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Chapter 1

Introduction

One of the major tasks of financial research is the prediction of price changes.

It is natural to draw on past information from the series of price chages

to form reasonable conclusions. Whether absolute or as logarithms, proce

chnges have long been believed to be serially independent. A refinement

results from the assumption that price changes or the logarithms of which

are normally distributed, hence, are Brownian motion. This long believed

hypothetical independence lead to view prices as random walks. Formally,

the evolution of prices can be stated by Pt = Pt−1 + at with Pt the observed

proce at time t and at serially uncorrelated error terms with zero expecta-

tion. Consequently, the price changes are serially uncorrelated themselves.

The price at time t can then be written as Pt =
∑t

i=1 ai. Very often, the

at are modeled as normal random variables with finite, constant variance.

Laid as a foundation by Bachelier in his 1900 PhD dissertation, prices were

thought to ressemble a Brownian motion type random walk. Later on, the

autocorrelative structures of prices were analyzed in the context of ARIMA

models.

For some prices, not necessarily stock prices, other models are deemed

more appropriate than random walks or from the class of ARIMA structures.
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In addition to the order of integration, a great variety of models for trends

and compositions of the prices can be thought of, instead. An important

factor plays the memory of the series.

Great critique of the random walk model resulted from the development

of the theory of efficient markets and the notion of economic equilibria. Se-

quential price changes could no longer be considered merely independent.

Instead, the theroy of martingales was introduced. Let the return of, for

example, a stock price be defined by

rt+1 =
Pt+1 +Dt − Pt

Pt

(1.1)

where Dt is the dividend paid druing period t. Further, let us assume that

the return has a constant expected value, Et(rt+1) = r. This leads to the

idea of the price in t being its discounted expected value, i.e.

Pt =
Et(Pt+1 +Dt)

1 + r
. (1.2)

Additionally, the understanding of reinvesting proceeds from the stock such

as dividends into a fund’s position in the stock at time t, xt, leads to the

idea of considering the fund’s position as a martingale when discounted by

the expected return, i.e.

xt =
Et(xt+1)

1 + r
. (1.3)

The price itself, then, is a submartingale when the dividend price ration is

constant, d, and r > d, i.e.

Pt =
Et(Pt+1)

(1 + r − d)
< Et(Pt+1). (1.4)

Hence, under the martingale assumption, the conditional first order moment

of the difference Pt+1−Pt does not depend on the information at t. This is less

restrictive than the random walk assumption where not only the first order
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moments but also higher conditional moments are independent of the infor-

mation Ft. Particularly, the observable quite and noisy times, respectively,

and the inherent autocorrelation of conditional variances of price movements

can be caught by martingales which is not feasible for random walks. This as-

pect of Martingale theory is consequently extended to non-linear stochastic

processes such as Engle’s (1982) autoregressive conditionally heteroscedas-

tic, or ARCH, model in order to provide a structure for higher conditional

moments. Essential, in this respect, are tests for non-linearity. Also, multi-

variate versions of ARCH are introduced as well as multivariate regression

techniques. The time series are analyzed with respect to stationarity. Tests

for misspecification are also carried through as well as dynamic regression

methods.

Later on in the text, integrated financial time series are analyzed. For this

purpose, cointegrated processes and testing for cointegration is introduced

which is carried on to cointegrated systems and their estimation.
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Chapter 2

Stationary and nonstationary

time-series models

2.1 Stochastic processes, ergodicity and sta-

tionarity

2.1.1 Stochastic Processes

For analyzing financial time series, it is advisable to regard the observed se-

ries, (x1, x2, . . . , xT ), as a realization, denoted {xt}T
1 , of a stochastic process1,

{Xt}∞−∞. In the following, the index set, though, will be restricted to that

of the realization, i.e. T = (1, T ). The realization is related to the sto-

chastic process in the same manner as a sample is related to the entire

population. The stochastic process is identified by a T -dimensional prob-

ability distribution. In general, the focus will be on the T first moments,

E(x1), E(x2), . . . , E(xT ), the T variances, V (x1), V (x2), . . . , V (xT ), and the

T (T − 1)/2 covariances, Cov(xi, xj). Though unrealistic, the assumption of

1For simplicty, written as xt, in the sequel.
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joint normality of the distribution would characterize the stochastic process

exhaustively. If the process, however, can be modeled as a linear combination

of past values of the process itself and other processes, and Gaussianity can-

not be assumed, then it could still be described by the above expectations.

But the number of observations is not sufficient to infer on the remaining

T +T (T +1)/2 parameters. THere are too many parameters to estimate for,

then.

2.1.2 Ergodicity

When there is, however, only a finite realization available, the possibility of

inference depends on the ergodicity of the series. That means that sample

moments approach their population counterparts as the number of observa-

tions becomes infinite. Formally,

Definition 2.1.1. Ergodic A time series is ergodic iff its sample moments

converge to their population moments in probability.

In the following, processes are assumed to be ergodic to simplify matters.

2.1.3 Stationarity

A process has very pleasant features if it is stationary. Let the mean and the

variance of a process be constant, respectively. Moreover, for a given k, let

the autocovariance function

γk = Cov(xt, xt−k)

and the autocorrelation function (ACF)

ρk =
Cov(xt, xt−k)

V (xt)V (xt−k)
=
γk

γ0
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be the same for all t and only dependend on the lag k, then the process is said

to be weakly stationary or, since only the first two moments are considered,

covariance stationary. If additionally for arbitrary m, however, the joint

probability distribution of the process at any set of times, t1, t2, . . . , tm, is

the same as t1+k, t2+k, . . . , tm+k for any value of k, i.e. unaffected by time

shifts, then the process is said to strictly stationary. When moments exist,

that is finite, then strict staionarity implies weak stationarity.

Because of the symmetry assumption of the ACF, i.e. γ−k = γk, only

the half of positive k is conventionally given. In the analysis of xt, the ACF

expresses the serial dependence structure2 of the process and, hence, the

memory within the proecess. Together with mean, µ = E(xt), and variance,

σ2 = γ0 = V (xt), the ACF is essential in describing the realization.

