .
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The budget constraint (3.4) is not only a necessary condition for ad-
missibility, but is also a sufficient condition, in a sense that we now
explain.

Theorem 3.5: Let x ≥ 0 be given, let c(·) be a consumption process, and
let ξ be a nonnegative, F(T )-measurable random variable such that

E

[∫ T

0
H0(u)c(u) du + H0(T )ξ

]
= x. (3.5)

Then there exists a portfolio process π(·) such that the pair (c, π) is
admissible at x and ξ = Xx,c,π(T ).

Proof. Let us define J(t) ∆=
∫ t

0 H0(u)c(u) du and consider the nonnega-
tive martingale

M(t) ∆= E
[
J(T ) + H0(T )ξ

∣∣F(t)
]
, 0 ≤ t ≤ T.

According to the martingale representation theorem (e.g., Karatzas and
Shreve (1991), Theorem 3.4.15 and Problem 3.4.16), there is a progressively
measurable, Rd-valued process ψ(·) satisfying

‖ψ‖22
∆=
∫ T

0
‖ψ(u)‖2 du <∞

almost surely and

M(t) = x +
∫ t

0
ψ′(u) dW (u), 0 ≤ t ≤ T.

In particular, M(·) has continuous paths, and

‖M‖∞ ∆= max
0≤t≤T

|M(t)| <∞

almost surely. Similarly, ‖J‖∞ ∆= max0≤t≤T J(t), ‖S0‖∞ ∆= max0≤t≤T S0(t),

and κ
∆= max0≤t≤T 1/Z0(t) are finite almost surely.

Define a nonnegative process X(·) by

X(t)
S0(t)

∆=
1

Z0(t)
E

[∫ T

t

H0(u)c(u) du + H0(T )ξ

∣∣∣∣∣F(t)

]

=
1

Z0(t)
[M(t)− J(t)] , (3.6)

so that X(0) = M(0) = x. Itô’s rule implies

d

(
X(t)
S0(t)

)
= − c(t)

S0(t)
dt +

1
S0(t)

π′(t)σ(t) dW0(t),

where

π(t) ∆=
1

H0(t)
(σ′(t))−1 [ψ(t) + (M(t)− J(t)) θ(t)] . (3.7)
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We check that π(·) satisfies (1.2.5), (1.2.6), and hence is a portfolio pro-
cess. From Remark 1.6.10 and equation (1.5.1), we have that θ(t) =
σ−1(t) [b(t) + δ(t)− r(t)1

˜
] satisfies ‖θ‖2 ∆= (

∫ T

0 ‖θ(t)‖
2 dt)

1
2 < ∞ almost

surely. Therefore,∫ T

0

∣∣π′(t)
(
b(t) + δ(t)− r(t)1

˜
)
∣∣ dt

=
∫ T

0

S0(t)
Z0(t)

∣∣∣ψ′(t)θ(t) + ‖θ(t)‖2 (M(t)− J(t))
∣∣∣ dt

≤ κ‖S0‖∞
[
‖ψ‖2‖θ‖2 + ‖θ‖22 (‖M‖∞ + ‖J‖∞)

]
<∞

almost surely, and (1.2.5) holds. Similarly,∫ T

0
‖σ′(t)π(t)‖2 dt =

∫ T

0

S2
0(t)

Z2
0 (t)
‖ψ(t) + θ(t) (M(t)− J(t)) ‖2 dt

≤ κ2‖S0‖2∞
[
‖ψ‖22 + ‖ψ‖2‖θ‖2

(
‖M‖∞ + ‖J‖∞

)
+ ‖θ‖22 (‖M‖∞ + ‖J‖∞)2

]
< ∞

almost surely, and (1.2.6) holds as well.
We conclude that

X(t)
S0(t)

= x−
∫ t

0

c(u) du

S0(u)
+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u), 0 ≤ t ≤ T,

and comparison with (3.1) shows that X(·) = Xx,c,π(·). Since X(t) ≥
0 for 0 ≤ t ≤ T , the pair (c, π) is admissible. Finally, X(T ) =
S0(T )
Z0(T )E[H0(T )ξ|F(T )] = ξ almost surely. �

3.4 Utility Functions

The agent in this chapter desires to maximize his utility. In this section
we develop the properties of the utility functions we consider. We also
introduce the convex dual of a utility function.

Definition 4.1: A utility function is a concave, nondecreasing, upper
semicontinuous function U : R→ [−∞,∞) satisfying:

(i) the half-line dom(U) ∆= {x ∈ R;U(x) > −∞} is a nonempty subset of
[0,∞);

(ii) U ′ is continuous, positive, and strictly decreasing on the interior of
dom(U), and

U ′(∞) ∆= lim
x→∞

U ′(x) = 0. (4.1)
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We set

x
∆= inf{x ∈ R;U(x) > −∞} (4.2)

so that x ∈ [0,∞) and either dom(U) = [x,∞) or dom(U) = (x,∞).
We define

U ′(x+) ∆= lim
x↓x

U ′(x), (4.3)

so that U ′(x+) ∈ (0,∞].

Here are some common utility functions. Take p ∈ (−∞, 1) \ {0} and set

U (p)(x) ∆=

xp/p, x > 0,
limξ↓0 ξp/p, x = 0,
−∞, x < 0.

(4.4)

For p = 0, set

U (0)(x) ∆=
{

log x, x > 0,
−∞, x ≤ 0. (4.5)

The Arrow–Pratt index of risk aversion, −xU ′′(x)
U ′(x) for U (p), is 1− p. Other

utility functions are U (p)(x− x), where x is a positive constant.
Let U be a utility function with x given by (4.2). The strictly decreasing,

continuous function U ′: (x,∞) onto−→ (0, U ′(x+)) has a strictly decreasing,
continuous inverse I: (0, U ′(x+)) onto−→ (x,∞). We set I(y) = x for U ′(x+) ≤
y ≤ ∞, so that I is defined, finite, and continuous on the extended half-line
(0,∞], and

U ′ (I(y)) =
{

y, 0 < y < U ′(x+),
U ′(x+), U ′(x+) ≤ y ≤ ∞, (4.6)

I (U ′(x)) = x, x < x <∞. (4.7)

Definition 4.2: Let U be a utility function. The convex dual of U is the
function

Ũ(y) ∆= sup
x∈R

{U(x)− xy}, y ∈ R. (4.8)

Except for the presence of some minus signs, Ũ is the Legendre–Fenchel
transform of U (Rockafellar (1970), Ekeland and Temam (1976)). Indeed,
if we define the convex function

f(x) ∆= −U(x), x ∈ R, (4.9)

then the Legendre–Fenchel transform of f is

f∗(y) ∆= sup
x∈R

{xy − f(x)} = Ũ(−y), y ∈ R. (4.10)
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Lemma 4.3: Let U and x be as in Definition 4.1, I as in (4.6), (4.7),
and let Ũ be the convex dual of U . Then Ũ : R → (−∞,∞] is convex,
nonincreasing, lower semicontinuous, and satisfies

(i)

Ũ(y) =


U (I(y))− yI(y), y > 0,
U(∞) ∆= limx→∞ U(x), y = 0,
∞, y < 0.

(4.11)

(ii) The derivative Ũ ′ is defined, continuous, and nondecreasing on
(0,∞), and

Ũ ′(y) = −I(y), 0 < y <∞. (4.12)

(iii) For all x ∈ R,

U(x) = inf
y∈R
{Ũ(y) + xy}. (4.13)

(iv) For fixed x ∈ (x,∞), the function y �→ Ũ(y) + xy is uniquely
minimized over R by y = U ′(x); i.e.,

U(x) = Ũ (U ′(x)) + xU ′(x). (4.14)

Proof. According to Rockafellar (1970), Theorem 12.2, the function Ũ
is lower semicontinuous, convex, takes values in (−∞,∞], and is related to
U via (4.13). Equation (4.11) is easily verified directly from the definition
of Ũ .

According to Rockafellar (1970), Theorem 23.5, the function ξ �→ U(ξ)−
yξ is maximized at ξ = x if and only if −x ∈ ∂Ũ(y). But for 0 < y < ∞,
this function is uniquely maximized by ξ = I(y), whence (4.12) holds. From
(4.12) we see that Ũ ′ is continuous and nonincreasing on (0,∞).

Finally, for fixed x ∈ (x,∞), the convex function y �→ Ũ(y) + xy has
derivative −I(y) + x for y ∈ (0,∞). This derivative is zero at y = U ′(x)
(see (4.7)), which gives us (iv). �

Remark 4.4: We shall usually consider utility functions U for which x
given by (4.2) is zero. For such a function, we shall impose sometimes the
following additional conditions:

(a) x �→ xU ′(x) is nondecreasing on (0,∞); (4.15)
(b) For some β ∈ (0, 1), γ ∈ (1,∞), we have

βU ′(x) ≥ U ′(γx) ∀x ∈ (0,∞). (4.16)

The first of these conditions is equivalent to

(c)y �→ yŨ ′(y) is nondecreasing on (0, U ′(0+))
(set y = U ′(x) and use (4.7), (4.12)). (4.15′)

Condition (c) implies that

z �→ Ũ(ez) is convex on R; (4.15′′)
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Furthermore, for a utility function U of class C2(0,∞), condition (4.4)
implies that the so-called Arrow–Pratt index of relative risk aversion

J(x) ∆= −xU ′′(x)
U ′(x)

(4.17)

does not exceed 1.
Condition (4.16) is equivalent to having

Ũ ′(βy) ≥ γŨ ′(y) ∀ y ∈ (0, U ′(0+)) for some β ∈ (0, 1), γ ∈ (1,∞)

(4.16′)

(just replace x by −Ũ ′(y) in (4.16), and then apply Ũ ′ to both sides of
the resulting inequality). By iterating (4.16′), one obtains the apparently
stronger statement

∀β ∈ (0, 1),∃γ ∈ (1,∞) such that Ũ ′(βy) ≥ γŨ ′(y) ∀ y ∈ (0, U ′(0+)) .

(4.16′′)

It should also be noted, in the notation of (4.4), (4.5), that for γ ≥ 0 and
0 < p < 1, condition (4.4) is satisfied by the function

U(x) ∆=
{

U (p)(x + γ), x ≥ 0,
−∞, x < 0,

whereas (4.16) is satisfied by U (p) for all p ∈ (−∞, 1).

3.5 The Optimization Problems

We formulate three optimization problems for an agent. This agent is some-
times called a small investor because his actions do not affect the prices of
financial assets.

Definition 5.1: A (time-separable, von Neumann–Morgenstern) pref-
erence structure is a pair of functions U1: [0, T ] × R → [−∞,∞) and
U2: R→ [−∞,∞) as described below:

(i) For each t ∈ [0, T ], U1(t, ·) is a utility function (Definition 4.1), and
the subsistence consumption

c(t) ∆= inf {c ∈ R;U1(t, c) > −∞} , 0 ≤ t ≤ T, (5.1)

is a continuous function of t, with values in [0,∞);
(ii) U1 and U ′

1 (where the prime denotes differentiation with respect to
the second argument) are continuous on the set

D1
∆= {(t, c) ∈ [0, T ]× (0,∞); c > c(t)} ; (5.2)
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(iii) U2 is a utility function, with subsistence terminal wealth defined by

x
∆= inf {x ∈ R;U2(x) > −∞} . (5.3)

Let an agent have an initial endowment x ∈ R and a preference struc-
ture (U1, U2). The agent can consider three problems whose elements of
control are the admissible consumption and portfolio processes in A(x) of
Definition 3.2.

Problem 5.2: Find an optimal pair (c1, π1) ∈ A1(x) for the problem

V1(x) ∆= sup
(c,π)∈A1(x)

E

∫ T

0
U1 (t, c(t)) dt (5.4)

of maximizing expected total utility from consumption over [0, T ], where

A1(x) ∆=

{
(c, π) ∈ A(x);E

∫ T

0
min

[
0, U1

(
t, c(t)

)]
dt > −∞

}
. (5.5)

Problem 5.3: Find an optimal pair (c2, π2) ∈ A2(x) for the problem

V2(x) ∆= sup
(c,π)∈A2(x)

EU2 (Xx,c,π(T )) (5.6)

of maximizing expected utility from terminal wealth, where

A2(x) ∆= {(c, π) ∈ A(x);E min [0, U2 (Xx,c,π(T ))] > −∞} . (5.7)

Problem 5.4: Find an optimal pair (c3, π3) ∈ A3(x) for the problem

V3(x) ∆= sup
(c,π)∈A3(x)

E

[∫ T

0
U1 (t, c(t)) dt + U2 (Xx,c,π(T ))

]
(5.8)

of maximizing expected total utility from both consumption and terminal
wealth, where

A3(x) ∆= A1(x) ∩ A2(x). (5.9)

Of course, since A(x) = ∅ for x < 0, we have Ai(x) = ∅ for x < 0 and
i = 1, 2, 3. We adopt the convention that the supremum over the empty set
is −∞. In the next sections we shall strive to compute the value functions
V1, V2, and V3 of these problems and to characterize (or even compute)
optimal pairs (ci, πi), i = 1, 2, 3, that attain the suprema in (5.4), (5.6),
and (5.8), respectively.

Remark 5.5: In Problems 5.2–5.4, we could allow U1 (respectively, U2)
also to depend on ω ∈ Ω in an {F(t)}-progressively measurable (respec-
tively, F(T )-measurable) manner. The analysis of the subsequent sections
would be unaffected.

In the remainder of this section, we develop for future use technical re-
sults concerning some of the functions introduced here. The reader may
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wish to postpone this material until these results are actually used in
subsequent sections.

Remark 5.6: Let (U1, U2) be a preference structure.

(i) Because c(·) is continuous, there exists a finite number ĉ such that ĉ >
x∨max0≤t≤T c(t). From the continuity of U1 on D1 ⊃ [0, T ]× [ĉ,∞),
we have ∫ T

0
|U1(t, ĉ)| dt + |U2(ĉ)| <∞. (5.10)

Furthermore, under the respective Assumptions 2.1–2.3, the respec-
tive quantities

X1(∞) ∆= E

∫ T

0
H0(t) c(t) dt, X2(∞) ∆= E [H0(T )x] , (5.11)

X3(∞) ∆= E

[∫ T

0
H0(t)c(t) dt + H0(T )x

]
(5.12)

are finite.
(ii) From (4.1), we have limc→∞ U ′

1(t, c) = 0 for all t ∈ [0, T ]. In fact, the
following stronger statement holds:

lim
c→∞

max
0≤t≤T

U ′
1(t, c) = 0, (5.13)

as one can see by considering, for fixed ε > 0, the nested sequence
of compact sets Kn(ε) ∆= {t ∈ [0, T ];U ′

1(t, ĉ + n) ≥ ε}, n = 1, 2, . . . .
These sets have empty intersection, so for some integer n, we have
Kn(ε) = ∅.

Remark 5.7: For Problem 5.4, the agent must have initial wealth at least
X3(∞) in order to avoid expected utility of −∞. Indeed, for this problem,
the preference structure forces the constraints

c(t) ≥ c(t), a.e. t ∈ [0, T ], (5.14)

Xx,c,π(T ) ≥ x (5.15)

almost surely, for otherwise E[
∫ T

0 U1 (t, c(t)) dt + U2 (Xx,c,π(T ))] would be
−∞. But (5.14), (5.15), and (5.12) imply

E

[∫ T

0
H0(t)c(t) dt + H0(T )Xx,c,π(T )

]
≥ X3(∞). (5.16)

Recalling the budget constraint (3.4), we see that V3 = −∞ on the half-line
(−∞,X3(∞)). For x = X3(∞), any (c, π) ∈ A3(x) satisfying (5.14), (5.15)
must actually satisfy c(t) = c(t), Xx,c,π(T ) = x. According to Theorem
3.5, there is in fact a portfolio process π for which XX3(∞),c,π(T ) = x, and
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we conclude that

V3(x) =


∫ T

0
U1 (t, c(t)) dt + U2(x), x = X3(∞),

−∞, x < X3(∞).
(5.17)

From (5.10), this last expression is well-defined, although it may be −∞,
in which case A3 (X3(∞)) = ∅ and V3 (X3(∞)) = −∞, in accordance with
(5.17). Similar arguments show that

V1(x) =


∫ T

0
U1 (t, c(t)) dt, x = X1(∞),

−∞ x < X1(∞),
(5.18)

V2(x) =
{

U2(x), x = X2(∞),
−∞, x < X2(∞). (5.19)

Let (U1, U2) be a preference structure. For fixed t ∈ [0, T ], the function
I1(t, ·) : (0,∞] onto−→ [c(t),∞), satisfying the analogue

U ′
1 (t, I1(t, y)) =

{
y, 0 < y < U ′

1 (t, c(t)+),
U ′

1 (t, c(t)+) , U ′
1 (t, c(t)+) ≤ y ≤ ∞ (5.20)

of (4.6), is strictly decreasing on
(
0, U ′

1 (t, c(t)+)
]
, is identically equal to

c(t) on [U ′
1 (t, c(t)+) ,∞], and is continuous on all of (0,∞]. Similar remarks

apply to the function I2 : (0,∞] −→ [x,∞) that satisfies

U ′
2 (I2(y)) =

{
y, 0 < y < U ′

2(x +),
U ′

2(x +), U ′
2(x +) ≤ y ≤ ∞. (5.21)

Lemma 5.8: The function I1 of (5.20) is jointly continuous on [0, T ] ×
(0,∞].

Proof. Let (t0, y0) ∈ [0, T ] × (0,∞] be given, and let {(tn, yn)}∞n=1 be
a sequence in the same set with limit (t0, y0). Define cn = I1(tn, yn), n =
0, 1, . . . . We need to show that c0 = limn→∞ cn.

Let us consider separately the two cases:

Case 1: y0 < U ′
1 (t0, c(t0)+).

For some γ > 0, we have y0 < U ′
1
(
t0, c(t0) + γ

)
. Continuity of c and of

U ′
1 on D1 implies yn < U ′

1 (tn, c(tn) + γ) for n sufficiently large, and thus
cn ≥ c(tn) + γ and

yn = U ′
1(tn, cn). (5.22)

The sequence {cn}∞n=1 is bounded, for otherwise (5.13) would imply
0 = limn→∞U ′

1(tn, cn) = limn→∞yn, which violates the assumption
limn→∞ yn = y0 > 0. Any accumulation point c∗

0 of {cn}∞n=1 must sat-
isfy c∗

0 ≥ c(t0) + γ; thus, the continuity of U ′
1 on D1 and (5.22) imply

y0 = U ′
1(t0, c∗

0) and c∗
0 = I1(t0, y0) = c0. Consequently, limn→∞ cn = c0.
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Case 2: y0 ≥ U ′
1 (t0, c(t0)+).

Now we have c0 = c(t0). We divide the index set into N1
∆=

{n ≥ 1; yn ≥ U ′
1 (tn, c(tn)+)} and N2

∆= {n ≥ 1; yn < U ′
1 (tn, c(tn)+)}. For

n ∈ N1, we have cn = c(tn), so limn∈N1 cn = c(t0) = c0, as desired. For
n ∈ N2, we have cn > c(tn), and thus (5.22) holds; we can argue as in
Case 1 that {cn}n∈N2 is bounded. If {cn}n∈N2 were to have an accumula-
tion point c∗

0 > c(t0), then the argument of Case 1 would imply c∗
0 = c0,

which violates the Case 2 assumption. Hence, every accumulation point c∗
0

of {cn}n∈N2 satisfies c∗
0 = c(t0) = c0. �

3.6 Utility from Consumption
and Terminal Wealth

In Theorem 6.3 and Corollary 6.5 below we provide a complete solution
to Problem 5.4 of maximizing expected utility from consumption plus
expected utility from terminal wealth. We follow this with a number of
examples of this solution. Theorem 6.11 begins the study of the dual value
function for this problem.

Let a preference structure (U1, U2) be given. We define the function

X3(y) ∆= E

[∫ T

0
H0(t)I1

(
t, yH0(t)

)
dt + H0(T )I2

(
yH0(T )

)]
, 0 < y <∞.

(6.1)

Assumption 6.1: X3(y) <∞, ∀ y ∈ (0,∞).

Remarks 6.8, 6.9 below give conditions that imply the validity of this
assumption.

Lemma 6.2: Under Assumption 6.1, the function X3 is nonincreas-
ing and continuous on (0,∞), and strictly decreasing on (0, r3), where
X3(0+) ∆= limy↓0 X3(y) =∞, X3(∞) ∆= limy→∞ X3(y) is given by (5.12),
and

r3
∆= sup {y > 0;X3(y) > X3(∞)} > 0. (6.2)

In particular, the function X3 restricted to (0, r3) has a strictly decreasing
inverse function Y3:

(
X3(∞),∞

) onto−→ (0, r3), so that

X3 (Y3(x)) = x, ∀x ∈ (X3(∞),∞) . (6.3)

Proof. Since I1(t, ·) and I2(·) are nonincreasing, so is X3(·). The right
continuity of X3(·) and the equation X3(0+) = ∞ are consequences of
the monotone convergence theorem and, in the latter case, the equalities
I1(t, 0+) = I2(0+) =∞. The left continuity of X3(·) follows from Assump-
tion 6.1 and the dominated convergence theorem. Likewise, agreement with
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(5.12) follows from the dominated convergence theorem and the equalities
limc→∞ I1(t, c) = c(t), limx→∞ I2(x) = x.

It remains to show that X3 is strictly decreasing on (0, r3). For y ∈ (0, r3),
we have X3(y) > X3(∞), and thus, either yH0(t, ω) < U ′

1 (t, c(t)+) for all
(t, ω) in a set of positive product measure, or else yH0(T, ω) < U ′

2(x+) for
all ω in an event of positive P measure. But I1(t, ·) (respectively, I2(·)) is
strictly decreasing on (0, U ′

1 (t, c(t)+)) (respectively, on (0, U ′
2(x+))). Thus,

either one of the above inequalities is enough to imply X3(y − δ) > X3(y)
for all δ ∈ (0, y). �

We are now prepared to solve Problem 5.4. In light of Remark 5.7,
specifically (5.17), we need only consider initial wealth x in the domain
(X3(∞),∞) of Y3(·). For such an x, we know from (3.4) and Theorem
3.5 that Problem 5.4 amounts to maximizing E[

∫ T

0 U1(t, c(t)) dt + U2(ξ)]
over pairs (c, ξ), consisting of a consumption process c(·) and a nonnega-
tive F(T )-measurable random variable ξ, that satisfy the budget constraint
(3.4), namely, E[

∫ T

0 H0(t)c(t) dt + H0(T )ξ] ≤ x. Now, if y > 0 is a “La-
grange multiplier” that enforces this constraint, the problem reduces to the
unconstrained maximization of

E

[∫ T

0
U1(t, c(t)) dt + U2(ξ)

]
+ y

(
x−E

[∫ T

0
H0(t)c(t) dt + H0(T )ξ

])
.

But this expression is

xy + E

∫ T

0
[U1(t, c(t))− yH0(t)c(t)] dt + E [U2(ξ)− yH0(T )ξ]

≤ xy + E

[∫ T

0
Ũ1(t, yH0(t)) dt + Ũ2(yH0(T ))

]
,

with equality if and only if

c(t) = I1(t, yH0(t)), 0 ≤ t ≤ T and ξ = I2(yH0(T ))

(recall (4.8) and Lemma 4.3(i)). Quite clearly, y = Y3(x) is the only value
of y > 0 for which the above pair (c, ξ) satisfies the budget constraint
with equality. Thus, for every x ∈ (X3(∞),∞), we are led to the candidate
optimal terminal wealth

ξ3
∆= I2(Y3(x)H0(T )) (6.4)

and the candidate optimal consumption process

c3(t)
∆= I1(t,Y3(x)H0(t)), 0 ≤ t ≤ T. (6.5)

From (6.1), (6.3), we have

E

[∫ T

0
H0(u)c3(u) du + H0(T )ξ3

]
= X3 (Y3(x)) = x, (6.6)
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and Theorem 3.5 guarantees the existence of a candidate optimal portfolio
process π3(·) such that (c3, π3) ∈ A(x) and ξ3 = Xx,c3,π3(T ).

Theorem 6.3: Suppose that both Assumptions 2.3 and 6.1 hold, let x ∈
(X3(∞),∞) be given, let ξ3 and c3(·) be given by (6.4), (6.5), and let π3(·)
be such that (c3, π3) ∈ A(x), ξ3 = Xx,c3,π3(T ). Then (c3, π3) ∈ A3(x), and
(c3, π3) is optimal for Problem 5.4:

V3(x) = E

[∫ T

0
U1 (t, c3(t)) dt + U2 (Xx,c3,π3(T ))

]
. (6.7)

Proof. We first show that (c3, π3) ∈ A3(x). With ĉ as in Remark 5.6,
Lemma 4.3(i) and Definition 4.2 imply

U1 (t, c3(t))− Y3(x)H0(t)c3(t) = Ũ1 (t,Y3(x)H0(t))
≥ U1(t, ĉ)− Y3(x)H0(t)ĉ,

U2(ξ3)− Y3(x)H0(T )ξ3 = Ũ2 (Y3(x)H0(T ))
≥ U2(ĉ)− Y3(x)H0(T )ĉ,

and consequently,

E

{∫ T

0
min [0, U1 (t, c3(t))] dt + min [0, U2(ξ3)]

}

≥
∫ T

0
min [0, U1(t, ĉ)] dt + min [0, U2(ĉ)]

−Y3(x)ĉE

{∫ T

0
H0(t) dt + H0(T )

}
> −∞.

Next, we show that (c3, π3) attains the supremum in (5.8). Let (c, π) be
another pair in A3(x). Using Lemma 4.3(i) again, we have

U1 (t, c3(t))− Y3(x)H0(t)c3(t) ≥ U1 (t, c(t))− Y3(x)H0(t)c(t), (6.8)

U2(t, ξ3)− Y3(x)H0(T )ξ3 ≥ U2 (Xx,c,π(T ))

−Y3(x)H0(T )Xx,c,π(T ), (6.9)

and thus

E

[∫ T

0
U1 (t, c3(t)) dt + U2(t, ξ3)

]

≥ E

[∫ T

0
U1 (t, c(t)) dt + U2 (Xx,c,π(T ))

]

+Y3(x)E

[∫ T

0
H0(t)c3(t) dt + H0(T )ξ3

]
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−Y3(x)E

[∫ T

0
H0(t)c(t) dt + H0(T )Xx,c,π(T )

]

≥ E

[∫ T

0
U1((t, c(t)) dt + U2 (Xx,c,π(T ))

]
,

because of (6.6) and the budget constraint (3.4) satisfied by (c, π). �

Remark 6.4: Assume that V3(x) < ∞. Inequality (6.8) is strict unless
c(t) = c3(t), and likewise (6.9) is strict unless Xx,c,π(T ) = ξ3. It follows that
up to almost-everywhere equivalence under the product of Lebesgue mea-
sure and P , c3(·) is the unique optimal consumption process and ξ3 is the
unique optimal terminal wealth. This implies also that π3(·) is the unique
optimal portfolio process, again up to almost-everywhere equivalence.

Corollary 6.5: Under the assumptions of Theorem 6.3, the optimal wealth
process X3(t) = Xx,c3,π3(t) is

X3(t) =
1

H0(t)
E

[∫ T

t

H0(u)c3(u) du + H0(T )ξ3

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T.

(6.10)
Furthermore, the optimal portfolio π3 is given by

σ′(t)π3(t) =
ψ3(t)
H0(t)

+ X3(t)θ(t), (6.11)

in terms of the integrand ψ3(·) in the stochastic integral representation
M3(t) = x +

∫ t

0 ψ′
3(u) dW (u) of the martingale

M3(t)
∆= E

[∫ T

0
H0(u)c3(u) du + H0(T )ξ3

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T. (6.12)

The value function V3 is then given as

V3(x) = G3 (Y3(x)) , X3(∞) < x <∞, (6.13)

where

G3(y) ∆= E

[∫ T

0
U1 (t, I1 (t, yH0(t))) dt + U2 (I2 (yH0(T )))

]
, 0 < y <∞.

(6.14)

Proof. The formula for X3(·) comes directly from (3.6), which also pro-
vides the formula for M3(·) in terms of H0(·) and converts (3.7) to (6.11).
Equations (6.13), (6.14) are just restatements of (6.4), (6.5), and (6.7). �

Example 6.6: U1(t, x) = U2(x) = log x, ∀(t, x) ∈ [0, T ]× (0,∞).
In this case, I1(t, y) = I2(y) = 1/y for 0 < y <∞, X3(y) = (T + 1)/y for

0 < y < ∞, and Y3(x) = (T + 1)/x for 0 < x < ∞. The optimal terminal
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wealth, consumption, and wealth processes are given respectively by

ξ3 =
x

(T + 1)H0(T )
,

c3(t) =
x

(T + 1)H0(t)
, X3(t) =

(T + 1− t)x
(T + 1)H0(t)

; 0 ≤ t ≤ T.

In particular, the martingale M3(·) of (6.12) is identically equal to x, so
ψ(·) ≡ 0, and the optimal portfolio, given by (6.11), is

π3(t) = (σ(t)σ′(t))−1 [b(t) + δ(t)− r(t)1
˜
] X3(t), 0 ≤ t ≤ T. (6.15)

Furthermore,

G3(y) = −(T + 1) log y −E

∫ T

0
log H0(t) dt− E log H0(T ), 0 < y <∞,

V3(x) = (T + 1) log
(

x

T + 1

)
− E

∫ T

0
log H0(t) dt− E log H0(T ),

0 < x <∞.

This example is extended in Example 7.11.

Example 6.7: U1(t, x) = U2(x) = 1
pxp, ∀(t, x) ∈ [0, T ] × (0,∞), with

p < 1, p �= 0.
We have I1(t, y) = I2(y) = y1/(p−1) for 0 < y <∞, and

X3(y) = y
1

p−1 E

[∫ T

0
(H0(t))

p/(p−1)
dt + (H0(T ))p/(p−1)

]
= X3(1)y1/(p−1), 0 < y <∞,

Y3(x) =
(

x

X3(1)

)p−1

, 0 < x <∞.

The optimal terminal wealth and the optimal consumption process are
given as

ξ3 =
x

X3(1)
(H0(T ))1/(p−1)

, c3(t) =
x

X3(1)
(H0(t))

1/(p−1)
,

and

X3(t) =
x

X3(1)H0(t)
E

[∫ T

t

(H0(u))p/(p−1)
du + (H0(T ))p/p−1

∣∣∣∣∣F(t)

]
.

Finally,

G3(y) =
1
p
X3(1)yp/(p−1), 0 < y <∞,

V3(x) =
1
p

(X3(1))1−p
xp, 0 < x <∞.
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We may write (H0(t))
p/(p−1) = m(t)Λ(t), where

m(t) ∆= exp
{

p

1− p

[
A(t) +

∫ t

0
r(u) du

]
+

p

2(1− p)2

∫ t

0
‖θ(u)‖2 du

}
,

Λ(t) ∆= exp
{

p

1− p

∫ t

0
θ′(u) dW (u)− p2

2(1− p)2

∫ t

0
‖θ(u)‖2 du

}
.

If r(·), A(·), and θ(·) are deterministic, then m(·) is deterministic and
Λ(·) is a martingale, so

E
[
(H0(u))p/(p−1)

∣∣∣F(t)
]

= m(u)Λ(t), 0 ≤ t ≤ u ≤ T.

With N(t) ∆=
∫ t

0 m(s) ds + m(t), we have X3(1) = N(T ) and

X3(t) =
xΛ(t)

N(T )H0(t)

[∫ T

t

m(u) du + m(T )

]
,

c3(t) =
m(t)X3(t)∫ T

t
m(u) du + m(T )

,

M3(t) =
x

N(T )

[
Λ(t)

(∫ T

t

m(u) du + m(T )

)

+
∫ t

0
m(u)Λ(u) du

]
,

dM3(t) =
x

N(T )

(∫ T

t

m(u) du + m(T )

)
dΛ(t)

= H0(t)X3(t)
p

1 − p
θ′(t) dW (t).

This last expression yields the optimal portfolio π3(·) of (6.11) as

π3(t) =
1

1− p
(σ(t)σ′(t))−1 [b(t) + δ(t)− r(t)1

˜
]X3(t) (6.16)

for the case of deterministic r(·), A(·), and θ(·).

Remark 6.8: If r(·), A(·), and θ(·) are bounded uniformly in (t, ω), but
not necessarily deterministic, then in Example 6.7, the function m(·) can
be bounded independently of (t, ω), and Λ(·) is a martingale. This implies
that

X3(y) = y1/(p−1)E

[∫ T

0
m(t)Λ(t) dt + m(T )Λ(T )

]
<∞, ∀ y > 0,

so Assumption 6.1 is satisfied; in particular, V3(x) < ∞ for all x > 0. It
is then clear that for any utility functions U1 and U2 satisfying a growth
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condition of the form

U1(t, x) + U2(x) ≤ κ(1 + xp), ∀(t, x) ∈ [0, T ]× (0,∞),

where 0 < κ < ∞ and 0 < p < 1, the boundedness of r(·), A(·), and θ(·)
implies V3(x) <∞ for all x > 0.

Remark 6.9:

(i) Suppose that{
both U1(t, ·) and U2(·) satisfy condition (4.16) with
the same constants β and γ, for all t ∈ [0, T ].

}
(6.17)

It follows then, using (4.12) and (4.16′′), that if X3(y) <∞ for some
y > 0, then Assumption 6.1 holds.

(ii) Assumption 6.1 is also implied by the condition

sup
0≤t≤T

I1(t, y) + I2(y) ≤ κy−ρ, ∀ y ∈ (0,∞), (6.18)

for some κ > 0, ρ > 0, provided that at least one of the following
conditions also holds:

0 < ρ ≤ 1 and Assumption 2.3 holds, (6.19)

or

A(·), r(·), and θ(·) are uniformly bounded in (t, ω) ∈ [0, T ]× Ω.
(6.20)

Indeed, under (6.18), (6.19), we have

X3(y) ≤ κy−ρE

[∫ T

0
(1 ∨H0(t)) dt + (1 ∨H0(T ))

]
<∞, y > 0.

On the other hand, under (6.18) and (6.20), let us write (H0(t))
1−ρ =

m(t)Λ(t), where

m(t) ∆= exp
{

(ρ− 1)
[
A(t) +

∫ t

0
r(u) du

]
+

1
2
ρ(ρ− 1)

∫ t

0
‖θ(u)‖2 du

}
,

and

Λ(t) ∆= exp
{

(ρ− 1)
∫ t

0
θ′(u) dW (u)− 1

2
(ρ− 1)2

∫ t

0
‖θ(u)‖2 du

}
is a martingale; because of (6.20), m(·) is bounded by some constant
K, and thus

X3(y) ≤ y−ρKE

[∫ T

0
Λ(t) dt + Λ(T )

]
≤ Ky−ρ, y > 0.
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Remark 6.10: The case x = 0 and U ′
2(0+) =∞.

In this case, I2(y) > 0 for all y > 0, and the random variable ξ3 of (6.4)
is strictly positive almost surely, as is the optimal wealth process X3(t) of
(6.10) for 0 ≤ t ≤ T . We can define the portfolio proportion

p3(t)
∆=

π3(t)
X3(t)

, 0 ≤ t ≤ T,

a process which is obviously {F(t)}-progressively measurable and satisfies∫ T

0 ‖p3(t)‖2 dt < ∞ almost surely. The components of p3(t) represent the
proportions of wealth X3(t) invested in the respective assets at time t ∈
[0, T ], and equation (3.1) for X3(·) becomes

X3(t)
S0(t)

= x−
∫ t

0

c3(u) du

S0(u)
+
∫ t

0

X3(u)
S0(u)

p′
3(u)σ(u) dW0(u), 0 ≤ t ≤ T.

In (6.15) and (6.16) of Examples 6.6 and 6.7, p3(t) depends on the market
processes and the utility functions, but not on the wealth of the agent.

We close this section with the observation that the value function V3 is
a utility function in the sense of Definition 4.1, and we find its derivative
and convex dual. Recall from Remark 5.7 and Corollary 6.5 that

V3(x) =


G3 (Y3(x)) , x > X3(∞),∫ T

0 U1 (t, c(t)) dt + U2(x), x = X3(∞),
−∞, x < X3(∞).

(6.21)

Theorem 6.11: Let Assumptions 2.3 and 6.1 hold, and assume V3(x) <
∞ for all x ∈ R. Then V3 satisfies all the conditions of Definition 4.1, and

X3(∞) = inf {x ∈ R;V3(x) > −∞} , (6.22)
V ′

3(x) = Y3(x), ∀x ∈ (X3(∞),∞) , (6.23)

Ṽ3(y) = G3(y)− yX3(y) (6.24)

= E

[∫ T

0
Ũ1 (t, yH0(t)) dt + Ũ2 (yH0(T ))

]
, ∀y ∈ (0,∞),

Ṽ ′
3(y) = −X3(y), ∀y ∈ (0,∞), (6.25)

where

Ṽ3(y) ∆= sup
x∈R

{V3(x)− xy} , y ∈ R. (6.26)

Proof. We first prove the concavity of V3. Let x1, x2 ∈ [X3(∞),∞) be
given, and let (c1, π1) ∈ A3(x1), (c2, π2) ∈ A3(x2) also be given. It is easily
verified that for λ1, λ2 ∈ (0, 1) with λ1 +λ2 = 1, the consumption/portfolio
pair (c, π) ∆= (λ1c1 + λ2c2, λ1π1 + λ2π2) is in A3(x) with x

∆= λ1x1 + λ2x2
and

Xx,c,π(·) = λ1X
x1,c1,π1(·) + λ2X

x2,c2,π2(·).
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Consequently,

λ1E

[∫ T

0
U1 (t, c1(t)) dt + U2 (Xx1,c1,π1(T ))

]

+λ2E

[∫ T

0
U1 (t, c2(t)) dt + U2 (Xx2,c2,π2(T ))

]

≤ E

[∫ T

0
U1 (t, c(t)) dt + U2 (Xx,c,π(T ))

]
≤ V3(x)

= V3(λ1x1 + λ2x2).

Maximizing over (c1, π1) ∈ A3(x1) and (c2, π2) ∈ A3(x2), we obtain

λ1V3(x1) + λ2V3(x2) ≤ V3(λ1x1 + λ2x2).

It is easily seen that V3 is nondecreasing. Furthermore, for each x ∈
(X3(∞),∞), we constructed in Theorem 6.3 a policy (c3, π3) ∈ A3(x),
which shows that V3 > −∞ on (X3(∞),∞); (6.22) follows.

A concave function is continuous on the interior of the set where it is
finite. Therefore, to establish the upper semicontinuity of V3, we need only
show that

lim
x↓X3(∞)

V3(x) =
∫ T

0
U1 (t, c(t)) dt + U2(x). (6.27)

But limx↓X3(∞) V3(x) = limy↑r3 G3(y), where r3, defined by (6.2), possesses
the property that X3 is constant on [r3,∞). We consider separately the
cases r3 =∞ and r3 <∞. If r3 =∞, then

lim
y↑r3

I1 (t, yH0(t)) = c(t), lim
y↑r3

I2 (yH0(T )) = x, (6.28)

so that the monotone convergence theorem and the finiteness of G3(y) =
V3 (X3(y)) for 0 < y < r3 imply

lim
y↑r3

G3(y) =
∫ T

0
U1 (t, c(t)) dt + U2(x),

as desired. If r3 <∞, then the constancy of X3 on [r3,∞) implies r3H0(t) ≥
U ′

1 (t, c(t)+) for Lebesgue-almost-every t ∈ [0, T ] and r3H0(T ) ≥ U ′
2(x+)

almost surely. This implies (6.28), and the rest follows.
We turn to (6.24). The second equation in (6.24) follows directly from

(4.11), (6.1), and (6.14). For the first, let Q(y) = G3(y) − yX3(y) for 0 <
y <∞, and observe from (4.8) that

U1 (t, c(t)) ≤ Ũ1 (t, yH0(t)) + yH0(t)c(t), 0 ≤ t ≤ T,

U2 (Xx,c,π(T )) ≤ Ũ2 (yH0(T )) + yH0(T )Xx,c,π(T )
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hold almost surely for any y > 0, x ≥ X3(∞), and (c, π) ∈ A3(x).
Consequently, from the budget constraint (3.4), we have

E

[∫ T

0
U1 (t, c(t)) dt + U2 (Xx,c,π(T ))

]

≤ Q(y) + yE

[∫ T

0
H0(t)c(t) dt + H0(T )Xx,c,π(T )

]
≤ Q(y) + xy, (6.29)

with equality if and only if

c(t) = I1 (t, yH0(t)) , Xx,c,π(T ) = I2 (yH0(T )) , (6.30)

and

E

[∫ T

0
H0(t)c(t) dt + H0(T )Xx,c,π(T )

]
= x.

Taking the supremum in (6.29) over (c, π) ∈ A(x), we obtain V3(x) ≤
Q(y) + xy for all x ∈ R, and thus Ṽ3(y) ≤ Q(y) for all y > 0. For the
reverse inequality, observe that equality holds in (6.29) if (6.30) is satisfied
and x = X3(y). This gives Q(y) = V3 (X3(y)) − yX3(y) ≤ Ṽ3(y). This
completes the proof of (6.24) and shows that for y > 0, the maximum in
(6.26) is attained by x = X3(y).

To prove (6.25), we use (4.11) and (4.12) to write for any utility function
U and for 0 < z < y <∞,

yI(y)− zI(z)−
∫ y

z

I(ξ) dξ = yI(y)− zI(z) + Ũ(y)− Ũ(z)

= U (I(y))− U (I(z)) . (6.31)

Therefore,

yX3(y)− zX3(z)−
∫ y

z

X3(λ) dλ

= E

∫ T

0

[
yH0(t)I1(t, yH0(t))− zH0(t)I1(t, zH0(t))−

∫ yH0(t)

zH0(t)
I1(t, ξ) dξ

]
dt

+ E

[
yH0(T )I2(yH0(T ))− zH0(T )I2(zH0(T ))−

∫ yH0(T )

zH0(T )
I2(ξ) dξ

]

= E

∫ T

0
[U1(t, I1(t, yH0(t)))− U1(t, I1(t, zH0(t)))] dt

+ E[U2(I2(yH0(T )))− U2(I2(zH0(T )))]

= G3(y)−G3(z), (6.32)
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or equivalently

Ṽ3(y)− Ṽ3(z) = −
∫ y

z

X3(λ) dλ, 0 < z < y <∞, (6.33)

and (6.25) follows.
According to Rockafellar (1970), Theorem 23.5, for x∗ > X3(∞) and

y > 0 we have y ∈ ∂V3(x∗) if and only if x∗ attains the maximum in
(6.26). We have already seen that this maximum is attained by X3(y),
so the sole element in ∂V3(x∗) is Y3(x∗). Equation (6.23) follows, and im-
plies that V ′

3 is continuous, positive, and strictly decreasing on (X3(∞),∞),
and limx→∞ V ′

3(x) = limx→∞ Y3(x) = 0. Thus V3 satisfies property (ii) of
Definition 4.1 and is a utility function. �

Remark 6.12: From (6.13) we have G3(y) = V3 (X3(y)) for all y ∈
(0,X3(∞)). If X ′

3(y) exists, then G′
3(y) also exists and is given by the

formula

G′
3(y) = V ′

3 (X3(y))X ′
3(y) = yX ′

3(y), 0 < y < X3(∞), (6.34)

where we have used (6.23).

3.7 Utility from Consumption or Terminal Wealth

Theorem 7.3 below provides a complete solution to Problem 5.2 of maxi-
mization of expected utility from consumption alone, and Theorem 7.6 does
the same for Problem 5.3 of maximization of expected utility from termi-
nal wealth alone. This section also contains examples of these solutions
and examines the dual value functions for Problems 5.2 and 5.3. Theorem
7.10 shows how to combine the solutions of these two problems to obtain
the solution of Problem 5.4 of maximization of expected utility from con-
sumption plus expected utility from terminal wealth. In particular, the dual
value function for Problem 5.4 is the sum of the dual value functions for
Problems 5.2 and 5.3.

Let a preference structure (U1, U2) be given. We define the functions

X1(y) ∆= E

[∫ T

0
H0(t)I1(t, yH0(t)) dt

]
, 0 < y <∞, (7.1)

X2(y) ∆= E [H0(T )I2(yH0(T ))] , 0 < y <∞. (7.2)

Assumption 7.1: X1(y) <∞, ∀y ∈ (0,∞).

Assumption 7.2: X2(y) <∞, ∀y ∈ (0,∞).

Remarks 6.8 and 6.9 can be trivially modified to provide sufficient con-
ditions for Assumptions 7.1 and 7.2 to hold. Similarly, Remark 6.8 can be
modified to obtain conditions that guarantee V1(x) <∞ and V2(x) <∞.
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Just as we proved Lemma 6.2, we can show that for each i = 1, 2, under
Assumption 7.i, the function Xi is nonincreasing and continuous on (0,∞)
with Xi(0+) =∞ and with Xi(∞) = limy→∞ Xi(y) given by (5.11). With

ri
∆= sup{y > 0;Xi(y) > Xi(∞)} > 0, i = 1, 2, (7.3)

Xi is strictly decreasing on (0, ri) and, when restricted to (0, ri), has a
strictly decreasing inverse function Yi: (Xi(∞),∞) onto−→ (0, ri).

The proof of the following theorem parallels the proof of Theorem 6.3
and Corollary 6.5.

Theorem 7.3 (Maximization of the expected utility from consumption):
Let Assumptions 2.1 and 7.1 hold, let x ∈ (X1(∞),∞) be given, and define

c1(t)
∆= I1(t,Y1(x)H0(t)), 0 ≤ t ≤ T. (7.4)

(i) There exists a portfolio π1(·) such that (c1, π1) ∈ A1(x), Xx,c1,π1(T ) =
0, and the pair (c1, π1) is optimal for Problem 5.2, i.e.,

V1(x) = E

∫ T

0
U1(t, c1(t)) dt.

(ii) The optimal wealth process X1(t) = Xx,c1,π1(t) is

X1(t) =
1

H0(t)
E

[∫ T

t

H0(u)c1(u) du

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T. (7.5)

(iii) The optimal portfolio π1(·) is given by

σ′(t)π1(t) =
ψ1(t)
H0(t)

+ X1(t)θ(t), (7.6)

where ψ1(·) is the integrand in the stochastic integral representation
M1(t) = x +

∫ t

0 ψ′
1(u) dW (u) of the martingale

M1(t)
∆= E

[∫ T

0
H0(u)c1(u) du

∣∣∣∣∣F(t)

]
.

(iv) The value function V1 is given by V1(x) = G1(Y1(x)) for all x >
X1(∞), where

G1(y) ∆= E

∫ T

0
U1 (t, I1(t, yH0(t))) dt, 0 < y <∞. (7.7)

It is now not difficult to see that the value function V1 is given by (cf.
(6.21))

V1(x) =


G1(Y1(x)), x > X1(∞),

E

∫ T

0
U1(t, c(t)) dt, x = X1(∞),

−∞, x < X1(∞).

(7.8)
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Imitating the proof of Theorem 6.11, we can show that V1 has the following
properties.

Theorem 7.4: Let Assumptions 2.1 and 7.1 hold, and assume V1(x) <∞
for all x ∈ R. Then V1 satisfies all the conditions of Definition 4.1, and

X1(∞) = inf {x ∈ R;V1(x) > −∞} ,
V ′

1(x) = Y1(x), ∀x ∈ (X1(∞),∞) ,

Ṽ1(y) = G1(y)− yX1(y)

= E

[∫ T

0
Ũ1 (t, yH0(t)) dt

]
, ∀y ∈ (0,∞),

Ṽ ′
1(y) = −X1(y), ∀y ∈ (0,∞), (7.9)

where

Ṽ1(y) ∆= sup
x∈R

{V1(x)− xy} , y ∈ R.

Example 7.5 (Subsistence consumption): Suppose

U1(c) =
{

log(c− c), c < c <∞,
−∞, −∞ < c ≤ c,

where c is a positive constant that consumption must exceed at all times.
Then I1(y) = c + (1/y) and X1(y) = ch1 + (T/y) for 0 < y < ∞, where
h1

∆= E
∫ T

0 H0(t) dt. In order to ensure that consumption can exceed c at
all times, the initial endowment x must exceed X1(∞) = ch1. We have
Y1(x) = T/(x− ch1) for x > ch1, and the optimal consumption and wealth
processes from (7.4), (7.5) are

c1(t) =
x− ch1

TH0(t)
+ c,

X1(t) =
1

H0(t)

{
T − t

T
(x− ch1) + cE

[∫ T

t

H0(u) du

∣∣∣∣∣F(t)

]}
.

Finally, G1(y) = −T log y − E
∫ T

0 log H0(t) dt, so

V1(x) = T log(x− ch1)− T log T − E

∫ T

0
log H0(t) dt, x > ch1.

If S0(·) is deterministic, we can derive the optimal portfolio explicitly.
Under this condition,

X1(t) =
T − t

TH0(t)
(x− ch1) + cS0(t)

(∫ T

t

du

S0(u)

)
,
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M1(t) = cE

[∫ T

0

Z0(u)
S0(u)

du

∣∣∣∣∣F(t)

]
+ x− ch1

= c

∫ t

0
H0(u) du + cZ0(t)

∫ T

t

du

S0(u)
+ x− ch,

and

dM1(t) = −c

(∫ T

t

du

S0(u)

)
Z0(t)θ′(t) dW (t).

It follows from (7.6) that

π1(t) = (σ′(t))−1

[
X1(t)− cS0(t)

∫ T

t

du

S0(u)

]
θ(t)

=
T − t

TH0(t)
(x− ch1)(σ(t)σ′(t))−1 (b(t) + δ(t)− r(t)1

˜
) .

The analogues of Theorems 7.3, 7.4 for Problem 5.3 are the following.

Theorem 7.6 (Maximization of utility from terminal wealth): Let
Assumptions 2.2 and 7.2 hold, let x ∈ (X2(∞),∞) be given, and let

ξ2 = I2 (Y2(x)H0(T )) .

(i) With c2 ≡ 0, there exists a portfolio π2(·) such that (c2, π2) ∈ A2(x),
Xx,c2,π2(T ) = ξ2, and the pair (c2, π2) is optimal for Problem 5.3,
i.e.,

V2(x) = EU2(Xx,c2,π2(T )).

(ii) The optimal wealth process X2(t) = Xx,c2,π2(t) is

X2(t) =
1

H0(t)
E[H0(T )ξ2|F(t)], 0 ≤ t ≤ T.

(iii) The optimal portfolio π2(·) is given by

σ′(t)π2(t) =
ψ2(t)
H0(t)

+ X2(t)θ(t),

where ψ2 is the integrand in the stochastic integral representation
M2(t) = x +

∫ t

0 ψ′
2(u) dW (u) of the martingale

M2(t)
∆= H0(t)X2(t).

(iv) The value function V2 is given by V2(x) = G2(Y2(x)) for all x >
X2(∞), where

G2(y) ∆= EU2 (I2(yH0(T ))) , 0 < y <∞.
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Summarizing information about V2, we have the formula

V2(x) =

G2(Y2(x)), x > X2(∞),
U2(x), x = X2(∞),
−∞, x < X2(∞).

(7.10)

Theorem 7.7: Let Assumptions 2.2 and 7.2 hold, and assume V2(x) <∞
for all x ∈ R. Then V2 satisfies all the conditions of Definition 4.1, and

X2(∞) = inf {x ∈ R;V2(x) > −∞} ,
V ′

2(x) = Y2(x), ∀x ∈ (X2(∞),∞) ,

Ṽ2(y) = G2(y)− yX2(y)

= EŨ2 (yH0(T )) , ∀y ∈ (0,∞),

Ṽ ′
2(y) = −X2(y) ∀y ∈ (0,∞), (7.11)

where

Ṽ2(y) ∆= sup
x∈R

{V2(x)− xy} , y ∈ R.

Remark 7.8: If X ′
1(y) and X ′

2(y) exist, then just as in Remark 6.12, we
have for i = 1, 2, 3,

G′
i(y) = yX ′

i (y), 0 < y < Xi(∞). (7.12)

Example 7.9 (Portfolio insurance): Suppose

U2(x) =
{

log(x− x), x < x <∞,
−∞, −∞ < x ≤ x,

where x is a positive constant below which terminal wealth is not permitted
to fall. We have X2(y) = xh2 + (1/y) for 0 < y <∞, where h2

∆= EH0(T ).
In order to ensure that terminal wealth can exceed x, the initial wealth
must exceed X2(∞) = xh2. We have Y2(x) = 1/(x−xh2) for x > xh2, and
the optimal consumption and wealth processes are c2(t) ≡ 0 and

X2(t) =
1

H0(t)
{x− xh2 + xE[H0(T )|F(t)]} .

Finally, G2(y) = − log y −E log H0(T ), so

V2(x) = log(x− xh2)− E log H0(T ), x > xh2.

As in Example 7.5, we can derive the optimal portfolio explicitly when
S0(·) is deterministic. Under this condition,

M2(t)
∆= H0(t)X2(t) = x− xh2 +

xZ0(t)
S0(T )

and

dM2(t) = d(H0(t)X2(t)) = − x

S0(T )
Z0(t)θ′(t) dW (t).
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It follows that

π2(t) = (σ′(t))−1
[
X2(t)−

xS0(t)
S0(T )

]
θ(t)

=
x− xh2

H0(t)
(σ(t)σ′(t))−1 (b(t) + δ(t)− r(t)1

˜
) .

In the remainder of this section we examine the relationship among the
value functions and the optimal policies for Problems 5.2–5.4. Consider an
agent with initial endowment x > X3(∞) who divides this wealth into two
pieces, x1 > X1(∞) and x2 > X2(∞), so that x1 + x2 = x. For the piece
x1, he constructs the optimal policy (c1, π1) ∈ A1(x1) of Theorem 7.3 for
the problem of maximization of utility from consumption only. With the
piece x2, he constructs the optimal policy (c2, π2) ∈ A2(x2) of Theorem
7.6 for the problem of maximization of utility from terminal wealth only.
Note that Xx1,c1,π1(T ) = 0 and c2(·) ≡ 0, so the superposition (c, π) =
(c1 + c2, π1 + π2) of the policies (c1, π1), (c2, π2) is in A3(x), results in the
wealth process Xx,c,π(t) = Xx1,c1,π1(t) + Xx2,c2,π2(t), and satisfies

V1(x1) + V2(x2) = E

[∫ T

0
U1(t, c(t)) dt + U2(Xx,c,π(T ))

]
≤ V3(x).

Therefore,

sup{V1(x1) + V2(x2);x1 ∈ R, x2 ∈ R, x1 + x2 = x} ≤ V3(x), ∀x ∈ R,

(7.13)

where we have used (6.21), (7.8), and (7.10) to extend these considerations
to all x, x1, and x2 in R.

Moreover, the reverse of inequality (7.13) holds. Again, we consider only
x > X3(∞), relying on (6.21), (7.8), and (7.10) for the rest. For x > X3(∞),
let (c3, π3) ∈ A3(x) be the optimal policy of Theorem 6.3 for the problem
of maximization of utility from consumption and terminal wealth. Define

x1
∆= E

∫ T

0
H0(t)c3(t) dt, x2

∆= E [H0(T )Xx,c3,π3(T )] ,

so that x1 + x2 = x (see (6.6)). Theorem 3.5 guarantees the existence
of a portfolio process π̂1(·) such that Xx1,c3,π̂1(T ) = 0 and (c3, π̂1) ∈
A1(x1); therefore, E

∫ T

0 U1(t, c3(t)) dt ≤ V1(x1). This same theorem guar-
antees the existence of a portfolio process π̂2(·) such that with ĉ2 ≡ 0,
we have Xx2,ĉ2,π̂2(T ) = Xx,c3,π3(T ) and (ĉ2, π̂2) ∈ A2(x2); therefore,
EU2(Xx,c3,π3(T )) ≤ V2(x2). We have then

V3(x) = E

∫ T

0
U1(t, c3(t)) dt + EU2(Xx,c3,π3(T ))

≤ V1(x1) + V2(x2).
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Theorem 7.10: Let Assumptions 2.3 and 6.1 hold. Then

V3(x) = sup{V1(x1) + V2(x2);x1 + x2 = x} ∀x ∈ R. (7.14)

If, in addition, Vi(x) < ∞ for all x ∈ R and i = 1, 2, then for each
x ∈ (X3(∞),∞) the supremum in (7.14) is attained by x1 = X1(Y3(x)),
x2 = X2(Y3(x)). In particular,

V3(x) = V1 (X1(Y3(x))) + V2 (X2(Y3(x))) , ∀x ∈ (X3(∞),∞) (7.15)

and

Ṽ3(y) = Ṽ1(y) + Ṽ2(y), ∀y ∈ (0,∞). (7.16)

Proof. For fixed x ∈ (X3(∞),∞), let us consider the concave func-
tion f : R → [−∞,∞) defined by f(x1)

∆= V1(x1) + V2(x− x1). Under the
assumption that Vi < ∞ for i = 1, 2, f is finite on the open interval
(X1(∞), x−X2(∞)). Outside the closure of this interval, f takes the value
−∞. Now, f ′(x1) = Y1(x1) − Y2(x − x1) for X1(∞) < x1 < x − X2(∞),
and f ′ is continuous and strictly decreasing on this interval, with

f ′ (X1(∞)+) = r1 − Y2(x− X1(∞)),
f ′ ((x− X2(∞))−) = Y1(x− X2(∞))− r2,

where r1 and r2 are given by (7.3). There are three possibilities:

(i) f ′ (X1(∞)+) ≤ 0,
(ii) f ′ (X1(∞)+) > 0, f ′ ((x−X2(∞))−) < 0,
(iii) f ′ ((x−X2(∞))−) ≥ 0.

In case (ii), the maximum in (7.14) is attained by the unique value x1 ∈
(X1(∞), x−X2(∞)) where f ′(x1) = 0, i.e., Y1(x1) = Y2(x−x1). We check
that x1 = X1(Y3(x)) solves this equation, to wit,

Y1 (X1(Y3(x))) = Y3(x)
= Y2 (X2(Y3(x)))
= Y2 (X3(Y3(x))− X1(Y3(x)))
= Y2 (x−X1(Y3(x))) .

In case (i), the supremum in (7.14) is attained by x1 = X1(∞). In this
case, we have r1 ≤ Y2(x − X1(∞)), or equivalently, X2(r1) ≥ x − X1(∞).
This implies X3(r1) = X1(r1) + X2(r1) = X1(∞) + X2(r1) ≥ x, so that
r1 ≤ Y3(x) and X1(∞) = X1(r1) ≥ X1(Y3(x)) ≥ X1(∞) because X1 is
nonincreasing. Thus X1(∞) = X1(Y3(x)), as claimed.

Case (iii) is dispatched by interchanging the subscripts 1 and 2 in the
argument for case (i).

We have shown that the supremum in (7.14) is attained by x1 =
X1(Y3(x)), x2 = x − X1(Y3(x)) = X3(Y3(x)) − X1(Y3(x)) = X2(Y3(x));
i.e., (7.15) holds. Equation (7.16) follows immediately from (6.24), (7.9),
(7.11), and the definitions of Gi and Xi for i = 1, 2, 3. �
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Example 7.11: Let

U1(c) =
{

log(c− c), c < c <∞,
−∞, −∞ < c ≤ c,

as in Example 7.5 (subsistence consumption), and let

U2(x) =
{

log(x− x), x < x <∞,
−∞, −∞ < x ≤ x,

as in Example 7.9 (portfolio insurance). Then

X3(y) = X1(y) + X2(y) = ch1 + xh2 + (T + 1)/y,

so Y3(x) = (T + 1)/(x− ch1 − xh2) and

X1(Y3(x)) =
Tx + ch1 − Txh2

T + 1
, X2(Y3(x)) =

x− ch1 + Txh2

T + 1
.

It follows from Theorem 7.10 that

V3(x) = V1 (X1(Y3(x))) + V2 (X2(Y3(x)))

= (T + 1) log
(

x− ch1 − xh2

T + 1

)
− E

∫ T

0
log H0(t) dt− E log H0(T ).

When c = x = 0, we recover the formula for V3 obtained in Example 6.6.

3.8 Deterministic Coefficients

In this section we specialize the results of Section 3.6 to the case of A(·) ≡ 0
and continuous, deterministic functions r(·): [0, T ] → R, θ(·): [0, T ] → RN

and σ(·): [0, T ] → L(RN ; RN ), the set of N × N matrices. In this case,
stock prices and the money-market price become Markov processes. We
will focus on obtaining an explicit formula for the optimal portfolio π3(·)
of Theorem 6.3, whose existence was established there but for which no
useful representation apart from (6.11) was provided. We shall show that
the value function for Problem 5.4 is a solution to the nonlinear, second-
order parabolic Hamilton–Jacobi–Bellman partial differential equation one
would expect (Theorem 8.11), and that subject to a growth condition, the
dual value function is the unique solution of a linear second-order parabolic
partial differential equation (Theorem 8.12). Several examples are provided.

We shall represent both the optimal portfolio π3(·) and also the optimal
consumption rate process c3(·) in “feedback form” on the level of wealth
X3(·) of (6.10), i.e.,

c3(t) = C(t,X3(t)), π3(t) = Π(t,X3(t)), 0 ≤ t ≤ T, (8.1)

for suitable functions C: [0, T ] × (0,∞) → [0,∞) and Π: [0, T ] × (0,∞) →
RN (cf. Theorem 8.8), which do not depend on the initial wealth. Such
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a representation shows that in the case of deterministic coefficients, the
current level of wealth is a sufficient statistic for the utility maximization
Problem 5.4: an investor who computes his optimal strategy at time t on
the basis of his current wealth only can do just as well as an investor
who keeps track of the whole past and present information F(t) about the
market! Similar results hold for Problems 5.2 and 5.3; the interested reader
will find their derivation to be straightforward.

Throughout this section, the following two assumptions will be in force.
These are not the weakest assumptions that support the subsequent anal-
ysis, but they will permit us to proceed with a minimum of technical fuss.
For more general results, the reader is referred to Ocone and Karatzas
(1991), Section 6.

Assumption 8.1: We have A(·) ≡ 0, and the processes r(·), θ(·), and
σ(·) are nonrandom, continuous (and hence bounded) functions on [0, T ],
and r(·) and ‖θ(·)‖ are in fact Hölder continuous, i.e., for some K > 0 and
ρ ∈ (0, 1) we have

|r(t1)− r(t2)| ≤ K|t1 − t2|ρ,
∣∣∣‖θ(t1)‖ − ‖θ(t2)‖∣∣∣ ≤ K|t1 − t2|ρ

for all t1, t2 ∈ [0, T ]. Furthermore, ‖θ(·)‖ is bounded away from zero. In
particular, there are positive constants κ1, κ2 such that

0 < κ1 ≤ ‖θ(t)‖ ≤ κ2 <∞, ∀t ∈ [0, T ]

almost surely.

Because of Novikov’s condition (e.g., Karatzas and Shreve (1991) Section
3.5D), Assumption 8.1 guarantees that the local martingale Z0(·) of (2.5)
is in fact a martingale. This permits the construction of the martingale
measure P0 of (1.5.3) under which the process W0(·) is a Brownian motion.
We have not needed this probability measure in previous sections, but we
shall make use of it in this section.

Assumption 8.2: The agent’s preference structure (U1, U2) satisfies

(i) (polynomial growth of I1 and I2) there is a constant γ > 0 such that

I1(t, y) ≤ γ + y−γ ∀(t, y) ∈ [0, T ]× (0,∞),

I2(y) ≤ γ + y−γ ∀y ∈ (0,∞);

(ii) (polynomial growth of U1 ◦ I1 and U2 ◦ I2) there is a constant γ > 0
such that

U1(t, I1(t, y)) ≥ −γ − yγ ∀(t, y) ∈ [0, T ]× (0,∞),

U2(I2(y)) ≥ −γ − yγ ∀y ∈ (0,∞);

(iii) (Hölder continuity of I1) for each y0 ∈ (0,∞), there exist constants
ε(y0) > 0, K(y0) > 0, and ρ(y0) ∈ (0, 1) such that
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|I1(t, y)− I1(t, y0)| ≤ K(y0)|y − y0|ρ(y0) ∀t ∈ [0, T ],

∀y ∈ (0,∞) ∩ (y0 − ε(y0), y0 + ε(y0));

(iv) either for each t ∈ [0, T ], I ′
1(t, y) ∆= ∂

∂y I1(t, y) is defined and strictly
negative for all y in a set of positive Lebesgue measure, or else I ′

2(y)
is defined and strictly negative for all y in a set of positive Lebesgue
measure.

Remark 8.3: Because I1(t, ·) and I2 are nonincreasing, Assumption
8.2(i), (ii) and Remark 5.6(ii) imply the existence of a constant γ > 0
such that

|U1(t, I1(t, y))| ≤ γ + yγ + y−γ ∀(t, y) ∈ [0, T ]× (0,∞),

|U2(I2(y))| ≤ γ + yγ + y−γ ∀y ∈ (0,∞).

Furthermore, for each y0 ∈ (0,∞) and ε(y0), K(y0), and ρ(y0) as in As-
sumption 8.2(iii), the mean value theorem implies for all y ∈ (0,∞)∩ (y0−
ε(y0), y0 + ε(y0)) that

|U1(t, I1(t, y)) − U1(t, I1(t, y0))| ≤ U ′
1(t, ι(t))|I1(t, y)− I1(t, y0)|

≤MK(y0)|y − y0|ρ(y0),

where ι(t) takes values between I1(t, y) and I1(t, y0) and M is a bound on
the continuous function U ′

1(t, I1(t, η)) as (t, η) ranges over the set [0, T ] ×
[(0,∞) ∩ (y0 − ε(y0), y0 + ε(y0))]. In other words, U1 ◦ I1 enjoys the same
kind of Hölder continuity posited in Assumption 8.2(iii) for I1.

We introduce the process

Y (t,y)(s) ∆= y exp
{
−
∫ s

t

r(u) du−
∫ s

t

θ′(u) dW (u)− 1
2

∫ s

t

‖θ(u)‖2 du

}
= y exp

{
−
∫ s

t

r(u) du−
∫ s

t

θ′(u) dW0(u)

+
1
2

∫ s

t

‖θ(u)‖2 du

}
, t ≤ s ≤ T, (8.2)

for any given (t, y) ∈ [0, T ] × (0,∞). The process Y (t,y)(·) is a diffusion
with linear dynamics:

dY (t,y)(s) = Y (t,y)(s)[−r(s) ds − θ′(s) dW (s)]

= Y (t,y)(s)[−r(s) ds + ‖θ(s)‖2 ds− θ′(s) dW0(s)],

Y (t,y)(t) = y, and Y (t,y)(s) = yY (t,1)(s) = yH0(s)/H0(t), where H0(s)
is given by (2.6). With these properties in mind, and using the Markov
property for Y (t,y)(·) under the martingale measure P0, as well as “Bayes’s
rule” of Lemma 3.5.3 in Karatzas and Shreve (1991), we may rewrite the
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expression (6.10) for the optimal wealth as follows:

X3(t) =
1

Z0(t)
E

[∫ T

t

Z0(s)e
−
∫

s

t
r(u)du

I1(s, zY (0,1)(s)) ds

+ Z0(T )e−
∫

T

t
r(u)du

I2(zY (0,1)(T ))

∣∣∣∣∣F(t)

]

= E0

[∫ T

t

e
−
∫ s

t
r(u)du

I1(s, Y (0,z)(s)) ds

+ e
−
∫ T

t
r(u)du

I2(Y (0,z)(T ))

∣∣∣∣∣F(t)

]
= X (t, Y (0,z)(t)), 0 ≤ t ≤ T, (8.3)

where z = Y3(x), E0 denotes expectation with respect to the martingale
measure P0, and X : [0, T ]× (0,∞)→ (0,∞) is given by

X (t, y) ∆= E0

[∫ T

t

e
−
∫

s

t
r(u)du

I1(s, yY (t,1)(s)) ds

+ e
−
∫

T

t
r(u)du

I2(yY (t,1)(T ))

]
. (8.4)

The Markov property for Y (t,y)(·) under P implies that

E

[∫ T

t

Y (t,y)(s)I1(s, Y (t,y)(s)) ds + Y (t,y)(T )I2(Y (t,y)(T ))

∣∣∣∣∣F(t)

]

is a function of Y (t,y)(t) = y, i.e., is deterministic. Therefore,

X (t, y) = E0

{
E0

[∫ T

t

e
−
∫ s

t
r(u)du

I1(s, Y (t,y)(s)) ds

+ e
−
∫

T

t
r(u)du

I2(Y (t,y)(T ))

∣∣∣∣∣F(t)

]}

= E

{
Z0(T )
Z0(t)

E

[∫ T

t

e
−
∫

s

t
r(u)du

Z0(s)I1(s, Y (t,y)(s)) ds

+ e
−
∫ T

t
r(u)du

Z0(T )I2(Y (t,y)(T ))

∣∣∣∣∣F(t)

]}

=
1
y
E

{
Z0(T )E

[∫ T

t

Y (t,y)(s)I1(s, Y (t,y)(s)) ds
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+ Y (t,y)(T )I2(Y (t,y)(T ))

∣∣∣∣∣F(t)

]}

=
1
y
E

[∫ T

t

Y (t,y)(s)I1(s, Y (t,y)(s)) ds

+ Y (t,y)(T )I2(Y (t,y)(T ))

]
, (8.5)

and X (·, ·) is an extension of the function X3(·) = X (0, ·) defined by (6.1).
We should properly write X3(t, y) rather than X (t, y), to indicate that this
function is associated with Problem 5.4. However, we do not carry out an
analysis for Problems 5.2 and 5.3 under the assumption of deterministic
coefficients, and hence permit ourselves the convenience of suppressing the
subscript.

Lemma 8.4: Under Assumptions 8.1, 8.2, the function X defined by (8.4)
is of class C([0, T ]× (0,∞)) ∩ C1,2([0, T )× (0,∞)) and solves the Cauchy
problem

Xt(t, y) +
1
2
‖θ(t)‖2y2Xyy(t, y) +

(
‖θ(t)‖2 − r(t)

)
yXy(t, y)− r(t)X (t, y)

= −I1(t, y) on [0, T )× (0,∞), (8.6)

X (T, y) = I2(y) on (0,∞). (8.7)

Furthermore, for each t ∈ [0, T ), X (t, ·) is strictly decreasing with
X (t, 0+) =∞ and

X (t,∞) ∆= lim
y→∞

X (t, y) =
∫ T

t

exp
(
−
∫ s

t

r(u)du

)
c(s) ds

+ exp

(
−
∫ T

t

r(u)du

)
x. (8.8)

Consequently, for t ∈ [0, T ), X (t, ·) has a strictly decreasing inverse
function Y(t, ·): (X (t,∞),∞) onto−→ (0,∞), i.e.,

X (t,Y(t, x)) = x, ∀x ∈ (X (t,∞),∞), (8.9)

and Y is of class C1,2 on the set

D
∆= {(t, x) ∈ [0, T )× R; x > X (t,∞)} . (8.10)

For t = T , we have X (T, ·) = I2(·), which is strictly decreasing on the
interval (0, U ′

2(x+)), and we have X (T,∞) = x. The inverse of X (T, ·) is
Y(T, ·) ∆= U ′

2(·), which also satisfies (8.9). The function Y is continuous on
the set {(t, x) ∈ [0, T ]× R;x > X (t,∞)}.
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Proof. Consider the Cauchy problem

ut(t, η) +
1
2
‖θ(t)‖2uηη(t, η) +

(
1
2
‖θ(t)‖2 − r(t)

)
uη(t, η)− r(t)u(t, η)

= −I1(t, eη), 0 ≤ t < T, η ∈ R, (8.11)
u(T, η) = I2(eη), η ∈ R. (8.12)

The classical theory of partial differential equations (e.g., Friedman (1964),
Section 1.7) implies that there is a function u of class C([0, T ] × R) ∩
C1,2([0, T )×R) satisfying (8.11), (8.12). Furthermore, for each ε > 0, there
is a constant C(ε) such that

|u(t, η)| ≤ C(ε)eεη2
, ∀η ∈ R. (8.13)

We fix (t, y) ∈ [0, T )× (0,∞) and use Itô’s rule in conjunction with (8.2)
and (8.11) to compute

d

[
e
−
∫ s

t
r(u)du

u(s, log Y (t,y)(s))
]

= −e
−
∫ s

t
r(u)du

I1(s, Y (t,y)(s)) ds (8.14)

− e
−
∫

s

t
r(u)du

uη(s, log Y (t,y)(s))θ′(s) dW0(s).

For each positive integer n, we define

τn
∆=
(

T − 1
n

)
∧ inf

{
s ∈ [t, T ];

∣∣∣log Y (t,y)(s)
∣∣∣ ≥ n

}
,

so that max0≤s≤τn
|uη(s, log Y (t,y)(s))| is bounded, uniformly in ω ∈ Ω.

Integrating (8.14) and taking expectations, we obtain

u(t, log y) = E0

∫ τn

t

exp
(
−
∫ s

t

r(u)du

)
I1(s, Y (t,y)(s)) ds

+ E0 exp
(
−
∫ τn

t

r(u)du

)
u(τn, log Y (t,y)(τn)).

The monotone convergence theorem implies

u(t, log y) = E0

∫ T

t

e
−
∫ s

t
r(u)du

I1(s, Y (t,y)(s)) ds

+ lim
n→∞

E0e
−
∫

τn

t
r(u)du

u(τn, log Y (t,y)(τn)). (8.15)

Now,

lim
n→∞

e
−
∫ τn

t
r(u)du

u(τn, log Y (t,y)(τn)) = e
−
∫ T

t
r(u)du

I2(Y (t,y)(T )) (8.16)

almost surely, and we wish to prove that

lim
n→∞

E0e
−
∫ τn

t
r(u)du

u(τn, log Y (t,y)(τn)) = E0e
−
∫ T

t
r(u)du

I2(Y (t,y)(T )).

(8.17)
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To obtain (8.17) from (8.16), we need a dominating function. We can use
(8.2) and (8.13) to write∣∣∣∣e−

∫ τn

t
r(u)du

u
(
τn, log Y (t,y)(τn)

)∣∣∣∣
≤ C(ε)e

∫ T

t
|r(u)|du

eε(log Y (t,y)(τn))2

≤ C(ε)e
∫

T

t
|r(u)|du exp

{
ε

[
| log y|+

∫ T

t

∣∣∣∣−r(u) +
1
2
‖θ(u)‖2

∣∣∣∣ du

+ sup
t≤s≤T

∣∣∣∣∫ s

t

θ′(u) dW0(u)
∣∣∣∣]2
}

.

Equation (8.17) will follow from the dominated convergence theorem, once
we show that

E0

[
exp

{
ε sup

t≤s≤T

∣∣∣∣∫ s

t

θ′(u) dW0(u)
∣∣∣∣2
}]

<∞. (8.18)

We may extend θ(·) beyond [0, T ] by setting θ(t) ∆= θ(T ) for t ≥ T , and
we can set

M(s) ∆=
∫ t+s

t

θ′(u) dW0(u), s ≥ 0.

We have

〈M〉(s) =
∫ t+s

t

‖θ(u)‖2 du ≤ κ2
2s, ∀s ∈ [0,∞),

and 〈M〉(·) is strictly increasing. Under P0, B(τ) ∆= M(〈M〉−1(τ)), 0 ≤
τ <∞, is a standard Brownian motion (e.g., Karatzas and Shreve (1991),
Theorem 3.4.6). Moreover, with τ

∆= κ2
2(T − t), we have

B∗
∆= sup

0≤τ≤τ
|B(τ)| ≥ sup

0≤s≤T−t
|M(s)| = sup

t≤s≤T

∣∣∣∣∫ s

t

θ′(u) dW0(u)
∣∣∣∣ .

We show that for ε > 0 sufficiently small,

E0e
εB2

∗ <∞.

Let B+ = sup0≤τ≤τ B(τ) and B− = sup0≤τ≤τ (−B(τ)), so that B∗ =
max{B+, B−}. The density for both B+ and B− is (e.g., Karatzas and
Shreve (1991), Remark 2.8.3)

f(b) db = P0{B± ∈ db} =
2√
2πτ

e−b2/(2τ) db, b > 0.

We define F (b) =
∫∞

b
f(x) dx, and write

E0e
εB2

∗ = −
∫ ∞

0
eεb2

dP0{B∗ > b}
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≤ 1 +
∫ ∞

0
P0{B∗ > b} d(eεb2

)

≤ 1 + 2
∫ ∞

0
F (b) d(eεb2

)

≤ 1 + 2 lim
b→∞

F (b)eεb2
+
∫ ∞

0
f(b)eεb db,

which is finite for 0 < ε < 1/(2τ).
Choosing ε ∈ (0, 1/(2τ)) so that (8.18) holds, we obtain (8.17), and (8.15)

yields

X (t, y) = u(t, log y), ∀(t, y) ∈ [0, T ]× (0,∞). (8.19)

It follows immediately that X is of class C([0, T ]× (0,∞)) ∩ C1,2([0, T )×
(0,∞)) and satisfies (8.6) and (8.7).

We next use Assumption 8.2(iv) to show that Xy(t, y) < 0. For specificity,
let us assume that I ′

2(y) is defined and strictly negative for all y in a set
N ⊂ (0,∞) having positive Lebesgue measure. Because I1(t, ·) and I2 are
nonincreasing, we have for t ∈ [0, T ), y > 0, and h > 0 that

1
h

[X (t, y)− X (t, y + h)]

≥ e
−
∫ T

t
r(u)du

E0
1
h

[I2(yY (t,1)(T ))− I2((y + h)Y (t,1)(T ))].

Under P0, the random variable
∫ T

t
θ′(u) dW0(u) = B(〈M〉(T − t))

is normally distributed, with mean zero and standard deviation ρ
∆=√

〈M〉(T − t). Setting m
∆=
∫ T

t

(
−r(u) + ‖θ(u)‖2/2

)
du, we have

E0
1
h

[I2(yY (t,1)(T ))− I2((y + h)Y (t,1)(T ))]

≥ 1√
2π

∫
N

1
h

[
I2
(
yem−ρw

)
− I2

(
(y + h)em−ρw

)]
e−w2/2 dw.

Letting h ↓ 0 and using Fatou’s lemma, we obtain

−Xy(t, y) ≥ − 1√
2π

∫
N

em−ρwI ′
2
(
yem−ρw

)
e−w2/2 dw > 0.

From the implicit function theorem we have the existence of the function
Y that satisfies (8.9) for all t ∈ [0, T ], is of class C1,2 on D, and is contin-
uous on {(t, x) ∈ [0, T ] × R;x > X (t,∞)}. Relation (8.8) follows from the
definitions of I1(t, ·) and I2 in Section 3.5 and the dominated convergence
theorem. �

Remark 8.5: From (8.14) and (8.19), we have

d

(
e

−
∫

s

0
r(u)duX (s, Y (0,y)(s))

)
= e

−
∫

s

0
r(u)du[−I1(s, Y (0,y)(s))

− Y (0,y)(s)Xy(s, Y (0,y)(s))θ′(s) dW0(s)],
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which leads to the following useful integral formula for 0 ≤ t ≤ T , y > 0:

e
−
∫ t

0
r(u)duX (t, Y (0,y)(t)) +

∫ t

0
e

−
∫ s

0
r(u)du

I1(s, Y (0,y)(s)) ds

= X (0, y)−
∫ t

0
e

−
∫

s

0
r(u)du

Y (0,y)(s)Xy(s, Y (0,y)(s))θ′(s) dW0(s). (8.20)

Remark 8.6: The proof of Lemma 8.4 also shows that X is the unique
C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)) solution to the Cauchy problem
(8.6), (8.7) among those functions f satisfying the growth condition

∀ε > 0, ∃C(ε) such that |f(t, y)| ≤ C(ε)eε(log y)2 , ∀(t, y) ∈ [0, T ]× (0,∞).
(8.21)

Indeed, if f is a solution to (8.6), (8.7) satisfying (8.21), then u(t, η) ∆=
f(t, eη) is a solution to (8.11), (8.12) satisfying the growth conditon (8.13)
for every ε > 0. From (8.19) we see that f agrees with X .

Remark 8.7: We noted in Remark 5.7 that if an agent’s initial wealth
X3(0) lies below X (0,∞), then every consumption/portfolio process pair
results in an expected utility of −∞. If X3(0) = X (0,∞), then one should
take c3(t) = c(t), 0 ≤ t ≤ T , choose π3(·) such that X3(T ) = x, and this
results in expected utility

∫ T

0 U1(t, c(t)) dt+ U2(x), which is either finite or
−∞. Under Assumption 8.1, the portfolio π3(·) that produces this result
is π3 ≡ 0. Indeed, with this choice of c3(·) and π3(·), the wealth equation
(3.1) becomes

XX (0,∞),c3,π3(t) = e

∫ t

0
r(u)duX (0,∞)−

∫ t

0
e

−
∫ s

t
r(u)du

c(s) ds

= X (t,∞),

where we have used (8.8). We have then the feedback form (8.1) for optimal
consumption and investment when wealth at time t is X (t,∞):

C(t,X (t,∞)) = c(t), Π(t,X (t,∞)) = 0, 0 ≤ t ≤ T. (8.22)

We now derive the feedback form for optimal consumption and
investment when wealth at time t exceeds X (t,∞).

Theorem 8.8: Under the Assumptions 8.1 and 8.2, the feedback form
(8.1) for the optimal consumption/portfolio process pair (c3, π3) for
Problem 5.4 is given by

C(t, x) ∆= I1(t,Y(t, x)), (8.23)

Π(t, x) ∆= −(σ′(t))−1θ(t)
Y(t, x)
Yx(t, x)

, (8.24)

for 0 ≤ t ≤ T and x ∈ (X (t,∞),∞).
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Proof. We have from (8.3) that when the initial wealth x at time 0
exceeds X (0,∞), then the optimal wealth X3(t) at time t ∈ [0, T ] is
X (t, Y (0,Y3(x))(t)). In other words,

Y (0,Y(0,x))(t) = Y(t,X3(t)),

and (6.5) becomes

c3(t) = I1(t,Y(0, x)Y (0,1)(t)) = I1 (t,Y(t,X3(t))) ,

which establishes (8.23). With y = Y(0, x) and using (8.3), we may write
(8.20) as

X3(t)
S0(t)

+
∫ t

0

c3(s)
S0(s)

ds = x−
∫ t

0

Y(s,X3(s))
S0(s)

Xy (s,Y(s,X3(s))) θ′(s) dW0(s).

(8.25)
But from (8.9), we have Xy(t,Y(t, x)) = 1/Yx(t, x) for all x > X (t,∞), and
comparison of (8.25) with the wealth equation (3.1) shows that the optimal
portfolio satisfies

π′
3(t)σ(t) = −θ′(t)

Y(t,X3(t))
Yx(t,X3(t))

,

justifying (8.24). �

Remark 8.9 (Merton’s mutual fund theorem): Formula (8.24) for the
optimal portfolio shows that under the assumptions of Theorem 8.8, the
agent should always invest in stocks according to the proportions

(σ′(t))−1θ(t) = (σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1
˜
],

independently of the utility functions U1, U2. This permits the formation of
a mutual fund so that independently of his wealth and preference structure,
the agent is indifferent whether he invests in the assets individually or
invests only in the mutual fund and the money market. For example, we
may form a mutual fund by imagining an agent who begins with initial
wealth 1 and seeks to maximize E log X2(T ). The behavior of this agent
is described in Example 7.9 with x = 0; the optimal wealth is X2(t) =
1/H0(t), and the optimal portfolio is π2(t) = (σ′(t))−1θ(t)/H0(t). (We
show in Section 10 that as T → ∞, this agent is maximizing the growth
rate of wealth.) We think of X2(t) as the price per share of a mutual fund
that holds a portfolio π2(t) in the N stocks and (1/H0(t)) − π′

2(t)1˜
in the

money market. In particular, each dollar invested in the mutual fund results
in the vector (σ′(t))−1θ(t) of dollar investments in the stocks. The essence
of Theorem 8.8 is that any other agent solving Problem 5.4 is satisfied
to have the only investment opportunities be the money market and this
mutual fund. At time t and with wealth level x, this other agent invests
−Y(t, x)/Yx(t, x) dollars in the mutual fund. This amount depends on the
agent’s wealth x and preference structure (U1, U2), but the mutual fund
itself does not.
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Finally, we develop the Hamilton–Jacobi–Bellman (HJB) equation asso-
ciated with Problem 5.4. To do that, we must extend the value function
V3 of (5.8) to include the time variable. Given (t, x) ∈ [0, T ] × R, and
given a consumption/portfolio process pair (c(·), π(·)), the wealth process
Xt,x,c,π(·) corresponding to (c, π) with initial condition (t, x) is given by
(cf. (3.1))

e
−
∫

s

t
r(u)du

Xt,x,c,π(s) = x−
∫ s

t

e
−
∫

u

t
r(v)dv

c(u)du

+
∫ s

t

e
−
∫ u

t
r(v)dv

π′(u)σ(u) dW0(u),

t ≤ s ≤ T. (8.26)

We say that (c, π) is admissible at (t, x) and write (c, π) ∈ A(t, x) if
Xt,x,c,π(s) ≥ 0 almost surely for all s ∈ [t, T ]. We set

A3(t, x) ∆=

{
(c, π) ∈ A(t, x); E

∫ T

t

min[0, U1(s, c(s))] ds

+ E
(
min

[
0, U2

(
Xt,x,c,π(T )

)])
> −∞

}

and define

V (t, x) ∆= sup
(c,π)∈A3(t,x)

E

[∫ T

t

U1(s, c(s)) ds + U2
(
Xt,x,c,π(T )

)]
. (8.27)

Because we do not consider the time-dependent variations of Problems 5.2
and 5.3, we allow ourselves the convenience of writing V (t, x) rather than
V3(t, x) in (8.27).