2.2 ARMA

2.2.1 Linear filter

By the Wold decomposition, any weakly stationary and purely non-deterministic

process, x−µ, is a linear combination of a sequence of random variables that

are serially uncorrelated. Purely non-deterministic means that any perfectly

predictable quantity, µ, has been subtracted from the process xt. Hence it

can be written in the form

xt − µ = at + ψ1at−1 + ψ2at−2 + . . . =
∞
∑

j=0

ψjat−j, ψ0 = 1 (2.1)

where the aj are uncorrelated random variables.Let us assume in the follow-

ing, that, without loss generality, µ = 0 and set ψj = φj.

2In other words, influence from the past.
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2.2.2 AR(1)

2.1 can be expressed as the first-order autoregressive or AR(1) process

xt = at + φat−1 + φ2 + . . . = at + φ(at−1 + φat−2 + . . .)

= φxt−1 + at. (2.2)

Now, we introduce the lag operator, B, to be operator shifting from obser-

vation xt to xt−1 in the way Bxt ≡ xt−1. This can be extended to multiple

lags by Bdxt ≡ xt−d. Thus, 2.2.2 can be written as

(1 − φB)xt = at. (2.3)

or, equivalently,

xt = (1 − φB)−1at = (1 + φB + φ2B2 + . . .)at

= at + φat−1 + φ2at−2 + . . . (2.4)

which converges for |φ| < 1.

The ACF of the AR(1) process can obtained from

γk − φγk−1 = E(atxt−k) (2.5)

by, first, multiplying both sides by xt−k and, then, taking expectations of

both sides. Because of the independence of at and xt−k, 2.5 can be rewritten

as

γk = φγk−1, ∀ k. (2.6)

Carrying on the recursion to γk = φkγ0 with ACF ρk = φk, one can see for

φ > 0 that the ACF decays exponentially to zero whereas for φ < 0, the

ACF decays in an oscillating way to zero.
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2.2.3 MA(1)

Consider next the so called first order moving average or MA(1) model

xt = at − θat−1. (2.7)

Analogously, it can be written as

xt = (1 − θB)at.

The autocovariance function is

γ0 = σ2(1 + θ2)

γ1 = −σ2θ

γk = 0 for k > 1.

Consequently, the ACF is

ρ1 =
−θ

1 + θ2
and

ρk = 0, for k > 1. (2.8)

The lack of memory of this type of process beyond lag 1 and, hence, the

abrupt jump to zero in the ACF for k ≥ 2 is in drastic contrast to the rather

smooth decay of the ACF of an AR(1) process.

Rewriting ρ1 from 2.2.3 as θ2ρ1 + θ + ρ1 = 0, generates real solutions for

the first order coefficients if −.5 < ρ1 < .5. Always two θ satisfy this

equation such that always two corresponding MA(1) processes have the same

ACF.

All MA models are stationary. If for the MA(1), |θ| < 1, the model is

said to invertible. That means that it can be transformed, or rather inverted,

into an autoregressive process of the form

xt = π1xt−1 + π2xt−2 + . . .+ at
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with
∑ |πj| < ∞ by at = xt(1 − θB)−1. The following relation holds πj =

−θj, and one can see that the invertibility condition, |θ| < 1, is necessary for

at to have finite (second) moments.

2.2.4 General AR and MA processes

Naturally, the orders of the respective processes are not restricted to the

value one. The autoregressive process of general order p can be written as

xt − φ1xt−1 − φ2xt−2 − . . .− φpxt−p = at or
(

1 − φ1B − φ2B
2 − . . .− φpB

p
)

= at or shorter

φ(B)xt = at. (2.9)

So, the generalized MA representation, xt = ψ(B)at, can be found through

division of φ(B) of both sides of 2.2.4. The ψ converge in the case of station-

arity, i.e. when the characteristic roots of

φ(B) = (1 − g1B)(1 − g2B) . . . (1 − gp) = 0 (2.10)

all lie outside the unit circle or, equivalently, when |gi| < 1, i = 1, 2, . . . , p.

The solution to the difference equation

φ(B)ρk = 0, k > 0, (2.11)

which is a linear combination of the roots,

ρk = A1g
k
1 + A2g

k
2 + . . .+ Apg

k
p ,

governs the ACF. Its shape is consequently a blend of either damped expo-

nentials or damped sine waves in the case of real roots or complex roots,

respectively.

The AR(2) process may serve as an example,

(1 − φ1B − φ2B
2) = at.
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From its characteristic equation, φ(B) = 0, the roots

g1,2 =
1

2

(

φ1 ± (φ2
1 + 4φ2)

1/2
)

(2.12)

can be obtained as real or complex numbers. For the process to be stationary,

it is necessary that |g1| < 1 and |g2| < 1. Hence, the respective restrictions

are

φ1 + φ2 < 1,

−φ1 + φ2 < 1, and

−1 < φ2 < 1. (2.13)

From (2.12) it can be seen that the roots are complex if φ2
1 + 4φ2 < 0.

The ACF, in this case, for the four possible (φ1, φ2) are shown in figure

2.1 . As stated before, the ACF is a blend of damped, possibly, oscillating

exponentials. In the complex case, it is a blend of damped, possibly, oscil-

lating sine waves. Plots of time series generated for the four different AR(2)

processes can be seen in figure 2.2 . The at are NID(0, 25). In case of the

real roots, the graphs may appear either smooth or jagged depending on

the signs of the roots whereas the graphs seem periodic when the roots are

complex.

It is sometimes difficult to infer upon the correct order of an AR(p) process

from looking at the ACF. Hence, the partial autocorrelation function, or

PACF, should be referred to, alternatively. It determines the part of the

correlation between xt and xt−k which is actually the correlation which both,

xt and xt−k, have with the intermediate variables, xt−1, xt−2, . . . , xt−k+1.

More formally, the partial autocorrelation is the coefficient φkk of the

AR(k) process

xt = φk1xt−1 + φk2xt−2 + . . .+ φkkxt−k + at, (2.14)
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Figure 2.1: ACFs of various AR(2) processes.

i.e. the autoregression of xt on k lagged terms. The φkk are commonly ob-

tained through solving the so called Yule-Walker equations given from suc-

cesively multiplying xtφ(B) by xt−1, xt−2, . . . , xt−k and taking expectations.
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This leads to the system

φkk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1 . . . ρk−2 ρ1

ρ1 1 . . . ρk−3 ρ2

. . .

ρk−1 ρk−2 . . . ρ1 ρk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1 . . . ρk−2 ρk−1

ρ1 1 . . . ρk−3 ρk−2

. . .

ρk−1 ρk−2 . . . ρ1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

So, for particular p,

φ11 = ρ1 = φ, φkk =, k > 1, when p = 1,

φ11 = ρ1, φ22 =
ρ2 − ρ2

1

1 − ρ2
1

, φkk =, k > 2, when p = 2,

φ11 6= 0, φ22 6= 0, . . . , φpp 6= 0, φkk =, k > p.

The AR(p) process is consequently described by a gradual decay of the ACF

which is a combination of damped exponentials and sine waves, and an abrupt

vanish of the PACF for lags greater than p.

For the general MA(q),

xt = at − θ1at−1 − . . .− θqat−q,

the ACF is of the form

ρk =
−θk + θ1θk+1 + . . .+ θq−kθq

1 + θ2
1 + . . .+ θ2

q

, k = 1, 2, . . . , q,

ρk = 0, k > q.

In contrast to the ARp), the ACF vanishes for lags greater than q. Hence,

there is no memory beyond q periods.
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Now, for the MA(q) to be invertible, the characteristic roots solve

(1 − θ1B − . . .− θqB
q) = (1 − h1B) . . . (1 − hqB) = 0 (2.15)

for |hi| < 1, i = 1, 2, . . . , q. In figure 2.3,

, two MA(2) processes are displayed for at ∼ N(0, 25). They are very sim-

ilarly jagged as an AR(2) with real roots g1·g2 < 0. The PACF, now, vanishes

slowly in contrast to the AR(p). A formal expression of which is rather com-

plicated. They, however, look similar to the ACfs of AR processes. There

appears to be a reciprocity in the respective behavior of the AR process’

ACF and PACF and the MA process’ ACF and PACF.

2.3 ARMA(p,q) and ARIMA(p,d,q)

A natural consequence may be to consider mixtures of the above AR and

MA processes. This brings us straight to the autoregressive-moving average

models. Consider an AR(1) and an MA(1) process, respectively. When

combining both, the result is a first-order autoregressive-moving average, or

ARMA(1,1) model of the form

xt − φxt−1 = at − θat−1. (2.16)

Division of both sides by (1−φB) leads to the corresponding MA(∞) model

xt = ψ(b)at =

( ∞
∑

i=0

φiB
i(1 − θB)at

)

(2.17)

= at + (φ− θ)
∞
∑

i=0

φi−1at−i

where ψ(B) =
1 − θB

1 − φB
.
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Conversely, the ARMA(1,1) process can be transformed into an AR(∞) rep-

resentation with weights

π(B) =
1 − φB

1 − θB

such that

at = π(B)xt =

( ∞
∑

i=0

θiB
i

)

(1 − φB)xt

which is equivalent to

xt = (φ− θ)
∞
∑

i=0

θi−1xt−i + at.

The process is stationary if |φ| < 1 and, alternatively, invertible if |θ| < 1.

To obtain the ACF from an ARMA(1,1) representation, consider multi-

plying both sides of (2.16) by xt−k and taking expectations. This yields

γk = φγk−1, k > 1,

γ0 − φγ1 = σ2 − θ(φ− θ)σ2, k = 0,

γ1 − φγ0 = −θσ2,

respectively, from the fact that xt−kat−j has zero expectation for k > j. From

these equations, the ACF can be retrieved after a few steps such that

ρ1 =
(1 − φθ)(φ− θ)

1 + θ2 − 2φθ
.

ρk = φρk−1, k > 1

For k ≥ 1, this ressembles the structure of the ACF of an AR(1) process in

that it decays at an exponential rate. There is a difference, however. With

φ > θ, φ, θ 6= 0, the ρ1 can be much smaller than φ which one recalls to be

the ACF of an AR(1) process.
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When AR and MA are both of higher order, the combination of them,

consequently, leads to a higher order ARMA process. So, if AR(p) and

MA(q), the resulting model is ARMA(p, q) with the form

xt − φ1xt−1 − . . .− φpxt−p = at − θ1at−1 − . . .− θqat−q,

or short φ(B)xt = θ(B)at.

As to the stationarity and invertibility conditions, they depend on those of

the respective AR and MA processes forming the ARMA process. Beyond

a certain number of lags, that is q − p, the ACF displays the shape of that

of an AR(p) process whereas the PACF will decline like that of an MA(q)

process after p− q lags.3

It has been silently preconditioned in the previous that the process has

zero mean, i.e. µ = 0. This can easily be altered, however, by simply

replacing xt with the, now, mean-corrected xt−µ, such that the ARMA(p,q)

model turns into

φ(B)(xt − µ) = θ(B)at.

2.3.1 Linear stochastic processes

In this short paragraph, attention is given to the innovations, {at}. Up

to now, it has been merely said that they are uncorrelated and identically

distributed with zero mean and finite variance. There is a little more to

it, though. In other words, they are white noise, i.e. at ∼ WN(0, σ2). It

is also possible that the at are additionally independent which renders the

sequence strict white noise, denoted at ∼ SWN(0, σ2). Consequently, if a

stationary process xt is designed as a linear filter of the strict white noise,

i.e. xt = ψ(B)at, at ∼ SWN(0, σ2), then xt is referred to as a linear process.

3That is if q − p > 0 or p− q > 0, respectively.
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The resulting stationary process from a filter of a white noise process need

not be linear itself.

2.3.2 Non-stationary processes and ARIMA models

Up to now, variance as well as mean have been supposed to be constant

which is the case for a weakly stationary process. But this may contradict

reality since many financial series exhibit moments that vary with time.