By analogy with (6.14), we introduce the function

G(t, y) ∆= E

[∫ T

t

U1

(
s, I1(s, yY (t,1)(s))

)
ds + U2

(
I2(yY (t,1)(T ))

)]
,

(t, y) ∈ [0, T ]× (0,∞), (8.28)

so that G(0, ·) = G3(·) of (6.14). Under Assumptions 8.1 and 8.2, we have
(cf. (6.21))

V (t, x) =


G(t,Y(t, x)), if x > X (t,∞),∫ T

t
U1(s, c(s)) ds + U2(x), if x = X (t,∞),

−∞, if x < X (t,∞).
(8.29)

Of course,

V (T, x) = U2(x), ∀x ∈ R. (8.30)
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In particular, V (t, x) <∞ for all (t, x) ∈ [0, T ]× R. Moreover (cf. (6.27)),

lim
x↓X (t,∞)

V (t, x) =
∫ T

t

U1(s, c(s)) ds + U2(x), ∀t ∈ [0, T ]. (8.31)

Lemma 8.10: Under Assumptions 8.1 and 8.2, the function G defined
by (8.28) is of class C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)), and among
such functions that also satisfy the growth condition (8.21), G is the unique
solution to the Cauchy problem

Gt(t, y) +
1
2
‖θ(t)‖2y2Gyy(t, y) − r(t)yGy(t, y) (8.32)

= −U1(t, I1(t, y)) on [0, T )× (0,∞),

G(T, y) = U2(I2(y)) on (0,∞). (8.33)

Furthermore,

G(t, y)−G(t, z) = yX (t, y)− zX (t, z)

−
∫ y

z

X (t, λ) dλ, 0 < z < y <∞, (8.34)

Gy(t, y) = yXy(t, y),

Gyy(t, y) = Xy(t, y) + yXyy(t, y), 0 ≤ t < T, y > 0. (8.35)

Proof. The proof of (8.32) and (8.33) is like the proof of (8.6) and (8.7),
except that now we use Remark 8.3 and take u: [0, T ] × R → R to be the
C([0, T ]× (0,∞)) ∩ C1,2([0, T )× (0,∞)) solution of the Cauchy problem

ut(t, η) +
1
2
‖θ(t)‖2uηη(t, η) −

(
r(t) +

1
2
‖θ(t)‖2

)
uη(t, η) (8.36)

= −U1(t, I1(t, eη)), 0 ≤ t < T, η ∈ R,

u(T, η) = U2(t, I2(t, eη)), η ∈ R. (8.37)

Itô’s rule, (8.2), and (8.36) imply that (cf. (8.14))

du(s, log Y (t,y)(s)) = −U1(s, I1(s, Y (t,y)(s))) ds

−uη(s, log Y (t,y)(s))θ′(s) dW (s),

and so (cf. (8.15), (8.17))

u(t, log y) = E

∫ T

t

U1(s, I1(s, Y (t,y)(s))) ds + EU2(I2(Y (t,y)(T )))

= G(t, y).

Consequently, G solves the Cauchy problem (8.32), (8.33).
Equation (8.34) is just (6.32) with initial time t rather than initial time

zero. Equation (8.35) follows from differentiation of (8.34). Uniqueness
follows as in Remark 8.6. �
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Theorem 8.11 (Hamilton–Jacobi–Bellman equation): Under Assump-
tions 8.1 and 8.2, the value function V (t, x) of (8.29), (8.30) is of
class C1,2 on the set D of (8.10), continuous on the set {(t, x) ∈
[0, T ]× (0,∞);x > X (t,∞)}, and satisfies the boundary conditions (8.30),
(8.31) (where V (t,X (t,∞)+) may be −∞). Furthermore, V satisfies the
Hamilton–Jacobi–Bellman equation of dynamic programming:

Vt(t, x) + max
0≤c<∞
π∈RN

[
1
2
‖σ′(t)π‖2Vxx(t, x)

+ (r(t)x− c + π′σ(t)θ(t))Vx(t, x) + U1(t, c)
]

= 0 on D. (8.38)

In particular, the value function V3(·) of (5.8) is V (0, ·), and the max-
imization in (8.38) is achieved by the pair (C(t, x),Π(t, x)) of (8.23),
(8.24).

Proof. Differentiating (8.9) and (8.29) and using the formula (8.35), we
obtain for (t, x) ∈ D,

Xt(t,Y(t, x)) + Xy(t,Y(t, x))Yt(t, x) = 0,

Xy(t,Y(t, x))Yx(t, x) = 1,

Vt(t, x) = Gt(t,Y(t, x))

+ Gy(t,Y(t, x))Yt(t, x),

Vx(t, x) = Y(t, x),

Vxx(t, x) = Yx(t, x).

Using these formulas, we can rewrite the left-hand side of (8.38) as

Gt(t,Y(t, x)) + Gy(t,Y(t, x))Yt(t, x) + r(t)xY(t, x)

+ max
0≤c<∞

[U1(t, c)− cY(t, x)]

+ max
π∈RN

[
1
2
‖σ′(t)π‖2Yx(t, x) + π′σ(t)θ(t)Y(t, x)

]
.(8.39)

Both expressions to be maximized are strictly concave. Setting their deriva-
tives equal to zero, we verify that (8.23) and (8.24) provide the maximizing
values of c and π, respectively. Substitution of these values converts the
expression of (8.39) into

Gt(t,Y(t, x)) + Gy(t,Y(t, x))Yt(t, x) + r(t)xY(t, x)

+ U1 (t, I1(t,Y(t, x))) − Y(t, x)I1(t,Y(t, x))

− 1
2
‖θ(t)‖2Y

2(t, x)
Yx(t, x)

.

Setting y = Y(t, x), so that x = X (t, y), we can use (8.35) and (8.32) to
write this in the simpler form
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Gt(t, y)− yXt(t, y) + r(t)yX (t, y) + U1(t, I1(t, y))

− yI1(t, y)− 1
2
‖θ(t)‖2y2Xy(t, y)

=− 1
2
‖θ(t)‖2y2Gyy(t, y) + r(t)yGy(t, y)− yXt(t, y)

+ r(t)yX (t, y) − yI1(t, y)− 1
2
‖θ(t)‖2y2Xy(t, y)

=− y

[
Xt(t, y) +

1
2
‖θ(t)‖2y2Xyy(t, y) + (‖θ(t)‖2 − r(t))yXy(t, y)

− rX (t, y) + I1(t, y)
]
.

According to Lemma 8.4, this last expression is zero. �

Theorem 8.11 provides only a necessary condition for the value function
V ; it is not claimed that V is the only function that is of class C1,2 on
D and satisfies (8.38) with boundary conditions (8.30), (8.31). In order to
make such a uniqueness assertion, one would have also to impose some
growth condition as x approaches ∞. Instead of pursuing this approach, it
is easier to derive a necessary and sufficient condition for the convex dual
of V , defined by the formula

Ṽ (t, y) ∆= sup
x∈R

{V (t, x)− xy}, y ∈ R.

In contrast to the nonlinear partial differential equation (8.38), which gov-
erns the value function V , the dual value function Ṽ satisfies the linear
partial differential equation (8.44) below. The function V can be recovered
from Ṽ by the Legendre transform inversion formula (cf. (4.13))

V (t, x) = inf
y∈R
{Ṽ (t, y) + xy}, x ∈ R.

Theorem 8.12 (Convex dual of V (t, ·)): Let Assumptions 8.1 and 8.2
hold. Then, for each t ∈ [0, T ], the function V (t, ·) satisfies all the
conditions of Definition 4.1, and

X (t,∞) = inf{x ∈ R;V (t, x) > −∞}, (8.40)

Vx(t, x) = Y(t, x), ∀x ∈ (X (t,∞),∞), (8.41)

Ṽ (t, y) = G(t, y)− yX (t, y) (8.42)

= E

[∫ T

t

Ũ1(s, yY (t,1)(s))ds + Ũ2(yY (t,1)(T ))

]
, ∀y ∈ (0,∞),

Ṽy(t, y) = −X (t, y), ∀y ∈ (0,∞). (8.43)

Moreover, Ṽ is of class C([0, T ]× (0,∞))∩C1,2([0, T )× (0,∞)) and solves
the Cauchy problem
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Ṽt(t, y) +
1
2
‖θ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) = −Ũ1(t, y) (8.44)

on [0, T )× (0,∞),

Ṽ (T, y) = Ũ2(y), (8.45)

y ∈ (0,∞).

If ṽ is a function satisfying (8.44), (8.45), ṽy is of class C([0, T ]×(0,∞))∩
C1,2([0, T )×(0,∞)), and ṽ and ṽy satisfy the growth condition (8.21), then

ṽ = Ṽ , −ṽy = X , G = ṽ − yṽy .

Proof. All the claims (8.40)–(8.43) made here for fixed t ∈ [0, T ) are
contained in Theorem 6.11, taking T in that theorem to be T − t here.
When t = T , (8.40)–(8.43) and (8.45) follow directly from the definitions.

Equation (8.42), Lemma 8.4, and Lemma 8.10 show that Ṽ has the
claimed degree of smoothness. Equations (8.42), (8.32), (8.6), and (4.11)
yield (8.44).

If ṽ has the properties stated, then differentiation of (8.44) and (8.45),
using (4.12), shows that −ṽy satisfies (8.6), (8.7). According to Remark
8.6, −ṽy = X . Furthermore, ṽ− yṽy solves (8.32), (8.33), and from Lemma
8.10 we see that G = ṽ − yṽy. From (8.42) we now have Ṽ = ṽ. �

The following examples illustrate the use of Theorem 8.12 to compute
the value function and the optimal consumption and portfolio processes in
feedback form.

Example 8.13: Fix p ∈ (−∞, 1) \ {0} and set

U1(t, c) = U (p)(c− c(t)), U2(x) = U (p)(x− x),

where U (p) is defined by (4.4) and c: [0, T ]→ [0,∞) is continuous. Then

I1(t, y) = c(t) + y1/(p−1),

Ũ1(t, y) =
1− p

p
yp/(p−1) − c(t)y, 0 ≤ t ≤ T, y > 0,

I2(t, y) = x + y1/(p−1),

Ũ2(y) =
1− p

p
yp/(p−1) − xy, y > 0.

We seek a solution ṽ of (8.44), (8.45) of the form

ṽ(t, y) =
1− p

p
k(t)yp/(p−1) − �(t)y. (8.46)

This function solves (8.44), (8.45) if and only if

k′(t) + α(t)k(t) = −1, �′(t)− r(t)�(t) = −c(t), 0 ≤ t ≤ T,
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where

α(t) ∆=
p

(1− p)2

[
1
2
‖θ(t)‖2 + r(t)(1− p)

]
(8.47)

and

k(T ) = 1, �(T ) = x.

From these conditions, we see that

k(t) = e

∫
T

t
α(s)ds

[
1 +

∫ T

t

e
−
∫

T

s
α(u)du

ds

]
, (8.48)

�(t) = e
−
∫ T

t
r(s)ds

[
x +

∫ T

t

e

∫ T

s
r(u)du

c(s) ds

]
. (8.49)

The function ṽ: [0, T ]×(0,∞)→ R defined by (8.46)–(8.49) satisfies (8.44),
(8.45), and

ṽy(t, y) = −k(t)y1/(p−1) − �(t)

is of class C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)). Furthermore, both ṽ
and ṽy satisfy the growth condition (8.21). According to Theorem 8.12, ṽ

agrees with Ṽ ,

X (t, y) = k(t)y1/(p−1) + �(t), G(t, y) =
1
p
k(t)yp/(p−1), 0 ≤ t ≤ T, y > 0,

and consequently, for 0 ≤ t ≤ T ,

X (t,∞) = �(t),

Y(t, x) =
(

x− �(t)
k(t)

)p−1

, ∀x > �(t),

V (t, x) =
1
p
k(t)

(
x− �(t)

k(t)

)p

, ∀x > �(t),

and the optimal consumption and portfolio in feedback form (8.23), (8.24)
are

C(t, x) = c(t) +
x− �(t)

k(t)
, ∀x ≥ �(t),

Π(t, x) = (σ′(t))−1θ(t)
x− �(t)
1− p

, ∀x ≥ �(t).

Example 8.14: Set

U1(t, c) = U (0)(c− c(t)), U2(x) = U (0)(x− x),
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where U (0) is defined by (4.5) and c: [0, T ]→ [0,∞) is continuous. Then

I1(t, y) = c(t) +
1
y
,

Ũ1(t, y) = − log y − 1− c(t)y, 0 ≤ t ≤ T, y > 0,

I2(y) = x +
1
y
, Ũ2(y) = − log y − 1− xy, y > 0.

We seek a solution ṽ of (8.44), (8.45) of the form

ṽ(t, y) = −k(t) log y −m(t)− �(t)y.

This function solves (8.44), (8.45) if and only if

k(t) = T − t + 1,

m(t) = 1 +
∫ T

t

[
1− (T − s + 1)(r(s) + ‖θ(s)‖2/2)

]
ds,

and �(·) is given by (8.49). Again, we see that ṽ and

ṽy(t, y) = −k(t)
y
− �(t)

satisfy the growth condition (8.21), so Theorem 8.12 implies that ṽ agrees
with Ṽ and

X (t, y) =
k(t)
y

+ �(t), G(t, y) = k(t)(1− log y)−m(t).

Consequently, for 0 ≤ t ≤ T ,

X (t,∞) = �(t),

Y(t, x) =
k(t)

x− �(t)
∀x > �(t),

V (t, x) = k(t) log
(

x− �(t)
k(t)

)
+ k(t)−m(t) ∀x > �(t),

C(t, x) = c(t) +
x− �(t)

k(t)
∀x ≥ �(t),

Π(t, x) = (σ′(t))−1θ(t)(x− �(t)) ∀x ≥ �(t).

Remark 8.15: If we take r, θ, and σ to be constant in Examples 8.13,
8.14, we have

∂

∂t
Π(t, x) = −(σ′)−1θ�′(t) = (σ′)−1θ(−r�(t) + c(t)).

It can easily happen that some or all of the components of ∂
∂tΠ(t, x) are

positive, a somewhat counterintuitive situation. In particular, suppose that
there is only one stock and σ and θ have the same sign (as they will when-
ever the mean rate of return on the stock exceeds the interest rate). Then
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∂
∂tΠ(t, x) has the same sign as −r�(t) + c(t). If c(T ) > rx = r�(T ), then
∂
∂tΠ(t, x) > 0 for t near T . In this case, as the terminal time approaches,
for a fixed level of wealth the optimal portfolio invests more heavily in the
stock.

Example 8.16 (Constant coefficients): Consider the case that r(·) =
r > 0, θ(·) = θ �= 0, and σ(·) = σ are constants, and A(·) ≡ 0. Set
γ = 1

2‖θ‖2 > 0. Assume that

U1(t, x) = e−αtu1(x), U2(x) = e−αT u2(x), 0 ≤ t ≤ T, x > 0, (8.50)

where α > 0 and u1: (0,∞) → R, u2: (0,∞) → R are thrice continuously
differentiable utility functions

lim
x→∞

(u′
k(x))a

u′′
k(x)

= 0 for some a > 2, lim
x↓0

(u′
k(x))2

u′′
k(x)

exists, (8.51)

uk(0) > −∞. (8.52)

for k = 1, 2. Let ik denote the inverse of u′
k, k = 1, 2.

The functions of Theorem 8.12 can be computed explicitly, following
Karatzas, Lehoczky, and Shreve (1987), as follows. Denote by λ+ and λ−
the respective positive and negative roots of the quadratic equation γλ2 −
(r − α− γ)λ− r = 0, and set

J±(y) ∆=
∫ i1(y)

0
(u′

1(η))−λ±dη,

g(y) ∆=
1
α

u1(i1(y))− 1
γ(λ+ − λ−)

[
y1+λ+

1 + λ+
J+(y)− y1+λ−

1 + λ−
J−(y)

]
,

s(y) ∆=
y

r
i1(y)− 1

γ(λ+ − λ−)

[
y1+λ+

λ+
J+(y)− y1+λ−

λ−
J−(y)

]
,

h(y) ∆= g(y)− s(y)

=
1
α

u1(i1(y))− y

r
i1(y) +

1
γ(λ+ − λ−)

[
y1+λ+

λ+(1 + λ+)
J+(y)

− y1+λ−

λ−(1 + λ−)
J−(y)

]
,

as well as

ρ±(t, x; q) ∆=
1√
2γt

[
log

x

q
+ (r − β ± γ)t

]
, t, x, q > 0,

v(t, x; q) =
{

xe−αtΦ(ρ+(t, x; q)) − qe−rtΦ(ρ−(t, x; q)), 0 < t ≤ T ,
(x− q)+, t = 0,
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by analogy with Example 2.4.1. Then

yX (t, y) = s(y) +
∫ ∞

0
(ηi2(η)− s(η))′′v(T − t, η; y)dη, (8.53)

G(t, y) = g(y) +
(

u2(0)− u1(0)
α

)−α(T−t)

+
∫ ∞

0
(u2(i2(η))− g(η))′′v(T − t, η; y)dη, (8.54)

and thus

Ṽ (t, y) = G(t, y)− yX (t, y)

= h(y) +
(

u2(0)− u1(0)
α

)−α(T−t)

+
∫ ∞

0
(ũ2(η)− h(η))′′v(T − t, η; y)dη, (8.55)

where ũ2 is the convex dual (Definition 4.2) of u2. See Karatzas, Lehoczky,
and Shreve (1987) for details.

Conditions (8.51), (8.52) and Assumption 8.2 are satisfied by

uk(x) =
1
p
xp, x > 0,

for any p ∈ (0, 1) (p may depend on k). Although condition (8.52) is not
satisfied by uk(x) = log x, the formulas obtained above still hold and sim-
plify considerably for this case (see Remarks 4.7, 5.5 in Karatzas, Lehoczky,
and Shreve (1987)).

3.9 Consumption and Investment on an
Infinite Horizon

In this section and the next we consider a complete, standard financial
market on an infinite horizon, as set forth in Section 1.7. In particular,
on an underlying probability space (Ω,F , P ), there is an N -dimensional
Brownian motion W = {W (t); 0 ≤ t < ∞}, and we shall use the no-
tion of restricted progressive measurability (Definition 1.7.1) relative to this
Brownian motion.

For this market we shall be interested in Problem 9.5 below of maximiz-
ing expected utility from consumption over the infinite planning horizon.
The solution of this problem is similar to that obtained from Problem
5.2 of maximizing expected utility from consumption over a finite plan-
ning horizon. After developing the expected results for the market with
general coefficient processes, we turn our attention to the market with
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constant coefficients and utility function of the form (9.21). In this case,
explicit computations become possible (e.g., Theorems 9.14, 9.18, 9.21).
The Hamilton–Jacobi–Bellman equation takes the form of a nonlinear,
second-order ordinary differential equation (Theorem 9.20), and the dual
value function satisfies a linear, second-order ordinary differential equation
(Theorem 9.21).

Definition 9.1: A consumption process on the infinite planning horizon
is a nonnegative, restrictedly progressively measurable process satisfying∫ T

0 c(t) dt <∞ almost surely for every T ∈ [0,∞).

An agent with initial x ≥ 0 who chooses a consumption process c(·)
will have a cumulative income process Γ(t) ∆= x−

∫ t

0 c(u) du, 0 ≤ t <∞.
If this investor chooses a Γ(·)-financed portfolio process π(·), then his
corresponding wealth process Xx,c,π(·) will be governed by equation (1.7.6):

Xx,c,π(t)
S0(t)

= x−
∫ t

0

c(u) du

S0(u)
+
∫ t

0

1
S0(u)

π′(u)σ(u) dW0(u),

0 ≤ t <∞. (9.1)

Definition 9.2: Given x ≥ 0, we say that a consumption and portfolio
process pair (c, π) on the infinite planning horizon is admissible at x, and
write (c, π) ∈ A(x), if the wealth process Xx,c,π(·) corresponding to x, c, π
satisfies

Xx,c,π(t) ≥ 0, 0 ≤ t <∞

almost surely. For x < 0, we set A(x) = ∅.

Remark 9.3: Just as in Remark 3.3, we have for any (c, π) ∈ A(x) that
E
∫ T

0 H0(u)c(u) du ≤ x for every T ∈ [0,∞). Letting T → ∞ and using
the monotone convergence theorem, we obtain the infinite horizon budget
constraint

E

∫ ∞

0
H0(u)c(u) du ≤ x. (9.2)

Theorem 9.4: Let x ≥ 0 be given and let c(·) be a consumption process
such that

E

∫ ∞

0
H0(u)c(u) du = x. (9.3)

Then there exists a portfolio process π(·) such that (c, π) is admissible at x.
The corresponding wealth process is

Xx,c,π(t) =
1

H0(t)
E

[∫ ∞

t

H0(u)c(u) du

∣∣∣∣F(t)
]

, 0 ≤ t ≤ ∞. (9.4)
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Proof. Given T ∈ [0,∞), define

ξT =
1

H0(T )
E

[∫ ∞

T

H0(u)c(u) du

∣∣∣∣F(T )
]

.

Then

E

[∫ T

0
H0(u)c(u) du + H0(T )ξT

]
= x,

and Theorem 3.5 implies the existence of a portfolio process πT =
{πT (t); 0 ≤ t ≤ T} such that the corresponding wealth process

Xx,c,πT (t) = S0(t)
[
x−

∫ t

0

c(u) du

S0(u)
+
∫ t

0

1
S0(u)

π′
T (u)σ(u) dW0(u)

]
,

0 ≤ t ≤ T

satisfies Xx,c,πT (t) ≥ 0 almost surely for 0 ≤ t ≤ T and Xx,c,πT (T ) = ξT .
According to Remark 3.3,

MT (t) ∆= H0(t)Xx,c,πT (t) +
∫ t

0
H0(u)c(u) du, 0 ≤ t ≤ T

is a nonnegative supermartingale under P , but since

EMT (T ) = E

{
E

[∫ ∞

T

H0(u)c(u) du

∣∣∣∣F(T )
]

+
∫ T

0
H0(u)c(u) du

}
= x

= MT (0),

the process {MT (t); 0 ≤ t ≤ T} is in fact a martingale. Consequently, for
0 ≤ t ≤ T ′ < T <∞, we have the almost sure equalities

H0(t)Xx,c,πT (t) = MT (t)−
∫ t

0
H0(u)c(u) du

= E

[
MT (T )−

∫ t

0
H0(u)c(u) du

∣∣∣∣F(t)
]

= E

[
H0(T )ξT +

∫ T

t

H0(u)c(u) du

∣∣∣∣∣F(t)

]

= E

[∫ ∞

t

H0(u)c(u) du

∣∣∣∣F(t)
]

= E

[
H0(T ′)ξT ′ +

∫ T ′

t

H0(u)c(u) du

∣∣∣∣∣F(t)

]

= E

[
MT ′(T ′)−

∫ t

0
H0(u)c(u) du

∣∣∣∣F(t)
]
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= MT ′(t)−
∫ t

0
H0(u)c(u) du

= H0(t)Xx,c,πT ′ (t). (9.5)

Since both Xx,c,πT (·) and Xx,c,πT ′ (·) are continuous, we have Xx,c,πT (t) =
Xx,c,πT ′ (t) for all t ∈ [0, T ′] almost surely. This implies∫ t

0

1
S0(u)

(πT (u)− πT ′(u))′σ(u) dW0(u) = 0, ∀t ∈ [0, T ′],

and thus πT (t) = πT ′(t) for Lebesgue-almost-every t ∈ [0, T ′] almost surely.
We now define

π(t) ∆=
∞∑

n=1

1[n−1,n)(t)πn(t), 0 ≤ t <∞,

and we have

Xx,c,π(t) =
∞∑

n=1

1[n−1,n)(t)Xx,c,πn(t) ≥ 0, ∀t ∈ [0,∞)

almost surely. For fixed t ≥ 0, choose the integer n such that n−1 ≤ t < n.
Then (9.5) implies

Xx,c,π(t) = Xx,c,πn(t) =
1

H0(t)
E

[∫ ∞

t

H0(u)c(u)du

∣∣∣∣F(t)
]

almost surely, which establishes (9.4). �

Let a function U1: [0,∞)× R→ [−∞,∞) be given such that:

(i) For each t ∈ [0,∞), U1(t, ·) is a utility function in the sense of
Definition 4.1, and the subsistence consumption

c(t) ∆= inf{c ∈ R;U1(t, c) > −∞}, 0 ≤ t <∞,

is a continuous function of t, with values in [0,∞);
(ii) U1 and U ′

1 (where prime denotes differentiation with respect to the
second argument) are continuous on the set

D∞
∆= {(t, c) ∈ [0,∞)× (0,∞); c > c(t)}.

For each t ∈ [0,∞), we construct I1(t, ·): (0,∞] onto−→ [c(t),∞) satisfying
(5.20). Lemma 5.8 extends to show that I1 is jointly continuous on [0,∞)×
(0,∞].

Let an agent have an initial endowment x ∈ R. The problem of this
section is the following.

Problem 9.5: Find an optimal pair (c∞, π∞) ∈ A∞(x) for the problem

V∞(x) ∆= sup
(c,π)∈A∞(x)

E

∫ ∞

0
U1(t, c(t)) dt
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of maximizing expected total utility from consumption over [0,∞), where

A∞(x) ∆=
{

(c, π) ∈ A(x); E

∫ ∞

0
min[0, U1(t, c(t))] dt > −∞

}
.

We recall that A(x) = ∅ for x < 0 and that the supremum over the
empty set is −∞. To avoid trivialities, we impose the following condition
throughout.

Assumption 9.6: There is at least one x̂ ≥ 0 such that V∞(x̂) is finite.

Remark 9.7: With x̂ as in Assumption 9.6, there must exist some
(ĉ, π̂) ∈ A∞(x̂) such that E

∫∞
0 min[0, U1(t, ĉ(t))] dt > −∞, and, in

addition, E
∫∞
0 U1(t, ĉ(t)) dt ≤ V (x̂) <∞. Simply stated, ĉ(·) satisfies

E

∫ ∞

0
|U1(t, ĉ(t))| dt <∞. (9.6)

Remark 9.8: It is not difficult to compute V∞(x) in the case that x ≤
E
∫∞
0 H0(t)c(t) dt. Indeed, we have

V∞(x) =


∫ ∞

0
U1(t, c(t)) dt, x = E

∫ ∞

0
H0(t)c(t) dt,

−∞, x < E

∫ ∞

0
H0(t)c(t) dt.

(9.7)

To verify this, note that when x < E
∫∞
0 H0(t)c(t) dt, the budget constraint

(9.2) shows that A∞(x) = ∅, and so V∞(x) = −∞. If on the other hand
x = E

∫∞
0 H0(t)c(t) dt, then (9.2) shows that the only possible admissible

consumption process is c(·) itself. Theorem 9.4 guarantees the existence
of a portfolio π(·) such that (c, π) ∈ A(x). If

∫∞
0 min[0, U1(t, c(t))] dt >

−∞, then (c, π) is the sole member of A∞(x), and hence is optimal. If∫∞
0 min[0, U1(t, c(t))] dt = −∞, then

∫∞
0 U1(t, c(t)) dt is defined and equal

to −∞ because c(·) is dominated by ĉ(·) satisfying (9.6). Moreover, in this
case A∞(x) = ∅, so V∞(x) = −∞. In either case, we have (9.7).

We now define

X∞(y) ∆= E

∫ ∞

0
H0(t)I1(t, yH0(t)) dt, 0 < y <∞. (9.8)

A sufficient condition for the following assumption is given in Propostion
9.14.

Assumption 9.9: X∞(y) <∞, ∀y ∈ (0,∞).

The following lemma is proved in the same way as Lemma 6.2.

Lemma 9.10: Under Assumption 9.9, the function X∞ is nonin-
creasing and continuous on (0,∞) and strictly decreasing on (0, r∞),
where X∞(0+) ∆= limy↓0 X∞(y) = ∞, X∞(∞) ∆= limy→∞ X∞(y) =
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0 H0(t)c(t) dt, and

r∞
∆= sup {y > 0;X∞(y) > X∞(∞)} > 0. (9.9)

In particular, the function X∞ restricted to (0, r∞) has a strictly decreasing
inverse function Y∞: (X∞(∞),∞) onto−→ (0, r∞), so that

X∞ (Y∞(x)) = x, ∀x ∈ (X∞(∞),∞) . (9.10)

For x ∈ (X∞(∞),∞), we define the candidate optimal consumption
process

c∞(t) ∆= I1(t,Y∞(x)H0(t)), 0 ≤ t <∞. (9.11)

From (9.8), (9.10), we have

E

∫ ∞

0
H0(u)c∞(u) du = x,

and Theorem 9.4 guarantees the existence of a candidate optimal portfolio
policy π∞(·) such that (c∞, π∞) ∈ A(x).

Theorem 9.11: Suppose that both Assumptions 9.6 and 9.9 hold, let x ∈
(X∞(∞),∞) be given, let c∞(·) be given by (9.11), and let π∞ be such that
(c∞, π∞) ∈ A(x). Then (c∞, π∞) ∈ A∞(x) and (c∞, π∞) is optimal for
Problem 9.5; i.e.

V∞(x) = E

∫ ∞

0
U1(t, c∞(t)) dt. (9.12)

The optimal wealth process X∞(·) = Xx,c∞,π∞(·) is

X∞(t) =
1

H0(t)
E

[∫ ∞

t

H0(u)c∞(u) du

∣∣∣∣F(t)
]

, 0 ≤ t <∞, (9.13)

and the value function V∞ is given as

V∞(x) = G∞(Y∞(x)), X∞(∞) < x <∞, (9.14)

where

G∞(y) ∆= E

∫ ∞

0
U1 (t, I1(t, yH0(t))) dt, 0 < y <∞. (9.15)

Proof. The proof of the optimality of (c∞, π∞) is the same as the proof
of Theorem 6.3, except that now we use the process ĉ(·) of Remark 9.7 in
place of the constant ĉ of the proof of Theorem 6.3. Equation (9.13) comes
from (9.4). Equation (9.14) is just a restatement of (9.12). �

As in Section 3.6, we examine the convex dual of V∞, defined by

Ṽ∞(y) ∆= sup
x∈R

{V∞(x)− xy}, y ∈ R.
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Recall from Remark 9.8 and Theorem 9.11 that

V∞(x) =


G∞(Y∞(x)), x > X∞(∞),∫∞
0 U1(t, c(t)) dt, x = X∞(∞),
−∞, x < X∞(∞).

(9.16)

The proof of Theorem 6.11 is easily adapted to prove the following result.

Theorem 9.12: Let Assumptions 9.6 and 9.9 hold, and assume V∞(x) <
∞ for all x ∈ R. Then V∞ satisfies all the conditions of Definition 4.1, and

X∞(∞) = inf{x ∈ R;V∞(x) > −∞}, (9.17)
V ′

∞(x) = Y∞(x), ∀x ∈ (X∞(∞),∞), (9.18)

Ṽ∞(y) = G∞(y)− yX∞(y) (9.19)

= E

∫ ∞

0
Ũ1(t, yH0(t)) dt, ∀y ∈ (0,∞),

Ṽ ′
∞(y) = −X∞(y), ∀y ∈ (0,∞). (9.20)

For the remainder of this section, we impose the following condition.

Assumption 9.13: The processes r(·) ≡ r and θ(·) ≡ θ are constants,

r > 0, γ
∆=

1
2
‖θ‖2 > 0,

the process A(·) is identically zero, and the function U1 is of the form

U1(t, c) = e−βtU(c), t ∈ [0,∞), c ∈ R, (9.21)

where U is a utility function (Definition 4.1) and β is a positive discount
factor.

Under Assumption 9.13, we have

I1(t, y) = I
(
eβty

)
, t ∈ [0,∞), 0 < y <∞, (9.22)

where I is related to U by (4.6), (4.7). We set (cf. (4.2))

c
∆= inf{c ∈ R;U(c) = −∞}.

Because r > 0, β > 0, and γ > 0, the quadratic equation

γρ2 − (r − β + γ)ρ− β = 0 (9.23)

has two roots, one negative and the other greater than 1. We denote the
negative root of (9.23) by ρ1 and the positive root by ρ2. More specifically,

ρi
∆=

1
2γ

[
(r − β + γ) + (−1)i

√
(r − β + γ)2 + 4γβ

]
, i = 1, 2. (9.24)

Theorem 9.14: Let Assumption 9.13 hold. Then the condition∫ 1

0
η−ρ1I(η) dη <∞ (9.25)
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is equivalent to Assumption 9.9. Under this condition,

X∞(y) =
1

γ(ρ2 − ρ1)

[
yρ1−1

∫ y

0
η−ρ1I(η) dη + yρ2−1

∫ ∞

y

η−ρ2I(η) dη

]
,

0 < y <∞,

(9.26)

is finite, twice continuously differentiable, satisfies X ′
∞(y) < 0 for all y ∈

(0,∞), and

1
2
‖θ‖2y2X ′′

∞(y) +
(
‖θ‖2 − r + β

)
yX ′

∞(y)− rX∞(y) = −I(y),

0 < y <∞. (9.27)

Proof. Under Assumption 9.13, equation (9.8) becomes

X∞(y) = E

∫ ∞

0
exp{−(r + γ)t− θ′W (t)}

· I (y exp{−(r − β + γ)t− θ′W (t)}) dt

=
∫ ∞

−∞

∫ ∞

0

1√
2π

exp
{
−(r + γ)t− w

√
2γt− w2/2

}
· I
(
y exp

{
−(r − β + γ)t− w

√
2γt
})

dt dw.

Holding t > 0 fixed, we can make the change of variable z = (r− β + γ)t +
w
√

2γt in the outer integral and then use the Laplace transform formula∫ ∞

0

1√
πt

e−a/(4t)e−pt dt =
e−√

ap

√
p

, a > 0, p > 0, (9.28)

to obtain

X∞(y) =
∫ ∞

−∞

1
2
√

γ
exp

{
z(r − β − γ)

2γ

}
I
(
ye−z

)
·
∫ ∞

0

1√
πt

exp
{
− z2

4γt
− (r − β + γ)2 + 4γβ

4γ
t

}
dt dz

=
∫ ∞

−∞

1√
(r − β + γ)2 + 4γβ

I
(
ye−z

)
· exp

{
1
2γ

[
z(r − β − γ)− |z|

√
(r − β + γ)2 + 4γβ

]}
dz

=
1

γ(ρ2 − ρ1)

[∫ ∞

0
e(ρ1−1)zI

(
ye−z

)
dz

+
∫ 0

−∞
e(ρ2−1)zI

(
ye−z

)
dz

]
.

The change of variable η = ye−z leads to equation (9.26). The integral∫∞
y

η−ρ2I(η) dη converges because I is nonnegative and nonincreasing and
ρ2 > 1. The equivalence of (9.25) and Assumption 9.9 is now apparent.
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From (9.26) it is clear that X∞ is twice continuously differentiable. Direct
computation verifies (9.27). To show that X ′

∞(y) < 0, we use integration
by parts for Riemann–Stieltjes integrals to compute

X ′
∞(y) =

1
γ(ρ2 − ρ1)

[
(ρ1 − 1)yρ1−2

∫ y

0
η−ρ1I(η) dη

+(ρ2 − 1)yρ2−2
∫ ∞

y

η−ρ2I(η) dη

]
=

1
γ(ρ2 − ρ1)

[
yρ1−2 lim inf

η↓0

(
η−ρ1+1I(η)

)
+ yρ1−2

∫ y

0
η−ρ1+1 dI(η)

+yρ2−2
∫ ∞

y

η−ρ2+1 dI(η)
]

.

But (9.25) implies lim infη↓0
(
η−ρ1+1I(η)

)
= 0, and both the above

Riemann–Stieltjes integrals are strictly negative because I is strictly
decreasing. �

Under Assumptions 9.9 and 9.13, X∞ is a bijection from (0,∞) to
(0,X∞(∞)), and so its inverse Y∞ maps (0,X∞(∞)) onto (0,∞). The im-
plicit function theorem implies that Y∞ is continuously differentiable, and
in fact,

X ′
∞(Y∞(x))Y ′

∞(x) = 1, ∀x ∈ (X∞(∞),∞). (9.29)

Corollary 9.15: Under Assumptions 9.9 and 9.13, the feedback form for
the optimal consumption/portfolio process pair (c∞, π∞) for Problem 9.5 is
given by

C(x) = I(Y∞(x)), (9.30)

Π(x) = −(σ′)−1θ
Y∞(x)
Y ′

∞(x)
(9.31)

for x ∈ (X∞(∞),∞).

Proof. We introduce the process

Y (y)(s) ∆= y exp{−(r + γ)s− θ′W (s)}
= y exp{−(r − γ)s− θ′W0(s)},

which satisfies

dY (y)(s) = Y (y)(s)[(2γ − r) ds− θ′ dW0(s)],

Y (y)(s) = yY (1)(s) = yH0(s).

In terms of this process, we have the representation

yX∞(y) = E

[∫ ∞

0
Y (y)(s)I(eβsY (y)(s)) ds

]
,
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and the Markov property implies that

E

[∫ ∞

t

Y (y)(s)I(eβ(s−t)Y (y)(s)) ds

∣∣∣∣F(t)
]

= Y (y)(t)X∞(Y (y)(t)).

Let x > X∞(∞) be given and set y = Y∞(x). The optimal wealth process
with initial condition x, given by (9.13), is (see (9.11), (9.22))

X∞(t) =
1

H0(t)
E

[∫ ∞

t

H0(s)I
(
yeβsH0(s)

)
ds

∣∣∣∣F(t)
]

=
1

Y (yeβt)(t)
E

[∫ ∞

t

Y (yeβt)(s)I
(
eβ(s−t)Y (yeβt)(s)

)∣∣∣∣F(t)
]

= X∞(Y (yeβt)(t))

= X∞(eβtY (y)(t))

= X∞
(
yeβtH0(t)

)
. (9.32)

In particular, the optimal consumption process is

c∞(t) = I
(
yeβtH0(t)

)
= I (Y∞(X∞(t))) , (9.33)

which verifies (9.30).
From Itô’s rule in conjunction with (9.27) and (9.33) applied to (9.32),

we have

d
(
e−rtX∞(t)

)
= d(e−rtX∞(eβtY (y)(t)))

= −e−rtc∞(t) dt − e(β−r)tY (y)(t)X ′
∞(eβtY (y)(t))θ′dW0(t),

and comparison with (9.1) shows that the optimal portfolio process is

π∞(t) = −(σ)−1θeβtY (y)(t)X ′
∞(eβtY (y)(t)).

But eβtY (y)(t) = Y∞(X∞(t)), and because of (9.29), X ′
∞(eβtY (y)(t)) =

1/Y ′
∞(X∞(t)). This proves (9.31). �

Remark 9.16: Just as in the finite-horizon model with deterministic co-
efficients, discussed in Section 3.8, Merton’s mutual fund theorem (Remark
8.9) holds for the infinite-horizon, constant-coefficient model of Corollary
9.15.

We next compute the function G∞ of (9.15). The following lemma enables
us to establish the finiteness of this function.

Lemma 9.17: Under Assumption 9.13, we have∫ ∞

y

η−ρ2−1|U(I(η))| dη <∞ ∀y ∈ (0,∞). (9.34)
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If, in addition, Assumption 9.9 (or equivalently, relation (9.25), holds),
then ∫ y

0
η−ρ1−1|U(I(η))| dη <∞, ∀y ∈ (0,∞). (9.35)

Proof. Fix y ∈ (0,∞). From (6.31) we have for any η ∈ (0,∞) that

U(I(η)) = U(I(y))− yI(y) + ηI(η) +
∫ y

η

I(ξ) dξ. (9.36)

Therefore,∫ ∞

y

η−ρ2−1|U(I(η))| dη ≤ 1
ρ2

y−ρ2 |U(I(y))− yI(y)|

+
∫ ∞

y

η−ρ2I(η) dη +
∫ ∞

y

∫ η

y

η−ρ2−1I(ξ) dξ dη.

Fubini’s theorem implies∫ ∞

y

∫ η

y

η−ρ2−1I(ξ) dξ dη =
1
ρ2

∫ ∞

y

ξ−ρ2I(ξ) dξ

≤ 1
ρ2

I(y)
∫ ∞

y

ξ−ρ2 dξ

<∞,

because ρ2 > 1. Relation (9.34) follows.
From (9.36), we also have∫ y

0
η−ρ1−1|U(I(η))| dη ≤ − 1

ρ1
y−ρ1 |U(I(y))− yI(y)|

+
∫ y

0
η−ρ1I(η) dη +

∫ y

0

∫ y

η

η−ρ1−1I(ξ) dξ dη,

and Fubini’s theorem implies∫ y

0

∫ y

η

η−ρ1−1I(ξ) dξ dη = − 1
ρ1

∫ y

0
ξ−ρ1I(ξ) dξ.

From Assumption 9.9 in the form (9.25), we have (9.35). �

Theorem 9.18: Let Assumptions 9.9 and 9.13 hold. Then the function
G∞ of (9.15) is given by

G∞(y) =
1

γ(ρ2 − ρ1)

[
yρ1

∫ y

0
η−ρ1−1U(I(η)) dη

+ yρ2

∫ ∞

y

η−ρ2−1U(I(η)) dη

]
, 0 < y <∞, (9.37)



3.9 Consumption and Investment on an Infinite Horizon 147

is finite, twice continuously differentiable, and satisfies

1
2
‖θ‖2y2G′′

∞(y) + (β − r)yG′
∞(y)− βG∞(y) = −U(I(y)), 0 < y <∞.

(9.38)
Furthermore,

G∞(y)−G∞(z) = yX∞(y)− zX∞(z)

−
∫ y

z

X∞(λ) dλ, 0 < z < y <∞, (9.39)

G′
∞(y) = yX ′

∞(y), G′′
∞(y) = X ′

∞(y) + yX ′′
∞(y), y > 0. (9.40)

Proof. By computations similar to those in the proof of Theorem 9.14,
using again the Laplace transform formula (9.28), we have for 0 < y <∞,

G∞(y) = E

∫ ∞

0
e−βtU

(
I
(
yeβtH0(t)

))
dt

=
∫ ∞

−∞

∫ ∞

0

1√
2π

exp
{
−βt− w2

2

}
· U
(
I(y exp{−(r − β + γ)t− w

√
2γt)

)
dt dw

=
∫ ∞

−∞

1
2
√

γ
exp

{
z(r − β + γ)

2γ

}
U
(
I(ye−z)

)
·
∫ ∞

0

1√
πt

exp
{
− z2

4γt
− (r − β + γ)2 + 4γβ

4γ
t

}
dt dz

=
∫ ∞

−∞

1√
(r − β + γ)2 + 4γβ

U
(
I(ye−z)

)
· exp

{
1
2γ

[
z(r − β + γ)− |z|

√
(r − β + γ)2 + 4γβ

]}
dz

=
1

γ(ρ2 − ρ1)

[∫ ∞

0
eρ1zU

(
I(ye−z)

)
dz

+
∫ 0

−∞
eρ2zU

(
I(ye−z)

)
dz

]
,

and the change of variable η = ye−z gives us (9.37). Finiteness of G∞
follows from Lemma 9.17, and (9.38) can be verified by direct computation.
Equation (9.39) is proved in the same manner as (6.32), and from (9.39)
we obtain (9.40). �

Corollary 9.19: Under Assumptions 9.9 and 9.13, the value function
V∞(x) given by (9.16) is finite for all x ∈ (X∞(∞),∞).

Theorem 9.20 (Hamilton–Jacobi–Bellman equation): Let Assumptions
9.9 and 9.13 hold. Then the value function V∞ is twice continuously
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differentiable on (X∞(∞),∞) and satisfies the Hamilton–Jacobi–Bellman
equation of dynamic programming,

−βV∞(x) + max
0≤c<∞
π∈RN

[
1
2
‖σ′π‖2V ′′

∞(x) + (rx− c + π′σθ)V ′
∞(x) + U(c)

]
= 0,

x > X∞(∞).

(9.41)

Proof. Equations (9.16), (9.29), and (9.40) imply

V ′
∞(x) = Y∞(x), V ′′

∞(x) = Y ′
∞(x), x > X∞(∞).

We may thus rewrite the left-hand side of (9.41) as

− βG∞(Y∞(x)) + rxY∞(x) + max
0≤c<∞

[U(c)− cY∞(x)]

+ max
π∈RN

[
1
2
‖σ′π‖2Y ′

∞(x) + π′σθY∞(x)
]

.

The maximizing values of c and π are given by (9.30) and (9.31), respec-
tively. Substituting these values into (9.41) and setting y = Y∞(x), so
x = X∞(y), we obtain

−βG∞(y) + ryX∞(y) + U(I(y))− yI(y)− 1
2
‖θ‖2y2X ′

∞(y).

Using (9.38) and (9.40), we reduce this expression to

− 1
2
‖θ‖2y2G′′

∞(y)− (β − r)yG′
∞(y) + ryX∞(y)− yI(y)− 1

2
‖θ‖2y2X ′

∞(y)

= −y

[
1
2
‖θ‖2y2X ′′

∞(y) +
(
‖θ‖2 − r + β

)
yX ′

∞(y)− rX∞(y) + I(y)
]

,

which is zero because of (9.27). �

Theorem 9.21: Let Assumptions 9.9 and 9.13 hold. Then

Ṽ∞(y) =
1

γ(ρ2 − ρ1)

[
yρ1

∫ y

0
η−ρ1−1Ũ(η) dη + yρ2

∫ ∞

y

η−ρ2−1Ũ(η) dη

]
,

0 < y <∞,

(9.42)

is finite, twice continuously differentiable, and

1
2
‖θ‖2y2Ṽ ′′

∞(y)+ (β− r)yṼ ′
∞(y)−βṼ∞(y) = −Ũ(y), 0 < y <∞. (9.43)

Proof. According to Theorems 9.12, 9.14, and 9.18,

Ṽ∞(y) = G∞(y)− yX∞(y)
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=
1

γ(ρ2 − ρ1)

[
yρ1

∫ y

0
η−ρ1−1 (U(I(η))− ηI(η)) dη

+yρ2

∫ ∞

y

η−ρ2−1 (U(I(η))− ηI(η)) dη

]
, 0 < y <∞.

Equation (9.42) follows from (4.11). Equation (9.43) can be proved by direct
computation. �

Example 9.22: For p < 1, p �= 0, take U(c) = U (p)(c− c), given by (4.4),
where c ≥ 0 is constant. Then

I(y) = y1/(p−1) + c, U(I(y)) =
1
p
yp/(p−1), Ũ(y) =

1− p

p
yp/(p−1) − cy,

for all y > 0. Let

δ
∆= β − rp− γp

1− p
.

Then (9.25) is equivalent to δ > 0, which is certainly the case if p < 0, but
can fail to be if 0 < p < 1. Under the assumption δ > 0, we have

X∞(y) =
1− p

δ
y1/(p−1) +

c

r
, y > 0,

Y∞(x) =
[

δ

1− p

(
x− c

r

)]p−1

, x >
c

r
,

G∞(y) =
1− p

δp
yp/(p−1), y > 0,

V∞(x) =
1
p

(
1− p

δ

)1−p(
x− c

r

)p

, x >
c

r
,

Ṽ∞(y) =
(1− p)2

δp
yp/(p−1) − cy

r
, y > 0.

The optimal consumption and portfolio processes in feedback form are

C(x) =
δ

1− p

(
x− c

r

)
+ c, Π(x) =

1
1− p

(σ′)−1θ

(
x− c

r

)
, x ≥ c

r
.

The optimal wealth process, given by (9.32), is

X∞(t) =
(

x− c

r

)
exp

{
1

1− p
(r − β + γ)t +

1
1− p

θ′W (t)
}

+
c

r
, t ≥ 0.

Remark 9.23: For 0 < p < 1 and U(c) = U (p)(c − c), where c ≥ 0 is
constant, condition (9.25), or equivalently, the inequality

δ(β) ∆= β − rp− γp

1− p
> 0,

is not only sufficient but also necessary for the value function V∞(x) to be
finite for x > c/r. We see this by varying the discount factor β > 0. Let us
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write V β
∞ rather than V∞ to indicate explicitly the dependence of the value

function on β. Because e−βtU(c) is decreasing in β, the value function V β
∞

must also be decreasing in β. For β > β0
∆= rp + (γp/(1 − p)), Example

9.22 shows that

V β
∞(x) =

1
p

(
1− p

δ(β)

)1−p(
x− c

r

)p

, x >
c

r
.

Consequently,

lim
β↓β0

V β
∞(x) =∞, x >

c

r
,

which implies V β
∞(x) =∞ for all x > c/r and β ≤ β0.

Example 9.24: Take U(c) = U (0)(c − c), given by (4.5), where c ≥ 0 is
constant. Then

I(y) =
1
y

+ c, U(I(y)) = − log y, Ũ(y) = − log y − cy − 1, y > 0.

Condition (9.25) holds, and we have

X∞(y) =
1
βy

+
c

r
, y > 0,

Y∞(x) =
1
β

(
x− c

r

)−1

, x >
c

r
,

G∞(y) = − 1
β

log y +
r − β + γ

β2 , y > 0,

V∞(x) =
1
β

log β

(
x− c

r

)
+

r − β + γ

β2 , x >
c

r
,

Ṽ∞(y) = − 1
β

log y − cy

r
+

r − 2β + γ

β2 , y > 0.

The optimal consumption and portfolio processes in feedback form are

C(x) = β

(
x− c

r

)
+ c, Π(x) = (σ′)−1θ

(
x− c

r

)
, x ≥ c

r
.

The optimal wealth process, given by (9.32), is

X∞(t) =
(

x− c

r

)
exp{(r − β + γ)t + θ′W (t)} +

c

r
, t ≥ 0.

3.10 Maximization of the Growth Rate of Wealth

Let us consider as a special case of Problem 5.3 the maximization of
E log (Xx,c,π(T )) over consumption/portfolio process pairs (c, π). Since
there is no utility from consumption, we may, without loss of generality,
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restrict attention to pairs (c, π) for which c(·) ≡ 0 (see Theorem 7.6(i)).
Example 7.9 with x set equal to zero shows that for any initial endowment
x > 0, the optimal wealth process X2(·) and the optimal portfolio process
π2(·) are given by

X2(t) = x/H0(t), (10.1)

π2(t) = (σ(t)σ′(t))−1 (b(t) + δ(t)− r(t)1
˜
) X2(t). (10.2)

Note that the expressions (10.1), (10.2) do not depend on the terminal
time T . This is a very special property of the logarithmic utility function;
we shall exploit it below to show that the portfolio process π2(·) of (10.2)
solves the problem of maximization of the growth rate of wealth over the
infinite horizon [0,∞).

We use the complete, standard financial market on an infinite horizon,
as set forth in Section 1.7. Let x > 0 be given. Recall from Definition 9.2
that a consumption/portfolio process pair (c, π) is said to be admissible at
x if the corresponding wealth process is almost surely nonnegative at all
times; the set of all such processes is denoted by A(x). Since we shall only
be considering c(·) ≡ 0, we shall simplify the notation by writing π ∈ A(x)
rather than (0, π) ∈ A(x) and Xx,π(·) rather than Xx,0,π(·). Within the
class A(x) of portfolio processes, there is the smaller class of portfolios
π(·) for which E min{0, log Xx,π(T )} > −∞ for all T ∈ [0,∞), and we
shall denote by A2,∞(x) this collection. For π ∈ A2,∞(x), the expectation
E log Xx,π(T ) is well-defined for all T ∈ [0,∞). Since

log Xx,π2(T ) = log x + A(T ) +
∫ T

0

[
r(s) +

1
2
‖θ(s)‖2

]
ds

+
∫ T

0
θ′(s) dW (s), (10.3)

a sufficient condition for π2(·) to be in A2,∞(x) is that both
∀T ∈ [0,∞) there exists a nonrandom constant κT > −∞

such that A(T ) +
∫ T

0

[
r(s) +

1
2
‖θ(s)‖2

]
ds > −κT a.s.

 , (10.4)

E

∫ T

0
‖θ(s)‖2 ds <∞, ∀ T ∈ [0,∞) (10.5)

hold. Condition (10.4) implies for each fixed T that S0(T ) is bounded away
from zero, which implies in turn that Assumption 2.2 holds.

When (10.4), (10.5) hold, it is straightforward to verify that π2(·) of
(10.2) maximizes the expected growth rate of wealth

lim sup
T→∞

1
T

E log Xx,π(T )
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over all π ∈ A2,∞(x). Indeed, from the first paragraph of this section we
know that E log Xx,π(T ) ≤ E log Xx,π2(T ) for all π ∈ A2,∞(x) for each
fixed T ∈ [0,∞), whence

lim sup
T→∞

1
T

E log Xx,π(T ) ≤ lim sup
T→∞

1
T

E log Xx,π2(T )

= lim sup
T→∞

1
T

E

{
A(T )

+
∫ T

0

[
r(s) +

1
2
‖θ(s)‖2

]
ds

}
.

The following theorem shows that π2(·) is also optimal in the almost sure
sense for this long-term growth problem. Because this is not a statement
about expectations, it is not necessary to assume (10.4), (10.5), and we can
show that π2(·) is optimal in the class A(x) rather than the smaller class
A2,∞(x).

Theorem 10.1: Let x > 0 be given. For any portfolio process π ∈ A(x),
we have almost surely

lim sup
T→∞

1
T

log Xx,π(T ) ≤ lim sup
T→∞

1
T

log Xx,π2(T ). (10.6)

In other words, for P -almost every ω ∈ Ω, the portfolio process π2(·)
maximizes the actual rate of growth lim supT→∞

1
T log Xx,π(T, ω) of wealth

from investment over all admissible portfolios π(·).

Proof. For any π ∈ A(x), the ratio

R(t) ∆= Xx,π(t)/Xx,π2(t) =
1
x

H0(t)Xx,π(t)

satisfies (cf. Remark 3.3)

dR(t) =
1
x

H0(t)[σ′(t)π(t) −Xx,π(t)θ(t)]′ dW (t)

and is, therefore, a nonnegative local martingale and supermartingale. As
such, R(·) satisfies the inequality

eδnP

{
sup

n≤t<∞
R(t) > eδn

}
≤ ER(n) ≤ R(0) = 1, ∀n ∈ N, 0 < δ < 1

(cf. Karatzas and Shreve (1991), Problem 1.3.16 and Theorem 1.3.8(ii)).
Fix δ ∈ (0, 1). Then

∞∑
n=1

P

{
sup

n≤t<∞
log R(t) > δn

}
≤

∞∑
n=1

e−δn <∞,
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and the Borel–Cantelli lemma implies the existence of an integer-valued
random variable Nδ such that

log R(t, ω) ≤ δn ≤ δt ∀n ≥ Nδ(ω) ∀t ≥ n

for P -almost every ω ∈ Ω. In particular, for all such ω, we have

sup
t≥n

1
t

log R(t, ω) ≤ δ ∀n ≥ Nδ(ω),

hence

lim sup
t→∞

1
t

log Xx,π(t, ω) ≤ lim sup
t→∞

1
t

log Xx,π2(t, ω) + δ,

and inequality (10.6) follows from the arbitrariness of δ ∈ (0, 1). �

Corollary 10.2: Assume that the processes r(·) and θ(·) are constants r
and θ, and that the process A(·) is identically zero. Then the optimal rate
of growth for the wealth process, given by the right-hand side of (10.6), is
r + 1

2‖θ‖2.

Proof. Use (10.3) and the observation that limT→∞
1
T θ′W (T ) = 0

almost surely. �

3.11 Notes

The modern mathematical theory of finance begins with Markowitz (1952,
1959), who conceived the idea of trading off the mean return of a portfolio
against its variance. In a one-step, discrete-time model, one can buy an
initial portfolio of stocks, and the value of this portfolio after one step is a
random variable. Dividing the difference between this random variable and
the initial value of the portfolio by the initial value of the portfolio, one
obtains the (random) return associated with the portfolio. A given portfolio
is said to be efficient if every portfolio that has mean return greater than
that of the given portfolio also has a greater variance of return. Markowitz
argues that one should hold only efficient portfolios. Tobin (1958) extends
the portfolios of risky assets considered by Markowitz, to include linear
combinations of these portfolios with a risk-free asset. There is then a dis-
tinguished portfolio of risky assets, called the market portfolio, such that
any other portfolio can be dominated in the mean–variance sense by a lin-
ear combination of the market portfolio and the risk-free asset. This result
is often called a separation theorem, because the problem of optimal invest-
ment separates into the two problems of (1) finding the market portfolio
and (2) determining the optimal allocation between the market portfolio
and the risk-free asset.

There may be several ways to construct the market portfolio from the
risky assets, but regardless of the particular assets that are used to build
the market portfolio, the mean and variance of its return are uniquely de-
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termined. Furthermore, the covariance of the return between any other
risky asset and the market portfolio (the so-called β of that asset, when
normalized by the variance of the market portfolio) is also uniquely de-
termined. This leads to the capital asset pricing model of Sharpe (1964),
Lintner (1965), Mossin (1966). According to this model, every risky asset
must have a mean return that exceeds the risk-free return by a certain risk
premium, which can be computed from that asset’s β. If an asset had a
risk premium higher than this computed value, the definition of market
portfolio would be contradicted. If an asset had risk premium lower than
predicted, it could not be part of any market portfolio and would therefore
not be demanded; this would cause its current price to fall, which would
increase its return, bringing its risk premium into line with the capital asset
pricing formula.

The Sharpe–Lintner–Mossin capital asset pricing model is static: in-
vestments are made once, and then a return is realized. The assumption
underlying the model is that the vector of returns on risky assets has a
multivariate normal distribution, or else all agents have quadratic utility
functions. (However, Ross (1976) provides a derivation of the capital asset
pricing model from arbitrage rather than utility theory.) It is not surpris-
ing, therefore, that the risk premia computed from the model have been
found not to conform well to real data; see, e.g., Jensen (1972).

In an attempt to consider more realistic, dynamic models, Mossin (1968)
and Samuelson (1969) apply dynamic programming to solve multiperiod
problems of portfolio management. Hakansson (1970) obtains a separation
theorem in this context. However, the set of utility functions and asset
price models for which the discrete-time backward recursion of dynamic
programming can be executed analytically is rather limited. An early work
on optimal consumption in continuous time is Mirrlees (1974), which ac-
tually dates from 1965. This paper presents a heuristic argument that the
marginal utility of consumption should equal the marginal value of wealth
along an optimal trajectory (cf. (8.23), (8.41)).

In two landmark papers, Merton (1969, 1971) introduces Itô calculus and
the methods of continuous-time stochastic optimal control to the problem
of capital asset pricing. (We refer the reader to Merton (1990) for a com-
pilation of Merton’s papers and for essays that place them in context.)
By assuming a model with constant coefficients and solving the relevant
Hamilton–Jacobi–Bellman equation, Merton (1969) produces solutions to
both the finite- and infinite-horizon models when the utility function is a
power function (Examples 8.13, 9.22), the logarithm (Examples 8.14, 9.24),
or of the form 1−e−ηx for some positive constant η. The mutual fund theo-
rem (Remarks 8.9, 9.16), a separation theorem described above, appears in
Merton (1971). It is often called the two-fund theorem, because the investor
is content to have his only investment opportunities be Merton’s mutual
fund and the money market. Merton (1973b) introduces a Markov stochas-
tic interest rate and a three-fund theorem, according to which the investor



3.11 Notes 155

requires a second mutual fund to hedge against fluctuations in the interest
rate. Richard (1979) generalizes this result to a market with an underlying
N -dimensional Markov state and obtains an (N + 2)-fund theorem. Sethi
and Taksar (1988) resolve some boundary issues in Merton’s model, and
Merton (1989) returns to this topic. Richard (1975) introduces a random
time horizon to Merton’s model. Khanna and Kulldorff (1998) obtain the
two-fund theorem under very weak assumptions.

The original analysis of Merton’s model was wedded to the Hamilton–
Jacobi–Bellman equation and its requirement of an underlying Markov
state process. In a non-Markov model of optimal consumption without
portfolio control, Foldes (1978a,b) proves the existence of an optimal con-
sumption process and shows that the marginal utility of consumption is, up
to a discount factor, a martingale (our Z0(·) of (2.5)). In the continuous-
time model for both consumption and portfolio selection, Bismut (1975)
obtains the key formula (6.5) for optimal consumption using his stochastic
duality theory (Bismut (1973)) rather than relying on the Hamilton–
Jacobi–Bellman equation. With the appearance of the papers by Harrison
and Kreps (1979) and Harrison and Pliska (1981, 1983), which provide a
martingale characterization of the set of terminal wealths that can be at-
tained by investment in a complete market, it became possible to solve
the optimal control problem of maximizing the expected utility of termi-
nal wealth (by appropriate choice of portfolio) without the assumption of
Markov asset prices. This was accomplished by Pliska (1986). The appli-
cation of the Harrison–Kreps–Pliska martingale methodology to reproduce
the Bismut (1973) formula for optimal consumption was worked out inde-
pendently in Cox and Huang (1989, 1991) and Karatzas, Lehoczky, and
Shreve (1987); both these papers show how to decompose the nonlinear
Hamilton–Jacobi–Bellman equation into linear partial differential equa-
tions. The presentation in this chapter follows the latter reference, with the
addition of Bismut’s stochastic duality theory. The fact that the dual value
function satisfies a linear partial differential equation was discovered by
Xu (1990). Connections with the stochastic maximum principle appear in
Back and Pliska (1987), Cadenillas (1992), Cadenillas and Karatzas (1995).
See Brock and Magill (1979) for another application of Bismut’s stochastic
duality theory to economics. Kramkov and Schachermayer (1998) provide
a necessary and sufficient condition on the utility function U2 for V2 to be
a utility function and for an optimal portfolio process to exist; this would
replace our Assumption 7.2.

The further extension of the martingale methodology to the infinite-
horizon problem (Section 3.9) appears in Huang and Pagès (1992). The
constant-coefficient computations for the infinite-horizon model are due
to Karatzas, Lehoczky, Sethi, and Shreve (1986). Foldes (1990, 1991a,b,
1992), Jacka (1984), and Lakner and Slud (1991) treat the infinite-horizon
problem with discontinuous asset price processes.
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Example 7.9 (portfolio insurance) is inspired by the work of Başak
(1993, 1995, 1996a). Some other papers addressing portfolio insurance are
Black and Perold (1992), Brennan and Schwartz (1988, 1989), Cvitanić and
Karatzas (1995), Grossman and Zhou (1993, 1996), Korn and Trautmann
(1995).

Maximization of the growth rate of a portfolio (Section 3.10) goes back
to Breiman (1961). Hakansson (1970) contains a discrete-time version of
the results we present here; see also Thorp (1971). We take the results of
Section 3.10 from Karatzas (1989). Aase and Øksendal (1988) extend these
results to allow stock prices to jump. Taksar, Klass, and Assaf (1988) and
Pliska and Selby (1994) address this problem in the presence of transaction
costs. Algoet and Cover (1988) and Cover (1984, 1991) provide algorithms
for maximizing of the growth rate of a portfolio in a very general discrete-
time model. Jamshidian (1991) examines the behavior of this algorithm in
a continuous-time model. Because it leads to maximization of the growth
rate, the logarithmic utility would seem a natural choice for money man-
agers. To temper the enthusiasm for this criterion, Merton and Samuelson
(1974) point out that maximization of the growth rate does not necessarily
maximize even approximately the expectation of a nonlogarithmic utility
at any finite time, and Samuelson (1979) argues in words of literally one
syllable that maximization of nonlogarithmic utility at a finite time is the
more desirable goal. Kulldorff (1993) and Heath (1993) solve the related
problem of maximizing the probability of reaching a goal by a fixed time.

In a continuous-time capital asset pricing model with an underlying
N -dimensional Markov state process, the risk premia of assets can be com-
puted theoretically from their covariances with a set of N +1 mutual funds.
Breeden (1979) shows that rather than using the set of all covariances,
one can in principle compute risk premia from the covariance of assets
with the consumption process of an optimally behaving investor. Like the
simple mean–variance capital asset pricing model, this consumption-based
capital asset pricing model does not conform well to actual data. In par-
ticular, individuals’ consumption patterns are smoother than predicted by
the model; see Cornell (1981), Hansen and Singleton (1982, 1983), Mehra
and Prescott (1985), Dunn and Singleton (1986), Singleton (1987). To ad-
dress this so-called equity premium puzzle, several generalizations of the
basic time-additive utility function maximization (considered in this chap-
ter) have been proposed. One of these, which models habit formation of
consumers, constructs a utility function that at each time depends on the
current level of consumption and on an average of previous levels of con-
sumption; see, e.g., Alvarez (1994), Constantinides (1990), Detemple and
Zapatero (1991, 1992), Dybvig (1993), Hindy and Huang (1989, 1992, 1993),
Hindy, Huang, and Kreps (1992), Hindy, Huang, and Zhu (1993), Sundare-
san (1989), Uzawa (1968). A more radical approach is the construction of
recursive utility, to disentangle agents’ aversion to risk from their feelings
about smoothness of consumption over time, an idea due to Kreps and
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Porteus (1978). Some papers related to recursive utility in the context of
dynamic optimal consumption and investment are Bergman (1985), Chew
and Epstein (1991), Duffie and Epstein (1992a,b), Duffie and Lions (1990),
Duffie and Skiadas (1994), Epstein and Zin (1989), Kan (1991), Ma (1991),
El Karoui, Peng and Quenez (1997), Schroder and Skiadas (1997); see also
the survey by Epstein (1990). Another way to account for the smoothness
of observed consumption is the assumption of transaction costs for changes
in level of consumption; see Grossman and Laroque (1990), Heston (1990),
Cuoco and Liu (1997). He and Huang (1991, 1994) provide conditions on
a consumption/portfolio policy that guarantee that it is optimal for some
time-additive utility function; see also Lazrak (1996).

The value function in problems of optimal consumption and invest-
ment is quite sensitive to the introduction of transaction costs; see Dumas
and Luciano (1989), Fleming, Grossman, Vila, and Zariphopoulou (1990),
Shreve and Soner (1994). The notes to Chapter 2 survey the literature
on utility-based models for option pricing in the presence of transaction
costs. Some papers dealing with the problem of an investor who seeks
to maximize expected utility of wealth and/or consumption and incurs
transaction costs for changes in portfolio are Akian, Menaldi, and Sulem
(1996), Cadenillas and Pliska (1997), Constantinides (1979, 1986), Davis
and Norman (1990), Magill (1976), Magill and Constantinides (1976), Cvi-
tanić and Karatzas (1996), Korn (1998), Morton and Pliska (1995), Shreve,
Soner, and Xu (1991), Shreve and Soner (1994), Weerasinghe (1996),
Zariphopoulou (1992). When transaction costs or other market frictions
(e.g., borrowing constraints, different rates for borrowing and lending) are
introduced, one can study the optimal consumption and investment prob-
lem by probabilistic techniques (e.g., Xu (1990), Shreve and Xu (1992),
Cvitanić and Karatzas (1992, 1993, 1996), Jouini and Kallal (1995a,b),
Karatzas and Kou (1996)) or, in a Markovian framework, by a viscosity
solution analysis of the corresponding Hamilton–Jacobi–Bellman equation
(see, in addition to the several papers already mentioned, Duffie, Fleming,
Soner and Zariphopoulou (1997), Fitzpatrick and Fleming (1991), Fleming
and Zariphopoulou (1991), Vila and Zariphopoulou (1991), Zariphopoulou
(1989)). Cuoco and Cvitanić (1998) consider optimal consumption for an in-
vestor whose actions affect the market. Other work on optimal consumption
and/or investment in incomplete markets is cited in the notes to Chapter 6.

Extension of the optimal consumption/investment model to allow for
several consumption goods can be found in Breeden (1979), Madan (1988),
Lakner (1989) and the references therein. Ocone and Karatzas (1991) use
ideas from the Malliavin calculus to compute optimal portfolios. Pikovsky
and Karatzas (1996) use enlargement of filtration techniques to study a ver-
sion of the consumption/investment problem in which the investor has some
“inside” information about the behavior of future prices; see also Elliott,
Geman, and Korkie (1997), Amendinger, Imkeller, and Schweizer (1997),
and Pikovsky (1998), as well as Kyle (1985), Duffie and Huang (1986), and
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Back (1992, 1993) for earlier work in a similar vein. Kuwana (1993, 1995)
and Lakner (1995) consider the mixed control/filtering problem, in which
the investor must estimate the mean rate of return of the assets; see also
Karatzas (1997), Karatzas and Zhao (1998). Richardson (1989), Duffie and
Richardson (1991), and Schweizer (1992b) find minimal-variance portfolios
that achieve desired expected returns. Xu (1989) constructs a simple ex-
ample in which the optimal portfolio does not invest in the risky asset,
even when its mean rate of return dominates the risk-free rate. The opti-
mal consumption/investment model with an allowance for bankruptcy has
been considered by Lehoczky, Sethi, and Shreve (1983, 1985), Presman and
Sethi (1991, 1996), Sethi and Taksar (1992), Sethi, Taksar and Presman
(1992). Several related papers are collected in Sethi (1997).

Adler and Dumas (1983) provide a survey of the application of the
continuous-time capital asset pricing model to international finance. For
general theory on stochastic control problems, the reader can consult the
books by Fleming and Rishel (1975), Bertsekas and Shreve (1978), Elliott
(1982), Chapter 12, Fleming and Soner (1993), as well as the lecture notes
by El Karoui (1981).



4
Equilibrium in a Complete Market

4.1 Introduction

In the context of continuous-time financial markets, the equilibrium problem
is to build a model in which security prices are determined by the law
of supply and demand. The primitives in this model are the endowment
processes and the utility functions of a finite number of agents. We shall
assume in this chapter that all agents are endowed in units of the same
perishable commodity, which arrives at some time-varying random rate.
Agents may consume their endowment as it arrives, they may sell some
portion of it to other agents, or they may buy extra endowment from other
agents. The endowment, however, cannot be stored, and agents will wish
to hedge the variability in their endowment processes by trading with one
another. To facilitate the trading of endowment, there is a financial market
consisting of a money market and of several stocks, in which agents may
invest (positively or negatively).

Each agent takes the security prices as given, observed stochastic pro-
cesses, and maximizes his expected utility from consumption over the finite
time horizon of the model, subject to the condition that his wealth at the
final time must be nonnegative almost surely. This problem differs from
Problem 5.2 of Chapter 3 only because the agent receives his endowment
over time rather than initially, but in the context of a complete financial
market this difference is inconsequential. The goal is to choose the prices
of the money market and of the stocks so that when each agent solves his
optimal consumption and investment problem, at all times the aggregate
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endowment is consumed as it enters the economy and all securities are in
zero net supply. The first condition codifies the concept of a “perishable”
commodity; the second reflects the fact that for every buyer of a security,
there must be a seller.

In the model of this chapter all securities will be denominated in units
of the single perishable commodity. When the marginal utility functions of
all the individual agents are infinite at their individual “subsistence lev-
els” (see Section 4.2), then all agents’ optimal consumption processes are
always strictly above the subsistence level; in this case the equilibrium
money market price can be described solely in terms of an interest rate,
and the equilibrium prices for all stocks are determined. However, when we
allow even one agent to have finite marginal utility at the subsistence level
of consumption, then this agent may sometimes see his equilibrium optimal
consumption fall to the subsistence level. In this case we still obtain equilib-
rium prices for the money market and stocks, but the money-market price
can no longer be described in terms of an interest rate. More specifically,
the money-market price is given by the formula

S0(t) = exp
{∫ t

0
r(u) du + A(t)

}
of (1.1.7), where A(·) is singularly continuous. Although A(·) is continuous
and has zero derivative at Lebesgue-almost-every time, A(·) decreases at
those times when an agent’s equilibrium optimal consumption either falls
to, or rises from, the subsistence level (see Remark 6.8). The stock prices
of this equilibrium market are given by (1.1.9), which also includes the
singularly continuous process A(·).

The inclusion of this singularly continuous component in the equilibrium
security prices could be avoided by denominating security prices in terms
of money rather than units of commodity (see Karatzas, Lehoczky, and
Shreve (1990)). In effect, whenever an agent’s consumption falls to, or rises
from, the subsistence level, there is a burst of inflation in which securities
become substantially less valuable in terms of commodity but not in terms
of money. It is interesting to note that both falling to and rising from
subsistence consumption leads to inflation; neither induces deflation.

The singularly continuous component in equilibrium security prices could
also be avoided by denominating security prices in terms of the money-
market price. This can be seen from (1.1.10); the process A(·) does not
appear in the stock prices discounted by the money-market price.

When denominating security prices in units of commodity, however, a
singularly continuous component in the security prices cannot be avoided.
It was for this reason that we set up the market model in Section 1.1 to
include this possibility. In this model, under the assumption (6.4) on the
indices of risk aversion for the individual agents, we obtain uniqueness of
the equilibrium allocations of the commodity, uniqueness of the equilibrium
money-market price, and uniqueness of the equilibrium stock prices up to
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the formation of mutual funds (see Theorem 6.4 and the discussion follow-
ing it). The equilibrium existence Theorem 6.3 and uniqueness Theorem
6.7 still hold when we permit agent endowments to arrive in a singularly
continuous way, i.e., so that the cumulative endowment is continuous but
is not necessarily described by a rate. For this reason we allow this added
degree of generality, and the singularly continuous process ξ(·) appearing
in the aggregate endowment equation (2.2) can contribute to the singu-
larly continuous process A(·) in the security prices. However, even without
the presence of the singularly continuous process ξ(·) in the aggregate en-
dowment process, the singularly continuous process A(·) will appear in the
security prices under the conditions discussed above.

The model of this chapter is a pure exchange economy, because there
are no securities associated with production. Only financial securities are
posited, which are in zero net supply. One could, however, use the equilib-
rium model to price the right to receive future endowments, and thereby
have “productive assets” that are held in positive net supply (see Re-
mark 6.6). The more challenging task of including production that can
be enhanced by forgoing current consumption is not addressed here.

We conclude with a section-by-section summary of the chapter. Section 2
describes the exogenous processes and Section 3 describes the endogenous
ones. Section 4 modifies the analysis of Chapter 3 to solve the optimal
consumption and investment problem for an agent who receives an endow-
ment process and acts as price-taker. Equilibrium is defined in Section 5,
as is the concept of a single “representative agent” (really a utility func-
tion) who aggregates with appropriate weights the individual agents (really
their utility functions). Equilibrium is characterized in terms of the rep-
resentative agent’s utility function via Corollary 5.4 and Theorem 5.6.
This reduces the question of existence and uniqueness of equilibrium to
the finite-dimensional problem of determining the appropriate weights
in the construction of the representative agent’s utility function. Theo-
rem 6.1 establishes the existence of these weights and describes the extent
to which they are uniquely determined. The remainder of Section 6 works
out the ramifications of Theorem 6.1 for the existence and uniqueness of
equilibrium. One of these is the consumption-based capital asset pricing
model (CCAPM) (Remark 6.7). Section 7 contains examples in which the
equilibrium consumption allocations and security prices can be exhibited
explicitly.

4.2 Agents, Endowments, and Utility Functions

We consider an economy consisting of a finite number K of agents, each of
whom is continuously endowed in units of a single perishable commodity.
The exogenous endowment processes {εk(t); 0 ≤ t ≤ T}, k = 1, . . . ,K, of
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these agents are assumed to be nonnegative and progressively measurable
with respect to the filtration {F(t)}0≤t≤T of Section 1.1, the augmentation
by P -null sets of the filtration generated by the N -dimensional Brownian
motion W (·) on the interval [0, T ]. The aggregate endowment

ε(t)
�
=

K∑
k=1

εk(t), 0 ≤ t ≤ T, (2.1)

is assumed to be a continuous, positive, bounded semimartingale:

ε(t) = ε(0) +
∫ t

0
ε(s)ν(s) ds +

∫ t

0
ε(s) dξ(s) +

∫ t

0
ε(s)ρ′(s) dW (s),

0 ≤ t ≤ T.

(2.2)

Here ξ(·) is an {F(t)}0≤t≤T - progressively measurable process with paths
that are continuous and of finite variation on [0, T ], but that are singular
with respect to Lebesgue measure (see Proposition B.1 in Appendix B).
We take ξ(0) = 0 and assume that the total variation of ξ(·) on [0, T ] is
almost surely bounded. The processes ν(·) and ρ(·) are {F(t)}-progressively
measurable and bounded; they take values in R and RN , respectively.

In addition to his endowment, each agent k has a utility function Uk :
R → [−∞,∞) as described in Definition 3.4.1. We denote the subsistence
consumption for agent k by

c̄k
�
= inf{c ∈ R;Uk(c) > −∞} (2.3)

(cf. (3.4.2)), and define aggregate subsistence consumption as

c̄
�
=

K∑
k=1

c̄k. (2.4)

Recall that c̄k ≥ 0 for k = 1, . . . ,K.
Finally, the agents have a common discount rate β : [0, T ]→ R, which is

a nonrandom Lebesgue-integrable function, bounded from below. Agent k
will attempt to maximize his expected discounted utility from consumption

E

∫ T

0
e

−
∫ t

0
β(u) du

Uk(ck(t)) dt

over the time horizon [0, T ], where ck(·) is his consumption process.
This maximization is very similar to Problem 3.5.2 with utility function

e
−
∫ t

0
β(u) du

Uk(c), a function of both t ∈ [0, T ] and c ∈ R.
The endowment processes {εk(·)}Kk=1, the utility functions {Uk(·)}Kk=1,

and the discount rate β(·) are the primitives of our equilibrium model.
Starting with these primitives, we shall construct an equilibrium market. It
is also possible to carry out this construction when each agent k has his own
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discount rate βk(·), or, even more generally, when Uk is a function of both
time and consumption. However, this more general construction involves
a more complicated version of Itô’s formula than the one we employ in
Section 6. For this reason, we have restricted our attention to the situation
presented above.

In order to construct an equilibrium market, we impose throughout the
following conditions on the primitives.

Condition 2.1:

(i) For each k = 1, . . . ,K, the function Uk(·) is of class C3 on (c̄k,∞),
satisfies U ′′

k (c) < 0 for all c > c̄k, and the quantity

lim
c↓c̄k

U ′′′
k (c)

(U ′′
k (c))2

(2.5)

exists and is finite.
(ii) For each k = 1, . . . ,K, we have

εk(t) ≥ c̄k, 0 ≤ t ≤ T, (2.6)

almost surely.
(iii) There exist constants 0 < γ1 < γ2 <∞ such that

c̄ + γ1 ≤ ε(t) ≤ γ2, 0 ≤ t ≤ T, (2.7)

almost surely.

Remark 2.2: We note that

1
U ′′

k (c)
=

1
U ′′

k (c̄k + 1)
−
∫ c

c̄k+1

U ′′′
k (η)

(U ′′
k (η))2

dη, c > c̄k,

and so the existence of the limit (2.5) implies that limc↓c̄k

1
U ′′

k
(c) also exists

and is finite.

4.3 The Financial Market: Consumption and
Portfolio Processes

To give structure to the search for an equilibrium market, we set out in
this section a description of the object of our search. We seek to construct
a complete, standard financial marketM as in Definitions 1.5.1, 1.6.1, but
without dividends. More specifically, we seek a money market price process
S0(·) with S0(0) = 1 and

dS0(t) = S0(t)[r(t) dt + dA(t)], (3.1)
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as well as N stock price processes S1(·), . . . , SN (·), with Sn(0) a positive
constant for each n, and

dSn(t) = Sn(t)

bn(t) dt + dA(t) +
D∑

j=1

σnj(t) dW (j)(t)

 , n = 1, . . . , N.

(3.2)

In order to guarantee completeness, the volatility matrix σ(t) =
{σnj(t)}1≤n,j≤N must be nonsingular for Lebesgue-almost-every t ∈ [0, T ]
almost surely (Theorem 1.6.6).

After we have constructed an equilibrium market as described above, we
can define the market price of risk

θ(t) = σ−1(t)[b(t)− r(t)1
˜
] (3.3)

(see (1.6.16)), and then the processes Z0(·) of (1.5.2), W0(·) of (1.5.6), and
the standard martingale measure P0 of (1.5.3). Finally, we can define the
state price density process

H0(t)
�
=

Z0(t)
S0(t)

, 0 ≤ t ≤ T, (3.4)

of (1.5.12). To aid in the subsequent analysis, we shall require that our
equilibrium market satisfy the following condition. Unlike Condition 2.1,
which concerns the primitives of the economy and is assumed through-
out this chapter, Condition 3.1 below must be verified after the candidate
equilibrium market has been constructed.

Condition 3.1:

(i) We have

E0

[
max

0≤t≤T

(
1

S0(t)

)]
<∞.

(ii) There exist constants 0 < δ0 < ∆0 < ∞ such that we have almost
surely

δ0 ≤ H0(t) ≤ ∆0, 0 ≤ t ≤ T.

Once an equilibrium market has been constructed, each agent k can
choose a consumption process ck : [0, T ]×Ω→ [0,∞) and a portfolio process
πk : [0, T ] × Ω → RN . These are both {F(t)}-progressively measurable;
πk(·) satisfies (1.2.5), (1.2.6); and ck(·) satisfies

∫ T

0 ck(t) dt < ∞ almost
surely. The structure of Uk implies that agent k will be interested only in
consumption processes ck(·) satisfying the additional condition

ck(t) ≥ c̄k, 0 ≤ t ≤ T, (3.5)

almost surely. The wealth process Xk(·) = Xπk,ck

k (·) as in (1.5.8), corre-
sponding to the portfolio π(·) and the cumulative income process Γk(t)

�
=
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0 (εk(s)− ck(s)) ds, is given by

Xk(t)
S0(t)

=
∫ t

0

εk(u)− ck(u)
S0(u)

du +
∫ t

0

1
S0(u)

π′
k(u)σ(u) dW0(u), 0 ≤ t ≤ T.

(3.6)
We take Xk(0) = 0.

Remark 3.2: The wealth equation (3.6) can be written in the equivalent
form

H0(t)Xk(t) +
∫ t

0
H0(s)(ck(s)− εk(s)) ds =

∫ t

0
H0(s)[σ(s)πk(s)

−Xk(s)θ′(s)]′ dW (s) (3.7)

by analogy with (3.3.3), as is seen if one applies Itô’s formula to the product
of the processes Xk(·)/S0(·) and Z0(·) in (3.6) and (1.5.5), respectively.

Definition 3.3: A consumption/portfolio process pair (ck, πk) is admis-
sible for the kth agent if the corresponding wealth process Xk(·) of (3.6)
satisfies

Xk(t)
S0(t)

+ E0

[∫ T

t

εk(u)
S0(u)

du
∣∣∣ F(t)

]
≥ 0, 0 ≤ t ≤ T, (3.8)

almost surely. The class of admissible pairs (ck, πk) is denoted by Ak.

Remark 3.4: The admissibility condition says that at each time t, the
present wealth Xk(t) (which may be negative) plus the current value S0(t) ·
E0[
∫ T

t
εk(u)
S0(u) du|F(t)] of future endowment (cf. Proposition 2.2.3) must be

nonnegative. This condition is equivalent to

H0(t)Xk(t) + E

[∫ T

t

H0(u)εk(u) du
∣∣∣ F(t)

]
≥ 0, 0 ≤ t ≤ T, (3.9)

almost surely, as can be seen from “Bayes’s rule” in Chapter 3, Lemma 5.3
of Karatzas and Shreve (1991).

Remark 3.5: Condition 3.1(i) guarantees that for every given (ck, πk) ∈
Ak, the local P0-martingale

Mπk(t) �=
∫ t

0

1
S0(u)

π′
k(u)σ(u) dW0(u), 0 ≤ t ≤ T, (3.10)

is also a P0-supermartingale. To see this, use Condition 2.1(iii) and (3.6),
(3.8) to write

Mπk(t) ≥ Xk(t)
S0(t)

−
∫ t

0

εk(u)
S0(u)

du

≥ −E0

[∫ T

0

εk(u)
S0(u)

du
∣∣∣ F(t)

]
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≥ −γ2T · E0

[
max

0≤u≤T

(
1

S0(u)

) ∣∣∣ F(t)
]

.

Under the probability measure P0, the expression Y (t)
�
= −γ2T ·

E0[max0≤u≤T ( 1
S0(u) )|F(t)] is a martingale; being a nonnegative local

martingale, Mπk(·) − Y (·) is also a supermartingale, so Mπk(·) is a
supermartingale.

From this, (3.6), and (3.8) with t = T , it develops that ck(·) must satisfy
the budget constraint

E0

∫ T

0

ck(t)
S0(t)

dt ≤ E0

∫ T

0

εk(t)
S0(t)

dt, (3.11)

or equivalently,

E

∫ T

0
H0(t)ck(t) dt ≤ E

∫ T

0
H0(t)εk(t) dt. (3.12)

In any market satisfying Condition 3.1(i), and for any consumption pro-
cess ck(·) such that (ck, πk) ∈ Ak for some portfolio process πk(·), the
value of an agent’s consumption cannot exceed the value of his endowment,
where value is determined using the state price density process H0(·) for
that particular market.

We have the following counterpart to Theorem 3.3.5.

Theorem 3.6: Suppose we have constructed a complete, standard finan-
cial market satisfying Condition 3.1(i). Let ck(·) be a consumption process
in this market that satisfies (3.11) (or equivalently (3.12)) with equality,
namely

E0

∫ T

0

ck(t)
S0(t)

dt = E0

∫ T

0

εk(t)
S0(t)

dt. (3.11′)

Then there exists a portfolio process πk(·) such that (ck, πk) ∈ Ak, and the
corresponding wealth process is given by

Xk(t) =
1

H0(t)
E

[∫ T

t

H0(s)(ck(s)− εk(s)) ds
∣∣∣ F(t)

]
, 0 ≤ t ≤ T.

(3.13)

Proof. In Proposition 1.6.2, take B = S0(T ) ·
∫ T

0
ck(u)−εk(u)

S0(u) du, so that

E0

[
|B|

S0(T )

]
≤ E0

[∫ T

0

ck(u) + εk(u)
S0(u)

du

]
≤ 2E0

[∫ T

0

εk(u)
S0(u)

du

]

≤ 2γ2TE0

[
max

0≤t≤T

(
1

S0(t)

)]
<∞.
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From the assumption of market completeness, we have the existence of a
martingale-generating portfolio process πk(·) such that∫ T

0

ck(u)− εk(u)
S0(u)

du = Mπk(T ), (3.14)

where Mπk(·) is given by (3.10). Taking conditional expectations in (3.14),
we obtain

E0

[∫ T

t

ck(u)− εk(u)
S0(u)

du
∣∣∣ F(t)

]
=
∫ t

0

εk(u)− ck(u)
S0(u)

du

+
∫ t

0

1
S0(u)

π′
k(u)σ(u) dW0(u),

0 ≤ t ≤ T.