Let us first consider a non-stationarity in variance. Consider the process

xt = µt + ǫt (2.18)

where µt is the deterministic mean level and ǫt is the error term. Additionally,

let the variance of the error term depend on the mean level in the functional

relationship V (xt) = V (ǫt) = h2(µt)σ
2 and h is a known function. Now,

one has to find a function g to transform the data into g(xt) which renders

the variance of the transformed process constant. To do this, consider the

Taylor expansion of g(xt) around the mean level to obtain g(xt) = g(µt) +

(xt + µt)g
′

(µt) with g
′

denoting first derivatives. Hence, one obtains an

approximation of the variance by

V [g(xt)] ≈ [g
′

(µt)
2]h2(µt)σ

2.

The transform function, g, then is found from

g
′

(µt) =
1

h(µt)
.

Next, we approach the problem if the mean is variant in time. In 2.18,

µt can be thought of to change in many ways. Assume that it is a polynmial

in time t of order d. Thus, the process can be described by

xt =
d
∑

i=0

βjt
j + ψ(B)at

23



with

E[xt] =
d
∑

j=0

βjt
j,

hence, deterministic. Consider the example where d = 1 such that

xt = β0 + β1t+ at.

First-differencing, that is subtracting xt−1 from both sides removes the time

component, i.e.

xt − xt−1 = β1 + at − at−1. (2.19)

This is an ARMA(1,1) process which is neither stationary nor invertible

because of the unit roots of both, AR and MA components. Introducing the

first-differencing operator, ∇, we can rewrite 2.19 in the fashion

wt ≡ ∇xt = xt − xt−1 = (1 −B)xt = β1 + ∇at.

While the MA(1) part of the newly generated process, wt, is not invertible,

wt itself is stationary.

In general, the trend may be a polynomial of order d and the error process

of 2.18 may be generated by the ARMA process

φ(B)ǫt = θ(B)at.

Then, first-differencing xt d times, we obtain the new process

∇dxt = θ0 +
∇dθ(B)

φ(B)
at

with θ0 = d!βd. The MA part has, now, d unit roots, and the variance of xt

is found to be invariant to t. This can be seen in an example for, both, linear

and quadratic trends. The respective models are

xt = 10 ∗ 2t+ at and

x=10 + 5t− .03t2 + at

24



with white noise specified by at ∼ iid N(0, 9). This can be seen in figure 2.5.

Consider next ARMA process with non-stationary AR part. This may

be demonstrated with the AR(1) model

xt = φxt−1 + at = xt = x0φ
t +

t
∑

i=0

φiat−i. (2.20)

where φ > 1. Suppose the process started at x0. Now, at each time τ prior

to t, (2.20) yields the conditional expectation of xt in terms of x0 and the

past shocks, a0, . . . , aτ−1. Hence, the process has a stochastic trend which is

altered each period by a new shock. The variance of the process can be given

by

V (xt) = σ2φ
2(t+N+1) − 1

φ2 − 1

which is increasing in time and growing to infinity due to φ > 1. Since there

is a trend in mean and variance, the process is referred to as explosive.

Generating a process as in (2.20) with x0 = 10, φ = 1.05 and at ∼ iiN(0, 9),

behaves as demonstrated in figure 2.6.

The series describes an exponential curve after starting out similarly to

the previous AR(1) samples. This feature will remain when additional AR

and MA terms are added as long as the process is non-stationary.

We, now, know that the AR(1) process is stationary if φ < 1, explosive if

φ > 1, and a so called random walk for φ = 1, i.e.

xt = xt−1 + at.

Including a constant θ0, adds a drift to the random walk. Consequently, the

process at time t is

xt = x0 + t · θ0 +
t
∑

i=0

at−i
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with expected value µt = E(xt) = x0 + tθ0 and variance γ0,t = V (xt) = t ·σ2.

The covariance can be written in the form

γk,t = Cov(xt, xt−k) = (t− k)σ2, k ≥ 0

yielding the correlation between at and xt−k

ρk,t =

√

t− k

t

which approaches unity for increasing t. This renders the process very

smooth yet still non-stationary. An example is given in figure 2.3.2. Gen-

erated are two random walk processes with x0 = 10 in common as well as

at ∼ iid N(0, 9). In the first part, the random walk has zero drift whereas

in the second part, θ0 = 2. Notice that the two plots have basically nothing

in common, any more.

Consider next integrated processes of which the random walk, ∇xt =

θ0 +at, is one proxy. In general, the series may need d times first differencing

to become stationary. It is then said to be integrated of order d. If this newly

obtained series is governed by an ARMA(p, q) process

φ(B)∇dxt = θ0 + θ(B)at, (2.21)

it is said to be an autoregressive-integrated-moving average, or ARIMA(p, d, q),

process. In reality, d will take on values of, mostly, zero, one or, sometimes,

two. Recall the ARMA(1,1) process

x− φxt−1 = at − θat−1

where we know the ACF to equal

ρ1 =
(1 − φθ)(φ− θ)

1 + θ2 − 2φθ

ρk = φρk−1, k > 1.
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Now, let φ approach one. Then, the resulting ARIMA(0,1,1) process

∇xt = at − θat−1

has correlations all tending toward unity.

In (2.21), let θ0 = 0. We introduce a new quantity, wt, such that

φ(B)wt = θ(B)at (2.22)

is a stationary and invertible ARMA process with wt = ∇dxt. To obtain xt

from this, we set xt = Sdwt where S is the infinite summation

S = (1 +B +B2 + . . .) = (1 −B)−1 = ∇−1.

It is reffered to as the integral operator giving the name to the integrated

process xt because it it obtained by integrating wt d times.

The xt is said to be homogeneous non-stationary as mentioned in Box

and Jenkins (1976). That is, many financial time series seem to be pretty

much independent of the present level, xt, in their local behavior. This

is in contrast to AR(1) processes whose local behavior, for |φ| < 1 and

|φ| > 1, depends stronly on the present levels, respectively. Hence, financial

time series appear to behave locally homogeneously though they are non-

stationary. To compensate for this discrepancy, consider that the ARMA

process must have the property

φ(B)(xt + c) = φ(B)xt

implying that φ(B)c = 0 which is equivalent to φ(1) = 0. Hence, φ(B) can

be factorized with a unit root such that

φ(B) = φ1(B)(1 −B) = φ1(B)∇.

Consequently, (2.22) can be rewritten in the fashion

φ1(B)wt = θ(B)at
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with wt = ∇xt. In order to sustain homogeneous non-stationrity, wt is

required to not explode. Thus, φ1(B)wt is either stationary or there is an

additional unit rrot in φ1 such that φ2(B) = φ1(B)(1−B) yielding φ2(B)w∗
t =

∇2xt = θ(B)at with stationary autoregressive part. If this is still not enough,

it might be required to first difference up to d times. If the resulting process

should be stationary, then, the autoregressive operators of homogeneous non-

stationary series are required to be of the form φ(B)∇d. An example is given

in figure 2.3.2. Here, ∇2xt = at with at ∼ iid N(0, 2) and x0 = x1 = 10.

Note how the level and slope alter randomly.

So far with θ0 = 0, the series driven by an ARIMA process displayed

stochastic trends. We, now, introduce a deterministic trend by a non-zero

drift parameter such that µt = E(xt) = β0 + θ0t. Here, β0 = x0. Including a

constant in the model for, generally, dth differences results in a polynomial

trend of order d. For θ0 6= 0,

E(wt) = E(∇dxt) = νw =
θ0

1 − φ1 − φ2 − . . .− φp

is different from zero. As a example, consider the series in figure 2.3.2. Here,

∇2xt = 2 + at and, again, at ∼ iid N(0, 2) and x0 = x1 = 10. The trend of

the original series is, now, of a quadratic type completely overshadowing the

noise term.

As concluding remarks, when θ0 = 0, a stochastic trend is the conse-

quence. On the other hand, if θ0 6= 0, a polynomial in t of order d represents

the deterministic trend. The resulting model, then, can be written as

φ(B)∇dxt = φ(1)βdd! + ∇dθ(B)at.

By the exactly d unit roots of the MA part, it is visible that the original

noise of the process, xt, is stationary. If this were not so, the noise would be

non-stationary.
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Figure 2.2: Simulations of various AR(2) processes.
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Figure 2.3: Simulations of MA(2) processes.
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Figure 2.4: Linear and quadratic trends. M1 : xt = 10 + 2t + at, M2 : xt =

10 + 5t− 0.03t2 + at. at ∼ NID(0, 9)

Figure 2.5:
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Figure 2.6: Explosive AR(1) model.
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Chapter 3

Modeling financial time-series

and the corresponding data

analyses (e.g. estimation,

forecasting, testing).

3.1 ARMA model building

3.1.1 Estimation of ACF, PACF

In order to obtain a suitable ARMA model for the given time series, it is im-

portant to find estimates for the mean, µ, variance, σ2, and autocorrelations,

ρk. Since we assume that our data is stationary and ergodic, the sample

mean,

x̄ =
1

T

T
∑

t=1

xt,
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and sample variance,

s2 =
1

T

T
∑

t=1

(xt − x̄)2,

can serve as adequate estimates, respectively. For the ACF, the sample

autocorrelation function or SACF is applied with the sample autocorrelation

at lag k such as

rk =

∑T
t=k+1(xt − x̄)(xt−k − x̄)

Ts2
, k = 1, 2, . . . .

Consider indpendent observations from a population distributed with fi-

nite variance such that ρk = 0, k 6= 0. Then, the approximate variance of

the rk is given by T−1. For large T , the
√
Trk ∼ N(0, 1) approximately.

Confidence bounds are consequently provided by 2 × T 0.5. Thus, when the

estimates ,rk, exceed these bounds aboslutely, the corresponding lags k can

be considered significant.

Consider next the generalization where the ρk = 0 for k > q. The variance

of the corresponding rk is then

V (rk) = T−1
(

1 + 2ρ2
1 + . . .+ 2ρ2

q

)

(3.1)

for k > q. Replacing the ρj in (3.1) by the sample estimates, rj, give the

respective estimates of the variance of the r1, r2, . . . for increasing q, i.e.

T−1, T−1(1 + 2r2
1), . . . , T

−1(1 + 2r2
1 + . . .+ 2r2

k−1). Notice that the confidence

bounds gradually widen as the lag order increases.

The sample partial autocorrelation function or SPACF at lags k equals

the last estimated autocorrelation coefficients, φ̂kk, respectively. If the true

process is AR(p), then for k > p, the
√
T φ̂kk ∼ N(0, 1), approximately.

3.1.2 Model building

To provide methods for assessing the appropriateness of competing models

for given series, we consider to approaches. The first is attributed to Box and
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ARMA model building

k rk s.e.(rk) Q(k) Q∗(k)

1 0.048 0.093 0.27 [0.61] 0.27 [0.61]

2 -0.160 0.093 3.21 [0.20] 3.32 [0.19]

3 0.096 0.096 4.28 [0.23] 4.44 [0.22]

4 -0.040 0.097 4.47 [0.35] 4.64 [0.33]

5 -0.053 0.097 4.79 [0.44] 4.98 [0.42]

6 0.014 0.097 4.81 [0.57] 5.00 [0.54]

7 0.139 0.097 7.04 [0.42] 7.42 [0.39]

8 -0.109 0.099 8.41 [0.39] 8.91 [0.35]

9 -0.024 0.100 8.47 [0.49] 8.99 [0.44]

10 0.051 0.100 8.77 [0.55] 9.31 [0.50]

11 -0.144 0.102 11.14 [0.43] 11.98 [0.36]

12 -0.097 0.102 12.22 [0.43] 13.21 [0.35]

Note: Figures in ... give P (x2
k > Q(k), Q∗(k))

Table 3.1: SACF of real S & P 500 returns and accompanying statistics.

Jenkins (1976). It suggests to match the obtained SCAFs and SPACFs with

the theoretical ACFs and PACFs. Once a good fit is found, the respcetive

φis, θis, and σs are computed.

The alternative approach is to select a set of possible (p, q) combinations

and estimate the parametzers accordingly. Finally, the model is chosen for

which a particular selection criterion attains its minimum. The procedure

just presented is to be demonstrated in detail in the next few examples.