Comparison of this equation with (3.6) reveals that

Xk(t) = S0(t) · E0

[∫ T

t

ck(u)− εk(u)
S0(u)

du
∣∣∣ F(t)

]
, 0 ≤ t ≤ T (3.15)

(the initial condition Xk(0) = 0 is a consequence of (3.11′)), and (3.13)
follows from “Bayes’s rule” (cf. Karatzas and Shreve (1991), Lemma 3.5.3).
From (3.15) we see that the admissibility condition (3.8) is satisfied. �

4.4 The Individual Optimization Problems

Suppose that we have constructed a complete, standard financial mar-
ket satisfying Condition 3.1, as described in the previous section. In this
market, each agent, say the kth agent, will be faced with the following
problem.

Problem 4.1: Find an optimal pair (ĉk, π̂k) for the problem of maximizing
expected discounted utility from consumption

E

∫ T

0
e

−
∫

t

0
β(u)

Uk(ck(t)) dt

over consumption/portfolio process pairs in the set

A′
k

�
=

{
(ck, πk) ∈ Ak; E

∫ T

0
e

−
∫ t

0
β(u) du min[0, Uk(ck(t))] dt > −∞

}
.

(4.1)

From (3.5) and the budget constraint (3.12), we see that this problem is
interesting only if the feasibility condition

E

∫ T

0
H0(t)εk(t) dt ≥ c̄k · E

∫ T

0
H0(t) dt (4.2)
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is satisfied; otherwise, A′
k = ∅. If equality holds in (4.2), then the only

candidate optimal consumption process is ĉk(·) ≡ c̄k. According to Theo-
rem 3.6, there is then a portfolio process π̂k(·) such that (ĉk, π̂k) ∈ Ak. This
consumption/portfolio process pair is in A′

k if and only if Uk(c̄k) > −∞.

Regardless of whether this is the case or not,
∫ T

0 e
−
∫ t

0
β(u) du

Uk(c̄k) dt is
well-defined (even though it may be −∞) and is the value of Problem 4.1,
whenever (4.2) holds as equality. This leads us to adopt the following
convention, even though A′

k may be empty.

Convention 4.2: If the nonstrict feasibility condition

E

∫ T

0
H0(t)εk(t) dt = c̄k · E

∫ T

0
H0(t) dt (4.3)

holds, we say that the optimal consumption process for Problem 4.1 is
ĉk(·) ≡ c̄k. There exists then a portfolio process π̂k(·) such that (c̄k, π̂k) ∈
Ak.

We consider now the case of strict feasibility:

E

∫ T

0
H0(t)εk(t) dt > c̄k · E

∫ T

0
H0(t) dt. (4.4)

To treat this case, we define as in Section 3.4 the nonincreasing, continuous
function Ik : (0,∞] onto−→ [c̄k,∞) which, when restricted to (0, U ′

k(c̄k)), is
the (strictly decreasing) inverse of U ′

k : (c̄k,∞) onto−→ (0, U ′
k(c̄k)). On the

interval [U ′(c̄k),∞], Ik(·) is identically equal to c̄k.

Agent k uses the time-dependent utility function e
−
∫ t

0
β(u) du

Uk(c) in

Problem 4.1, and the inverse of e
−
∫ t

0
β(u) du

U ′
k(·) is y �→ Ik(ye

∫ t

0
β(u) du).

Following (3.7.1), we define

Xk(y)
�
= E

∫ T

0
H0(t)Ik

(
ye

∫ t

0
β(u) du

H0(t)
)

dt, 0 < y <∞. (4.5)

Lemma 4.3: Under Condition 3.1(ii), the function Xk(·) is finite, non-
increasing, and continuous on (0,∞). We define Xk(0+)

�
= limy↓0 Xk(y),

Xk(∞)
�
= limy→∞ Xk(y), and

rk
�
= sup{y > 0;Xk(y) > Xk(∞)}. (4.6)

Then

Xk(∞) = c̄k · E
∫ T

0
H0(t) dt, (4.7)

rk > 0, and Xk restricted to (0, rk) is strictly decreasing; thus, this function
has a continuous and strictly decreasing inverse Yk : (Xk(∞),∞) onto−→
(0, rk), which satifies

Xk(Yk(x)) = x, ∀x ∈ (Xk(∞),∞). (4.8)
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Proof. Condition 3.1(ii) implies Xk(y) <∞ for all y ∈ (0,∞). The other
properties of Xk(·) now follow from the arguments used to prove Lemma
3.6.2. �

Remark 4.4: If rk in (4.6) is finite, then Xk(·) is identically equal to

c̄k ·E
∫ T

0 H0(t) dt on [rk,∞). But Ik(rke

∫
t

0
β(u) du

H0(t)) ≥ c̄k for 0 ≤ t ≤ T
almost surely, and so we must actually have

Ik

(
rke

∫ t

0
β(u) du

H0(t)
)

= c̄k, 0 ≤ t ≤ T, (4.9)

almost surely. In other words,

rke

∫ t

0
β(u) du

H0(t) ≥ U ′
k(c̄k), 0 ≤ t ≤ T, (4.10)

almost surely. If rk =∞, (4.9) and (4.10) still hold.

The omitted proof of the following theorem uses Theorem 3.6 and is
otherwise a minor modification of the proofs of Theorem 3.6.3 and Corol-
lary 3.6.5 (see also Remark 3.6.4). The statement of the theorem is close
to that of Theorem 3.7.3.

Theorem 4.5: Suppose that we have constructed a complete, standard
financial market satisfying Condition 3.1. Under the strict feasibility con-
dition (4.4), the unique optimal consumption/portfolio pair (ĉk, π̂k) ∈ Ak

for Problem 4.1 and the corresponding wealth process X̂k(·) are given for
0 ≤ t ≤ T by

ĉk(t) = Ik

(
yke

∫ t

0
β(u) du

H0(t)
)

, (4.11)

X̂k(t) =
1

H0(t)
E

[∫ T

t

H0(s)(ĉk(s)− εk(s)) ds
∣∣∣ F(t)

]
, (4.12)

σ′(t)π̂k(t) =
ψk(t)
H0(t)

+ X̂k(t)θ(t), (4.13)

where

yk = Yk

(
E

∫ T

0
H0(t)εk(t) dt

)
∈ (0, rk) (4.14)

and ψk(·) is the integrand in the representation

Mk(t) =
∫ t

0
ψ′

k(s) dW (s) (4.15)

of the zero-mean P-martingale

Mk(t) = E

[∫ T

0
H0(s)(ĉk(s)− εk(s)) ds

∣∣∣ F(t)

]
. (4.16)
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4.5 Equilibrium and the Representative Agent

We are now in a position to state the properties of the complete standard
financial marketM we shall be seeking.

Definition 5.1: Let the endowment processes and utility functions
{εk, Uk}Kk=1 and the discount rate β(·) of Section 2 be given. We say that a
financial marketM as described in Section 3 and satisfying Condition 3.1
is an equilibrium market (for the economic primitives {εk, Uk}Kk=1, β), if the
following conditions hold.

(i) Feasibility for the agents:

E

∫ T

0
H0(t)εk(t) dt ≥ c̄k · E

∫ T

0
H0(t) dt, k = 1, . . . ,K. (5.1)

(ii) Clearing of the commodity market:

K∑
k=1

ĉk(t) = ε(t), 0 ≤ t ≤ T, (5.2)

almost surely.
(iii) Clearing of the stock markets:

K∑
k=1

π̂k(t) = 0
˜
, 0 ≤ t ≤ T, (5.3)

almost surely, where 0
˜

is the origin in RN .
(iv) Clearing of the money market:

K∑
k=1

(X̂k(t)− π̂′
k(t)1

˜
) = 0, 0 ≤ t ≤ T, (5.4)

almost surely, where 1
˜

is the vector (1, . . . , 1)′ in RN .

Here ĉk(·), π̂k(·), X̂k(·) are the unique optimal processes for Problem 4.1;
these are given by (4.11)–(4.14) if the strict feasibility condition (4.4) holds
for agent k, and by Convention 4.2 in the case of the nonstrict feasibility
condition (4.3).

For the remainder of this section we shall focus on characterizing such
an equilibrium market. Aided by this characterization, we shall establish
in the next section the existence of an equilibrium market and examine
the extent to which this equilibruim market is uniquely determined by the
economic primitives {εk, Uk}Kk=1 and β.

We note immediately from (3.5) and (5.2) that a necessary condition
for an equilibrium market to exist is that ε(t) ≥ c̄, 0 ≤ t ≤ T ; in
other words, aggregate endowment must always dominate aggregate sub-
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sistence consumption. We have imposed a somewhat stronger assumption
in Condition 2.1(iii).

We now provide a simple characterization of an equilibrium market.

Theorem 5.2: If M is an equilibrium market, then

ε(t) =
K∑

k=1

Ik

(
1
λk

e

∫ t

0
β(u) du

H0(t)
)

, 0 ≤ t ≤ T, (5.5)

where λk ∈ [0,∞), k = 1, . . . ,K, satisfy the system of equations

E

∫ T

0
H0(t)

[
Ik

(
1
λk

e

∫
t

0
β(u) du

H0(t)
)
− εk(t)

]
dt = 0, k = 1, . . . ,K.

(5.6)

(If λk = 0, we adopt the convention Ik( 1
λk

e

∫
t

0
β(u) du

H0(t)) = Ik(∞) = c̄k.)
Conversely, if M is a standard, complete financial market satisfying Con-
dition 3.1, and there exists a vector Λ

˜
= (λ1, . . . , λK) ∈ [0,∞)K satisfying

(5.5) and (5.6), then M is an equilibrium market. In either case, the
optimal consumption processes for the individual agents are given by

ĉk(t) = Ik

(
1
λk

e

∫ t

0
β(u) du

H0(t)
)

, 0 ≤ t ≤ T, k = 1, . . . ,K. (5.7)

Proof. First, let us assume that M is an equilibrium market. If the
strict feasibility condition (4.4) holds for agent k, then this agent’s opti-
mal consumption process (4.11) is given by (5.7), with λk ∈ ( 1

rk
,∞) and

Xk( 1
λk

) = E
∫ T

0 H0(t)εk(t) dt (see (4.14)); this last equation is (5.6). If the
nonstrict feasibility condition (4.3) holds for agent k, then (4.6) shows that
(5.6) is equivalent to Xk( 1

λk
) = Xk(∞), and this equation is solved by any

λk ∈ [0, 1
rk

]; with such a choice of λk, we see from Convention 4.2 and
Remark 4.4 that (5.7) holds, where now ĉk(t) ≡ c̄k. Summing (5.7) over k
and using the commodity market clearing condition (5.2), we obtain (5.5).

For the second part of the theorem, we assume that M is a standard,
complete financial market satisfying Condition 3.1, and that there exists
a vector Λ

˜
= (λ1, . . . , λk) ∈ [0,∞)K satisfying (5.5) and (5.6). Since

Ik( 1
λk

e

∫
T

0
β(u) du

H0(t)) ≥ c̄k, 0 ≤ t ≤ T , (5.6) implies the “feasibility for
agents” condition (5.1). Under this feasibility condition, we have just seen
that the optimal consumption process for each agent k is given by (5.7),
and now (5.5) implies the clearing of commodity markets (5.2). We sum
(4.16) over k and use (5.2) to obtain

∑K
k=1 Mk(t) ≡ 0. From (4.15) we see

that
∫ t

0

∑K
k=1 ψ′

k(s) dW (s) ≡ 0, which implies
∑K

k=1 ψk(t) ≡ 0. Summing
first (4.12) and then (4.13) over k, we conclude first that

∑K
k=1 X̂k(t) ≡ 0,

and next that σ′(t)
∑K

k=1 π̂k(t) ≡ 0. Since σ′(t) is nonsingular, we have
the clearing of the stock markets (5.3) and then the clearing of the money
market (5.4). �
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Remark 5.3: If Λ
˜
∈ [0,∞)K satisfies either (5.5) or (5.6), then Λ

˜cannot be the zero vector. For suppose it were; then the right-hand side
of (5.5) would be

∑K
k=1 c̄k = c̄, which is different from ε(t) because of

Condition 2.1(iii), and (5.6) would become

E

∫ T

0
H0(t)(c̄k − εk(t)) dt = 0, k = 1, . . . ,K,

so that summing up over k we would again obtain a contradiction to
Condition 2.1(iii). To simplify notation, we define

∗[0,∞)K = [0,∞)K\{0
˜
} (5.8)

to be the K-dimensional nonnegative orthant with the origin 0
˜

= (0, . . . , 0)
removed.

Theorem 5.2 reduces the search for an equilibrium market to the search
for a vector Λ

˜
∈∗ [0,∞)K , and for a market with state price density H0(·),

so that (5.5) and (5.6) are satisfied. We can further simplify the search by
inverting (5.5), writing the sought H0(·) as a function of the given aggregate
endowment process ε(·); cf. (5.16) below.

Let Λ
˜
∈∗ [0,∞)K be given. For k = 1, . . . ,K, the function y �→ Ik( y

λk
) is

identically equal to c̄k if λk = 0; but if λk > 0, it is continuous on (0,∞)
as well as strictly decreasing on (0, λkU ′

k(c̄k)], and maps (0, λkU ′
k(c̄k)] onto

[c̄k,∞). We set

m(Λ
˜
)

�
= max

{k;λk>0}
(λkU ′

k(c̄k)), (5.9)

which is strictly positive since Λ
˜

is not the zero vector. The function

I(y; Λ
˜
)

�
=

K∑
k=1

Ik

(
y

λk

)
, 0 < y ≤ ∞, (5.10)

is continuous on (0,∞], is strictly decreasing on (0,m(Λ
˜
)], and maps

(0,m(Λ
˜
)] onto [c̄,∞) (recall that c̄

�=
∑K

k=1 c̄k). For Λ
˜
∈∗ [0,∞)k, we define

H(·; Λ
˜
) : [c̄,∞) onto−→ (0,m(Λ

˜
)] (5.11)

to be the (continuous, strictly decreasing) inverse of

I(·; Λ
˜
) : (0,m(Λ

˜
)] onto−→ [c̄,∞). (5.12)

We note that I(y; Λ
˜
) is also defined for y ≥ m(Λ

˜
), and in fact,

I(y; Λ
˜
) = c̄, ∀ y ∈ [m(Λ

˜
),∞]. (5.13)

We have

H(I(y; Λ
˜
); Λ

˜
) = y, ∀y ∈ (0,m(Λ

˜
)], (5.14)

I(H(c; Λ
˜
); Λ

˜
) = c, ∀c ∈ [c̄,∞). (5.15)
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Because of Condition 2.1(iii), ε(t) is in the domain of H(·; Λ
˜
), and we can

invert (5.5) to obtain

H0(t) = e
−
∫

t

0
β(u) duH(ε(t); Λ

˜
), 0 ≤ t ≤ T. (5.16)

This leads to the following corollary of Theorem 5.2.

Corollary 5.4: A standard, complete financial marketM satisfying Con-
dition 3.1 is an equilibrium market if and only if its state price density
process H0(·) is given by (5.16), where Λ

˜
= (λ1, . . . , λK) ∈∗ [0,∞)K is a

solution to the system of equations

E

∫ T

0
e

−
∫ t

0
β(u) duH(ε(t); Λ

˜
)
[
Ik

(
1
λk
H(ε(t); Λ

˜
)
)
− εk(t)

]
dt = 0,

k = 1, . . . ,K.

(5.17)

In this case, the optimal consumption process for the kth agent is

ĉk(t) = Ik

(
1
λk
H(ε(t); Λ

˜
)
)

, 0 ≤ t ≤ T. (5.18)

In Section 6 we shall establish the existence of a solution Λ
˜

to (5.17).
Although (5.17) does not have a unique solution, the optimal consumption
processes ĉ1(·), . . . , ĉK(·) given by (5.18) are uniquely determined. The fol-
lowing lemma examines one type of nonuniqueness that can occur in the
solution of (5.17).

Lemma 5.5: Define

T = {k ∈ {1, . . . ,K}; εk(t) = c̄k, 0 ≤ t ≤ T, a.s.},
T c = {1, . . . , K}\T . (5.19)

Because of Condition 2.1(iii), T c is nonempty.
Suppose Λ

˜
∈∗ [0,∞)K satisfies (5.17). Then k ∈ T if and only if

λk ≤
H(ε(t); Λ

˜
)

U ′
k(c̄k)

, 0 ≤ t ≤ T, (5.20)

almost surely. Define Λ
˜

∗ = (λ∗
1, . . . , λ

∗
k) by

λ∗
k

�=

P -ess inf
(

min
0≤t≤T

H(ε(t); Λ
˜
)

U ′
k(c̄k)

)
, if k ∈ T ,

λk, if k ∈ T c,

(5.21)

and note that λ∗
k ≥ λk. Then m(Λ

˜
) = m(Λ

˜
∗),

H(ε(t); Λ
˜
) = H(ε(t); Λ

˜
∗), 0 ≤ t ≤ T, (5.22)

Ik

(
1
λk
H(ε(t); Λ

˜
)
)

= Ik

(
1
λ∗

k

H(ε(t); Λ
˜

∗)
)

,

0 ≤ t ≤ T, k = 1, . . . ,K, (5.23)

and Λ
˜

∗ also satisfies (5.17).
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Proof. From (5.17) and the fact that Ik(y) ≥ c̄k for all y ∈ (0,∞], we see
that k ∈ T if and only if Ik( 1

λk
H(ε(t); Λ

˜
)) = c̄k, 0 ≤ t ≤ T , almost surely.

This equality is equivalent to (5.20). Using the convention 0 · (±∞) = 0,
we have

λ∗
kU ′

k(c̄k) ≤ H(ε(t); Λ
˜
), 0 ≤ t ≤ T, ∀k ∈ T , (5.20′)

almost surely, and since (0,m(Λ
˜
)] is the range of H(·; Λ

˜
), this implies

λkU ′
k(c̄k) ≤ λ∗

kU ′
k(c̄k) ≤ m(Λ

˜
) = max{λjU

′
j(c̄j);λj > 0}.

It is apparent that m(Λ
˜

∗) = m(Λ
˜
).

We compare I(y; Λ
˜
) =

∑K
k=1 Ik( y

λk
) with I(y; Λ

˜
∗) =

∑
k=T Ik( y

λ∗
k
) +∑

kεT c Ik( y
λk

). These two expressions agree if and only if λ∗
kU ′

k(c̄k) ≤
y,∀k ∈ T . But λ∗

k is defined so that (5.20)′ holds, and from (5.15) we
obtain

ε(t) = I(H(ε(t); Λ
˜
); Λ

˜
) = I(H(ε(t); Λ

˜
); Λ

˜
∗).

Applying H(·; Λ
˜

∗) to both sides and using (5.14), we obtain (5.22).
If k ∈ T c, (5.23) follows from (5.22) because λ∗

k = λk. If k ∈ T , we have

1
λk
H(ε(t); Λ

˜
) ≥ 1

λ∗
k

H(ε(t); Λ
˜
) ≥ U ′

k(c̄k),

and (5.23) holds with both sides identically equal to c̄k. Equations (5.22)
and (5.23) imply that Λ

˜
∗ is a solution of the system (5.17). �

The remainder of this section develops properties of the function H(·; Λ
˜
)

of (5.11). We shall see, in particular, that H(·; Λ
˜
) is the derivative of the

function

U(c; Λ
˜
)

�
= max

c1≥c̄1,...,cK ≥c̄K
c1+···+cK=c

K∑
k=1

λkUk(ck), c ∈ R. (5.24)

(We use here and elsewhere the convention 0 · (±∞) = 0.)
The next theorem shows that U(·; Λ

˜
) is itself a utility function. It plays

the role of the utility function for a “representative agent” who assigns
“weights” λ1, . . . , λk to the various agents and, with proper choice of
Λ
˜

= (λ1, . . . , λk), has optimal consumption equal to the aggregate endow-
ment. The weights λ1, . . . , λk correspond to the “relative importance” of
the individual agents in the equilibrium market. The maximizing values
c1, . . . , ck in (5.24) give the optimal consumptions of the individual agents
when the aggregate endowment is c.

The reader may wish to skip on first reading the (long and technical)
proof of Theorem 5.6.

Theorem 5.6: Let Λ
˜
∈∗ [0,∞)K be given. Then the function U(·; Λ

˜
) of

(5.24) is a utility function as set forth in Definition 3.4.1, and c̄
�
=
∑K

k=1 c̄k

satisfies

c̄ = inf{c ∈ R; U(c; Λ
˜
) > −∞}. (5.25)
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Moreover, U(·; Λ
˜
) is continuously differentiable on (c̄,∞) with

U ′(c; Λ
˜
) = H(c; Λ

˜
), c > c̄. (5.26)

For k = 1, . . . ,K, define

αk
�
= I(λkU ′

k(c̄k); Λ
˜
)

so that

min
1≤k≤K

αk = I(m(Λ
˜
); Λ

˜
) = c̄,

and set

D �
= {αk}Kk=1\{c̄}

so that D ⊂ (c̄,∞). The derivatives U ′′(·; Λ
˜
) and U ′′′(·; Λ

˜
) exist and are

continuous on (c̄,∞)\D, and their one-sided limits exist and are finite at
all points in D. Moreover,

U ′′(α+; Λ
˜
)− U ′′(α−; Λ

˜
) ≥ 0, ∀α ∈ D. (5.27)

Proof. Using the convention that the maximum over the empty set is
−∞, we see that

U(c; Λ
˜
) = −∞ ∀c ∈ (−∞, c̄). (5.28)

If c > c̄, then the numbers ck
�
= c̄k + 1

K (c − c̄) satisfy ck > c̄k and c1 +
· · · + cK = c. From the definition (5.24) of U(c; Λ

˜
), we have U(c; Λ

˜
) ≥∑K

k=1 λkUk(ck) > −∞. Relation (5.25) follows from this inequality and
(5.28).

Now let c ≥ c̄ be given. For each k, set

ĉk
�
= Ik

(
1
λk
H(c; Λ

˜
)
)

. (5.29)

Then
∑K

k=1 ĉk = I(H(c; Λ
˜
); Λ

˜
) = c, from (5.15). Furthermore, ĉk ≥ c̄k

for each k. If ĉk > c̄k for some k, then λk > 0 and U ′
k(ĉk) = 1

λk
H(c; Λ

˜
),

whereas if ĉk = c̄k, we know only that U ′
k(ĉk) ≤ 1

λk
H(c; Λ

˜
). Suppose c1 ≥

c̄1, . . . , cK ≥ c̄K and c1 + · · ·+ cK = c. We have from the concavity of each
Uk(·) that

K∑
k=1

λkUk(ck) ≤
K∑

k=1

λk[Uk(ĉk) + (ck − ĉk)U ′
k(ĉk)]

=
K∑

k=1

λkUk(ĉk) +H(c; Λ
˜
) ·

∑
{k;ĉk>c̄k}

(ck − ĉk)

+
∑

{k;ĉk=c̄k}
λkU ′

k(ĉk)(ck − ĉk)
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≤
K∑

k=1

λkUk(ĉk) +H(c; Λ
˜
)

K∑
k=1

(ck − ĉk) =
K∑

k=1

λkUk(ĉk).

In other words, ĉ1, . . . , ĉK attain the maximum in (5.24), and we obtain
the representation

U(c; Λ
˜
) =

K∑
k=1

λkUk

(
Ik

(
1
λk
H(c; Λ

˜
)
))

, c ∈ (c̄,∞). (5.30)

We develop the differentiability properties of Ik(·), I(·; Λ
˜
), and H(·; Λ

˜
).

If U ′
k(c̄k) = ∞, then Ik(·) is of class C2 on (0,∞), with I ′

k(y) < 0 for all
y ∈ (0,∞). However, if U ′

k(c̄k) < ∞, then Ik(y) = c̄k for y ≥ U ′
k(c̄k), so

I ′
k(·) = I ′′

k (·) = 0 on (U ′
k(c̄k),∞). The relation Ik(U ′

k(c)) = c for c > c̄k

implies

I ′
k(U ′

k(c)) =
1

U ′′
k (c)

, I ′′
k (U ′

k(c)) = − U ′′′
k (c)

(U ′′
k (c))3

for c > c̄k,

and Remark 2.2 and Condition 2.1(i) guarantee that when U ′
k(c̄k) <∞, we

have

−∞ < I ′
k(U ′

k(c̄k)−) ≤ 0 = I ′
k(U ′

k(c̄k)+), (5.31)

−∞ < I ′′
k (U ′

k(c̄k)−) <∞, I ′′
k (U ′

k(c̄k)+) = 0. (5.32)

In particular, each Ik(·) is piecewise C2 on (0,∞). The function I(y; Λ) =∑K
k=1 Ik( y

λk
) is continuous on (0,∞), and the derivative formulas

I ′(y; Λ
˜
) =

∑
{k;λk>0}

1
λk

I ′
k

(
y

λk

)
, I ′′(y; Λ

˜
) =

∑
{k;λk>0}

1
λ2

k

Ik
′′
(

y

λk

)
show that I(·; Λ) is piecewise C2 on (0,∞). The points of possible disconti-
nuity of I ′(·; Λ

˜
) and I ′′(·; Λ

˜
) are λ1U

′
1(c̄1), . . . , λKU ′

K(c̄K). At any of these
points that is also contained in (0,m(Λ

˜
)), (5.31) implies

−∞ < I ′(λkU ′
k(c̄k)−; Λ

˜
) ≤ I ′(λkU ′

k(c̄k)+; Λ
˜
) < 0. (5.33)

In particular, I ′(·; Λ
˜
) is bounded below and bounded away from zero on

each closed, bounded subinterval of (0,m(Λ
˜
)).

Because H(I(y; Λ
˜
); Λ

˜
) = y for 0 < y < m(Λ

˜
),

H′(I(y; Λ
˜
); Λ) =

1
I ′(y; Λ)

, y ∈ (0,m(Λ))\{λkU ′
k(c̄k)}Kk=1. (5.34)

This shows that H is piecewise C1. From (5.33), we also have the inequality

H′(α+; Λ
˜
) ≥ H′(α−; Λ

˜
), ∀α ∈ D. (5.35)

Differentiation of (5.34) leads to

H′′(I(y; Λ
˜
); Λ

˜
) = − I ′′(y; Λ

˜
)

I ′(y; Λ
˜
)3

, y ∈ (0,m(Λ))\{λkU ′
k(c̄k)}Kk=1.
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From (5.32) and (5.33), we see that H′′(α±; Λ
˜
) exists for all α ∈ D; i.e.,

H′′(·; Λ
˜
) is piecewise C2 on (0,m(Λ

˜
)).

Let αk ∈ D be given. Since H(·; Λ
˜
) is strictly decreasing on (c̄,∞) and

H(αk; Λ
˜
) = λkU ′

k(c̄k), we have

1
λk
H(c; Λ

˜
) > U ′

k(c̄k), ∀c ∈ (c̄, αk), (5.36)

0 <
1
λk
H(c; Λ

˜
) < U ′

k(c̄k), ∀c ∈ (αk,∞). (5.37)

For c ∈ (αk,∞)\D, we compute

d

dc

[
λkUk

(
Ik

(
1
λk
H(c; Λ

˜
)
))]

= U ′
k

(
Ik

(
1
λk
H(c; Λ

˜
)
))

· I ′
k

(
1
λk
H(c; Λ

˜
)
)
· H′(c; Λ

˜
)

=
1
λk
H(c; Λ

˜
) · I ′

k

(
1
λk
H(c; Λ

˜
)
)
· H′(c; Λ

˜
)

= H(c; Λ
˜
) · d

dc

[
Ik

(
1
λk
H(c; Λ

˜
)
)]

,

where we have used (5.37) and the fact that U ′
k : (c̄k,∞) onto−→ (0, U ′

k(c̄k))
is the inverse of Ik : (0, U ′

k(c̄k)) onto−→ (c̄k,∞). For c ∈ (c̄, αk)\D, we have
from (5.36) that Ik( 1

λk
H(c; Λ

˜
)) = c̄k and I ′

k( 1
λk
H(c; Λ

˜
)) = 0, so once again

d

dc

[
λkUk

(
Ik

(
1
λk
H(c; Λ

˜
)
))]

= H(c; Λ
˜
) · d

dc

[
Ik

(
1
λk
H(c; Λ

˜
)
)]

, (5.38)

but now with both sides equal to zero.
We have established (5.38) for all c ∈ (c̄,∞)\{αk}, provided that αk �= c̄.

If αk = c̄, then

λkU ′
k(c̄k) = H(αk; Λ) = m(Λ

˜
) > 0. (5.39)

Therefore, λk > 0 and (5.39) implies (5.37), which leads to (5.38) as before.
We may now sum (5.38) over k ∈ {1, . . . ,K} and use the representation

(5.30) to obtain

U ′(c; Λ
˜
) = H(c; Λ) · d

dc
I(H(c; Λ

˜
); Λ

˜
) = H(c; Λ

˜
), ∀c ∈ (c̄,∞)\D.

This implies

U(c; Λ
˜
) = U(c̄ + 1,Λ

˜
) +

∫ c

c̄+1
H(η; Λ

˜
) dη, ∀c ∈ (c̄,∞),

and since H(·; Λ
˜
) is continuous, differentiation yields 5.26.

Because H(·; Λ
˜
) is continuous, positive, and strictly decreasing on (c̄,∞),

the function U(·; Λ
˜
) is strictly concave and increasing on this set. Moreover,
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H(·; Λ
˜
) is continuous from the right at c̄, and the representation (5.30),

combined with the right continuity (upper semicontinuity) of each Uk(·) at
c̄k, establishes the right continuity (upper semicontinuity) of U(·; Λ

˜
) at c̄.

Finally,

lim
c→∞

U ′(c; Λ) = lim
c→∞

H(c; Λ) = 0.

This concludes the proof that U(·; Λ
˜
) has all the properties required of

utility functions by Definition 3.4.1.
The piecewise continuity of U ′′(·; Λ) and U ′′′(·; Λ

˜
) on (c̄,∞) follows

from the properties proved for H′(·; Λ
˜
) and H′′(·; Λ

˜
). Inequality (5.35) is

(5.27). �

4.6 Existence and Uniqueness of Equilibrium

In light of Corollary 5.4, the key remaining step in the construction of an
equilibrium market is the solution of the system of equations (5.17) for Λ

˜
∈

∗[0,∞)K . In contrast to the original problem of determining equilibrium
price processes, the problem at hand is finite-dimensional.

Lemma 5.5 shows that we should not expect the system of equations (5.17)
to have a unique solution Λ

˜
∈∗ [0,∞)K , sinceH(ε(t); Λ

˜
) andH(ε(t); Λ

˜
∗) can

agree even though Λ
˜
�= Λ

˜
∗. However, the equality (5.23) guarantees that

both Λ
˜

and Λ
˜

∗ result in the same optimal consumption processes for the
individual agents, given by (5.18).

There is, however, an additional kind of nonuniqueness in (5.17). The
representation (5.26) of the function H, along with the definition (5.24) of
the “representative agent” utility function, allows us to deduce the positive
homogeneity properties for c ≥ c̄, η > 0, and Λ

˜
∈∗ [0,∞)K :

U(c; ηΛ
˜
) = ηU(c; Λ

˜
), (6.1)

H(c; ηΛ
˜
) = ηH(c; Λ

˜
). (6.2)

It follows from (6.2) that if a vector Λ
˜
∈ ∗ [0,∞)K satisfies the equa-

tions (5.17), then so does every other vector ηΛ
˜

with η ∈ (0,∞), on the
same ray through the origin; for all such vectors, the optimal consumption
processes are the same:

ĉk(t) = Ik

(
1
λk
H(ε(t); Λ

˜
)
)

= Ik

(
1

ηλk
H(ε(t); ηΛ

˜
)
)

, 0 ≤ t ≤ T, k = 1, . . . ,K. (6.3)

The first result of this section guarantees the existence of a solution
to (5.17) and provides a condition under which the equilibrium optimal
consumption processes of the individual agents are uniquely determined.
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Theorem 6.1: There exists a vector Λ
˜

= (λ1, . . . , λk) ∈ ∗[0,∞)K sat-
isfying the system of equations (5.17). Suppose, moreover, that for each
agent k, the Arrow–Pratt “index of risk-aversion” is less than or equal to
one, namely

− cU ′′
k (c)

U ′
k(c)

≤ 1 for all c ∈ (c̄k,∞), k = 1, . . . ,K, (6.4)

(see Remark 3.4.4), and let M
˜

= (µ1, . . . , µK) ∈ ∗[0,∞)K be any other
solution of (5.17); then for some positive constant η, we have almost surely

ηH(ε(t); Λ
˜
) = H(ε(t);M

˜
), 0 ≤ t ≤ T, (6.5)

and

ĉk(t) = Ik

(
1
λk
H(ε(t); Λ

˜
)
)

= Ik

(
1
µk
H(ε(t);M

˜
)
)

, 0 ≤ t ≤ T, k = 1, . . . ,K. (6.6)

Proof. We first establish existence. Let {e
˜1, . . . , e˜K} be the standard

basis of unit vectors in RK , and let K = {1, . . . ,K}. For any nonempty set
B ⊂ K, denote by

SB
�
=

{∑
k∈B

λke
˜k; λk ≥ 0 ∀k ∈ B and

∑
k∈B

λk = 1

}
⊂∗[0,∞)K

the convex hull of {e
˜k}k∈B. For every k ∈ K, define Rk : SK → R by

Rk(Λ
˜
)

�
= E

∫ T

0
e

−
∫

t

0
β(u) duH(ε(t); Λ

˜
)
[
Ik

(
1
λk
H(ε(t); Λ

˜
)
)
− εk(t)

]
dt,

(6.7)
where as usual, Ik( 1

λk
H(ε(t); Λ

˜
))

�
= c̄k if λk = 0. The function Rk is con-

tinuous, and hence the set Fk
�
= {Λ

˜
∈ SK;Rk(Λ

˜
) ≥ 0} is closed. Note from

(5.15) that∑
k∈K

Rk(Λ
˜
) = E

∫ T

0
e

−
∫

t

0
β(u) duH(ε(t); Λ

˜
)[I(H(ε(t); Λ

˜
); Λ

˜
)− ε(t)] dt = 0

(6.8)
holds for every Λ

˜
∈ ∗[0,∞). We claim that

SB ⊂
⋃
k∈B

Fk, ∀B ⊂ K, B �= ∅. (6.9)

Indeed, suppose Λ
˜
∈ SB but Λ

˜
/∈ ∪k∈BFk; then Rk(Λ

˜
) < 0 for all k ∈ B.

Condition (2.1(ii)) implies Rk(Λ
˜
) ≤ 0 for all k ∈ K\B, so that (6.8) is con-

tradicted. From (6.9) and the lemma of Knaster–Kuratowski–Mazurkiewicz
(1929) (e.g., Border (1985), p. 26), we conclude that ∩k∈KFk �= ∅. Let Λ

˜
be

in this set. The definition of Fk, combined with (6.8), implies Rk(Λ
˜
) = 0

for all k ∈ K; hence Λ
˜

satisfies the system (5.17).
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We next assume the risk-aversion condition (6.4) and characterize the
set of all solutions of (5.17) in terms of a particular solution Λ

˜
. Let T and

Λ∗ be as in Lemma 5.5. Suppose that M
˜

= (µ1, . . . , µK) is another solution
of (5.17), and let M

˜
∗ = (µ∗

1, . . . , µ
∗
K) be defined by the analogue of (5.21):

µ∗
k

�
=

P -ess inf
(

min
0≤t≤T

T
H(ε(t);M

˜
)

U ′
k(c̄k)

)
, if k ∈ T ,

µk, if k ∈ T c,

(6.10)

and note that µ∗
k ≥ µk.

If λ∗
k = 0 for some k, then Lemma 5.5 implies k ∈ T , and thus

P -ess inf
(

min
0≤t≤T

H(ε(t); Λ
˜
)

U ′
k(c̄k)

)
= 0.

But H(ε(t); Λ
˜
) is bounded from below by H(γ2; Λ

˜
) > 0 (Condition 2.1(iii)),

so we must have U ′
k(c̄k) =∞ and thus µ∗

k = 0 from (4.6). Now define

η
�
= max

{
µ∗

k

λ∗
k

; k ∈ K, λ∗
k �= 0

}
. (6.11)

Because λ∗
k = 0 implies µ∗

k = 0, we have

µ∗
k ≤ ηλ∗

k, ∀k ∈ K. (6.12)

Furthermore, there is an index k̄ ∈ K such that µ∗
k̄

= ηλ∗
k̄

> 0. From (6.12)
we have

I(y; ηΛ
˜

∗) =
K∑

k=1

Ik

(
y

ηλ∗
k

)
≥

K∑
k=1

Ik

(
y

µ∗
k

)
= I(y;M

˜
∗), y > 0,

and thus, almost surely,

ηH(ε(t); Λ
˜

∗) ≥ H(ε(t);M
˜

∗), 0 ≤ t ≤ T,

or equivalently,
1
λ∗

k̄

H(ε(t); Λ
˜

∗) ≥ 1
µ∗

k̄

H(ε(t);M
˜

∗), 0 ≤ t ≤ T. (6.13)

Consider the function ϕk(y) = yIk(y), 0 < y < U ′
k(c̄k). With c = Ik(y),

we have the derivative formula

ϕ′
k(y) = Ik(y) + yI ′

k(y) = c +
U ′

k(c)
U ′′

k (c)
, 0 < y < U ′

k(c̄k),

and (6.4) implies that ϕk is nonincreasing. Because both Λ
˜

∗ and M
˜

∗ satisfy
(5.17), we have, in the notation of (6.7),

0 =
1
λ∗

k̄

Rk̄(Λ
˜

∗)

= E

∫ T

0
e

−
∫ t

0
β(u) du

[
ϕk̄

(
1
λ∗

k̄

H(ε(t); Λ
˜

∗)

)
− 1

λ∗
k̄

H(ε(t); Λ
˜

∗)εk̄(t)

]
dt
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≤ E

∫ T

0
e

−
∫

t

0
β(u) du

[
ϕk̄

(
1
µ∗

k̄

H(ε(t);M
˜

∗)

)
− 1

µ∗
k̄

H(ε(t);M
˜

∗)εk̄(t)

]
dt

=
1
µ∗

k̄

Rk̄(M
˜

∗) = 0.

This shows that equality must hold in (6.13) almost surely, which yields
(6.5).

For any k ∈ K, (6.5) and (6.12) imply

Ik

(
1
λ∗

k

H(ε(t); Λ
˜
)
)

= Ik

(
1

ηλ∗
k

H(ε(t);M
˜

)
)

≥ Ik

(
1
µ∗

k

H(ε(t);M
˜

)
)

, 0 ≤ t ≤ T. (6.14)

But (5.17) for both Λ
˜

∗ and M
˜

∗ and (6.5) gives

E

∫ T

0
e

−
∫

t

0
β(u) duH(ε(t); Λ

˜
∗)Ik

(
1
λ∗

k

H(ε(t); Λ
˜

∗)
)

dt

= E

∫ T

0
e

−
∫ t

0
β(u) duH(ε(t); Λ

˜
∗)εk(t) dt

=
1
η
E

∫ T

0
e

−
∫ t

0
β(u) duH(ε(t);M

˜
∗)εk(t) dt

=
1
η
E

∫ T

0
e

−
∫ t

0
β(u) duH(ε(t);M

˜
∗)Ik

(
1
µ∗

k

H(ε(t);M
˜

∗)
)

dt

= E

∫ T

0
e

−
∫

t

0
β(u) duH(ε(t); Λ

˜
∗)Ik

(
1
µ∗

k

H(ε(t);M
˜

∗)
)

dt.

Since e
−
∫

t

0
β(u) duH(ε(t); Λ

˜
∗) is always positive, equality must hold in (6.14)

almost surely; this and Lemma 5.5 imply (6.6). �

Remark 6.2: Although we do not use this observation, it is interesting to
note that Λ

˜
∗ and M

˜
∗ in the proof of Theorem 6.1 are related via M

˜
∗ = ηΛ

˜
∗.

In light of (6.12), we need only rule out the possibilty ηλ∗
k > µ∗

k. From (6.5)
and the definitions (5.21), (6.10) of λ∗

k, µ∗
k for k ∈ T , such a k must be in

T c. Lemma 5.5 applied to M
˜

shows that k ∈ T c if and only if the inequality

µ∗
k ≤
H(ε(t);M

˜
∗)

U ′
k(c̄k)

, 0 ≤ t ≤ T,

does not hold almost surely, i.e., P
[
U ′

k(c̄k) > min0≤t≤T
1

µ∗
k
H(ε(t);M

˜
∗)
]

>

0. If ηλ∗
k > µ∗

k, then the above inequality and (6.5), (5.22) imply

P

[
U ′

k(c̄k) > min
0≤t≤T

1
λ∗

k

H(ε(t); Λ
˜

∗)
]

> 0;
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but for t and ω chosen such that U ′
k(c̄k) > 1

λ∗
k
H(ε(t, ω); Λ

˜
∗), we have the

strict inequality

Ik

(
1
λ∗

k

H(ε(t, ω); Λ
˜

∗)
)

> Ik

(
η

µ∗
k

H(ε(t, ω); Λ
˜

∗)
)

= Ik

(
1
µ∗

k

H(ε(t, ω);M
˜

∗)
)

,

and (6.6) fails.

To complete the construction of an equilibrium market, we appeal to
Theorem 6.1 and choose a vector Λ

˜
∈ ∗[0,∞)K satisfying the system of

equations (5.17). The positive homogeneity properties of (6.1), (6.2) permit
us to assume without loss of generality that

H(ε(0); Λ
˜
) = 1. (6.15)

Let us consider the process

η(t)
�
= H(ε(t); Λ

˜
) = U ′(ε(t); Λ

˜
), 0 ≤ t ≤ T. (6.16)

An application of Itô’s rule for differences of convex functions of mar-
tingales (e.g., Karatzas and Shreve (1991), Theorems 3.6.22, 3.7.1 and
Problem 3.6.24) yields

η(t) = 1 +
∫ t

0
[U ′′(ε(s); Λ

˜
)ε(s)ν(s) +

1
2
U ′′′(ε(s); Λ

˜
)‖ρ(s)‖2ε2(s)] ds

+
∫ t

0
U ′′(ε(s); Λ

˜
)ε(s) dξ(s)

+
K∑

k=1

[U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)]Lt(αk)

+
∫ t

0
U ′′(ε(s); Λ

˜
)ε(s)ρ′(s) dW (s), 0 ≤ t ≤ T, (6.17)

in conjunction with Theorem 5.6 and equation (2.2). Here Lt(αk) is the
local time at αk of the semimartingale ε(·), accumulated during [0, t]. On
the other hand, if H0(·) is the state price density in a standard, complete
financial marketM, then the process

ζ(t)
�
= H0(t)e

∫
t

0
β(u) du

= Z0(t) exp
{
−A(t) +

∫ t

0
(β(u)− r(u)) du

}
, 0 ≤ t ≤ T (6.18)

satisfies the integral equation

ζ(t) = 1−
∫ t

0
ζ(s) dA(s) +

∫ t

0
ζ(s)(β(s) − r(s)) ds

−
∫ t

0
ζ(s)θ′(s) dW (s), 0 ≤ t ≤ T. (6.19)
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Corollary 5.4 asserts thatM is an equilibrium market if and only if η(·) ≡
ζ(·), or equivalently, in light of the decompositions (6.17) and (6.19), if and
only if

r(t) = β(t)− 1
U ′(ε(t); Λ

˜
)

[
U ′′(ε(t); Λ

˜
)ε(t)ν(t)

+
1
2
U ′′′(ε(t); Λ

˜
)‖ρ(t)‖2ε2(t)

]
, (6.20)

θ(t) = −U ′′(ε(t); Λ
˜
)

U ′(ε(t); Λ
˜
)
ε(t)ρ(t), (6.21)

A(t) = −
∫ t

0

U ′′(ε(s); Λ
˜
)

U ′(ε(s); Λ
˜
)
ε(s) dξ(s)

−
K∑

k=1

U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)

U ′(αk; Λ
˜
)

Lt(αk) (6.22)

for 0 ≤ t ≤ T .

Theorem 6.3 (Existence of an equilibrium market): Choose Λ
˜

∗ ∈
∗[0,∞)K to satisfy (5.17) and (6.15). Define r(·), θ(·), and A(·) by
(6.20)–(6.22). Let σ(t) = {σnj(t)}1≤n,j≤N be an arbitrary, nonsingu-
lar, matrix-valued process satisfying the integrability condition (vii) of
Definition 1.1.3, and define

b(t)
�
= r(t)1

˜N + σ(t)θ(t). (6.23)

Let the initial stock prices be any vector S(0) = (S1(0), . . . , SN (0)) of
positive constants. Then the market M = (r(·), b(·), σ(·), S(0), A(·)) is an
equilibrium market.

Proof. Because of Corollary 5.4, we need only verify that M is a stan-
dard, complete financial market satisfying Condition 3.1. (Recall that we
are omitting dividends from the markets in this chapter.) Condition 2.1(iii),
the integrability of β(·), and the boundedness of ν(·) and ρ(·) ensure the
integrability of r(·) and the boundedness of θ(·). Together with the in-
tegrability condition on σ(·), this guarantees that

∫ T

0 ‖b(t)‖dt < ∞ a.s.
Therefore, M is a standard, complete financial market (Definitions 1.1.3,
1.5.1 and Theorem 1.4.2, 1.6.6).

Because U(·; Λ
˜
) is piecewise C3 on (c̄,∞) (Theorem 5.6) and U ′(·; Λ

˜
) =

H(·; Λ
˜
) is strictly positive and continuous on (c̄,∞), the bounds in

Condition 2.1(iii) imply that H0(t) = e
−
∫ t

0
β(u) duH(ε(t); Λ

˜
) satisfies

Condition 3.1(ii). To verify Condition 3.1(i), we consider

1
S0(t)

= e
−
∫ t

0
r(u) du−A(t)

, 0 ≤ t ≤ T.

Now, β(·) was assumed in Section 2 to be bounded from below, and all the

other terms appearing in (6.20) are bounded, so max0≤t≤T e
−
∫ t

0
r(u) du is
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bounded from above. It remains to establish

E
[

max
0≤t≤T

(
e−A(t))] <∞. (6.24)

From (6.17) we see that for some real constant C1, we have

K∑
k=1

[U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)]LT (αk)

≤ C1 −
∫ T

0
U ′′(ε(s); Λ

˜
)ε(s)ρ′(s) dW (s)

almost surely. For αk /∈ (c̄,∞) we have Lt(αk) ≡ 0, and inequality (5.27)
for αk ∈ (c̄,∞) shows that

max
0≤t≤T

K∑
k=1

[U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)]Lt(αk)

≤
K∑

k=1

[U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)]LT (αk).

These inequalities and equation (6.22) imply

max
0≤t≤T

(−A(t)) ≤ C2 + C3

K∑
k=1

[U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)]LT (αk)

≤ C4 − C5

∫ T

0
U ′′(ε(s); Λ)ε(s)ρ′(s) dW (s),

for appropriate constants C2, C3, C4, C5. Condition 6.24 follows. �

Theorem 6.4 (Uniqueness of the equilibrium market): Assume that
(6.4) holds. Then the equilibrium money market process S0(·), the state
price density process H0(·), and the market price of risk process θ(·), are
uniquely determined, as are the optimal consumption processes ĉ1(·), . . . ,
ĉK(·) of the individual agents.

Proof. The uniqueness of H0(·) follows from Corollary 5.4, Theorem 6.1,
and the initial condition H0(0) = 1. The uniqueness of ĉ1(·), . . . , ĉK(·) also
follows from Theorem 6.1. The semimartingale log H0(t) can be decom-
posed uniquely as the sum of a finite-variation process F (·) plus a local
martingale M(·). But

log H0(t) = −
∫ t

0
r(u) du−A(t)− 1

2

∫ t

0
‖θ(u)‖2du−

∫ t

0
θ(u) dW (u),

and the equation M(t) = −
∫ t

0 θ(u) dW (u), 0 ≤ t ≤ T determines the
process θ(·). Knowing θ(·) and using the equation
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F (t) = −
∫ t

0
r(u) du−A(t)− 1

2

∫ t

0
‖θ(u)‖2 du,

we determine −
∫ t

0 r(u) du−A(t), and hence S0(·). �

We should not expect the stock mean rate of return vector b(·) and the
volatility matrix σ(·) to be determined by equilibrium conditions, because
of the possibility of replacing stocks by mutual funds. Given a marketM =
(r(·), b(·), σ(·), S(0), A(·)), we can form a mutual fund by specifying an
initial value S̃(0) > 0 and the proportion pj(t) of the fund that is to be
invested in each stock j at time t. The proportion 1 −

∑N
j=1 pj(t) (which

may be negative, or may exceed 1) is invested in the money market. The
value of the mutual fund will then evolve according to the equation

dS̃(t) = S̃(t)[(1 − p′(t)1
˜N )(r(t) dt + dA(t))

+ p′(t)(b(t) dt + 1
˜NdA(t)) + p′(t)σ(t) dW (t)]

= S̃(t)[r(t) dt + dA(t) + p′(t)(b(t) − r(t)1
˜N ) dt + p′(t)σ(t) dW (t)].

This is just (1.3.3) with Γ(·) = δ(·) ≡ 0, X(·) = S̃(·), and π(·) = S̃(·)p(·).
Now let us choose a set of N mutual funds p1(·) = (p11(·), . . . ,

p1N (·))′, . . . , pN (·) = (pN1(·), . . . , pNN (·))′ such that the matrix P (t) =
(pij(t))1≤i,j≤N is nonsingular for all t ∈ [0, T ] almost surely. Then the
values S̃(t) = (S̃1(t), . . . , S̃N (t))′ for these funds evolve according to the
stochastic differential equation

dS̃(t) = diag(S̃(t)) · [(r(t) dt + dA(t))1
˜N

+ P (t)(b(t) − r(t)1
˜
) dt + P (t)σ(t) dW (t)],

where diag(S̃(t)) denotes the N ×N diagonal matrix with S̃1(t), . . . , S̃N (t)
in the diagonal positions. We may regard S̃1(·), . . . , S̃N (·) as a complete set
of stocks with mean rate of return vector

b̃(t)
�
= r(t)1

˜N + P (t)[b(t) − r(t)1
˜N ] (6.25)

and volatility matrix

σ̃(t)
�
= P (t)σ(t). (6.26)

The associated market price of risk is

θ̂(t)
�
= σ̃−1(t)[b̃(t)− r(t)1

˜N ] = σ−1(t)[b(t) − r(t)1
˜N ] = θ(t),

the same as the market price of risk associated with the original set of
stocks S1(·), . . . , SN (·).

If M = (r(·), b(·), σ(·), S(·), A(·)) is an equilibrium market for the prim-
itives introduced in Section 2, then so is M̃ = (r(·), b̃(·), σ̃(·), S̃(·), A(·)).
Indeed, since θ̃(·) = θ(·), the markets have a common state price density
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process H0(·), and this is all that matters (Theorem 5.2). Thus, equilibrium
considerations cannot determine the processes b(·) and σ(·).

It follows from Theorem 6.4, however, that under the risk-aversion condi-
tion (6.4), the equilibrium market is unique up to the formation of mutual
funds. If M = (r(·), b(·), σ(·), S(0), A(·)) and M̃ = (r(·), b̃(·), σ̃(·), S̃(0),
A(·)) are two equilibrium markets, the uniqueness of the market price of
risk implies

σ−1(t)[b(t) − r(t)1
˜N ] = σ̃−1(t)[b̃(t)− r(t)1

˜N ].

Setting P (t) = σ̃(t)σ−1(t), we have (6.25), (6.26).

Remark 6.5: Under condition (6.4), the representative agent utility func-
tion (5.24) that results in equilibrium is determined (up to an irrelevant
multiplicative constant) purely endogenously, by the individual agents’ util-
ity functions U1, . . . , Uk, the discount rate β(·), and the distribution of the
vector of endowment processes E(·) = (εK(·), . . . , εk(·)).

The paths of the equilibrium market processes r(·), A(·), and θ(·), as well
as the individual agents’ optimal consumption processes ĉk(·), depend on
the representative agent’s utility function, the discount rate function β(·),
the paths of the aggregate endowment process ε(·), and the paths of the
processes ν(·), ρ(·), and ξ(·) used in the model (2.2) of ε(·). More gener-
ally, r(·), A(·), θ(·) and ĉk(·) are adapted to the filtration {F(t)}0≤t≤T , the
augmentation by null sets of the filtration generated by the N -dimensional
Brownian motion W (·).

A more satisfactory result would be for r(·), A(·), θ(·), and ĉk(·) to be
adapted to the filtration {FE(t)}0≤t≤T generated by the vector E(·) =
(ε1(·), . . . , εK(·)) of endowment processes. This is indeed the case, under
the following conditions.

Assume that instead of (2.2), the individual agents’ endowment processes
are given by the system of functional stochastic differential equations

dεk(t) = εk(t)

νk(t, E(·)) dt +
N∑

j=1

ρkj(t, E(·)) dW (j)(t)

 , k = 1, . . . ,K,

where νk : [0, T ] × C([0, T ])K → R and pkd : [0, T ] × C([0, T ])K → R are
progressively measurable functionals as in Definition 3.5.15 of Karatzas and
Shreve (1991). If these functionals ν(t, y) = {νk(t, y)}k=1,...,K and ρ(t, y) =
{ρkj(t, y)} 1≤k≤K

1≤j≤N
are bounded and satisfy the Lipschitz condition

‖ν(t, y)− ν(t, z)‖+ ‖ρ(t, y)− ρ(t, z)‖ ≤ L(1 + sup
0≤u≤t

‖y(u)− z(u)‖)

for every t ∈ [0, T ] and y, z in C([0, T ])K , then the system (6.27) has a
pathwise unique, strong solution E(t), 0 ≤ t ≤ T . The proof is a straight-
forward modification of the standard iterative construction (e.g., Karatzas
and Shreve (1991), Theorem 5.2.9).
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The solution to (6.27) satisfies

εk(t) = εk(0) exp

{∫ t

0

[
νk(t, E(·))− 1

2

N∑
d=1

ρ2
kd(t, E(·))

]
dt

+
N∑

j=1

ρkj(t, E(·)) dW (j)(t)


and hence is nonnegative, and positive if εk(0) is positive. Provided that at
least one εk(0) is positive, we may write the differential of ε(t) =

∑K
k=1 εk(t)

as

dε(t) = ε(t)ν(t) dt + ε(t)
N∑

j=1

ρj(t) dW (j)(t),

where

ν(t) =
K∑

k=1

εk(t)
ε(t)

νk(t, E(·)),

ρj(t) =
K∑

k=1

εk(t)
ε(t)

ρkj(t, E(·)), j = 1, . . . , N.

We are now in the setting of (2.2) with ξ(·) ≡ 0, except that now all processes
are adapted to the filtration {FE(t)}0≤t≤T .

Remark 6.6: The equilibrium market in this chapter is constructed so
that the money market and all stocks are in zero net supply (cf. (5.3),
(5.4)). Within the framework of this chapter, other assets can be defined
and priced, and these can be in positive net supply. For example, the right
to receive agent k’s endowment process is in positive net supply. The value
of this right at time t is

1
H0(t)

· E
[∫ T

t

H0(u)εk(u) du
∣∣∣ F(t)

]
,

where H0(·) is determined by equilibrium. Any other value would result in
an arbitrage opportunity.

Remark 6.7 (The Consumption-based Capital Asset Pricing Model):
Suppose there exists a unique equilibrium market. From (6.16)–(6.22) we
have

dU ′(ε(t); Λ)
U ′(ε(t); Λ)

= β(t) dt − r(t) dt− dA(t)− U ′′(ε(t); Λ
˜
)

U ′(ε(t); Λ
˜
)
ε(t)ρ′(t) dW (t)

= β(t) dt − dS0(t)
S0(t)

− θ′(t) dW (t). (6.27)
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We see that if there is no discounting (β(·) ≡ 0), then the rate of growth of
the instantaneously risk-free asset is the negative of the growth rate of the
representative agent’s marginal utility from consumption. Note also that
with

J(x; Λ
˜
)

�
= −xU ′′(x; Λ

˜
)

U ′(x; Λ
˜
)

, (6.28)

we have

bn(t)− r(t) =
N∑

j=1

σnj(t)θj(t)

= J(ε(t); Λ)
N∑

j=1

σnj(t)ρj(t)

= J(ε(t); Λ)
d〈Sn, ε〉(t)
Sn(t)ε(t) dt

. (6.29)

In other words, the risk premium associated with each risky asset is pro-
portional to the relative covariance between the price of that asset and
the aggregate consumption; the proportionality constant is independent of
the particular asset and equals the “index of relative risk-aversion” for the
representative agent.

The above two observations are referred to as the consumption-based
capital asset-pricing model (CCAPM) for an economy.

Remark 6.8: Formula (6.22) suggests that even if the singularly con-
tinuous component ξ(·) of the aggregate endowment process is identically
zero, the singularly continuous component A(·) of the money market price
can be nonzero. In this case, movements in the equilibrium money mar-
ket price cannot be captured by the interest rate process r(·) alone. If ρ(·)
is nonzero, then the local-time process t �→ Lt(αk) strictly increases each
time ε(t) = αk. If in addition, ξ(·) ≡ 0, then

A(t) = −
K∑

k=1

U ′′(αk+; Λ
˜
)− U ′′(αk−; Λ

˜
)

U ′(αk; Λ
˜
)

Lt(αk) (6.30)

strictly decreases (recall (5.27)) each time ε(t) = αk for some k, and is con-
stant on each open interval in the complement of the set {t ∈ [0, T ]; ε(t) =
αk for some k}. The set {t ∈ [0, T ]; ε(t) = αk} is empty if U ′

k(c̄k) = ∞;
but if U ′

k(c̄k) < ∞, then {t ∈ [0, T ]; ε(t) = αk} is precisely the set of time
points at which the optimal consumption process for the kth agent “falls
to” or “rises from” the subsistence level c̄k. (Of course, “falling to” or “ris-
ing from” subsistence consumption c̄k is not a simple concept here, since
every point of the set {t ∈ [0, T ]; ε(t) = αk} is a cluster point of this set.)

Example 7.7 in the next section demonstrates that the preceding
phenomenon does occur.
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4.7 Examples

This section comprises several examples in which the various processes of
the equilibrium market can be computed more or less explicitly. In Exam-
ple 7.6 there are two agents with completely different utility functions. In
Example 7.7 there are two agents with related utility functions, except that
the optimal equilibrium consumption of one agent sometimes falls to zero,
whereas this quantity for the other agent is always positive. When optimal
equilibrium consumption of an agent falls to zero, or rises from zero, the
money market price decreases in a singularly continuous manner, i.e., the
money market price is continuous but cannot be represented by an interest
rate. Example 7.8 considers an ergodic aggregate endowment process.

Example 7.1 (Logarithmic utility with subsistence consumption): Let
Uk(c) = log(c− c̄k), for c > ck, k = 1, . . . ,K, where each c̄k is a nonnegative
constant. Then

U ′(c; Λ
˜
) = H(c; Λ) =

1
c− c̄

K∑
k=1

λk, c > c̄.

We normalize Λ
˜

by setting
∑K

k=1 λk = ε(0)− c̄, a strictly positive quantity
because of Condition 2.1(iii); thenH(ε(0); Λ) = 1. Equation (5.17) becomes

λk =
(ε(0)− c̄)E

∫ T

0 e
−
∫ t

0
β(u) du

(
εk(t)−c̄k

ε(t)−c̄

)
dt∫ T

0 e
−
∫ t

0
β(u) du

du
. (7.1)

With λk defined by (7.1), we have

H0(t) = H(ε(t); Λ
˜
) =

ε(0)− c̄

ε(t)− c̄
, (7.2)

and the optimal consumption process for agent k is

ĉk(t) = Ik

(
ε(0)− c̄

λk(ε(t)− c̄)

)
=

λk(ε(t)− c̄)
ε(0)− c̄

+ c̄k, k = 1, . . . ,K.

For each agent, ĉk(t) > c̄k for all t, almost surely. The equilibrium market
coefficients of (6.20)–(6.22) become

r(t) = β(t) +
ε(t)ν(t)
ε(t)− c̄

− ε2(t)‖ρ(t)‖2
(ε(t)− c̄)2

,

θ(t) =
ε(t)ρ(t)
ε(t)− c̄

, A(t) =
∫ t

0

ε(s)
ε(s)− c̄

dξ(s).

Example 7.2 (Power utility with subsistence consumption): Let Uk(c) =
1
p (c − c̄k)p for c > c̄k, k = 1, . . . ,K, where p < 1, p �= 0, and each c̄k is a
nonnegative constant. Then
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U ′(c; Λ
˜
) = H(c; Λ

˜
) =

∑K
k=1 λ

1
1−p

k

c− c̄

1−p

, c > c̄.

We normalize Λ
˜

by setting
∑K

k=1 λ
1

1−p

k = ε(0) − c̄, so that H(ε(0); Λ
˜
) = 1.

Equation (5.17) becomes

λ
1

1−p

k =
(ε(0)− c̄)E

∫ T

0 e
−
∫ t

0
β(u) du εk(t)−c̄k

(ε(t)−c̄)1−p dt

E
∫ T

0 e
−
∫ t

0
β(u) du(ε(t)− c̄)p dt

. (7.3)

With λk defined by (7.3), we have

H0(t) = H(ε(t); Λ
˜
) =

(
ε(0)− c̄

ε(t)− c̄

)1−p

,

and the optimal consumption process for agent k is

ĉk(t) = Ik

(
1
λk

(
ε(0)− c̄

ε(t)− c̄

)1−p
)

= λ
1

1−p

k

(
ε(t)− c̄

ε(0)− c̄

)
+ c̄k, k = 1, . . . ,K.

For each agent, ĉk(t) > c̄k for all t, almost surely. The equilibrium market
coefficients of (6.20)–(6.22) become

r(t) = β(t) +
(1− p)ε(t)ν(t)

ε(t)− c̄
− (1− p)(2− p)ε2(t)‖ρ(t)‖2

2(ε(t)− c̄)
,

θ(t) =
(1− p)ε(t)ρ(t)

ε(t)− c̄
, A(t) = (1− p)

∫ t

0

ε(s)
ε(s)− c̄

dξ(s).

The logarithmic formulas of Example 7.1 are recovered by setting p = 0 in
this example.

Remark 7.3: In Example 7.2 and with Λ
˜

given by (7.3), the ray of vectors
{ηΛ

˜
}0<η<∞ is the locus of solutions to the system of equations (7.3), even

for negative powers p. This shows that condition (6.4) is not necessary for
uniqueness in Theorem 7.1, since in this example

−cU ′′
k (c)

U ′
k(c)

=
(1− p)c
c− c̄k

> 1 for c > c̄k, p < 0.

Remark 7.4: Condition 2.1(ii) is not necessary for the construction
the equilibria in Examples (7.1) and (7.2). All that is required is that
the expressions appearing on the right-hand sides of (7.1), (7.3) be non-
negative for all k. They will be positive for at least one k because of
Condition 2.1(iii).

Example 7.5 (Constant aggregate endowment): If the aggregate en-
dowment ε > c̄ is constant, then the unique vector Λ

˜
satisfying the
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normalization H(ε; Λ) = 1 is

Λ
˜

=
(

1
U ′

1(ĉ1)
, . . . ,

1
U ′

K(ĉk)

)
,

where the constants ĉk ≥ c̄k are the optimal consumption rates

ĉk =
E
∫ T

0 e
−
∫

t

0
β(u) du

εk(t) dt∫ T

0 e
−
∫

t

0
β(u) du

dt
, k = 1, . . . ,K.

Constant aggregate endowment implies ν(·) ≡ 0, ξ(·) ≡ 0, ρ(·) ≡ 0
˜

in (2.2),
and the local time of ε(·) at every point is zero. Therefore, the equilibrium
market coefficients (6.20)–(6.22) are

r(t) = β(t), θ(t) = 0
˜
, A(t) = 0, 0 ≤ t ≤ T.

It should be noted that the individual agents’ endowments can be random
and time-varying, which means that agents may still have to trade with
one another in order to finance their constant rates of consumption.

Example 7.6 (K = 2, U1(c) = log c, U2(c) =
√

c.): In this case, we have

U ′(c; Λ
˜
) = H(c; Λ

˜
) =

λ1

2c

1 +

√
1 + c

(
λ2

λ1

)2
 , c > 0,

and the optimal consumption rates become

ĉ1(t) =
2ε(t)

1 +
√

1 + ε(t)(λ2
λ1

)2
, ĉ2(t) =

 λ2
λ1

ε(t)

1 +
√

1 + ε(t)(λ2
λ1

)2

2

.

The positive constants λ1 and λ2 are uniquely determined by (5.17) with
k = 1:

2
∫ T

0
e

−
∫

t

0
β(u) du

dt

= E

∫ T

0
e

−
∫

t

0
β(u) du

1 +

√
1 + ε(t)

(
λ2

λ1

)2
 ε1(t)

ε(t)
dt, (7.4)

and the normalization condition (6.15) gives

λ1 =
2ε(0)

1 +
√

1 + ε(0)(λ2
λ1

)2
. (7.5)

Indeed, (7.4) determines λ2
λ1

, and then λ1 is found from (7.5).
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With the vector Λ
˜

= (λ1, λ2) ∈ (0,∞)2 thus determined, the formulae

r(t) = β(t) + J(ε(t); Λ
˜
)ν(t) +

1
2
‖ρ(t)‖2K(ε(t); Λ

˜
),

θ(t) = J(ε(t); Λ
˜
)ρ(t), A(t) =

∫ t

0
J(ε(s); Λ

˜
) dξ(s)

of (6.20)–(6.22), with

J(c; Λ
˜
) = −cU ′′(c; Λ

˜
)/U ′(c; Λ

˜
), K(c; Λ

˜
) = −cU ′′′(c; Λ

˜
)/U ′(c; Λ

˜
),

provide the coefficients of the equilibrium market model.

Example 7.7 (Money market not represented by an interest rate): This
example shows that the equilibrium money-market price can have a non-
trivial singularly continuous component A(·), even though the singularly
continuous component ξ(·) of the aggregate endowment process is identi-
cally zero. There is a discussion of this phenomenon in Remark 6.8. Here
we set up a particular model exhibiting the behavior of interest.

We consider two agents (K = 2) with utility functions

U1(c) =
{

log c, c > 0,
−∞, c ≤ 0,

U2(c) =
{

log(c + 1), c ≥ 0,
−∞, c < 0,

so that c̄1 = c̄2 = c̄ = 0. Then

I1(y) =
1
y
, I2(y) =

{
(1/y)− 1, 0 < y ≤ 1,
0, y ≥ 1,

I(y; Λ
˜
) =

{
λ1+λ2

y − 1, 0 < y ≤ λ2,
λ1
y , y ≥ λ2,

U ′(c; Λ
˜
) = H(c; Λ

˜
) =

{
λ1
c , 0 < c < λ1

λ2
,

λ1+λ2
1+c , c ≥ λ1

λ2
.

In the notation of Theorem 5.6, α1 = 0, α2 = λ1
λ2

, and D = {λ1
λ2
}. In the

notation of (5.29), (5.30),

ĉ1 =

{
c, 0 < c < λ1

λ2
,

λ1(1+c)
λ1+λ2

, c ≥ λ1
λ2

,
(7.6)

ĉ2 =

{
c, 0 < c < λ1

λ2
,

λ2(1+c)
λ1+λ2

− 1, c ≥ λ1
λ2

,
(7.7)

U(c; Λ
˜
) =


λ1 log c, 0 < c < λ1

λ2
,

(λ1 + λ2) log(1 + c) + λ1 log
(

λ1
λ2+λ2

)
+ λ2 log

(
λ2

λ1+λ2

)
, c ≥ λ1

λ2
,
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and we observe that (cf. (5.27))

U ′′
(

λ1

λ2
+; Λ

˜

)
− U ′′

(
λ1

λ2
−; Λ

˜

)
=

λ2
3

λ1(λ1 + λ2)
.

We set β(·) ≡ 0. For the aggregate endowment, we take the process

ε(t) = 1 + exp
{

W (t ∧ τ)− 1
2
(t ∧ τ)2

}
, 0 ≤ t ≤ T,

where τ = inf{t ∈ [0, T );W (t) = 1} ∧ T . Then ε(·) is a continuous
martingale bounded strictly between 1 and 1 + e, and

dε(t) = (ε(t)− 1)1{t≤τ} dW (t), ε(0) = 2.

This is of the form (2.2) with ν(·) ≡ 0, ξ(·) ≡ 0, and ρ(t) = ε(t)−1
ε(t) 1{t≤τ}.

Condition 2.1(iii) is satisfied.
Because ε(t) > 1 for 0 ≤ t ≤ T , almost surely, we have E

∫ T

0
2ε(t)

1+ε(t) dt >

T . Choose κ ∈ (0, 1) to satisfy

κ · E
∫ T

0

2ε(t)
1 + ε(t)

dt > T (7.8)

and set ε1(t) = κε(t), ε2(t) = (1 − κ)ε(t), so that Condition 2.1(ii) is also
satisfied. Equation (5.17) with k = 1 or 2 reduces to

T

κ
= f

(
λ1

λ2

)
, (7.9)

where

f(α)
�
= E

∫ T

0
1{ε(t)<α} dt +

(
1 +

1
α

)
· E
∫ T

0

ε(t)
1 + ε(t)

1{ε(t)≥α} dt. (7.10)

Note that

f(α) = E

∫ T

0
1{ε(t)<α} dt + E

∫ T

0

(
1− 1

1 + ε(t)

)
1{ε(t)≥α} dt

+
1
α

E

∫ T

0

ε(t)
1 + ε(t)

1{ε(t)≥α} dt

= T +
1
α

E

∫ T

0

(ε(t)− α)+

1 + ε(t)
dt. (7.11)

From (7.10) we have f(1) = 2E
∫ T

0
ε(t)

1+ε(t) dt > T
κ and f(1 + e) = T < T

κ .
Because f is continuous, there must exist α ∈ (1, 1 + e) such that

f(α) =
T

κ
. (7.12)

Let α∗ be the smallest such α. Because α∗ solves (7.12), (7.11) implies
E
∫ T

0 1{ε(t)>α∗} dt > 0, and f(α) < f(α∗) for all α > α∗. For 0 < α < 1, it
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is apparent from (7.8) that f(α) ≥ f(1) > T
κ . Therefore, α∗ is the unique

solution in (0,∞) to (7.12).

From (7.9) we see that the equilibrium vector Λ
˜

= (λ1, λ2) must satisfy
λ1
λ2

= α∗. We determine λ1 and λ2 individually from the normalization
condition

1 = H(ε(0); Λ
˜
) =

{
λ1

ε(0) , if 0 < ε(0) < α∗,
λ1+λ2
1+ε(0) , if ε(0) ≥ α∗.

We have already seen that E
∫ T

0 1{ε(t)>α∗} dt > 0. We must also have
E
∫ T

0 1{ε(t)≤α∗} dt > 0, because P [inf0≤t≤T ε(t) = 1] > 0 by construction.
It follows that the process ε(·) crosses the level α∗ during the interval [0, T ]
with positive probability. Being a continuous martingale, ε(·) is a time-
changed Brownian motion (Karatzas and Shreve (1991), Section 3.4B),
and hence Lt(α∗) increases at each t satisfying ε(t) = α∗ (ibid, Prob-
lem 6.13(iv)). The equilibrium market coefficient processes (6.20)–(6.22)
are

r(t) = −
[

1
ε2(t)

1{ε(t)<α∗} +
1

(1 + ε(t))2
1{ε(t)≥α∗}

]
(ε(t)− 1)21{t≤τ},

θ(t) =
[

1
ε(t)

1{ε(t)<α∗} +
1

1 + ε(t)
1{ε(t)≥α∗}

]
(ε(t)− 1)1{t≤τ},

A(t) = − Lt(α∗)
α∗(1 + α∗)

,

and A(·) is nontrivial. According to (6.6) and (7.6), (7.7), the optimal
consumption processes are

ĉ1(t) = ε(t)1{ε(t)<α∗} +
α∗(1 + ε(t))

1 + α∗ 1{ε(t)≥α∗},

ĉ2(t) =
ε(t)− α∗

1 + α∗ 1{ε(t)≥α∗}.

Example 7.8 (Ergodic aggregate endowment): Let us suppose that each
agent k has utility function Uk with c̄k = 0 and U ′

k(0) = ∞, so c̄ = 0. Let
us further suppose that the aggregate endowment process ε(·) is a time-
homogeneous diffusion on an interval I = (γ1, γ2) with 0 < γ1 < γ2 < ∞;
i.e.,

dε(t) = ε(t)ν(ε(t)) dt + ε(t)ρ(ε(t)) dW (t),

where the functions ν : I → R and ρ : I → RN are bounded on compact
subintervals of I. We assume also that ‖ρ(·)‖ is bounded away from zero
on compact subintervals of I.

We introduce the scale function

p(c) =
∫ c

γ

exp
{
−2
∫ y

γ

ν(z) dz

z‖ρ(z)‖2

}
dy, c ∈ I,



4.7 Examples 195

and the speed measure

m(dc) =
2dc

c2‖ρ(c)‖2p′(c)
, c ∈ I,

where γ is a fixed point in I, and assume that

p(γ1) = −∞, p(γ2) =∞, m(I) <∞. (7.13)

Then the diffusion process ε(·) is ergodic with invariant measure
m(dc)/m(I) (cf. Proposition 5.5.22 and Exercise 5.5.40 in Karatzas and
Shreve (1991)).

Finally, suppose that β(·) = β is constant. Then (6.20)–(6.22) give A(·) ≡
0 and

r(t) = β − 1
U ′(ε(t))

[
U ′′(ε(t))ε(t)ν(ε(t)) +

1
2
U ′′′(ε(t))‖ρ(ε(t))‖2ε2(t)

]
,

θ(t) = ε(t)ρ(ε(t))
(
−U ′′(ε(t))

U ′(ε(t))

)
,

where U(·) = U(·; Λ) is the representative agent utility function of (5.24).
In particular,

r(t) +
1
2
‖θ(t)‖2 = β − 1

2
ε2(t)‖ρ(ε(t))‖2

[
U ′(ε(t))U ′′′(ε(t))− (U ′′(ε(t)))2

(U ′(ε(t)))2

+
U ′′(ε(t))
U ′(ε(t))

· 2ν(ε(t))
ε(t)‖ρ(ε(t))‖2

]
, (7.14)

and the maximal growth rate from investment in this market (corresponding
to the “optimal logarithmic portfolio” π̂(·) = (σ′(·))−1θ(·)X̂(·) of (3.10.2))
is equal to the discount rate β, as we show below.

We note first from (3.10.3) that the wealth process X̂(·) corresponding to
the optimal logarithmic portfolio, regardless of the positive initial condition
X̂(0), satisfies

lim
T→∞

1
T

log X̂(T ) = lim
T→∞

1
T

∫ T

0

[
r(s) +

1
2
‖θ(s)‖2

]
ds,

because θ(·) is bounded, which implies limT→∞
1
T

∫ T

0 θ′(s) dW (s) = 0. The
ergodic property for ε(·), in conjunction with (7.13), implies

lim
T→∞

1
T

∫ T

0

[
r(s) +

1
2
‖θ(s)‖2

]
ds

= β − 1
2m(I)

∫ γ2

γ1

c2‖ρ(c)‖2
[
U ′(c)U ′′′(c)− (U ′′(c))2

(U ′(c))2
+

U ′′(c)
U ′(c)

· 2ν(c)
c‖ρ(c)‖2

]
m(dc)

= β − 1
m(I)

∫ γ2

γ1

[
U ′(c)U ′′′(c)− (U ′′(c))2

(U ′(c))2
− U ′′(c)

U ′(c)
· p

′′(c)
p′(c)

]
dc

p′(c)
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= β − 1
m(I)

∫ γ2

γ1

[(
U ′′(c)
U ′(c)

)′
· 1
p′(c)

− U ′′(c)
U ′(c)

· p′′(c)
(p′(c))2

]
dc

= β − 1
m(I)

∫ γ2

γ1

d

dc

(
U ′′(c)
U ′(c)

· 1
p′(c)

)
dc

= β − 1
m(I)

[
U ′′(γ2)

U ′(γ2)p′(γ2−)
− U ′′(γ1)

U ′(γ1)p′(γ1+)

]
= β,

because p′(γ2−) = p′(γ1+) =∞ from (7.13).

4.8 Notes

Models of competitive equilibrium, i.e., of the way in which demand for
goods determines prices, have occupied economists for more than a century.
One of the oldest works on this subject is Walras (1874/77). A mathemat-
ical treatment of the existence and uniqueness of solutions to Walras’s
equations was given by Wald (1936), in whose work can be found an early
version of the risk-aversion index condition 6.4 (see also Rothschild and
Stiglitz (1971) for another use of this condition). The first complete proof
for the existence of equilibrium in an economy with several agents and
finitely many commodities was given by Arrow and Debreu (1954). A per-
spective on this and related work can be obtained from Arrow (1970, 1983),
Debreu (1982), and the surveys by Debreu (1959, 1983).

The classical reference on competitive equilibrium with an infinite-
dimensional commodity space is Bewley (1972). The commodity space in
this work is L∞, a space whose positive orthant has nonempty interior, and
this fact is necessary for the separating hyperplane argument at the heart
of the paper. To remove this interiority condition, Mas-Colell (1986) intro-
duced the concept of “uniform properness” for the preferences of agents.
In the context of the model of this chapter, and with ck = 0 for all k,
uniform properness requires that U ′

k(0) be finite for every k. A survey of
equilibrium existence theory in infinite-dimensional spaces is Mas-Colell
and Zame (1991).

The models in the above papers are not explicitly either dynamic or
stochastic. Models that are both stochastic and dynamic have the interest-
ing feature that individuals can achieve equilibrium allocations by trading
in securities. This role of securities in spanning uncertainty in a complete
market was already recognized by Arrow (1952). Radner (1972) established
existence of equilibrium in a discrete-time dynamical market with several
agents who trade with one another. Lucas (1978) set up a discrete-time
Markov model in which the optimal consumption/production of a repre-
sentative agent leads to equilibrium. This work was presaged by LeRoy
(1973). Prescott and Mehra (1980) extended the work of Lucas (1978) to a
setup with several identical agents. The analysis of a representative agent or
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several identical agents leads to the consumption-based capital asset pricing
model (CCAPM) of Merton (1973b), Breeden (1979), and Cox, Ingersoll,
and Ross (1985a); see Remark 6.7. Empirical tests of this model performed
by Breeden, Gibbons, and Litzenberger (1989) found partial agreement
with data.

The issue of existence and uniqueness of equilibrium in a continuous-time
stochastic model with nonidentical (heterogeneous) agents is inherently
infinite-dimensional, because consumption is indexed by both time and by
the “state of nature” ω ∈ Ω. Duffie (1986) gave conditions sufficient for the
existence of such an equilibrium, but CCAPM was not obtained because the
analysis required the uniform properness condition of Mas-Colell (1986); see
also Duffie and Huang (1987). Duffie and Huang (1985) showed that if a
continuous-time stochastic model with heterogeneous agents has an equi-
librium, then this equilibrium can be implemented by trading in securities.
Huang (1987) provided conditions under which such an equilibrium leads
to prices that are functions of a diffusion state-process. The missing piece
in this puzzle was supplied by Duffie and Zame (1989), and independently
by Araujo and Monteiro (1989a,b), who provided functional-analytic proofs
of the existence of equilibrium without the uniform properness condition
of Mas-Colell (1986).

The approach to the questions of existence and uniqueness of equilibrium
followed in this chapter is taken from the papers Karatzas, Lehoczky, and
Shreve (1990, 1991) and Karatzas, Lakner, Lehoczky, and Shreve (1991).
The fundamental idea of assigning weights to the different agents, and
thereby reducing the problem to one of finding the proper weights, was
apparently first used by Negishi (1960). Other authors, including Magill
(1981) and Constantinides (1982), have used this method. In the model
of this chapter the Negishi method turns the infinite-dimensional problem
of finding equilibrium consumption processes into the finite-dimensional
problem of finding the proper weights. Extensions of this approach permit
a study of equilibrium in the presence of several commodities (e.g., Lakner
(1989)), of an agent who takes into account the effect of his actions on prices
(Cuoco and Cvitanić (1996), Başak (1996b)), of heterogeneous beliefs or in-
formation for agents (cf. Detemple (1986a,b), Detemple and Murthy (1993),
Başak (1996b,c), DeMarzo and Skiadas (1996, 1997), Pikovsky (1998)), of
restrictions on stock-market participation (Detemple and Murthy (1996)),
Başak (1996c), Başak and Cuoco (1998), Cuoco (1997)), of stochastic dif-
ferential utility (Duffie, Geoffard and Skiadas (1994)), and of the effect
that portfolio insurers have on the market (Başak (1993, 1995, 1996a),
Grossman and Zhou (1996)). Dana and Pontier (1992) and Dana (1993a,b)
have extended some of the results in Karatzas, Lehoczky, and Shreve (1990)
and have cast the arguments of this chapter into more traditional economic
terms. Dumas (1989) is similar to, but more detailed than, our Example 7.6.
Example 7.8 grew out of conversations with Dean Foster.
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When markets are incomplete, equilibrium analysis becomes more diffi-
cult. Hart (1975) provided an example of a discrete-time model in which
equilibrium does not exist. Following this, Kreps (1982), McManus (1984),
Magill and Shafer (1984), and Duffie and Shafer (1985, 1986) demon-
strated that for nearly all discrete-time models, equilibrium does exist.
Again in a discrete-time model, Duffie (1987) established the existence
of equilibrium under the assumption that all securities are purely finan-
cial, i.e., represent claims to monetary dividends rather than claims to
goods. Rubinstein (1974) provided conditions on agents’ utility functions
that lead to existence of equilibrium as if the market were complete. Lu-
cas (1978), Bewley (1986), Duffie, Geanakoplos, Mas-Colell, and McLennan
(1994), and Karatzas, Shubik, and Sudderth (1994, 1997) study discrete-
time stationary Markovian equilibria in infinite-horizon models. For more
information about discrete-time equilibrium results for incomplete market
models, the reader can consult the recent monograph by Magill and Quinzii
(1996) and its references.

Cuoco and He (1994) have extended the methodology of this chapter
to incomplete continuous-time markets; see also Cuoco and He (1993), He
and Pagès (1993), Cuoco (1997) and the references therein. Equilibrium
analysis in this setting depends on the ability to solve the single-agent
optimal consumption/investment problem of Chapter 6, but in the presence
of a random endowment stream rather than an initial capital at t = 0; see
the notes at the end of that chapter.



5
Contingent Claims in
Incomplete Markets

5.1 Introduction

The subject of this chapter is the arbitrage pricing and almost sure hedg-
ing of contingent claims in markets which are incomplete due to portfolio
constraints. It often occurs in such markets that a given contingent claim
cannot be hedged perfectly, no matter how large the initial wealth of the
would-be hedging agent. However, it can be the case that with sufficient
initial wealth, a hedging agent can construct a portfolio which respects the
constraints and still leads to a final wealth that dominates almost surely the
payoff of the contingent claim. This chapter distinguishes these two cases
and shows how, when possible, to construct the superreplicating portfolio
of the second case.

In Section 2 of this chapter we set up the financial market modelM(K)
with constraints. In particular, there is a nonempty, closed convex set K ⊆
RN , and the investing agent’s vector of wealth proportions in the N stocks
is required to lie in this set. The model includes such common situations
as prohibition or restriction on short-selling, prohibition or restriction on
borrowing from the money market, and incompleteness in the sense that
some stocks (or other sources of uncertainty) are unavailable for investment.
Given a contingent claim, which in this chapter pays off a nonnegative
amount at the final time only, we define hup(K), the upper hedging price
of the claim, to be the least initial wealth that permits construction of a
superreplicating portfolio in the constrained market M(K). To compute
hup(K), we introduce a family of dual processes D, and with each dual
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process ν ∈ D we construct an auxiliary marketMν related to the original
one. There are no portfolio constraints in the auxiliary markets, and so
the contingent claim in these markets can be priced and hedged using
the theory of Chapter 2. Let uν be the price of the contingent claim in
the (unconstrained) market Mν . Theorem 6.2, the principal result of this
chapter, is that

hup(K) = sup
ν∈D

uν . (6.3)

This supremum is infinite if and only if superreplication in the constrained
market M(K) is not possible.

In the special case of a market with constant coefficients and of a contin-
gent claim whose payoff is a function of the stock prices at the final time,
the supremum in (6.3) turns out to be the price of a related contingent
claim in the original market without portfolio constraints. This result is
obtained in Section 7.

Section 8 is a study of conditions under which the supremum in (6.3)
is attained by a so-called optimal dual process ν̂(·). When an optimal dual
process ν̂(·) exists, the hedging portfolio process in the unconstrained mar-
ketMν̂ satisfies the portfolio constraints in the constrained marketM(K)
and replicates exactly the contingent claim almost surely.

The discussion so far has concerned the seller of a contingent claim, who
receives an initial sum of money and wishes to invest in the constrained
market M(K) so as to superreplicate the contingent claim. In Section 9
we take up the problem of the buyer of a contingent claim, who initially
either borrows from the money market or sells stock short in order to raise
capital to buy the contingent claim. The buyer wishes to manage his debt
so that the payoff of the contingent claim at the final time is sufficient to
cover this debt. The buyer also invests in a constrained market, although
the modeling of his constraint is complicated by the fact that his wealth
prior to the final time is nonpositive. We require in Section 9 that the
vector of the buyer’s wealth proportions invested in the N stocks lie in a
nonempty, closed, convex set K− related to K. We define hlow(K−) to be
the largest sum the buyer can borrow and still have the payoff from the
contingent claim cover his debt almost surely at the final time. For the
buyer’s problem, our principal result is Theorem 9.10:

hlow(K−) = inf
ν∈D(b)

uν , (9.29)

where D(b) is the set of bounded processes in D. Actually, the supremum in
(6.3) could have been restricted to bounded processes ν ∈ D(b) as well.