Example 3.1.1. This example has been given in Mills (1993). Consider the

S&P 500 U.S. stock index for the years between 1872 and 1986. The plot in

Figure 3.1 suggests annual returns with a constant mean at 8.21 percent. The

overall picture of the graph of the annual returns gives the impression that

the series might be stationary. The estimated autocorrelation coefficients,
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ARMA model building

k Rk s.e.(rk) φ̄kk s.e.(φkk)

1 0.829 0.082 0.829 0.082

2 0.672 0.126 -0.048 0.082

3 0.547 0.148 0.009 0.082

4 0.435 0.161 -0.034 0.082

5 0.346 0.169 0.005 0.082

6 0.279 0.174 0.012 0.082

7 0.189 0.176 -0.116 0.082

8 0.154 0.178 0.114 0.082

9 0.145 0.179 0.047 0.082

10 0.164 0.180 0.100 0.082

11 0.185 0.181 0.028 0.082

12 0.207 0.182 0.038 0.082

Table 3.2: SACF and SPACF of UK spread
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Figure 3.1: SACF of real S & P 500 returns.

rk, with their standard errors from (3.1) obtained for various lags, k, even

support the consideration that the returns might be white noise.

To verify the white noise assumption, a so called ”Portmanteau” test

statistic along with its improved version can be applied. The statistic is

attributed to Box and Pierce. It is defined by

Q1(k) = T
k
∑

i=1

r2
i . (3.2)

When the series is white noise, Q1(k)
a∼ χ2(k) where

a∼ indicates asymptot-

ical distributional behavior. This estimator, (3.2) , however, was found, by

simulation, to overestimate the significance levels. Hence, Ljung and Box

(1978) presented the corrected statistic

Q2(k) = T (T + 2)
k
∑

i=1

(T − i)−1r2
i . (3.3)

Now, (3.3)
a∼ χ2(k). The marginal significance levels can be retrieved from

Table 3.1. Based on them, the null hypothesis of white noise bahvior of the

S&P 500 annual returns cannot be rejected.
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Figure 3.2: ARMA model building

Example 3.1.2. Consider next the UK interest rate spread between long and

short interest rates which is important for the assessment of the structure of

interest rates. The two interest rates are obtained from the 20 year UK gilts

and the 91 day Treasury Bill, respectively. The series consists of quarterly

observations between 1952 and 1988.

As can be seen from Table 3.2, the SACF and SPACF are given for lags

up to k = 12. For K = 1, . . . , 5, the rk are significant. This is reflected in

the plot of Figure 3.2 which is smoother than for white noise. One can tell

by the Portemanteau statistics,(3.2) and (3.3), respectively, for lag k = 12

that the series is probably not white noise. Interestingly, the SACF declines

up until lag k = 9 and increases thereafter. This might imply complex roots.

Looking at the only significant value of the SPACF, φ̂kk, an AR(1) appears

to be appropriate. The estimated model is obtained from OLS regression as

xt = 0.176 + 0.856xt−1 + ât, σ̂
2 = 0.870

(0.098) (0.045)

with standard errors given in parentheses. Now, to assess the correctness of
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the model, test the white noise behavior of the newly obtained residuals, ât

by means of the Portemanteau statistics, (3.2) and (3.3), respectivly. Note,

however, that the degrees of freedom need to be adjusted for an ARMA(p, q)

to k−p−q which is 11 in our case. The low values of 12.26 and 13.21 suggest

that the model is adequately determined.

Instead of the Portemanteau test, one could overfit the model. Take, for

example, an AR(2) or ARMA(1,1) structure. By means of OLS, this leads

to the estimates

xt = 0.197 + 0.927xt−1 − 0.079xt−2 + ât, σ = 0.869

(0.101) (0.054) (0.084)

xt = 0.213 + 0.831xt−1 + ât − 0.092ât−1, σ̂ = 0.870.

(0.104) (0.051) (0.095)

However, the t-statistics of the additional coefficients are insignificant in both

equations, hence, rendering the AR(1) model the preferred one.

Example 3.1.3. The Financial Times Actuaries All Share index serves as

the third and last example in this context. The period of monthly observa-

tions extends from 1965 through 1990. We obtain SACF and SPACF values

as seen in Table 3.3. The Q(12) is relatively low with 19.3, thus insignificant

at levels of p = 0.05 and less. But the values of both, rk and φ̂kk, exceed their

respective 5% critical values at lags k = 1 and 3. This calls for an ARMA

structure with low p and q.

Now, the selection criteria announced previously come into play. Let us

consider the Akaike’s (1974) information criterion (AIC). It is defined as

AIC(p, q) = ln σ̂2 +
2

T
(p+ q).

Alternatively, we could use Schwarz’s (1978) criterion which is

BIC(p, q) = ln σ̂2 +
lnT

T
(p+ q).

43



ARMA model bulding

k Rk s.e.(rk) φ̄kk s.e.(φkk)

1 0.148 0.057 0.148 0.057

2 -0.061 0.059 0.085 0.057

3 0.117 0.060 0.143 0.057

4 0.067 0.061 0.020 0.057

5 -0.082 0.062 -0.079 0.057

6 0.013 0.062 0.034 0.057

7 0.041 0.063 0.008 0.057

8 -0.011 0.063 0.002 0.057

9 0.087 0.064 0.102 0.057

10 0.021 0.064 -0.030 0.057

11 -0.008 0.064 0.012 0.057

12 0.026 0.064 0.010 0.057

Table 3.3: SACF and SPACF of FTA ALL Share Nominal Returns
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These are the two criteria we want to focus on despite the fact that there is

a vast number of alternatives.

The most suitable model is then chosen by the (p, q) pair that minimizes

the respective criterion. Formally, this can be written as

AIC(p∗AIC , q
∗
AIC) = min(p,q)AIC(p, q), p ∈ P, q ∈ Q, or

BIC(p∗BIC , q
∗
BIC) = min(p,q)BIC(p, q), p ∈ P, q ∈ Q,

where P = {0, 1, . . . , pmax} and Q = {0, 1, . . . , qmax}. There, however, is no

unique rule on how to select the perfect pmax and qmax, respectively, to assure

that the correct (p0, q0) are included. Even if inclusion be the case, there is

no guarantee that (p0, q0) will be chosen based on the respective criterion.