It is clear from (6.3) and (9.29) that hlow(K−) ≤ hup(K). Arbitrage
arguments show that the price of the contingent claim cannot lie outside
the interval [hlow(K−), hup(K)], but are incapable of determining a single
price inside the interval, unless this interval contains only one point.
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Section 10 develops the formula for the lower hedging price for contingent
claims that are functions of the final stock prices in a market with constant
coefficients. This formula is analogous to the one derived in Section 7 for
the upper hedging price.

5.2 The Model

In this chapter and the next, we shall work in the context of a financial
marketM = (r(·), b(·), δ(·), σ(·), S(0), A(·)) as in Definition 1.1.3, governed
by the stochastic differential equations

dS0(t) = S0(t)[r(t) dt + dA(t)], (2.1)

dSn(t) = Sn(t)

[
bn(t) dt + dA(t) +

D∑
d=1

σnd(t) dW (d)(t)

]
, (2.2)

n = 1, . . . , N,

for the money market and stock price processes, respectively. For this mar-
ket we shall assume throughout this chapter, without further mention,
that

N = D, (2.3)


the volatility matrix σ(t, ω) = (σnd(t, ω))1≤n,d≤N

is bounded and nonsingular, with σ−1(t, ω)
bounded, uniformly in (t, ω) ∈ [0, T ]× Ω

 , (2.4)

S0(T ) ≥ s0 a.s. for some constant s0 > 0, (2.5)∫ T

0
‖θ(t)‖2 dt <∞, a.s., (2.6)

where the market price of risk process θ(·) of (1.4.9) is

θ(t) ∆= σ−1(t)[b(t) + δ(t)− r(t)1
˜
], 0 ≤ t ≤ T, (2.7)

and δ(·) is the vector of dividend rate processes. We will have a complete
financial market (Theorem 1.6.6) if the positive local martingale

Z0(t)
∆= exp

{
−
∫ t

0
θ′(s) dW (s) − 1

2

∫ t

0
‖θ(s)‖2 ds

}
, 0 ≤ t ≤ T, (2.8)

of (1.5.2) is a martingale. We do not always assume this property, so the
market may not be standard in the sense of Definition 1.5.1. Here and in
the sequel, we retain the notation (1.5.6) and (1.5.12) for the Brownian
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motion with drift (under P )

W0(t)
∆= W (t) +

∫ t

0
θ(s) ds, 0 ≤ t ≤ T, (2.9)

and the state price density process

H0(t)
∆=

Z0(t)
S0(t)

, 0 ≤ t ≤ T. (2.10)

Consider now an agent with cumulative income process Γ(t) = x−C(t),
0 ≤ t ≤ T , where x ≥ 0 is his initial wealth and C(·) is his cumulative con-
sumption, an {F(t)}-adapted process with nondecreasing, right-continuous
paths and C(0) = 0, C(T ) <∞ almost surely. A portfolio process π(·) is an
RN -valued, {F(t)}-progressively measurable process satisfying (1.2.5) and
(1.2.6) (see Remark 1.2.2); since∫ T

0
|π′(t)(b(t) − δ(t)− r(t)1

˜
)| dt

=
∫ T

0
|π′(t)σ(t)θ(t)| dt

≤
(∫ T

0
‖σ′(t)π(t)‖2 dt

)1/2(∫ T

0
‖θ(t)‖2 dt

)1/2

,

the condition (1.2.5) follows from (1.2.6) and (2.6). Thus, under the
assumptions of this chapter, a portfolio process is an RN -valued, and
{F(t)}-progressively measurable process almost surely satisfying (1.2.6):∫ T

0
‖σ′(t)π(t)‖2 dt <∞. (2.11)

The wealth process Xx,C,π(·) corresponding to the triple (x,C, π) is
determined by (1.3.4) (cf. (3.3.1)):

Xx,C,π(t)
S0(t)

+
∫

(0,t]

dC(v)
S0(v)

= x +
∫ t

0

1
S0(v)

π′(v)σ(v) dW0(v), 0 ≤ t ≤ T,

(2.12)
which can also be written as

M0(t)
∆= H0(t)Xx,C,π(t) +

∫
(0,t]

H0(v) dC(v)

= x +
∫ t

0
H0(v)[σ′(v)π(v) −Xx,C,π(v)θ(v)]′ dW (v), 0 ≤ t ≤ T

(2.13)

(cf. (3.3.3)). By analogy with Remark 3.6.10, the corresponding portfolio-
proportion process is defined by

p(t) ∆=


π(t)

Xx,C,π(t)
, ifXx,C,π(t) �= 0,

p∗, if Xx,C,π(t) = 0,
(2.14)
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where p∗ is an arbitrary but fixed vector in K. The N -dimensional
vector p(t) = (p1(t), . . . , pN (t))′ represents the proportions of wealth
Xx,C,π(t) invested in the corresponding stocks at time t, whereas π(t) =
(π1(t), . . . , πN (t))′ are the actual amounts invested.

Let K be a nonempty, closed, convex subset of RN . Interpretations of
various choices of K are provided in Examples 4.1.

Definition 2.1: We say that a pair (C, π) consisting of a cumulative
consumption process and a portfolio process is admissible for the initial
wealth x ≥ 0 and the constraint set K, and we write (C, π) ∈ A(x;K), if
the process Xx,C,π(·) given by (2.12) satisfies

Xx,C,π(t) ≥ 0, ∀t ∈ [0, T ] (2.15)

almost surely, and the portfolio-proportion process p(·) defined by (2.14)
satisfies

p(t) ∈ K for Lebesgue-a.e. t ∈ [0, T ] (2.16)

almost surely. We denote by M(K) the financial market M of (2.1)–(2.6)
when agents are constrained to choose (C, π) so that (2.15) and (2.16) are
satisfied.

When x ≥ 0 and (C, π) ∈ A(x;K), the process M0(·) of (2.13) is
a nonnegative local martingale, and hence a supermartingale. Taking
expectations in (2.13), we obtain the budget constraint

E

[
H0(T )Xx,C,π(T ) +

∫
(0,T ]

H0(v) dC(v)

]
≤ x. (2.17)

The following result is an extension of Theorem 3.3.5; this latter is more
restrictive in that it requires the cumulative consumption process C(·) to be
of the form C(t) =

∫ t

0 c(s) ds for some nonnegative, {F(t)}-progressively
measurable consumption process c(·). It is straightforward to check that
the proof of Theorem 3.3.5 goes through in the more general setting of
Theorem 2.2 below.

Theorem 2.2: Let x ≥ 0 be given and suppose that K = RN . Let C(·) be
a cumulative consumption process and B a nonnegative, F(T )-measurable
random variable such that

E

[
H0(T )B +

∫
(0,T ]

H0(t) dC(t)

]
= x. (2.18)

Then there exists a portfolio process π(·) such that (C, π) ∈ A(x; RN ) and
the corresponding wealth process is given by

Xx,π,C(t) =
1

H0(t)
E

[
H0(T )B +

∫
(t,T ]

H0(s) dC(s)

∣∣∣∣∣F(t)

]
,

0 ≤ t ≤ T. (2.19)
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In particular, the process H0(t)Xx,C,π(t)+
∫
(0,t] H0(s) dC(s), 0 ≤ t ≤ T , is

a martingale, and Xx,C,π(T ) = B almost surely.

5.3 Upper Hedging Price

Let us suppose that at time t = 0, the agent of Section 2 agrees to make a
payment of a random amount B ≥ 0 at the future time T . The randomness
in the size of his payment may come from several factors, still unresolved at
time t = 0 and beyond the agent’s control. For instance, B = (S1(T )− q)+

describes the case of selling a European call option on the first stock, with
strike price q ≥ 0; B = (q − S1(T ))+ is the case of a European put option.
Additional examples are presented in Chapter 2.

What is the value at time t = 0 of this promise to pay B at time T?
To answer this question, let us argue as in the beginning of Section 1.6.
Suppose that at time t = 0 the agent sets aside an amount x ≥ 0 to invest in
the marketM(K). He has to obey the constraint p(·) ∈ K of this market,
but wants to be certain that at time T his wealth X(T ) will have grown
to match or exceed the size of the payment he has to make, i.e., he wants
to achieve X(T ) ≥ B almost surely. We call the smallest amount of initial
capital that enables him to do this the upper hedging price of the contingent
claim B.

We formalize this discussion with the following definition. To simplify
the presentation of this chapter, we define below a contingent claim as
a nonnegative payment at the final time only. This is a special case of
Definition 2.2.1, under which a European contingent claim was a cash flow
over an entire time interval, at any point of which the flow could be making
either positive or negative payments.

Definition 3.1:

(i) In this chapter, a contingent claim B is defined as a nonnegative
F(T )-measurable random variable. We call

u0
∆= E[H0(T )B] (3.1)

the unconstrained hedging price of B in the marketM.
(ii) The upper hedging price inM(K) of the contingent claim B is defined

to be

hup(K) (3.2)
∆= inf{x ≥ 0;∃(C, π) ∈ A(x;K) with Xx,C,π(T ) ≥ B, a.s.}.

(iii) Finally, we say that B is K-attainable if hup(K) < ∞ and if there
exists a portfolio process π(·) such that

(0, π) ∈ A(hup(K);K) and Xhup(K),0,π(T ) = B a.s. (3.3)



5.4 Convex Sets and Support Functions 205

Here we mean 0 to be the cumulative consumption process that is
identically zero.

Suppose that there are no constraints on portfolio choice, i.e., K = RN .
Then we know from the theory of Chapter 2 (in particular, Section 2.2)
that the hedging price hup(RN ) of the contingent claim is given by the
expectation of its discounted value B/S0(T ) under the standard equivalent
martingale measure,

hup(RN ) = E

[
Z0(T )

B

S0(T )

]
= E[H0(T )B] = u0, (3.4)

at least when the process that Z0(·) of (2.8) is a martingale. This martingale
condition is actually superfluous; it was not used in Theorem 3.3.5, and is
thus not required for its extension, Theorem 2.2. This leads to the following
result.

Proposition 3.2: If K = RN , the upper hedging price hup(RN ) is given
by u0 of (3.1). The infimum of (3.2) is then attained by some (0, π0) ∈
A(u0; RN ) with

Xu0,0,π0(t) = X0(t)
∆=

1
H0(t)

E[H0(T )B|F(t)], 0 ≤ t ≤ T, (3.5)

and in particular,

Xu0,0,π0(T ) = B (3.6)

holds almost surely.

Proof. For any x ∈ [0,∞) and (C, π) ∈ A(x; RN ) with Xx,C,π ≥ B
almost surely, the budget constraint (2.17) gives x ≥ E[H0(T )B] = u0,
whence hup(RN ) ≥ u0 from (3.2). On the other hand, Theorem 2.2 with
C(·) ≡ 0 and x = u0 provides the existence of a portfolio π0(·) such that
Xu0,0,π0(·) = X0(·). This implies hup(RN ) ≤ u0 and the other assertions of
the proposition. �

Remark 3.3: We call π0(·) in Proposition 3.2 an unconstrained hedging
portfolio. Because of the uniqueness of the integrand ψ0(·) in the stochastic
integral representation of the martingale E[H0(T )B|F(t)], π0(·) is uniquely
determined, provided that we do not distinguish between processes that
agree for Lebesgue-almost-every t ∈ [0, T ] almost surely.

5.4 Convex Sets and Support Functions

We introduced in Section 2 the nonempty, closed, convex set K in which the
random vector p(·) of portfolio proportions is constrained to take values.
We shall review now some basic notions from convex analysis that will be
useful later on, and discuss several examples of such constraint sets K.
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For a given closed, convex subset K �= ∅ of RN , let us define ζ: RN →
R ∪ {+∞} by

ζ(ν) ∆= sup
p∈K

(−p′ν), ν ∈ RN . (4.1)

This is the support function of the convex set −K. It is a closed (i.e., lower
semicontinuous), proper (i.e., not identically +∞) convex function, which
is finite on its effective domain

K̃
∆= {ν ∈ RN ; ζ(ν) <∞}, (4.2)

a convex cone, called the barrier cone of −K (Rockafellar (1970), p. 114). In
particular, 0

˜
∈ K̃ and ζ(0) = 0. The function ζ is positively homogeneous,

ζ(αν) = αζ(ν), ∀ν ∈ RN , α ≥ 0, (4.3)

and subadditive,

ζ(ν + µ) ≤ ζ(ν) + ζ(µ), ∀ν, µ ∈ RN . (4.4)

According to Rockafellar (1970), Theorem 13.1, p. 112,

p ∈ K ⇐⇒ ζ(ν) + p′ν ≥ 0, ∀ν ∈ K̃. (4.5)

It will be assumed in this chapter and the next that ζ is bounded from
below on RN :

ζ(ν) ≥ ζ0, ∀ν ∈ RN for some ζ0 ∈ R. (4.6)

Condition (4.6) is satisfied with ζ0 = 0 if K contains the origin of RN .

Examples 4.1: Let us consider the following possible constraint sets K
on portfolio proportions, all of which satisfy condition (4.6).

(i) Unconstrained case: K = RN . Then K̃ = {0}, ζ ≡ 0 on K̃.
(ii) Prohibition of short-selling: K = [0,∞)N . Then K̃ = K and ζ ≡ 0

on K̃.
(iii) Incomplete market: K = {p ∈ RN ; pM+1 = · · · = pN = 0}, for some

M ∈ {1, . . . , N − 1}. Then K̃ = {ν ∈ RN ; ν1 = · · · = νM = 0}, and
ζ ≡ 0 on K̃.

(iv) Incomplete market with prohibition of short-selling: K = {p ∈
RN ; p1 ≥ 0, . . . , pM ≥ 0, pM+1 = · · · = pN = 0}. Then K̃ = {ν ∈
RN ; ν1 ≥ 0, . . . , νM ≥ 0} and ζ ≡ 0 on K̃.

(v) K is a nonempty, closed, convex cone in RN . Then K̃ = {ν ∈
RN ; p′ν ≥ 0, ∀p ∈ K} is the polar cone of −K and ζ ≡ 0 on K̃.
This generalizes (i)–(iv).

(vi) Prohibition of borrowing: K = {p ∈ RN ;
∑N

n=1 pn ≤ 1}. Then K̃ =
{ν ∈ RN ; ν1 = · · · = νN ≤ 0} and ζ(ν) = −ν1 on K̃.

(vii) Constraints on short-selling: K = [−κ,∞)N for some κ > 0. Then
K̃ = [0,∞)N and ζ(ν) = κ

∑N
n=1 νn on K̃.
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(viii) Constraints on borrowing: K = {p ∈ RN ;
∑N

n=1 pn ≤ κ} for some
κ > 1. Then K̃ = {ν ∈ RN ; ν1 = · · · = νN ≤ 0} and ζ(ν) = −κν1

on K̃.
(ix) Rectangular constraints: K = I1 × · · · × IN with In = [αn, βn],

−∞ ≤ αn ≤ 0 ≤ βn ≤ ∞ and with the understanding that In

is open on the right (respectively, left) if βn = ∞ (respectively,
αn = −∞). Then

K̃ = RN , ζ(ν) = −
N∑

n=1

(αnν+
n − βnν−

n )

if all the αn and βn are finite. More generally,

K̃ =
{
ν ∈ RN ; νn ≥ 0, ∀n ∈ S+ and νm ≤ 0, ∀m ∈ S−

}
,

where S+ = {n = 1, . . . , N ; βn = ∞}, S− = {m = 1, . . . , N ;
αm = −∞}, and the above formula for ζ remains valid.

We shall need the following lemma in Section 6.

Lemma 4.2: For any given {F(t)}-progressively measurable process
p: [0, T ] × Ω → RN , there exists an RN -valued, {F(t)}-progressively
measurable process ν(·) such that

‖ν(t)‖ ≤ 1, |ζ(ν(t))| ≤ 1, 0 ≤ t ≤ T, (4.7)

almost surely, and for all t ∈ [0, T ] we have

p(t) ∈ K ⇔ ν(t) = 0,

p(t) /∈ K ⇔ ζ(ν(t)) + p′(t)ν(t) < 0
(4.8)

almost surely.

Proof. For n = 1, 2, . . . , define K̃n
∆= {ν ∈ K̃; ‖ν‖ ≤ n}, and

fn: RN×K̃n → R by fn(p, ν) = ζ(ν)+p′ν. According to the Dubins–Savage
measurable selection theorem (Dubins and Savage (1965) or Bertsekas
and Shreve (1978), Proposition 7.33), there is a Borel-measurable function
ϕn: RN → K̃n such that

ζ(ϕn(p)) + p′ϕn(p) = min
ν∈K̃n

{ζ(ν) + p′ν}, ∀p ∈ RN .

For p ∈ RN , define ϕ(p) to be ϕn(p) for the smallest positive integer n
satisfying ζ(ϕn(p)) + p′ϕn(p) < 0; if no such n exists, define ϕ(p) = 0.
Then ϕ: RN → K̃ is Borel measurable. According to the equivalence (4.5),
ϕ(p) = 0 for every p ∈ K and ϕ(p) < 0 for every p /∈ K.

Finally, we set

ν(t) ∆=
ϕ(p(t))

1 + ‖ϕ(p(t))‖ + |ζ(ϕ(p(t)))| , 0 ≤ t ≤ T.

Conditions (4.7) and (4.8) follow from the positive homogeneity of ζ. �
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5.5 A Family of Auxiliary Markets

The principal problem of this chapter can be formulated as follows: Given
a contingent claim B ≥ 0, find a minimal initial wealth x ≥ 0, a cumulative
consumption process C(·), and a portfolio process π(·) such the correspond-
ing portfolio-proportion process p(·) satisfies the constraint p(t) ∈ K for
Lebesgue-almost-every t ∈ [0, T ] almost surely, and the corresponding ter-
minal wealth satisfies Xx,C,π(T ) ≥ B almost surely. In order to handle the
constraint p(t) ∈ K, we introduce dual processes, which play a role similar
to Lagrange multipliers. Corresponding to each dual process there is an
auxiliary market as described below, in which we construct unconstrained
portfolio-proportion processes.

Definition 5.1: Let H denote the Hilbert space of {F(t)}-progressively
measurable processes ν: [0, T ]× Ω→ RN with norm [[ν]] given by

[[ν]]2 ∆= E

∫ T

0
‖ν(t)‖2 dt <∞. (5.1)

We define the inner product

〈ν1, ν2〉 = E

∫ T

0
ν′
1(t)ν2(t) dt

on this space, and denote by D the subset of H consisting of processes
ν: [0, T ]× Ω→ K̃ with

E

∫ T

0
ζ(ν(t)) dt <∞. (5.2)

We further define D(b) to be the set of bounded processes in D, and D(m)

to be the set of all processes in D for which Zν(·) defined by (5.10) below
is a martingale.

We began in Section 2 with a market

M = (r(·), b(·), δ(·), σ(·), S(0), A(·)).

For every process ν(·) ∈ D, consider a new interest rate process

rν(t) ∆= r(t) + ζ(ν(t)), 0 ≤ t ≤ T (5.3)

as well as a new mean rate of return vector process

bν(t) ∆= b(t) + ν(t) + ζ(ν(t))1
˜N , 0 ≤ t ≤ T, (5.4)

and construct the new market Mν = (rν(·), bν(·), δ(·), σ(·), S(0), A(·)). In
this new market, the money market price S

(ν)
0 (·) and the stock prices

{S(ν)
n (·)}Nn=1 obey the equations

dS
(ν)
0 (t) = S

(ν)
0 (t)[(r(t) + ζ(ν(t))) dt + dA(t)], (5.5)
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dS(ν)
n (t) = S(ν)

n (t)

[
(bn(t) + νn(t) + ζ(ν(t))) dt + dA(t)

+
N∑

d=1

σnd(t) dW (d)(t)

]
, n = 1, . . . , N, (5.6)

with the initial conditions

S
(ν)
0 (0) = 1 and S(ν)

n (0) = Sn(0), n = 1, . . . , N.

In other words,

S
(ν)
0 (t) = S0(t) exp

[∫ t

0
ζ(ν(s)) ds

]
, (5.7)

S(ν)
n (t) = Sn(t) exp

[∫ t

0
(ζ(ν(s)) + νn(s)) ds

]
, n = 1, . . . , N. (5.8)

The analogues of θ(·), Z0(·), W0(·), and H0(·) in (2.7)–(2.10) are

θν(t) ∆= σ−1(t)[bν(t) + δ(t)− rν(t)1
˜
] (5.9)

= θ(t) + σ−1(t)ν(t),

Zν(t) ∆= exp
[
−
∫ t

0
θ′

ν(s) dW (s) − 1
2

∫ t

0
‖θν(s)‖2 ds

]
= Z0(t) exp

[
−
∫ t

0
(σ−1(s)ν(s))′ dW0(s)

− 1
2

∫ t

0
‖σ−1(s)ν(s)‖2 ds

]
, (5.10)

Wν(t) ∆= W (t) +
∫ t

0
θν(s) ds (5.11)

= W0(t) +
∫ t

0
σ−1(s)ν(s) ds,

Hν(t) ∆=
Zν(t)

S
(ν)
0 (t)

. (5.12)

Note that with ν(·) ≡ 0, we recover the unconstrained model of Section 2
(i.e., M =M0). Note also from (4.6) that

S
(ν)
0 (T ) ≥ s0e

ζ0T (5.13)

almost surely; i.e., (2.5) holds in the market Mν , and because of Defini-
tion 1.1.3(iv), (2.4), (2.6), (5.1), and (5.2), we have

∫ T

0 |rν(t)| dt < ∞ and∫ T

0 ‖θν(t)‖2 dt < ∞ almost surely. Consequently, the conditions of Defi-
nition 1.1.3 and the conditions (2.3)–(2.6) are satisfied by Mν for every
ν(·) ∈ D.
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Remark 5.2: If the exponential local martingale Z0(·) of (2.8), (1.5.2) is
a martingale (i.e., if the process ν(·) ≡ 0 belongs to D(m)), then we may
define the standard martingale measure P0 by

P0(A) ∆=
∫

A

Z0(T ) dP, A ∈ F(T ), (5.14)

as in (1.5.3). If θ(·) is bounded and ν ∈ D(b), then θν(·) is bounded, Zν(·)
is a martingale, and we may define the standard equivalent martingale
measure Pν for the marketMν by

Pν(A) ∆=
∫

A

Zν(T ) dP, A ∈ F(T ). (5.15)

Thus, if θ(·) is bounded, we have D(b) ⊆ D(m).

In the marketMν , the wealth process Xx,C,π
ν (·) corresponding to initial

capital x ≥ 0, cumulative consumption process C(·), and (unconstrained)
portfolio process π(·) satisfies the equation

Xx,C,π
ν (t)

S
(ν)
0 (t)

+
∫

(0,t]

dC(s)

S
(ν)
0 (s)

= x +
∫ t

0

1

S
(ν)
0 (s)

π(s)σ(s) dWν (s), 0 ≤ t ≤ T

(5.16)

(cf. (2.12)), or equivalently,

Xx,C,π
ν (t)
S0(t)

+
∫

(0,t]

dC(s)
S0(s)

= x +
∫ t

0

1
S0(s)

[(
Xx,C,π

ν (s)ζ(ν(s)) + π′(s)ν(s)
)

ds + π′(s)σ(s) dW0(s)
]

= x +
∫ t

0

Xx,C,π
ν (s)
S0(s)

[(ζ(ν(s)) + p′(s)ν(s)) ds + p′(s)σ(s) dW0(s)] .

(5.17)

By analogy with (2.13), we have

Mν(t) ∆= Hν(t)Xx,C,π
ν (t) +

∫
(0,t]

Hν(s) dC(s)

= x +
∫ t

0
Hν(s)[σ′(s)π(s)−Xx,C,π

ν (s)θν(s)]′ dW (s)

= x +
∫ t

0
Hν(s)Xx,C,π(s)[σ′(s)p(s) − θν(s)]′ dW (s), 0 ≤ t ≤ T.

(5.18)

Definition 5.3: Let ν(·) ∈ D be given. We say that a pair (C, π) consisting
of a cumulative consumption process and a portfolio process is admissible
in Mν for the initial wealth x ≥ 0, and we write (C, π) ∈ Aν(x), if the
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process Xx,C,π
ν (·) determined by (5.16) satisfies almost surely

Xx,C,π
ν (t) ≥ 0, ∀t ∈ [0, T ]. (5.19)

Remark 5.4: For x ≥ 0 and (C, π) ∈ Aν(x), the local martingale Mν(·) of
(5.18) is nonnegative, and hence a supermartingale. Fatou’s lemma implies
then the budget constraint (cf. (2.17))

E

[
Hν(T )Xx,C,π

ν (T ) +
∫

(0,T ]
Hν(s) dC(s)

]
≤ x. (5.20)

We have the following analogue to Theorem 2.2 concerning the existence
of portfolio processes.

Theorem 5.5: Let ν(·) ∈ D and x ≥ 0 be given. Let C(·) be a cumula-
tive consumption process, and B a nonnegative, F(T )-measurable random
variable such that

E

[
Hν(T )B +

∫
(0,T ]

Hν(s) dC(s)

]
= x. (5.21)

Then there exists a portfolio process π(·) such that (C, π) ∈ Aν(x), and the
corresponding wealth process is given by

Xx,C,π
ν (t) =

1
Hν(t)

E

[
Hν(T )B +

∫
(t,T ]

Hν(s) dC(s)

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T.

(5.22)

In particular, the process Hν(t)Xx,C,π
ν (t)+

∫
(0,t] Hν(s) dC(s), 0 ≤ t ≤ T , is

a martingale, and Xx,C,π
ν (T ) = B almost surely.

5.6 The Main Hedging Result

Definition 6.1: Consider a contingent claim B as in Definition 3.1. The
unconstrained hedging price of B in the market Mν is

uν
∆= E

[
Zν(T )

B

S
(ν)
0 (T )

]
= E[Hν(T )B], (6.1)

a nonnegative and possibly infinite quantity. If uν < ∞, then an
unconstrained hedging portfolio πν(·) is any portfolio process satisfying

Xuν ,0,πν
ν (t) = Xν(t) ∆=

1
Hν(t)

E[Hν(T )B|F(t)], 0 ≤ t ≤ T. (6.2)
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The existence of an unconstrained hedging portfolio in Definition 6.1
follows from Theorem 5.5 with C(·) ≡ 0. As in Remark 3.3, πν(·) is uniquely
determined.

Theorem 6.2: For any contingent claim B, we have the representation

hup(K) = sup
ν∈D

uν (6.3)

of the upper hedging price of Definition 3.1(ii). Furthermore, if

û
∆= sup

ν∈D
uν (6.4)

is finite, then there exists a pair (Ĉ, π̂) ∈ A(û;K) with corresponding wealth
process

X û,Ĉ,π̂(t) = ess supν∈D
E[Hν(T )B|F(t)]

Hν(t)
, 0 ≤ t ≤ T, (6.5)

and in particular,

X û,Ĉ,π̂(T ) = B (6.6)

holds almost surely.

Remark 6.3: We call π̂(·) a superreplicating portfolio process because it
allows an agent to begin with initial wealth hup(K), possibly consume along
the way, and end up with terminal wealth B almost surely. If Ĉ(·) ≡ 0,
then π̂(·) is a replicating portfolio process, and the contingent claim B is
K-attainable (Definition 3.1(iii)).

Definition 6.4: We call the nonnegative process

X̂(t) ∆= ess supν∈D
E[Hν(T )B|F(t)]

Hν(t)
, 0 ≤ t ≤ T (6.7)

on the right-hand side of (6.5) the upper hedging value process for the
contingent claim B. We shall always take a right-continuous, left-limited
modification (RCLL; see Proposition 6.5 below) of this process.

We devote the remainder of this section to the proof of Theorem 6.2. Let
us start with the inequality

hup(K) ≥ û, (6.8)

which is obvious if hup(K) = ∞. Now assume hup(K) < ∞, and consider
an arbitrary x ∈ [0,∞) for which there exists a pair (C, π) ∈ A(x;K)
whose associated wealth process satisfies Xx,C,π(T ) ≥ B almost surely. Let
ν(·) ∈ D be given, and define

Cν(t) = C(t) +
∫ t

0

1
S0(s)

[
Xx,C,π(s)ζ(ν(s)) + π′(s)ν(s)

]
ds

= C(t) +
∫ t

0

Xx,C,π(s)
S0(s)

[ζ(ν(s)) + p′(s)ν(s)] ds, 0 ≤ t ≤ T,
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where the portfolio-proportion process p(·), given by (2.14), satisfies the
constraint (2.16). It follows from (4.5) that Cν(·) is nondecreasing, hence
a cumulative consumption process. Using the consumption and portfolio
process pair (Cν , π) in the market Mν , we generate the wealth process
Xx,Cν ,π

ν (·) of (5.16), which is the unique solution of (5.17):

Xx,Cν ,π
ν (t)
S0(t)

+
∫

(0,t]

dC(s)
S0(s)

+
∫ t

0

1
S0(s)

[
Xx,C,π(s)ζ(ν(s)) + π′(s)ν(s)

]
ds

= x +
∫ t

0

1
S0(s)

[(
Xx,Cν ,π

ν (s)ζ(ν(s)) + π′(s)ν(s)
)

ds

+ π′(s)σ(s) dW0(s)] .

Comparing this equation with (2.12) we see that Xx,Cν ,π
ν (·) = Xx,C,π(·),

and because of the budget constraint (5.20) we obtain

x ≥ E[Hν(T )Xx,Cν ,π
ν (T )] = E[Hν(T )Xx,C,π(T )] ≥ E[Hν(T )B] = uν .

Since ν(·) ∈ D is arbitrary, we conclude that x ≥ û. This implies (6.8).
We turn to the reverse inequality

hup(K) ≤ û, (6.9)

which is obvious if û = ∞. Thus let us assume for the remainder of the
section that û < ∞, and study in some detail the properties of the upper
hedging value process (6.7). We need the following technical result.

Proposition 6.5: Under the assumption û < ∞, the upper hedging
value process X̂(·) of (6.7) is finite and satisfies the dynamic programming
equation

X̂(s) = ess supν∈D
E[Hν(t)X̂(t)|F(s)]

Hν(s)
, 0 ≤ s ≤ t ≤ T. (6.10)

Furthermore, X̂(·) has a right-continuous, left-limited (RCLL) modifica-
tion; choosing this modification, we have that the process Hν(·)X̂(·) is an
RCLL supermartingale for every ν(·) ∈ D.

Proof. To alleviate the notation we write Hν(s, t) ∆= Hν(t)/Hν(s) for
0 ≤ s ≤ t ≤ T and set Jν(t) ∆= E[Hν(t, T )B|F(t)], so that

X̂(t) = ess supν∈DJν(t). (6.11)

From (6.7) and (6.11), we have

X̂(s) = ess supν∈DE[Hν(s, t)Jν(t)|F(s)]

≤ ess supν∈DE[Hν(s, t)X̂(t)|F(s)].

To prove the reverse inequality, and thus (6.10), it suffices to fix an
arbitrary process ν(·) ∈ D and show that

X̂(s) ≥ E[Hν(s, t)X̂(t)|F(s)] (6.12)
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almost surely. This is the supermartingale property for Hν(·)X̂(·). With
ν(·) ∈ D fixed, we denote by Dt,ν the set of all processes µ(·) ∈ D that
agree with ν(·) on [0, t]× Ω. Since Hµ(t, T ) depends only on the values of
µ(v) of µ(·) for t ≤ v ≤ T , we may rewrite (6.11) as

X̂(t) = ess supµ∈Dt,ν
Jµ(t).

But the collection {Jµ(t)}µ∈Dt,ν
is closed under pairwise maximization.

Indeed, for any two given processes µ1(·) and µ2(·) in Dt,ν , and set-

ting A
∆= {ω ∈ Ω; Jµ1(t, ω) ≥ Jµ2(t, ω)} and µ(v, ω) ∆= µ1(v, ω)1A(ω) +

µ2(v, ω)1Ac(ω) ∈ Dt,ν , we have

Jµ(t) = E[Hµ(t, T )B|F(t)]
= E [ (1AHµ1(t, T ) + 1AcHµ2(t, T )) B| F(t)]
= 1AE[Hµ1(t, T )B|F(t)] + 1AcE[Hµ2(t, T )B|F(t)]
= Jµ1(t) ∨ Jµ2(t).

It follows from Theorem A.3 of Appendix A that there is a sequence
{µk(·)}∞k=1 in Dt,ν such that {Jµk

(t)}∞k=1 is nondecreasing and

X̂(t) = lim
k→∞

Jµk
(t). (6.13)

The monotone convergence theorem now implies

E[Hν(s, t)X̂(t)|F(s)] = lim
k→∞

E[Hν(s, t)Jµk
(t)|F(s)]

= lim
k→∞

E[Hµk
(s, t)E[Hµk

(t, T )B|F(t)]|F(s)]

= lim
k→∞

E[Hµk
(s, T )B|F(s)]

= lim
k→∞

Jµk
(s)

≤ ess supµ∈DJµ(s)

= X̂(s),

and (6.12) is established. Setting s = 0, we obtain

E[Hν(t)X̂(t)] ≤ X̂(0) = û <∞,

which shows that X̂(t) is finite for all t ∈ [0, T ] almost surely.
It remains to show that X̂(·) has an RCLL modification. From the

supermartingale property of Hν(·)X̂(·) for fixed ν ∈ D, and from the
right-continuity of the filtration {F(t)}, we know that the right-hand limit

X̂+(t, ω) ∆=
{

lims↓t,s∈Q X̂(s, ω), 0 ≤ t < T ,
X̂(T, ω) = B(ω), t = T

is defined and finite for every ω in some set Ω∗ ∈ F(T ) with P (Ω∗) = 1
(Karatzas and Shreve (1991), Proposition 1.3.14). Here Q is the set of
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rational numbers. Furthermore, Hν(·)X̂+(·) is an RCLL supermartingale,
and

X̂+(t) ≥ E[Hν(t, T )B|F(t)], 0 ≤ t ≤ T

almost surely. This last inequality holds for every ν(·) ∈ D, which implies
X̂+(t) ≥ X̂(t) for every t ∈ [0, T ]. On the other hand, the right-continuity
of X̂+(·), Fatou’s lemma, and (6.12) show that for a fixed ν(·) ∈ D, for any
t ∈ [0, T ), and for any sequence of rationals {tn}∞n=1 converging down to t,

X̂+(t) = E
[

lim
n→∞

Hν(t, tn)X̂(tn)
∣∣∣F(t)

]
≤ lim inf

n→∞
E[Hν(t, tn)X̂(tn)|F(t)]

≤ X̂(t)

almost surely. Thus X̂(·) and X̂+(·) are modifications of one another. �

Remark 6.6: The supermartingale property for the nonnegative RCLL
process Hν(·)X̂(·) implies that we have

X̂(t) = 0, ∀t ∈ [τ̂ , T ]

almost surely on {τ̂ < T}, where

τ̂
∆= inf{t ∈ [0, T ); X̂(t) = 0} ∧ T (6.14)

and X̂(·) is defined by (6.7). Of course, if P (B > 0) = 1, then X̂(·) is
strictly positive on [0, T ] and τ̂ = T almost surely.

Remark 6.7: Let B be a contingent claim. For each {F(t)}-stopping time
τ taking values in [0, T ], let us define

X̃(τ) ∆= ess supν∈D
E[Hν(T )B|F(τ)]

Hν(τ)
.

For constant τ ≡ t ∈ [0, T ], the random variable X̂(t) of (6.7) agrees with
X̃(t). However, if the stopping time τ is not constant, then X̂(τ(ω), ω)
obtained from substitution of τ(ω) for t in X̂(t, ω) is defined differently
from X̃(τ, ω). Nonetheless, when we take a right-continuous modification
of X̂(·), we have X̂(τ) = X̃(τ) almost surely. A similar result in a more
difficult context receives a detailed treatment in Appendix D. In the present
setting we provide a simpler proof.

Let ν(·) ∈ D be given. Because Hν(·)X̂(·) is a supermartingale with
Hν(T )X̂(T ) = Hν(T )B, we have from Doob’s optional sampling theorem
that for any stopping time τ taking values in [0, T ],

Hν(τ)X̂(τ) ≥ E[Hν(T )B|F(τ)].
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Dividing by Hν(τ) and taking essential supremum over ν(·) ∈ D, we
conclude that

X̂(τ) ≥ X̃(τ) (6.15)

holds almost surely.
On the other hand, a straightforward modification of the proof of Propo-

sition 6.5 shows that whenever ρ and τ are stopping times satisfying
0 ≤ ρ ≤ τ ≤ T almost surely, then X̃(·) satisfies the dynamic programming
equation

X̃(ρ) = ess supν∈D
E[Hν(τ)X̃(τ)|F(ρ)]

Hν(ρ)
, (6.16)

and, in particular,

Hν(ρ)X̃(ρ) ≥ E[Hν(τ)X̃(τ)|(ρ)], ∀ν(·) ∈ D. (6.17)

Because X̂(t) = X̃(t) almost surely for each deterministic time t, we also
have X̂(τ) = X̃(τ) almost surely for each stopping time τ taking only
finitely many values. Let τ be an arbitrary stopping time with values in
[0, T ], and construct a sequence of stopping times {τn}∞n=1, each of which
takes only finitely many values, and such that τn ↓ τ almost surely as n→
∞ (Karatzas and Shreve (1991), Problem 1.2.24). For each set A ∈ F(τ),
the right continuity of X̂(·), Fatou’s lemma, and (6.17) imply∫

A

Hν(τ)X̂(τ) dP ≤ lim
n→∞

∫
A

Hν(τn)X̂(τn) dP

= lim
n→∞

∫
A

Hν(τn)X̃(τn) dP

≤
∫

A

Hν(τ)X̃(τ) dP.

This gives us the reverse of inequality (6.15).

To complete the proof of Theorem 6.2 it remains to show that when
û < ∞, there exists a pair (Ĉ, π̂) ∈ A(û;K) such that the corresponding
wealth process X û,Ĉ,π̂(·) satisfies almost surely

X û,Ĉ,π̂(t) = X̂(t), 0 ≤ t ≤ T, (6.18)

with X̂(·) given by (6.7). This will imply (6.9).
Fix ν(·) ∈ D. For the nonnegative supermartingale Hν(·)X̂(·), define the

sequence of stopping times

ρn
∆= inf{t ∈ [0, T );Hν(t)X̂(t) = n} ∧ T, n = 1, 2, . . . . (6.19)

Since the paths of Hν(·)X̂(·) are almost surely right continuous with left-
hand limits, the paths are almost surely bounded on [0, T ], and ρn ↑ T as
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n → ∞. Each stopped supermartingale Hν(t ∧ ρn)X̂(t ∧ ρn), 0 ≤ t ≤ T ,
is bounded and has a unique Doob–Meyer decomposition (Karatzas and
Shreve (1991), pp. 24–27 or Protter (1990), p. 94), and this leads to a
unique Doob–Meyer decomposition of the nonstopped supermartingale as

Hν(t)X̂(t) = û +
∫ t

0
ψ′

ν(s) dW (s)−Aν(t), 0 ≤ t ≤ T, (6.20)

almost surely. Here

(i) Aν(·) is an adapted, natural process with nondecreasing, right-
continuous paths almost surely, EAν(T ) <∞, A(0) = 0;

(ii) ψν(·) is a progressively measurable, RN -valued process satisfying the
square-integrability condition

∫ T

0 ‖ψν(t)‖2 dt <∞ almost surely.

Remark 6.6 implies that we have, almost surely,

Aν(t) = Aν(τ̂) and ψν(t) = 0 for Lebesgue-a.e. t ∈ [τ̂ , T ]. (6.21)

Remark 6.8: The filtration {F(t)} is generated by the d-dimensional
Brownian motion W (·), and every right-continuous martingale of this filtra-
tion must be continuous because it has a stochastic integral representation
with respect to W (·). Therefore, every adapted, nondecreasing and right-
continuous process is natural (Karatzas and Shreve (1991), Definition 4.5,
p. 23). Furthermore, if Zν(·) is a martingale (so that the market Mν is
complete and standard), then every Pν-martingale has a stochastic inte-
gral representation with respect to Wν(·) and thus is continuous (Lemma
1.6.7). Hence, every adapted nondecreasing process is natural under Pν as
well as under P .

Now let µ(·) be another process in D, and compute

d

(
Hµ(t)
Hν(t)

)
=

Hµ(t)
Hν(t)

[(θν(t)− θµ(t))′ dW (t)

+ (θν(t)− θµ(t))′θν(t) dt + (ζ(ν(t)) − ζ(µ(t))) dt] ,

which implies

d(Hµ(t)X̂(t)) = d

[
Hµ(t)
Hν(t)

·Hν(t)X̂(t)
]

= Hµ(t)X̂(t) [(θν(t)− θµ(t))′ dW (t)
+(θν(t)− θµ(t))′θν(t) dt + (ζ(ν(t))− ζ(µ(t))) dt]

+
Hµ(t)
Hν(t)

(ψ′
ν(t) dW (t) − dAν(t))

+
Hµ(t)
Hν(t)

(θν(t)− θµ(t))′ψν(t) dt
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in conjunction with (6.20). But we have also d(Hµ(t)X̂(t)) = ψ′
µ(t) dW (t)−

dAµ(t). Thus, equating the local martingale terms, we obtain

Hµ(t)X̂(t)(θν(t)− θµ(t)) +
Hµ(t)
Hν(t)

ψν(t) = ψµ(t),

or equivalently,

ϕ(t) ∆=
ψν(t)
Hν(t)

+ X̂(t)θν(t) =
ψµ(t)
Hµ(t)

+ X̂(t)θµ(t). (6.22)

Equating terms of finite variation, we obtain

X̂(t)(θν(t)− θµ(t))′θν(t) + (θν(t)− θµ(t))′ ψν(t)
Hν(t)

= X̂(t)(ζ(µ(t)) − ζ(ν(t))) +
dAν(t)
Hν(t)

− dAµ(t)
Hµ(t)

,

which implies

Ĉ(t) ∆=
∫

(0,t]

dAν(s)
Hν(s)

−
∫ t

0
[X̂(s)ζ(ν(s)) + ϕ′(s)σ−1(s)ν(s)] ds

=
∫

(0,t]

dAµ(s)
Hµ(s)

−
∫ t

0
[X̂(s)ζ(µ(s)) + ϕ′(s)σ−1(s)µ(s)] ds. (6.23)

In particular, the processes ϕ(·) and Ĉ(·) defined in (6.22) and (6.23) do
not depend on ν(·) ∈ D, and satisfy almost surely

Ĉν(t) = Ĉν(τ̂) and ϕ(t) = 0, for Lebesgue-a.e. t ∈ [τ̂ , T ]. (6.24)

Finally, we have
∫ T

0 ‖ϕ(t)‖2 dt <∞ almost surely.
The process Ĉ(·) of (6.23) is adapted, with RCLL paths. Writing (6.23)

with ν(·) ≡ 0, we obtain

Ĉ(t) =
∫

(0,t]

dA0(s)
H0(s)

, (6.25)

which shows that Ĉ(·) is nondecreasing; Ĉ(·) will play the role of cumulative
consumption process in (6.18). The role of portfolio process will be played
by

π̂(t) ∆= (σ′(t))−1ϕ(t), 0 ≤ t ≤ T. (6.26)

In terms of this process, we may rewrite (6.23) as

Ĉ(t) =
∫

(0,t]

dAν(s)
Hν(s)

−
∫ t

0
[X̂(s)ζ(ν(s))+ π̂′(s)ν(s)] ds, 0 ≤ t ≤ T. (6.27)

From (6.20), (6.22), (6.26), and (6.25) with ν(·) ≡ 0, we have
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H0(t)X̂(t) = û +
∫ t

0
ψ′

0(s) dW (s) −A0(t)

= û +
∫ t

0
H0(s)[σ′(s)π̂(s)− X̂(s)θ(s)]′ dW (s)

−
∫

(0,t]
H0(s) dĈ(s). (6.28)

Comparing this with (2.13), we conclude that (6.18) holds.
Finally, we define the portfolio-proportion process

p̂(t) ∆=


π̂(t)

X̂(t)
, if X̂(t) �= 0,

p∗, if X̂(t) = 0,
(6.29)

where p∗ is an arbitrary but fixed vector in K. In order to conclude the
proof of Theorem 6.2, we need to show that

p̂(t) ∈ K for Lebesgue-a.e. t ∈ [0, τ̂ ] (6.30)

holds almost surely. To this end, consider the process ν(·) ∈ D given by
Lemma 4.2. For any positive integer k, the process kν(·) is also in D, and
(6.27) gives

0 ≤
∫

(0,τ̂ ]

dAkν(s)
Hkν(s)

= Ĉ(τ̂) + k

∫ τ̂

0
X̂(s)[ζ(ν(s)) + p̂′(s)ν(s)] ds

almost surely. Because ν(·) satisfies (4.8), the integrand on the right-hand
side of this inequality is nonpositive, and by choosing k sufficiently large
the right-hand side can be made negative with positive probability, unless

ζ(ν(t)) + p̂′(t)ν(t) = 0 for Lebesgue-a.e. t ∈ [0, τ̂ ] (6.31)

holds almost surely. Thus (6.31) must hold, and with it, (6.30) must hold
as well. The proof of Theorem 6.2 is complete.

Definition 6.9: Assume û < ∞, let τ̂ be the stopping time (6.14), let
(Ĉ, π̂) ∈ A(û;K) be the pair of processes (6.26) and (6.27) constructed
in the proof of Theorem 6.2, and define p̂(·) by (6.29). The set of dual
processes satisfying the complementarity condition is

D(c) ∆= {ν ∈ D; ζ(ν(t)) + p̂′(t)ν(t) = 0 Lebesgue-a.e. t ∈ [0, τ̂ ], a.s.}.
(6.32)

Remark 6.10: We may rewrite (6.27) as

Ĉ(t) =
∫

(0,t]

dAν(s)
Hν(s)

−
∫ t

0
X̂(s) [ζ(ν(s)) + p̂′(s)ν(s)] ds, 0 ≤ t ≤ T,
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and (6.30), (4.1) imply that the process
∫ t

0 X̂(s)[ζ(ν(s)) + p̂′(s)ν(s)] ds is
nondecreasing.

Remark 6.11: In the proof of Theorem 6.2 one may replace D by D(b),
the set of bounded processes in D. One can thus show

hup(K) = sup
ν∈D

uν = sup
ν∈D(b)

uν . (6.33)

5.7 Upper Hedging with Constant Coefficients

Throughout this section we assume that

r(·) ≡ r, σ(·) ≡ σ are constant, (7.1)

A(·) ≡ 0, δ(·) ≡ 0, (7.2)

θ0(·) is bounded. (7.3)

We imposed similar assumptions in Section 2.4, except that there we did
not require the dividend rate vector to be zero. Just as in that section, we
have here that the money market price process is S0(t) = ert, the standard
martingale measure P0 is defined, and with S(t) ∆= (S1(t), . . . , SN (t))′ and
ϕ: (0,∞)N → [0,∞) a Borel-measurable function, the value at time t ∈
[0, T ] of the contingent claim B = ϕ(S(T )) in the unconstrained market
M(K) is given by u(T − t, S(t)), where u(T − t, x) is defined by (2.4.6). In
the present context it is convenient to write the function u(T − t, x) as

u(T − t, x;ϕ) ∆= e−r(T−t)E0ϕ(x1Y1(t, T ), . . . , xNYN (t, T )),

0 ≤ t ≤ T, x ∈ (0,∞)N , (7.4)

where

Yn(t, T )

∆= exp

{
D∑

d=1

σnd

(
W

(d)
0 (T )−W

(d)
0 (t)

)
− 1

2
(T − t)

D∑
d=1

σ2
nd + r(T − t)

}
.

(7.5)

In the constrained market M(K), Theorem 6.2 and Remark 6.11 assert
that the upper-hedging value process (Definition 6.4) for ϕ(S(T )) is

X̂(t) ∆= ess supν∈D
E[Hν(T )ϕ(S(T ))|F(t)]

Hν(t)
= supν∈D(b)uν(T − t, S(t);ϕ), 0 ≤ t ≤ T, (7.6)
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where

uν(T − t, x;ϕ)

∆= e−r(T−t)Eν

[
e

−
∫ T

t
ζ(ν(s)) ds · ϕ(x1Y1(t, T ), . . . , xNYN (t, T ))

]
,

= e−r(T−t)Eν

[
e

−
∫ T

t
ζ(ν(s)) ds

· ϕ
(

x1e
−
∫ T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xNe

−
∫ T

t
νN (s) ds

Y
(ν)
N (t, T )

)]
,(7.7)

Y (ν)
n (t, T )

∆= exp

{
D∑

d=1

σnd

(
W (d)

ν (T )−W (d)
ν (t)

)
− T − t

2

D∑
d=1

σ2
nd + r(T − t)

}
,

(7.8)

and Pν is defined by (5.15).
The computations of this section exploit the fact that Wν(·) is a Brownian

motion under Pν , so that the distribution of the N -dimensional random
process {(Y (ν)

1 (t, T ), . . . , Y (ν)
N (t, T )); 0 ≤ t ≤ T} under Pν is the same as

the distribution of the random process {(Y1(t, T ), . . . , YN (t, T )); 0 ≤ t ≤ T}
under P0. This would still be true if we assumed instead of (7.1) that r(·)
and σ(·) are nonrandom but not necessarily constant; with minor changes,
the results of this section hold under this weaker assumption.

Theorem 7.1: Assume (7.1)–(7.3) and let B = ϕ(S(T )) be a contin-
gent claim, where ϕ: (0,∞)N → [0,∞) is a lower-semicontinuous function
satisfying the polynomial growth condition

0 ≤ ϕ(x) ≤ C1 + C2‖x‖γ , ∀x ∈ (0,∞)N (7.9)

for some positive constants C1, C2, and γ. Define the nonnegative function

ϕ̂(x) ∆= sup
ν∈K̃

[
e−ζ(ν)ϕ(x1e

−ν1 , . . . , xNe−νN )
]
, x ∈ (0,∞)N . (7.10)

Then the hypotheses of Theorem 6.2 are satisfied, and the upper-hedging
value process X̂(·) for the contingent claim ϕ(S(T )) is given by

X̂(t) = e−r(T−t)E0[ϕ̂(S(T ))|F(t)]
= u(T − t, S(t); ϕ̂), 0 ≤ t < T, (7.11)

almost surely. In other words, the upper-hedging value process for the con-
tingent claim ϕ(S(T )) in the market M(K) with constraint set K is the
same as the value of the contingent claim ϕ̂(S(T )) in the unconstrained
market M(RN ).
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Proof. We first show that

sup
ν∈D(b)

Eν

[
e

−
∫

T

t
ζ(ν(s)) ds

· ϕ
(

x1e
−
∫ T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xNe

−
∫ T

t
νN (s) ds

Y
(ν)
N (t, T )

)]
≤ E0ϕ̂(x1Y1(t, T ), . . . , xNYN (t, T )), 0 ≤ t ≤ T. (7.12)

In light of (7.4)–(7.8), this will imply

X̂(t) ≤ u(T − t, S(t); ϕ̂), 0 ≤ t < T, (7.13)

almost surely. Because K̃ is a convex cone, ν(·) ∈ D(b) implies that the
vector (

∫ T

t
ν1(s) ds, . . . ,

∫ T

t
νN (s) ds) is in K̃. The definition (4.1) of ζ yields

ζ

(∫ T

t

ν1(s) ds, . . . ,

∫ T

t

νN (s) ds

)
∆= sup

p∈K

(
−
∫ T

t

N∑
n=1

pnνn(s) ds

)

≤
∫ T

t

sup
p∈K

(
−

N∑
n=1

pnνn(s)

)
ds

=
∫ T

t

ζ(ν(s)) ds. (7.14)

Therefore, for an arbitrary process ν(·) ∈ D(b), we have

Eν

[
e

−
∫ T

t
ζ(ν(s)) ds

· ϕ
(

x1e
−
∫ T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xNe

−
∫ T

t
νN (s) ds

Y
(ν)
N (t, T )

)]
≤ Eν

[
e

−ζ
(∫ T

t
ν1(s) ds,...,

∫ T

t
νN (s) ds

)
· ϕ
(

x1e
−
∫ T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xNe

−
∫ T

t
ν(s) ds

Y
(ν)
N (t, T )

)]
≤ Eν ϕ̂

(
x1Y

(ν)
1 (t, T ), . . . , xNY

(ν)
N (t, T )

)
= E0ϕ̂(x1Y1(t, T ), . . . , xNYN (t, T )).

Multiplying by e−r(T−t) and taking the supremum over ν(·) ∈ D(b), we see
that (7.13) holds.

It remains to show the reverse of inequality (7.13). Let us fix x ∈ (0,∞)
and choose a sequence {ν(m)}∞m=1 of vectors in K̃ such that

sup
m

[
e−ζ(ν(m))ϕ(x1e

−ν
(m)
1 , . . . , xNe−ν

(m)
N )

]
= ϕ̂(x).

For a fixed m, we define a process ν(·) in D(b) by setting ν(s) = 0 for
0 ≤ s < t and ν(s) = 1

T−tν
(m) for t ≤ s ≤ T . Let x(·): [0, T ]→ (0,∞)N be
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a continuous (nonrandom) function, with x(T ) = x. Then

uν(T − t, x(t);ϕ) (7.15)

= e−r(T−t) ·Eν

[
e

−
∫ T

t
ζ(ν(s)) ds

· ϕ
(

x1(t)e
−
∫

T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xN (t)e−

∫
T

t
νN (s) ds

Y
(ν)
N (t, T )

)]
(7.16)

= e−r(T−t)

· Eν

[
e−ζ(ν(m))ϕ

(
x1(t)e−ν

(m)
1 Y

(ν)
1 (t, T ), . . . , xN (t)e−ν

(m)
N Y

(ν)
N (t, T )

)]
(7.17)

= e−r(T−t)

· E0

[
e−ζ(ν(m))ϕ

(
x1(t)e−ν

(m)
1 Y1(t, T ), . . . , xN (t)e−ν

(m)
N YN (t, T )

)]
.

(7.18)

Because of the polynomial growth condition (7.9), we have

E0

[
sup

0≤t≤T
ϕ
(
x1(t)e−ν

(m)
1 Y1(t, T ), . . . , xN (t)e−ν

(m)
N YN (t, T )

)]
<∞,

and using the dominated convergence theorem in (7.15), we obtain from
the lower semicontinuity of ϕ that

lim inf
t↑T

sup
µ∈D(b)

uµ(T − t, x(t);ϕ) ≥ lim
t↑T

uν(T − t, x(t);ϕ)

≥ e−ζ(ν(m))ϕ
(
x1e

−ν
(m)
1 , . . . , xNe−ν

(m)
N

)
.

Taking the supremum over m and recalling (7.10) and (7.6), we see that

lim inf
t↑T

X̂(t) ≥ ϕ̂(S(T )). (7.19)

According to Proposition 6.5, H0(·)X̂(·) is a supermartingale, i.e.,

H0(t)X̂(t) ≥ E[H0(u)X̂(u)|F(t)], 0 ≤ t ≤ u < T.

Letting u ↑ T and using (7.19) along with Fatou’s lemma for conditional
expectations, we obtain

X̂(t) ≥ 1
H0(t)

E[H0(T )ϕ̂(S(T ))|F(t)]

= e−r(T−t)E0[ϕ̂(S(T ))|F(t)]
= u(T − t, S(t); ϕ̂), 0 ≤ t < T

almost surely, and the proof is complete. �

Under the conditions of Theorem 7.1, Theorem 6.2 guarantees the
existence of (Ĉ, π̂) ∈ A(û,K) such that
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X û,Ĉ,π̂(t) = e−r(T−t)E0[ϕ̂(S(T ))|F(t)], 0 ≤ t < T, (7.20)

X û,Ĉ,π̂(T ) = ϕ(S(T )). (7.21)

In particular,

H0(t)X û,Ĉ,π̂(t) = E[H0(T )ϕ̂(S(T ))|F(t)], 0 ≤ t < T

is a martingale, hence a local martingale. From (2.13) we see further that

H0(t)X û,Ĉ,π̂(t) +
∫

(0,t]
H0(s) dĈ(s), 0 ≤ t ≤ T

is also a local martingale. This implies that

Ĉ(t) = 0, 0 ≤ t < T, (7.22)

almost surely. From (7.20), (7.21) it is apparent that

Ĉ(T ) = ϕ̂(S(T ))− ϕ(S(T )) (7.23)

almost surely, and this quantity is typically positive with positive proba-
bility. When P [Ĉ(T ) > 0] > 0, the contingent claim B = ϕ(S(T )) is not
attainable in the sense of Definition 3.1(iii).

Of course, the portfolio process π̂(·) in (7.20) is just the process used to
hedge the contingent claim ϕ̂(S(T )). This is given by the usual formula

π̂(t) =


S1(t) ∂

∂x1
u(T − t, S(t); ϕ̂)

...

SN (t) ∂
∂xN

u(T − t, S(t); ϕ̂)

 , 0 ≤ t ≤ T, (7.24)

of (2.4.9). We summarize the preceding discussion.

Corollary 7.2: Under the assumptions of Theorem 7.1, the portfolio pro-
cess π̂(·) of (7.24) and the cumulative consumption process Ĉ(·) of (7.22),
(7.23) satisfy (Ĉ, π̂) ∈ A(û,K) and X û,Ĉ,π̂(·) = X̂(·). In other words, π̂(·)
is a superreplicating portfolio process.

Example 7.3 (European call option): We consider one stock S(·) = S1(·)
driven by a single Brownian motion, we assume (7.1)–(7.3), and we denote
σ11 by σ. A European call option corresponds to ϕ(x) = (x − q)+, where
q ≥ 0 is the exercise price. We consider K = [α, β] as in Example 4.1(ix),
with −∞ ≤ α ≤ 0 ≤ β ≤ ∞. It is tedious but straightforward to verify
that ϕ̂ ≡ ∞ if 0 ≤ β < 1, ϕ̂(x) = x if β = 1, ϕ̂(x) = (x − q)+ if β = ∞,
and for 1 < β <∞,

ϕ̂(x) =


(

β − 1
q

)β−1(
x

β

)β

, if 0 < x ≤ βq

β − 1
,

x− q, if x ≥ βq

β − 1
.

. (7.25)

The function ϕ̂ does not depend on α.
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From the above formulas and Theorems 6.2, 7.1, we see immediately
that hup([α, β]) = ∞ if 0 ≤ β < 1; no matter how large the (finite) initial
wealth, the European call cannot be hedged if the fraction of total wealth
invested in the stock is bounded above by a number strictly less than 1. If
β = 1, (7.11) implies

hup([α, 1]) = X̂(0) = E0[e−rT S(T )] = S(0).

The hedging portfolio is to buy and hold one share of stock (π(·) = S(·)),
and to consume S(T )−(S(T )−q)+ = S(T )∧q at time t = T . If β =∞, the
portfolio constraint is never active; hup([α,∞)) is the usual Black–Scholes
value. If 1 < β <∞,

hup([α, β]) = e−rT E0
[
ϕ̂(S(0) exp{σW0(T ) + (r − σ2/2)T})

]
, (7.26)

where ϕ̂ is given by (7.25). This value, and the corresponding hedging
portfolio of (7.24), can be written down explicitly in terms of the cumulative
normal distribution.

Example 7.4 (European put option): We assume again (7.1)–(7.3) and
consider one stock. A European put option corresponds to ϕ(x) = (q−x)+,
where q ≥ 0. We consider again K = [α, β] with −∞ ≤ α ≤ 0 ≤ β ≤ ∞. It
turns out that ϕ̂ does not depend on β. If α = −∞, then ϕ̂(x) = (x− q)+;
the portfolio constraint is not active. If α = 0, then ϕ̂(x) = q; the cheapest
way to hedge the put, when short-selling is prohibited, is to begin with
initial capital e−rT q and keep all wealth in the money market. Finally, for
−∞ < α < 0,

ϕ̂(x) =


q − x, if 0 < x ≤ αq

α− 1
,(

|α− 1|
q

)α−1 (
x

|α|

)α

, if x ≥ αq

α− 1
;

(7.27)

the value of the put is given by (7.26) with (7.27) substituted for ϕ̂.

5.8 Optimal Dual Processes

In Section 6 we constructed the upper-hedging value process X̂(·) =
X û,Ĉ,π̂(·) of (6.5), (6.7), whose final value is almost surely equal to a given
contingent claim B, and which can be generated by a cumulative consump-
tion process Ĉ(·) and a portfolio process π̂(·) such that the corresponding
portfolio-proportion process p̂(·) takes values only in the constraint set K.
The initial value û of this wealth process is the upper-hedging price of the
contingent claim B in the constrained market M(K).

In the first part of this section we examine the question of when we
can take the consumption process Ĉ(·) to be identically zero, so that the
superreplicating portfolio process π̂(·) constructed in Theorem 6.2 is in
fact a replicating portfolio process. This is intimately connected with the



226 5. Contingent Claims in Incomplete Markets

existence of a dual process ν̂(·) that attains the supremum in (6.4); we call
such a process an optimal dual process. As we see in Theorem 8.1, any such
optimal dual process must be in the set D(c) of Definition 6.9.

The analysis of the first part of this section was motivated by the incom-
plete market of Example 4.1(iii). In this example, stocks M + 1, . . . , N are
unavailable for investment in the constrained marketM(K). In the uncon-
strained marketMν , all stocks are available for investment, but the mean
rate of return of the nth stock for n = M + 1, . . . , N is bn(·)+ νn(·), rather
than bn(·). Contingent claims, however, are still defined in terms of the
original stocks with mean rates of return (b1(·), . . . , bN (·)), so the change
in the mean rates of return for the investment opportunities does affect
contingent claim pricing and hedging. The essence of Theorem 8.1 and its
Corollary 8.3 is that the optimal dual process ν̂(·) makes this adjustment
to the mean rates of return in such a way that the unconstrained hedging
portfolio in the market Mν̂ satisfies the constraint in the market M(K).
This reduction of a constrained problem to an unconstrained one is the
traditional role of Lagrange multipliers.

In the second part of this section, Theorem 8.9 and its proof, an optimal
dual process is posited for the problem of a contingent claim paying off
at intermediate times as well as at the final time. Under this condition,
we show the existence of a hedging portfolio whose proportion process p(·)
takes values in the constraint set K.

The results of this section will not be used in subsequent developments.

Theorem 8.1: Let B be a contingent claim and assume that û defined by
(6.1) is finite. Let X̂(·) be the upper hedging value process defined by (6.7)
and let (Ĉ, π̂) ∈ A(û;K) be as in Theorem 6.2, so that X û,Ĉ,π̂(·) = X̂(·).
For a given process ν̂(·) ∈ D, the following conditions are equivalent:

ν̂(·) is optimal, i.e., û = uν̂ , (8.1)

Hν̂(t)X̂(t), 0 ≤ t ≤ T is a martingale, (8.2)
B is K-attainable, and for the associated
wealth process X û,0,π(·), the product
process Hν̂(·)X û,0,π(·) is a martingale.

 (8.3)

Any of the above conditions implies that

ν̂(·) ∈ D(c) and P [Ĉ(t) = 0, ∀0 ≤ t ≤ T ] = 1. (8.4)

Proof. In view of Propositon 6.5, Hν̂(·)X̂(·) is a supermartingale. It is a
martingale if and only if E[Hν̂(T )X̂(T )] = X̂(0), i.e, if and only if uν̂ = û.
Hence, (8.1) and (8.2) are equivalent.

Now suppose that the equivalent conditions (8.2) and (8.1) hold. Because
Hν̂(·)X̂(·) is a martingale, the nondecreasing process Aν̂(·) of the Doob–
Meyer decomposition (6.20) is identically equal to zero, and Remark 6.10
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shows that the nondecreasing process Ĉ(·) of (6.25) is also nonincreasing
and hence identically zero. We have ν̂(·) ∈ D(c), and (8.4) follows. Condition
(8.3) holds with π(·) = π̂(·).

Finally, let us suppose that (8.3) holds. This implies

û = E
[
Hν̂(T )X û,0,π(T )

]
= E [Hν̂(T )B] = uν̂ ,

which is (8.1). �

Remark 8.2: From Remark 6.10 we see that (8.4) is equivalent to

Aν̂(t) = 0, 0 ≤ t ≤ T, (8.5)

almost surely.

Corollary 8.3: Suppose that there exists a process ν̂(·) ∈ D such that uν̂ <
∞. Suppose also that with πν̂(·) defined to be the unconstrained hedging
portfolio process in Definition 6.1 and with

pν̂(t) ∆=


πν̂(t)

Xuν̂ ,0,πν̂ (t)
, if Xuν̂ ,0,πν̂ (t) �= 0,

p∗, if Xuν̂ ,0,πν̂ (t) = 0,

where p∗ is an arbitrary but fixed vector in K, we have almost surely

pν̂(t) ∈ K, ζ(ν̂(t)) + p′
ν̂(t)ν̂(t) = 0 for Lebesgue-a.e. t ∈ [0, T ]. (8.6)

Then the equivalent conditions (8.1)–(8.3) hold, and π̂(·) in Theorem 8.1
is πν̂(·). Conversely, suppose that the equivalent conditions of Theorem 8.1
hold; then (8.6) holds as well.

Proof. Let Xν̂(·) = Xuν̂ ,0,πν̂

ν̂ (·) denote the wealth process generated by
(0, πν̂) in the market Mν̂ given by (5.16) and (6.2). Then Xν̂(T ) = B
almost surely. Comparing (5.17) in the form

Xν̂(t)
S0(t)

= uν̂ +
∫ t

0

Xν̂(s)
S0(s)

[(ζ(ν(s)) + p′
ν̂(s)ν(s)) ds + p′

ν̂(s)σ(s) dW0(s)]

with (2.12), we see from (8.6) that Xν̂(·) agrees with Xuν̂ ,0,πν̂ (·), the wealth
process in M given by (2.12). Furthermore, (0, πν̂) ∈ A(uν̂ ;K), and Def-
inition 3.1(ii) shows that uν̂ ≥ hup(K). On the other hand, Theorem 6.2
implies uν̂ ≤ û = hup(K). We have uν̂ = û, and the remaining equivalent
conditions of Theorem 8.1 follow.

For the converse, we assume that the equivalent conditions of Theo-
rem 8.1 hold. Then there is a portfolio process π(·) in the class A(û;K)
such that X û,0,π(T ) = B almost surely, and Hν̂(·)X û,0,π(·) is a martin-
gale. The unconstrained portfolio process πν̂(·) ∈ Aν̂(uν̂) also satisfies
X û,0,πν̂

ν̂ (T ) = B, and Hν̂(·)X û,0,πν̂

ν̂ (·) is a supermartingale (Remark 5.4).
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But

X û,0,πν̂

ν̂ (0) = û = E
[
Hν̂(T )X û,0,π(T )

]
= E [Hν̂(T )B]

= E
[
Hν̂(T )X û,0,πν̂

ν̂ (T )
]
,

which shows that Hν̂(·)X û,0,πν̂

ν̂ (·) is actually a martingale, and must thus
coincide with Hν̂(·)X û,0,π(·). Therefore,

X û,0,π(t) = X û,0,πν̂

ν̂ (t), 0 ≤ t ≤ T,

almost surely. Comparison of (2.12) and (5.17) shows that

X û,0,πν̂
ν (s) [ζ(ν̂(s)) + p′

ν̂(s)ν(s)] = 0, 0 ≤ s ≤ T,

almost surely. Further comparison of (2.12) and (5.17) shows that π(·) =
πν̂(·). Because π(·) ∈ A(û;K), we have pν̂(t) ∈ K for Lebesgue-almost-
every t ∈ [0, T ] almost surely. �

The next result provides conditions under which ν(·) ≡ 0 is an optimal
dual process. In such a case, the unconstrained hedging price in the original
market M is the upper-hedging price. To state the result, we need to in-
troduce some notation. We denote by S the set of all stopping times taking
values in [0, T ], and we say that an {F(t)}-adapted process Y (·) is of class
D[0, T ] if the family of random variables {Y (ρ)}ρ∈S is uniformly integrable.
A local martingale of class D[0, T ] is in fact a martingale. Finally, recall
the notation D(m) of Definition 5.1.

Theorem 8.4: Let B be a contingent claim and assume that û
∆=

supν∈D uν is finite. Assume further that

Hν(·)X̂(·) is of class D[0, T ], ∀ν(·) ∈ D(m). (8.7)

Then, for a given ν̂(·) ∈ D(m), all four conditions (8.1)–(8.4) are equivalent
and imply 

B is K-attainable, and for the associated wealth
process X û,0,π(·), the product process
H0(·)X û,0,π(·) is a martingale.

 (8.8)

In particular, if there exists any ν̂(·) ∈ D(m) satisfying the equivalent
conditions (8.1)–(8.4), then ν(·) ≡ 0 is an optimal dual process, i.e.,
û = u0. Conversely, if (8.8) holds, then (8.1)–(8.4) are satisfied for all
ν̂(·) ∈ D(m) ∩ D(c).

Proof. The equivalence of conditions (8.1)–(8.3) has already been estab-
lished, as has the implication (8.1)⇒(8.4). Let us assume that (8.4) holds
for some ν̂(·) ∈ D(m). In light of Remark 8.2, we know that Aν̂(·) ≡ 0, and
(6.20) shows that Hν̂(·)X̂(·) is a local martingale. Condition (8.7) allows
us to conclude that (8.2) holds.
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To obtain (8.8) from (8.1)–(8.4) we observe that if (8.4) is satisfied for
some ν̂(·) ∈ D(m), then it is satisfied by ν̂(·) ≡ 0. (Note that the process
Ĉ(·) appearing in (8.4), given by (6.23), does not depend on ν̂(·).) With
the choice ν̂(·) ≡ 0, (8.3) becomes (8.8). From (8.8) we have immediately
that

u0
∆= E [H0(T )B] = E

[
H0(T )X û,0,π(T )

]
= X û,0,π(0) = û.

Finally, let us assume only that (8.7) and (8.8) hold. The equivalence
just proved shows that (8.1)–(8.4) all hold with ν̂(·) ≡ 0. But then (8.4)
holds for every ν̂(·) ∈ D(c), and the first paragraph of this proof shows that
(8.1)–(8.3) hold for all ν̂(·) ∈ D(m) ∩ D(c). �

The next two propositions provide conditions on the contingent claim B
that guarantee that the upper hedging price is finite and that condition
(8.7) is satisfied.

Proposition 8.5: If the contingent claim B is almost surely bounded from
above, i.e., P [0 ≤ B ≤ β] = 1 for some β ∈ (0,∞), then û

∆= supν∈D uν is
finite and (8.7) holds.

Proof. From (5.13) we have

0 ≤ Hν(T )B ≤ β

s0
e−ζ0T Zν(T )

almost surely. But Zν(·) is a supermartingale and EZν(T ) ≤ 1; hence
uν = EHν(T )B ≤ β

s0
e−ζ0T for all ν(·) ∈ D. This proves the finiteness of û.

Now let ν(·) ∈ D(m) and τ ∈ S be given. Define Dτ,ν to be the set of
processes µ(·) ∈ D that agree with ν(·) up to time τ . According to Remark
6.7, we may write

0 ≤ Hν(τ)X̂(τ)

= Hν(τ) · ess supµ∈DE

[
Hµ(T )B
Hµ(τ)

∣∣∣∣F(τ)
]

= Hν(τ) · ess supµ∈Dτ,ν
E

[
Hµ(T )B
Hµ(τ)

∣∣∣∣F(τ)
]

= ess supµ∈Dτ,ν
E[Hµ(T )B|F(τ)] (8.9)

because Hν(τ) = Hµ(τ) for all µ(·) ∈ Dτ,ν . But

E[Hµ(T )B|F(τ)] ≤ β

s0
e−ζ0T E[Zµ(T )|F(τ)]

≤ β

s0
e−ζ0T Zµ(τ) =

β

s0
e−ζ0T Zν(τ).

Because Zν(·) is a martingale, this last expression is β
s0

e−ζ0T E[Zν(T )|F(τ)].
We conclude that

0 ≤ Hν(τ)X̂(τ) ≤ β

s0
e−ζ0T E[Zν(T )|F(τ)] (8.10)
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for all stopping times τ ∈ S, and this implies the uniform integrability of
the collection of random variables {Hν(τ)X̂(τ)}τ∈S . �

Proposition 8.6: Suppose that for some n ∈ {1, . . . , N} the dividend rate
process δn(·) is bounded from below. Suppose also that with the notation
ν = (ν1, . . . , νN ) we have

ν �→ ζ(ν) + νn is bounded from below on K̃, (8.11)

and the contingent claim B satisfies

0 ≤ B ≤ αSn(T ) + β (8.12)

almost surely for some α > 0, β > 0. Then û
∆= supν∈D uν is finite and

(8.7) holds.
Conversely, if θ(·) is bounded, δn(·) is bounded from above, B = (Sn(T )−

q)+ is a European call option with exercise price q ≥ 0, and (8.11) fails,
then û =∞.

Proof. Let σn(·) = (σn1(·), . . . , σnN (·)) be the nth row of the volatility
matrix σ(·). For ν(·) ∈ D, define

Fν(t) = Hν(t)Sn(t) exp
{∫ t

0
[δn(s) + ζ(ν(s)) + νn(s)] ds

}
.

Using (5.7), (5.9), and (1.5.18), we may rewrite this as

Fν(t) =
Sn(t)Zν(t)

S0(t)
exp

{∫ t

0
[δn(s) + νn(s)] ds

}
= Sn(0)Zν(t) exp

{∫ t

0
σn(s) dW0(s) +

∫ t

0

[
νn(s)− 1

2
‖σ′

n(s)‖2
]

ds

}
.

Finally, recalling (5.10), (5.11), we conclude that

Fν(t)

= Sn(0)Zν(t) exp
{∫ t

0
σn(s) dWν(s)− 1

2

∫ t

0
‖σn(s)‖2 ds

}
= Sn(0) exp

{∫ t

0
(σn(v)− θ′

ν(v)) dW (v) − 1
2

∫ t

0
‖σ′

n(v)− θν(v)‖2dv

}
,

which is a nonnegative local martingale, and hence a supermartingale,
under P . If ν(·) ∈ D(m), then Wν(·) is a Brownian motion under the
probability measure Pν of Remark 5.2. Because of the assumption (2.4)
of boundedness of σn(·), the process

Gν(t) ∆= exp
{∫ t

0
σn(v) dWν(v)− 1

2

∫ t

0
‖σ′

n(v)‖2dv

}
is a martingale under Pν . For 0 ≤ s ≤ t ≤ T , Bayes’s rule (Karatzas and
Shreve (1991), p. 193) implies
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E[Fν(t)|F(t)] = Sn(0)E[Zν(t)Gν(t)|F(s)]

= Sn(0)Zν(s)Eν [Gν(t)|F(s)]
= Sn(0)Zν(s)Gν(s)
= Fν(s).

In other words, Fν(·) is a P -martingale for ν(·) ∈ D(m).
Let −γ ∈ R be a lower bound on δn(·) + ζ(ν(·)) + νn(·). For B as in

(8.12) and ν(·) ∈ D, we have

uν = E[Hν(T )B]
≤ αE[Hν(T )Sn(T )] + βEHν(T )

≤ αeγT EFν(T ) +
β

s0
e−ζ0T EZν(T )

≤ αeγT Sn(0) +
β

s0
e−ζ0T .

It follows that û is finite.
To obtain (8.7), fix ν(·) ∈ D(m), let τ ∈ S be given, and let Dτ,ν be the

set of processes µ(·) ∈ D that agree with ν(·) up to time τ . According to
Remark 6.7,

0 ≤ Hν(τ)X̂(τ)

= Hν(τ) ess supµ∈D
E[Hµ(T )B|F(τ)]

Hµ(τ)
= ess supµ∈Dτ,ν

E[Hµ(T )B|F(τ)]

≤ αeγT ess supµ∈Dτ,ν
E[Fµ(T )|F(τ)]

+
β

s0
e−ζ0T ess supµ∈Dτ,ν

E[Zµ(T )|F(τ)]

≤ αeγT Fν(τ) +
β

s0
e−ζ0T Zν(τ)

= E

[
αeγT Fν(T ) +

β

s0
e−ζ0T Zν(T )

∣∣∣∣F(τ)
]

.

Here, the last inequality holds because Zµ(·) is a supermartingale for every
µ(·) ∈ Dτ,µ, and the last equality holds because both Fν(·) and Zν(·)
are martingales when ν(·) ∈ D(m). This shows that the family of random
variables {Hν(τ)X̂(τ)}τ∈S is uniformly integrable.

For the second part of the proposition, we assume that B = (Sn(T )−q)+,
θ(·) is bounded, and δn(·) is bounded above by some constant ∆0, but (8.11)
fails. For every ν ∈ K̃ the process ν(·) ≡ ν is in D(m); therefore,

E[Hν(T )Sn(T )] ≥ EFν(T ) · exp{−∆0T − (ζ(ν) + νn)T}
= Sn(0) exp{−∆0T − (ζ(ν) + νn)T},
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and from Jensen’s inequality,

uν = E
[
Hν(T )(Sn(T )− q)+

]
≥ (E[Hν(T )Sn(T )]− qEHν(T ))+

≥ Sn(0) exp{−∆0T − (ζ(ν) + νn)T} − q

s0
e−ζ0T .

Since (8.11) fails, this last quantity can be made arbitarily large by choice
of ν ∈ K̃. �

Remark 8.7: Condition (8.11) is satisfied if the convex set K contains
both the origin and the nth unit vector, and thus also the entire line
segment adjoining these two points. In this case

νn + ζ(ν) ≥ νn + sup
0≤α≤1

(−ανn) = sup
0≤a≤1

(aνn) = ν+
n ≥ 0, ∀ν ∈ K̃.

This condition holds in Examples 4.1(i), (ii), (vi), (vii), and (viii) for all
choices of the index n. In particular, under prohibition or constraints on
either borrowing or short-selling, it is possible to find an initial wealth
large enough to permit the construction of a portfolio whose final value
almost surely dominates that of any contingent claim B satisfying (8.12).
This is also the case in Examples 4.1(iii) and (iv) for n ∈ {1, . . . ,M}. For
n ∈ {M + 1, . . . , N} in Examples 4.1(iii), (iv), condition (8.11) is violated.
Theorem 6.2 and the second part of Proposition 8.6 applied to these ex-
amples show that when a European call is written on a stock that cannot
be held by the hedging portfolio, the upper hedging price is infinite; in other
words, no matter how large the initial wealth, it is not possible to con-
struct a portfolio whose final value dominates almost surely the payoff of
the option.

Example 8.8 (Incomplete market): Consider the case K = {p ∈
RN ; pM+1 = · · · = pN = 0} of Example 4.1(iii), where there are only M
stocks available for investment, but these are driven by the N -dimensional
Brownian motion W (·) with N > M . Then ζ(·) ≡ 0 on the barrier cone
K̃ = {ν ∈ RN ; ν1 = · · · = νM = 0} of −K, and thus

ζ(ν) + p′ν = 0, ∀p ∈ K, ν ∈ K̃.

In particular, D(c) of Definition 6.9 agrees with D.
Consider now a contingent claim B for which û

∆= supν∈D uν is finite and
for which (8.7) holds, as is the case under the conditions of Proposition 8.5
or 8.6. Theorem 8.4 shows that if the supremum in the definition of û is
attained by some ν(·) ∈ D(m), then it is attained by every ν(·) ∈ D(m).
This verifies a conjecture of Harrison and Pliska (1981), p. 257; see also
Jacka (1992) and Ansel and Stricker (1994) for related results.

We conclude this section with a result that generalizes both Theorem 8.1
(as it allows for European contingent claims that make payments prior to
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expiration, somewhat like the claims introduced in Definition 2.2.1) and
Theorem 2.2 (as it deals with constrained portfolios). For simplicity, we deal
only with the case that the payment at the final time is strictly positive.

Theorem 8.9: Let C(·) be a cumulative consumption process and B: Ω→
(0,∞) an F(T )-measurable random variable such that

x
∆= sup

µ∈D
u(µ) = u(ν̂) <∞ (8.13)

for some ν̂(·) ∈ D, where

u(µ) ∆= E

[∫
(0,T ]

Hµ(s) dC(s) + Hµ(T )B

]
, µ(·) ∈ D. (8.14)

Then there exists a portfolio process π(·) such that Xx,C,π(·), the wealth
process in the original market M(RN ), satisfies

Xx,C,π(t) = Xν̂(t) ∆=
1

Hν̂(t)
E

[∫
(t,T ]

Hν̂(s) dC(s) + Hν̂(T )B

∣∣∣∣∣F(t)

]
,

(8.15)

for 0 ≤ t ≤ T . Furthermore, with the portfolio-proportion process p(·)
defined by

p(t) ∆=


π(t)

Xν̂(t)
, if Xν̂(t) �= 0,

p∗, if Xν̂(t) = 0,
(8.16)

where p∗ is an arbitrary but fixed element of K (cf. (2.14)), we have

p(t) ∈ K, for Lebesgue-a.e. t ∈ [0, T ], (8.17)

almost surely and

ζ(ν̂(t)) + p′(t)ν̂(t) = 0, for Lebesgue-a.e. t ∈ [0, T ]. (8.18)

In particular, (C, π) ∈ A(x;K), Xx,C,π(T ) = B almost surely, and

Hν̂(t)Xx,C,π(t) +
∫

(0,t]
Hν̂(s) dC(s), 0 ≤ t ≤ T, (8.19)

is a martingale.

This result can be established by arguments similar to those used in The-
orems 6.2 and 8.1. We opt here for a different proof, based on a variational
principle that we shall find useful in Chapter 6.

Proof of Theorem 8.9. From Theorem 5.5 we know that there exists
a portfolio process π(·) such that Xx,C,π

ν̂ (·), the wealth process in the auxil-
iary marketMν̂ corresponding to initial wealth x ≥ 0 and (C, π) ∈ Aν̂(x),
is given as Xν̂(·) ≡ Xx,C,π

ν̂ (·) by (8.15) and satisfies
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Xν̂(t)
S0(t)

+
∫

(0,t]

dC(s)
S0(s)

= x +
∫ t

0

1
S0(s)

[(Xν̂(s)ζ(ν̂(s)) + π′(s)ν̂(s)) ds + π′(s)σ(s) dW0(s)]

= x +
∫ t

0

Xν̂(s)
S0(s)

[(ζ(ν̂(s)) + p′(s)ν̂(s)) ds + p′(s)σ(s) dW0(s)], (5.17)

where p(·) is defined by (8.16). In order to prove the theorem, we must
show both (8.17) and (8.18). From (8.18) and the comparison of (5.17) with
(2.12), we can conclude that Xx,C,π

ν̂ (·), the wealth process in the auxiliary
marketMν̂ , agrees with Xx,C,π(·), the wealth process in the original market
M(RN ). Moreover, (8.17) shows that (C, π) ∈M(K), so that Xx,C,π(·) is
in fact a wealth process in the constrained marketM(K).

Step 1: For any µ(·) ∈ D and any ε ∈ (0, 1), the convex combination
(1 − ε)ν̂(·) + εµ(·) is in D, because of the convexity of K̃ and the positive
homogeneity and subadditivity of ζ (see (4.3), (4.4)), which guarantee that
(1 − ε)ν̂(·) + εµ(·) satisfies (5.2). We shall be interested in two particular
choices of µ(·). The first is µ(·) ≡ 0, which is an element of D because
0
˜
∈ K̃ and ζ(0) = 0. The other is µ(·) = ν̂(·) + λ(·) for some λ(·) ∈ D; this

µ(·) is in D because K̃ is a convex cone and thus closed under addition,
and ζ is subadditive.

Let {τn}∞n=1 be a nondecreasing sequence of stopping times converging
up to T , and consider the random perturbation of ν̂ given by

νε,n(t) ∆=
{

(1− ε)ν̂(t) + εµ(t), 0 ≤ t ≤ τn,
ν̂(t), τn < t ≤ T , (8.20)

= ν̂(t) + ε(µ(t)− ν̂(t))1{t≤τn}, 0 ≤ t ≤ T.

Because νε,n(·) ∈ D and ν̂(·) maximizes u(ν̂) over D, we must have

0 ≤ EYε,n =
u(ν̂)− u(νε,n)

ε
(8.21)

for every ε ∈ (0, 1) and n = 1, 2, . . . , where

Yε,n
∆=

Hν̂(T )B
ε

(
1−

Hνε,n
(T )

Hν̂(T )

)
+
∫

(0,T ]

Hν̂(t)
ε

(
1−

Hνε,n
(t)

Hν̂(t)

)
dC(t).

(8.22)
Step 2. A straightforward computation using (5.9)–(5.12) shows that

Λε,n(t) ∆=
Hνε,n

(t)
Hν̂(t)

= exp

[
− εN(t ∧ τn)− ε2

2
〈N〉(t ∧ τn)
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−
∫ t∧τn

0

(
ζ
(
(1− ε)ν̂(s) + εµ(s)

)
− ζ
(
ν̂(s)

))
ds

]
, (8.23)

where

N(t) ∆=
∫ t

0

(
σ−1(s)(µ(s)− ν̂(s))

)′
dWν̂(s), (8.24)

〈N〉(t) ∆=
∫ t

0
‖σ−1(s)(µ(s) − ν̂(s))‖2 ds. (8.25)

In the case that µ(·) = 0, we have

ζ ((1− ε)ν̂(s) + εµ(s))− ζ (ν̂(s)) = ζ((1− ε)ν̂(s))− ζ(ν̂(s))
= −εζ(ν̂(s)),

whereas in the case that µ(·) = ν̂(·) + λ(·) for some λ(·) ∈ D, we have

ζ ((1− ε)ν̂(s) + εµ(s))− ζ (ν̂(s)) = ζ (ν̂(s) + ελ(s))− ζ (ν̂(s))
≤ εζ(λ(s)).

We define

ξ(s) =
{
−ζ(ν̂(s)), if µ(·) = 0,
ζ(λ(s)), if µ = ν̂(·) + λ(·) for some λ(·) ∈ D,

and L(t) ∆=
∫ t

0 ξ(s) ds. With this notation, we may rewrite (8.23) as

Λε,n(t) ≥ Qε,n(t) (8.26)

∆= exp
{
−ε(N(t ∧ τn) + L(t ∧ τn))− ε2

2
〈N〉(t ∧ τn)

}
.

Step 3. For each positive integer n, we define the stopping time

τn
∆= inf

t ∈ [0, T ]; |N(t)|+ 〈N〉(t) + |L(t)| ≥ n

or
∫ t

0
‖θν̂(s)‖2 ds ≥ n

or
∫ t

0

(
Xν̂(s)

S
(ν̂)
0 (s)

)2

‖σ−1(s)(µ(s)− ν̂(s))‖2 ds ≥ n

or
∫ t

0
(L(s) + N(s))2‖σ′(s)π(s)‖2 ds ≥ n

}
∧ T.

Clearly, τn ↑ T almost surely as n → ∞. According to the Girsanov and
Novikov theorems (e.g., Karatzas and Shreve (1991), §3.5), the process

Wν̂,n(t) ∆= W (t) +
∫ t∧τn

0
θν̂(s) ds, 0 ≤ t ≤ T, (8.27)
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is a Brownian motion under the probability measure

P̃ν̂,n(A) ∆= E[Zν̂(τn) · 1A], A ∈ F(T ). (8.28)

Step 4. With τn the stopping time defined in Step 3, the process Qε,n(·)
of (8.26) has the lower bound

Qε,n(t) ≥ e−εn, 0 ≤ t ≤ T, (8.29)

and consequently

1
ε

(
1−

Hνε,n
(t)

Hν̂(t)

)
=

1− Λε,n(t)
ε

≤ Kn, 0 ≤ t ≤ T, (8.30)

almost surely, where Kn
∆= sup0<ε<1

1
ε (1− e−εn) is finite. Furthermore,

lim
ε↓0

1− Λε,n(t)
ε

≤ N(t ∧ τn) + L(t ∧ τn),

and it follows from Fatou’s lemma that

lim
ε↓0

Yε,n ≤ Hν̂(T )B(N(τn) + L(τn))

+
∫

(0,T ]
Hν̂(t)(N(t ∧ τn) + L(t ∧ τn)) dC(t).

In addition, each Yε,n is bounded from above by

Yn
∆= Kn

[
Hν̂(T )B +

∫
(0,T ]

Hν̂(t) dC(t)

]
,

which is integrable because EYn = Knu(ν̂) < ∞. Another application of
Fatou’s lemma yields

0 ≤ lim
ε↓0

u(ν̂)− u(νε,n)
ε

= lim
ε↓0

EYε,n ≤ E

(
lim
ε↓0

Yε,n

)
≤ E

[
Hν̂(T )B(N(τn) + L(τn))

+
∫

(0,T ]
Hν̂(t)(N(t ∧ τn) + L(t ∧ τn)) dC(t)

]
. (8.31)

Step 5. We next prove that (8.31) leads to

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′(t)(µ(t) − ν̂(t) + ξ(t))] dt ≥ 0, n ∈ N. (8.32)

To see this, we first recall from (5.16) that

d

(
Xν̂(t)

S
(ν̂)
0 (t)

)
= − dC(t)

S
(ν̂)
0 (t)

+
Xν̂(t)

S
(ν̂)
0 (t)

p′(t)σ(t) dWν̂(t),
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and so

d

(
Xν̂(t)

S
(ν̂)
0 (t)

(L(t) + N(t))

)

=
Xν̂(t)

S
(ν̂)
0 (t)

(dL(t) + dN(t)) + (L(t) + N(t))d

(
Xν̂(t)

S
(ν̂)
0 (t)

)

+
Xν̂(t)

S
(ν̂)
0 (t)

p′(t)(µ(t) − ν̂(t)) dt.

Integration of this equation yields

Xν̂(τn)

S
(ν̂)
0 (τn)

(L(τn) + N(τn)) +
∫

(0,τn]

L(t) + N(t)

S
(ν̂)
0 (t)

dC(t)

=
∫ τn

0

Xν̂(t)

S
(ν̂)
0 (t)

[p′(t)(µ(t) − ν̂(t) + ξ(t)] dt

+
∫ τn

0

Xν̂(t)

S
(ν̂)
0 (t)

[σ−1(t)(µ(t) − ν̂(t))

+ (L(t) + N(t))σ′(t)p(t)]′ dWν̂(t).

By the choice of τn, the integrand of the Itô integral in this last expres-
sion is square-integrable, and thus has expectation zero under Pν̂,n. Taking
expectations under this probability measure, we obtain

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′(t)(µ(t)− ν̂(t)) + ξ(t)] dt

= E

[
Hν̂(τn)X(τn) +

∫
(0,τn]

Hν̂(t)(L(t) + N(t)) dC(t)

]
. (8.33)

Applying the optional sampling theorem to the martingale in (8.19), we
see that (8.15) is still valid if we replace t in that equation by the stopping
time τn. Using this fact, we rewrite (8.33) as

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′(t)(µ(t)− ν̂(t)) + ξ(t)] dt

= E

[
(L(τn) + N(τn))

(
Hν̂(T )B +

∫
(τn,T ]

Hν̂(t) dC(t)

)

+
∫

(0,τn]
Hν̂(t)(L(t) + N(t)) dC(t)]

]
,

which is the right-hand side of (8.31), hence a nonnegative quantity. This
completes the proof of (8.32).
Step 6. We invoke Lemma 4.2 to obtain a process λ(·) ∈ D satisfying
(4.8), and we take µ(·) = ν̂(·) + λ(·), so that ξ(t) = ζ(λ(t)). Equation
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(8.32) becomes

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′(t)λ(t) + ζ(λ(t))] dt ≥ 0, n ∈ N,

which, together with (4.8), implies (8.17). From (4.5) we have immediately
that

p′(t)ν̂(t) + ζ(ν̂(t)) ≥ 0 for Lebesgue-a.e. t ∈ [0, T ]

holds almosts surely. We next take µ(·) ≡ 0 in (8.32), so that ξ(t) =
−ζ(ν̂(t)), and (8.32) becomes

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′(t)ν̂(t) + ζ(ν̂(t))] dt ≤ 0, n ∈ N

which proves (8.18). �

5.9 Lower Hedging Price

In addition to (2.3)–(2.6), we impose throughout this section the assump-
tion that

the process θ(·) of (2.7) is bounded. (9.1)

This implies, in particular, that Z0(·) of (2.8) is a martingale, that P0
defined by

P0(A) ∆=
∫

A

Z0(T ) dP, A ∈ F(T ), (9.2)

is a probability measure on F(T ), and thusM = (r(·), b(·), δ(·), σ(·), S(0),
A(·)) of Section 5.2 is a complete, standard financial market.

The seller of a contingent claim is interested in the upper-hedging price
of Section 5.3. This is the amount of money he needs to receive at time
t = 0 in order to invest in the constrained market in a way that ensures
that his final wealth will almost surely dominate his obligation to pay off
the contingent claim at the final time. The buyer, on the other hand, is
interested in the lower-hedging price, which we shall discuss in this section.
We imagine that the buyer takes a net negative wealth position, which
must include either borrowing from the money market or short-selling of
stock, in order to buy the contingent claim. The buyer finances this debt by
trading in a constrained market, and desires at the final time to have the
payment received from owning the contingent claim be sufficient to pay off
the debt without risk (i.e., with probability one). Since the payoffs of the
contingent claims in this chapter are nonnegative, the buyer’s wealth will
always be nonpositive prior to the final time. We define below the lower-
hedging price to be the maximum amount of debt the buyer can acquire
initially and still be certain that the payoff of the contingent claim will
cover his debt at the final time.
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We have modeled the constraint on the seller’s portfolio-proportion
process by a nonempty closed convex set K. For example, if there is
only one stock and borrowing in the money market is prohibited, we set
K = (−∞, 1], which enforces the no-borrowing condition by requiring that
the investor’s stock holdings can never exceed his wealth. To prevent the
buyer of the contingent claim, whose wealth is always negative or zero,
from borrowing in the money market, we should require that his short po-
sition in the stock be always at least as great as his net debt. Thus, the
proportion of his (negative) wealth invested in the stock should always lie
in the closed convex set K−

∆= [1,∞).
We generalize this situation by requiring that the seller’s portfolio-

proportion process lie in a nonempty, closed, convex set K ⊂ RN and the
buyer’s portfolio-proportion process lie in a companion nonempty, closed,
convex set K− ⊂ RN . These sets are related by the two conditions

K ∩K− �= ∅, (9.3)

∀p+ ∈ K, ∀p− ∈ K−, λp+ + (1− λ)p− ∈
{

K, if λ ≥ 1,
K−, if λ ≤ 0. (9.4)

We impose the assumptions (9.3) and (9.4) because they cover the examples
of interest (Examples 9.7) and result in several simplifications of notation
and exposition, such as Lemma 9.3 below. See, however, Remark 9.2 below.

We introduce the analogue

ζ−(ν) ∆= inf
p∈K−

(−p′ν), ν ∈ RN , (9.5)

of the support function ζ(·) in (4.1). The function ζ−(·) maps RN into
R ∪ {−∞}, and −ζ−(ν) = supp∈K−(p′ν), the support function of K−, is a
closed, proper, positively homogeneous, subadditive, convex function with
effective domain

K̃−
∆= {ν ∈ RN ; ζ−(ν) > −∞}. (9.6)

By analogy with (4.5), the function ζ−(·) satisfies

p ∈ K− ⇐⇒ ζ−(ν) + p′ν ≤ 0, ∀ν ∈ K̃−. (9.7)

The counterpart to Lemma 4.2 for ζ−(·) is the following.

Lemma 9.1: For any given {F(t)}-progressively measurable process
p: [0, T ]×Ω→ RN , there exists a K̃ -valued, F(t)-progressively measurable
process ν(·) such that

‖ν(t)‖ ≤ 1, |ζ(ν(t))| ≤ 1, 0 ≤ t ≤ T,

and for every t ∈ [0, T ], we have

p(t) ∈ K− ⇔ ν(t) = 0,

p(t) /∈ K− ⇔ ζ(ν(t)) + p′(t)ν(t) > 0
(9.8)

almost surely.
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Remark 9.2: The next lemma relates ζ(·) to ζ−(·) and K̃ to K̃−. We have
imposed conditions (9.3), (9.4) in order to obtain this simplifying result.
However, the only consequence of Lemma 9.3 below that is actually used
in this section is the bound

ζ−(ν) ≥ ζ0, ∀ν ∈ K̃− (9.9)

for some ζ0 ∈ R. If K− leads to a function ζ− satisfying (9.9), then the
lower-hedging price results of this section hold, even if there is no nonempty
closed, convex set K related to K− by (9.3), (9.4).

Lemma 9.3: Under conditions (9.3) and (9.4), we have K̃− = K̃ and
ζ−(·) = ζ(·) on K̃. In particular, (4.6) implies (9.9).

Proof. Clearly, (9.3) gives ζ−(ν) ≤ ζ(ν) for all ν ∈ RN . Consider an
arbitrary ν ∈ K̃; then −∞ < ζ(ν) < ∞. For fixed λ > 1 and arbitrary
p+ ∈ K and p− ∈ K−, we have, thanks to (9.4),

−λp′
+ν + (λ− 1)p′

−ν = −(λp+ + (1− λ)p−)′ν ≤ sup
p∈K

(−p′ν) = ζ(ν).

Taking the supremum of the left-hand side over p+ ∈ K and p− ∈ K−, we
deduce

λζ(ν)− (λ− 1)ζ−(ν) ≤ ζ(ν). (9.10)

The inequality ζ−(ν) > −∞ follows from the finiteness of ζ(ν), which gives
K̃ ⊆ K̃−. The inequality (9.10) also implies ζ(ν) ≤ ζ−(ν) for all ν ∈ K̃.

We next consider an arbitrary ν ∈ K̃−, so that ζ−(ν) is finite. Fix λ < 0,
and let p+ ∈ K̃ and p− ∈ K̃− be arbitrary. From (9.4) we now have

λp′
+ν + (1− λ)p′ν = (λp+ + (1− λ)p−)′ν ≤ sup

p∈K−
(p′ν) = −ζ−(ν).

Taking the supremum of the left-hand side over p+ ∈ K and p− ∈ K−
yields

− λζ(ν)− (1− λ)ζ−(ν) ≤ −ζ−(ν). (9.11)

The inequality ζ(ν) < ∞ follows from the finiteness of ζ−(ν), which gives
K̃− ⊆ K̃, and thus also K̃− = K̃. The inequality (9.11) also implies ζ(ν) ≤
ζ−(ν) for all ν ∈ K̃− = K̃. �

In light of Lemma 9.3, processes ν(·) mapping [0, T ] × Ω into K̃ also
map into K̃−. In this section, we shall consider the set of processes D of
Definition 5.1 and more particularly, the set D(b) of bounded processes
in D. According to Remark 5.2, Zν(·) is a martingale for every ν(·) ∈ D(b),
and the standard martingale measure Pν for the market Mν is defined
by (5.15).

We shall write henceforth K̃ and ζ(·) rather than K̃− and ζ−(·), in order
to simplify notation. However, in accordance with Remark 9.2, there need
not actually be a set K and function ζ(·); in such a case, the set K̃− and
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the function ζ−(·) should be substituted for K̃ and ζ(·) throughout the
remainder of this section and the next.

Consider now an agent with cumulative income process Γ(t) = x−C(t),
0 ≤ t ≤ T , where x ≤ 0 is his initial wealth and C(·) is his cumulative con-
sumption: a nondecreasing, {F(t)}-adapted process with nondecreasing,
right-continuous paths and C(0) = 0, C(T ) < ∞ almost surely. A port-
folio process π(·) is an RN -valued, {F(t)}-progressively measurable process
satisfying (2.11).

Definition 9.4: Given x ≤ 0 and a pair (C, π) of a cumulative consump-
tion process and a portfolio process, the corresponding wealth process is
given by

Xx,π,C(t)
S0(t)

+
∫

(0,t]

dC(v)
S0(v)

= x +
∫ t

0

1
S0(v)

π′(v)σ(v) dW0(v), 0 ≤ t ≤ T,

(2.12)
which can also be written as (2.13), and the corresponding portfolio-
proportion process is defined by

p(t) ∆=


π(t)

Xx,C,π(t)
, if Xx,C,π(t) �= 0,

p∗, if Xx,C,π(t) = 0,
(2.14)

where p∗ is an arbitrary but fixed vector in K−.
We say that a pair (C, π) consisting of a cumulative consumption process

and a portfolio process is admissible in the market M(K−) for the initial
wealth x ≤ 0, and we write (C, π) ∈ A(x;K−), if p(·) satisfies the buyer’s
constraint

p(t) ∈ K− for Lebesgue-a.e. t ∈ [0, T ] (9.12)

almost surely, and

Xx,C,π(t) ≤ 0, ∀t ∈ [0, T ] a.s., (9.13)

E

(
max

0≤t≤T

|Xx,C,π(t)|
S0(t)

)γ

<∞, for some γ > 1. (9.14)

Remark 9.5: Consider the random variable

Λ ∆= max
0≤t≤T

|Xx,C,π(t)|
S0(t)

(9.15)

in (9.14). Because of (9.1) we have EZq
0(T ) < ∞ for every q ∈ R, and

(9.14) coupled with Hölder’s inequality implies

E0Λ
γ+1
2 = E

[
Z0(T )Λ

γ+1
2

]
≤
(

EZ
2γ

γ−1
0 (T )

) γ−1
2γ

(EΛγ)
γ+1
2γ <∞.

Hence, (9.14) implies

E0Λγ0 <∞ for some γ0 > 1. (9.16)
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Similarly, (9.16) coupled with Hölder’s inequality implies (9.14). Indeed,
the condition

EνΛγν <∞ for some γν > 1 (9.17)

for some ν(·) ∈ D(b) implies the validity of (9.17) for every ν(·) ∈ D(b) and
also the validity of (9.14).

Remark 9.6: Suppose (C, π) is admissible in M(K) for x ≤ 0. Let
Xx,C,π(·) be the wealth process with initial condition x generated by (C, π),
and define Λ by (9.15), so that EΛγ <∞ for some γ > 1. Then condition
(9.16) holds. We have

− Λ ≤ Xx,C,π(t)
S0(t)

+
∫

(0,t]

dC(v)
S0(v)

= x +
∫ t

0

1
S0(v)

π′(v)σ(v) dW0(v), (9.18)

and Fatou’s lemma shows that the P0-local martingale

M(t) ∆=
∫ t

0

1
S0(v)

π′(v)σ(u) dW0(v)

is a P0-supermartingale. We have then the budget constraint

E0

[
Xx,C,π(T )

S0(T )
+
∫

(0,T ]

dC(v)
S0(v)

]
≤ x, ∀(C, π) ∈ A(x;K−), (9.19)

which implies

E0

[∫
(0,T ]

dC(v)
S0(v)

]
≤ x−E0

[
Xx,C,π(T )

S0(T )

]
≤ x + E0Λ.

Returning to (9.18), we conclude that

−Λ ≤ x + M(t) =
Xx,C,π(t)

S0(t)
+
∫

(0,t]

dC(v)
S0(v)

≤
∫

(0,T ]

dC(v)
S0(v)

, 0 ≤ t ≤ T.

Being bounded both from below and from above by P0-integrable random
variables, the P0-local martingale M(·) is in fact a P0-martingale. Moreover,
the budget constraint (9.19) holds with equality:

E0

[
Xx,C,π(T )

S0(T )
+
∫

(0,T ]

dC(v)
S0(v)

]
= x, ∀(C, π) ∈ A(x;K−). (9.20)

Example 9.7: The following pairs of nonempty closed, convex sets K
and K− satisfy the conditions of (9.3) and (9.4). The corresponding convex
cone K̃ = K̃− and support function ζ(·) = ζ−(·), given in Examples 4.1,
are repeated here for reference.

(i) Unconstrained case: K = K− = RN , K̃ = {0}, and ζ ≡ 0 on K̃.
(ii) Prohibition of short-selling: K = [0,∞)N , K− = (−∞, 0]N , K̃ =

[0,∞)N , and ζ ≡ 0 on K̃. In this case, in both the market M(K)
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with X(·) ≥ 0 and in the marketM(K−) with X(·) ≤ 0, the amount
of wealth πn(t) = X(t)pn(t) invested in the nth stock is nonnegative
for Lebesgue-almost-all t ∈ [0, T ] almost surely, for n = 1, . . . , N .

(iii) Incomplete market: K = K− = {p ∈ RN ; pM+1 = · · · = pN = 0}
for some M ∈ {1, . . . , N − 1}, K̃ = {ν ∈ RN ; ν1 = · · · = νM = 0},
and ζ ≡ 0 on K̃.

(iv) Incomplete market with prohibition of short-selling: In this case,
K = {p ∈ RN ; p1 ≥ 0, . . . , pM ≥ 0, pM+1 = · · · = pN = 0} and
K− = {p ∈ RN ; p1 ≤ 0, . . . , pM ≤ 0, pM+1 = · · · = pN = 0}. Then
K̃ = {ν ∈ RN ; ν1 ≥ 0, . . . , νM ≥ 0} and ζ ≡ 0 on K̃.

(v) K is a nonempty, closed convex cone in RN and K− = −K. Then
K̃ = {ν ∈ RN ; p′ν ≤ 0, ∀p ∈ K−} and ζ ≡ 0 on K̃. This
generalizes examples (i)–(iv).

(vi) Prohibition of borrowing: K = {p ∈ RN ;
∑N

n=1 pn ≤ 1} and K− =
{p ∈ RN ;

∑N
n=1 pn ≥ 1}, so that the amount of money

π0(t)
∆= X(t)−

N∑
n=1

πn(t) = X(t)

(
1−

N∑
n=1

pn(t)

)
invested in the money market is nonnegative for Lebesgue-almost-
all t ∈ [0, T ] almost surely, regardless of whether X(t) ≥ 0 or
X(t) ≤ 0. In this case K̃ = {ν ∈ RN ; ν1 = · · · = νN ≤ 0} and
ζ(ν) = −ν1 on K̃.

(vii) Constraints on short-selling: K = [−κ,∞)N for some κ > 0. It
is not clear how one should place a short-selling constraint on an
agent whose total wealth is negative, but the only set K− corre-
sponding to the K of this example and satisfying (9.3) and (9.4)
is K = (−∞,−κ]N . Regardless of the sign of X(t), the wealth
πn(t) = X(t)pn(t) invested in the nth stock is at least −κX(t), a
nonnegative quantity when X(t) ≤ 0. In this case K̃ = [0,∞)N and
ζ(ν) = κ

∑N
n=1 νn on K̃.

(viii) Constraints on borrowing: K = {p ∈ RN ;
∑N

n=1 pn ≤ κ} for some
κ > 1. It is not clear how one should place a borrowing constraint
on an agent whose total wealth is negative, but the only set K−
corresponding to the K of this example and satisfying (9.3) and
(9.4) is K− = {p ∈ RN ;

∑N
n=1 pn ≥ κ}. The amount π0(t) invested

in the money market, defined in (vi), satisfies π0(t) ≥ (1 − κ)X(t)
regardless of the sign of X(t). In this case, K̃ = {ν ∈ RN ; ν1 =
· · · = νN ≤ 0} and ζ(ν) = −κν1 on K̃.

Definition 9.8:

(i) A contingent claim B is a nonnegative, F(T )-measurable random
variable. We call
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u0
∆= E[H0(T )B] = E0

[
B

S0(T )

]
(3.1)

the unconstrained hedging price of B. (This is a repetition of
Definition 3.1(i).)

(ii) The lower-hedging price in M(K−) of the contingent claim B is
defined to be

hlow(K−) (9.21)
∆= − inf{x ≤ 0;∃(C, π) ∈ A(x;K−) with Xx,C,π(T ) + B ≥ 0 a.s.}.

(iii) We say that B is K−-attainable if there exists a portfolio process π(·)
such that

(0, π) ∈ A(x;K−) and Xx,0,π(T ) + B = 0 a.s. (9.22)

with x = −hlow(K−).

In other words, if the infimum in (9.21) is attained, then hlow(K−) is the
maximal amount of initial debt the buyer of the contingent claim can afford
to acquire and still be sure that by investment in the constrained market
M(K−), he can be guaranteed (with probability one) to have nonnegative
wealth at the terminal time t = T , once the payoff of the contingent claim
has been received.

Lemma 9.9: Let B be a contingent claim. We have

0 ≤ hlow(K−) ≤ u0 ≤ hup(K). (9.23)

Proof. Taking x = 0, π(·) ≡ 0, and C(·) ≡ 0, we have Xx,C,π(·) ≡ 0,
and Xx,C,π(T ) + B ≥ 0 almost surely. Hence, the infimum in (9.21) is
nonpositive and hlow(K−) ≥ 0.

The inequality u0 ≤ hup(K) follows immediately from Theorem 6.2, but
here is an elementary argument. The inequality holds trivially if hup(K) =
∞; if hup(K) < ∞, then for any x ≥ 0 for which there exists (C, π) ∈
A(x;K−) with Xx,C,π(T ) ≥ B almost surely, the budget constraint (2.17)
gives

x ≥ E

[
H0(T )Xx,C,π(T ) +

∫
(0,T ]

H0(v) dC(v)

]
≥ E[H0(T )B] = u0,

whence hup(K) ≥ u0.
It remains to show that

hlow(K−) ≤ u0. (9.24)

Let x ≤ 0 be such that there exists (C, π) ∈ A(x;K−) with Xx,C,π(T ) +
B ≥ 0 almost surely. According to the budget constraint (9.20),
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x = E0

[
Xx,C,π(T )

S0(T )
+
∫

(0,T ]

dC(v)
S0(v)

]
≥ −E0

[
B

S0(T )

]
= −u0.

The desired inequality (9.24) follows. �

We observe that in the presence of condition (9.1), the finiteness of u0 is
implied by the condition

E

[
B

S0(T )

]γ

<∞ for some γ > 1. (9.25)

Indeed, when (9.25) holds, we may proceed as in Remark 9.5 to obtain, for
every process ν(·) ∈ D(b),

Eν

[
B

S0(T )

]γν

<∞ for some γν > 1. (9.26)

For ν(·) ∈ D(b), all moments of Zν(T ) are finite under both P and Pν .
Another application of Hölder’s inequality shows that (9.26) is equivalent
to

Eν

[
Zqν

ν (T )
(

B

S0(T )

)γν
]

<∞ for every qν ∈ R (9.27)

for some γν > 1.
It turns out that condition (9.25) actually leads to a much stronger re-

sult: a characterization of the lower-hedging price hlow(K−) in terms of
a stochastic control problem, in the spirit of Theorem 6.2. We recall the
Definition 6.1 of uν , which can now be written in terms of Pν as

uν
∆= E[Hν(T )B] = Eν

[
B

S
(ν)
0 (T )

]
. (9.28)

Theorem 9.10: Assume (9.1) and (9.9), and let B be a contingent claim
satisfying (9.25). The lower-hedging price of B is given by

hlow(K−) = ǔ
∆= inf

ν∈D(b)
uν . (9.29)

Furthermore, there exists a pair (Č, π̌) ∈ A(−ǔ,K−) with corresponding
wealth process

X−ǔ,Č,π̌(t) = −ess infν∈D(b)
E[Hν(T )B|F(t)]

Hν(t)
, 0 ≤ t ≤ T, (9.30)

and in particular,

X−ǔ,Č,π̌(T ) + B = 0 (9.31)

almost surely.

The proof of this theorem is provided after Proposition 9.13 below.
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Definition 9.11: We call the process

X̌(t) ∆= −ess infν∈D(b)
E[Hν(T )B|F(t)]

Hν(t)
, 0 ≤ t ≤ T, (9.32)

on the right-hand side of (9.30), the lower-hedging value process for the
contingent claim B. We shall always take a right-continuous, left-limited
modification (see Proposition 9.13 below) of this process.

Remark 9.12: In the unconstrained case K = K− = RN of Example
9.5(i) we have K̃ = K̃− = {0}, so that D = D(b) contains only the zero
process ν(·) ≡ 0. Thus, in Theorems 6.2 and 9.10,

ǔ = û = u0, hlow(K−) = u0 = hup(K), Č(·) = Ĉ(·) ≡ 0,

and

−X−u0,Č,π̌(t) = Xu0,Ĉ,π̂(t) =
E[H0(T )B|F(t)]

H0(t)
= S0(t)E0

[
B

S0(T )

∣∣∣∣F(t)
]

coincides with the process V ECC(·) of (2.2.13) on [0, T ), whereas π̌(·) = π̂(·)
is the hedging portfolio of Definition 2.2.6.

Proposition 9.13: Assume (9.1) and (9.9). Under the additional
assumption (9.25), the lower-hedging value process

X̌(t) ∆= −ess infν∈D(b)
E[Hν(T )B|F(t)]

Hν(t)
, 0 ≤ t ≤ T, (9.33)

is finite and satisfies the dynamic programming equation

X̌(s) = ess supν∈D(b)
E[Hν(t)X̌(t)|F(s)]

Hν(s)
, 0 ≤ s ≤ t ≤ T. (9.34)

In particular, X̌(0) = −ǔ and X̌(T ) + B = 0 almost surely.
The process X̌(·) has a right-continuous, left-limited (RCLL) modifica-

tion, which we shall always choose. With this choice, and for every process
ν(·) ∈ D(b), the process Hν(·)X̌(·) is a uniformly integrable RCLL super-
martingale under P . Furthermore, for each ν(·) ∈ D(b), the process X̌(·)

S
(ν)
0 (·)

is a supermartingale of class D[0, T ] under Pν ; i.e., the collection of ran-

dom variables
{

X̌(τ)
S

(ν)
0 (τ)

}
τ∈S

is uniformly integrable under Pν , where S is

the set of all stopping times taking values in [0, T ].

Proof. We prove first that for each ν(·) ∈ D(b), the process Hν(·)X̌(·) is
uniformly integrable under P . Let ν(·) ∈ D(b) and t ∈ [0, T ] be given, and
denote by D(b)

t,ν the set of all processes µ(·) ∈ D(b) that agree with ν(·) on

[0, t]×Ω. Since Hµ(s, t) ∆= Hµ(t)/Hµ(s) depends only on the values of µ(v)
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for s ≤ v ≤ t, we may rewrite (9.33) as

X̌(t) = ess sup
µ∈D(b)

t,ν

E[−Hµ(T )B|F(t)]
Hµ(t)

=
1

Hν(t)
· ess sup

µ∈D(b)
t,ν

E[−Hµ(T )B|F(t)]

≥ − 1
Hν(t)

E[Hν(T )B|F(t)],

whence

|Hν(t)X̌(t)| ≤ E[Hν(T )B|F(t)], 0 ≤ t ≤ T.

It follows from Jensen’s inequality and Doob’s maximal martingale
inequality that for every γν > 1,

E

[
sup

0≤t≤T
|Hν(t)X̌(t)|γν

]
≤
(

γν

γν − 1

)γν

· E [Hν(T )B]γν , (9.35)

and the uniform integrability of Hν(·)X̌(·) under P follows from the
inequality

E[Hν(T )B]γν ≤ e−γνζ0T Eν

[
Zγν−1

ν (T )
(

B

S0(T )

)γν
]

and (9.27).
We now imitate the proof of Proposition 6.5, with −B replacing B, and

using the uniform integrability of Hν(·)X̌(·) under P instead of Fatou’s
lemma in the last step. The proof of Proposition 6.5 also involves ran-
dom variables, now defined by Jµ(t) ∆= E[−Hµ(t, T )B|F(t)], which have
the property that for each process ν(·) ∈ D(b) and t ∈ [0, T ], the collection
{Jµ(t)}

µ∈D(b)
t,ν

is closed under pairwise maximization. It follows that the
collection

{(Jµ(t) ∨ Jν(t)) + E[Hν(t, T )B|F(t)]}
µ∈D(b)

t,ν

of nonnegative random variables is closed under pairwise maximization, and
Theorem A.3 of Appendix A can be applied to this collection to extract a
sequence {µk(·)}∞k=1 such that {Jµk

(t)}∞k=1 is nondecreasing and

X̌(t) = lim
k→∞

Jµk
(t)

(cf. (6.13)). With these modifications, we obtain from the proof of
Proposition 6.5 all the assertions of the present proposition, except the
last.

For the final assertion of Proposition 9.13 we let ν(·) ∈ D(b) be given and
start by verifying the Pν-supermartingale property for 0 ≤ s ≤ t ≤ T :
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Eν

[
X̌(t)

S
(ν)
0 (t)

∣∣∣∣∣F(s)

]
=

1
Zν(s)

E[Hν(t)X̌(t)|F(s)]

≤ 1
Zν(s)

Hν(s)X̌(s) =
X̌(s)

S
(ν)
0 (s)

.

Because − X̌(·)
S

(ν)
0 (·)

is a nonnegative Pν-submartingale, so is
∣∣∣∣ X̌(·)
S

(ν)
0 (·)

∣∣∣∣γν

with

γν > 1 chosen to satisfy (9.26), thanks to which this submartingale has a
Pν-integrable last element∣∣∣∣∣ X̌(T )

S
(ν)
0 (T )

∣∣∣∣∣
γν

≤ e−γνζ0T

(
B

S0(T )

)γν

.

This establishes the uniform integrability under Pν of the collection of

random variables
{

X̌(τ)
S

(ν)
0 (τ)

}
τ∈S

.
�

Proof of Theorem 9.10. Let x ≤ 0 and (C, π) ∈ A(x;K−) be such
that Xx,C,π(T )+B ≥ 0 almost surely. In differential notation, with X(·) =
Xx,C,π(·) and p(·) defined by (2.12) and (2.14), we have

d

(
X(t)
S0(t)

)
= −dC(t)

S0(t)
+

X(t)
S0(t)

p′(t)σ(t) dW0(t),

and thus

d

(
X(t)

S
(ν)
0 (t)

)
= d

(
e

−
∫

t

0
ζ(ν(s)) ds X(t)

S0(t)

)
= −ζ(ν(t))e−

∫ t

0
ζ(ν(s)) ds X(t)

S0(t)
dt + e

−
∫ t

0
ζ(ν(s)) ds

d

(
X(t)
S0(t)

)
=

X(t)

S
(ν)
0 (t)

[−ζ(ν(t)) dt + p′(t)σ(t) dW0(t)]−
dC(t)

S
(ν)
0 (t)

= − X(t)

S
(ν)
0 (t)

[ζ(ν(t)) + p′(t)ν(t)] dt − dC(t)

S
(ν)
0 (t)

+
X(t)

S
(ν)
0 (t)

p′(t)σ(t) dWν (t)

for any ν(·) ∈ D(b). Integration yields

Xx,C,π(t)

S
(ν)
0 (t)

+
∫ t

0

Xx,C,π(s)

S
(ν)
0 (s)

[ζ(ν(s)) + p′(s)ν(s)] ds +
∫

(0,t]

dC(s)

S
(ν)
0 (s)

= x +
∫ t

0

Xx,C,π(s)

S
(ν)
0 (s)

p′(v)σ(s) dWν (s). (9.36)
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From (9.5) and Lemma 9.3, we see that ζ(ν(s)) + p′(s)ν(s) is nonpositive,
as is Xx,C,π(s); thus the process on the left-hand side of (9.36) is bounded
from below by

Xx,C,π(t)

S
(ν)
0 (t)

≥ −Λexp
{
−
∫ t

0
ζ(ν(s)) ds

}
≥ −Λe−ζ0T , 0 ≤ t ≤ T,

where the random variable Λ of (9.15) satisfies (9.14) as well as (9.17). The
Pν-local martingale (9.36), being bounded from below by a Pν-integrable
random variable, must be a Pν-supermartingale. Hence

x ≥ Eν

[
Xx,C,π(T )

S
(ν)
0 (T )

+
∫ T

0

Xx,C,π(s)

S
(ν)
0 (s)

[ζ(ν(s)) + p′(s)ν(s)] ds

+
∫

(0,T ]

dC(v)

S
(ν)
0 (v)

]

≥ Eν

[
− B

S
(ν)
0 (T )

]
= −E[Hν(T )B] = −uν , ∀ν ∈ D(b).

Taking successively the infimum over x, and then over ν(·) ∈ D(b), we
obtain first hlow(K−) ≤ uν for every ν(·) ∈ D(b), and then

hlow(K−) ≤ ǔ, (9.37)

respectively. �

To prove the reverse inequality, we consider the lower-hedging value
process X̌(·) of Proposition 9.13. For each ν(·) ∈ D(b), the Pν-super-
martingale X̌(·)

S
(ν)
0 (·)

is of class D[0, T ]; thus, it admits a unique Doob–Meyer

decomposition of the form

X̌(t)

S
(ν)
0 (t)

= −ǔ + Mν(t)−Aν(t), 0 ≤ t ≤ T. (9.38)

Here Mν(·) is a Pν-martingale, representable as a stochastic integral in the
form

Mν(t) =
∫ t

0
ψ′

ν(s) dWν(s), 0 ≤ t ≤ T,

for some {F(t)}-progressively measurable process ψν : [0, T ] × Ω → RN

with
∫ T

0 ‖ψν(t)‖2 dt < ∞ almost surely (Lemma 1.6.7, applied to the
market Mν), and Aν(·) is an {F(t)}-adapted, natural (see Remark 6.8),
nondecreasing process with right-continuous paths, EνAν(T ) < ∞, and
Aν(0) = 0.

For any two processes µ(·), ν(·) ∈ D(b) we have

d

(
S

(ν)
0 (t)

S
(µ)
0 (t)

)
= [ζ(ν(t))− ζ(µ(t))]

S
(ν)
0 (t)

S
(µ)
0 (t)

dt
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and hence

d

(
X̌(t)

S
(µ)
0 (t)

)
= d

(
X̌(t)

S
(ν)
0 (t)

· S
(ν)
0 (t)

S
(µ)
0 (t)

)

=
S

(ν)
0 (t)

S
(µ)
0 (t)

ψ′
ν(t) dWν(t)− S

(ν)
0 (t)

S
(µ)
0 (t)

dAν(t)

+
X̌(t)

S
(µ)
0 (t)

[ζ(ν(t))− ζ(µ(t))] dt

=
S

(ν)
0 (t)

S
(µ)
0 (t)

ψ′
ν(t) dWµ(t) +

S
(ν)
0 (t)

S
(µ)
0 (t)

ψ′
ν(t)σ−1(t)(ν(t) − µ(t)) dt

− S
(ν)
0 (t)

S
(µ)
0 (t)

dAν(t) +
X̌(t)

S
(µ)
0 (t)

[ζ(ν(t))− ζ(µ(t))] dt.

But (9.38) with ν(·) replaced by µ(·) implies

d

(
X̌(t)

S
(µ)
0 (t)

)
= ψ′

µ(t) dWµ(t)− dAµ(t).

From the uniqueness of the Doob–Meyer decomposition, we deduce then
S

(ν)
0 (t)

S
(µ)
0 (t)

ψν(t) = ψµ(t), i.e., that

ϕ(t) ∆= S
(ν)
0 (t)ψν(t) = S

(µ)
0 (t)ψµ(t), 0 ≤ t ≤ T, (9.39)

does not depend on the process ν(·) ∈ D(b), and that

Č(t) ∆=
∫

(0,t]
S

(ν)
0 (s)dAν(s)−

∫ t

0
[X̌(s)ζ(ν(s)) + ϕ′(s)σ−1(s)ν(s)] ds

=
∫

(0,t]
S

(µ)
0 (s)dAµ(s)−

∫ t

0
[X̌(s)ζ(µ(s)) + ϕ′(s)σ−1(s)µ(s)] ds

(9.40)

does not depend on ν(·) ∈ D(b) either. We will take Č(·) in (9.40) to be
the consumption process in Theorem 9.10; setting ν(·) ≡ 0 in (9.40), we
see that this process Č(t) =

∫
(0,t] S

(0)
0 (s) dA0(s) is nondecreasing. We set

π̌(t) ∆= (σ′(t))−1ϕ(t), (9.41)

and define p̌(·) by

p̌(t) ∆=


π̌(t)
X̌(t)

, if X̌(t) �= 0,

p∗, if X̌(t) = 0
(9.42)

(cf. (2.14)), where p∗ is an arbitrary vector in K−.
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With Č(·), π̌(·), and p̌(·) as defined above, we have from (9.38) that for
every ν(·) ∈ D(b),

X̌(t)

S
(ν)
0 (t)

+
∫ t

0

X̌(s)

S
(ν)
0 (s)

[ζ(ν(s)) + p̌′(s)ν(s)] ds +
∫

(0,t]

dČ(s)

S
(ν)
0 (s)

= −ǔ +
∫ t

0

1

S
(ν)
0 (s)

π̌′(s)σ(s) dWν (s), 0 ≤ t ≤ T. (9.43)

With ν(·) ≡ 0, this equation reduces to (2.12), which means that
X−ǔ,Č,π̌(·) = X̌(·) and (9.30) holds.

It remains to verify that (Č, π̌) ∈ A(−ǔ;K−). We first check that (9.14)
holds. From (9.33) we have

X̌(t)
S0(t)

≥ − 1
Z0(t)

E[H0(T )B|F(t)] = −E0

[
B

S0(T )

∣∣∣∣F(t)
]

, (9.44)

which leads us to consider the random variable

ΛB
∆= sup

0≤t≤T
E0

[
B

S0(T )

∣∣∣∣F(t)
]

. (9.45)

With γ0 > 1 as in (9.26), Doob’s maximal martingale inequality implies

E0Λγ0 ≤ γ0

γ0 − 1
E0

[
B

S0(T )

]γ0

<∞.

Inequality (9.14) follows from Remark 9.5.
Finally, we must show that we have

p̌(t) ∈ K− for Lebesgue-a.e. t ∈ [0, T ] (9.46)

almost surely. Let ν(·) ∈ D(b) be the process corresponding to p̌(·) given by
Lemma 9.1. For each positive integer k, kν(·) ∈ D(b). Using (9.41), (9.42),
we may rewrite (9.40) as

0 ≤
∫

(0,T ]
S

(ν)
0 (s) dAkν(s)

= Č(T ) + k

∫ T

0
X̌(s)[ζ(ν(s)) + p̌′(s)ν(s)] ds.

The integrand on the right-hand side of this inequality is nonpositive (be-
cause X̌(·) is nonpositive and ν(·) and π̌(·) are related by (9.8)); choosing
k sufficiently large, the right-hand side can be made negative with positive
probability, unless

ζ(ν(t)) + p̌(t)ν(t) = 0 for Lebesgue-a.e. t ∈ [0, T ] (9.47)

holds almost surely. Thus (9.47) must hold, and with it, (9.46) as well. �

The following two propositions provide some conditions in general mar-
kets under which the lower-hedging price is either zero or positive. In the
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next section, we take up more specific computations of the lower-hedging
price in markets with constant coefficients.

Proposition 9.14: Assume (9.1) and (9.9). We have

hlow(K−) = ǔ
∆= inf

ν∈D(b)
uν = 0

in either of the following cases:

(i) 0 ≤ B ≤ β almost surely for some β > 0, and

ν �→ ζ(ν) is unbounded from above on K̃; (9.48)

(ii) 0 ≤ B ≤ αSn(T ) + β almost surely for some α > 0, β ≥ 0, and some
n = 1, . . . , N for which the dividend rate process δn(·) is bounded from
below; ESγ

n(T ) <∞ for some γ > 1;

ν �→ ζ(ν) + νn is unbounded from above on K̃; (9.49)

and either β = 0 or else (9.48) holds.

Proof. For case (i), the validity of (9.25) is immediate from (2.5), and
thus Theorem 9.10 applies. We let ν(·) ≡ ν ∈ K̃ be a constant process in
D(b), so that

uν
∆= Eν

[
B

S
(ν)
0 (T )

]
≤ β

s0
e−ζ(ν)T .

Taking the infimum over ν ∈ K̃, we see that ǔ = 0.
In case (ii), we first note that

E

[
B

S0(T )

]γ

≤ s−γ
0 E [2(β ∨ αSn(T ))]γ ≤

(
2
s0

)γ

(βγ + αγESγ
n(T )) <∞,

and again (9.25) is satisfied. We next use (1.1.10) and (5.11) to verify that

Sn(t)
S0(t)

= Sn(0) exp

{∫ t

0

N∑
d=1

σnd(s) dW (d)
ν (s)− 1

2

∫ t

0

N∑
d=1

σ2
nd(s) ds

−
∫ t

0
(νn(s) + δn(s)) ds

}
, 0 ≤ t ≤ T, (9.50)

is valid for every ν(·) ∈ D. Again taking ν(·) = ν ∈ K̃ to be constant, and
replacing δn(·) by its lower bound ∆, we have

Eν

(
Sn(T )
S0(T )

)
≤ Sn(0)e−(νn+∆)T Eν exp

{∫ t

0

N∑
d=1

σnd(s) dW (d)
ν (s)− 1

2

∫ t

0

N∑
d=1

σ2
nd(s) ds

}
= Sn(0)e−(νn+∆)T .
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It follows that

uν
∆= Eν

[
B

S
(ν)
0 (T )

]
= e−ζ(ν)T Eν

[
B

S0(T )

]
≤ e−ζ(ν)T β

s0
+ αSn(0)e−(ζ(ν)+νn+∆)T .

Taking the infimum over ν ∈ K̃, we obtain ǔ = 0. �

The condition on the contingent claim in Proposition 9.14(i) is satisfied
by a European put option B = (q − Sn(T ))+, and the condition of Propo-
sition 9.14(ii) is satisfied with α = 1 and β = 0 by a European call option
B = (Sn(T ) − q)+, where q ≥ 0. The validity of (9.48) or (9.49) depends
on the nature of the portfolio constraints. In Examples 9.7(ii), (iv), (vii),
and (viii), condition (9.49) is satisfied for every n, and in Example 9.7(iii)
it is satisfied if n ∈ {M +1, . . . , N}, i.e., for a European call option written
on a stock in which trading is not allowed. Condition 9.48 is satisfied in
Examples 9.7(vi), (vii), and (viii).

The following proposition provides sufficient conditions for a positive
lower-hedging price for a European call option.

Proposition 9.15: Assume (9.1) and (9.9), and suppose B = (Sn(T )−
q)+ for some q > 0 and n ∈ {1, . . . , N} for which the dividend rate process
δn(·) is bounded from above, ESγ

n(T ) <∞ for some γ > 1, and

ν �→ ζ(ν) + νn is bounded from above on K̃. (9.51)

Then

hlow(K) = ǔ
∆= inf

ν∈D(b)
uν > 0

for q > 0 sufficiently small.

Proof. From (9.50) and the formula S
(ν)
0 (T ) = S0(T )e−

∫
T

0
ζ(ν(t)) dt, we

have

uν = Eν

(
Sn(T )− q

S
(ν)
0 (T )

)+

= Eν

(
exp

{
−
∫ T

0
(ζ(ν(t)) + νn(t) + δn(t)) dt

}

· exp

{∫ T

0

N∑
d=1

σnd(t) dW (d)
ν (t)− 1

2

∫ T

0

N∑
d=1

σ2
nd(s) ds

}

− q

S0(T )
exp

{
−
∫ T

0
ζ(ν(t)) dt

})+

.
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Letting Γ denote an upper bound on ζ(ν) + νn + δn(t), valid for all ν ∈ K̃
and t ∈ [0, T ], almost surely, we may use Jensen’s inequality to write

uν ≥
(

e−ΓT Eν exp

{∫ T

0

N∑
d=1

σnd(t) dW (d)
ν (t)− 1

2

∫ T

0

N∑
d=1

σ2
nd(s) ds

}

− q

s0
e−ζ0T

)+

=
(

e−ΓT − q

s0
e−ζ0T

)+

, ∀ν(·) ∈ D(b).

For q > 0 sufficiently small, this last expression is positive. �

5.10 Lower Hedging with Constant Coefficients

This section is the counterpart to Section 7 for the case of lower-hedging.
We show here that the lower-hedging price of a contingent claim defined in
terms of the final stock prices is the value in the unconstrained market of
a related contingent claim. The section concludes with European call and
put option examples.

As in Section 7, we assume here that (7.1)–(7.3) hold. We consider a con-
tingent claim of the form B = ϕ(S(T )), where S(T ) = (S1(T ), . . . , SN (T ))′

is the vector of final stock prices, and ϕ: (0,∞)N → [0,∞) is an upper
semicontinuous function satisfying the polynomial growth condition (7.9).
The value at time t ∈ [0, T ] of the contingent claim ϕ(S(T )) in the uncon-
strained market M(RN ) is u(T − t, S(t)), where u(T − t, x) is defined by
(2.4.6). In the constrained market M(K−), Theorem 9.10 asserts that the
lower-hedging value process of Definition 9.11 for ϕ(S(T )) is

X̌(t) ∆= −ess infν∈D(b)
E[Hν(T )ϕ(S(T ))|F(t)]

Hν(t)
(10.1)

= − inf
ν∈D(b)

uν(T − t, S(t);ϕ),

where uν(T − t, x;ϕ) is defined by (7.7).

Theorem 10.1: Assume (7.1)–(7.3), (9.9), and let B = ϕ(S(T )) be a
contingent claim, where ϕ: (0,∞)N → [0,∞) is an upper semicontinu-
ous function satisfying the polynomial growth condition (7.9). Define the
nonnegative function

ϕ̌(x) ∆= inf
ν∈K̃

[
e−ζ(ν)ϕ(x1e

−ν1 , . . . , xNe−νN )
]
, x ∈ (0,∞)N . (10.2)
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Then the hypotheses of Theorem 9.10 are satisfied, and the lower-hedging
value process X̌(·) for the contingent claim ϕ(S(T )) is given by

X̌(t) = −e−r(T−t)E0[ϕ̌(S(T )))|F(t)] (10.3)
= −u(T − t, S(t); ϕ̌), 0 ≤ t < T,

almost surely, where u(T − t, x;ϕ) is defined by (7.4). In other words, the
lower-hedging value process for the contingent claim ϕ(S(T )) in the mar-
ket M(K−) with constraint set K− is the value of the contingent claim
−ϕ̌(S(T )) in the unconstrained market M(RN ).

Proof. We note first that (7.1)–(7.2) and the polynomial growth condi-
tion (7.9) ensure that B = ϕ(S(T )) satisfies (9.25). Thus the hypotheses
of Theorem 9.10 are satisfied.

The definition (9.5) of ζ(·) = ζ−(·) yields

ζ

(∫ T

t

ν1(s) ds, . . . ,

∫ T

t

νN (s) ds

)
∆= inf

p∈K−

(
−
∫ T

t

N∑
n=1

pnνn(s) ds

)

≥
∫ T

t

inf
p∈K−

(
−

N∑
n=1

pnνn(s)

)
ds

=
∫ T

t

ζ(ν(s)) ds. (10.4)

Using this inequality instead of (7.14), we may imitate the first part of the
proof of Theorem 7.1 to conclude that

inf
ν∈D(b)

Eν

[
e

−
∫ T

t
ζ(ν(s)) ds

· ϕ
(

x1e
−
∫

T

t
ν1(s) ds

Y
(ν)
1 (t, T ), . . . , xNe

−
∫

T

t
νN (s) ds

Y
(ν)
N (t, T )

)]
≥ E0ϕ̌(x1Y1(t, T ), . . . , xNYN (t, T )), 0 ≤ t ≤ T, (10.5)

which implies the almost sure inequality

− X̌(t) ≥ u(T − t, S(t); ϕ̌), 0 ≤ t < T. (10.6)

As in the proof of Theorem 7.1, we fix x ∈ (0,∞)N and let x(·) be a
continuous function mapping [0, T ] into (0,∞)N so that x(T ) = x. We
choose a sequence {ν(m)}∞m=1 in K̃ such that

inf
m

[
e−ζ(ν(m))ϕ(x1e

−ν
(m)
1 , . . . , xNe−ν

(m)
N )

]
= ϕ̌(x).

Using the dominated convergence theorem in (7.15) and the upper
semicontinuity of ϕ, we obtain

lim sup
t↑T

inf
µ∈D(b)

uµ(T − t, x(t);ϕ) ≤ lim
t↑T

uν(T − t, x(t);ϕ)

≤ e−ζ(ν(m))ϕ(x1e
−ν

(m)
1 , . . . , xNe−ν

(m)
N ),
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whereas taking the infimum over m and recalling (10.1) we see that

lim sup
t↑T

(−X̌(t)) ≤ ϕ̌(S(T )). (10.7)

According to Proposition 9.13, −H0(·)X̌(·) is a uniformly integrable P -
submartingale. In particular,

−H0(s)X̌(s) ≤ −E[H0(t)X̌(t)|F(s)], 0 ≤ s ≤ t < T.

Letting t ↑ T and using (10.7) and the uniform integrability of H0(·)X̌(·),
we obtain

−X̌(s) ≤ 1
H0(s)

E[H0(T )ϕ̌(S(T ))|F(s)]

= e−r(T−s)E0[ϕ̌(S(T ))|F(s)]
= u(T − s, S(s); ϕ̌), 0 ≤ s < T,

almost surely. This inequality, combined with (10.6), completes the
proof. �

Example 10.2 (Prohibition of short-selling): We consider a market with
constant coefficients and one stock, i.e., N = 1. When short-selling is pro-
hibited (Example 9.7(ii), K = [0,∞), K− = (−∞, 0]), we have K̃ = [0,∞),
ζ(·) ≡ 0 on K̃, and the function ϕ̌ of (10.2) is given by

ϕ̌(x) = inf
ν≥0

ϕ(xe−ν), ∀x > 0.

For a European call, we have

ϕ̌(x) = inf
ν≥0

(xe−ν − q)+ = 0, ∀x > 0,

and the lower hedging value is zero. This is also the conclusion of
Proposition 9.14(ii) in a more general context. For a European put option,

ϕ̌(x) = inf
ν≥0

(q − xe−ν)+ = (q − x)+, ∀x > 0;

the hedge of a long position in a European put option does not sell stock
short, and is thus unaffected by the prohibition of short-selling.

Example 10.3 (Prohibition of borrowing): We consider again a market
with constant coefficients and one stock, i.e., N = 1. When borrowing from
the money market is prohibited (Example 9.7(vi), K = (−∞, 1], K− =
[1,∞)), we have K̃ = (−∞, 0], ζ(ν) = −ν on K̃, and the function ϕ̌ of
(10.2) is given by

ϕ̌(x) = inf
ν≤0

[
eνϕ(xe−ν)

]
, ∀x > 0.

For a European call option, we have

ϕ̌(x) = inf
ν≤0

(x− qeν)+ = (x− q)+, ∀x > 0;
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the hedge of a long position in a European call option does not borrow
from the money market and is thus unaffected by prohibition of borrowing.
For a European put,

ϕ̌(x) = inf
ν≤0

(qeν − x)+ = 0, ∀x > 0,

and the lower hedging value is zero. This is also the conclusion of
Proposition 9.14(i) in a more general context.

5.11 Notes

The notions and results on superreplicating portfolio and upper-hedging
price were developed first for incomplete markets, by El Karoui and Quenez
(1991, 1995). These authors employed the fictitious-completion and dual-
ity approach developed by Karatzas, Lehoczky, Shreve, and Xu (1991) in
the context of utility maximization in an incomplete market (see notes to
Chapter 6), and derived the formula (6.3) for the upper-hedging price of a
contingent claim.

In a parallel development, and in a discrete-time/finite-state setting,
Edirisinghe, Naik, and Uppal (1993) noted that in the presence of leverage
constraints, superreplication may actually be “cheaper” than exact repli-
cation. Naik and Uppal (1994) studied the effects of leverage constraints
on the pricing and hedging of stock options by deriving a recursive solu-
tion scheme as a linear programming formulation for the minimum-cost
hedging problem under such constraints. For a very nice exposition of this
approach, see Musiela and Rutkowski (1997), Chapter 4.

Sections 2–6, 8: The material here comes from Cvitanić and Karatzas
(1993), who extended the approach of El Karoui and Quenez (1991, 1995) to
the case of general convex constraints on portfolio proportions and derived
the stochastic-control-type representation (6.3) for the upper-hedging price.
Crucial in this development, and of considerable independent probabililis-
tic interest, is the “simultaneous Doob–Meyer decomposition” of (6.20),
valid for all processes ν(·) ∈ D. This approach echoes the more general
themes of the purely probabilistic treatment for stochastic control prob-
lems, based on martingale theory, which was developed in the 1970s; see
Chapter 16 of Elliott (1982) and the references therein. The approach has
been extended further to more general semimartingale price processes by
Kramkov (1996a,b), Föllmer and Kramkov (1998), Föllmer and Kabanov
(1998). Related results, for hedging contingent claims under margin re-
quirements and short-sale constraints, appear in Heath and Jarrow (1987)
and in Jouini and Kallal (1995a), respectively. In Cvitanić and Karatzas
(1993) it is also shown how to modify the approach of this section in or-
der to obtain a stochastic control representation of the type (6.3) for the
upper-hedging price of contingent claims in the presence of a higher interest
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rate for borrowing than for investing, and how to specialize this represen-
tation to specific contingent claims such as options; see also Barron and
Jensen (1990), Korn (1992), and Bergman (1995). A similar development,
but in the context of utility maximization rather than hedging, appears in
Section 6.8.

Section 9: The material here comes from Karatzas and Kou (1996),
who studied in detail the lower-hedging price for the buyer of the contin-
gent claim, derived the representation (9.29) for it, and computed several
examples. Following an idea of Davis (1994) that seems to go back at least
to Lucas (1978), these authors also showed how to select a unique price

p̂ ≡ uλ
∆= E[Hλ(T )B] for some process λ(·) ∈ D (11.1)

inside the arbitrage-free interval [hlow(K−), hup(K)], which is “fair” in the
following sense. If the contingent claim sells at price p at time t = 0, and
an agent with initial capital x and utility function U diverts an amount
δ ∈ (−x, x) to buy δ/p units of the contingent claim, then p̂ is characterized
by the requirement that the marginal maximal expected utility be zero at
δ = 0:

∂Q

∂δ
(0, p̂, x) = 0, (11.2)

where

Q(δ, x, p) ∆= sup
(C,p)∈A(x−δ;K)

EU

(
Xx−δ,C,p(T ) +

δ

p
B

)
(11.3)

is the resulting maximal expected utility from terminal wealth. Using no-
tions reminiscent of viscosity solutions (cf. Fleming and Soner (1993)), one
can make sense of the requirement (11.2) even when the function Q(·, p, x)
is not known a priori to be differentiable; it can then be shown that p̂ is
uniquely determined by this requirement, and can be represented in the
form (11.1) for a suitable process λ(·) ∈ D; see Karatzas and Kou (1996),
and Karatzas (1996), Chapter 6. In fact, this fair price can be computed ex-
plicitly in several interesting cases, for instance if the utility is logarithmic;
in the case of constant coefficients and cone constraints, the fair price in fact
does not depend on the particular form of the utility function or on the ini-
tial capital. There are also connections with relative-entropy minimization,
with the minimal martingale measure of Föllmer and Sondermann (1986),
Föllmer and Schweizer (1991), and Hofman et al. (1992), with the utility-
based approach of Barron and Jensen (1990) for the pricing of options with
differential interest rates, and with utility-based approaches for pricing in
the presence of transaction costs (e.g., Hodges and Neuberger (1989), Panas
(1993), Constantinides (1993), Davis, Panas, and Zariphopoulou (1993),
Davis and Panas (1994), Davis and Zariphopoulou (1995), Cvitanić and
Karatzas (1996), Section 7, and Constantinides and Zariphopoulou (1997)).
For an interesting synthesis, see the doctoral dissertation of Mercurio (1996)
and the survey article of Jouini (1997).
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The interested reader should consult Karatzas and Kou (1996) for the
derivations of these results, and Karatzas and Kou (1998) for extensions of
the results in this chapter to American contingent claims.

Sections 7, 10: The results of Section 7 are due to Broadie, Cvitanić, and
Soner (1998) who also show by example how to extend this methodology
to cover exotic (path-dependent) options. Wystup (1998) provides a sys-
tematic development for path-dependent options. A similar methodology
has been used by Cvitanić, Pham, and Touzi (1997, 1998) to discuss the
superreplication of contingent claims in the contexts of stochastic volatility
and transaction costs, respectively. The results of Section 10 build on those
of Section 7, and are apparently new.



6
Constrained Consumption
and Investment

6.1 Introduction

As we saw in Chapter 5, when a financial market is incomplete due to port-
folio constraints, it may no longer be possible to construct a perfect hedge
for contingent claims. This led to the introduction in that chapter of super-
replicating portfolios and upper-hedging prices for contingent claims. This
is a conservative approach to pricing, since it begins from the assumption
that agents trade only if their probability of loss is zero.

A more venerable and less conservative approach to pricing in the pres-
ence of constraints is based on utilities, or “preferences.” In this chapter
we consider the problem of optimal consumption and investment in a con-
strained financial market. The duality theory introduced in the previous
chapter plays a key role here as well. Indeed, the problem of this chapter is
well suited to duality and the related notion of Lagrange multipliers. For
each marketM(K) in which portfolio proportions are constrained to lie in
a nonempty, closed convex set K, we seek to construct a related market
Mν̂ in which portfolio proportions are unconstrained, but such that the op-
timal portfolio-proportion process lies in K of its own accord, so to speak.
This is the fundamental idea of Lagrange multipliers; in this context, the
Lagrange multiplier is a process ν̂(·). Once ν̂(·) has been determined, and
it can be explicitly computed in a variety of nontrivial special cases, the
optimal consumption and investment problem in the unconstrained market
Mν̂ is the one solved in Chapter 3.
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Just as in Chapter 5, the convex set K can represent prohibition or
restriction on short-selling, prohibition or restriction on borrowing from
the money market, or incompleteness in the sense that some stocks (or
other sources of uncertainty) are unavailable for investment. The analysis
of this chapter also extends to cover a market in which the interest rate for
borrowing is higher than the interest rate for investing.

Section 2 of this chapter sets out the constrained optimal consumption
and investment problem. In constrast to Chapter 3, here we consider only
the problem of consumption and investment. The problems of consumption
or investment can also be addressed by duality theory, except that there
is no satisfactory theory of existence of the optimal dual process in the
case of utility from consumption only (see Remark 5.8). Section 3 intro-
duces the related unconstrained problems, parametrized by dual processes
ν(·). The central result of this chapter is Theorem 4.1, which provides four
conditions stated in terms of dual processes, equivalent to optimality in
the constrained problem. The most useful of these is condition (D), the
existence of an optimal dual process; this is adddressed in some detail in
Section 5, where examples with explicit computations are provided.

The remaining sections consider further refinements of the general theory
in important special cases. When the market coefficients are deterministic
and K is a convex cone, the value function for the constrained problem
satisfies a nonlinear Hamilton–Jacobi–Bellman (HJB) parabolic partial dif-
ferential equation, and the value function for the dual problem satisfies a
linear HJB equation. The former provides the optimal consumption and
portfolio proportion processes in feedback form. Section 6 presents these
matters. Section 7 works out special cases of incompleteness, when the form
of K prevents investment in some of the stocks. If there are more sources
of uncertainty than assets that can be traded, the unavailable stocks can
represent these sources of uncertainty. Finally, Section 8 alters the basic
model to allow for a higher interest rate for borrowing than for investing.
The duality theory of Sections 4 and 5 applies to this case, and explicit
computations are again possible.

6.2 Utility Maximization with Constraints

In this chapter we return to the Problem 3.5.4 of maximizing expected
total utility from both consumption and terminal wealth, but now impose
the constraint that the portfolio-proportion process should take values in
a given nonempty, closed, convex subset K of RN . We assume through-
out this chapter that K contains the zero vector 0

˜
in RN . As discussed in

Examples 5.4.1, the constraint set K can be used to model a variety of mar-
ket conditions, including incompleteness. We shall use again the support



262 6. Constrained Consumption and Investment

function

ζ(ν) ∆= sup
p∈K

(−p′ν), ν ∈ RN , (5.4.1)

of (5.4.1). Because K contains the origin, we have

ζ(ν) ≥ 0, ∀ν ∈ RN (2.1)

(i.e., (5.4.6) holds with ζ0 = 0).
As in Chapters 2 and 3 we shall begin with a complete, standard financial

market M = (r(·), b(·), δ(·), σ(·), S(0), A(·)), governed by the stochastic
differential equations

dS0(t) = S0(t)[r(t)dt + dA(t)], (2.2)

dSn(t) = Sn(t)

[
(bn(t) + δn(t)) dt + dA(t) +

D∑
d=1

σnd(t)dW (d)(t)

]
, (2.3)

for n = 1, . . . , N . We assume that S0(·) is almost surely bounded away
from zero, i.e.,

S0(t) ≥ s0, 0 ≤ t ≤ T, for some s0 > 0, (2.4)

so Assumption 3.2.3 holds. The number of stocks N is equal to the dimen-
sion D of the driving Brownian motion, the volatility matrix σ(t) = (σnd(t))
is nonsingular for Lebesgue-almost-every t almost surely, and the exponen-
tial local martingale Z0(·) of (1.5.2) is a martingale, so that the standard
martingale measure P0 of Definition 1.5.1 is defined. We assume further
that

E

∫ T

0
‖θ(t)‖2dt <∞ (2.5)

and σ(·) satisfies (5.2.4). The filtration {F(t)}0≤t≤T is, as always, the aug-
mentation by P -null sets of the filtration generated by the D-dimensional
Brownian motion W (·) = (W (1)(·), . . . ,W (D)(·)).

As in Chapter 3 and in contrast to Chapter 5, the agent in this chap-
ter must choose a consumption rate process c(·) rather than a cumulative
consumption process C(·). The cumulative consumption process C(·) of
Chapter 5 is related to the consumption rate process c(·) of Chapter 3 and
this chapter by the formula

C(t) =
∫ t

0
c(s) ds, 0 ≤ t ≤ T. (2.6)

Of course, not every cumulative consumption process C(·) has such a repre-
sentation. We shall be able to solve the optimality problems in this chapter
within the class of cumulative consumption processes that do.

We have then the following definition, a repeat of Definition 3.3.1.
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Definition 2.1: A consumption process is an {F(t)}-progressively mea-
surable, nonnegative process c(·) satisfying

∫ T

0 c(t)dt <∞ almost surely.

In contrast to previous chapters, here it will be convenient to describe
the agent’s investment decisions in terms of a portfolio-proportion pro-
cess rather than a portfolio process. Note that in the following definition
there is no square-integrability condition like (1.2.6), which was imposed
on portfolio processes.

Definition 2.2: A portfolio proportion process is an {F(t)}-progressively
measurable, RN -valued process.

For a given initial wealth x ≥ 0, consumption process c(·), and portfolio-
proportion process p(·), we wish to define the corresponding wealth process
Xx,c,p(t), 0 ≤ t ≤ T , by

Xx,c,p(t)
S0(t)

+
∫ t

0

c(u)du

S0(u)
= x +

∫ t

0

Xx,c,p(u)
S0(u)

p′(u)σ(u) dW0(u). (2.7)

This is just equation (3.3.1), but with the portfolio process π(u) replaced
by Xx,c,p(u)p(u). The solution to (2.7) is easily verified to be given by

Xx,c,p(t)
S0(t)

= Ip(t)
[
x−

∫ t

0

c(u)du

S0(u)Ip(u)

]
,

where

Ip(t)
∆= exp

{∫ t

0
p′(u)σ(u) dW0(u)− 1

2

∫ t

0
‖σ′(u)p(u)‖2 du

}
. (2.8)

However, because we have not assumed the finiteness of
∫ T

0 ‖σ
′(t)p(t)‖2dt,

we need to elaborate on this construction.

Lemma 2.3: Let p(·) be a portfolio proportion process, and set

τp
∆= inf

{
t ∈ [0, T ];

∫ t

0
‖σ′(u)p(u)‖2 du =∞

}
. (2.9)

Here we follow the convention inf ∅ = ∞, which means that τp = ∞ if∫ T

0 ‖σ′(u)p(u)‖2du <∞. Then Ip(t) given by (2.8) is defined for 0 ≤ t ≤ T
on the set {τp = ∞}, Ip(t) is defined for 0 ≤ t < τp on the set {τp ≤ T},
and on this latter set we have

lim
t↑τp

Ip(t) = 0 (2.10)

almost surely.

Proof. We define the local P0-martingale

Mp(t)
∆=
∫ t

0
p′(u)σ(u) dW0(u), 0 ≤ t < T ∧ τp,
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with quadratic variation 〈M〉(t) =
∫ t

0 ‖σ′(u)p(u)‖2du and invert the
quadratic variation process by setting

T (s) ∆= inf{t ≥ 0; 〈M〉(t) > s}, 0 ≤ s < 〈M〉(T ∧ τp).

According to Karatzas and Shreve (1991), Theorem 3.4.6 and Problem
3.4.7 (with solution on p. 232), the process B(s) ∆= M(T (s)), 0 ≤ s <
〈M〉(T ∧ τp), is a Brownian motion. On the set {τp ≤ T}, we have

lim
t↑τp

[
M(t)− 1

2
〈M〉(t)

]
= lim

s↑∞

[
B(s)− 1

2
s

]
= −∞

almost surely because lims↑∞
B(s)

s = 0 (Karatzas and Shreve (1991), Prob-
lem 2.9.3 with solution on p. 124). Because Ip(t) = exp{M(t) − 〈M〉(t)},
we have (2.10). �

For any initial wealth x ≥ 0 and for any consumption and portfolio-
proportion process pair (c, p), the wealth process Xx,c,p(t) is defined for
0 ≤ t < T ∧ τp. Moreover, if Xx,c,p(t) ≥ 0, 0 ≤ t < T ∧ τp, then Lemma 2.3
implies limt↑τp

Xx,c,p(t) = 0 almost surely on the set {τp ≤ T}. Therefore,
the stopping time

τ0
∆= inf{t ∈ [0, T ];Xx,c,p(t) = 0}

satisfies τ0 ≤ τp almost surely, and the inequality might be strict. Again,
we follow the convention inf ∅ = ∞. We shall require that c(t) = 0 for
Lebesgue-almost-every t ∈ [τ0, T ], and then Xx,c,p(t) = 0 satisfies (2.7) for
τ0 ≤ t ≤ T . This permits us to give the following definition for admissibility.

Definition 2.4: Given x ≥ 0, we say that a consumption and portfolio-
process pair (c, p) is admissible at x in the unconstrained market M, and
write (c, p) ∈ A(x), if we have

c(t) = 0 for Lebesgue-a.e. t ∈ [τ0, T ] (2.11)

almost surely. For (c, p) ∈ A(x), we understand Xx,c,p(·) to be identically
zero on [τ0, T ]. We shall say that (c, p) is admissible at x in the constrained
market M(K), and write (c, p) ∈ A(x;K), if (c, p) ∈ A(x) and

p(t) ∈ K for Lebesgue-a.e. t ∈ [0, T ] (2.12)

almost surely. �

Remark 2.5: The collection of wealth processes corresponding to (c, p) ∈
A(x) of Definition 2.4 coincides with the collection of wealth processes
corresponding to (c, π) ∈ A(x) of Definition 3.3.2, where p(·) and π(·) are
related by

π(t) = Xx,c,p(t)p(t), 0 ≤ t ≤ T,

p(t) =
{

1
Xx,c,π(t)π(t), 0 ≤ t < τπ,
0, τπ ≤ t ≤ T,
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and τπ
∆= inf{t ∈ [0, T ];Xx,c,π(t) = 0}. It is clear that each pair (c, π) ∈

A(x) of Definition 3.3.2 leads to a portfolio-proportion process p(·) for
which (c, p) ∈ A(x) as in Definition 2.4, but the reverse construction is not
obvious because π(·) must satisfy the square-integrability condition (1.2.6),
whereas no such condition is imposed on p(·). However, if (c, p) ∈ A(x) as
in Definition 2.4 is given, we note from (2.7) and with τp defined by (2.9)
that on the set {τp ≤ T}, the limit

lim
t↑τp

∫ t

0

Xx,c,p(u)
S0(u)

p′(u)σ(u) dW0(u) = −x +
∫ τp

0

c(u)du

S0(u)

is defined. This implies that∫ τp

0

(
Xx,c,p(u)

S0(u)

)2

‖σ′(u)p(u)‖2 du <∞

holds almost surely (Karatzas and Shreve (1991), Problem 3.4.11 with so-
lution on page 232), which gives the desired square-integrability property
P
[∫ T

0 ‖σ′(u)π(u)‖2du <∞
]

= 1.

Consider now an agent endowed with initial wealth x ≥ 0 and with a
preference structure U1: [0, T ] × R → [−∞,∞), U2: R → [−∞,∞) as in
Definition 3.5.1. We shall assume throughout this chapter that

c(t) = 0, ∀t ∈ [0, T ], and x = 0 (2.13)

in (3.5.1), (3.5.3), meaning that both U1(t, ·) and U2(·) are real-valued on
(0,∞). We assume also that

U ′
1(t, 0) =∞, ∀t ∈ [0, T ], and U ′

2(0) =∞. (2.14)

For such an agent, we can formulate the counterpart of Problem 3.5.4 in
the constrained market M(K).

Problem 2.6: Given x ≥ 0, find a pair (ĉ, p̂) in

A3(x;K) ∆=

{
(c, p) ∈ A(x;K); E

∫ T

0
min[0, U1(t, c(t))] dt > −∞,

E(min[0, U2(Xx,c,p(T ))]) > −∞
}

(2.15)

which is optimal for the problem

V (x;K) ∆= sup
(c,p)∈A3(x;K)

E

[∫ T

0
U1(t, c(t)) dt + U2 (Xx,c,p(T ))

]
(2.16)

of maximizing the expected total utility from both consumption and
terminal wealth, subject to the portfolio constraint K of (2.12).

Problem 2.6 will be the object of study in this chapter. Since we consider
neither the problem of maximizing utility from consumption only (the con-
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strained version of Problem 3.5.2) nor, except in Example 7.4, the problem
of maximizing utility from terminal wealth only (the constrained version
of Problem 3.5.3), we suppress the subscript 3 that appears on the value
function V3(x) in Problem 3.5.4. See, however, Remark 5.8.

We shall embed this problem into a family of auxiliary unconstrained
problems, formulated in the auxiliary markets {Mν}ν∈D of Section 5.5.
In terms of these auxiliary problems (Problem 3.2), we shall obtain neces-
sary and sufficient conditions for optimality in Problem 2.6 (Theorem 4.1),
general existence results based on convex duality and martingale meth-
ods (Theorem 5.4), as well as specific computations for the value function
V (·;K) and the optimal pair (ĉ, π̂) that attains the supremum in (2.16)
(Examples 4.2, 6.6, and 6.7 as well as Section 7).

6.3 A Family of Unconstrained Problems

Let us consider now the counterpart of Problem 3.5.4 in the unconstrained
market Mν introduced in Section 5.5. The processes ν(·) are taken from
the set D of Definition 5.5.1, and these will play the role of Lagrange mul-
tipliers in the constrained Problem 2.6. In the market Mν , the wealth
process Xx,c,p

ν (·) corresponding to initial condition x ≥ 0, consumption
process c(·), and portfolio-proportion process p(·) is given by (5.5.16), or
equivalently (5.5.17), (5.5.18), where now dC(s) in those equations is inter-
preted as c(s)ds, and π(t) in those equations is replaced by Xx,c,p(t)p(t).
We reproduce these equations for reference:

Xx,c,p
ν (t)

S
(ν)
0 (t)

+
∫ t

0

c(u)du

S
(ν)
0 (u)

= x +
∫ t

0

Xx,c,p
ν (u)

S
(ν)
0 (u)

p′(u)σ(u)dWν(u), (3.1)

Xx,c,p
ν (t)
S0(t)

+
∫ t

0

c(u)du

S0(u)
= x +

∫ t

0

Xx,c,p
ν (u)
S0(u)

·

· [(ζ(ν(u)) + p′(u)ν(u)) du + p′(u)σ(u)dW0(u)] , (3.2)

Hν(t)Xx,c,p
ν (t) +

∫ t

0
Hν(u)c(u)du (3.3)

= x +
∫ t

0
Hν(u)Xx,c,p

ν (u)[σ′(u)p(u)− θν(u)]′dW (u).

Just as in the previous section, we first use (3.1) to define Xx,c,p
ν (·) up

to the stopping time

τν
∆= inf{t ∈ [0, T ];Xx,c,p

ν (t) = 0},

which must precede τp defined by (2.9). We have the following counterpart
to Definition 2.4.

Definition 3.1: Given x ≥ 0, we say that the consumption and portfolio-
proportion process pair (c, p) is admissible at x in the unconstrained market
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Mν , and we write (c, p) ∈ Aν(x), if

c(t) = 0 for Lebesgue-a.e. t ∈ [τν , T ] (3.4)

holds almost surely. For (c, p) ∈ Aν(x), we understand Xx,c,p
ν (·) to be

identically equal to zero on [τν , T ].

Problem 3.2: Given a process ν(·) ∈ D and given x ≥ 0, find a pair
(cν , pν) in

A(ν)
3 (x) ∆=

{
(c, p) ∈ Aν(x);E

∫ T

0
min[0, U1(t, c(t))] dt > −∞,

E (min[0, U2(Xx,c,p
ν (T ))]) > −∞

}
(3.5)

which is optimal for the problem

Vν(x) ∆= sup
(c,p)∈A(ν)

3 (x)

E

[∫ T

0
U1(t, c(t)) dt + U2(Xx,c,p

ν (T ))

]
(3.6)

of maximizing the expected total utility from both consumption and
terminal wealth without regard to the portfolio constraint K. �

Note that when ν(·) ≡ 0, the function V0(x) is just the value function
for the unconstrained version of Problem 2.6. Consequently,

V (x;K) ≤ V0(x), x ≥ 0. (3.7)

Remark 3.3: Suppose (c, p) ∈ A(x;K), so that Xx,c,p(·) is defined by
(2.7). If we choose ν(·) ∈ D, then Xx,c,p

ν (·) is defined by (3.2). It turns out
that

Xx,c,p
ν (t) ≥ Xx,c,p(t), 0 ≤ t ≤ T, (3.8)

as we show below. In particular,

A3(x;K) ⊆ A(ν)
3 (x), x ≥ 0, ν(·) ∈ D, (3.9)

and since the utility function U2 is increasing on (0,∞), we also have

V (x;K) ≤ Vν(x), x ≥ 0, ν(·) ∈ D. (3.10)

To derive (3.8), we set

∆(t) ∆=
Xx,c,p

ν (t)−Xx,c,p(t)
S0(t)

and subtract (2.7) from (3.2) to obtain

∆(t) =
∫ t

0
∆(u) [(ζ(ν(u)) + p′(u)ν(u)) du + p′(u)σ(u)dW0(u)]

+
∫ t

0

Xx,c,p(u)
S0(u)

(ζ(ν(u)) + p′(u)ν(u)) du.



268 6. Constrained Consumption and Investment

We next define the nonnegative process

J(t) = exp
{
−
∫ t

0
p′(u)σ(u) dW0(u) +

1
2

∫ t

0
‖σ′(u)p(u)‖2 du

−
∫ t

0
(ζ(ν(u)) + p′(u)ν(u)) du

}
and compute the differential

d(∆(t)J(t)) =
J(t)Xx,c,p(t)

S0(t)
(ζ(ν(t)) + p′(t)ν(t)) dt.

Integrating this equation and using the fact that ∆(0) = 0, we conclude
that

∆(t) =
1

J(t)

∫ t

0

J(u)Xx,c,p(u)
S0(u)

(ζ(ν(u)) + p′(u)ν(u)) du. (3.11)

From the fact that ν(·) ∈ D and p(t) ∈ K for Lebesgue-almost-every t, we
see from (5.4.5) that the integrand in (3.11) is nonnegative and hence (3.8)
holds. From (3.11), we see also that

ζ(ν(t)) + p′(t)ν(t) = 0 for Lebesgue-a.e. t ∈ [0, T ] (3.12)

almost surely, implies

Xx,c,p
ν (t) = Xx,c,p(t), 0 ≤ t ≤ T, (3.13)

almost surely. �

Because of our assumptions that S0(·) is bounded away from zero and
that K contains the origin in RN , we have for each ν(·) ∈ D the variant

E

[∫ T

0
Hν(t) dt + Hν(T )

]
<∞ (3.14)

of Assumption 3.2.3 for the market Mν . Problem 3.2 is just the uncon-
strained Problem 3.5.4 in the auxiliary marketMν ; its solution is described
in Section 3.6 and is given as follows. For every ν(·) ∈ D, introduce the
function

Xν(y) ∆= E

[
Hν(T )I2(yHν(T )) +

∫ T

0
Hν(t)I1(t, yHν(t)) dt

]
, 0 < y <∞.

(3.15)

For each ν(·) ∈ D satisfying Xν(y) < ∞ for all y > 0, the function Xν(·)
maps (0,∞) onto itself, with Xν(0) ∆= limy↓0 Xν(y) = ∞ and Xν(∞) ∆=
limy→∞ Xν(y) = 0.

We denote by Yν(·) the inverse of Xν(·), which maps [0,∞] onto [0,∞],
with Yν(0) =∞ and Yν(∞) = 0. For x ≥ 0, we introduce the nonnegative
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random variable

Bν
∆= I2(Yν(x)Hν(T )) (3.16)

and the nonnegative random processes

cν(t) ∆= I1(t,Yν(x)Hν(t)), (3.17)

Xν(t) ∆=
1

Hν(t)
E

[∫ T

t

Hν(u)cν(u) du + Hν(T )Bν

∣∣∣∣∣F(t)

]
, (3.18)

Mν(t) ∆=
∫ t

0
Hν(u)cν(u) du + Hν(t)Xν(t)

= E

[∫ T

0
Hν(u)cν(u) du + Hν(T )Bν

∣∣∣∣∣F(t)

]
, (3.19)

defined for 0 ≤ t ≤ T . In particular, Xν(T ) = Bν almost surely, and the
process Mν(·) is a P -martingale with expectation

Mν(0) = EMν(T )

= E

[∫ T

0
Hν(u)I1(u,Yν(x)Hν(u)) du + Hν(T )I2(Yν(x)Hν(T ))

]
= Xν(Yν(x)) = x.

According to the martingale representation theorem (Karatzas and Shreve,
(1991), Theorem 3.4.15 and Problem 3.4.16), there is a progressively
measurable, RN -valued process ψν(·), unique up to Lebesgue×P -almost
everywhere equivalence, such that

∫ T

0 ‖ψν(t)‖2dt <∞ and

Mν(t) = x +
∫ t

0
ψ′

ν(s)dW (s), 0 ≤ t ≤ T, (3.20)

almost surely. Letting

pν(t) ∆= (σ−1(t))′
(

ψν(t)
Hν(t)Xν(t)

+ θν(t)
)

(3.21)

we see that Xν(·) satisfies (3.3); hence

Xν(·) = Xx,cν ,pν
ν (·), (3.22)

and (cν , pν) attains the supremum in (3.6).

Remark 3.4: The proof of Theorem 3.6.3 applied to the market Mν

shows that when x > 0 and ν(·) ∈ D satisfies Xν(y) <∞ for all y > 0, we
have that the pair (cν , pν) belongs to the class A(ν)

3 (x) of (3.5), not just
to the class A(x) of Definition 2.4. This condition can actually be stated
without reference to the portfolio-proportion process pν(·) as

E

∫ T

0
min[0, U1(t, cν(t))] dt > −∞, E (min[0, U2(Bν)])−∞. (3.23)
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Remark 3.5: Under the simplifying assumptions (2.13), (2.14) imposed
in this chapter on our utility functions, we have I1(t, y) > 0, I2(y) > 0 for
all y > 0, which implies that the process cν(·) and the random variable
Bν are strictly positive, almost surely, provided that x > 0. This in turn
implies that Mν(·) and Xν(·) are likewise strictly positive at all times,
almost surely.

Even if Xν(y) <∞ for all y > 0, it is possible that Vν(x) =∞. We set

D0
∆= {ν(·) ∈ D; Xν(y) <∞ ∀y ∈ (0,∞), Vν(x) <∞ ∀x ∈ (0,∞)}.

(3.24)

Remark 3.6: Let ν(·) ∈ D0 be given. Then Theorem 3.6.11, applied to
the market Mν , shows that

Vν(x) = Gν(Yν(x)), x > 0, (3.25)

where

Gν(y) ∆= E

[∫ T

0
U1(I1(t, yHν(t))) dt + U2(I2(yHν(T )))

]
, 0 < y <∞.

(3.26)

Indeed, ν(·) ∈ D0 if and only if Gν(y) <∞ for all y > 0. The convex dual
of Vν is given by

Ṽν(y) ∆= sup
x>0

[Vν(x)− xy]

= Gν(y)− yXν(y)

= E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
<∞, 0 < y <∞, (3.27)

in the notation of Definition 3.4.2. From the proof of Theorem 3.6.11 (in
particular, the arguments leading to (3.6.29), (3.6.30)), we also know that
for any given x ∈ (0,∞), y ∈ (0,∞), ν(·) ∈ D0, and (c, p) ∈ A(ν)

3 , equality
holds in

E

[∫ T

0
U1(t, c(t)) dt + U2(Xx,c,p

ν (T ))

]
≤ Vν(x) ≤ Ṽν(y) + xy (3.28)

if and only if the equations

c(t) = I1(t, yHν(t)) for Lebesgue-a.e. t ∈ [0, T ], (3.29)
Xx,c,p

ν (T ) = I2(yHν(T )), (3.30)

x = E

[∫ T

0
Hν(t)c(t) dt + Hν(T )Xx,c,p

ν (T )

]
(3.31)



6.3 A Family of Unconstrained Problems 271

hold, the first two in the almost sure sense. Finally, from (3.6.25), we know
that the function Ṽν is continuously differentiable, with

Ṽ ′
ν(y) = −Xν(y), 0 < y <∞. (3.32)

In what follows, we shall need to consider Ṽν(y) when the auxiliary pro-
cess ν(·) is in the class D but not necessarily in the class D0. We take as
our definition

Ṽν(y) ∆= E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
, y > 0, ν(·) ∈ D \ D0,

(3.33)

which agrees with the definition in (3.27) when ν(·) ∈ D. For ν(·) ∈ D\D0,
the hypotheses of Theorem 3.6.11 are not necessarily satisfied, and we may
not have the duality representation of Ṽν(y) given in (3.27). Furthermore,
it is not immediately clear that the expectation on the right-hand side of
(3.33) is defined. Here is a resolution of these difficulties.

Proposition 3.7: Let ν(·) ∈ D and y > 0 be given. Then we have

E

∫ T

0
min[0, Ũ1(t, yHν(t))] dt > −∞, E

(
min[0, Ũ2(yHν(T ))]

)
> −∞,

(3.34)
and

sup
x>0

[Vν(x)− xy] ≤ Ṽν(y) ∆= E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
.

(3.35)

Furthermore, if Ṽν(y) <∞, then equality holds in (3.35).

Proof. Let x > 0 be given, and consider c(t) = x
2T S

(ν)
0 (t), p(t) = 0

˜
for

all t ∈ [0, T ]. For this choice (3.1), (5.5.7), (2.1), and (2.4) imply

2Xx,c,p(T ) = xS
(ν)
0 (T ) ≥ xs0 > 0.

Similarly,

2Tc(t) ≥ xs0 > 0.

The inequality Ũ1(t, y) ≥ U1(t, x)− xy implies that

min[0, U1(c(t))] ≤ min[0, Ũ1(t, yHν(t)) + yHν(t)c(t)]

≤ min[0, Ũ1(t, yHν(t))] +
xy

2T
Zν(t).

Integrating from t = 0 to t = T , taking expectations, and using the in-
equality EZν(t) ≤ 1, we obtain the first part of (3.34). The proof of the
second part is similar.
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Now, for any (c, p) ∈ A(ν)
3 (x), we have

U1(t, c(t)) ≤ Ũ1(t, yHν(t)) + yHν(t)c(t),

U2(Xx,c,p
ν (T )) ≤ Ũ2(yHν(T )) + yHν(T )Xx,c,p

ν (T ).