A problem arises with the AIC in that the selected order, (p∗AIC , q
∗
AIC),

will always be baised upwardly, hence, systematically leading to overparame-

trization. This is not the case with the BIC. Even though for T → ∞, the

(p∗BIC , q
∗
BIC) are such that p∗BIC ≥ p0 and q∗BIC ≥ q0, with probability one,

the true model will eventually be determined due to the BIC’s strong con-

sistency. This is a resulty of the additional factor, lnT variable in T which

is missing in the AIC.

The SACF and SPACF give rise to the assumption that adequate orders

might be provided by setting P = Q = 3. Then, Table 3.4 shows the cor-

responding AIC and BIC values, respectively. The best order according to

the AIC is (3,0) so that the resulting process is an AR(3) process. On the

other hand, the preferable lag orders chosen by the BIC are (0,1) so that the

proces is MA(1). Estimating the coefficients yields the following models

xt = 4.41 + 0.173xt−1 − 0.0108xt−2 + 0.144xt−3 + ât, σ̂ = 6.25

(0.62) (0.057) (0.057) (0.057)

xt = 5.58 + ât + 0.186ât−1, σ̂ = 6.29

(0.35) (0.056)
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Univeriate linear stochastic models
q

p
0 1 2 3

AIC

0 3.701 3.684 3.685 3.688

1 3.689 3.685 3.694 3.696

2 3.691 3.695 3.704 3.699

3 3.683 3.693 3.698 3.707

BIC

0 3.701 3.696 3.709 3.724

1 3.701 3.709 3.730 3.744

2 3.715 3.731 3.752 3.759

3 3.719 3.741 3.758 3.779

Table 3.4: Model selection criteria for nominal returns

In the AR(3) model, the estimated mean is obtained from 4.41/(1− 0.173 +

0.0108−0.144) to be equal to 5.58 which is the mean from the MA(1) model.

Beause the unit roots of the MA(1) polynomial, (1 + 0.186B), is outside the

unit circle, it can be inverted to yield the AR polynomial

(1 + 0.186)−1 = (1 − 0.186B + 0.1862B2 − 0.1863B3 + . . .)

≈ (1 − 0.186B + 0.035B2 − 0.006B3)

indicating an autoregressive structure which is exponentially declining rather

than a limitation to three lags. Considering (1 + 0.186)−1 = 0.843, though,

which roughly is equal to the sum of the coefficients of the AR(3) model, Φ(1),

both models appear equivalently suitable. This is confirmed by diagnostic

checks with Q2(12) = 6.07 and 15.30 which corresponds to significance levels

of 0.91 and 0.23, respectively. Based on this finding, the AIC chosen model

may appear preferable.
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We generate a portfolio of models based on several pairs, (p, q). Using

the AIC, for example, we define a new statistic

R = exp

{

−1

2
T (AIC(p∗AIC , q

∗
AIC) − AIC(p, q))

}

which compares alternative models to the AIC selected one. R then provides

a classififcation of alternative models with respect to ARMA(p∗AIC , q
∗
AIC).

According to Poskitt and Tremayne (1987), a value of R less
√

10 qualifies the

portfolio ARMA(p, q) as a close competitor to ARMA(p∗AIC , q
∗
AIC). With this

rule, based on the AIC, this yields six competitors, (3, 0), (0, 1), (0, 2), (1, 1),

(0, 3), and (1, 0) whereas, based on the BIC, we obtain (0, 1), (1, 0), and (0, 0).

We find that the theoretical properties of the AIC and BIC, respectively,

are reflected in these results. Even though the AIC has the tendency to

overparameterize, an autoregressive structure of order three does not seem

too implausible for financial returns if one takes into consideration effects

from, for example, dividends.

3.2 Integrated model building

Let us have a look at what happens when it is deemed necessary to approach

the not always easy task of first-differencing the series, possibly d > 0 times,

until we obtain wt = δdxt which we believe is stationary. In the following,

we will assume that the series has been adequately first-differenced. Nothing

stops us from parameter estimation in the fashion we were introduced to in

the previous section, now. A few examples considering ARIMA processes are

following next.

Example 3.2.1. In this example, we, once again, consider the spread of UK

intrest rates from the previous example. Let us assume, however, that it is

I(1), hence, we are treating the autocorrelation structure of wt = δxt. From
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ARIMA modelling

k Rk s.e.(rk) φ̄kk s.e.(φkk)

1 0.002 0.082 0.002 0.082

2 -0.036 0.082 -0.036 0.082

3 -0.040 0.082 -0.040 0.082

4 -0.090 0.082 -0.092 0.082

5 -0.090 0.084 -0.094 0.082

6 0.063 0.085 0.054 0.082

7 -0.192 0.086 -0.211 0.082

8 -0.068 0.092 -0.085 0.082

9 -0.101 0.093 -0.143 0.082

10 -0.038 0.094 -0.076 0.082

11 -0.002 0.094 -0.065 0.082

12 0.173 0.094 0.097 0.082

Table 3.5: SACF and SPACF of the first difference of the UK interest rate

spread

the portmanteau statistic Q2(12) = 16.74, we cannot reject the white noise

hypothesis for the sample. In Table 3.5, we have the estimates of rk and φ̂kk

along with their respective standard errors, respectively. The mean is found

insignificant rendering the series driftless.

Example 3.2.2. Next, we, once again, focus on the U.S. Dollar/Sterling

exchange rate. Weekly observations of the rates themselves as well as the

first differences can be seen in Figure 3.3.

Recall that the period is January 1980 through December 1988 generating

470 observations. It becomes quite evident from the plot that the first differ-

ences appear to be zero mean, stationary innovations of the rates behaving

like a driftless random walk. When analyzing the SACF and SPACF of the

differences, respectively, one finds that they ressemble white noise. The first
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Figure 3.3: Dollar/sterling exchange rate weekly (1980-8)

24 entries for SACF and SPACF are all insignificant. The portmanteau sta-

tistic of Q2(24) = 20.3 supports this hypothesis. The insignificant estimate

of the mean equal -.0009 and according standard error of .0013 reassures that

the series, in fact, is driftless.