Integrating the first inequality, summing the two, and taking expectations,
we obtain

E

[∫ T

0
U1(t, c(t)) dt + U2(Xx,c,p

ν (T ))

]

≤ E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]

+ yE

[∫ T

0
Hν(t)c(t) dt + Hν(T )Xx,c,p

ν (T )

]

≤ E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
+ xy.

In the last step, we have used the budget constraint (5.5.20) for the market
Mν . The above inequality implies that

Vν(x) ≤ E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
+ xy, x > 0, y > 0,

and (3.35) follows.
Finally, let us assume Ṽν(y) < ∞. We define cν(t) = I1(t, yHν(t)),

Bν = I2(yHν(T )) and consider for each positive integer n ∈ N the pro-
cess c

(n)
ν (t) = cν(t)1{cν(t)≤n} + 1{cν(t)>n} as well as the random variable

B
(n)
ν = Bν1{Bν≤n} + 1{Bν>n}. We set

x(n) = E

[∫ T

0
Hν(t)c(n)

ν (t) dt + Hν(T )B(n)
ν

]
,

which is finite because of the assumption (3.14). There is a portfolio-
proportion process p

(n)
ν (·) for which Xx(n),c(n)

ν ,p(n)
ν (T ) = B

(n)
ν (Theorem

5.5.5); hence

E

[∫ T

0
U1(t, c(n)

ν (t)) dt + U2(B(n)
ν )

]
− x(n)y ≤ Vν(x(n))− x(n)y

≤ sup
x>0

[Vν(x)− xy]

≤ Ṽν(y).

To prove that equality holds in (3.35), it suffices to show that
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lim
n→∞

(
E

[∫ T

0
U1(t, c(n)

ν (t)) dt + U2(B(n)
ν )

]
− x(n)y

)
= Ṽν(y). (3.36)

From Lemma 3.4.3 we have∫ T

0

[
U1(t, c(n)

ν (t))− yHν(t)c(n)
ν (t)

]
dt

=
∫ T

0
[U1(t, I1(t, yHν(t)))− yHν(t)I1(t, yHν(t))] 1{yHν(t)≥U ′

1(t,n)} dt

+
∫ T

0
[U1(t, 1)− yHν(t)] 1{yHν(t)<U ′

1(t,n)} dt

=
∫ T

0
[Ũ1(t, yHν(t))1{yHν(t)≥U ′

1(t,n)}

+ (U1(t, 1)− yHν(t))1{yHν (t)<U ′
1(t,n)}]dt.

The last integrand is bounded from above by Ũ1(t, yHν(t))+ |U1(t, 1)|, and
because Ṽν(y) < ∞ and (3.34) holds, E

∫ T

0 [Ũ1(t, yHν(t)) + |U1(t, 1)|]dt <
∞. The integrand is bounded from below by

min[0, Ũ1(t, yHν(t)) dt] − |U1(t, 1)| − yHν(t),

which also is integrable. The dominated convergence theorem implies that

lim
n→∞

E

∫ T

0

[
U1(t, c(n)

ν (t))− yHν(t)c(n)
ν (t)

]
dt = E

∫ T

0
Ũ1(t, yHν(t)) dt.

(3.37)
A similar analysis shows that

lim
n→∞

E
[
U2(B(n)

ν )− yHν(T )B(n)
ν

]
= EŨ2(yHν(T )). (3.38)

Equation (3.36) is the sum of (3.37) and (3.38). �

Let the initial wealth x be strictly positive. Our strategy now is to find
a process ν̂(·) ∈ D0 for which the optimal pair (cν̂ , pν̂) of (3.17), (3.21) for
the unconstrained Problem 3.2 is also optimal for the constrained Problem
2.6. In other words, we seek a process ν̂(·) ∈ D0 that satisfies

V (x;K) = E

[∫ T

0
U1(t, cν̂(t)) dt + U2(Bν̂)

]
= Vν̂(x), (3.39)

and

pν̂(t) ∈ K for Lebesgue-a.e. t ∈ [0, T ] (3.40)

almost surely. Remark 3.3 shows that such a ν̂(·) should satisfy the
“complementary slackness” condition

ζ(ν̂(t)) + p′
ν̂(t)ν̂(t) = 0 for Lebesgue-a.e. t ∈ [0, T ] (3.41)

almost surely as well, so that Xx,c,p(T ) = Xx,c,p
ν (T ) almost surely.
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Proposition 3.8: Let x > 0 be given, and suppose for some ν̂(·) ∈ D0 that
(3.40) and (3.41) are satisfied. Then the pair (cν̂ , pν̂) of (3.17), (3.21) is op-
timal for the constrained Problem 2.6 and V (x;K) = Vν̂(x). Furthermore,
ν̂(·) minimizes Vν(x) over ν(·) ∈ D.

Proof. From (3.40) and Remark 3.3 we see that

V (x;K) ≥ E

[∫ T

0
U1(t, cν̂(t)) dt + U2(Xx,cν̂ ,pν̂ (T ))

]

= E

[∫ T

0
U1(t, cν̂(t)) dt + U2(Xx,cν̂ ,pν̂

ν (T ))

]
= Vν̂(x). (3.42)

Remark 3.3 also implies that V (x;K) ≤ Vν(x) for every ν(·) ∈ D. Hence
equality holds in (3.42), and ν̂(·) minimizes Vν(x) over ν(·) ∈ D. Since pν̂(·)
satisfies (3.40), it is optimal for the constrained Problem 2.6. �

The necessity of conditions (3.40), (3.41) for optimality in Problem 2.6,
and their precise relationship to (3.39) and other equivalent conditions,
will be explored in the next section. We shall see there that if we can find
ν̂(·) ∈ D0 that minimizes Vν(x) over ν(·) ∈ D, then the corresponding
pair (cν̂ , pν̂) is indeed optimal for Problem 2.6; in other words, there is no
“duality gap.”

Remark 3.9: Recall from Remark 3.6.8 that if the utility functions are
given by

U1(t, x) = U2(x) =
1
β

xβ (3.43)

for some β < 1, β �= 0, and if r(·), θ(·), and A(·) are bounded, then

X0(y) = κy1/(1−β), y > 0, (3.44)

for some finite positive constant κ. It follows that

V0(x) = E

[∫ T

0
U1(I1(t,Y0(x)H0(t))) dt + U2(I2(Y0(x)H0(T )))

]
<∞,

for all x > 0, and consequently V (x;K) is finite because of (3.7). Indeed,
for this result it suffices to assume only that

U1(t, x) + U2(x) ≤ κ(1 + xβ), 0 ≤ t ≤ T, x > 0, (3.45)

where 0 < β < 1 and κ > 0.
If in addition to the above assumptions (which include (3.43) and (5.2.4))

we have β < 0 and that ν(·) is in the class D(b) of bounded processes in D,
then rν(·) is bounded from below (see (2.1) and (5.5.3)), θν(·) is bounded
(see (5.5.9)), and the argument of Remark 3.6.8 shows that Xν(y) has the
form (3.44) and Vν(x) <∞ for all x > 0. In other words, D(b) ⊆ D0.
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6.4 Equivalent Optimality Conditions

For a fixed initial capital x > 0, let (ĉ, p̂) be a consumption and portfolio-
proportion process pair in the class A3(x;K) of Problem 2.6, and denote
by X̂(·) = Xx,ĉ,p̂(·) the corresponding wealth process in the marketM(K).
Consider the statement that this pair is optimal for Problem 2.6:

(A) Optimality of (ĉ, p̂): We have

V (x;K) = E

[∫ T

0
U1(t, ĉ(t)) dt + U2(X̂(T ))

]
<∞. (4.1)

We shall characterize property (A) in terms of the following conditions
(B)–(E), which concern a given process ν̂(·) in the class D0 of (3.24). The
notation of (3.16)–(3.18) will be used freely in what follows.

(B) Financeability of (cν̂(·), Bν̂): There exists a portfolio-proportion
process pν̂(·) such that the pair (cν̂(·), pν̂(·)) is in the class A3(x;K) and
the properties

pν̂(t) ∈ K, ζ(ν̂(t)) + p′
ν̂(t)ν̂(t) = 0 for Lebesgue-a.e. t ∈ [0, T ], (4.2)

Xx,cν̂ ,pν̂ (·) = Xν̂(·) (4.3)

are valid almost surely.

(C) Minimality of ν̂(·): We have

Vν̂(x) ≤ Vν(x), ∀ν(·) ∈ D. (4.4)

(D) Dual optimality of ν̂(·): With y = Yν̂(x), we have

Ṽν̂(y) ≤ Ṽν(y), ∀ν(·) ∈ D. (4.5)

(E) Parsimony of ν̂(·): We have

E

[∫ T

0
Hν(t)cν̂(t) dt + Hν(T )Bν̂

]
≤ x, ∀ν(·) ∈ D. (4.6)

The portfolio-proportion process pν̂(·) in (B) is not assumed to be given
by (3.21) with ν(·) = ν̂(·); this follows from (3.22), (4.3), and Remark 3.3
(see (3.13)).

We have already encountered conditions (A)–(C) in Proposition 3.8 and
the preceding discussion. Condition (D) is the “dual” version of (C) in the
sense of convex duality. Condition (E) asserts that

u(ν) ∆= E

[∫ T

0
Hν(t)cν̂(t) dt + Hν(T )Bν̂

]
, (4.7)

the “price of the European contingent claim Bν̂1{t=T} +
∫ t

0 cν̂(s)ds, 0 ≤
t ≤ T in the marketMν ,” attains its maximum over D at ν(·) = ν̂(·), and
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this maximum value is

E

[∫ T

0
Hν̂(t)cν̂(t) dt + Hν̂(T )Bν̂

]
= Xν̂(Yν̂(x)) = x. (4.8)

Theorem 4.1: The conditions (B)–(E) are equivalent, and imply con-
dition (A) with (p̂, ĉ) = (pν̂ , cν̂). Conversely, condition (A) implies the
existence of a process ν̂(·) ∈ D0 that satisfies (B)–(E) with pν̂(·) = p̂(·),
provided that the utility functions U1 and U2 satisfy the conditions (3.4.15),
(3.6.17).

Theorem 4.1 is the central result of this chapter. It provides necessary
and sufficient conditions for optimality in Problem 2.6. Its condition (D)
is perhaps the most important, as it will provide the cornerstone for our
general existence theory in Section 5, based on methods from convex duality
and martingale theories (Theorem 5.4). Condition (D) also underlies the
computations of optimal consumption and portfolio policies in Section 6.
Even without such a general existence theory, either condition (C) or (D)
is sufficient for a complete treatment of logarithmic utilities (see Examples
4.2, 7.2, and 7.3), and condition (B) suffices for treating the important
case of independent coefficients and utilities of power type (Example 7.4).
The convex-duality approach also allows us to make connections with the
Hamilton–Jacobi–Bellman theory of stochastic control in Section 6.

The important special case of incomplete markets receives special
treatment in Section 7.

Proof of Theorem 4.1: We first prove that (B)⇒(E). Assume (B)
and let ν(·) ∈ D be given. From Remark 3.3, we have

Xx,cν̂ ,pν̂
ν (t) ≥ Xx,cν̂ ,pν̂ (t) = Xν̂(t), 0 ≤ t ≤ T.

Condition (E) now follows from Remark 5.5.4 (recalling (2.6)) and the
equality Xν̂(T ) = Bν̂ .

We next prove (E)⇒(D). To begin, we note that (3.4.13), (3.4.14) imply

Ũ2(U ′
2(ξ)) + ξU ′

2(ξ) = U2(ξ) ≤ Ũ2(η) + ξη, ∀ξ > 0, ∀η > 0. (4.9)

Assume that ν̂(·) satisfies (E), and let y = Yν̂(x). Let ν(·) ∈ D be given.
Take ξ = Bν̂ = I2(yHν̂(T )) so that U ′

2(ξ) = yHν̂(T ), and take η = yHν(T )
in (4.9), which becomes

Ũ2(yHν̂(T )) + yHν̂(T )Bν̂ ≤ Ũ2(yHν(T )) + yHν(T )Bν̂ .

Similarly, ∫ T

0

[
Ũ1(t, yHν̂(t)) + yHν̂(t)cν̂(t)

]
dt

≤
∫ T

0

[
Ũ1(t, yHν(t)) + yHν(t)cν̂(t)

]
dt.
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Summing these two inequalities and taking expectations, we obtain

Ṽν̂(y) + yE

[∫ T

0
Hν̂(t)cν̂(t) dt + Hν̂(T )Bν̂

]

≤ Ṽν(y) + yE

[∫ T

0
Hν(t)cν̂(t) dt + Hν(T )Bν̂

]
.

By assumption,

E

[∫ T

0
Hν̂(t)cν̂(t) dt + Hν̂(T )Bν̂

]
≥ E

[∫ T

0
Hν(t)cν̂(t) dt + Hν(T )Bν̂

]
,

and we conclude that (4.5) holds.
The implications (B)⇒(A) and (B)⇒(C) are consequences of Proposition

3.8.
(C)⇒(D): With y = Yν̂(x), we have

Ṽν̂(y) = Vν̂(Xν̂(y))− yXν̂(y) = Vν̂(x)− xy

≤ Vν(x)− xy ≤ sup
ξ>0

[Vν(ξ)− ξy] ≤ Ṽν(y)

from (3.25), (3.27), and Proposition 3.7.
(D)⇒(B): Assume (D), and let cν̂(·), pν̂(·) be given by (3.17) and (3.21),
respectively. The corresponding wealth process Xx,cν̂ ,pν̂

ν̂ (·) in the market
Mν̂ is defined by the equivalent equations (3.1)–(3.3), where we replace
c(·) by cν̂(·) and p(·) by pν̂(·). In light of (3.22), we have

Xx,cν̂ ,pν̂

ν̂ (·) = Xν̂(·), (4.10)

where the latter is given by (3.18) with ν̂(·) replacing ν(·). We divide the
remainder of the proof into six steps.

Step 1. For any µ(·) ∈ D and any ε ∈ (0, 1), the convex combination
(1 − ε)ν̂(·) + εµ(·) is in D, because of the convexity of K̃ and the positive
homogeneity and subadditivity of ζ(·) (see (5.4.3), (5.4.4)), which guaran-
tee that (1 − ε)ν̂(·) + εµ(·) satisfies (5.5.2). We shall be interested in two
particular choices of µ(·). The first is µ(·) ≡ 0, which is an element of D
because 0

˜
∈ K̃ and ζ(0

˜
) = 0. The other is µ(·) = ν̂(·) + λ(·) for some

λ(·) ∈ D; this process µ(·) is in D because K̃ is a convex cone and thus
closed under addition, and ζ(·) is subadditive.

Let {τn}∞n=1 be a nondecreasing sequence of stopping times converging
up to T , and consider the small random perturbation of ν̂(·) given by

νε,n(t) ∆= ν̂(t) + ε(µ(t)− ν̂(t))1{t≤τn}

=
{

(1− ε)ν̂(t) + εµ(t), 0 ≤ t ≤ τn,
ν̂(t), τn < t ≤ T.
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Because νε,n(·) ∈ D and ν̂(·) minimizes Ṽν(y) over D, we must have

0 ≤ EYε,n =
Ṽνε,n

(y)− Ṽν̂(y)
εy

, ∀ε ∈ (0, 1), n = 1, 2, . . . , (4.11)

where

Yε,n
∆=

1
εy

[{
Ũ2(yHνε,n

(T ))− Ũ2(yHν̂(T ))
}

+
∫ T

0

{
Ũ1(t, yHνε,n

(t))− Ũ1(t, yHν̂(t))
}

dt

]
. (4.12)

Step 2. A straightforward computation using (5.5.7) and (5.5.10)–(5.5.12)
shows that

Λε,n(t) ∆=
Hνε,n

(t)
Hν̂(t)

= exp

[
− εN(t ∧ τn)− ε2

2
〈N〉(t ∧ τn)

−
∫ t∧τn

0

(
ζ
(
(1− ε)ν̂(s) + εµ(s)

)
− ζ
(
ν̂(s)

))
ds

]
,

where

N(t) ∆=
∫ t

0

(
σ−1(s)(µ(s)− ν̂(s))

)′
dWν̂(s),

〈N〉(t) ∆=
∫ t

0
‖σ−1(s)(µ(s)− ν̂(s))‖2ds.

In the case µ(·) = 0, we have

ζ ((1− ε)ν̂(s) + εµ(s))− ζ (ν̂(s)) = ζ((1− ε)ν̂(s))− ζ(ν̂(s))
= −εζ(ν̂(s)),

whereas in the case µ(·) = ν̂(·) + λ(·) for some λ(·) ∈ D, we have

ζ ((1− ε)ν̂(s) + εµ(s))− ζ (ν̂(s)) = ζ (ν̂(s) + ελ(s))− ζ (ν̂(s))
≤ εζ(λ(s)).

If we define

ξ(s) =
{
−ζ(ν̂(s)), if µ(·) = 0,
ζ(λ(s)), if µ(·) = ν̂(·) + λ(·) for some λ(·) ∈ D,

and L(t) ∆=
∫ t

0 ξ(s) ds, we obtain the lower bound

Λε,n(t) ≥ Qε,n(t)

∆= exp
{
−ε(N(t ∧ τn) + L(t ∧ τn))− ε2

2
〈N〉(t ∧ τn)

}
. (4.13)
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Step 3. For each positive integer n, we introduce the stopping time

τn
∆= inf

t ∈ [0, T ]; |N(t)|+ 〈N〉(t) + |L(t)| ≥ n

or
∫ t

0
‖θν̂(s)‖2 ds ≥ n

or
∫ t

0

(
Xν̂(s)

S
(ν̂)
0 (s)

)2

‖σ−1(s)(µ(s) − ν̂(s))‖2 ds ≥ n

or
∫ t

0
(L(s) + N(s))2‖σ′(s)pν̂(s)‖2 ds ≥ n

 ∧ T.

Clearly, τn ↑ T almost surely as n → ∞. According to the Girsanov and
Novikov theorems (e.g., Karatzas and Shreve (1991), §3.5), the process

Wν̂,n(t) ∆= W (t) +
∫ t∧τn

0
θν̂(s) ds, 0 ≤ t ≤ T,

is Brownian motion under the probability measure

Pν̂,n(A) ∆= E[Zν̂(τn)1A], A ∈ F(T ).

With this choice of τn, the process Qε,n(·) of (4.13) admits the lower
bound

Qε,n(t) ≥ e−εn, 0 ≤ t ≤ T,

and consequently,

1
ε

(
1−

Hνε,n
(t)

Hν̂(t)

)
=

1− Λε,n(t)
ε

≤ Kn, 0 ≤ t ≤ T (4.14)

holds almost surely, where Kn
∆= sup0<ε<1

1
ε (1 − e−εn) is finite. Further-

more,

lim
ε↓0

1− Λε,n(t)
ε

≤ N(t ∧ τn) + L(t ∧ τn).

Step 4. The functions −Ũ2(·) and −Ũ1(t, ·) have derivatives I2(·) and
I1(t, ·), respectively, and these derivatives are nonincreasing functions
(Section 3.4). For U2(·) we have the inequality

Ũ2(yHνε,n
(T ))− Ũ2(yHν̂(T )) ≤ yHν̂(T )I2(ye−nHν̂(T ))(1− Λε,n(T ))+.

From (4.14), we see that

1
ε
[Ũ2(yHνε,n

(T ))− Ũ2(yHν̂(T ))] ≤ Yn,2
∆= KnyHν̂(T )I2(ye−nHν̂(T ))
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and also that

lim
ε↓0

1
ε
[Ũ2(yHνε,n

(T ))− Ũ2(yHν̂(T ))] = yHν̂(T )I2(yHν̂(T ))[N(τn) + L(τn)]

≤ yHν̂(T )Bν̂ [N(τn) + L(τn)]. (4.15)

Because EYn,2 ≤ KnyXν̂(ye−n), which is finite by the assumption ν̂(·) ∈
D0, we may apply Fatou’s lemma in (4.15) to conclude that

lim
ε↓0

E
1
ε
[Ũ2(yHνε,n

(T ))− Ũ2(yHν̂(T ))] ≤ yE {Hν̂(T )Bν̂ [N(τn) + L(τn)]} .

(4.16)

We proceed similarly with the difference∫ T

0
[Ũ1(t, yHν̂ε,n

(t))− Ũ1(t, yHν̂(t))]dt

to obtain in the end, by analogy with (4.16), that

lim
ε↓0

1
ε
E

∫ T

0
[Ũ1(t, yHν̂ε,n

(t))− Ũ1(t, yHν̂(t))]dt

≤ yE

{∫ T

0
Hν̂(t)cν̂(t)[N(t ∧ τn) + L(t ∧ τn)] dt

}
. (4.17)

Finally, from (4.11) and (4.12) we have

E

{
Hν̂(T )Bν̂ [N(τn) + L(τn)] +

∫ T

0
Hν̂(t)cν̂(t)[N(t ∧ τn) + L(t ∧ τn)] dt

}
≥ 0. (4.18)

Step 5. We next prove that

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′

ν̂(t)(µ(t)− ν̂(t)) + ξ(t)] dt ≥ 0, n = 1, 2, . . . . (4.19)

To see this, we first recall from (4.10) and (3.1) that

d

(
Xν̂(t)

S
(ν̂)
0 (t)

)
+

cν̂(t)dt

S
(ν̂)
0 (t)

=
Xν̂(t)

S
(ν̂)
0 (t)

p′
ν̂(t)σ(t) dWν̂(t),

and so

d

(
Xν̂(t)

S
(ν̂)
0 (t)

(L(t) + N(t))

)

=
Xν̂(t)

S
(ν̂)
0 (t)

(dL(t) + dN(t)) + (L(t) + N(t)) d

(
Xν̂(t)

S
(ν̂)
0 (t)

)

+
Xν̂(t)

S
(ν̂)
0 (t)

p′
ν̂(t)(µ(t)− ν̂(t)) dt.



6.4 Equivalent Optimality Conditions 281

Integration of this equation yields

Xν̂(τn)

S
(ν̂)
0 (τn)

(L(τn) + N(τn)) +
∫ τn

0

L(t) + N(t)

S
(ν̂)
0 (t)

cν̂(t) dt

=
∫ τn

0

Xν̂(t)

S
(ν̂)
0 (t)

[p′
ν̂(t)(µ(t)− ν̂(t)) + ξ(t)] dt

+
∫ τn

0

Xν̂(t)

S
(ν̂)
0 (t)

[σ−1(t)(µ(t) − ν̂(t))

+ (L(t) + N(t))σ′(t)pν̂(t)]′ dWν̂(t).

By the choice of τn, the integrand of the Itô integral in this last expres-
sion is square-integrable, and thus has expectation zero under Pν̂,n. Taking
expectations under this probability measure, we obtain

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′

ν̂(t)(µ(t) − ν̂(t)) + ξ(t)] dt (4.20)

= E

[
(L(τn) + N(τn))Hν̂(τn)Xν̂(τn) +

∫ τn

0
Hν̂(t)(L(t) + N(t))cν̂(t) dt

]
.

An application of the optional sampling theorem to the martingale of (3.19)
shows that (3.18) is still valid if we replace t in that equation by the stopping
time τn. Using this fact, we rewrite (4.20) as

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′

ν̂(t)(µ(t)− ν̂(t)) + ξ(t)] dt

= E

[
(L(τn) + N(τn))

(
Hν̂(T )Bν̂ +

∫ T

τn

Hν̂(t)cν̂(t) dt

)

+
∫ τn

0
Hν̂(t)(L(t) + N(t))cν̂(t) dt]

]
,

which is the left-hand side of (4.18), hence a nonnegative quantity. This
completes the proof of (4.19).
Step 6. We invoke Lemma 5.4.2 to obtain a process λ(·) ∈ D satisfying
(5.4.8) with p(·) = pν̂(·), and take µ(·) = ν̂(·) + λ(·) so that ξ(·) = ζ(λ(·)).
The inequality (4.19) becomes

E

∫ τn

0
Hν̂(t)Xν̂(t)[p′

ν̂(t)λ(t) + ζ(λ(t))] dt ≥ 0, n = 1, 2, . . . ,

which, together with (5.4.8), implies

pν̂(t) ∈ K for Lebesgue-a.e. t ∈ [0, T ] (4.21)

almost surely. From (5.4.5) we have also that

ζ(ν̂(t)) + p′
ν̂(t)ν̂(t) ≥ 0 for Lebesgue-a.e. t ∈ [0, T ]

almost surely. We next take µ(·) ≡ 0, so that ξ(·) = −ζ(ν̂(·)), and (4.19)
becomes
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E

∫ τn

0
Hν̂(t)Xν̂(t)[p′

ν̂(t)ν̂(t) + ζ(ν̂(t))] dt ≤ 0, n = 1, 2, . . . ,

which proves

ζ(ν̂(t)) + p′
ν̂(t)ν̂(t) = 0 for Lebesgue-a.e. t ∈ [0, T ] (4.22)

almost surely. Conditions (4.21) and (4.22) are (4.2) of condition (B).
Condition (4.3) follows from (4.2), (4.10), and Remark 3.3.
(A)⇒(B): This implication is proved in Appendix C; the proof may be
skipped on first reading without harm, as this implication will not be
invoked in the sequel. �

Example 4.2: U1(t, x) = U2(x) = log x, ∀(t, x) ∈ [0, T ]× (0,∞).
As in Example 3.6.6, we have in this case I1(t, y) = I2(y) = 1

y , and con-
sequently, Ũ1(t, y) = Ũ2(y) = −(1 + log y) for 0 < y < ∞. Furthermore,
for all processes ν(·) ∈ D, we have Xν(y) = T+1

y for 0 < y < ∞ and
Yν(x) = T+1

x for 0 < x < ∞. In particular, D0 = D. Direct computations
show that for all ν(·) ∈ D, t ∈ [0, T ], x ∈ (0,∞) and y ∈ (0,∞),

Bν =
x

(T + 1)Hν(T )
, cν(t) =

x

(T + 1)Hν(t)
, Xν(t) =

(T + 1− t)x
(T + 1)Hν(t)

,

pν(t) = (σ−1(t))′θν(t) = (σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1
˜

+ ν(t)],

Vν(x) = (T + 1) log
(

x

T + 1

)
+ f(ν),

Ṽν(y) = −(T + 1)(1 + log y) + f(ν),

where

f(ν) ∆= −E

(∫ T

0
log Hν(t) dt + log Hν(T )

)
.

For ν(·) ∈ D, we have

−E log Hν(t) = E

[
A(t) +

∫ t

0

(
r(s) + ζ(ν(s)) +

1
2
‖θν(s)‖2

)
ds

]
,

so that conditions (C) and (D) amount to pointwise minimization of the
expression

ζ(ν) +
1
2
‖θ(t) + σ−1(t)ν‖2 over ν ∈ K̃, (4.23)

where K̃, the effective domain of the function ζ(·), is the barrier cone of
−K (see (5.4.2)).

We denote by L×(RN ×RN ) the set of nonsingular N ×N matrices. For
ν ∈ K̃, θ ∈ RN , and σ ∈ L×(RN × RN ), we define

g(ν, θ, σ) ∆= ζ(ν) +
1
2
‖θ + σ−1ν‖2.
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For fixed θ ∈ RN and σ ∈ L×(RN × RN ), the function ν �→ g(ν, θ, σ) is
strictly convex, and thus has a unique minimizer. For each positive integer
n, we denote by K̃n the compact set K̃ ∩ {ν ∈ RN ; ‖ν‖ ≤ n}, and define
gn to be the restriction of g to K̃n × RN × L×(RN × RN ). According to
measurable selection theorems of Dubins–Savage (1965) type (see Schäl
(1974), (1975) or Bertsekas and Shreve (1978), Proposition 7.33), for each
n there is a Borel-measurable function ϕn: RN ×L×(RN ×RN )→ K̃n such
that

gn(ϕn(θ, σ), θ, σ) = min
ν∈K̃n

g(ν, θ, σ), ∀θ ∈ RN , σ ∈ L×(RN × RN ).

Because g(ν, θ, σ) → ∞ as ‖ν‖ → ∞, for fixed θ ∈ RN and σ ∈
L×(RN × RN ), the function values ϕn(θ, σ) are bounded uniformly in
n, and hence do not depend on n for n sufficiently large. We define
ϕ(θ, σ) = limn→∞ ϕN (θ, σ), which satisfies

g(ϕ(θ, σ), θ, σ) = min
ν∈K̃

g(ν, θ, σ), ∀θ ∈ RN , σ ∈ L×(RN × RN ).

The progressively measurable process

ν̂(t) ∆= ϕ (θ(t), σ(t)) , 0 ≤ t ≤ T,

is in D and minimizes the expression (4.23) for all t ∈ [0, T ] almost surely.
The inequality

g (ν̂(t), θ(t), σ(t)) ≤ g (0
˜
, θ(t), σ(t)) (4.24)

and (2.5) imply that

E

∫ T

0
ζ(ν̂(t)) dt +

1
2
E

∫ T

0
‖θ(t) + σ(t)ν̂(t)‖2 dt ≤ E

∫ T

0
‖θ(t)‖2 dt <∞,

and thus f(ν̂) <∞; in particular, Vν̂(x) <∞ for all x > 0.
The implications (C)⇒(A) or (D)⇒(A) of Theorem 4.1 show that the op-

timal consumption, portfolio-proportion, and wealth processes for Problem
2.6 are given by

ĉ(t) =
x

(T + 1)Hν̂(t)
, X̂(t) =

(T + 1− t)x
(T + 1)Hν̂(t)

,

p̂(t) = (σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1
˜

+ ν̂(t)], 0 ≤ t ≤ T,

and the value function of (2.16) is

V (x;K) = Vν̂(x) = (T + 1) log
(

x

T + 1

)
+ f(ν̂) <∞, 0 < x <∞.

It is perhaps worth noting in this example that if θ(·) satisfies the Novikov
condition E

[
exp

{
1
2

∫ T

0 ‖θ(t)‖2dt
}]

<∞ mentioned in Remark 1.5.2, then
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(4.24) and (2.1) show that θν̂(·) also satisfies this condition; thus both
financial markets M0 and Mν̂ are “standard” (in the sense of Definition
1.5.1) and complete. �

6.5 Duality and Existence

We now turn to the dual optimization problem associated with the “primal”
constrained Problem 2.6. The dual problem is, for fixed y > 0, to minimize
Ṽν(y) over ν(·) ∈ D, and its value function is defined by

Ṽ (y) ∆= inf
ν∈D

Ṽν(y), 0 < y <∞, (5.1)

in the notation of (3.27), (3.33). This problem is suggested by condition (D)
preceding Theorem 4.1, which amounts to Ṽ (y) = Ṽν̂(y) for some ν̂(·) ∈ D0
and y = Yν̂(x). The terminology “dual” comes from the fact that, as we
shall show in Propositions 5.1 and 5.2 below, the value function Ṽ (·) of
(5.1) is the convex dual of the concave function V ( · ;K) of (2.16), in the
sense of Definition 3.4.2.

We shall assume throughout this section that

Ṽ (y) <∞, 0 < y <∞. (5.2)

Our plan in this section is to show that under reasonable conditions, for
any given y > 0, the dual problem (5.1) has a minimizer νy(·) ∈ D0; i.e.,

∀y ∈ (0,∞), ∃ νy(·) ∈ D0 such that Ṽ (y) = Ṽνy
(y) (5.3)

(see Theorem 5.3, whose proof occupies a good part of this section). We
can then argue that in conjunction with Theorem 4.1, this solution implies
the existence of an optimal consumption and portfolio-proportion pair for
the “primal” Problem 2.6 (see Theorem 5.4).

Proposition 5.1 (Weak Duality): Suppose (5.2) and (5.3) hold. Then,
for any given y ∈ (0,∞) and with x = Xνy

(y),

(i) there exists an optimal consumption and portfolio-proportion process
pair (ĉ, p̂) ∈ A3(x;K) for Problem 2.6, and

(ii) we have

Ṽ (y) = sup
ξ>0

[V (ξ;K)− ξy]. (5.4)

Proof. First, let us note that (5.3), (3.10), and (3.27) imply

V (x;K) ≤ Ṽ (y) + xy, ∀y > 0, ∀x > 0. (5.5)

Now fix y ∈ (0,∞), let x = Xνy
(y), and note that the assumption Ṽνy

(y) ≤
Ṽν(y) for all ν(·) ∈ D of (5.3) amounts to (4.5) with ν̂(·) = νy(·). The
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implications (D)⇒(B), (D)⇒(A) in Theorem 4.1 and Proposition 3.8 show
that the pair (cν̂(·), pν̂(·)) given by (3.17), (3.21) is in A3(x;K) and is
optimal for Problem 2.6. By (3.17), (3.22), (3.18), and (3.16),

cν̂(t) = I1(t, yHν̂(t)),
X

x,cν̂,pν̂

ν̂ (T ) = Xν̂(T ) = Bν̂ = I2(yHν̂(T )),

x = Xx,cν̂ ,pν̂

ν̂ (0) = E

[∫ T

0
Hν̂(t)cν̂(t) dt + Hν̂(T )Xx,cν̂ ,pν̂

ν̂ (T )

]
.

In other words, equations (3.29)–(3.31) hold and imply equality in (3.28);
i.e.,

Ṽ (y) = Ṽν̂(y) = Vν̂(x)− xy. (5.6)

But condition (B) also implies, via Proposition 3.8, that

Vν̂(x)− xy = V (x;K)− xy, (5.7)

which, of course, is bounded above by supξ>0[V (ξ;K) − ξy]. We have
obtained the inequality

Ṽ (y) ≤ sup
ξ>0

[V (ξ;K)− ξy].

The reverse inequality is obvious from (5.5), and (5.4) follows. �

Proposition 5.2 (Strong Duality): Assume that (5.2), (5.3), and

U2(∞) =∞ (5.8)

hold. Then, for any given x ∈ (0,∞), we have

V (x;K) = inf
y>0

[Ṽ (y) + xy], (5.9)

and the infimum in (5.9) is attained at some y = y(x) ∈ (0,∞) that satisfies
x = Xνy(x)(y(x)).

Proof. From the nonincrease and convexity of Ũ1(t, ·) and Ũ(·), we have,
in conjunction with (3.27), (3.33), and Jensen’s inequality,

Ṽν(y) ≥
∫ T

0
Ũ1(t, yEHν(t)) dt + Ũ2(yEHν(T ))

≥
∫ T

0
Ũ1

(
t,

y

s0

)
dt + Ũ2

(
y

s0

)
, 0 < y <∞, ν(·) ∈ D, (5.10)

where s0 is as in (2.4) and we have used (2.1). Since Ũ2(0+) = U2(∞) =
∞ (Lemma 3.4.3), it develops that Ṽ (0+) = ∞ and the convex function
fx(η) ∆= Ṽ (η) + xη, 0 < η <∞, satisfies fx(0+) =∞. But from (5.4),

fx(y) = sup
ξ>0

[V (ξ;K)− ξy] + xy ≥ V
(x

2
;K
)

+
xy

2
,
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which shows that fx(∞) = ∞. Being convex and finite on (0,∞), the
function fx is continuous there and must attain its minimum at some y =
y(x) ∈ (0,∞). We have to show that x = Xνy

(y).
To see this last property, observe that

inf
u>0

[
Ṽνy

(uy) + xuy
]

= inf
η>0

[
Ṽνy

(η) + xη
]

≥ inf
η>0

[
Ṽ (η) + xη

]
= Ṽ (y) + xy

= Ṽνy
(y) + xy,

where νy(·) ∈ D0 is the process of (5.3). In other words, the function u �→
Ṽνy

(uy) + xuy attains its minimum over (0,∞) at u = 1. But from (3.32)
this function is continuously differentiable with derivative xy − yXνy

(uy),
which has to vanish at u = 1. Thus Xνy

(y) = x, as desired.
It remains to prove (5.9). As in Proposition 5.1 we have (5.6) and (5.7),

but now with ν̂(·) replaced by νy(·), and these equations imply

V (x;K) = Ṽνy
(y) + xy = Ṽ (y) + xy ≥ inf

η>0

[
Ṽ (η) + xη

]
.

The reverse inequality is a consequence of (5.5). �

Our next result provides sufficient conditions for requirement (5.3) to be
satisfied.

Theorem 5.3 (Existence in the dual problem): Suppose that (5.2) holds,
and that the utility functions U1(t, ·), U2(·) satisfy

U1(t,∞) =∞, inf
0≤t≤T

U1(t, 0) > −∞ ∀t ∈ (0,∞), (5.11)

U2(∞) =∞, U2(0) > −∞, (5.12)

as well as (3.4.15), (3.6.17). Then (5.3) holds.

We devote the remainder of this section to the proof of Theorem 5.3.
But first, let us combine it with Propositions 5.1 and 5.2 to derive the
basic existence result for the primal, constrained Problem 2.6.

Theorem 5.4 (Existence in the primal problem): Under the assumptions
of Theorem 5.3 we have V (x;K) <∞ for every x ∈ (0,∞), and there exists
an optimal pair (ĉ, p̂) ∈ A3(x;K) for Problem 2.6. In other words, condition
(A) preceding Theorem 4.1 holds.

The conditions (5.11), (5.12) exclude logarithmic utility functions; for
these, however, we have the direct arguments and explicit computations
presented in Example 4.2, and thus need not appeal to general existence
results.

In order to proceed with the proof of Theorem 5.3, let us fix y > 0 and
extend the functional ν �→ Ṽν(y) given by (3.27), (3.33) for ν(·) ∈ D to the



6.5 Duality and Existence 287

entirety of the space H of Definition 5.5.1, by setting

Ṽν(y) = E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
, ν(·) ∈ H. (5.13)

This definition is possible under the assumptions of Theorem 5.3 because

Ũ1(t, y) = sup
x≥0

[U1(t, x)− xy] ≥ U1(t, 0) ≥ inf
0≤t≤T

U1(t, 0) > −∞, (5.14)

Ũ2(y) = sup
x≥0

[U2(x)− xy] ≥ U2(0) > −∞; (5.15)

thus the expectation in (5.13) may be +∞, but is well-defined.

Remark 5.5: Under the conditions of Theorem 5.3,

Ṽν(y) =∞, ν(·) ∈ H \ D, y > 0. (5.16)

To see this, use Jensen’s inequality and the convexity of z �→ Ũ2(yez) from
(3.4.15′′) to write

Ṽν(y) ≥ κ + EŨ2(yHν(T ))

≥ κ + Ũ2(yeE log Hν(T ))

≥ κ + Ũ2

(
y

s0
e

−E
∫ T

0
‖θν(t)‖2dt−E

∫ T

0
ζ(ν(t))dt

)
for a suitable constant κ > −∞. If ν(·) ∈ H\D, then E

∫ T

0 ζ(ν(t)) dt =∞.
Under the conditions of Theorem 5.3, Ũ2(0) = U2(∞) = ∞, and ν(·) ∈
H \ D implies (5.16).

Lemma 5.6: Fix y > 0. Under the assumptions of Theorem 5.3, the
functional ν �→ Ṽν(y) of (5.13) is convex, coercive, that is,

Ṽν(y)→∞ if [[ν]]→∞, (5.17)

and lower semicontinuous; i.e.,

Ṽν(y) ≤ limn→∞Ṽνn
(y) if [[νn − ν]]→ 0 as n→∞.

Proof. Note first that

log Hν(t) = −A(t)−
∫ t

0
r(s) ds −

∫ t

0

(
θ(s) + σ−1(s)ν(s)

)
dW (s)

− 1
2

∫ t

0
‖θ(s) + σ−1(s)ν(s)‖2 ds−

∫ t

0
ζ(ν(s)) ds

is a concave function of ν(·) ∈ D. Let ν1(·), ν2(·) ∈ D and α ∈ (0, 1) be
given. We have

log Hαν1+(1−α)ν2(t) ≥ α log Hν1(t) + (1− α) log Hν2(t). (5.18)
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The functions z �→ Ũ1(t, yez) and z �→ Ũ2(yez) are nonincreasing (Lemma
3.4.3) and convex (equation (3.4.15′′)), and so the inequality (5.18) leads
to

Ũ1(t, yHαν1+(1−α)ν2(t)) ≤ Ũ1(t, y exp(α log Hν1(t) + (1− α) log Hν2(t)))

≤ αŨ1(t, yHν1(t)) + (1− α)Ũ1(t, yHν2(t)),

and similarly,

Ũ2(yHαν1+(1−α)ν2(T )) ≤ αŨ2(yHν1(T )) + (1− α)Ũ2(yHν2(T )).

These inequalities imply the convexity of ν �→ Ṽν(y).
For ν(·) ∈ H, we have

Ṽν(y) ≥ E

∫ T

0
Ũ1

(
y

s0
exp

{
− log

1
Zν(t)

})
dt

+ EŨ2

(
y

s0
exp

{
− log

1
Zν(T )

})
≥
∫ T

0
Ũ1

(
y

s0
exp

{
−E log

1
Zν(t)

})
dt

+ Ũ2

(
y

s0
exp

{
−E log

1
Zν(T )

})
≥
∫ T

0
Ũ1

(
y

s0
exp

{
−1

2
E

∫ t

0
‖θν(s)‖2 ds

})
dt

+ Ũ2

(
y

s0
exp

{
−1

2
E

∫ T

0
‖θν(s)‖2 ds

})
.

As [[ν]] → ∞, condition (5.2.4) implies that E
∫ T

0 ‖θν(s)‖2ds → ∞. But
Ũ2(0+) = U2(∞) =∞, and (5.17) follows.

Finally, let {νn(·)}∞n=1 be a sequence in H converging to a limit ν(·) ∈ H
in the norm of Definition 5.5.1. We may extract a subsequence {νnk

(·)}∞k=1
for which

lim
k→∞

Ṽνnk
(y) = limn→∞Ṽνn

(y),

and we seek to show that

Ṽν(y) ≤ lim
k→∞

Ṽνnk
(y). (5.19)

Consider the martingales

Mνn
(t) ∆=

∫ t

0
θνn

(s) dW (s), 0 ≤ t ≤ T.

According to the Burkholder–Davis–Gundy inequality (Karatzas and
Shreve (1991), Theorem 3.3.28),



6.5 Duality and Existence 289

E

[
sup

0≤t≤T
|Mνn

(t)−Mν(t)|2
]
≤ κE

∫ T

0
‖θνn

(s)− θν(s)‖2 ds

for some constant κ, and the right-hand side approaches zero as n → ∞.
Therefore, we may choose a further subsequence, also labeled {νnk

(·)}∞k=1,
along which we have

lim
k→∞

νnk
(t) = ν(t) for Lebesgue-a.e. t ∈ [0, T ],

lim
k→∞

sup
0≤t≤T

|Zνnk
(t)− Zν(t)| = 0

almost surely. These equalities and the lower semicontinuity of ζ(·) imply

limk→∞Hνnk
(t) ≤ Hν(t), 0 ≤ t ≤ T,

almost surely. Because Ũ1(t, ·) and Ũ2(·) are nondecreasing and continuous
on (0,∞), we have the almost sure inequalities

limk→∞Ũ1(t, yHνnk
(t)) ≥ Ũ1(t, yHν(t)), 0 ≤ t ≤ T,

limk→∞Ũ2(yHνnk
(T )) ≥ Ũ2(yHν(T )).

Moreover, (5.14), (5.15), and Fatou’s lemma give us

lim
k→∞

Ṽνnk
(y)

= lim
k→∞

E

[∫ T

0
Ũ1(t, yHνnk

(t)) dt + Ũ2(yHνnk
(T ))

]

≥ limk→∞E

∫ T

0
Ũ1(t, yHνnk

(t)) dt + limk→∞EŨ2(yHνnk
(T ))

≥ E

∫ T

0
limk→∞Ũ1(t, yHνnk

(t)) dt + E
[
limk→∞Ũ2(yHνnk

(T ))
]

≥ E

[∫ T

0
Ũ1(t, yHν(t)) dt + Ũ2(yHν(T ))

]
= Ṽν(y). �

Proof of Theorem 5.3: Let y > 0 be given. From Lemma 5.6 and
Proposition 2.12 in Ekeland and Temam (1976), the convex, coercive, and
lower-semicontinuous functional H ! ν �→ Ṽν(y) ∈ (−∞,∞] attains its
infimum on the Hilbert space H:

inf
ν∈H

Ṽν(y) = Ṽν̂(y) for some ν̂(·) ∈ H.

According to Remark 5.5 and (5.2), Ṽν̂(y) = Ṽ (y) < ∞, so ν̂(·) must be
in D. It remains to show that ν̂(·) actually belongs to the class D0 of (3.24).
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The finiteness of Ṽν̂(y) and the inequality (3.35) show that Vν̂(x) < ∞
for all x > 0. It remains to check that

Xν̂(η) <∞, ∀η > 0. (5.20)

From the decrease of Ũ , (3.4.12), the decrease of I, and (3.6.17) (in
particular, (3.4.16′′)), we have

Ũ(η)− Ũ(∞) ≥ Ũ(η)− Ũ

(
η

β

)
=
∫ η

β

η

I(u) du

≥
(

η

β
− η

)
I

(
η

β

)
≥ 1− β

βγ
ηI(η), 0 < η <∞,

where β ∈ (0, 1) and γ ∈ (1,∞) are as in (3.4.16′′), and Ũ(·) stands
generically for Ũ(t, ·) and Ũ2(·). Consequently,

yXν̂(y) = E

[∫ T

0
yHν̂(t)I1(t, yHν̂(t)) dt + yHν̂(T )I2(yHν̂(T ))

]

≤ βγ

1− β
E

[∫ T

0
Ũ1(t, yHν̂(t)) dt + Ũ2(yHν̂(T ))

−
(∫ T

0
Ũ1(t,∞) + Ũ2(∞)

)]

≤ βγ

1− β

[
Ṽν̂(y)−

(∫ T

0
U1(t, 0) dt + U2(0)

)]
< ∞,

where the last inequality is a consequence of (5.14) and (5.15). This proves
(5.20) for η = y (but not for all η > 0, because ν̂ depends on y). Assumption
(3.6.17′′) (see the sentence following that assumption) now implies that
(5.20) holds for all η > 0. �

Remark 5.7: It can be checked rather easily that utility functions of the
form

U1(t, x) =
1
β

e−αtxβ , U2(x) =
1
β

e−αT xβ , 0 ≤ t ≤ T, x > 0,

where α ≥ 0 and 0 < β < 1, satisfy all the conditions of Theorems 5.3 and
5.4.

Remark 5.8: The theory of Sections 2–5 goes through without change
if one sets formally U1 ≡ 0 and admits only the identically zero con-
sumption process throughout. This leads to the problem of maximizing the
expected utility from terminal wealth only. On the other hand, the condition
U2(∞) =∞ was used extensively in this section. The situation with regard
to existence of optimal solutions when U2 ≡ 0 is not well understood.
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6.6 Deterministic Coefficients, Cone Constraints

In this section, we consider Problem 2.6 and its dual under the assumption
that r(·), θ(·), and σ(·) are continuous, deterministic functions; A(·) ≡ 0;
and the constraint set K is a cone. The analysis proceeds through a study
of the Hamilton–Jacobi–Bellman (HJB) equations, and for this we use the
conditions placed on utility functions in Section 3.8 rather than conditions
(3.4.15), (3.6.17) used in the previous section of this chapter. In particular,
all functions U (β)(x) given by (3.4.4), (3.4.5) are included, not just those
for which 0 < β < 1. (We use β for the exponent in place of p throughout
this chapter, reserving the symbol p(·) for portfolio-proportion processes.)

More specifically, we assume in this section that Assumptions 3.8.1, 3.8.2
hold, and, in addition, the following condition is satisfied.

Assumption 6.1: The process σ(·) is nonrandom, σ(t) is nonsingular for
every t ∈ [0, T ], and σ(·) is Hölder-continuous, i.e., for some κ > 0 and
ρ ∈ (0, 1), we have

‖σ(t1)− σ(t2)‖ ≤ κ|t1 − t2|ρ, ∀ t1, t2 ∈ [0, T ].

In particular, σ(·) and σ−1(·) are both bounded, and σ−1(·) is also Hölder-
continuous.

Assumption 6.2: The constraint set K is a nonempty closed convex cone.

From Assumption 6.2 we see that K̃ is the polar cone of −K, which is
necessarily closed. On K̃, the support function ζ(·) is identically zero (Rock-
afellar (1970), Theorem 14.1). From Assumption 3.8.1 we have the validity
of (2.4) and (2.5). Conditions (2.13) and (2.14) are assumed throughout
this chapter, including in the present section.

Our aim is to study the time-dependent generalization of Problem 2.6 via
the time-dependent generalization of Problem 3.2. Toward that end, for 0 ≤
t ≤ T , x ≥ 0 and with (c(·), p(·)) a consumption and portfolio-proportion
process pair, we define the corresponding wealth process Xt,x,c,p(s), t ≤
s ≤ T , by

Xt,x,c,p(s)
S0(s)

+
∫ s

t

c(u)du

S0(u)
= x +

∫ s

t

Xt,x,c,p(u)
S0(u)

p′(u)σ(u) dW0(u)

(cf. (2.7)). The process Xt,x,c,p(·) reaches zero no later than the stopping
time

τt,p
∆= inf

{
s ∈ [t, T ];

∫ s

t

‖σ′(u)p(u)‖2 du =∞
}

(cf.(2.9)). We set

τt,0
∆= inf

{
s ∈ [t, T ];Xt,x,c,p(s) = 0

}
,
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and define A(t, x;K) to be the set of all consumption and portfolio-process
pairs (c(·), p(·)) that satisfy the almost sure conditions

c(s) = 0, Lebesgue-a.e. s ∈ [τt,0, T ],

p(s) ∈ K, Lebesgue-a.e. s ∈ [t, T ].

Following (2.15), (2.16), we set

A3(t, x;K) ∆=

{
(c, p) ∈ A3(t, x;K); E

∫ T

t

min[0, U1(s, c(s))]ds > −∞,

E
(
min[0, U2(Xt,x,c,p(T ))]

)
> −∞

}
and define the time-dependent value function

V (t, x;K) ∆= sup
(c,p)∈A(t,x;K)

E

[∫ T

t

U1(s, c(s))ds + U2(Xt,x,c,p(T ))

]
. (6.1)

We show below that the function V (·, ·;K) : [0, T ] × (0,∞) → R of
(6.1) is continuous and satisfies the constrained Hamilton–Jacobi–Bellman
equation (see Theorem 3.8.11 for the unconstrained case)

Vt(t, x;K) + max
0≤c<∞

p∈K

[
1
2
‖σ′(t)p‖2x2Vxx(t, x;K)

+ (r(t)x− c + xp′σ(t)θ(t)) Vx(t, x;K) + U1(t, c)

]
= 0 (6.2)

for 0 ≤ t ≤ T, x > 0. By definition, V (·, ·;K) satisfies the boundary
conditions

V (t, x;K) = U2(x), x > 0, (6.3)

V (t, 0;K) =
∫ T

t

U1(t, 0) dt + U2(0), 0 ≤ t ≤ T. (6.4)

We approach the constrained HJB equation through the dual problem.
For ν(·) ∈ D, t ∈ [0, T ], and x ≥ 0, we determine Xt,x,c,p

ν (·) by the equation
(cf. (3.1))

Xt,x,c,p
ν (s)

S
(ν)
0 (s)

+
∫ s

t

c(u)du

S
(ν)
0 (u)

= x +
∫ s

t

Xt,x,c,p
ν (u)

S
(ν)
0 (u)

p′(u)σ(u)dWν(u),

t ≤ s ≤ T,

or its equivalent variations similar to (3.2) and (3.3). We define Aν(t, x) to
be the set of all consumption and portfolio-process pairs (c, p) for which

c(s) = 0, Lebesgue-a.e. s ∈ [τt,ν , T ]



6.6 Deterministic Coefficients, Cone Constraints 293

almost surely, where

τt,ν = inf
{
s ∈ [t, T ];Xt,x,c,p

ν (s) = 0
}

.

Following (3.5), (3.6), we set

A(ν)
3 (t, x) ∆=

{
(c, p) ∈ Aν(t, x); E

∫ T

t

min[0, U1(s, c(s))]ds > −∞,

E
(
min[0, U2(Xt,x,c,p

ν (T ))]
)

> −∞
}

,

Vν(t, x) ∆= sup
(c,p)∈A(ν)

3 (t,x)

E

[∫ T

t

U1(s, c(s)) ds + U2(Xt,x,c,p
ν (T ))

]
. (6.5)

For ν(·) ∈ D and t ∈ [0, T ], we introduce the processes with time
parameter s ∈ [t, T ],

Zν(t, s) ∆=
Zν(s)
Zν(t)

= exp
{
−
∫ s

t

θ′
ν(u) dW (u)− 1

2

∫ s

t

‖θν(u)‖2 du

}
,

Hν(t, s) ∆=
Hν(s)
Hν(t)

= exp
{
−
∫ s

t

r(u)
}

Zν(t, s).

The nonnegative function

Xν(t, y) ∆= E

[∫ T

t

Hν(t, s)I1(s, yHν(t, s))ds + Hν(t, T )I2(yHν(t, T ))

]
,

0 ≤ t ≤ T, y > 0, (6.6)

is finite if ν(·) is in the set D0 of (3.24). In this case, Xν(t, ·) is a strictly de-
creasing function mapping (0,∞) onto (0,∞) and has a strictly decreasing
inverse Yν(t, ·), likewise mapping (0,∞) onto (0,∞).

For ν(·) ∈ D0 we have, just as in Remark 3.6, that

Vν(t, x) = Gν(t,Yν(t, x)), 0 ≤ t ≤ T, x > 0, (6.7)

where

Gν(t, y) ∆= E

[∫ T

t

U1(I1(s, yHν(t, s))) ds + U2(I2(yHν(t, T )))

]
. (6.8)

Furthermore,

Ṽν(t, y) ∆= sup
x>0

[Vν(t, x)− xy]

= Gν(t, y)− yXν(t, y)

= E

[∫ T

t

Ũ1(s, yHν(t, s))ds + Ũ2(yHν(t, T ))

]
<∞, 0 ≤ t ≤ T, y > 0 (6.9)
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(cf. (3.27)), and for ν(·) ∈ D \ D0, we follow (3.33) and define

Ṽν(t, y) ∆= E

[∫ T

t

Ũ1(s, yHν(t, s)) ds + Ũ2(yHν(t, T ))

]
,

y > 0, ν(·) ∈ D \ D0. (6.10)

Proposition 3.7 can be adapted to the time-dependent case to ensure that

E

∫ T

t

min[0, Ũ1(s, yHν(t, s))] ds > −∞, E
(
min[0, Ũ2(yHν(t, T ))]

)
> −∞,

and hence

E

[∫ T

t

|Ũ1(s, yHν(t, s))|ds + |Ũ2(yHν(t, T ))|
]

<∞ (6.11)

if Ṽν(t, y) <∞. Also, as in (3.35), Ṽν(t, y) <∞ implies

sup
x>0

[Vν(t, x)− xy] = Ṽν(y). (6.12)

From the theory of Section 6.5—in particular, from (5.4)—we expect

Ṽ (t, y) ∆= inf
ν∈D

Ṽν(t, y) (6.13)

to be the convex dual of the function V (t, ·;K) in (6.1), i.e.,

Ṽ (t, y) = sup
ξ>0

[V (t, ξ;K)− ξy], 0 ≤ t ≤ T, y > 0. (6.14)

From Theorem 3.8.12, we also expect Ṽ to satisfy a linear partial differential
equation, which turns out to be (cf. (3.8.44))

Ṽt(t, y) +
1
2

min
ν∈K̃

‖θ(t) + σ−1(t)ν‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) + Ũ1(t, y)

= 0, 0 ≤ t ≤ T, y > 0, (6.15)

as well as the terminal condition

Ṽ (T, y) = Ũ2(y), y > 0. (6.16)

Our program then is to construct Ṽ via (6.15), (6.16) and in the process
to obtain the minimizer ν̂(·) in (6.13). Then, just as in Theorem 4.1, we
discover that when ν(·) = ν̂(·) in (6.5), the maximizing (c, p) ∈ A(ν̂)

3 (t, x)
is optimal in (6.1). Finally, we prove (6.14), (6.2) and obtain the optimal
(c, p) for Problem 2.6 in feedback form.

We begin this program with a study of the minimization appearing in
(6.15). Given ε > 0, let Lε(RN ; RN ) denote the set of N × N nonsingular
matrices σ whose operator norm

‖σ‖ ∆= sup
x∈RN ,‖x‖=1

‖σx‖
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satisfies ‖σ‖ ≥ ε. Then ‖σ−1‖ ≤ 1
ε for every σ ∈ Lε(RN ; RN ). Recall from

(5.2.4) that we have assumed σ(t) ∈ Lε(RN ; RN ) for all 0 ≤ t ≤ T for
sufficiently small ε > 0. Define the function

h(θ, σ) ∆= inf
ν∈K̃

‖θ + σ−1ν‖

mapping RN×Lε(RN ; RN ) to [0,∞). Because the mapping ν �→ ‖θ+σ−1ν‖
is strictly convex and lim‖ν‖→∞ ‖θ + σ−1ν‖ = ∞ for each fixed (θ, σ) ∈
RN × Lε(RN ; RN ), there is a unique minimizer ν = Υ(θ, σ) in K̃; i.e.,

h(θ, σ) = ‖θ + σ−1Υ(θ, σ)‖ for θ ∈ RN , σ ∈ Lε(θ, σ).

Lemma 6.3: The function h: RN × Lε(RN ; RN ) → [0,∞) is locally
Lipschitz continuous.

Proof. For θ1, θ2 ∈ RN and σ1, σ2 ∈ Lε(RN ; RN ), we have

h(θ1, σ1)− h(θ2, σ2) ≤ ‖θ1 + σ−1
1 Υ(θ2, σ2)‖ − ‖θ2 + σ−1

2 Υ(θ2, σ2)‖
≤ ‖θ1 − θ2 + (σ−1

1 − σ−1
2 )Υ(θ2, σ2)‖

≤ ‖θ1 − θ2‖+ ‖σ−1
1 − σ−1

2 ‖‖Υ(θ2, σ2)‖
≤ ‖θ1 − θ2‖+ ‖σ−1

1 ‖‖σ−1
2 ‖‖σ1 − σ2‖‖Υ(θ2, σ2)‖

≤ ‖θ1 − θ2‖+
1
ε2
‖Υ(θ2, σ2)‖‖σ1 − σ2‖.

But

‖Υ(θ, σ)‖ ≤ ‖σθ + Υ(θ, σ)‖+ ‖ − σθ‖
≤ ‖σ‖‖θ + σ−1Υ(θ, σ)‖ + ‖σ‖‖θ‖
= ‖σ‖(h(θ, σ) + ‖θ‖)
≤ 2‖σ‖‖θ‖.

It follows that

h(θ1, σ1)− h(θ2, σ2) ≤ ‖θ1 − θ2‖+
2
ε2
‖σ2‖‖θ2‖‖σ1 − σ2‖,

and reversing the roles of θ1, σ1 with θ2, σ2, we obtain

|h(θ1, σ1)− h(θ2, σ2)| ≤ ‖θ1 − θ2‖

+
2
ε2

max{‖σ1‖‖θ1‖, ‖σ2‖‖θ2‖} · ‖σ1 − σ2‖. �

In light of Lemma 6.3, we may rewrite (6.15) as

Ṽt(t, y) +
1
2
‖θν̂(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) + Ũ1(t, y) = 0,

0 ≤ t ≤ T, y > 0,
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where

ν̂(t) = Υ(θ(t), σ(t)), θν̂(t) = θ(t) + σ−1(t)ν̂(t). (6.17)

Assumptions 3.8.1 and 6.1 guarantee that ‖θν̂(·)‖ = h(θ(·), σ(·)) is a non-
random, Hölder-continuous function, and hence all the results of Section
3.8 apply to the marketMν̂ , as we elaborate below.

Lemmas 3.8.4 and 3.8.10, coupled with Theorem 3.8.11, show that ν̂(·) ∈
D0. According to Theorem 3.8.11, Vν̂(t, x) is of class C1,2 on [0, T )×(0,∞),
continuous on [0, T ]× (0,∞), satisfies the boundary conditions

Vν̂(T, x) = U2(x), x > 0,

Vν̂(t, 0) =
∫ T

t

U1(t, 0) dt + U2(0), 0 ≤ t ≤ T,

and solves the HJB equation

∂

∂t
Vν̂(t, x) + max

0≤c<∞
p∈RN

[
1
2
‖σ′(t)p‖2x2 ∂2

∂x2 Vν̂(t, x) (6.18)

+ (r(t)x− c + xp′σ(t)θν̂(t))
∂

∂x
Vν̂(t, x) + U1(t, c)

]
= 0, 0 ≤ t < T, x > 0,

for the optimization problem without constraints on p(·). Theorem 3.8.12
implies that for all t ∈ [0, T ],

∂

∂x
Vν̂(t, x) = Yν̂(t, x), x > 0, (6.19)

Ṽν̂(t, y) = Gν̂(t, y)− yXν̂(t, y) (6.20)

= E

[∫ T

t

Ũ1(s, yHν̂(t, s)) ds + Ũ2(yHν̂(t, T ))

]
, y > 0,

∂

∂y
Ṽν̂(t, y) = −Xν̂(t, y), y > 0. (6.21)

Moreover, the convex dual function Ṽν̂ in (6.14) is of class C1,2 on [0, T )×
(0,∞), continuous on [0, T ]× (0,∞), satisfies the boundary conditions

Ṽν̂(T, y) = Ũ2(y), y > 0, (6.22)

and solves the linear, second-order equation

∂

∂t
Ṽν̂(t, y) +

1
2
‖θν̂(t)‖2y2 ∂2

∂y2 Ṽν̂(t, y)− r(t)y
∂

∂y
Ṽν̂(t, y) + Ũ1(t, y)

= 0, 0 ≤ t < T, y > 0. (6.23)

Finally, every solution to (6.22), (6.23) satisfying the growth condition
(3.8.21) must agree with Ṽν̂ .
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Theorem 6.4: Under Assumptions 3.8.1, 3.8.2, 6.1, and 6.2, and with
ν̂(·) given by (6.17), we have

V (t, x;K) = Ṽν̂(t, x), 0 ≤ t ≤ T, x > 0, (6.24)

Ṽ (t, y) = Ṽν̂(t, y), 0 ≤ t ≤ T, y > 0. (6.25)

The function V (·, ·;K) satisfies the constrained HJB equation (6.2), and
Ṽ (·, ·) satisfies the linear, second-order equation (6.15). In terms of the
“feedback functions”

C(t, x) ∆= I1(t,Yν̂(t, x)), (6.26)

P (t, x) ∆= −(σ′(t))−1θν̂(t)
Yν̂(t, x)

x ∂
∂xYν̂(t, x)

, 0 ≤ t ≤ T, x > 0, (6.27)

the optimal consumption and portfolio-proportion processes for Problem 2.6
are given in “feedback form” as

ĉ(t) = C(t, X̂(t)), p̂(t) = P (t, X̂(t)), 0 ≤ t ≤ T, (6.28)

with

X̂(t) ∆= Xν̂(t) = Xν̂(t,Yν̂(0, x)Hν̂(t)) = Xx,ĉ,p̂(t), 0 ≤ t ≤ T, (6.29)

as in (3.18), (6.6), and (2.7).

The proof of Theorem 6.4 requires the following lemma.

Lemma 6.5: Let M(t), 0 ≤ t ≤ T , be a positive, continuous, local martin-
gale, and let ϕ: (0,∞) → R be a convex nonincreasing function satisfying
E|ϕ(M(t))| < ∞ for every t ∈ [0, T ]. Then ϕ(M(t)), 0 ≤ t ≤ T , is a
submartingale.

Proof. Let {τn}∞n=1 be a nondecreasing sequence of stopping times with
τn ↑ T almost surely and such that M(t ∧ τn), 0 ≤ t ≤ T , is a martingale
for every n. For ε > 0 and κ > 0, we introduce the function

ϕε,κ(x) =
{

ϕ(ε) + (x− ε)D+ϕ(ε), 0 < x < ε,
max{ϕ(x), ϕ(ε + κ)}, x ≥ ε,

(6.30)

where D+ϕ denotes the right-hand derivative of ϕ. Note that ϕε,κ is
bounded, convex, and nonincreasing. Jensen’s inequality implies that
ϕε,κ(M(t ∧ τn)), 0 ≤ t ≤ T , is a bounded submartingale. In other words,
for 0 ≤ s ≤ t ≤ T and A ∈ F(s),∫

A

ϕε,κ(M(s ∧ τn)) dP ≤
∫

A

ϕε,κ(M(t ∧ τn)) dP.

Letting n→∞, we obtain∫
A

ϕε,κ(M(s)) dP ≤
∫

A

ϕε,κ(M(t)) dP
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by the bounded convergence theorem. Letting first ε ↓ 0 and then κ→∞,
we obtain from two applications of the monotone convergence theorem that∫

A

ϕ(M(s)) dP ≤
∫

A

ϕ(M(t)) dP. �

Proof of Theorem 6.4: We first show (6.25), i.e., for every ν(·) ∈ D,
y > 0, and 0 ≤ t ≤ T ,

Vν̂(t, y) = E

[∫ T

t

Ũ1(s, yHν̂(t, s)) ds + Ũ2(yHν̂(t, T ))

]

≤ E

[∫ T

t

Ũ(s, yHν(t, s)) ds + Ũ2(yHν(t, T ))

]
= Vν(t, y). (6.31)

Of course, if Vν(t, y) =∞, this inequality is trivially true. If Vν(t, y) <∞,
we have (6.11). We will show below that

Eϕ(Zν̂(t, s)) ≤ Eϕ(Zν(t, s)), 0 ≤ t ≤ s ≤ T, (6.32)

whenever ϕ: (0,∞)→ R is a convex nonincreasing function satisfying

E|ϕ(Zν̂(t, s))| <∞, E|ϕ(Zν(t, s))| <∞. (6.33)

Taking first

ϕ(z) = Ũ1

(
s, yz exp

{
−
∫ s

t

r(u) du

})
,

and then s = T and

ϕ(z) = Ũ2

(
yz exp

{
−
∫ T

t

r(u) du

})
,

we will obtain (6.31) from (6.32).
To simplify notation we set t = 0 in (6.32), i.e., we prove only

Eϕ(Zν̂(t)) ≤ Eϕ(Zν(t)), 0 ≤ t ≤ T. (6.34)

Recall from (5.5.10) that

Zν̂(t) = exp
{
−
∫ t

0
θ′

ν̂(u) dW (u)− 1
2

∫ t

0
‖θν̂(u)‖2 du

}
,

Zν(t) = exp
{
−
∫ t

0
θ′

ν(u) dW (u)− 1
2

∫ t

0
‖θν(u)‖2 du

}
.

We assume initially that for some κ > 0, we have

‖θν̂(t)‖ ≥ κ > 0, 0 ≤ t ≤ T, (6.35)
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and define

Λν̂(t) =
∫ t

0
‖θν̂(u)‖2 du, Λν(t) =

∫ t

0
‖θν(u)‖2 du. (6.36)

Because ‖θν̂(u)‖ ≤ ‖θν(u)‖, 0 ≤ u ≤ T , almost surely, we have Λν̂(t) ≤
Λν(t), 0 ≤ t ≤ T , almost surely. We extend θν̂(·) and θν(·) to (T,∞) by
setting θν(t) = θν̂(t) = θν̂(T ), for t > T , and subsequently extend Λν̂(·),
Λν(·) to (T,∞) via (6.36).

We next define the nondecreasing, progressively measurable process

A(t) ∆= inf{u ≥ 0; Λν̂(u) = Λν(t)} ≥ t

(recall here that Λν̂(·) is not random), so that

Λν̂(A(t)) = Λν(t), t ≥ 0.

But Λν̂(·) is continuously differentiable with derivative bounded from below
by κ2 > 0, so we may invert the above equation to conclude that A(·) is
continuously differentiable. Indeed,

A′(t) =
‖θν(t)‖2
‖θν̂(A(t))‖2 , t ≥ 0.

Using the fact that θν̂(·) is deterministic, we may construct a progres-
sively measurable process O(·) with values in the set of N×N orthonormal
matrices, and such that√

A′(t)O(t)θν̂(A(t)) = θν(t), t ≥ 0

holds almost surely. We define the N -dimensional vector of martingales

M(t) = (M1(t), . . . ,MN (t))′ =
∫ t

0

√
A′(u)O′(u) dW (u),

and note that 〈Mi,Mj〉(t) = δijA(t), t ≥ 0, almost surely. Thus, there exists
an N -dimensional Brownian motion B(·) for which M(t) = B(A(t)), t ≥ 0
(see Karatzas and Shreve (1991), Theorem 3.4.6, for the one-dimensional
case, which can be easily extended using Lévy’s characterization of multi-
dimensional Brownian motion (ibid. (1991), Theorem 3.3.16); alternatively,
this is a special case of Knight’s theorem, (ibid. (1991), Theorem 3.4.13)).
Changing variables in the formula for Zν(·) (ibid. (1991), Proposition 3.4.8),
we have

Zν(A−1(t)) = exp

{
−
∫ A−1(t)

0
θ′

ν(u) dW (u)− 1
2

∫ A−1(t)

0
‖θν(u)‖2 du

}

= exp

{
−
∫ A−1(t)

0

√
A′(u) θ′

ν̂(A(u))O′(u) dW (u)
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−1
2

∫ A−1(t)

0
‖θν̂(A(u))‖2A′(u) du

}

= exp

{
−
∫ A−1(t)

0
θ′

ν̂(A(u)) dM(u) − 1
2

∫ t

0
‖θν̂(s)‖2 ds

}

= exp
{
−
∫ t

0
θ′

ν̂(s) dB(s) − 1
2

∫ t

0
‖θν̂(s)‖2 ds

}
.

This shows that Zν(A−1(t)) has the same distribution as Zν̂(t), and thus

Eϕ(Zν̂(t)) = Eϕ(Zν(A−1(t))).

Lemma 6.5 implies that ϕ(Zν(·)) is a submartingale. Because A−1(t)
is a stopping time, and A−1(t) ≤ t almost surely, the optional sampling
theorem gives

Eϕ(Zν(A−1(t))) ≤ Eϕ(Zν(t)).

We have established (6.34) under the assumption (6.35).
Indeed, we have proved that whenever ν̂(·) is nonrandom and satisfies

(6.35), ν(·) ∈ D, and ‖θν̂(t)‖ ≤ ‖θν(t)‖, 0 ≤ t ≤ T , almost surely, then
(6.34) holds. If ν̂(·) does not satisfy (6.35), we may construct sequences
{ν̂n(·)}∞n=1, {νn(·)}∞n=1 such that for each n, ν̂n(·) is nonrandom, ‖θν̂n

(t)‖ ≥
1
n , ‖θν̂n

(t)‖ ≤ ‖θνn
(t)‖ for 0 ≤ t ≤ T , and

lim
n→∞

E

∫ T

0
‖θν̂n

(t)− θν̂(t)‖2 dt = lim
n→∞

E

∫ T

0
‖θνn

(t)− θν(t)‖2 dt = 0.

Consequently, along a subsequence (which may depend on t), we have

Zν̂n
(t)→ Zν̂(t) and Zνn

(t)→ Zν(t)

almost surely. We have already shown that

Eϕ(Zν̂n
(t)) ≤ Eϕ(Zνn

(t)), n = 1, 2, . . . ,

and it remains to pass to the limit. If ϕ is bounded, we may use the bounded
convergence theorem to do this. Even if ϕ is unbounded, the function ϕε,κ

of (6.30) is bounded, so

Eϕε,κ(Zν̂(t)) ≤ Eϕε,κ(Zν(t)).

Letting first ε ↓ 0 and then κ → ∞, we obtain (6.34) from two applica-
tions of the monotone convergence theorem, using (6.33). Equation (6.25)
is proved.

From (6.25) and (6.23), we see that Ṽ satisfies the linear, second-order
partial differential equation (6.15). Because (6.25) is condition (D) of The-
orem 4.1, we have immediately that conditions (A), (B), (C), and (E)
hold. In particular, the first sentence of Theorem 4.1 asserts that the op-
timal consumption and portfolio-proportion processes for Problem 2.6 are



6.6 Deterministic Coefficients, Cone Constraints 301

ĉ(·) = cν̂(·), p̂(·) = pν̂(·) given by (3.17), (3.21), the optimal processes for
Problem 3.2 in the market Mν̂ . Equation (6.24) with t = 0 follows; its
verification for t �= 0 is a straightforward variation of the above argument.
Applying Theorem 3.8.8 and equation (3.8.3) to the marketMν̂ , we obtain
(6.26)–(6.29).

It remains only to show that the unconstrained HJB equation (6.18)
reduces to the constrained equation (6.2), i.e., to show that

R
∆= max

p∈RN

[
1
2
‖σ′(t)p‖2x2 ∂2

∂x2 Vν̂(t, x) + (p′σ(t)θ(t) + p′ν̂(t)) x
∂

∂x
Vν̂(t, x)

]
agrees with

L
∆= max

p∈K

[
1
2
‖σ′(t)p‖2x2 ∂2

∂x2 Vν̂(t, x) + p′σ(t)θ(t)x
∂

∂x
Vν(t, x)

]
.

Now, R ≥ L, since p′ν ≥ 0 for every p ∈ K, ν ∈ K̃ (see (5.4.5)) and
∂
∂xVν̂(t, x) ≥ 0. On the other hand, the maximum in the definition of R is
obtained by

p = −(σ′(t))−1θν̂(t)
∂
∂xVν̂(t, x)

x ∂2

∂x2 Vν̂(t, x)
= P (t, x),

according to (6.19), (6.26). But ν̂(t) minimizes ‖θ(t)+σ−1(t)ν‖ over ν ∈ K̃,
so θν̂(t) is orthogonal to σ−1ν for every ν ∈ K̃. In other words,

ν′P (t, x) = 0, ∀ν ∈ K̃,

and now (5.4.5) shows that P (t, x) ∈ K and ν̂′(t)P (t, x) = 0. It follows
that R ≤ L. �

Example 6.6 (Constant coefficients): Consider the case of constant
r(·) = r > 0, θ(·) = θ, σ(·) = σ, and A(·) ≡ 0. Assume that

U1(t, x) = e−αtu1(x), U2(x) = e−αT u2(x), 0 ≤ t ≤ T, x > 0,

where α ≥ 0 and u1: (0,∞) → R and u2: (0,∞) → R are three-times
continuously differentiable utility functions. Assume further that (3.8.51)
and (3.8.52) are satisfied and γ

∆= 1
2‖θν̂‖2 > 0. Then Xν̂(t, y), Gν̂(t, y), and

Ṽν̂(t, y) = Ṽ (t, y) are given by (3.8.53), (3.8.54), and (3.8.55), respectively.

Example 6.7 (Utility functions of power type): Fix β ∈ (−∞, 1) \ {0}
and assume

U1(t, x) = U2(x) =
1
β

xβ , 0 ≤ t ≤ T, x > 0.

We know from Example 3.8.13 that

Xν̂(t, y) = k(t)y
1

β−1 , Gν̂(t, y) =
1
β

k(t)y
β

β−1 ,

Ṽ (t, y) =
1− β

β
k(t)y

β
β−1 , V (t, x) =

1
β

k(t)
(

x

k(t)

)β

,
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where

k(t) ∆= e

∫
T

t
α(s)ds

[
1 +

∫ T

t

e
−
∫

T

s
α(u)du

ds

]
,

α(t) ∆=
β

(1− β)2

[
1
2
‖θν̂(t)‖2 + r(t)(1− β)

]
.

It is now easily calculated, in the notation of (6.17) and Theorem 6.4, that

X̂(t) =
xk(t)
k(0)

(Hν̂(t))
1

β−1 ,

ĉ(t) =
X̂(t)
k(t)

,

p̂(t) =
1

1− β
(σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1

˜
+ ν̂(t)].

6.7 Incomplete Markets

We return to the general model of a complete, standard financial market set
up in Section 6.2. There are N stocks driven by an N -dimensional Brownian
motion, as described by (2.3). We simplify the notation by assuming that
δ(·) ≡ 0. We choose an integer M ∈ {1, . . . , N − 1}, let L = N −M , and
consider the case that only the first M stocks are available for investment.
This corresponds to

K = {p ∈ RN ; pM−1 = · · · = pN = 0} (7.1)

as in Example 5.4.1(iii). Thus, in place of (2.2), (2.3), the relevant equations
are

dS0(t) = S0(t)[r(t)dt + dA(t)], (7.2)

dSn(t) = Sn(t)

[
bn(t)dt + dA(t) +

N∑
d=1

σnd(t)dW (d)(t)

]
, (7.3)

n = 1, . . . ,M.

We denote by b̃(t) the M -dimensional column vector (b1(t), . . . , bM (t))′,
and by σ̃(t) the bounded M ×N matrix (σnd(t))n=1,...,M

d=1,...,N

. By assumption,

σ̃(t) has full row rank for Lebesgue-almost-every t, almost surely. In the
market M̃ consisting of the money market and the first M stocks, the
market price of risk process (1.4.9) is the N -dimensional vector process

θ̃(t) ∆= σ̃′(t)(σ̃(t)σ̃′(t))−1[b̃(t)− r(t)1
˜M ]. (7.4)
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Although in this section investment in stocks M +1, . . . , N is not permit-
ted in the constrained Problem 2.6, it is useful to create the unconstrained
Problem 3.2 in which such investment is permitted. We may fashion stocks
M +1, . . . , N however we like, provided that we respect the assumptions of
Section 6.2. It is convenient to assume that the rows of the L×N matrix
ρ(t) = (σnd(t))n=M+1,...,N

d=1,...,N

are orthonormal vectors spanning the kernel of
σ̃(t); i.e.,

ρ(t)ρ′(t) = IL, σ̃(t)ρ′(t) = 0, 0 ≤ t ≤ T, (7.5)

almost surely, where IL is the L×L identity matrix. It is then easily verified
that

σ−1(t) = [σ̃′(t)(σ̃(t)σ̃′(t))−1 ρ′(t)]. (7.6)

The boundedness of σ(t) and σ−1(t) follows from the assumption
of boundedness of σ̃(t) and (σ̃(t)σ̃′(t))−1, conditions that we impose
throughout.

To simplify later notation, we denote by a(t) the L-dimensional vector
(bM+1(t), . . . , bN (t))′ of mean rates of return for the unavailable stocks.

With K given by (7.1) we have

K̃ = {ν ∈ RN ; ν1 = · · · = νM = 0},

and the class D of Definition 5.5.1 consists of all process of the form

ν(·) =
[

0
˜M

ξ(·)

]
, (7.7)

where 0
˜M is the M -dimensional zero vector and ξ(·) is any RL-valued

progressively measurable process satisfying

E

∫ T

0
‖ξ(t)‖2 dt <∞. (7.8)

The evolution of prices in the auxiliary marketMν is given by (7.2), (7.3),
and

dS(ν)
n (t) = S(ν)

n (t)

[
(an−M (t) + ξn−M (t)) dt + dA(t)

+
N∑

d=1

ρn−M,d(t) dW (d)(t)

]
, n = M + 1, . . . , N. (7.9)

We say thatMν is a fictitious completion of M̃. The theory of this chapter
is about choosing the process ξ(·) so that an agent permitted to invest in
the stocks M + 1, . . . , N chooses not to.

Remark 7.1: Using (7.4), (7.6), we see that the market price of risk
process θν(·) forMν is
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θν(t) = σ−1(t)[b(t) + ν(t)− r(t)1
˜N ]

= θ̃(t) + ρ′(t)[a(t) + ξ(t)− r(t)1
˜L]. (7.10)

Note that ρ′(t)[a(t) + ξ(t)− r(t)1
˜L] is orthogonal to θ̃(t), because of (7.5).

Example 7.2 (Logarithmic utility, incomplete market): U1(t, x) =
U2(x) = log x for every (t, x) ∈ [0, T ]× (0,∞).

This is Example 4.2, specialized to the case of an incomplete market; i.e.,
K given by (7.1). The expression in (4.23) to be minimized over ξ ∈ RL is

1
2
‖θ̃(t) + ρ′(t)(a(t) + ξ − r(t)1

˜L)‖2 =
1
2
‖θ̃(t)‖2

+
1
2
‖ρ′(t)(a(t) + ξ − r(t)1

˜L)‖2,

and this is minimized by ξ̂(t) = r(t)1
˜L−a(t). In other words, ν̂(·) satisfying

the equivalent conditions of Theorem 4.1 is

ν̂(t) =
[

0
˜M

r(t)1
˜L − a(t)

]
and θν̂(·) = θ̃(·). This corresponds to choosing the fictitious completion

for which S(ν)
n (·)
S0(·) is a martingale, n = M + 1, . . . , N . The formula for the

optimal portfolio-proportion process in Example 4.2 becomes

p̂(t) =

[
(σ̃(t)σ̃′(t))−1(b̃(t)− r(t)1

˜M )
0
˜L

]
.

Example 7.3 (Logarithmic utility, incomplete market, short-selling pro-
hibited): U1(t, x) = U2(x) = log x for every (t, x) ∈ [0, T ]× (0,∞).
In contrast to Example 7.2, we now take

K = {p ∈ RN ; p1 ≥ 0, . . . , pM ≥ 0, pM+1 = 0, . . . , pM = 0}

as in Example 5.4.1(iv). Because K̃ = {ν ∈ RN ; ν1 ≥ 0, . . . , νM ≥ 0}, the
expression in (4.23) becomes

1
2
‖σ−1(t)(b(t) − r(t)1

˜N ) + σ−1(t)ν‖2

=
1
2

∥∥∥∥σ̃′(t)
[
(σ̃(t)σ̃(t))−1 ρ′(t)

] [b(t)− r(t)1
˜M

a(t)− r(t)1
˜L

]
+
[
σ̃′(t)(σ̃(t)σ̃′(t))−1 ρ′(t)

] [η

ξ

]∥∥∥∥2

=
1
2
‖σ̃′(t)(σ̃(t)σ̃′(t))−1(b(t) + η − r(t)1

˜M )

+ ρ′(t)(a(t) + ξ − r(t)1
˜L)‖2
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=
1
2
‖σ̃′(t)(σ̃(t)σ̃′(t))−1(b(t) + η − r(t)1

˜M )‖

+
1
2
‖ρ′(t)(a(t) + ξ − r(t)1

˜L)‖2,

and this is to be minimized over [η′|ξ′]′ ∈ K̃. As in the previous example,
the minimizing ξ is ξ̂(t) = r(t)1

˜L − a(t). The minimizing η ≥ 0 can be
solved from the Kuhn–Tucker conditions

(σ̃(t)σ̃′(t))−1(b̃(t) + η̂(t)− r(t)1
˜M ) ≥ 0

˜M ,

η̂(t) ≥ 0
˜M ,

η̂′(t)(σ̃(t)σ̃′(t))−1(b̃(t) + η̂(t)− r(t)1
˜M ) = 0. (7.11)

Then

ν̂(t) =
[

η̂(t)
r(t)1

˜L − a(t)

]
,

and

p̂(t) =

[
(σ̃(t)σ̃′(t))−1(b̃(t) + η̂(t)− r(t)1

˜M )
0
˜L

]
takes values in K because of (7.11).

Example 7.4 (“Totally unhedgeable” coefficients, utility of power type):
We take again

K = {p ∈ RN ; pM+1 = · · · = pN = 0}. (7.12)

Suppose now that the M×N -matrix-valued process σ̃(t) = (σnd(t))n=1,...,M
d=1,...,Nis of the form

σ̃(t) =
[◦
σ (·) 0

˜M×L

]
, (7.13)

where
◦
σ (·) is an M ×M nonsingular matrix. Suppose further that

r(·), b(·), σ(·) are adapted to the filtration

F̌(t) ∆= σ(W̌ (s), 0 ≤ s ≤ t), 0 ≤ t ≤ T,

generated by the L-dimensional Brownian motion

W̌ (·) = (WM+1(·), . . . ,WN (·))′

 (7.14)

and

A(·) ≡ 0. (7.15)

Then the market M̃ of (7.2), (7.3) takes the form

dS0(t) = r(t)S0(t) dt, (7.16)

dSn(t) = Sn(t)

[
bn(t) dt +

M∑
d=1

◦
σnd (t)d

◦
W

(d)
(t)

]
, n = 1, . . . ,M ; (7.17)
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it consists of the money market and of M stocks, driven by the
M -dimensional Brownian motion

◦
W (t) = (W1(·), . . . ,WM (·))′.

But the driving Brownian motion
◦

W (·) in (7.17) is independent of W̌ (·),
to whose natural filtration {F̌(t)} the coefficients r(·), bn(·), and

◦
σnd (·)

appearing in (7.16), (7.17) are adapted. We refer to this situation as one
of totally unhedgeable coefficients.

The risk inherent in the coefficient processes is undiversifiable, and eco-
nomic intuition suggests that an investor should simply “ignore” it. While
it is by no means obvious how to implement this maxim in general, in the
case

U1(t, x) = 0, U2(x) =
1
β

xβ , ∀ 0 ≤ t ≤ T, x > 0, (7.18)

for some β < 1, β �= 0, one might expect the optimal portfolio-proportion
process to be given by

◦
p (t) =

1
1− β

(
◦
σ (t)

◦
σ ′(t))−1[b̃(t)− r(t)1

˜M ], (7.19)

which is the same formula as in a complete market with deterministic coef-
ficients (see (3.6.16) in Example 3.6.7). Formula (7.19) directs investment
in stocks 1, . . . ,M ; the corresponding portfolio-proportion process in the
constrained market M(K) is

p̂(t) =

[ ◦
p (t)
0
˜L

]
. (7.20)

The remainder of this example is a proof that (7.19), (7.20) indeed do
provide the optimal portfolio-proportion process under the assumptions
(7.12)–(7.15), provided that

E

[
exp

{
β

∫ T

0

(
r(t) +

1
2(1− β)

‖
◦
θ (t)‖2

)
dt

}]
<∞, (7.21)

where
◦
θ (t) ∆= (

◦
σ (t))−1[b̃(t)− r(t)1

˜M ],

and provided that either β ∈ (0, 1) or else
∫ T

0 r(t)dt and
∫ T

0 ‖
◦
θ (t)‖2dt

are bounded.
We begin by choosing a(t) = r(t)1

˜L and ρ(t) = (σnd(t))n=M+1,...,N
d=1,...,N

to

be of the form ρ(t) =
[
0
˜L×M | ρ̌(t)

]
, where the M × M matrix ρ̌(t) is

orthonormal: ρ̌(t)ρ̌′(t) = IL. Then σ(t) has the block form

σ(t) =

[ ◦
σ (t) | 0

˜M×L

0
˜L×M | ρ̌(t)

]
,



6.7 Incomplete Markets 307

and the market price of risk forM(K) is

θ(t) = σ−1(t)[b(t) − r(t)1
˜N ] =

[ ◦
θ (t)
0
˜M

]
.

Processes in D are of the form (7.7), where (7.8) holds, and for such a
process ν(·) ∈ D we have

θν(t) =

[ ◦
θ (t)
ν̌(t)

]
,

where

ν̌(t) ∆= ρ̌′(t)ξ(t). (7.22)

It follows that

Hν(T ) = exp

{
−
∫ T

0

◦
θ

′(t)d
◦

W (t)−
∫ T

0
ν̌′(t) dW̌ (t)

−
∫ T

0

(
r(t) +

1
2
‖

◦
θ (t)‖2 +

1
2
‖ν̌(t)‖2

)
dt

}
(7.23)

and

(Hν(T ))
β

β−1 = mν(T )
◦
Λ (T )Λ̌ν(T ), (7.24)

where

mν(T ) ∆= exp

{
β

1− β

∫ T

0
r(t) dt (7.25)

+
β

2(1− β)2

(∫ T

0
‖

◦
θ (t)‖2 dt +

∫ T

0
‖ν̌(t)‖2 dt

)}
,

◦
Λ (T ) = exp

{
β

1− β

∫ T

0

◦
θ

′(t)d
◦

W (t) (7.26)

− 1
2

(
β

1− β

)2 ∫ T

0
‖

◦
θ (t)‖2 dt

}
,

Λ̌ν(T ) ∆= exp

{
β

1− β

∫ T

0
ν̌′(t) dW̌ (t) (7.27)

− 1
2

(
β

1− β

)2 ∫ T

0
‖ν̌(t)‖2 dt

}
.

The implication (B)⇒(A) in Theorem 4.1 and Remark 5.8 show that
in order to prove optimality of p̂(·) in (7.20), it suffices to find a process
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ν(·) ∈ D such that

Xx,0,p̂(T ) = I2(Yν(x)Hν(T )). (7.28)

With p̂(·) given by (7.19), (7.20), we have

σ′(t)p̂(t) =
1

1− β

[ o

θ (t)
0
˜L

]
,

and the left-hand side of (7.28) is easily computed from (2.7) in the form

d

(
Xx,0,p̂(t)

S0(t)

)
=

Xx,0,p̂(t)
(1− β)S0(t)

◦
θ

′(t) (
◦
θ (t) dt + d

◦
W (t)).

We obtain

Xx,0,p̂(T ) = x · exp

{∫ T

0

(
r(t) +

1− 2β

2(1− β)2
‖

◦
θ (t)‖

)
dt

+
1

1− β

∫ T

0

o

θ
′(t)d

o

W (t)

}
. (7.29)

To compute the right-hand side of (7.28) we observe that I2(y) = y
1

β−1 ,
so that

Xν(y) = E [Hν(T )I2(yHν(T ))]

= y
1

β−1 E
[
(Hν(T ))

β
β−1

]
= y

1
β−1Xν(1). (7.30)

Consequently, Yν(x) =
(

x
Xν(1)

)β−1
and

I2(Yν(x)Hν(T ))

=
x

Xν(1)
exp

{
1

1− β

∫ T

0

◦
θ

′(t)d
◦

W (t) +
1

1− β

∫ T

0
ν̌′(t) dW̌ (t)

+
1

1− β

∫ T

0

(
r(t) +

1
2
‖

◦
θ (t)‖2 +

1
2
‖ν̌(t)‖2

)
dt

}
. (7.31)

Comparing (7.29) and (7.31), we see that it suffices to construct a process
ν(·) ∈ D such that

Xν(1) = exp

{
β

1− β

∫ T

0
r(t) dt +

β

2(1− β)2

∫ T

0
‖

◦
θ (t)‖2 dt

+
1

2(1− β)

∫ T

0
‖ν̌(t)‖2 dt +

1
1− β

∫ T

0
ν̌′(t) dW̌ (t)

}
(7.32)

almost surely.
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Consider now the {F̌(t)}-martingale

Q(t) ∆= E

[
exp

{
β

∫ T

0
r(u) du +

β

2(1− β)

∫ T

0
‖

◦
θ (u)‖2 du

}∣∣∣∣∣ F̌(t)

]
,

(7.33)

defined for 0 ≤ t ≤ T and taking values in [γ,∞), where γ is a positive
constant. Indeed, if β ∈ (0, 1), then we may take γ = sβ

0 , whereas we use

the assumed boundedness of
∫ T

0 r(t)dt and
∫ T

0 ‖
◦
θ (t)‖2dt to construct γ if

β < 0. According to the martingale representation theorem,

Q(t) = Q(0) +
∫ t

0
ψ′(u) dW̌ (u), 0 ≤ t ≤ T,

for some {F̌(t)}-progressively measurable ψ(·): [0, T ] × Ω → RL satisfying∫ T

0 ‖ψ(u)‖2du < ∞ almost surely. We set ν̌(t) = − 1
Q(t)ψ(t). Since Q(·) is

bounded away from zero, we have
∫ T

0 ‖ν̌(t)‖2dt <∞ almost surely and

Q(t) = Q(0) exp
{
−
∫ t

0
ν̌′(u) dW̌ (u)− 1

2

∫ t

0
‖ν̌(u)‖2 du

}
, 0 ≤ t ≤ T.

(7.34)
With τn

∆= inf{t ∈ [0, T );
∫ t

0 ‖ν̌(u)‖2du = n} ∧ T , we obtain from (7.34)

1
2
E

∫ τn

0
‖ν̌(t)‖2 dt = log Q(0)− E log Q(τn)

≤ log Q(0)− log γ < ∞.

Letting n → ∞, we conclude from the monotone convergence theorem
that E

∫ T

0 ‖ν̌(t)‖2dt < ∞. Now set ξ(t) = ρ̌(t)ν̌(t) and ν(t) =
[ 0
˜M

ξ(t)

]
, in

accordance with (7.22) and (7.7), and observe that ν(·) ∈ D because ρ̌(·)
is bounded. From (7.33), (7.34) we also have

exp

{
β

∫ T

0
r(t)dt +

β

2(1− β)

∫ T

0
‖

◦
θ (t)‖2 dt

}

= Q(0) exp

{
−
∫ T

0
ν̌′(t) dW̌ (t)− 1

2

∫ T

0
‖ν̌(t)‖2 dt

}
,

or equivalently,

exp

{
β

1− β

∫ T

0
r(t) dt +

β

2(1− β)2

∫ T

0
‖

◦
θ (t)‖2dt (7.35)

+
1

2(1− β)

∫ T

0
‖ν̌(t)‖2 dt +

1
1− β

∫ T

0
ν̌′(t) dW̌ (t)

}
= (Q(0))

1
1−β .
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To prove (7.32), it suffices to show that

Xν(1) = (Q(0))
1

1−β . (7.36)

From (7.30), (7.24), we have

Xν(1) = E
[
(Hν(T ))

β
β−1

]
= E

[
mν(T )

◦
Λ (T )Λ̌ν(T )

]
= E

[
mν(T )Λ̌ν(T )E

( ◦
Λ (T )

∣∣∣ F̌(T )
)]

,

where we have used the F̌(T )-measurability of ν̂(·). Because
◦
θ (·) is {F̌(t)}-

progressively measurable and
◦

W (·) is independent of F̌(T ), we see that

E[
◦
Λ (T )|F̌(T )] = 1, just as would be the case if

◦
θ (·) were nonrandom. We

conclude that

Xν(1) = E
[
mν(T )Λ̌ν(T )

]
= E

[
exp

{
β

1− β

∫ T

0
r(t) dt +

β

2(1− β)2

∫ T

0
‖

◦
θ (t)‖2 dt

+
β

2(1− β)

∫ T

0
‖ν̌(t)‖2 dt +

β

1− β

∫ T

0
ν̌′(t) dW̌ (t)

}]

= E

[
(Q(T ))

1
1−β

(
Q(0)
Q(T )

) β
1−β

]
,

where we have used (7.33) to evaluate (Q(T ))
1

1−β and (7.34) to evaluate(
Q(0)
Q(T )

) β
1−β

. But

E

[
(Q(T ))

1
1−β

(
Q(0)
Q(T )

) β
1−β

]
= (Q(0))

β
1−β EQ(T )

= (Q(0))
β

1−β Q(0) = (Q(0))
1

1−β ,

and (7.36) follows.

6.8 Higher Interest Rate for Borrowing
Than for Investing

In this section we modify the optimal consumption and investment Problem
3.5.4 to allow the interest rate for borrowing to exceed the interest rate for
investing. The solution of this problem can be obtained via a dual problem
in the spirit of Theorem 4.1, although not as a direct application of that



6.8 Higher Interest Rate for Borrowing Than for Investing 311

theorem. We indicate below how to make the appropriate modifications to
the arguments in Sections 2–5.

As in Section 2 we begin with a complete, standard financial market with
asset prices governed by (2.2), (2.3); we assume that (2.4), (2.5), and (5.2.4)
hold, and that Z0(·) is a martingale, so the standard martingale measure
P0 is defined. Consumption processes and portfolio-proportion processes
are as in Definitions 2.1 and 2.2, respectively.

The process S0(·) records the value of investment in the money market.
Borrowing, on the other hand, can occur only at a premium R(·)−r(·) above
the money-market rate. More specifically, there is a bounded, nonnegative,
progressively measurable process R(·) ≥ r(·) such that for initial wealth
x ≥ 0, consumption process c(·), and portfolio-proportion process p(·), the
corresponding wealth process Xx,c,p(·), 0 ≤ t ≤ T , satisfies (cf. (2.7)),

Xx,c,p(t)
S0(t)

+
∫ t

0

c(u)du

S0(u)
= x +

∫ T

0

Xx,c,p(u)
S0(u)

p′(u)σ(u) dW0(u) (8.1)

−
∫ t

0

Xx,c,p(u)
S0(u)

(R(u)− r(u))(p′(u)1
˜N − 1)+ du.

The last integral in (8.1) accounts for the higher interest paid when the
fraction of total wealth borrowed,

(p′(u)1
˜N − 1)+ = max

{
0,

N∑
n=1

pn(u)− 1

}
,

is strictly positive. Equation (8.1) is equivalent to

dXx,c,p(t) = −c(t) dt + (1− p′(t)1
˜N )+Xx,c,p(t)(r(t) dt + dA(t)) (8.2)

− (p′(u)1
˜N − 1)+Xx,c,p(t)(R(t) dt + dA(t))

+ Xx,c,p(t)p′(t)[b(t) dt + δ(t) dt + 1
˜N dA(t) + σ(t) dW (t)].

The solution of (8.1), or equivalently, (8.2), is constructed as follows.
Define τp by (2.9) and Ip(t), 0 ≤ t < τp, by (2.8), so (2.10) holds. Set

Kp(t)
∆= Ip(t) exp

{
−
∫ t

0
(R(u)− r(u))(p′(u)1

˜N − 1)+du

}
,

and then define Xx,c,p(t) for 0 ≤ t < τp by

Xx,c,p(t)
S0(t)

= Kp(t)
[
x−

∫ t

0

c(u)du

Sp(u)Kp(u)

]
; (8.3)

it is easily verified that (8.1) holds. With τ0
∆= inf {t ∈ [0, T ];Xx,c,p(t) = 0}

we have τ0 ≤ τp almost surely. As in Definition 2.4 we say that (c, p) is
admissible at x in the market with higher interest rate for borrowing than
for investing, and write (c, p) ∈ A(x), if (2.11) holds. For (c, p) ∈ A(x),
the process Xx,c,p(t) defined by (8.3) for 0 ≤ t < τ0 and set equal to 0 for
τ0 ≤ t ≤ T , solves (8.1), or equivalently (8.2).
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Here is the problem that we shall study in this section.

Problem 8.1: Given x ≥ 0, find a pair (ĉ, p̂) in the class

A3(x) ∆=

{
(c, p) ∈ A(x); E

∫ T

0
min[0, U1(t, c(t))] dt > −∞,

E (min[0, U2(Xx,c,p(T ))]) > −∞
}

that attains

V (x) ∆= sup
(c,p)∈A3(x)

E

[∫ T

0
U1(t, c(t)) dt + U2(Xx,c,p(T ))

]
,

the maximal expected utility from both consumption and terminal wealth
in the market with higher interest rate for borrowing than for investing.

We define the random, set-valued process

K̃(t) ∆= {ν ∈ RN ;−(R(t)− r(t)) ≤ ν1 = ν2 = · · · = νN ≤ 0}.

As in Definition 5.5.1, we denote by H the Hilbert space of {F(t)}-progres-
sively measurable processes ν(·): [0, T ]×Ω→ RN with E

∫ T

0 ‖ν(t)‖2dt <∞
and by D the closed subset of H consisting of processes ν(·) that satisfy
the almost sure condition

ν(t) ∈ K̃(t), Lebesgue-a.e. t ∈ [0, T ].

For t ∈ [0, T ] and ν ∈ RN , we define the nonnegative random variable

ζ(t, ν) ∆=
{
−ν1, if ν ∈ K̃(t),
∞, if ν /∈ K̃(t).

For each ν, ζ(·, ν) is {F(t)}-progressively measurable. For each (t, ω), the
mapping ν �→ ζ(t, ν) is convex and lower semicontinuous.

These definitions of D and ζ are in the spirit of Definition 5.5.1, except
that K̃ depends now on (t, ω) and is not a cone. There is no convex set K

corresponding to K̃ via (5.4.1), (5.4.2).
For ν(·) ∈ D, we form the auxiliary market Mν described in Section

5.5.2. In Mν there is a single interest rate for investing and borrowing,
namely

rν(t) ∆= r(t) + ζ(t, ν(t))

(cf. (5.5.3)). Note that

0 ≤ ζ(t, ν(t)) ≤ R(t)− r(t), for Lebesgue-a.e. t ∈ [0, T ], (8.4)

holds almost surely, so r(t) ≤ rν(t) ≤ R(t). The money market in Mν has
price process
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S
(ν)
0 (t) = S0(t) exp

{∫ t

0
ζ(s, ν(s)) ds

}
, (8.5)

while the stock prices are given by

S(ν)
n (t) = Sn(t), n = 1, . . . , N (8.6)

(see (5.5.7) and (5.5.8)). The market price of risk in the market Mν is

θν(t) ∆= θ(t) + σ−1(t)ν(t) = σ−1(t)[b(t) + δ(t)− r(t)1
˜N + ν1(t)1

˜N ]. (8.7)

Given x ≥ 0 and a consumption and portfolio-proportion process pair
(c, p), we define the corresponding wealth process Xx,c,p

ν (·) in Mν by the
equivalent equations (3.1)–(3.3). Note that in the case at hand, (3.2) may
be written as

Xx,c,p
ν (t)
S0(t)

+
∫ T

0

c(u)du

S0(u)
= x +

∫ t

0

Xx,c,p
ν (u)
S0(u)

p′(u)σ(u) dW0(u) (8.8)

+
∫ t

0

Xx,c,p(u)
S0(u)

ζ(u, ν(u))(1− p′(u)1
˜N ) du.

We say that (c, p) is admissible at x in the unconstrained market Mν , and
write (c, p) ∈ Aν(x), if (3.4) holds. We define A(ν)

3 (x) and Vν(x) as in
Problem 3.2.

Remark 8.2: Suppose (c, p) ∈ A(x), so that Xx,c,p(·) is defined. If we
choose ν(·) ∈ D, then Xx,c,p

ν (·) is also defined, and we have

Xx,c,p
ν (t) ≥ Xx,c,p(t), 0 ≤ t ≤ T, (3.8)

as we show below. In particular,

A3(x) ⊂ A(ν)
3 (x), for x ≥ 0, ν(·) ∈ D, (8.9)

and

V (x) ≤ Vν(x), for x ≥ 0, ν(·) ∈ D. (8.10)

To derive (3.8), we first note that

ζ(t, ν(t))(1− p′(t)1
˜N ) + (R(t)− r(t))(p′(t)1

˜N − 1)+

= ζ(t, ν(t))(1 − p′(t)1
˜N )+ + (R(t)− r(t)− ζ(t, ν(t)))(p′(t)1

˜N − 1)+

≥ 0. (8.11)

Subtraction of (8.1) from (8.8) shows that the process

∆(t) ∆=
Xx,c,p

ν (t)−Xx,c,p(t)
S0(t)

, 0 ≤ t ≤ T,

satisfies

∆(t) =
∫ t

0
∆(u)p′(u)σ(u) dW0(u) +

∫ t

0
∆(u)ζ(u, ν(u))(1− p′(u)1

˜N ) du
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+
∫ t

0

Xx,c,p(u)
S0(u)

[ζ(u, ν(u))(1− p′(u)1
˜N )

+(R(u)− r(u))(p′(u)1
˜N − 1)+

]
du.

Setting

J(t) = exp
{
−
∫ t

0
p′(u)σ(u)dW0(u) +

1
2

∫ t

0
‖σ′(u)p(u)‖2 du

−
∫ t

0
ζ(u, ν(u))(1− p′(u)1

˜N ) du

}
,

we compute

d(∆(t)J(t)) =
J(t)Xx,c,p(t)

S0(t)

[
ζ(t, ν(t))(1− p′(t)1

˜N )

+(R(t) − r(t))(p′(u)1
˜N − 1)+

]
dt.

We integrate this equation, using (8.11) and the fact that ∆(0) = 0, to
conclude that (3.8) holds. Note also that if we have

ζ(t, ν(t))(1− p′(t)1
˜N ) + (R(t) − r(t))(p′(u)1

˜N − 1)+ = 0, (8.12)
for Lebesgue-a.e. t ∈ [0, T ]

almost surely, then

Xx,c,p
ν (t) = Xx,c,p(t), 0 ≤ t ≤ T (8.13)

holds almost surely.

The unconstrained market Mν satisfies (3.14), and hence Assumption
3.2.3. We define Xν(·) and D0 by (3.15) and (3.24), respectively, and for
ν(·) ∈ D satisfying Xν(y) <∞ for all y > 0, we denote by Yν(·) the inverse
of Xν(·). We define cν(·), Xν(·), and pν(·) by (3.16)–(3.21); then (3.22)
holds and (cν , pν) attains the supremum in (3.6). Remarks 3.4, 3.5, and
3.6 apply to Mν . For ν(·) ∈ D0 we define Ṽν(·) by (3.27). We extend this
definition to ν(·) ∈ D \ D0 by (3.33), and Proposition 3.7 holds.

Let the initial wealth x be strictly positive. Just as in Section 3, our strat-
egy is to find a process ν̂(·) ∈ D0 for which the optimal pair (cν̂(·), pν̂(·))
for the marketMν̂ is also optimal for Problem 8.1. In other words, we seek
ν(·) ∈ D0 that satisfies

V (x) = E

[∫ T

0
U1(t, cν̂(t)) dt + U2(Bν̂)

]
= Vν̂(x). (8.14)

Remark 8.2 shows that such a ν̂(·) should satisfy almost surely the
complementary slackness condition

ζ(t, ν̂(t))(1− p̂′(t)1
˜N ) + (R(t)− r(t))(p′(u)1

˜N − 1)+ = 0, (8.15)
for Lebesgue-a.e. t ∈ [0, T ].
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Proposition 8.3: Let x > 0 be given, and suppose that (8.15) is satisfied
for some process ν̂(·) ∈ D0. Then the pair (cν̂ , pν̂) of (3.17), (3.21) is
optimal for Problem 8.1, and V (x) = Vν̂(x). Furthermore, ν̂(·) minimizes
Vν(x) over ν(·) ∈ D.

Proof. From Remark 8.2 we see that (8.15) implies

V (x) ≥ E

[∫ T

0
U1(t, cν̂(t)) dt + U2(Xx,cν̂ ,pν̂ (T ))

]

= E

[∫ T

0
U1(t, cν̂(t)) dt + U2(X

x,cν̂ ,pν̂

ν̂ (T ))

]
= Vν̂(x). (8.16)

Remark 8.2 also gives V (x) ≤ Vν̂(x) for every ν(·) ∈ D. Hence equality
holds in (8.16), ν̂(·) minimizes Vν(x) over ν(·) ∈ D, and (cν̂ , pν̂) is optimal
for Problem 8.1. �

We alter slightly two of the optimality conditions of Section 6.4. For
a fixed initial capital x > 0, let (ĉ, p̂) be a consumption and portfolio-
proportion process pair in the class A3(x) of Problem 8.1, and denote by
X̂(·) = Xx,ĉ,p̂(·) the corresponding wealth process of (8.1). Consider the
statement that this pair is optimal for Problem 8.1:

(A′) Optimality of (ĉ, p̂): We have

V (x) = E

[∫ T

0
U1(t, ĉ(t)) dt + U2(X̂(T ))

]
<∞.

Now let ν̂(·) be a process in D0. In the next condition, we use the notation
(3.16)–(3.18).
(B′) Financeability of (cν̂ , Bν̂): There exists a portfolio-proportion
process pν̂(·) such that (cν̂ , pν̂) ∈ A3(x) and

ζ(t, ν̂(t))(1− p′
ν̂1
˜N ) + (R(t)− r(t))(p′

ν̂(t)1
˜N − 1)+ = 0, (8.17)

for Lebesgue-a.e. t ∈ [0, T ],
Xx,cν̂ ,pν̂ (·) = Xν̂(·) (8.18)

hold almost surely.
As in Section 4.1, the portfolio-proportion process pν̂(·) in (B′) is not

assumed to be given by (3.21) with ν(·) = ν̂(·); this follows from (8.17),
(8.18), and Remark 8.2 (see (8.13)).

For the present purpose, the other three optimality conditions in Section
6.4 are suitable exactly as stated there. We have the following counterpart
to the first assertion in Theorem 4.1.

Theorem 8.4: The condition (B′) and the conditions (C), (D) and (E)
of Section 6.4 are equivalent, and they imply condition (A′) with (p̂, ĉ) =
(pν̂ , cν̂).
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Proof. The implications (B′)⇒(E)⇒(D), (B′)⇒(A′), and (B′)⇒ (C)⇒
(D) are proved as in Theorem 4.1. It remains to prove (D)⇒(B′).

We assume (D), define µ(t) = (µ1(t), . . . , µ1(t))′ ∈ D by

µ1(t) = · · · = µN (t) =
{

0, if 1− p′
ν̂(t)1

˜N ≥ 0,
−(R(t)− r(t)), if 1− p′

ν̂(t)1
˜N < 0,

and proceed through the proof of the implication (D)⇒(B) in Theorem 4.1,
taking

ξ(s) =
1
ε
[ζ(s, (1− ε)ν̂(s) + εµ(s))− ζ(s, ν̂(s))] = ν̂1(s)− µ1(s),

so that (4.19) becomes

E

∫ τn

0
Hν̂(t)Xν̂(t) [(ν̂1(t)− µ1(t))(1− p′

ν̂(t)1
˜N )] dt ≥ 0, n = 1, 2, . . . .

Because −(R(t)−r(t)) ≤ ν̂1(t) ≤ 0, the integrand is negative unless ν̂1(t) =
µ1(t) or 1−p′

ν̂(t)1
˜N = 0. Because τn ↑ T almost surely as n→∞, we must

have

(ν̂(t)− µ(t))(1− p′
ν̂(t)1

˜N ) = 0, for Lebesgue-a.e. t ∈ [0, T ]

almost surely. It follows that

0 = ζ(t, ν̂(t))(1− p′
ν̂(t)1

˜N )+ + (R(t)− r(t)− ζ(t, ν̂(t)))(p′
ν̂(t)1

˜N − 1)+

= ζ(t, ν̂(t))(1− p′
ν̂(t)1

˜N ) + (R(t) − r(t))(p′
ν̂(t)1˜N − 1)+,

for Lebesgue-a.e. t ∈ [0, T ]

almost surely. �

The existence theory for the dual problem captured by condition (D)
goes through just as in Section 6.5. In particular, Theorem 5.3 holds, and
under the assumptions of that theorem, for every x > 0, we have V (x) <∞
and there exists an optimal pair (ĉ, p̂) ∈ A3(x) for Problem 8.1.

Example 8.5 (Logarithmic utilities, general coefficients): In the special
case U1(t, x) = U2(x) = log x, 0 ≤ t ≤ T , x > 0, we have Ũ1(t, y) = Ũ2(y) =
−(1 + log y), y > 0 (see Example 4.2), and

Ṽν(y) = −(T + 1)(1 + log y)−
∫ T

0
E[log Hν(t)] dt− E[log Hν(T )].

For ν(·) ∈ D, we have

−E[log Hν(t)]

= EA(t) +
∫ t

0
E

[
r(u) + ζ(u, ν) +

1
2
‖θ(u) + σ−1ν(u)‖2

]
du.

The optimal dual process is thus ν̂(t) = ν̂1(t)1
˜N , where ν̂1(t) minimizes

−ν1 +
1
2
‖θ(t) + ν1σ

−1(t)1
˜N‖2 over ν1 ∈ [−(R(t)− r(t)), 0].
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With

B(t) ∆= θ′(t)σ−1(t)1
˜N , C(t) ∆= 1

˜
′
N (σ(t)σ′(t))−11

˜N , (8.19)

this minimization is achieved as follows:

ν̂1(t) =


0, if B(t)− 1 ≤ 0,
1−B(t)

C(t) , if 0 < B(t)− 1 < C(t)(R(t) − r(t)),
r(t)−R(t), if B(t)− 1 ≥ C(t)(R(t) − r(t)).

Example 3.6.6 applied to the marketMν̂ shows that the optimal portfolio-
proportion process is pν̂(t) = (σ′(t))−1θν̂(t); i.e.,

pν̂(t) =



(σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1
˜N ], if B(t)− 1 ≤ 0,

(σ(t)σ′(t))−1
[
b(t) + δ(t)− r(t) + 1−B(t)

C(t) 1
˜N

]
,

if 0 < B(t)− 1 < C(t)(R(t) − r(t)),
(σ(t)σ′(t))−1[b(t) + δ(t)−R(t)],

if B(t)− 1 ≥ C(t)(R(t)− r(t)).

Example 8.6 (Utilities of power type, deterministic coefficients): As-
sume that U1(t, x) = U2(x) = 1

β xβ , 0 ≤ t ≤ T , x > 0, for some β < 0,
β �= 0. Assume further that r(·), R(·), σ(·), and θ(·) are deterministic. We
have

Ũ1(t, y) = Ũ2(y) =
1− β

β
y

β
β−1 , y > 0,

and

Ṽν(y) =
1− β

β
y

β
β−1 E

[∫ T

0
(Hν(t))

β
β−1 dt + (Hν(T ))

β
β−1

]
.

We take ν̂1(t) to be the (nonrandom) minimizer of

−(1− β)ν1 +
1
2
‖θ(t) + ν1σ

−1(t)1
˜N‖2 over ν1 ∈ [−(R(t)− r(t)), 0],

i.e.,

ν1(t) =


0, if B(t) + β − 1 ≤ 0,
1−β−B(t)

C(t) , if 0 < B(t) + β − 1 < C(t)(R(t)− r(t)),
r(t)−R(t), if B(t) + β − 1 ≥ C(t)(R(t)− r(t)),

where B(t) and C(t) are given by (8.19). From Example 3.6.7, we have for
all ν(·) ∈ D that (Hν(t))

β
β−1 = mν(t)Λν(t), where

mν(t) ∆= exp
{

β

1− β

[
A(t) +

∫ t

0
r(u)du

]
+

β

(1− β)2

∫ t

0

[
− (1− β)ν1(u)

+
1
2
‖θ(u) + ν1(u)σ−1(u)1

˜N‖2
]

du

}
,
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Λν(t) ∆= exp
{

β

1− β

∫ t

0
θ′

ν(u)dW (u)− β2

2(1− β)2

∫ t

0
‖θν(u)‖2du

}
.

If 0 < β < 1, then

E(Hν(t))
β

β−1 = E[mν(t)Λν(t)] ≥ mν̂(t)EΛν(t) = mν̂(t) = E(Hν̂(t))
β

β−1 ,

but if β < 0, then

E(Hν(t))
β

β−1 ≤ mν̂(t) = E(Hν̂(t))
β

β−1 .

In either case, we see that Vν̂(y) ≤ Vν(y) holds for all ν(·) ∈ D. Having
thus solved the dual problem, we appeal to (3.6.16) to obtain the optimal
portfolio process in the form pν̂(t) = 1

1−β (σ′(t))−1θν̂(t); i.e.,

pν̂(t) =



1
1−β (σ(t)σ′(t))−1[b(t) + δ(t)− r(t)1

˜N ], if B(t) + β − 1 ≤ 0,

1
1−β (σ(t)σ′(t))−1

[
b(t) + δ(t)− r(t) + 1−β−B(t)

C(t)

]
,

if 0 < B(t) + β − 1 < C(t)(R(t) − r(t)),
1

1−β (σ(t)σ′(t))−1[b(t) + δ(t)−R(t)],
if B(t) + β − 1 ≥ C(t)(R(t) − r(t)).

6.9 Notes

The stochastic duality theory of Bismut (1973) was apparently first em-
ployed to study constrained portfolio optimization problems in the doctoral
dissertation of Xu (1990) (see also Shreve and Xu (1992)), who consid-
ered the special case K = [0,∞)N of Example 5.4.1(iii) corresponding
to prohibiting the short-sale of stocks. Xu formulated a dual problem in
the spirit of this chapter, whose solution could be shown to exist and to
be useful in constructing and characterizing the solution to the original,
constrained optimization problem. His methodology was then applied to
the more traditional incomplete market model of Section 7 by Karatzas,
Lehoczky, Shreve, and Xu (1991). He and Pearson (1991b) also dealt with
the same problem in a discrete-time, finite-probability-space framework,
where they proposed finding the pairs of optimal consumption processes
and terminal wealth levels corresponding to each member in a family of
equivalent martingale measures and then searching over those pairs for a
policy that yields minimal expected utility; they used separating hyper-
plane theorems to show that the total utility obtained by this two-step
“minimax” procedure leads to the value of the optimization problem in the
incomplete market. Using techniques of Xu (1990), He and Pearson (1991a)
extended He and Pearson (1991b) to continuous time. For earlier work on
these matters with Markovian price processes, see also Pagès (1989), who
deals with the case of incomplete markets using probabilistic tools, and Za-
riphopoulou (1989), who discusses constraints using methods from partial
differential equations.
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For the generality of the model presented in this chapter the reader is
referred to the paper by Cvitanić and Karatzas (1992), whose exposition
we have followed rather closely. For other expositions, see the lectures by
Cvitanić (1997), El Karoui and Quenez (1997), Karatzas (1996). Pliska
(1997) has a presentation of these techniques and results in the much
simpler setting of a discrete-time model. Work related to the problem
of Section 8 (consumption/investment optimization in the presence of a
higher interest rate for borrowing than for investing) includes the pa-
pers by Brennan (1971) in an equilibrium setting, as well as Fleming
and Zariphopoulou (1991), who deal with an infinite-horizon model with
discounting, d = 1 and constant R > r, b1, σ11 and obtain explicit for-
mulae for power-type utility functions. We also refer the reader to Foldes
(1992) for related work on infinite-horizon models; to He and Pagès (1993),
Browne (1995), Cuoco (1997), El Karoui and Jeanblanc-Picqué (1997) and
the references therein, as well as Duffie, Fleming, Soner, and Zariphopoulou
(1997), for utility maximization and/or equilibrium problems under various
constraints and random endowment streams; and to Cuoco and Cvitanić
(1996) for generalizations in the context of a “large investor” model. In
particular, Cuoco (1997) establishes directly the existence of optimal con-
sumption/investment strategies for fairly general price dynamics and utility
functions; his model allows for a random endowment stream and for port-
folio constraints that include short sale, borrowing, and incompleteness
restrictions, and he characterizes equilibrium risk premia when these exist.

In another very interesting development, Schweizer (1992b) considers an
incomplete market with r(·) ≡ 0 and one stock, with price-per-share process

dS(t) = S(t)[b(t) dt + σ1(t) dW1(t) + σ2(t) dW2(t)] (9.1)

driven by a two-dimensional Brownian motion W (·) = (W1(·),W2(·)) that
generates the filtration {F(t)}0≤t≤T . The coefficients b(·), σ1(·), σ2(·)
are bounded and adapted to this filtration, and σ(·) ∆=

√
σ2

1(·) + σ2
2(·) is

bounded away from zero. One considers portfolio processes π : [0, T ]×Ω→
R in the Hilbert space H of measurable, {F(t)}-adapted processes with
E
∫ T

0 π2(t)dt <∞, and tries to “hedge” with such portfolios a given contin-
gent claim B ∈ Lp(Ω,FT , P ) for some p > 2. Since exact duplication in such
a setting is typically not possible, Schweizer considers the minimization

inf
π(·)∈H

E(B −Xx,π(T ))2 (9.2)

of expected quadratic loss for a given initial capital x ∈ R; see also Richard-
son (1989), Duffie and Richardson (1991) for earlier results in this vein. Of
course, if the market were complete and x = E0(B), then the infimum in
(9.2) would be zero, since one could employ the hedging porfolio π̂(·) of Sec-
tion 2.2 and achieve the exact hedging Xx,π̂(T ) = B almost surely. In our
present setting, such exact duplication is not possible even for x = E0(B),
and (9.2) merely attempts to minimize the L2-norm of the discrepancy in
the hedge at time t = T (or equivalently, to find the “best approximation
in L2 of the random variable B by a stochastic integral”).
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In the notation of Chapter 1, we have here Xx,π(t) = x + Gπ(t)
for the gains process Gπ(t) =

∫ t

0 π(s)σ(s)dW0(s), where we set θ(·) ∆=

b(·)/σ(·), ρ(·) ∆= σ1(·)/σ(·), as well as

W (t) ∆=
∫ t

0
ρ(u) dW1(u) +

∫ t

0

√
1− ρ2(u) · dW2(u) ,

N(t) ∆=
∫ t

0

√
1− ρ2(u) · dW2(u)−

∫ t

0
ρ(u) dW2(u) ,

and

W0(t)
∆= W (t) +

∫ t

0
θ(s) ds .

One notices that W (·), N(·) are Brownian motions with 〈W, N〉 ≡ 0; and
that W0(·), N(·) are Brownian motions with 〈W0, N〉 ≡ 0 under the so-
called minimal equivalent martingale measure

P0(A) ∆= E

[
exp

{
−
∫ T

0
θ(s) dW (s) − 1

2

∫ T

0
θ2(s) ds

}
· 1A

]

on F(T ), introduced by Föllmer and Schweizer (1991). On the other hand,
elementary Hilbert-space arguments show that the portfolio π∗(·) ∈ H
which attains the infimum in (9.2) satisfies

E[
(
B − x−Gπ∗

(T )
)
·Gπ(T )] = 0, ∀ π(·) ∈ H. (9.3)

In order to find this optimal portfolio π∗(·), one introduces the “intrin-
sic value process” V (t) ∆= E0[B|F(t)], 0 ≤ t ≤ T ; from the martingale
representation theorem, this process can be written in the form

V (t) = E0(B) +
∫ t

0
ξ(u)σ(u) dW0(u) +

∫ t

0
η(u) dN(u)

for suitable processes ξ(·), η(·) in H, and (9.3) is implied by the equality

E[
(
V (t)− x−Gπ∗

(T )
)
·Gπ(T )] = 0, ∀ 0 ≤ t ≤ T. (9.4)

Using tools from stochastic analysis, Schweizer (1992b) then produces the
optimal portfolio π∗(·) in the form

π∗(t) = ξ(t) +
b(t)
σ2(t)

(V (t)− x−G∗(t)) , (9.5)

under the assumption that the ratio

b(·)
σ(·) is deterministic, (9.6)
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where G∗(·) is the solution of the linear stochastic differential equation

dG∗(t) =
[
σ(t)ξ(t) +

b(t)
σ(t)

(
V (t)− x−G∗(t)

)]
dW0(t), G∗(0) = 0. (9.7)

This result is further extended to a much more general framework in
Schweizer (1994); this paper should also be consulted for the study of
additional quadratic-optimization problems such as the optimal choice of
both initial capital and hedging strategy, the determination of variance-
minimizing strategies and of the “mean-variance frontier,” and the
approximation of a riskless asset. See also Pham, Rheinländer and
Schweizer (1998). For the related notion of “variance-optimal martingale
measure,” see Schweizer (1996).
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Appendix A
Essential Supremum of a Family of
Random Variables

The essential infimum of a family of nonnegative random variables is defined
and constructed by Dunford and Schwartz (1957). We modify this material
to suit our purposes.

Definition A.1: Let (Ω,F , P ) be a probability space and let X be a
nonempty family of nonnegative random variables defined on (Ω,F , P ).
The essential supremum of X , denoted by ess sup X , is a random variable
X∗ satisfying:

(i) ∀ X ∈ X , X ≤ X∗ a.s., and
(ii) if Y is a random variable satisfying X ≤ Y a.s. for all X ∈ X , then

X∗ ≤ Y a.s.

Because random variables are defined only up to P -almost sure equiva-
lence, it is in general not meaningful to speak of an “ω by ω” supremum
sup{X(ω); X ∈ X}. The essential supremum substitutes for this concept.

It is apparent from Definition A.1 that if the essential supremum of X
exists, then it is unique. The purpose of this appendix is to establish its
existence and a few basic properties.

Given X as in Definition A.1 and given A ∈ F , we will say that π =
(K;A1, . . . , AK ;X1, . . . , XK) is an X -partition of A, provided that:

(i) K is a positive integer,
(ii) A1, . . . , AK are disjoint sets in F whose union is A, and
(iii) X1, . . . , XK are random variables in X .
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For λ ∈ (0,∞] we define

µλ
π(A)

�
= E

K∑
k=1

(Xk ∧ λ) · 1Ak
, (A.1)

µλ(A)
�
= sup{µλ

π(A); π is an X -partition of A}. (A.2)

Then µλ is a nonnegative set function defined on F , and is easily seen to
be finitely additive. By the monotone convergence theorem,

µ∞(A) = sup
π

sup
λ∈(0,∞)

µλ
π(A) = sup

λ∈(0,∞)
sup

π
µλ

π(A) = sup
λ∈(0,∞)

µλ(A). (A.3)

Lemma A.2: For λ ∈ (0,∞], µλ is countably additive.

Proof. We first consider the case λ < ∞. Let {Aj}∞j=1 be an increas-
ing sequence of sets in F with A =

⋃∞
j=1 Aj . Then µλ(A) = µλ(Aj) +

µλ(A\Aj) ≥ µλ(Aj), so limj→∞ µλ(Aj) ≤ µλ(A). Given ε > 0, choose j
such that P (A\Aj) < ε. From (A.1), (A.2), we have µλ(A\Aj) ≤ λε, and
thus µλ(A) ≥ µλ(Aj)− ε. It follows that limj→∞ µλ(Aj) ≥ µλ(A).

We finally consider the case λ =∞. We have from (A.3) that

lim
j→∞

µ∞(Aj) = sup
j

sup
λ∈(0,∞)

µλ(Aj) = sup
λ∈(0,∞)

sup
j

µλ(Aj)

= sup
λ∈(0,∞)

µλ(A) = µ∞(A). �

Theorem A.3: Let X be a nonempty family of nonnegative random vari-
ables. Then X∗ = ess sup X exists. Furthermore, if X is closed under
pairwise maximization, i.e., X, Y ∈ X implies X ∨ Y ∈ X , then there
is a nondecreasing sequence {Zn}∞n=1 of random variables in X satisfying
X∗ = limn→∞ Zn almost surely.

Proof. Note first that µ∞ defined by (A.1), (A.2) is absolutely
continuous with respect to P . Define

X∗ =
dµ∞

dP
.

For all X ∈ X and A ∈ F , we have E(1AX) ≤ µ∞(A) = E(1AX∗), so
condition (i) of Definition A.1 is satisfied. If Y is as in condition (ii) of
Definition A.1, then

E(1AX∗) = µ∞(A) = sup
π

µ∞
π (A) ≤ E(1AY ),

and thus X∗ ≤ Y almost surely.
Now assume that X is closed under pairwise maximization. Given a pos-

itive integer n, because µn(Ω) ≤ n < ∞, we may choose an X -partition
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π(n) = (K(n);A(n)
1 , . . . , A

(n)
K(n) ;X

(n)
1 , . . . , X

(n)
K(n)) of Ω satisfying

µn(Ω) ≤ E

K(n)∑
k=1

1
A

(n)
k

(
X

(n)
k ∧ n

)
+

1
n

.

Then Yn
�
= X

(n)
1 ∨ · · · ∨ X

(n)
K(n) is in X and µn(Ω) ≤ EYn + 1

n . Likewise,
Zn

�
= Y1 ∨ · · · ∨ Yn is in X and µn(Ω) ≤ EZn + 1

n . Letting n→∞ in this
inequality, we obtain

EX∗ = µ∞(Ω) ≤ lim
n→∞

EZn = E( lim
n→∞

Zn).

Because Zn ∈ X for each n, we have Zn ≤ X∗ and limn→∞ Zn ≤ X∗

almost surely. Hence, X∗ = limn→∞ Zn almost surely. �
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Appendix B
On the Model of Section 1.1.

In this appendix we return to the market model of Section 1.1. Recall that
(Ω,F , P ) is a complete probability space; W (t) = (W (1)(t), . . . ,W (D)(t))′,
0 ≤ t ≤ T , is a standard D-dimensional Brownian motion on this space; and
{F(t)}0≤t≤T is the augmentation by P -null sets of the filtration generated
by W (·). The purpose of this appendix is to verify two assertions made in
Section 1.1. We first show that if S(·) is a strictly positive and continuous
semimartingale with respect to {F(t)}0≤t≤T , then S(·) has the form

dS(t) = S(t)

[
β(t) dt + dα(t) +

D∑
d=1

ρd(t) dW (d)(t)

]
, 0 ≤ t ≤ T, (B.1)

where α(·) is singularly continuous. Applying this result to each one of the
stock-price processes S1(·), . . . , SN (·) of Section 1.1, we conclude that Sn(·)
has the form

dSn(t) = Sn(t)

[
bn(t) dt + dAn(t) +

D∑
d=1

σnd(t) dW (d)(t)

]
(B.2)

for each n = 1, . . . , N . Our second result is that each process An(·) of this
representation (B.2) must agree with A(·), the process appearing in the
representation

dS0(t) = S0(t)[r(t) dt + dA(t)] (B.3)

of the money-market price process S0(·) as in (1.1.6). If this were not the
case, the model would admit arbitrage opportunities.
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Proposition B.1: Let S : [0, T ] × Ω → (0,∞) be an {F(t)}0≤t≤T -
semimartingale with continuous paths. Then (B.1) holds, where β(·) and
ρd(·), d = 1, . . . , D are suitable {F(t)}0≤t≤T -progressively measurable pro-
cesses with

∫ T

0 [|β(t)|+
∑D

d=1(ρd(t))2]dt <∞ almost surely, and α(·) is an
{F(t)}0≤t≤T -progressively measurable process with paths that are continu-
ous but singular with respect to Lebesgue measure; i.e., dα(t)/dt = 0 for
Lebesgue-almost every t ∈ [0, T ] almost surely, and with α(0) = 0.

Proof. By the definition of a semimartingale, S(·) can be written as
S(t) = S(0) + B(t) + M(t), 0 ≤ t ≤ T, where B(·) is an {F(t)}0≤t≤T -
adapted process with RCLL paths of finite variation on [0, T ],M(·) is
an {F(t)}0≤t≤T -local martingale, and B(0) = M(0) = 0. From the
martingale representation theorem for the augmented Brownian filtration
{F(t)}0≤t≤T (e.g. Karatzas and Shreve (1991), pp. 182–184), we have the
integral representation M(t) =

∑D
d=1

∫ t

0 ψd(s) dW (d)(s), 0≤ t≤ T , for suit-
able {F(t)}0≤t≤T -progressively measurable processes ψ1(·), . . . , ψD(·) with∑D

d=1

∫ T

0 (ψd(s))2 ds <∞ almost surely. In particular, M(·) has continuous
paths, and since this is true for S(·), it is also true for B(·). We can then
decompose B(·) into its absolutely continuous part Bac(t) =

∫ t

0
d
dsB(s) ds

and its singularly continuous part Bs(t) = B(t)−Bac(t). Noting that each
path of the continuous, positive process S(·) must be bounded away from
zero, we obtain the desired representation, with

β(t) =
1

S(t)
· dB(t)

dt
, α(t) =

∫ t

0

1
S(u)

dBs(u), ρd(t) =
ψd(t)
S(t)

, d = 1, . . . , D.
�

Consider now a financial market M, consisting in part of a money mar-
ket with price per share S0(·) governed by (B.3), where r(·) and A(·) are
{F(t)}0≤t≤T -progressively measurable, A(·) is singularly continuous with
A(0) = 0, and

∫ T

0 |r(t)|dt < ∞ holds almost surely. The remainder of
M consists of N stocks with prices per share Sn(·) that are continuous,
strictly positive {F(t)}0≤t≤T -semimartingales, n = 1, . . . , N . According
to Proposition B.1 these prices admit the representation (B.2), where
all the processes bn(·), An(·), σnd(·) appearing in (B.2) are {F(t)}0≤t≤T -
progressively measurable,

∫ T

0

∑N
n=1[|bn(t)| +

∑D
d=1(σnd(t))2]dt < ∞ holds

almost surely, each An(·) is singularly continuous, and An(0) = 0. This
is the model of Definition 1.3.1, except that here we permit the different
stocks to have singularly continuous parts that differ from A(·), and for the
sake of simplicity we are setting δn(·) ≡ 0 for all n = 1, . . . , N. As in Def-
inition 1.3.1, we set S0(0) = 1, but allow S1(0), . . . , SN (0) to be arbitrary
positive constants.

Following Definition 1.2.1, we define the gains process Gπ(·) correspond-
ing to a self-financed portfolio π(·) = (π1(·), . . . , πN (·))′ to be the solution
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to the stochastic differential equation

dGπ(t) =

(
Gπ(t)−

N∑
n=1

πn(t)

)
dS0(t)
S0(t)

+
N∑

n=1

πn(t)
dSn(t)
Sn(t)

= Gπ(t)[r(t) dt + dA(t)] + π′(t)[(b(t) − r(t)1
˜
) dt + dB(t)

+ σ(t) dW (t)] (B.4)

with the initial condition Gπ(0) = 0, where

Bn(·) �
= An(·)−A(·), B(·) �

= (B1(·), . . . , BN (·))′. (B.5)

By analogy with Definitions 1.2.4 and 1.4.1, a self-financed portfolio π(·)
is called

(i) tame if the process Gπ(·)/S0(·) is almost surely bounded from below;
(ii) an arbitrage opportunity if it is tame and satisfies

P [Gπ(T ) ≥ 0] = 1, P [Gπ(T ) > 0] > 0. (B.6)

Theorem B.2: In order to exclude arbitrage opportunities from the model
M of (B.2), it is necessary that

An(·) = A(·), ∀n = 1, . . . , N, (B.7)

hold almost surely.

The proof of Theorem B.2, which occupies the remainder of this section,
uses a random time change. To set up the notation, we rewrite (B.4) in the
more compact form

Gπ(t)
S0(t)

=
∫ t

0

π′(u)
S0(t)

[dF (u) + σ(u) dW (u)], 0 ≤ t ≤ T, (B.8)

where

Fn(t) �= Bn(t) +
∫ t

0
(bn(u)− r(u)) du, F (t) �= (F1(t), . . . , FN (t))′. (B.9)

We denote by F̌n(t) the total variation of Fn(·) on the interval [0, t].

Lemma B.3: Introduce the continuous, strictly increasing process

C(t)
�
= t +

N∑
n=1

F̌n(t), 0 ≤ t ≤ T, (B.10)

and its continuous, nondecreasing inverse

τ(s)
�
= inf{t ∈ [0, T ];C(t) > s} ∧ T, 0 ≤ s <∞. (B.11)

(i) For every s ∈ [0,∞), τ(s) is a stopping time of the filtration
{F(t)}0≤t≤T .
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(ii) The time-changed filtration

H(s)
�
= F(τ(s)), 0 ≤ s <∞,

satisfies the “usual conditions” of being right continuous and
containing all the P -null sets of H(∞) = F(T ).

(iii) If {X(t); 0 ≤ t ≤ T} is an {F(t)}0≤t≤T -progressively measurable
process, then {X̃(s) = X(τ(s)); 0 ≤ s < ∞} is {H(s)}0≤s<∞-
progressively measurable.

(iv) The processes τ(·) and

Hn(s)
�
= Fn(τ(s)), 0 ≤ s <∞, n = 1, . . . , N, (B.12)

are Lipschitz continuous, with Lipschitz constant 1. In particular,

0 ≤ τ̇(s) ≤ 1, τ(s) =
∫ s

0
τ̇(v) dv, 0 ≤ s <∞, (B.13)

|Ḣn(s)| ≤ 1, Hn(s) =
∫ s

0
Ḣn(v) dv, 0 ≤ s <∞, n = 1, . . . , N,(B.14)

where the derivatives τ̇(·) and Ḣn(·) are {H(s)}0≤s<∞-progressively
measurable.

Proof. For every s ≥ 0 and 0 ≤ t ≤ T, we have {τ(s) < t} = {C(t) >
s} ∈ F(t). Therefore, {τ(s) ≤ t} =

⋂∞
n=k{τ(s) < t + 1

n} ∈ F((t + 1
k ) ∧ T )

for every positive integer k, so {τ(s) ≤ t} ∈ F(t+) = F(t) (cf. Remark
1.1.1), and (i) is established.

The σ-algebraH(s) is defined as the collection of sets A ∈ F(T ) such that
A ∩ {τ(s) ≤ t} ∈ F(t),∀t ∈ [0, T ]; but because the filtration {F(t)}0≤t≤T

is right continuous, this condition is easily seen to be equivalent to

A ∩ {τ(s) < t} ∈ F(t), ∀t ∈ [0, T ].

Since F(t) contains all P -null sets of F(T ) for 0 ≤ t ≤ T , so does H(s).
Furthermore, H(s) ⊂ F(T ) for every s ≥ 0, so H(∞)

�
= σ

(⋃
0≤s<∞H(s)

)
is also contained in F(T ). On the other hand, any set A ∈ F(T ) is of the
form A = ∪∞

n=1An, where An
�
= A ∩ {C(T ) ≤ n}, and for 0 ≤ t ≤ T we

have

An ∩ {τ(n) < t} = An ∩ {C(t) > n} = ∅ ∈ F(t).

It follows that An ∈ H(n), and hence A ∈ H(∞). We have shown that
F(T ) = H(∞).

To complete (ii), it remains to show that {H(s)}0≤s<∞ is right contin-
uous. Let s ≥ 0 be given, and let sn ↓ s with sn > s for every n. Let
A ∈ H(s+) =

⋂∞
n=1 F(τ(sn)) be given. Then A ∩ {τ(sn) < t} ∈ F(t)

for every t ∈ [0, T ] and every positive integer n. In particular, each F(t)
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contains the set
∞⋃

n=1

(
A ∩ {τ(sn) < t}

)
=

∞⋃
n=1

(
A ∩ {C(t) > sn}

)
= A ∩ {C(t) > s}
= A ∩ {τ(s) < t},

which shows that A ∈ H(s).
We turn next to (iii). Let X(·) and X̃(·) be as in the statement of the

lemma. For each s ∈ [0,∞), τ(s) is H(s)-measurable. An adapted, continu-
ous process is progressively measurable (cf. Karatzas and Shreve (1991),
Chapter 1, Proposition 1.13), so {τ(s); 0 ≤ s < ∞} is {H(s)}0≤s<∞-
progressively measurable. Consider the mapping ϕ : [0,∞)×Ω→ [0, T ]×Ω
defined by

ϕ(s, ω) �= (τ(s, ω), ω), ∀ (s, ω) ∈ [0,∞)× Ω.

Fix r ∈ (0,∞), and set Ωt
�
= {ω ∈ Ω; τ(r, ω) ≤ t}, 0 ≤ t ≤ T. Then

ϕ|[0,r]×Ωt
is B([0, r]) ⊗ F(t) / B([0, t]) ⊗ F(t)-measurable. By assumption,

X(·, ·)|[0,t]×Ω is B([0, t])⊗F(t) / B(R)-measurable. Therefore,

(X ◦ ϕ)(s, ω) = X(τ(s, ω), ω),

when restricted to [0, r]× Ωt, is B([0, t])⊗F(t) / B(R)-measurable; i.e.,

{(s, ω) ∈ [0, r]× Ω; X(τ(s, ω), ω) ∈ B, τ(r, ω) ≤ t}
∈ B([0, r])⊗F(t), ∀B ∈ B(R).

In particular, for every B ∈ B(R), we have

{ω ∈ Ω; X(τ(r, ω), ω) ∈ B, τ(r, ω) ≤ t} ∈ F(t), ∀t ∈ [0, T ],

which shows that X(τ(r)) is H(r)-measurable. Now let ε ∈ (0, r) be given,
and set

An,k
�
= {ω ∈ Ω; (k − 1)2−n < τ(r − ε, ω) ≤ k2−n < τ(r, ω)}

for each pair (n, k) of positive integers. We have An,k ∈ H(r)∩F(k2−n), and
ϕ restricted to [0, r−ε]×An,k is B([0, r−ε])⊗H(r)/B([0, k2−n])⊗F(k2−n)-
measurable. It follows that (s, ω) �→ X(τ(s, ω), ω) restricted to [0, r − ε]×
An,k is B([0, r − ε]) ⊗ H(r)/B(R)-measurable. But

⋃∞
n=1

⋃∞
k=1 An,k = Ω,

and we see that X(τ(s, ω), ω) is a B([0, r − ε]) ⊗ H(r)/B(R)-measurable
mapping from [0, r− ε]×Ω to R. Since ε ∈ [0, r) is arbitrary, the mapping
(s, ω) �→ X(τ(s, ω), ω) is B([0, r))⊗H(r)/B(R)-measurable on [0, r)×Ω. We
have already shown that ω �→ X(τ(r, ω), ω) is H(r)/B([0, r])-measurable,
and we conclude that X̃(·, ·) |[0,r]×Ω is B([0, r]) ⊗ H(r)/B(R)-measurable.
This is the requirement of progressive measurability.
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To prove (iv), we note that (B.10) gives, almost surely,

C(t2)− C(t1) = (t2 − t1) +
N∑

n=1

(F̌n(t2)− F̌n(t1)), 0 ≤ t1 ≤ t2 ≤ T,

whence also

s2 − s1 ≥ C(τ(s2))− C(τ(s1))

= τ(s2)− τ(s1) +
N∑

n=1

(F̌n(τ(s2))− F̌n(τ(s1)))

≥ τ(s2)− τ(s1) +
N∑

n=1

|Hn(s2)−Hn(s1)|, 0 ≤ s1 ≤ s2 <∞.

This proves the Lipschitz continuity of τ(·) and H1(·), . . . , HN (·), with
Lipschitz constant equal to 1. �

We note that for proving Theorem B.2, it is enough to show that the
process  Bn(·) = An(·)−A(·) of (B.5) is absolutely

continuous with respect to Lebesgue measure
almost surely, for every n = 1, . . . , N.

 (B.15)

Proof of Theorem B.2. Following the notation of Lemma B.3 (iii),
whenever the process {X(t); 0 ≤ t ≤ T} is {F(t)}0≤t≤T -progressively mea-
surable, we denote by {X̃(s) = X(τ(s)); 0 ≤ s < ∞} the corresponding
time-changed process. (The sole exception to this convention is the use of
Hn(·) to denote the time-change of Fn(·); see (B.12).) With this notation,
equation (B.8) becomes (cf. Karatzas and Shreve (1991), Problem 3.4.5(vi)
and Proposition 3.4.8)

G̃π(s)
S̃0(s)

=
N∑

n=1

∫ s

0

1
S̃0(v)

π̃n(v)

[
Ḣn(v) dv +

D∑
d=1

σ̃nd(v) dW̃ (d)(v)

]
,

0 ≤ s ≤ C(T ), (B.16)

in view of (B.14). Each component of the D-dimensional process {W̃ (s)
�
=

W (τ(s)), 0 ≤ s <∞} is an {H(s)}0≤s<∞-martingale, with

〈W̃ (k), W̃ (l)〉(s) = δkl · τ(s) = δkl ·
∫ s

0
τ̇(v) dv, (B.17)

from (B.13). Therefore, there exists a D-dimensional Brownian motion B̃(·)
on the probability space (Ω,F , P ) (possibly extended to accommodate ad-
ditional independent Brownian motions; see Karatzas and Shreve (1991),
pp. 170–173), such that

W̃ (d)(s) =
∫ s

0

√
τ̇(v) dB̃(d)(v), 0 ≤ s <∞, d = 1, . . . , D, (B.18)
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almost surely.
Now consider the self-financed portfolio process π(·) given as

πn(t) = π̃n(C(t)), 0 ≤ t ≤ T, n = 1, . . . , N, (B.19)

where

π̃n(s)
�
= sgn(Ḣn(s)) · 1{τ̇(s)=0}, 0 ≤ s <∞, n = 1, . . . , N. (B.20)

In light of (B.16), (B.18) we have then

G̃π(s)
S̃0(s)

=
N∑

n=1

∫ s

0

1
S̃0(v)

|Ḣn(v)| · 1{τ̇(v)=0} dv, 0 ≤ s ≤ C(T ),

or equivalently, inverting the time change,

Gπ(t)
S0(t)

=
N∑

n=1

∫ C(t)

0

1
S̃0(v)

|Ḣn(v)| · 1{τ̇(v)=0} dv ≥ 0, 0 ≤ t ≤ T. (B.21)

In particular, the self-financed portfolio π(·) is tame. Suppose now that for some n = 1, . . . , N and for some Ωo ∈ F with
P (Ωo) > 0, we have for every ω ∈ Ωo,

meas{s ∈ [0, C(T, ω)]; Ḣn(s, ω) �= 0, τ̇(s, ω) = 0} > 0.

 (B.22)

Then from (B.21), (B.22), the random variable Gπ(T ) is almost surely
nonnegative, and is positive with positive probability (i.e., satisfies the
conditions (B.6)); consequently, the tame portfolio π(·) of (B.19), (B.20)
is an arbitrage opportunity in M. It follows that viability for M, that is,
absence of arbitrage opportunities, implies the negation of (B.22), namely,meas{s ∈ [0, C(T, ω)]; Ḣn(s, ω) �= 0, τ̇(s, ω) = 0} = 0

holds for all n = 1, . . . , N,∀ω ∈ Ω∗,
for some event Ω∗ ∈ F with P (Ω∗) = 1.

 (B.23)

The following result then completes the proof of Theorem B.2. �

Lemma B.4: Condition (B.23) implies (B.15).

Proof. Assume (B.23); from (B.9) it suffices to show that for each n =
1, . . . , N and ω ∈ Ω∗, we have

Fn(·, ω) is absolutely continuous on [0, T ] (B.24)

with respect to Lebesgue measure. Fix n = 1, . . . , N, ω ∈ Ω∗, ε > 0, and
choose δ > 0 such that

m∑
j=1

[Cac(t′j , ω)− Cac(tj , ω)] < ε

holds for every finite collection
{
(tj , t′j)

}m

j=1
of nonoverlapping intervals in

[0, T ] with
∑m

j=1(t
′
j − tj) < δ. Here Cac(·, ω) is the absolutely continuous
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part of the continuous function C(·, ω) of (B.10). For every n = 1, . . . , N,
it follows from Lemma B.3(iv), (B.12), and (B.23) that

m∑
j=1

|Fn(t′j , ω)− Fn(tj , ω)| =
m∑

j=1

|Hn(C(t′j , ω), ω)−Hn(C(tj , ω), ω)|

≤
m∑

j=1

∫ C(t′
j ,ω)

C(tj ,ω)
|Ḣn(v, ω)| dv

=
m∑

j=1

∫ C(t′
j ,ω)

C(tj ,ω)
|Ḣn(v, ω)| · 1{τ̇(v,ω)>0} dv

≤
m∑

j=1

∫ C(t′
j ,ω)

C(tj ,ω)
Ċ(τ(v, ω), ω)τ̇ (v, ω) dv

=
m∑

j=1

∫ t′
j

tj

Ċ(θ, ω) dθ

=
m∑

j=1

[Cac(t′j , ω)− Cac(tj , ω)] < ε. �



Appendix C
On Theorem 6.4.1

The purpose of this appendix is to establish the implication (A)⇒(B), and
thereby complete the proof of Theorem 6.4.1. For this we assume through-
out this appendix the conditions (3.4.15), (3.6.17) as well as (6.2.13) and
(6.2.14), which are in force throughout Chapter 6. We assume also that
there exists a pair (ĉ, p̂) ∈ A3(x;K) that is optimal for the consump-
tion/investment Problem 6.2.6 in the constrained marketM(K), and that
V (x;K) < ∞. We denote by X̂(·) = Xx,ĉ,p̂(·) the corresponding wealth
process, which satisfies

X̂(t)
S0(t)

+
∫ t

0

ĉ(u) du

S0(u)
= x +

∫ t

0

X̂(u)
S0(u)

p̂′(u)σ(u) dW0(u), 0 ≤ t ≤ T, (C.1)

and

H0(t)X̂(t) +
∫ t

0
H0(u)ĉ(u) du = x +

∫ t

0
H0(u)X̂(u)λ′(u) dW (u),

0 ≤ t ≤ T, (C.2)

according to (6.3.1), (6.3.2), and (6.3.3), with

λ(t)
�
= σ′(t)p̂(t)− θ(t), 0 ≤ t ≤ T. (C.3)
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Our program is as follows. We shall construct a process ν̂(·) ∈ D0 for which
the positive process X̂(·) can be represented as

X̂(t) =
1

Hν̂(t)
E

[∫ T

t

Hν̂(u)cν̂(u) du + Hν̂(T )Bν̂

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T,

(C.4)
and the requirements

ĉ(t) = cν̂(t), Lebesgue-a.e. t ∈ [0, T ], (C.5)

ζ(ν̂(t)) + p̂′(t)ν̂(t) = 0, Lebesgue-a.e. t ∈ [0, T ] (C.6)

hold almost surely. Then we shall have Xν̂(·) = X̂(·) = Xx,ĉ,p̂(·) from
(6.3.18), (C.4), and Remark 6.3.3. We may also then take pν̂(·) = p̂(·), and
(B) will be established. We prove the above facts in a series of lemmas.

Lemma C.1: Suppose that for every ε ∈ (0, 1), there is a consumption
and portfolio-proportion process pair (cε, pε) ∈ A(x;K) satisfying

cε(t) ≥ α(ε)ĉ(t), Lebesgue-a.e. t ∈ [0, T ] and Xx,cε,pε(T ) ≥ β(ε)X̂(T )
(C.7)

almost surely, where α(ε) > 0 and β(ε) > 0 satisfy

0 < lim
ε↓0

1− α(ε)
ε

<∞, 0 < lim
ε↓0

1− β(ε)
ε

<∞.

Then we have (cε, pε) ∈ A3(x;K) for each ε ∈ (0, 1), and

E

[∫ T

0
lim
ε↓0

U1(t, ĉ(t))− U1(t, cε(t))
ε

dt

+ lim
ε↓0

U2(X̂(T ))− U2(Xx,cε,pε(T ))
ε

]
≥ 0. (C.8)

Proof. The convexity of U2 implies the inequality

U2(ξ2)− U2(ξ1) ≤ (ξ2 − ξ1)U ′
2(ξ1) (C.9)

for all ξ1, ξ2 > 0. Taking ξ1 = ξ ≥ 1 and ξ2 = 1, we obtain

ξU ′
2(ξ) ≤ U2(ξ)− U2(1) + U ′

2(ξ) ≤ U2(ξ)− U2(1) + U ′
2(1), ξ ≥ 1.

On the other hand,

ξU ′
2(ξ) ≤ U ′

2(1), 0 < ξ ≤ 1,

follows from (3.4.15). Similarly, for all t ∈ [0, T ],

ξU ′
1(t, ξ) ≤

{
U1(t, ξ)− U1(t, 1) + U ′

1(t, 1), ξ ≥ 1,

U ′
1(t, 1), 0 < ξ ≤ 1.
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These inequalities and the finiteness of V (x;K) imply

E

[∫ T

0
ĉ(t)U ′

1(t, ĉ(t))1{ĉ(t)>0} dt + X̂(T )U ′
2(X̂(T ))1{X̂(T )>0}

]
(C.10)

≤ κ + E

[∫ T

0
U1(t, ĉ(t))1{ĉ(t)≥1} dt + U2(X̂(T ))1{X̂(T )≥1}

]
<∞

for some real constant κ.
For sufficiently small ε > 0, we have 0 < β(ε) < 1. From (C.9), the

monotonicity of U ′
2, and (3.4.15), we have also

U2(X̂(T ))− U2(Xx,cε,pε(T )) ≤ (X̂(T )−Xx,cε,pε(T ))U ′
2(X

x,cε,pε(T ))

≤ 1− β(ε)
β(ε)

β(ε)X̂(T )U ′
2(β(ε)X̂(T ))

≤ 1− β(ε)
β(ε)

X̂(T )U ′
2(X̂(T )). (C.11)

The finiteness of V (x;K) implies E|U2(X̂(T ))| <∞, which, in conjunction
with (C.10) and (C.11), leads to

E (min[0, U2(Xx,cε,pε(T ))]) > −∞.

A similar argument shows that

U1(t, ĉ(t))− U1(t, cε(t)) ≤
1− α(ε)

α(ε)
ĉ(t)U ′

1(t, ĉ(t)), (C.12)

from which we conclude

E

∫ T

0
min[0, U1(t, cε(t))] dt > −∞.

Hence, (cε, pε) ∈ A3(x;K) for all sufficiently small ε ∈ (0, 1).
Finally, the optimality of (ĉ, p̂) implies

E

[∫ T

0

U1(t, ĉ(t))− U1(t, cε(t))
ε

dt +
U2(X̂(T ))− U2(Xx,cε,pε(T ))

ε

]
≥ 0.

The bounds (C.10), (C.11), and (C.12) permit us to use Fatou’s lemma to
obtain (C.8). �

Lemma C.2: We have the almost sure inequalities

ĉ(t) > 0, for Lebesgue-a.e. t ∈ [0, T ], (C.13)

X̂(t) > 0, for all t ∈ [0, T ]. (C.14)

Proof. We set

c1(t) =
x

2T
S0(t), p1(t) = 0 for 0 ≤ t ≤ T,
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so that the corresponding wealth process satisfies

X1(t)
S0(t)

= x

(
2T − t

2T

)
.

In particular, (c1, p1) ∈ A(x;K). For ε ∈ (0, 1) we define

cε(t)
�
= εc1(t) + (1− ε)ĉ(t), pε(t)

�
=

(1− ε)X̂(t)p̂(t)

εX1(t) + (1− ε)X̂(t)
, 0 ≤ t ≤ T,

and note that because K is a convex set containing p̂(t) and 0
˜
, it also

contains pε(t). We set Xε(t)
�
= εX1(t) + (1− ε)X̂(t), and note that

x−
∫ t

0

cε(u)
S0(u)

du +
∫ t

0

Xε(u)
S0(u)

p′
ε(u)σ(u) dW0(u)

= ε

[
x−

∫ t

0

c1(u)
S0(u)

du

]
+ (1− ε)

[
x−

∫ t

0

ĉ(u)
S0(u)

du +
∫ t

0

X̂(u)
S0(u)

p̂(u)σ(u) dW0(u)

]

=
Xε(t)
S0(t)

, (C.15)

so that Xε(·) = Xx,cε,pε(·). Thus, we have the situation described in Lemma
C.1 with α(ε) = β(ε) = 1− ε, and this implies

0 ≤ E

[∫ T

0
lim
ε↓0

U1(t, ĉ(t))− U1(t, cε(t))
ε

dt + lim
ε↓0

U2(X̂(T ))− U2(Xε(T ))
ε

]

≤ E

[∫ T

0
lim
ε↓0

(ĉ(t)− c1(t))U1(t, cε(t)) dt

+ lim
ε↓0

(X̂(T )−X1(T ))U ′
2(Xε(T ))

]
≤ E

[∫ T

0
ĉ(t)U ′

1(t, ĉ(t))1{ĉ(t)>0} dt + X̂(T )U ′
2(X̂(T ))1{X̂(T )>0}

−
∫ T

0
c1(t)U ′

1(t, ĉ(t)) dt−X1(T )U ′
2(X̂(T ))

]
in conjunction with (C.9). Since X1(T ) > 0 and c1(t) > 0 for all t ∈ [0, T ]
almost surely, (C.10) and (6.2.14) imply (C.13) and

P [X̂(T ) > 0] = 1. (C.16)

The left-hand side of (C.2) is nonnegative, and the right-hand side is a lo-
cal martingale under P and thus also a supermartingale. Solving (C.2) for
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H0(t)X̂(t), we see that this process is also a supermartingale. But a continu-
ous nonnegative supermartingale is absorbed when it hits zero (Karatzas &
Shreve (1991), Problem 1.3.29), and thus (C.14) follows from (C.16). �

We introduce the continuous, nondecreasing process

A(t) �=
∫ t

0
ĉ(s)U ′

1(s, ĉ(s)) ds, 0 ≤ t ≤ T, (C.17)

and the continuous martingale

M(t)
�
= E[A(T ) + X̂(T )U ′

2(X̂(T ))|F(t)]

= EM(T ) +
∫ t

0
ψ′(s) dW (s), 0 ≤ t ≤ T. (C.18)

Here EA(T ) ≤ EM(T ) < ∞ from (C.10), and the progressively measur-
able process ψ: [0, T ] × Ω → RN , with

∫ T

0 ‖ψ(t)‖2dt < ∞ almost surely, is
uniquely determined from (C.18) by the martingale representation theorem.

Lemma C.3: The consumption rate process ĉ(·) is given by

ĉ(t) = I1

(
t,

M(t)−A(t)

X̂(t)

)
, for Lebesgue-a.e. t ∈ [0, T ] (C.19)

almost surely.

Proof. From (C.1) we see that

d

(
X̂(t)
S0(t)

)
= − ĉ(t)

S0(t)
+

X̂(t)
S0(t)

p̂′(t)σ(t) dW0(t),

and the solution to this stochastic differential equation with initial
condition X̂(0) = x is given by

X̂(t)
S0(t)

= x exp
{
−
∫ t

0

(
f(s) +

1
2
‖σ′(s)p̂(s)‖2

)
ds +

∫ t

0
p̂′(s)σ(s) dW0(s)

}
,

(C.20)
where

f(t)
�
=

ĉ(t)

X̂(t)
> 0 for Lebesgue-a.e. t ∈ [0, T ] (C.21)

almost surely. We introduce a small random perturbation of the process
f(·) as follows:

fε(t)
�
= f(t) + ερ(t), 0 ≤ t ≤ T,

where ρ: [0, T ]× Ω→ R is an arbitrary but fixed progressively measurable
process with |ρ(t)| ≤ 1 ∧ f(t) and ε ∈ (0, 1). We further define

Xε(t)
�
= X̂(t)e−ε

∫ t

0
ρ(s) ds;
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cε(t)
�
= Xε(t)fε(t) =

[
ĉ(t) + ερ(t)X̂(t)

]
e

−ε
∫

t

0
ρ(s) ds

.

Clearly, Xx,cε,p̂(t) = Xε(t) > 0, and thus (cε, p̂) ∈ A(x;K).
We are now in the situation described by Lemma C.1 with α(ε) = β(ε) =

e−εT , and conclude that

E

∫ T

0
U ′

1(t, ĉ(t))
[
ĉ(t)

∫ t

0
ρ(s) ds− ρ(t)X̂(t)

]
dt

+ E

[
U ′

2(X̂(T ))X̂(T )
∫ T

0
ρ(t) dt

]
≥ 0. (C.22)

We examine further the terms appearing in (C.22). Note first that

E

∫ T

0

[
U ′

1(t, ĉ(t))ĉ(t)
∫ t

0
ρ(s) ds

]
dt

= E

∫ T

0

∫ t

0
ρ(s) ds dA(t) = E

∫ T

0

∫ T

s

dA(t)ρ(s) ds

= E

∫ T

0
[A(T )−A(s)]ρ(s) ds = E

∫ T

0
[A(T )−A(t)]ρ(t) dt. (C.23)

Furthermore,

E

[
U ′

2(X̂(T ))X̂(T )
∫ T

0
ρ(t) dt

]

= E

[
(M(T )−A(T ))

∫ T

0
ρ(t) dt

]

=
∫ T

0
E [E[M(T )ρ(t)|F(t)]] dt−

∫ T

0
E [A(T )ρ(t)] dt

= E

∫ T

0
[M(t)−A(T )]ρ(t) dt. (C.24)

Substitution of (C.23) and (C.24) into (C.22) yields

E

∫ T

0
ρ(t)

[
M(t)−A(t)− X̂(t)U ′

1(t, ĉ(t))
]

dt ≥ 0. (C.25)

But except for the condition |ρ(t)| ≤ 1 ∧ f(t), the process ρ(·) is arbitrary.
Because f(t) is strictly positive (see (C.21)), the expression

M(t)−A(t)− X̂(t)U ′
1(t, ĉ(t))

must be zero for Lebesgue-amost-every t ∈ [0, T ] almost surely; otherwise,
we could choose ρ(t) such that (C.25) is violated. This leads immediately
to (C.19). �
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Lemma C.4: With λ(·) and ψ(·) defined by (C.3) and (C.18), respectively,
the process

ν̂(t)
�
= σ(t)

[
λ(t)− ψ(t)

M(t)−A(t)

]
, 0 ≤ t ≤ T, (C.26)

satisfies (C.6) and ∫ T

0

(
ζ(ν̂(t)) + ‖ν̂(t)‖2

)
dt <∞, (C.27)

ν̂(t) ∈ K̃, for Lebesgue-a.e. t ∈ [0, T ] (C.28)

almost surely.

Proof. Here again the idea is to start with the expression (C.20) for
X̂(·) and introduce a small random perturbation. This time we perturb
the optimal portfolio-proportion process p̂(·) by defining

pε(t)
�
=
{

(1− ε)p̂(t) + εη(t), 0 ≤ t ≤ τn,
p̂(t), τn < t ≤ T

for some arbitrary but fixed progressively measurable process η: [0, T ]×
Ω→ K with

∫ T

0 ‖η(t)‖2dt <∞ almost surely. Here ε ∈ (0, 1), and {τn}∞n=1,
to be chosen later, is a nondecreasing sequence of stopping times satisfying
limn→∞ τn = T almost surely. Clearly, pε(·) takes values in K. With f(t)

�
=

ĉ(t)

X̂(t)
as in (C.21), we introduce

Xε(t)
S0(t)

�
= x exp

{
−
∫ t

0

(
f(s) +

1
2
‖σ′(s)pε(s)‖2

)
ds

+
∫ t

0
p′

ε(s)σ(s) dW0(s)
}

,

cε(t)
�
= f(t)Xε(t),

and notice that Xx,cε,pε(t) = Xε(t) > 0, so that (cε, pε) ∈ A(x;K). The
processes pε(·), cε(·) and Xε(·) depend on n, although we do not indicate
this explicitly. We write

Xε(t) = X̂(t) exp
[
εN(t ∧ τn)− 1

2
ε2〈N〉(t ∧ τn)

]
,

where

N(t)
�
=
∫ t

0
(η(s)− p̂(s))′σ(s)Ŵ (s),

〈N〉(t) =
∫ t

0
‖σ′(s)(η(s) − p̂(s))‖2 ds,

Ŵ (t)
�
= W (t)−

∫ t

0
λ(s) ds.
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We can define now the nondecreasing sequence of stopping times

τn
�
= inf

{
t ∈ [0, T ]; |N(t)|+ 〈N〉(t) + A(t) + |M(t)|

+
∫ t

0
‖ψ(s)‖2ds ≥ n

}
∧ T, n = 1, 2, . . . ,

and observe that limn→∞ τn = T almost surely, as well as

cε(t)
ĉ(t)

=
Xε(t)

X̂(t)
≥ e− 3

2 εn, 0 ≤ t ≤ T.

Thus, for each fixed n, we are in the situation described by Lemma C.1
with α(ε) = β(ε) = e− 3

2 εn. The conclusion of that lemma is

0 ≥ E

[∫ T

0
N(t ∧ τn)ĉ(t)U ′

1(t, ĉ(t)) dt

+ N(T ∧ τn)X̂(T )U ′
2(X̂(T ))

]

= E

[∫ T

0
Nn(t) dA(t) + Nn(T )(M(T )−A(T ))

]
, (C.29)

in the notation (C.17), (C.18) and with Nn(t) = N(t ∧ τn). The product
rule of stochastic calculus gives now

E
(
M(T )Nn(T )

)
= E

(
M(τn)N(τn)

)
= E

∫ τn

0

(
η(t)− p̂(t)

)′
σ(t)

(
ψ(t)−M(t)λ(t)

)
dt,

E

[∫ T

0
Nn(t) dA(t) −A(T )Nn(T )

]

= −E

[∫ T

0
A(t) dNn(t)

]

= E

∫ τn

0
A(t)

(
η(t)− p̂(t)

)′
σ(t)

(
− dW (t) + λ(t) dt

)
= E

∫ τn

0
A(t)

(
η(t)− p̂(t)

)′
σ(t)λ(t) dt.

Substituting back into (C.29), we obtain

E

∫ τn

0

(
M(t)−A(t)

)(
η(t)− p̂(t)

)′
ν̂(t) dt ≥ 0, (C.30)

where ν̂(·) is defined by (C.26).
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The process M(t) − A(t) = X̂(t)U ′
1(t, ĉ(t)) (see (C.19)) is continuous in

t and strictly positive almost surely. Letting p be a fixed vector in K and
substituting the process η(t)

�
= p1{(p−p̂(t))′ν̂(t)<0} + p̂(t)1{(p−p̂(t))′ν̂(t)≥0}

into (C.30), we see that the set

Fp
�
= {(t, ω) ∈ [0, T ]× Ω; (p− p̂(t))′ν̂(t) < 0}

has Lebesgue × P -measure zero. Likewise, the set F
�
= ∪p∈K∩QN Fp has

product measure zero. (Here QN denotes the set of vectors in RN with
rational coordinates.) We have

p′ν̂(t, ω) ≥ p̂′(t, ω)ν̂(t, ω), for all (t, ω) /∈ F. (C.31)

For (t, ω) /∈ F , (C.31) implies

ζ(ν̂(t)) = sup
p∈K

(
− p′ν̂(t)

)
≤ −p̂′(t)ν̂(t),

and since p̂′(t) ∈ K, we in fact have ζ(ν̂(t)) = −p̂′(t)ν̂(t) for Lebesgue-
almost-every t ∈ [0, T ] almost surely. This is (C.6).

From (C.6) it follows that ζ(ν̂(t)) <∞, and hence ν̂(t) ∈ K̃ for Lebesgue-
almost-every t ∈ [0, T ] almost surely. This is (C.28).

We next note that X̂(T ) > 0 implies
∫ T

0 ‖p̂(t)‖2dt < ∞ almost surely
(Definition 6.2.4). The uniform boundedness assumed for σ(·) implies that
λ(·) defined by (C.3) satisfies

∫ T

0 ‖λ(t)‖2dt < ∞ almost surely. For fixed
ω, the positive continuous process M(·)−A(·) is bounded away from zero
uniformly in t, and

∫ T

0 ‖ψ(t)‖2dt <∞ holds almost surely. It follows from
these facts that ν̂(·) defined by (C.26) satisfies

∫ T

0 ‖ν̂(t)‖2dt < ∞ almost
surely. Furthermore,∫ T

0
ζ(ν̂(t)) dt ≤

∫ T

0
|p̂′(t)ν̂(t)|dt ≤

(∫ T

0
‖p̂(t)‖2dt

) 1
2
(∫ T

0
‖ν̂(t)‖2dt

) 1
2

,

which is almost surely finite. Condition (C.27) is satisfied, and the lemma
is established. �

It remains to prove that ν̂(·) ∈ D0 and (C.4), (C.5) are satisfied. We first
prove (C.4), (C.5).

Lemma C.5: Equations (C.4) and (C.5) hold.

Proof. Before beginning the computations, we recall the equations

λ(t) = σ′(t)p̂(t)− θ(t), (C.3)
ζ(ν̂(t)) = −p̂′(t)ν̂(t), (C.6)

A(t) =
∫ t

0
ĉ(s)U ′

1(s, ĉ(s)) ds, (C.17)

M(t) = E[A(T ) + X̂(T )U ′
2(X̂(T ))|F(t)]



344 C. On Theorem 6.4.1

= EM(T ) +
∫ t

0
ψ′(s) dW (s), (C.18)

f(t) =
ĉ(t)

X̂(t)
, (C.21)

ν̂(t) = σ(t)
[
λ(t)− ψ(t)

M(t)−A(t)

]
, (C.26)

S(ν̂)(t) = S0(t) exp
[∫ t

0
ζ(ν̂(s)) ds

]
, (5.5.7)

θν̂(t) = θ(t) + σ−1(t)ν̂(t). (5.5.9)

We note also that the conclusion of Lemma C.3 can be written as

M(t)−A(t) = X̂(t)U ′
1(t, ĉ(t)). (C.32)

It follows that

d
(
X̂(t)U ′

1(t, ĉ(t))
)

= dM(t)− dA(t)

= ψ′(t) dW (t) − ĉ(t)U ′
1(t, ĉ(t)) dt

= (M(t)−A(t))(λ(t)− σ−1(t)ν̂(t))′dW (t)

−f(t)X̂(t)U ′
1(t, ĉ(t)) dt

= X̂(t)U ′
1(t, ĉ(t))[(λ(t) − σ−1(t)ν̂(t))′dW (t)− f(t) dt].

From (C.20) we have

X̂(t)

S
(ν̂)
0 (t)

= x exp
{
−
∫ t

0

(
f(s) + ζ(ν̂(s)) +

1
2
‖σ′(s)p̂(s)‖2

)
ds

+
∫ t

0
p̂′(s)σ(s) dW0(s)

}
,

which yields the differential formula

d

(
S

(ν̂)
0 (t)

X̂(t)

)
=

S
(ν̂)
0 (t)

X̂(t)

[(
f(t) + ζ(ν̂(t)) + ‖σ′(t)p̂(t)‖2

)
dt

−p̂′(t)σ(t) dW0(t)] .

The product rule for stochastic integration and the above formulas give

d
(
S

(ν̂)
0 (t)U1(t, ĉ(t))

)
= −θν̂(t)S(ν̂)

0 (t)U1(t, ĉ(t)) dW (t),

and hence S
(ν̂)
0 (t)U1(t, ĉ(t)) = y∗Zν̂(t) (see (5.5.10)), for some y∗ ∈ (0,∞).

In other words,

U1(t, ĉ(t)) = y∗Hν̂(t) for Lebesgue-a.e. t ∈ [0, T ] (C.33)
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almost surely. Without loss of generality, we can modify ĉ(t) as necessary
so that (C.33) holds for every t ∈ [0, T ] almost surely. Using (C.33), (C.32),
(C.17), and (C.18), we conclude that

y∗X̂(t)Hν̂(t)) = X̂(t)U ′
1(t, ĉ(t))

= M(t)−A(t)

= E

[∫ T

t

y∗Hν̂(s)ĉ(s) ds + X̂(T )U ′
2(X̂(T ))

∣∣∣∣∣F(t)

]
for 0 ≤ t ≤ T . Evaluating this equation at t = T , we see that

y∗Hν̂(T ) = U ′
2(X̂(T )), (C.34)

and hence

X̂(t) =
1

Hν̂(t)
E

[∫ T

t

Hν̂(s)ĉ(s) ds + Hν̂(T )X̂(T )

∣∣∣∣∣F(t)

]
. (C.35)

From (C.33), (C.34), we have

ĉ(t) = I1(t, y∗Hν̂(t)), X̂(T ) = I2(y∗Hν̂(T )), (C.36)

and substitution into (C.35), evaluated at t = 0, yields

x = E

[∫ T

0
Hν̂(s)I1(s, y∗Hν̂(s)) ds + Hν̂(T )I2(y∗Hν̂(T ))

]
= Xν̂(y∗), (C.37)

which is thus seen to be finite. Therefore, y∗ = Yν̂(x), and Bν̂ defined by
(6.3.16) is X̂(T ), while cν̂(·) defined by (6.3.17) is ĉ(·). Thus, equation (C.5)
holds. Equation (C.4) now follows from (C.35). �

The following lemma concludes the proof of Theorem 6.4.1.

Lemma C.6: The process ν̂(·) defined by (C.26) is in the set D0 of
(6.3.24).

Proof. We note first from (6.2.1) and (6.2.4) that

EHν̂(t) ≤ 1
s0

EZν̂(t) ≤ 1
s0

eζ0t,

and hence

E

[∫ T

0
Hν̂(t) dt + Hν̂(T )

]
<∞.

With y∗ = Yν̂(x) as in (C.37), we have

U1(t, cν̂(t))− y∗Hν̂(t)cν̂(t) = Ũ1(t, y∗Hν̂(t))
≥ U1(t, 1)− y∗Hν̂(t),
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U2(t, X̂(T ))− y∗Hν̂(T )X̂(T ) = Ũ2(y∗Hν̂(T ))

≥ U2(1)− y∗Hν̂(T )

from the definition of convex dual functions and (C.36). It follows that

E

{∫ T

0
min[0, U1(t, cν̂(t))] dt + min[0, U2(X̂(T ))]

}

≥
∫ T

0
min[0, U1(t, 1)] dt + min[0, U2(1)]

− y∗E

[∫ T

0
Hν̂(t) dt + Hν̂(T )

]
> −∞. (C.38)

We began this appendix with the assumption that

V (x;K) = E

[∫ T

0
U1(t, ĉ(t)) dt + U2(X̂(T ))

]
,

and we have subsequently shown that (C.4) and (C.5) hold. Hence,

V (x;K) = E

[∫ T

0
U1(t, cν̂(t)) dt + U2(X̂(T ))

]
= Vν̂(x).

The left-hand side is finite by assumption, and consequently

E

[∫ T

0
|U1(t, cν̂(t))|dt + |U2(X̂(T ))|

]
<∞

and Vν̂(x) is finite.
For each positive integer n, set

τn = inf
{

t ∈ [0, T );
∫ t

0
‖θν̂(s)‖2 ds = n

}
∧ T,

so that E
∫ τn

0 θ′
ν̂(s) dW (s) = 0. Using the fact that the mapping z �→ Ũ2(ez)

is convex (see (3.4.15′′)), the fact that Ũ2 is nonincreasing and convex, and
Jensen’s inequality, we may write

Ũ2

(
y∗
s0

exp
{
−1

2
E

∫ τn

0
‖θν̂(s)‖2 ds

})
= Ũ2

(
y∗
s0

exp
{

E

(∫ τn

0
θ′

ν̂(s) dW (s) − 1
2

∫ τn

0
‖θν̂(s)‖2ds

)})
≤ EŨ2

(
y∗
s0

exp
{
−
∫ τn

0
θ′

ν̂(s) dW (s) − 1
2

∫ τn

0
‖θν̂(s)‖2ds

})
= EŨ2

(
y∗
s0

Zν̂F(τn)
)
≤ E

[
Ũ2

(
y∗
s0

E[Zν̂(T )|F(τn)]
)]
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≤ E

[
E

[
Ũ2

(
y∗
s0

Zν̂(T )
)∣∣∣∣F(τn)

]]
= EŨ2

(
y∗
s0

Zν̂(T )
)

≤ EŨ2(y∗Hν̂(T )) = EŨ2(U ′
2(X̂(T ))

= E
[
U2(X̂(T ))− X̂(T )U ′

2(X̂(T ))
]
≤ EU2(X̂(T )) <∞.

Letting n→∞, we obtain

Ũ2

(
y∗
s0

exp

{
−1

2
E

∫ T

0
‖θν̂(s)‖2 ds

})
<∞.

Because Ũ2(0) =∞, we must have E
∫ T

0 ‖θν̂(s)‖2ds <∞. But

ν̂(t) = σ(t)θν̂(t)− σ(t)θ(t),

σ(·) is bounded, and θ(·) satisfies (6.2.5). We conclude that E
∫ T

0 ‖ν̂(t)‖2dt
<∞; i.e., (5.5.1) is satisfied.

Again using Jensen’s inequality, we compute

Ũ2

(
y∗
s0

exp

{
−E

∫ T

0
ζ(ν̂(s)) ds − 1

2
E

∫ T

0
‖θν̂(s)‖2 ds

})

≤ EŨ2

(
y∗
s0

exp

{
−
∫ T

0
ζ(ν̂(s)) ds −

∫ T

0
θ′

ν̂(s) dW (s)

− 1
2

∫ T

0
‖θ(s)‖2 ds

})
≤ EŨ2(y∗Hν̂(T )) <∞.

This time we conclude that E
∫ T

0 ζ(ν̂(t)) dt < ∞; i.e., (5.5.2) is satisfied.
We have established that ν̂(·) is in D.

We next show that ν̂(·) ∈ D0. The condition Xν̂(y) < ∞ for all y > 0
follows from the finiteness of Xν̂(y∗) in (C.37) and assumption (3.6.17) (see
the sentence following (3.6.17)).

We must also show that Vν̂(ξ) <∞ for all ξ > 0. We have already shown
that Vν̂(x) is finite. The function Vν̂ is concave on [0,∞), which one can
show using the argument in the first part of the proof of Theorem 3.6.11.
We next show that Vν̂ is not −∞ at any point in (0,∞). Like U1(t, ·)
and U2, the function Vν̂ is nondecreasing, and hence Vν̂(ξ) > −∞ for all
ξ ≥ x. For ε ∈ (0, 1), we set cε(·) = (1− ε)ĉ(·). It follows immediately from
Definition 6.3.1 that (cε, p̂) ∈ Aν̂((1− ε)x). The proof of Lemma C.1 shows
that (cε, p) ∈ A(ν̂)

3 ((1 − ε)x). The existence of a consumption/portfolio-
proportion process pair in A(ν̂)

3 ((1− ε)x) implies that Vν̂((1− ε)x) > −∞.
The concavity of Vν̂ on (0,∞) and the inequalities Vν̂(ξ) > −∞ for all
ξ ∈ (0,∞), Vν̂(x) <∞ imply Vν̂(ξ) <∞ for all ξ ∈ (0,∞). �
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Appendix D
Optimal Stopping for Continuous-
Parameter Processes

We discuss briefly in this appendix the problem of optimal stopping for
random processes in continuous time. (A similar treatment for random se-
quences appears in Chapter VI of Neveu (1975).) The results presented here
are not the most general one can obtain, but will suffice for the purposes
of Chapter 2, where they are used rather extensively. For more general
treatments we refer the reader to El Karoui (1981), as well as Bismut and
Skalli (1977), Fakeev (1970, 1971), Xue (1984), and Shiryaev (1978) for the
Markovian case.

Throughout this appendix we shall consider a nonnegative process
Y = {Y (t),F(t); 0 ≤ t ≤ T} with right-continuous paths and Y (T ) ≤
limt↑T Y (t) a.s., defined on a probability space (Ω,F , P ) and adapted to a
filtration {F(t)}0≤t≤T satisfying the usual conditions of right continuity
and augmentation by the null sets of F = F(T ). We suppose that F(0)
contains only sets of probability zero or one. The time horizon T ∈ (0,∞]
is a fixed constant; if T =∞, we interpret F(∞)

�
= σ

(⋃
0≤t<∞F(t)

)
and

Y (∞)
�
= limt→∞Y (t). We denote by S the class of {F(t)}-stopping times

with values in [0, T ]. For any stopping time v ∈ S, we set Sv
�
= {τ∈S; τ ≥

v a.s.}.
The optimal stopping problem consists in

(i) computing the maximal “expected reward”

Z(0)
�
= sup

τ∈S
EY (τ), (D.1)
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(ii) finding necessary and/or sufficient conditions for the existence of a
stopping time τ∗ that is “optimal,” i.e., its expected reward EY (τ∗)
attains the supremum in (D.1), and then

(iii) characterizing such a τ∗ and studying its properties.

Throughout this appendix, we assume

0 < Z(0) <∞. (D.2)

Under this assumption, we construct the so-called Snell envelope Z0(·) of
Y (·), namely, the smallest RCLL supermartingale that dominates Y (·). A
stopping time τ∗ is optimal if and only if {Z0(t ∧ τ∗),F(t); 0 ≤ t ≤ T} is
a martingale and Z0(τ∗) = Y (τ∗) a.s. (Theorem D.9). In order to prove
the existence of an optimal stopping time, we shall impose the stronger
condition E[sup0≤t≤T Y (t)] <∞, under which the stopping time

D∗(0) = inf{t ∈ [0, T ]; Z0(t) = Y (t)}
can be shown to be optimal if, in addition, the paths of Y (·) are continuous
(Theorem D.12). Following this result, we decompose the Snell envelope
into the difference of a martingale and a nondecreasing process, and use
this decomposition to characterize optimal stopping times.

The key to our study is provided by the family {Z(v)}v∈S of random
variables

Z(v)
�
= ess supτ∈Sv

E[Y (τ)|F(v)], v∈S. (D.3)

(See Appendix A for the definition and properties of essential supremum.)
We shall see in Proposition D.2 that the assumption (D.2) guarantees
EZ(v) < ∞ for all v∈S. The random variable Z(v) is the optimal
conditional expected reward for stopping at time v or later. Since each
deterministic time t∈[0, T ] is also a stopping time, (D.3) defines a nonneg-
ative, adapted process {Z(t),F(t); 0 ≤ t ≤ T}. For v∈S, it is tempting to
regard Z(v) as the process {Z(t); 0 ≤ t ≤ T} evaluated at the stopping
time v. We shall see in Theorem D.7 that there is indeed a modifica-
tion {Z0(t),F(t); 0 ≤ t ≤ T} of the process {Z(t),F(t); 0 ≤ t ≤ T},
i.e., P [Z0(t) = Z(t)] = 1 for all t∈[0, T ], such that for each v∈S we have

Z(v)(ω) = Z0(v(ω), ω), P -a.e. ω ∈ Ω.

This process Z0(·) is the Snell envelope of Y (·).
We now begin an examination of the family of random variables

{Z(v)}v∈S .

Lemma D.1: For any v∈S and τ∈Sv, the family {E[Y (ρ)|F(v)]}ρ∈Sτ

is closed under pairwise maximization. Furthermore, there is a sequence
{ρn}∞n=1 of stopping times in Sτ such that the sequence {E[Y (ρn)|F(v)]}∞n=1
is nondecreasing and

ess supρ∈Sτ
E[Y (ρ)|F(v)] = lim

n→∞
E[Y (ρn)|F(v)].
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Proof. Let ρ1 and ρ2 be in Sτ and set

A = {E[Y (ρ1)|F(v)] ≥ E[Y (ρ2)|F(v)]}, ρ3 = ρ11A + ρ21Ac .

Because A∈Fv, the random time ρ3 is a stopping time. In particular, ρ3∈Sτ

and

E[Y (ρ3)|F(v)] = 1AE[Y (ρ1)|F(v)] + 1AcE[Y (ρ2)|F(v)]
= E[Y (ρ1)|F(v)] ∨E[Y (ρ2)|F(v)].

The remainder of the lemma follows from Theorem A.3 in Appendix A. �

Proposition D.2: For any v∈S, σ∈S, and τ∈Sv, we have

Z(v) = Z(σ) a.s. on {σ = v}, (D.4)
E[Z(τ)|F(v)] = ess supρ∈Sτ

E[Y (ρ)|F(v)] a.s., (D.5)
E[Z(τ)|F(v)] ≤ Z(v) a.s., (D.6)

EZ(τ) = sup
ρ∈Sτ

EY (ρ) ≤ Z(0) <∞. (D.7)

Proof. To prove (D.4), note that the event B
�
= {v = σ} belongs to

Fv∩Fσ = Fv∧σ (Karatzas and Shreve (1991), Lemma 1.2.16). Given τ∈Sv,
we define τB = τ ·1B +T ·1Bc , so τB∈Sσ. From the definition of conditional
expectation and from Karatzas and Shreve (1991), Problem 2.17(i) and
solution (p. 39), we have

1BE[Y (τ)|F(v)] = 1BE[Y (τB)|F(v)] = 1BE[Y (τB)|F(v ∧ σ)]
= 1BE[Y (τB)|F(σ)] ≤ 1BZ(σ) a.s.

for every τ∈Sv. Therefore, Z(v) ≤ Z(σ) almost surely on B. Reversing the
roles of v and σ, we obtain (D.4).

For (D.5), use Lemma D.1 to choose a sequence {ρn}∞n=1 in Sτ such that
{E[Y (ρn)|F(τ)]}∞n=1 is nondecreasing and Z(τ) = limn→∞ E[Y (ρn)|F(τ)].
By the monotone convergence theorem for conditional expectations, we
have

E[Z(τ)|F(v)] = lim
n→∞

E[E{Y (ρn)|F(τ)}|F(v)]

= lim
n→∞

E[Y (ρn)|F(v)]

≤ ess supρ∈Sτ
E[Y (ρ)|F(v)].

On the other hand, Z(τ) ≥ E[Y (ρ)|F(τ)] holds for all ρ∈Sτ , and tak-
ing conditional expectations on both sides of this inequality we obtain
E[Z(τ)|F(v)] ≥ E[Y (ρ)|F(v)]. This implies

E[Z(τ)|F(v)] ≥ ess supρ∈Sτ
E[Y (ρ)|F(v)],

proving (D.5). Since ess supρ∈Sτ
E[Y (ρ)|F(v)] ≤ ess supρ∈Sv

E[Y (ρ)|F(v)]
= Z(v), (D.6) follows from (D.5). We obtain (D.7) by setting v ≡ 0 in (D.5)
and (D.6). �
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For v∈S, let us now define S∗
v

�= {τ∈Sv; τ > v a.s. on {v < T}} and
introduce the family

Z∗(v)
�
= ess supτ∈S∗

v
E[Y (τ)|F(v)], v∈S. (D.8)

The random variable Z∗(v) is the optimal conditional expected reward for
stopping strictly later than v (except that on the event {v = T}, stopping
must be done at time T and Z∗(v) = Y (T )). Since Y (·) has right-continuous
paths, it is no surprise that Z(v) = Z∗(v) holds almost surely (Corollary
D.4 below). Before proving this equality, let us observe that the proof of
Proposition D.2 can be trivially altered to show that the family {Z∗(v)}v∈S
possesses analogues of the properties established in that proposition for
the family {Z(v)}v∈S . Furthermore, {Z∗(v)}v∈S has the right-continuity
property (D.10) below.

Proposition D.3: For any v∈S, and for any decreasing sequence {vn}∞n=1
in S∗

v with v = limn→∞ vn a.s., we have

Z(v) = Z∗(v) ∨ Y (v) a.s., (D.9)∫
A

Z∗(v) dP = lim
n→∞

∫
A

Z∗(vn) dP, ∀A ∈ F(v). (D.10)

Proof. Obviously, Z(v) ≥ Z∗(v) ∨ Y (v), from the definitions (D.3) and
(D.8). For the reverse inequality, take an arbitrary σ ∈ Sv and note that
the sets {σ = v} and {σ > v} are in F(v) (Karatzas and Shreve (1991),
Lemma 1.2.16). Therefore,

E[Y (σ)|F(v)] = E[Y (v)1{σ=v} + Y (σ)1{σ>v}|F(v)]
≤ Y (v)1{σ=v} + Z∗(v)1{σ>v} ≤ Z∗(v) ∨ Y (v).

Taking the essential supremum over σ∈Sv, we obtain (D.9).
For (D.10), observe from the analogue of (D.5) for the family {Z∗(v)}v∈S

that E[Z∗(vn)|F(v)] = ess supρ∈S∗
vn

E[Y (ρ)|F(v)]. Thus for A∈F(v) the
sequence of random variables {

∫
A

Z∗(vn) dP}∞n=1 is nondecreasing, and

lim
n→∞

∫
A

Z∗(vn) dP = lim
n→∞

∫
A

E[Z∗(vn)|F(v)] dP ≤
∫

A

Z∗(v) dP. (D.11)

For the reverse inequality, let τ∈S∗
v be given and define

τn =
{

τ, if vn < τ ,
T, if vn ≥ τ ,

so that τn∈S∗
vn

for all n. For A ∈ F(v), we have∫
{vn<T}∩A

Y (τ) dP −
∫

{τ≤vn<T}∩A

Y (T ) dP =
∫

{vn<τ}∩A

Y (τn) dP

=
∫

{vn<τ}∩A

E[Y (τn)|F(vn)] dP



D. Optimal Stopping for Continuous- Parameter Processes 353

≤
∫

{vn<τ}∩A

Z∗(vn) dP ≤
∫

{v<T}∩A

Z∗(vn) dP.

Now 1{vn<T}∩A ↑ 1{v<T}∩A and 1{τ≤vn<T}∩A ↓ 0 almost surely, so letting
n→∞ in the previous inequality, we obtain∫

{v<T}∩A

Y (τ) dP ≤ lim
n→∞

∫
{v<T}∩A

Z∗(vn) dP. (D.12)

On the set {v = T}, we have Y (τ) = Y (T ) = Z∗(vn), and thus∫
{v=T}∩A

Y (τ) dP =
∫

{v=T}∩A

Z∗(vn) dP. (D.13)

Summing (D.12) and (D.13), we conclude that∫
A

Y (τ) dP ≤ lim
n→∞

∫
A

Z∗(vn) dP ; ∀τ∈S∗
v , ∀A∈F(v). (D.14)

Using the analogue of Lemma D.1 for S∗
v , we choose a sequence {ρk} of

stopping times in S∗
v such that {E[Y (ρk)|F(v)]}∞k=1 is nondecreasing and

Z∗(v) = ess supτ∈S∗
v
E[Y (τ)|F(v)] = lim

k→∞
E[Y (ρk)|F(v)] a.s.

The monotone convergence theorem and (D.14) imply∫
A

Z∗(v) dP = lim
k→∞

∫
A

E[Y (ρk)|F(v)] dP

= lim
k→∞

∫
A

Y (ρk) dP ≤ lim
n→∞

∫
A

Z∗(vn) dP. (D.15)

This, combined with (D.11), yields (D.10). �

Corollary D.4: For any v∈S, we have Z∗(v) = Z(v) a.s.

Proof. For any decreasing sequence {vn}∞n=1 in S∗
v with limn→∞ vn = v,

the right continuity of Y (·) and Fatou’s lemma for conditional expectations
imply

Z∗(v) ≥ lim
n→∞

E[Y (vn)|F(v)] ≥ E[ lim
n→∞

Y (vn)|F(v)] = Y (v) a.s.

The conclusion follows from (D.9). �

As mentioned earlier, we may take the stopping times v in (D.3)
to be deterministic and thereby obtain a nonnegative, adapted process
{Z(t),F(t); 0 ≤ t ≤ T}. From (D.6) we see that this process is a su-
permartingale. Because the function t �→ EZ(t) is right continuous (from
(D.10) and Corollary D.4), there exists a supermartingale {Z0(t),F(t); 0 ≤
t ≤ T} with RCLL paths that satisfies

P [Z(t) = Z0(t)] = 1 , ∀ t ∈ [0, T ] (D.16)
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(cf. Karatzas and Shreve (1991), Theorem 1.3.13). Recall that Y (T ) �=
limt→∞Y (t) if T =∞, and thus

Z0(∞) = Z(∞) = lim
t→∞

Y (t) a.s.

The nonnegative RCLL supermartingale Z0(·) is called the Snell envelope
of Y (·). It is the smallest supermartingale that dominates Y (·) in the sense
of the following definition.

Definition D.5: Let X1(·) = {X1(t); 0 ≤ t ≤ T} and X2(·) = {X2(t); 0 ≤
t ≤ T} be arbitrary processes. We say that X1(·) dominates X2(·) if
P [X1(t) ≥ X2(t),∀0 ≤ t ≤ T ] = 1.

Remark D.6: If X1(·) and X2(·) are right-continuous processes and
P [X1(t) ≥ X2(t)] = 1 for all t in [0, T ] (or even in a countable, dense
subset of [0, T ]), then X1(·) dominates X2(·).

The following theorem permits us henceforth to focus our attention on
the RCLL supermartingale Z0(·) rather than the more awkward family of
random variables {Z(v)}v∈S . In (D.17), Z0(v) denotes the process Z0(·)
evaluated at the stopping time v, whereas Z(v) stands for the random
variable of (D.3).

Theorem D.7: The Snell envelope Z0(·) of Y (·) satisfies

Z0(v) = Z(v) a.s. (D.17)

for every v ∈ S. Moreover, Z0(·) dominates Y (·), and if X(·) is another
RCLL supermartingale dominating Y (·), then X(·) also dominates Z0(·).
Proof. For any v ∈ S there is a decreasing sequence {vn}∞n=1 of stopping
times in S∗

v with values in {T}∪D (where D is the set of dyadic rationals)
and with v = limn→∞ vn a.s. (Karatzas and Shreve (1991), Problem 1.2.24).
From Doob’s optional sampling theorem (ibid., Theorem 1.3.22), we have

E[Z0(vn)|F(v)] ≤ E[Z0(vn+k)|F(v)] ≤ Z0(v) a.s.

for all positive integers n and k. Therefore, for A ∈ F(v), the sequence
{
∫

A
Z0(vn) dP}∞n=1 is nondecreasing and bounded above by

∫
A

Z0(v) dP ;
hence limn→∞

∫
A

Z0(vn) dP ≤
∫

A
Z0(v) dP . The reverse inequality fol-

lows from Fatou’s lemma and the right continuity of Z0(·). Coupling these
observations with (D.10), Corollary D.4, and (D.16), we deduce∫

A

Z(v) dP = lim
n→∞

∫
A

Z(vn) dP = lim
n→∞

∫
A

Z0(vn) dP =
∫

A

Z0(v) dP.

Since A ∈ F(v) is arbitrary, (D.17) must hold.
Finally, let X(·) be an RCLL supermartingale dominating Y (·). For t ∈

[0, T ] and τ ∈ St, the optional sampling theorem implies E[Y (τ)|F(t)] ≤
E[X(τ)|F(t)] ≤ X(t) almost surely. Therefore, for each t ∈ [0, T ], we have

Z0(t) = Z(t)
�
= ess supτ∈St

E[Y (τ)|F(t)] ≤ X(t) a.s. �
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Remark D.8: If {X(t),F(t); 0 ≤ t < T} is an RCLL supermartingale
satisfying

P [X(t) ≥ Y (t)] = 1, ∀ t ∈ [0, T ),

then it is still true that X(·) dominates Z0(·). To see this, first use the right
continuity of X(·) and Y (·) to see that P [X(t) ≥ Y (t), ∀ t ∈ [0, T )] = 1.
Then use the submartingale convergence theorem (Karatzas and Shreve
(1991), Theorem 1.3.15) to establish the almost sure existence of X(T )

�
=

limt↑T X(t). For 0 ≤ s < T and with Tn ↑ T , we have

E[X(T )|F(s)] ≤ lim
n→∞

E[X(Tn)|F(s)] ≤ X(s) a.s.

from Fatou’s lemma for conditional expectations, so that {X(t); 0 ≤
t ≤ T} is an RCLL supermartingale. Moreover X(T ) = limt↑T X(t) ≥
limt↑T Y (t) ≥ Y (T ). Thus the supermartingale with last element {X(t),
F(t); 0 ≤ t ≤ T} dominates {Y (t),F(t); 0 ≤ t ≤ T}. Now apply Theorem
D.7.

Theorem D.9: A stopping time τ∗ is optimal, i.e.,

EY (τ∗) = Z0(0) = sup
ρ∈S

EY (ρ), (D.18)

if and only if

Z0(τ∗) = Y (τ∗) a.s. (D.19)

and the stopped supermartingale

{Z0(t ∧ τ∗),F(t); 0 ≤ t ≤ T} is a martingale. (D.20)

Proof. Suppose that τ∗ is optimal. From (D.7) we have EY (τ∗) =
supρ∈Sτ∗

EY (ρ) = EZ0(τ∗), as well as EY (τ∗) = supρ∈Sσ∧τ∗
EY (ρ) =

EZ0(σ ∧ τ∗), for any σ ∈ S. Now, P [Z0(t) ≥ Y (t),∀t∈[0, T ]] = 1 and
EY (τ∗) = EZ0(τ∗) give (D.19), whereas the fact that EZ0(σ∧τ∗) does not
depend on σ ∈ S yields (D.20) thanks to Problem 1.3.26 in Karatzas and
Shreve (1991). Conversely, (D.19) and (D.20) give EY (τ∗) = EZ0(τ∗) =
Z0(0) = supρ∈S EY (ρ). �

Having characterized optimal stopping times in Theorem D.9, we now
seek to establish their existence. We begin by constructing a family of
stopping times that are “approximately optimal.” For λ ∈ (0, 1) and v ∈ S,
define the stopping time

Dλ(v)
�
= inf{t ∈ (v, T ]; λZ0(t) ≤ Y (t)} ∧ T (D.21)

in Sv. Because of the right continuity of Y (·) and Z0(·), the process
{Dλ(t); 0 ≤ t ≤ T} is right continuous. Furthermore, for any v ∈ S we
have the inequality

λZ0(Dλ(v)) ≤ Y (Dλ(v)) a.s. (D.22)
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(This inequality holds even on the set {Dλ(v) = T}, because Z0(T ) =
Y (T ).)

Proposition D.10: For 0 < λ < 1 and every v ∈ S, we have

Z0(v) = E[Z0(Dλ(v))|F(v)] a.s. (D.23)

Proof. Define the family of nonnegative random variables J(v)
�
=

E[Z0(Dλ(v))|F(v)], v ∈ S. From (D.6) and the fact that Dλ(v) ∈ Sv,
we note that

J(v) ≤ Z0(v) a.s., ∀v ∈ S. (D.24)

To prove the reverse inequality, we shall show that J(·) has an RCLL su-
permartingale modification J0(·) that dominates Z0(·). For v∈S and τ∈Sv,
we have from (D.6) that

E[J(τ)|F(v)] = E[E{Z0(Dλ(τ))|F(τ)}|F(v)] = E[Z0(Dλ(τ))|F(v)]
= E[E{Z0(Dλ(τ))|F(Dλ(v))}|F(v)]
≤ E[Z0(Dλ(v))|F(v)] = J(v). (D.25)

It follows that {J(t),F(t); 0 ≤ t ≤ T} is a supermartingale and that t �→
EJ(t) is a nonincreasing function. By Fatou’s lemma and the right conti-
nuity of Z0(·) and Dλ(·) we also have lims↓t EJ(s) = lims↓t EZ0(Dλ(s)) ≥
EZ0(Dλ(t)) = EJ(t). Therefore, the mapping t �→ EJ(t) is right contin-
uous; and by Theorem 1.3.13 in Karatzas and Shreve (1991) there is an
RCLL supermartingale J0(·) = {J0(t),F(t); 0 ≤ t ≤ T} such that

P [J(t) = J0(t)] = 1, ∀ t ∈ [0, T ]. (D.26)

In the spirit of the first part of Theorem D.7, we now extend (D.26) to
the statement

P [J(v) = J0(v)] = 1, ∀ v ∈ S. (D.27)

Fix v ∈ S and let {vn}∞n=1 be a decreasing sequence of stopping times in
Sv with v = limn→∞ vn a.s. and with values in {T} ∪D, where D is the
set of dyadic rationals. For any given A ∈ F(v), we have from (D.25)∫

A

J(vn) dP =
∫

A

E[J(vn)|F(v)] dP ≤
∫

A

J(v) dP, ∀n ∈ N,

so that limn→∞
∫

A
J(vn) dP ≤

∫
A

J(v) dP . On the other hand, Fatou’s
lemma implies

lim
n→∞

∫
A

J(vn) dP = lim
n→∞

∫
A

E[Z0(Dλ(vn))|F(vn)] dP

= lim
n→∞

∫
A

E[Z0(Dλ(vn))|F(v)] dP

≥
∫

A

E[ lim
n→∞

Z0(Dλ(vn))|F(v)] dP
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=
∫

A

E[Z0(Dλ(v))|F(v)] dP =
∫

A

J(v) dP.

It follows that ∫
A

J(v) dP = lim
n→∞

∫
A

J(vn) dP.

A similar argument, using the optional sampling theorem instead of (D.25),
shows that

lim
n→∞

∫
A

J0(vn) dP =
∫

A

J0(v) dP.

Finally, (D.26) implies that
∫

A
J(vn) dP =

∫
A

J0(vn) dP for all n. It follows
from these equations that

∫
A

J(v) dP =
∫

A
J0(v) dP . Since A ∈ F(v) is

arbitrary, (D.27) must hold.
We show next that J0(·) dominates Z0(·). Consider the RCLL super-

martingle λZ0(·) + (1 − λ)J0(·). Fix t ∈ [0, T ]. Then on {Dλ(t) = t} we
have

λZ0(t) + (1− λ)J0(t) = λZ0(t) + (1− λ)E[Z0(t)|F(t)] = Z0(t) ≥ Y (t)

from Theorem D.7. On the other hand, the definition (D.21) of Dλ(t)
implies that on the event {Dλ(t) > t} we have

λZ0(t) + (1− λ)J0(t) ≥ λZ0(t) ≥ Y (t).

The right continuity of Z0(·), J0(·), and Y (·) allows us to conclude that
the supermartingale λZ0(·) + (1− λ)J0(·) dominates Y (·), and thus domi-
nates Z0(·) as well. It follows that J0(·) dominates Z0(·), and consequently
P [J0(v) ≥ Z0(v)] = 1, ∀ v∈S. Combining this with (D.24) and (D.27), we
obtain P [J(v) = Z0(v)] = 1, ∀ v∈S. This is (D.23). �

For fixed v∈S the family of stopping times {Dλ(v)}0<λ<1 is nondecreas-
ing in λ, so we may define the limiting stopping time

D∗(v)
�
= lim

λ↑1
Dλ(v) a.s. (D.28)

Under the assumption that Y (·) has continuous paths and that

E

[
sup

0≤t≤T
Y (t)

]
<∞ (D.29)

holds, we shall show that D∗(0) is optimal (i.e., attains the supremum
in (D.1)). As one might expect, this argument relies on the left continu-
ity of Y (·). The following example illustrates that in the absence of the
assumption (D.29), there need not exist an optimal stopping time.

Example D.11: (Nonexistence of an optimal stopping time): Set T =∞
and Y (t) = exp{W (t) − 1

2 t − 1
t+1}, 0 ≤ t < ∞, where W (·) is a one-

dimensional Brownian motion and {F(t)} is the augmentation by null sets
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of the filtration generated by W (·). According to the “strong law of large
numbers,” limt→∞

W (t)
t = 0 a.s. (e.g., Karatzas and Shreve (1991), Problem

2.9.3 and solution, p. 124), and we have Y (∞) = limt→∞ Y (t) = 0 almost
surely; however, the condition (D.29) is not satisfied. We show that the
Snell envelope of Y (·) is

M(t)
�
= exp

{
W (t)− 1

2
t

}
= Y (t) exp

(
1

t + 1

)
> Y (t), 0 ≤ t <∞.

The process {M(t),F(t); 0 ≤ t <∞} is a martingale, and when we include
the last element M(∞) ≡ 0 we have a continuous supermartingale M(·) =
{M(t),F(t); 0 ≤ t ≤ ∞} dominating Y (·). According to Theorem D.7,
M(·) dominates the Snell envelope Z0(·). Furthermore, for each t ∈ [0,∞)
we have from the same theorem that

Z0(t) = ess supτ∈St
E[Y (τ)|F(t)]

≥ ess supt≤s<∞E[Y (s)|F(t)]

= M(t) · sup
t≤s<∞

exp
{
− 1

s + 1

}
= M(t) a.s.

Hence M(·) is the Snell envelope of Y (·); in particular,

sup
τ∈S

EY (τ) = Z0(0) = M(0) = 1.

There is no stopping time v∈S satisfying EY (v) = 1, because condition
(D.19) of Theorem D.9 is satisfied only by v ≡ ∞ but EY (∞) = 0. For
λ∈(1/e, 1), we have

Dλ(0)
�
= inf{t ≥ 0; λM(t) ≤ Y (t)} = − 1

log λ
− 1,

and limλ↑1 EY (Dλ(0)) = limλ↑1 λ = 1, but the limit D∗(0)
�
=

limλ↑1 Dλ(0) =∞ of these “approximately optimal” stopping times is very
clearly “suboptimal,” since EY (D∗(0)) = 0.

It is of course possible to introduce a deterministic time change in this
example, so that T is finite and there still is no optimal stopping time.

Theorem D.12: Suppose that Y (·) has continuous paths and that the
assumption (D.29) holds. Then, for each v∈S, the stopping time D∗(v)
defined by (D.28) satisfies

E[Y (D∗(v))|F(v)] = Z0(v) = ess supτ∈Sv
E[Y (τ)|F(v)] a.s. (D.30)

In particular, D∗(0) attains the supremum in (D.1). Furthermore, for any
v∈S:

D∗(v) = inf{t∈[v, T ]; Z0(t) = Y (t)} a.s. (D.31)
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Proof. Proposition D.10 and the inequality (D.22) imply

Z0(v) = E[Z0(Dλ(v))|F(v)] ≤ 1
λ

E[Y (Dλ(v))|F(v)] a.s.

Now, for all λ ∈ (0, 1) we have Y (Dλ(v)) ≤ Ȳ , where

Ȳ
�
= sup

0≤t≤T
Y (t), (D.32)

so we may use the dominated convergence theorem for conditional
expectations, coupled with the left continuity of Y (·), to conclude that

Z0(v) ≤ lim
λ↑1

E[Y (Dλ(v))|F(v)] = E[Y (D∗(v))|F(v)] a.s.

Because Z0(·) is a supermartingale dominating Y (·), we have the reverse
inequality

E[Y (D∗(v))|F(v)] ≤ E[Z0(D∗(v))|F(v))] ≤ Z0(v) a.s.

and (D.30) is proved.
From (D.30) and the supermartingale property, we have

EY (D∗(v)) = EZ0(v) ≥ EZ0(D∗(v)).

But Z0(·) dominates Y (·), so it must be true that Y (D∗(v)) = Z0(D∗(v))
a.s. and

D∗(v) ≥ inf{t∈[v, T ];Z0(t) = Y (t)} a.s.

For the reverse inequality, observe first that the definition (D.21) of Dλ(v)
implies Y (t) < λZ0(t) ≤ Z0(t) for all t∈(v, Dλ(v)) and λ∈(0, 1). Hence

D∗(v) = lim
λ↑1

Dλ(v) ≤ inf{t∈(v, T ]; Z0(t) = Y (t)} a.s.

To conclude further that

D∗(v) ≤ inf{t∈[v, T ]; Z0(t) = Y (t)} a.s.

we must show

D∗(v) = v a.s. on {Z0(v) = Y (v)}.
On the set {Z0(v) = Y (v) > 0}, the right continuity of Z0(·) and Y (·)
implies Dλ(v) = v a.s. for all λ∈(0, 1), and hence D∗(v) = v a.s. On the
other hand, we appeal to the optional sampling theorem

E
[
1{Z0(v)=0}Z

0((v + θ) ∧ T )
]
≤ E

[
1{Z0(v)=0}Z

0(v)
]

= 0 a.s., θ ≥ 0,

to conclude that λZ0(t) = 0 ≤ Y (t) for v ≤ t ≤ T a.s. on {Z0(v) = Y (v) =
0}. Thus, on this set also we have D∗(v) = v a.s. �

Theorem D.13: Under the condition (D.29), the RCLL supermartingale
Z0(·) admits the Doob–Meyer decomposition

Z(·) = M(·)− Λ(·). (D.33)
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Here M(·) is a uniformly integrable RCLL martingale with respect to the fil-
tration {F(t)}0≤t≤T , and Λ(·) is a right-continuous natural nondecreasing,
{F(t)}0≤t≤T -adapted process with Λ(0) = 0 and EΛ(T ) < ∞. Moreover,
if Y (·) has continuous paths, then Λ(·) is continuous and “flat” away from
the set H(ω)

�
= {t∈[0, T ];Z0(t, ω) = Y (t, ω)}; i.e.,∫ T

0
1{Z0(t)>Y (t)}dΛ(t) = 0 a.s. (D.34)

Proof. We first prove the uniform integrability of the family {Z0(v)}v∈S .
From the equality (D.17) we have Z0(v) ≤ E[Ȳ |F(v)] in the notation of
(D.32), so EZ0(v) ≤ EȲ <∞ for all v∈S. Given ε > 0, there exists δ > 0
such that

A∈F(T ) and P (A) < δ ⇒
∫

A

Ȳ dP < ε.

Let α > 1
δ EȲ be given. Then

P
[
Z0(v) > α

]
≤ 1

α
EȲ < δ,∫

{Z0(v)>α}
Z0(v) dP ≤

∫
{Z0(v)>α}

E[Ȳ |F(v)] dP

=
∫

{Z0(v)>α}
Ȳ dP < ε, ∀ v∈S.

We show next that if Y (·) has continuous paths, then Z0(·) is regular ;
i.e., if {vn}∞n=1 is a nondecreasing sequence of stopping times in S and
v = limn→∞ vn a.s., then EZ0(v) = limn→∞ EZ0(vn). The inequality
EZ0(v) ≤ limn→∞EZ0(vn) follows from the supermartingale property.
For the reverse inequality, observe that the sequence of stopping times
{D∗(vn)}∞n=1 satisfies (D.31) and is nondecreasing with limn→∞ D∗(vn) ∈
Sv; from (D.30), the dominated convergence theorem, the continuity of Y (·)
and its domination by Z0(·), and the supermartingale property for Z0(·),
we have

lim
n→∞

EZ0(vn) = lim
n→∞

EY (D∗(vn)) ≤ EY
(

lim
n→∞

D∗(vn)
)

≤ EZ0
(

lim
n→∞

D∗(vn)
)
≤ EZ0(v).

All the assertions of the theorem, except (D.34), now follow from
Karatzas and Shreve (1991), Theorems 1.4.10 and 1.4.14. In particular,
the martingale M(·) in the Doob–Meyer decomposition (D.33) has a last
element M(T ) (ibid., Problem 1.3.19 and solution (p. 42)).

For (D.34), define the family of stopping times

ρt
�
= inf{s∈[t, T ); Λ(t) < Λ(s)} ∧ T, for t∈[0, T ). (D.35)
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Equation (D.30), the domination of Y (·) by Z0(·), and the supermartingale
property for Z0(·) yield

EZ0(ρt) = EY (D∗(ρt)) ≤ EZ0(D∗(ρt)) ≤ EZ0(ρt).

According to the optional sampling theorem (ibid., Theorem 1.3.22),
the uniformly integrable martingale M(·) in (D.32) satisfies EM(ρt) =
EM(D∗(ρt)). Therefore, EΛ(ρt) = EΛ(D∗(ρt)). But Λ(·) is nondecreasing,
so Λ(ρt) = Λ(D∗(ρt)) a.s. The definition of ρt shows then that ρt = D∗(ρt)
a.s., and (D.31) now implies ρt(ω) ∈ H(ω) for P -a.e. ω ∈ Ω. Letting Q

denote the set of rational numbers, we conclude that for P -a.e. ω ∈ Ω, we
have

{ρq(ω); q∈[0, T ] ∩Q} ⊆ H(ω). (D.36)

We now fix an ω ∈ Ω for which (D.36) holds, for which the mappings t �→
Λ(t, ω) and t �→ Y (t, ω) are continuous on [0, T ] and for which t �→ Z0(t, ω)
is RCLL. To understand the set on which Λ(·, ω) is “flat,” we define

J(ω)
�
= {t∈(0, T ); ∃ ε > 0 with Λ(t− ε, ω) = Λ(t + ε, ω)}.

It is apparent that the set J(ω) is open, and thus can be written as a
countable union of disjoint open intervals: J(ω) =

⋃
i(αi(ω), βi(ω)). We

are interested in the set

Ĵ(ω)
�
=
⋃
i

[αi(ω), βi(ω)) = {t∈[0, T ); ∃ ε > 0 with Λ(t, ω) = Λ(t + ε, ω)}

and in its complement Ĵc(ω) in [0, T ) × Ω. The function t �→ Λ(t, ω) is
“flat” on Ĵ(ω), in the sense that

∫ T

0 1Ĵ(ω)(t)dΛ(t, ω) =
∑

i[Λ(βi(ω), ω) −
Λ(αi(ω), ω)] = 0.

Our task is to show that Hc(ω) ⊆ Ĵ(ω), or equivalently, that Ĵc(ω) ⊆
H(ω). Note that

Ĵc(ω) = {t∈[0, T ); ∀ s∈(t, T ), Λ(t, ω) < Λ(s, ω)}.
Let t∈Ĵc(ω) be given. Then there is a strictly decreasing sequence {tn}∞n=1
such that {Λ(tn, ω)}∞n=1 is also strictly decreasing and

t = lim
n→∞

tn, Λ(t, ω) = lim
n→∞

Λ(tn, ω).

For each n, let qn be a rational number in (t, tn+1). Then t ≤ ρqn
(ω) ≤

tn and t = limn→∞ ρqn
(ω). From (D.36) we have Z0(ρqn

(ω), ω) =
Y (ρqn

(ω), ω), and letting n → ∞, using the right continuity of Z0(·) and
Y (·), we discover that t∈H(ω). �

We have so far constructed an optimal stopping time D∗(0) in (D.30)
and a candidate optimal stopping time ρ0 in (D.35). Another candidate
optimal stopping time is

σ0
�
= inf{t∈(0, T ];Z0(t) = Y (t)}. (D.37)
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These three can all be different, as the following simple example shows.

Example D.14: Consider the deterministic process

Y (t) =

 |t− 1|, 0 ≤ t ≤ 2,
1, 2 ≤ t ≤ 3,
e3−t, t ≥ 3.

The Snell envelope is

Z0(t) =
{

1, 0 ≤ t ≤ 3,
e3−t, t ≥ 3,

and D∗(0) = 0, σ0 = 2, ρ0 = 3.
Theorem D.12 asserts the optimality of D∗(0). Under the integrability

condition of that theorem, the optimality of σ0 and ρ0 is provided by the
following corollary.

Corollary D.15: Under the condition (D.29) and the continuity of Y (·),
the stopping times σ0 and ρ0 are optimal:

Z0(0) = sup
τ∈S

EY (τ) = EY (D∗(0)) = EY (σ0) = EY (ρ0).

Moreover, D∗(0) ≤ σ0 ≤ ρ0 a.s.

Proof. It is clear from (D.31) and (D.37) that D∗(0) ≤ σ0. Furthermore,
we have Z0(t) > Y (t) for t∈(0, σ0), and from (D.34), Λ(σ0) = Λ(0) = 0.
Hence, σ0 ≤ ρ0.

The optimality of D∗(0) and the supermartingale property give

Z0(0) = sup
τ∈S

EY (τ) = EY (D∗(0)) = EZ0(D∗(0)) ≥ EZ0(σ0) ≥ EZ0(ρ0).

(D.38)

But from the definition (D.35) of ρ0, we see that Λ(ρ0) = 0 a.s., and taking
expectations in (D.33), using the optional sampling theorem, we are led to
the equality EZ0(ρ0) = Z0(0). Thus, the inequalities in (D.38) are actually
equalities.

From (D.37) and the right continuity of Z0(·) and Y (·), we have Z0(σ0) =
Y (σ0) a.s. This proves the optimality of σ0 : Z0(0) = EZ0(σ0) = EY (σ0).
From (D.36) we have ρ0∈H a.s., which means Z0(ρ0) = Y (ρ0) a.s. This
proves the optimality of ρ0 : Z0(0) = EZ0(ρ0) = EY (ρ0). �



Appendix E
The Clark Formula

We offer in this appendix a brief overview of the formula of J.M.C. Clark
(1970) for the stochastic integral representation of Brownian functionals.
The approach is that of Bismut (1981), as presented in Rogers and Williams
(1987).

Let Wt(ω) = ω(t), 0 ≤ t ≤ T , be standard, one-dimensional Brownian
motion on the canonical space (Ω,F , P ), {Ft}0≤t≤T with Ω = C([0, T ]),
the space of continuous functions ω : [0, T ] → R, and with P taken to
be Wiener measure. Here F = FT is the P -completion of the σ-algebra
generated by {Ws; 0 ≤ s ≤ T}, and Ft is the σ-algebra generated by
{Ws; 0 ≤ s ≤ t} and augmented by the P -null sets in F , for 0 ≤ t ≤ T .

Let F be a square-integrable Brownian functional, i.e., an FT -measurable
mapping from Ω to R with EF 2(W ) < ∞. The martingale representation
theorem for Brownian functionals (e.g., Karatzas and Shreve (1991), Propo-
sition 3.4.18) states that there exists a unique (up to a.e. equivalence on
[0, T ]×Ω) {Ft}-progressively measurable process ψ with E

∫ T

0 ψ2
sds <∞

such that

F (W ) = EF (W ) +
∫ T

0
ψsdWs a.s. (E.1)

In the construction of hedging portfolios, it is important to obtain the
process ψ explicitly.

Taking conditional expectations on both sides of (E.1) with respect to
Ft, we obtain Λt

�
= E[F (W )|Ft] = EF (W ) +

∫ t

0 ψsdWs, which we may
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write in differential notation as

dΛt = dt (E[F (W )|Ft]) = ψtdWt. (E.2)

If the differential of the Lévy martingale Λ can be computed, then ψ will
be determined. Here is an example of such a computation.

Example E.1: Let F (ω)
�
= max0≤t≤T ω(t), and define Ms,t

�
=

maxs≤u≤t Wu and Mt
�
= M0,t, so that F (W ) = MT . From the reflection

principle we have

P [MT > b] = 2P [WT > b] = 2
[
1− Φ

(
b√
T

)]
, b > 0,

and therefore

P [MT ∈ db] = 2
∂

∂b
Φ
(

b√
T

)
db =

2√
2πT

e− b2
2T db, b > 0,

where Φ(x)
�
= 1√

2π

∫ x

−∞ e− 1
2 ξ2

dξ (e.g., Karatzas and Shreve (1991), §2.8A).
It follows easily that EF 2(W ) <∞. For 0 ≤ t ≤ T and m ≥ 0 we have

P [MT > m|Ft] = 1{Mt>m} + 1{Mt≤m}P [Mt,T > m|Wt],

and thus P [MT > m|Ft] depends only on Wt and Mt. For a < b < m and
b > 0, we obtain

P [MT ∈ dm|Wt = a,Mt = b] = P [MT−t ∈ dm− a]

=
2√

2π(T − t)
e− (m−a)2

2(T −t) dm.

Furthermore,

P [MT = b|Wt = a,Mt = b] = 1− P [MT > b|Wt = a,Mt = b]

= 1− P [MT−t > b− a] = 2Φ
(

b− a√
T − t

)
− 1.

If follows that

E[MT |Wt = a,Mt = b] = 2b · Φ
(

b− a√
T − t

)
− b

+
∫ ∞

b

2m√
2π(T − t)

e− (m−a)2

2(T −t) dm

= 2(b− a)Φ
(

b− a√
T − t

)
− b + 2a

+

√
2(T − t)

π
exp

{
− (b− a)2

2(T − t)

}
,

or equivalently,

Λt
�
= E[MT |Ft] = 2(Mt −Wt)Φ

(
Mt −Wt√

T − t

)
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−Mt + 2Wt +

√
2(T − t)

π
exp

{
− (Mt −Wt)2

2(T − t)

}
.

A tedious calculation, based on the Itô formula and on the identity Φ
′′
(x) =

−xΦ′(x), leads to

dΛt = 2
[
1− Φ

(
Mt −Wt√

T − t

)]
dWt −

[
1− 2Φ

(
Mt −Wt√

T − t

)]
dMt.

Because the process M is flat off the set {t ∈ [0, T ];Mt −Wt = 0} and
Φ(0) = 1

2 , the dMt term on the right-hand side of this last equation drops
out, and we have identified the integrand ψ in (E.1) as

ψt = 2
[
1− Φ

(
Mt −Wt√

T − t

)]
. (E.3)

While many more examples along these lines can be given, the calcu-
lations become increasingly laborious and tedious. The Clark formula is a
theoretical characterization of the integrand in (E.1) that sometimes short-
ens these computations substantially. As presented here, the derivation of
this formula requires the Brownian functional F to satisfy the following
three conditions:

EF 2(W ) <∞ ; (E.4)

there is a nonnegative Brownian functional h

satisfyingEh2(W ) <∞ and a function

g : [0,∞)→ [0,∞) satisfying limε↓0

(
g(ε)
ε

)
<∞,

such that with ‖ · ‖ denoting the supremum norm,

|F (ω + ϕ)− F (ω)| ≤ h(ω)g( ‖ϕ ‖ ),∀(ω, ϕ) ∈ Ω2;


(E.5)



there is a measurable mapping
ω �→ ∂F (ω; ·) : (Ω,FT )→ (M,M),

where M is the set of finite Borel measures on
B([0, T ]) andM is the σ-field generated by

the topology of weak convergence on M, that satisfies

lim
ε→0

1
ε
[F (ω + εϕ)− F (ω)] =

∫ T

0
ϕ(t)∂F (ω; dt),

∀ ϕ ∈ C1([0, T ]), P -a.e. ω ∈ Ω.


(E.6)

Note that if the mapping ∂F in (E.6) exists, then it must be unique up to
P -equivalence.

Theorem E.2: (Clark (1970)): Under the conditions (E.4)–(E.6), the
process ψ of (E.1) is the predictable projection of the (not necessar-
ily adapted) process ∂F (W ; (t, T ]), 0 ≤ t ≤ T . Equivalently, for
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Lebesgue-almost-every t ∈ [0, T ], we have

ψt = E[∂F (W ; (t, T ])|Ft] a.s. (E.7)

Proof. Let X be a bounded, continuous {Ft}-adapted process; define
ϕt =

∫ t

0 Xsds for 0 ≤ t ≤ T ; and introduce the exponential martingales
and the probability measures

Zε
t

�
= exp

[
ε

∫ t

0
Xs dWs −

ε2

2

∫ t

0
X2

s ds

]
, Zε ≡ Zε

T ,

P ε(A)
�
= E[Zε · 1A], A ∈ FT ,

for ε ∈ R. Then {Wt − εϕt,Ft; 0 ≤ t ≤ T} is a P ε-Brownian motion,
according to the Girsanov theorem (Karatzas and Shreve (1991), §3.5),
and we thus have the invariance principle

EF (W ) = EεF (W − εϕ) = E[ZεF (W − εϕ)], ∀ ε ∈ R. (E.8)

A stochastic calculus of variations (known as the Malliavin calculus) can
be based on (E.8). In the spirit of this calculus, we first rewrite (E.8) and
then we differentiate with respect to ε. From (E.8) we have for ε �= 0 that

1
ε
E[F (W )− F (W − εϕ)] + E

[
Zε − 1

ε
{F (W )− F (W − εϕ)}

]
= E

[
F (W )

Zε − 1
ε

]
. (E.9)

Using the representation Zε
t = 1 + ε

∫ t

0 XsZ
ε
sdWs, one can show first that

limε↓0 E
∫ T

0 (Zε
s − 1)2ds = 0, and then that Zε

t −1
ε

L2

−→
ε↓0

∫ t

0 XsdWs for every

t ∈ [0, T ]. Upon letting ε ↓ 0 in (E.9), we obtain from these considerations,
(E.5), (E.6), and the dominated convergence theorem that

E

∫ T

0
ϕs∂F (W ; ds) = E

[
F (W ) ·

∫ T

0
XsdWs

]
. (E.10)

The left-hand side of (E.10) is equal to

E

∫ T

0

∫ T

0
1{0≤t<s≤T}Xt dt ∂F (W ; ds) = E

∫ T

0
Xt ∂F (W ; (t, T ]) dt

(Fubini’s theorem), whereas the right-hand side equals (see (E.1))

E

[{
EF +

∫ T

0
ψs dWs

}
·
∫ T

0
Xs dWs

]
= E

∫ T

0
Xtψt dt.

Consequently,

E

∫ T

0
Xt ∂F (W ; (t, T ]) dt = E

∫ T

0
Xtψt dt
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holds for every bounded, continuous, and {Ft}-adapted process X, and
(E.7) follows. �

Example E.3: We return to Example E.1, where F (ω) = max0≤t≤T ω(t).
This maximum is attained at a unique number η(ω) ∈ [0, T ] (Karatzas and
Shreve (1991), Remark 8.16, p. 102), so F (ω) = ω(η(ω)), for a.e. ω ∈ Ω.
Conditions (E.4) and (E.5) are clearly satisfied, and as for (E.6), we have

lim
ε↓0

1
ε
[F (ω + εϕ)− F (ω)] = ϕ(η(ω)), ∀ϕ ∈ C1([0, T ]),

for P -a.e. ω ∈ Ω. Thus ∂F (ω; (t, T ]) = 1{η(ω)>t}, and in the notation of
Example E.1 we have

ψt = E[∂F (W ; (t, T ])|Ft] = P [η > t|Ft] = P [Mt,T > Mt|Ft]
= P [MT−t > b]|b=Mt−Wt

= 2
[
1− Φ

(
Mt −Wt√

T − t

)]
a.s.

We have recovered the expression (E.3).

Example E.4: With σ > 0, take G(ω) �= eσF (ω) = exp{σ ·
max0≤t≤T ω(t)}. Then G satisfies (E.4) and (E.5) with h = G, g(ε) =
eσε − 1. Furthermore, ∂G(ω; (t, T ]) = σG(ω)1{η(ω)>t} for P -a.e. ω ∈ Ω,
where η(ω) is as in Example E.3. In the notation of Example E.1, it follows
that

E[∂G(W ; (t, T ])|Ft] = σE[exp(σMT )1{η(W )>t}|Ft]
= σE[exp(σMt,T )1{Mt,T >Mt}|Ft]

= σE[exp(σ(MT−t + a))1{MT −t>b−a}]
∣∣∣a=Wt

b=Mt

=
2σeσa√
2π(T − t)

∫ ∞

b−a

e− m2
2(T −t)+σmdm

∣∣∣a=Wt
b=Mt

= 2σe
σ2
2 (T−t)+σWt

[
1− Φ

(
Mt −Wt√

T − t
− σ
√

T − t

)]
.

According to the Clark formula, we have

dΛt = 2σe
σ2
2 (T−t)+σWt

[
1− Φ

(
Mt −Wt√

T − t
− σ
√

T − t

)]
dWt

for Λt
�
= E[G|Ft]. This last displayed equation can also be verified directly

by first computing

Λt = eσMt

[
2Φ
(

Mt −Wt√
T − t

)
− 1
]

+ 2e
σ2
2 (T−t)+σWt

[
1− Φ

(
Mt −Wt√

T − t
− σ
√

T − t

)]
and then applying Itô’s formula.
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Example E.5: Consider now the Brownian motion W̃t
�= Wt + νt, 0 ≤

t ≤ T , with drift ν ∈ R, and define M̃s,t
�= maxs≤u≤t W̃u, M̃t

�= M̃0,t. By
analogy with Examples E.3 and E.4, we consider the functionals

F̃ (ω)
�
= max

0≤t≤T
(ω(t) + νt) and G̃(ω)

�
= exp(σF̃ (ω)), ∀ω ∈ Ω,

so that F̃ (W ) = M̃T , G̃(W ) = exp(σM̃T ). According to Girsanov’s the-
orem, W̃ is a standard Brownian motion under the measure given by
P̃ (A) = E[exp(−νWt − ν2

2 t)1A] = E[exp(−νW̃t + ν2

2 t)1A] for all A ∈ Ft

and all t ∈ [0, T ]. From the reflection principle for Brownian motion, we
have

P̃ [M̃t ∈ db, W̃t ∈ da] =
2(2b− a)√

2πt3
exp

[
− (2b− a)2

2t

]
da db, a ≤ b, b ≥ 0

(cf. Karatzas and Shreve (1991), Proposition 2.8.1), and then

P [M̃t ∈ db, W̃t ∈ da] = exp
[
νa− ν2

2
t

]
· P̃ [M̃t ∈ db, W̃t ∈ da]

=
2(2b− a)√

2πt3
e2bν exp

[
− (2b + νt− a)2

2t

]
da db,

for a ≤ b, b ≥ 0. Consequently,

P [M̃t ∈ db] = 2e2bν

[
1√
2πt

e− (b+νt)2

2t − ν

{
1− Φ

(
b + νt√

t

)}]
db, b ≥ 0,

or equivalently,

P [M̃t > b] = f(t, b)
�
= 1− Φ

(
b− νt√

t

)
+ e2νb

[
1− Φ

(
b + νt√

t

)]
, b ≥ 0 .

(E.11)
As in Examples E.3 and E.4, we obtain

E[∂F̃ (W ; (t, T ])|Ft] = P [M̃T−t > b]|b=M̃t−W̃t
= f(T − t, M̃t − W̃t),

as well as

E[∂G̃(W ; (t, T ])|Ft] = σE
[
exp(σ(M̃T−t + ã))1{M̃T −t>b̃−ã}

] ∣∣∣ ã=W̃t

b̃=M̃t

= σeσW̃t

∫ ∞

M̃t−W̃t

eσmP [M̃T−t ∈ dm]

= σeσM̃tf(T − t, M̃t − W̃t)

+ σ2eσW̃t

∫ ∞

M̃t−W̃t

f(T − t, ξ)eσξ dξ,

E[G̃(W )|Ft] = E
[
eσM̃t1{M̃t,T ≤M̃t} + eσM̃t,T 1{M̃t,T >M̃t} | Ft

]
= eσM̃tP

[
M̃T−t ≤ b̃− ã

] ∣∣∣ ã=W̃t

b̃=M̃t
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+ E
[
exp(σ(M̃T−t + ã))1{M̃T −t>b̃−ã}

] ∣∣∣ ã=W̃t

b̃=M̃t

= eσM̃t + σeσW̃t

∫ ∞

M̃t−W̃t

f(T − t, ξ)eσξ dξ.

There is also an extended Clark formula (E.13) below, which is de-
scribed as follows. Consider a smooth Brownian functional, i.e., a function
F : Ω → R of the form F (ω) = f(ω(t1), . . . , ω(tn)) for some n ∈
N, (t1, . . . , tn) ∈ [0, T ]n, and some element f in the space C∞

b (Rn) of func-
tions with continuous and bounded derivatives of every order. Conditions
(E.4)–(E.6) are satisfied by F , with

∂F (ω; (t, T ]) = DtF (ω)
�
=

n∑
j=1

∂

∂xj
f(ω(t1), . . . , ω(tn))1[0,tj)(t), 0 ≤ t ≤ T.

For every p ≥ 1, introduce the norm ‖ · ‖ p,1 on the space S of smooth
Brownian functionals by the formula

‖F ‖ p
p,1

�
= E

|F (W )|p +

(∫ T

0
(DtF (W ))2 dt

)p/2
 , (E.12)

and denote by Dp,1 the Banach space that is the completion of S under
‖ · ‖ p,1. As shown by Shigekawa (1980), DF is well-defined by continuity
on the entirety of Dp,1. We have the following “extended Clark formula.”

Theorem E.6: (Ocone (1984); Karatzas, Ocone, and Li (1991)): For ev-
ery F ∈ D1,1 the process ψ in (E.1) is given as the predictable projection
of DtF, 0 ≤ t ≤ T . Equivalently, for Lebesgue-almost-every t ∈ [0, T ], we
have

ψt = E[DtF |Ft] a.s. (E.13)
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[640] Wald, A. (1936) Über einige Gleichungsysteme der mathematischen
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Symbol Description Page (equation)

A(t) Singularly continuous part of money market price 3 (1.5)

Ǎ(t) Total variation of A on [0, t] 5

A(x) Set of admissible consumption/portfolio process
pairs on [0, T ] 92

Aν(x) Set of admissible consumption/portfolio process
pairs on [0, T ], in the market-model Mν ;
Definition 6.3.1 266, 267

A(x; K) Set of admissible consumption/portfolio process
pairs on [0, T ], with constrained portfolio-
proportions; Definition 5.2.1 203

A3(x; K) Admissible processes for the optimal consumption
and terminal wealth problem on [0, T ] with
constrained portfolio-proportions; Problem 6.2.6 265 (2.15)

A(t, x) Set of admissible consumption/portfolio process
pairs on [t, T ] 128

A(t, x; K) Set of admissible consumption/portfolio process
pairs on [t, T ] with constrained portfolio-
proportions 292 top

A(x), A∞(x) Set of admissible consumption/portfolio process
pairs on [0, ∞) 137, 140

A1(x) Admissible processes for optimal consumption
problem on [0, T ] 98 (5.5)

A2(x) Admissible processes for optimal terminal wealth
problem on [0, T ] 98 (5.7)

A3(x) Admissible processes for optimal consumption
and terminal wealth problem on [0, T ] 98 (5.9)
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A(ν)
3 (x) Admissible processes for optimal consumption

and terminal wealth problem on [0, T ], in
model Mν 267 (3.5)

A3(t, x) Admissible processes for consumption and terminal
wealth problem on [t, T ] 128

A3(t, x; K) Admissible processes for consumption and terminal
wealth problem on [t, T ] with constrained
portfolio-proportions 293 top

A(ν)
3 (t, x) Admissible processes for the optimal consumption

and terminal wealth problem on [t, T ]
in the market-model Mν 293 (6.5)

Ak, A′
k Set of admissible consumption/portfolio pairs for

agent k 165, 167

αk
∆
= I
(
λkU ′

k(ck); Λ˜ ) 175

b(t) =
(
b1(t), . . . , bN (t)

)′

Mean rate of stock return process 3 (1.8), 5

bν(t) Modified mean rate of stock return process 208 (5.4)

Bν Optimal terminal wealth for the consumption/
investment problem in the model Mν 269 (3.16)

β(t) Discount rate 162

c(t) Consumption process 91

c1(t) Optimal consumption process for consumption
problem on [0, T ] 112 (7.4)

c2(t) ≡ 0 Optimal consumption process for terminal wealth
problem on [0, T ] 114

c3(t) Optimal consumption process for consumption
and terminal wealth problem on [0, ∞) 102 (6.5)

c∞(t) Optimal consumption process for consumption
problem on [0, ∞) 141 (9.11)

ck(t) Consumption process for agent k 164

ĉk(t) Optimal consumption process for agent k 167, 169 (4.11)

c(t) Subsistence consumption 97 (5.1), 139

ck Subsistence consumption for agent k 162 (2.3)

c
∆
=
∑K

k=1 ck Aggregate subsistence consumption 162 (2.4)

C(t, x) Optimal consumption in feedback form, finite
horizon 126 (8.23)

C(x) Optimal consumption in feedback form, infinite
horizon 144 (9.30)

cν(t) Optimal consumption for the consumption/
investment problem in the model Mν 269 (3.17)

C
(
[0, ∞)

)D
Space of continuous functions from [0, ∞) to RD 27

C
(
[0, T ]

)D
Space of continuous functions from [0, T ] to RD 29

D
∆
= {(t, x) ∈ [0, T ] × R; x < X (t, ∞)} 122 (8.10)
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D1
∆
= {(t, c) ∈ [0, T ] × (0, ∞); c > c(t)} 97 (5.2)

D∞
∆
= {(t, c) ∈ [0, ∞) × (0, ∞); c > c(t)} 139

D ∆
= {αk}K

k=1\c 175

D Space of “dual processes” ν(·), as in
Definition 5.5.1 208

D(m), D(d) Subsets of the space D; Definition 5.5.1 208

D0 Subset of the space D of Definition 5.5.1 270 (3.24)

δ(t) =
(
δ1(t), . . . , δN (t)

)′

Dividend rate processes 4 (1.11), 5

E0 Expectation under the standard martingale
measure P0 18

εk(t), k = 1, . . . , K

Endowment processes 161

ε(t)
∆
=
∑K

k=1 εk(t)
Aggregate endowment process 162

f(t) Forward price process 43–44 (3.4)

F(t) Augmented filtration generated by W 2 (1.2)

FW (t) Filtration generated by W 2 (1.1)

FW (∞) σ-algebra generated by ∪0≤t<∞FW (t) 27

G(t) Gains process (from trading) 6 (2.2), (2.2)′

G1(y)
∆
= E

∫ T

0
U1
(
t, I1(t, yH0(t))

)
dt 112 (7.7)

G2(y)
∆
= E

[
U2
(
I2(yH0(T ))

)]
114

G3(y)
∆
= G1(y) + G2(y) 104 (6.14)

Gν(y)
∆
= E

[∫ T

0
U1
(
t, I1(t, yHν(t))

)
dt + U2

(
I2(yH0(T ))

)]
270 (3.26)

G(t, y)
∆
= E

[∫ T

t
U1
(
s, I1
(
s, yY (t,1)(s)

))
ds + U2

(
I2
(
yY (t,1)(T )

))]
128 (8.28)

G∞(y)
∆
= E

∫∞
0

U1
(
t, I1(t, yH0(t))

)
dt 141 (9.15)

Γ(t) Cumulative income process 10

Γk(t) Cumulative income process for agent k 164–165

H0(t)
∆
= Z0(t)/S0(t)

State-price-density process 19 (5.12)

Hν(t)
∆
= Zν(t)/S

(ν)
0 (t)

Modified state-price-density process 209 (5.12)

H Hilbert space of Definition 5.5.1 208

H(·; Λ˜ ) Inverse of the function I(·; Λ˜ ) 172 (5.11)

hup(K) Upper hedging price with constrained portfolios 204 (3.2)

hlow(K−) Lower hedging price with constrained portfolios 244 (3.1)

I(y) Inverse of marginal utility U ′ 95 (4.6)–(4.7)
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I1(t, ·) Inverse of U ′
1(t, ·) 100 (5.20), 139

I2 Inverse of U ′
2 100 (5.21)

Ik Inverse of U ′
k 168

I(y; Λ˜ )
∆
=
∑K

k=1 Ik( y
λk

) 172 (5.9)

K Convex, closed subset of RN 205 bottom

K̃ Barrier cone of the set −K 206 (4.2)

K− Convex, closed subset of RN 239 (9.3), (9.4)

K̃− Barrier cone of the set −K− 239 (9.6)

L(RD; RN ) Space of N × D matrices 12

L(t) Lump-sum settlement of American contingent
claim 54

m(Λ˜ )
∆
= max{k:λk>0}

(
λkU ′

k(ck)
)

172 (5.9)

M1(t)
∆
= E

[∫ T

0
H0(u)c1(u)du

∣∣∣F(t)
]

112

M2
∆
= H0(t)X2(t) 114

M3(t)
∆
= E

[∫ T

0
H0(u)c3(u)du + H0(T )ξ3

∣∣∣F(t)
]

104 (6.12)

Mν(t)
∆
= E

[∫ T

0
Hν(u)cν(u)du + Hν(T )Bν

∣∣∣F(t)
]

269 (3.19)

Mk(t)
∆
= E

[∫ T

0
H(s)

(
ĉk(s) − εk(s)

)
ds

∣∣∣F(t)
]

169 (4.16)

M Model of a financial market 5

Mν Modified model of a financial market 208 bottom

ν(s) 162 (2.2)
1˜= (1, . . . , 1)′ 6

P0 Standard martingale measure 17 (5.3)

Pν Probability measure with density Zν(T ) 210 (5.15)

ϕ(t) Futures price process 45 (3.9)

p(t) Portfolio-proportion process 202 (2.14)

Φ(t) Standard cumulative normal distribution 49

π0(t), π(t) =
(
π1(t), . . . , πN (t)

)′

Portfolio process 7

π1(t) Optimal portfolio process for consumption
problem on [0, T ] 112 (7.6)

π2(t) Optimal portfolio process for terminal wealth
problem on [0, T ] 114

π3(t) Optimal portfolio process for consumption and
terminal wealth problem on [0, T ] 103, 104 (6.11)

π∞(t) Optimal portfolio process for consumption
problem on [0, ∞) 141

πk(t) Portfolio process for agent k 164
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π̂k(t) Optimal portfolio process for agent k 167, 169 (4.13)

Π(t, x) Optimal portfolio in feedback form, finite horizon 126 (8.24)

Π(x) Optimal portfolio in feedback form, infinite
horizon 144 (9.30)

r(t) Interest rate process 3 (1.5)

rν(t) Modified interest rate process 208 (5.3)

r3
∆
= sup{y > 0; X3(y) > X3(∞)} 101 (6.2)

ri
∆
= sup{y > 0; Xi(y) > Xi(∞)} 112 (7.3)

r∞
∆
= sup{y > 0; X∞(y) > X∞(∞)} 141 (9.9)

R(t) Excess yield (over the interest rate) 7 (2.9)

ρ(s) 162 (2.2)

S0(t) Money-market-price process 3 (1.6)–(1.7)

S
(ν)
0 (t) Modified money-market-price process 208 (5.5)

Sn(t), n = 1, . . . , N

Stock prices 3 (1.8)

S
(ν)
n (t), n = 1, . . . , N

Modified stock prices 209 (5.6)

σ(t) =
(
σnd(t)

)n=1,...,N

d=1,...,D

Volatility matrix 3 (1.8)

∗[0, ∞)K ∆
= [0, ∞)K\{0˜ } 172 (5.8)

T Terminal time 4

θ(t) Market price of risk 12 (4.1)

θν(t) Modified market price of risk 209 (5.9)

U(x), U1(t, c), U2(x)
Utility functions 94, 97, 139

U(p)(x) Power utility functions 95 (4.4)–(4.5)

Ũ(y) Convex dual of U 95 (4.8)

Uk(c) Utility function for agent k 162

U(c; Λ˜ ) Representative agent utility function 174 (5.24)

uν Unconstrained hedging price in the model Mν 211 (6.1)

V1(x) Value function for optimal consumption problem
on [0, T ] 98 (5.4)

V2(x) Value function for optimal terminal wealth
problem on [0, T ] 98 (5.6)

V3(x) Value for optimal consumption and terminal
wealth problem on [0, T ] 98 (5.8)

V (t, x) Value for optimal consumption and terminal
wealth problem on [t, T ] 128 (8.27)
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Vν(t, x) Value for the optimal consumption and terminal
wealth problem on [t, T ] in the market-model
Mν 293 (6.5)

V∞(x) Value for optimal consumption problem on [0, ∞) 139

Vν(x) Value function of the consumption/investment
problem on [0, T ] in the market-model Mν 267 (3.6)

V (x; K) Value function of the consumption/investment
problem on [0, T ] with constrained portfolio-
proportions; Problem 6.2.6 265 (2.16)

V (t, x; K) Value for the optimal consumption and terminal
wealth problem on [t, T ] with constrained
portfolios 293 (6.1)

Ṽ1(y) Dual of V1(x) 113

Ṽ2(y) Dual of V2(x) 115

Ṽ3(y) Dual of V3(x) 108 (6.26)

Ṽ (t, y) Dual of V (t, x) 131

Ṽν(t, y) Dual of Vν(t, x) 293 (6.9)

Ṽ∞(y) Dual of V∞(x) 141

Ṽν(y) Dual of Vν(x) 270 (3.27)

V AC(t; T ) Value (price) of American call 60 (6.2)

V AC(t; ∞) Value (price) of perpetual American call 64

V ACC(t) Value (price) of American contingent claim 56-58 (5.7), (5.13)

V ECC(t) Value (price) of European contingent claim 41 (2.9)

V FC(t; q) Value (price) of forward contract 43 (3.1)

W (t) =
(
W (1)(t), . . . , W (D)(t)

)′

D-dimensional Brownian motion 2

W0(t) D-dimensional Brownian motion under P0 17 (5.6)

Wν(t) D-dimensional Brownian motion under Pν 209 (5.11)

x Subsistence terminal wealth 98 (5.3)

X(t) Wealth process 10 (3.1)

Xx,c,π(t) Wealth process corresponding to (x, c, π) 91 (3.1)

Xx,C,π
ν (t) Wealth process corresponding to (x, C, π) in

the modified market-model Mν 210 (5.16)

X1(t) = Xx,c1,π1(t)
Optimal wealth process for the consumption

problem on [0, T ] 112 (7.5)

X2(t) = Xx,c2,π2(t)
Optimal wealth process for the terminal wealth

problem on [0, T ] 114

X3(t) = Xx,c3,π3(t)
Optimal wealth process for the consumption and

terminal wealth problem on [0, T ] 104 (6.10)
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X∞(t) = Xx,c∞,π∞(t)
Optimal wealth process for the consumption

problem on [0, ∞) 141 (9.13)

Xk(t) Wealth process for agent k 164

X̂k(t) Optimal wealth process for agent k 169 (4.12)

Xν(t) Optimal wealth for the consumption/investment
problem in the model Mν 269 (3.19)

X1(y)
∆
= E

∫ T

0
H0(t)I1

(
t, yH0(t)

)
dt 99 (5.11), 111 (7.1)

X2(y)
∆
= E
[
H0(T )I2

(
yH0(T )

)]
99 (5.11), 111 (7.2)

X3(y)
∆
= X1(y) + X2(y) 99 (5.12), 101 (6.1)

X (t, y)
∆
= E0

[∫ T

t
e
−
∫ s

t
r(u)du

I1
(
s, yY (t,1)(s)

)
ds

+e
−
∫

T

t
r(u)du

I2
(
yY (t,1)(T )

)]
121 (8.4)

X∞(y)
∆
= E

∫∞
0

H0(t)I1
(
t, yH0(t)

)
dt 140 (9.8)

Xk(y)
∆
= E

∫ T

0
H0(t)Ik

(
ye

∫ t

0
β(u)du

H0(t)

)
dt 168 (4.5), (4.7)

X̂(t) Upper-hedging-value process 212 (6.7)

X̌(t) Lower-hedging-value process 246 (9.32)

Xν(y)
∆
= E

[
Hν(T )I2

(
yHν(T )

)
+
∫ T

0
Hν(t)I1

(
t, yHν(t)

)
dt

]
268 (3.15)

ξ2 Optimal terminal wealth for the terminal wealth
problem 114

ξ3 Optimal terminal wealth for the problem of
consumption and terminal wealth 102 (6.4)

ξ(s) 162 (2.2)

Y (t) Discounted payoff process for American
contingent claim 54 (5.1)

Yn(t), n = 1, . . . , N

Yields (per stock share) processes 4 (1.12)

Y t,y(s)
∆
= y exp

{
−
∫ s

t
r(u)du −

∫ s

t
θ′(u)dW (u) − 1

2

∫ s

t
‖θ(u)‖2du

}
120 (8.2)

Y1(x) Inverse of X1(y) 112

Y2(x) Inverse of X2(y) 112

Y3(x) Inverse of X3(y) 101 (6.3)

Y(t, ·) Inverse of X (t, ·) 122 (8.9)

Y∞(x) Inverse of X∞(y) 141 (9.10)

Yk(x) Inverse of Xk(y) 168 (4.8)

Yν(x) Inverse of Xν(y) 268 bottom

Z0(t)
∆
= exp

{
−
∫ t

0
θ′(s)dW (s) − 1

2

∫ t

0
‖θ(s)‖2ds

}
Basic likelihood-ratio process 17 (5.2)
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Zν(t)
∆
= exp

{
−
∫ t

0
θ

′
ν(s)dW (s) − 1

2

∫ t

0
‖θν(s)‖2ds

}
Modified likelihood-ratio process 209 (5.10)

ζ(t)
∆
= H0(t)e

∫
t

0
β(u)du

182 (6.18)

ζ(ν) Support function of the convex set −K 206 (4.1)

ζ−(ν) Support function of the convex set −K− 239 (9.5)
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Admissible (consumption and
portfolio process pair), 92ff,
98, 128, 137, 140, 151, 165ff,
210, 241ff, 264ff, 292ff, 311ff

American call option (see option,
American call)

American put option (see option,
American put)

Arrow–Pratt index of risk aversion
(see index of risk aversion)

Asian option, 82
arbitrage, viii, x, 4, 11, 34, 327ff,

333
approximate, 35
pricing theory, 38, 81ff

attainability, x

Bankruptcy, 92, 158
barrier cone, 206, 232, 282
barrier option, 83
β, viii, 154
binomial model, 85, 87
Black–Scholes formula, 39, 49

nonlinear, 85
Brownian functional, 363

smooth, 369

budget constraint, 92, 102, 104,
137, 166, 203, 211ff, 242ff

Canonical probability space, 27,
363

capital asset pricing model, 31, 88,
154, 156

consumption-based, 156, 161,
187ff, 197

Clark formula, 82, 363ff
extended, 369

closed convex function , 205
coherence, 34
commodity, 159ff, 196, 197

market clearing, 170ff
complementary slackness, 219, 273,

314
complete market (see financial

market, complete)
compound option, 83
constant coefficients, 134, 135, 137,

142, 154ff, 200ff, 252ff, 258,
301

constant elasticity of variance, 33
consumption process, x, 89, 91ff,

128, 164ff, 197, 213, 262ff,
275, 291ff, 311ff, 336, 339
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consumption (continued)
aggregate, 188
cumulative, 202ff, 208ff, 213, 218,

224ff, 233, 241, 262
infinite horizon, 137
optimal, 85, 102ff, 113ff, 139,

141, 145, 154ff, 157, 159ff,
168, 171ff, 178, 184ff, 189ff,
194, 196ff, 260ff, 274ff, 283ff,
300, 310, 314ff, 335

in feedback form, 126, 132ff,
144, 149ff, 261, 297

subsistence (see subsistence
consumption)

contingent claim, x, 36, 81, 199ff,
208, 212, 220ff, 224ff, 232,
238, 243ff, 253ff, 258, 260

American, 38, 54, 85ff, 259
European, 38, 204, 232
value (price) of, 41, 55, 58, 221
See also options

convex dual, 89, 95, 108, 131, 136,
141, 270, 284, 294ff

cost-of-carry, 44
cumulative income process, 10, 18,

31, 164, 202, 241
integrable, 18, 31

Derivative security, viii, 36
discontinuous asset prices, 33, 155ff
discount factor (rate), 142, 162ff,

170, 186
dividend, 4, 5, 201, 220, 230, 252ff
doubling strategy, 8, 33
dual optimization problem, 284ff,

292, 310, 316
dual process, 199, 208, 219, 261

optimal, 200, 225ff, 261, 275, 316
dual value function, 101, 111, 118,

131, 137, 148, 155, 284, 296
duality, xi, 155, 261, 284ff

stochastic, 318
dynamic programming, 130, 148,

154, 213, 216, 246

Econometrics, 33
early exercise premium, 59, 67, 78,

87
efficient market hypothesis, 32

endowment, 159ff, 170, 186, 198
aggregate, 159ff, 170ff, 188, 192
constant aggregate, 190
ergodic aggregate, 189, 194

effective domain of a convex
function, 205, 239

equilibrium, xi, 88, 159ff, 178ff, 319
existence, 160ff, 178ff, 196ff
uniqueness, 160ff, 178ff, 186,

196ff
equity premium puzzle, 156
equivalent measures (see

martingale)
essential supremum, 323
European call option (see option,

European call)
European put option (see option,

European put)
exchange economy, 161
exchange option (see option)
exotic option (see option)

Feasibility
for agents, 70ff
nonstrict, 168ff
strict, 168ff

fictitious completion, xi, 303
financeable, 21, 40, 275
Fenchel transform (see convex dual)
filtering, 158
filtration, 2

left-continuous, 2
right-continuous, 2

financial market, 4, 159, 201, 260
complete, x, xi, 22ff, 33, 81, 88ff,

136, 151, 159, 163, 166,
169ff, 182ff, 196, 201, 217,
238, 262, 284, 302, 311

constrained (see portfolio
constraints)

incomplete, x, 22ff, 83, 88ff, 198,
199, 206, 226, 232, 243, 257,
260ff, 276, 302ff, 318ff

standard, 16ff, 24, 28, 88ff, 136,
151, 163, 166, 169ff, 182ff,
201, 217, 238, 262, 284, 302,
311

finite-variation process, 2
frictions, 8, 84
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forward
contract, 36ff, 81
price, 43

forward-futures spread, 46
functional stochastic differential

equation, 186
futures

contract, xi, 36ff, 81
price, 45

Gains process, 7, 328
Girsanov theorem, 15, 235, 279
growth rate (see wealth process,

growth rate maximization)

Habit formation, 156
Hamilton–Jacobi–Bellman

equation, 90, 118, 128, 130,
137, 147ff, 154ff, 261, 276,
291, 296, 301

constrained, 292, 301
hedging portfolio (see portfolio,

hedging)

Incomplete market (see financial
market, incomplete)

income process (see cumulative
income process)

index of risk aversion, 89, 95, 97,
179, 188, 196

infinite planning horizon, 27ff, 90,
136ff, 154ff, 319

interest rate, 3ff, 15, 188, 192, 208
different for borrowing and

lending, xi, 82, 84, 157,
257ff, 261, 310ff, 319

term structure, 81
international finance, 158
intrinsic value, 68

Jumps (see discontinuous asset
prices)

K-attainable, 204, 212, 226ff

Legendre transform (see convex
dual)

long position, 39

lookback option (see option,
lookback)

lower hedging price, 201, 238ff,
244ff, 251ff, 258

lower hedging value process, 246,
249, 254ff

Malliavin calculus, 366
market (see financial market)
market price of risk, 12, 27, 164,

184ff, 201, 302ff, 313
marking-to-market, 37
Markov model, 5, 118ff, 155, 196,

198, 318
martingale

equivalent measure, x, 17, 21, 34,
119ff, 318

existence, 33
uniqueness, 35

minimal measure, 84, 258, 320
representation as stochastic

integral, 24, 93, 104, 112,
114, 169, 205, 217, 249, 265,
309, 320, 328, 339

standard measure, 17, 90, 164,
205, 210, 220, 240, 262, 311

mean rate of return, 5, 185, 208,
226, 303

mean-variance analysis, vii, xi
mean-variance hedging, 84
money market, 1, 3, 39, 90, 159ff,

184, 187ff, 201, 208, 220,
238, 261, 302, 311ff, 327ff

clearing, 170ff
Monte Carlo simulation, 87
mutual fund, 15, 127, 145, 185ff

two-fund theorem, 154ff
three-fund theorem, 154

Novikov’s condition, 17, 21, 119,
235, 279, 283

numerical methods, 87

Optimal consumption (see
consumption, optimal)

optimal exercise, 56, 59, 62, 68, 86
optimal portfolio (see portfolio,

optimal)
optimal stopping, 39, 64, 87, 349ff
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optimal terminal wealth, 102ff
optimal wealth process (see wealth

process, optimal)
options

American call, 37, 54, 61
American put, 37, 67ff, 86
Asian, 82
barrier, 83
compound, 83
European call, 37, 49, 61, 204,

224ff, 230ff, 253ff
European put, 37, 50, 204, 225,

253ff
exchange, 83
exotic, 83, 259
lookback, 53, 82
Parisian, 83
path-dependent, 52, 82ff, 259
perpetual, 27, 61, 63
price (value), 49, 50, 61, 68ff
real, 86
quantile, 83
See also contingent claims

Portfolio
constraints, xi, 83ff, 90, 157,

199ff, 203ff, 220ff, 233, 225ff,
239, 243, 253ff, 257, 260ff,
265

dominating, 85ff
Γ-financed, 10, 31
hedging, viii, ix, 21, 38, 42, 49,

56, 91, 199ff, 224ff, 246, 260
insurance, 115, 118, 156, 197
martingale-generating, 20, 31,

167
mean-self-financed, 84
minimal-variance, 158
optimal, 85, 103ff, 113ff, 139,

141, 157, 159ff, 169, 195,
198, 260ff, 274ff, 304ff, 310,
314ff, 335, 341

in feedback form, 126, 132ff,
144, 149ff, 261, 297

process, 7ff, 31, 89ff, 128, 137,
164ff, 202ff, 208ff, 213, 219,
227, 233, 241, 244, 275, 314

-proportion process, 108, 202ff,
208, 213, 218, 225ff, 233,

239ff, 257, 260ff, 269, 283ff,
291ff, 297, 300, 304ff, 311ff,
335ff

replicating, 212, 225
self-financed, 6ff, 328ff, 333
superreplicating, 199ff, 212,

224ff, 257, 260
tame, 9, 33, 329, 333
unconstrained hedging, 205, 211ff

positive homogeneity, 206, 234, 239,
277

preference structure, 97ff, 101, 111,
119, 265

Hölder continuity, 119
polynomial growth, 119

prepayable, mortgage 54
production, 161, 196
progressively measurable

functionals, 186
proper convex function, 206
put-call parity, 50

Quantile option, 83
quasi-Monte Carlo simulation, 87

RCLL (right-continuous,
left-limits), 2

representative agent, 161, 170, 174,
178, 186ff, 195, 196

restrictedly
adapted, 28
progressively measurable, 28, 136

risk-free rate (see interest rate)
risk-premium, 8, 12, 154, 156, 188,

319

Scale function, 194
semimartingale, 3
separation theorem, 154
short position, 39
short-selling, 8
singularly continuous process, 328
“small investor,” 88, 97
“smooth fit,” 64
Snell envelope, 54, 56, 67ff, 350ff
speed measure, 195
standard financial market (see

financial market, standard)
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state price density, 19, 42, 91ff,
164ff, 172, 182ff, 202

statistical estimation, 33
stochastic control, 84, 158, 245,

257, 276
stochastic integral representation of

a martingale (see martingale,
representation as stochastic
integral)

stochastic maximum principle, 155
stochastic volatility (see volatility,

stochastic)
stock, 1, 3, 159, 187, 226, 238, 261ff,

302ff
discounted prices, 4, 160
market clearing, 170ff
prices, 3, 39, 90, 160, 164, 201,

208, 319, 327ff
stop-loss, start gain, 82
strike price, 37, 49, 204
subadditivity, 206, 234, 239, 277
subsistence consumption, 97, 113,

118, 139, 160ff, 188ff
aggregate, 162, 170

subsistence terminal wealth, 97
support function, 205ff, 239, 261,

291
swap, 36, 37

Taxes, 84
totally unhedgeable coefficients,

305
transaction costs, 8, 85, 156ff, 258ff

Unconstrained hedging price, 204,
211, 228, 244

uniform properness, 196ff
upper hedging price, 199ff, 204ff,

212, 228ff, 238, 257, 260
upper hedging value process, 212ff,

220ff, 225ff

utility
from consumption, 88ff, 98, 101,

111ff, 136, 140, 159ff, 261,
265ff, 312

exponential, 154
function, 94, 159, 162, 170, 174,

178, 186, 189, 192ff, 257ff,
260

logarithmic, 95, 104, 133, 136,
150, 154, 156, 189, 258, 276,
282, 286, 291, 304, 316

power, 95, 105, 132, 136, 149,
154, 189, 276, 291, 301, 305,
317ff

recursive, 156ff
from terminal wealth, 88ff, 98,

101, 111ff, 154, 258, 261,
265ff, 290, 312

Value function, 98, 104, 116, 132,
265ff, 283, 312

as a utility function, 108
dual (see dual value function)
time-dependent, 292ff

variational inequalities, 87
viability, 11, 333
viscosity solution, 157, 258
volatility, 5, 84, 164, 185, 201, 262

stochastic, 84ff, 259

Wealth process, 10, 31, 128, 137,
164ff, 195, 202ff, 210ff, 213,
226ff, 233ff, 241ff, 263ff, 275,
283, 291, 311ff, 335

discounted, 11
growth rate maximization, 150ff,

156, 195
optimal, 104ff, 113ff, 141, 145,

150ff, 169
Wiener measure, 27, 363
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