Example 3.2.3. Finally, we are analyzing the observations from the FTA

All Share index of the period from January 1965 to December 1990. As can

be seen from Figure 3.2.3,
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Figure 3.4: FTA All Share index (monthly 1965-90)
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Univariate linear stochastic models
k Rk s.e.(rk) φ̄kk s.e.(φkk)

1 0.113 0.57 0.113 0.057

2 -0.103 0.58 -0.117 0.057

3 0.093 0.60 0.122 0.057

4 0.061 0.61 0.021 0.057

5 -0.102 0.61 -0.092 0.057

6 0.036 0.62 -0.011 0.057

7 0.044 0.62 0.020 0.057

8 -0.047 0.63 -0.046 0.057

9 0.075 0.63 0.115 0.057

10 0.021 0.064 -0.031 0.057

11 -0.041 0.064 -0.020 0.057

12 0.019 0.064 0.023 0.057

Table 3.6: SACF and SPACF of the first difference of the FTA ALL Share

Index

the series appears to have a well pronounced upward drift. It is how-

ever, not linear. The noise accompanying the series seems to be increasing

in absolute value as the level of the index becomes higher. When taking

logarithms, the transformed series displays a linear trend accompanied by

innovations with constant variance.

The trend is then removed by first-differencing. The corresponding SACF

and SPACF, respectively, can be seen in Table 3.6.
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No real structure can be inferred from the rk. But the φ̂kk hint at an

AR(3) process. This assumption is supported by residual diagnostic tests

together with overfitting. The model, then, is given by

∇xt = 0.0067 + 0.141∇xt−1 − 0.133∇xt−2 + 0.123∇xt−3 + ât, σ̂ = 0.0646.

(0.0038) (0.057) (0.057) (0.057) Q(12) = 7.62

The monthly ∇xt have estimated mean of 0.0077 which translates into an

annual growth rate of 0.0925.

3.3 Forecasting

In this section, we consider forecasting values xT+h for the ARIMA(p, d, q)

process

φ(B)∇dxt = θ0 + θ(B)at

with observations {xt}T
1−d. We, now, introduce

α(B) = φ(B)∇d = (1 − α1B − α2B
2 − . . .− αp+dB

p+d).

We denote the minimum mean square error (MMSE) of xT+h made at T by

fT,h which is computed as

fT,h = E(α1xT+h−1 + α2xT+h−2 + . . .+ αp+dxT+h−p−d + θ0+

aT+h − θ1aT+h−1 − . . .− θqaT+h−q|xT , xT−1, . . .).

It is

E(xT+j|xT , xT−1, . . .) =

{

xT+j, j ≤ 0

fT,j, j > 0

and

E(aT+j|xT , xT−1, . . .) =

{

aT+j, j ≤ 0

0, j > 0.
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In words, this means that for the evaluation of fT,h, the expected values of

values lying in the past are replaced by the observed values xT+j and aT+j,

respectively, and the future expected values are replaced by the forecast

values, fT,j and 0, respectively.

Illustration of this is provided by three examples. First, consider the

AR(1) model (a− φB)xt = θ0 + at. We, now, have α(B) = (1− φB) so that

xT+h = φxT+h−1 + θ0 + aT+h (3.4)

which in return provides us with

fT,h = φfT,h−1 + θ0 (3.5)

= φhxT + θ0(1 + φ+ φ2 + . . .+ φh−1). (3.6)

Letting h→ ∞ and assuming stationarity by |φ| < 1, we obtain

fT,h =
θ0

1 − φ
= E(xt) = µ. (3.7)

This tells us that for estimation of values in the far future, the best forecast

is the mean of the process.

As a second example, we focus on an ARIMA(0,1,1) model with ∇xt =

(1 − θB)at so that α(B) = (1 −B). This gives

xT+h = xT+h−1 + aT+h − θaT+h−1.

When h = 1,

fT,1 = xT − θaT .

For h = 2,

fT,2 = fT,1 = xT − θaT .
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For a general h, we obtain

fT,h = fT,h−1, h > 1.

As a consequence, forecasts at time T for any period T + h in the future are

of value fT,1.

Alternatively, from

fT,h = xT − θaT

aT = (1 −B)(1 − θB)−1xT ,

we obtain for the h-step ahead forecast

fT,h = (1 − θ)(1 − θB)−1xT

= (1 − θ)(xT + θxT−1 + θ2xT−2 + . . .).

This is an exponentially weighted moving average of all known values of the

process.

As the third example, consider the ARIMA(0,2,2) model ∇2xt = (1 −
θ1B − θ2B

2)at with α(B) = (1 −B)2 = (1 − 2B +B2) such that

xT+h = 2xT+h−1 − xT+h−2 + aT+h − θ1aT+h−1 − θ2aT+h−2.

Now, for h = 1,

fT,1 = 2xT − xT−1 − θ1aT − θ2aT−1.

For h = 2,

fT,2 = 2fT,1 − xT θ2aT ,

and for h = 3,

fT,3 = 2fT,2 − fT,1.
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For a general h ≥ 3, we have, finally,

fT,h = 2fT,h−1 − fT,h−2.

This gives a straight line through fT,1 and fT,2 as loci for all forecasts made

at time T with errors

eT,h = xT+h − fT,h = aT+h + Ψ1aT+h−1 + . . .+ Ψh−1aT+1.

The Ψ1, . . . ,Ψh−1 are obtained from Ψ(B) = α−1(B)θ(B) which yields a

variance of the forecast error equal to

V (eT,h) = σ2(1 + Ψ2
1 + Ψ2

2 + . . .+ Ψ2
h−1).

This is inline with intuition in the sense that the uncertainty expressed by

the variance is a composition of the unforeseeable errors or shocks between

periods T and T + h. In particular, for h = 1, the one-step ahead forecast

error is

eT,1 = xT,1 − fT,1 = aT+1.

This shows that the one-step ahead errors of a MMSE forecast have to be un-

correlated. This, however, is not generally the case for h-step ahead forecasts

made at different times T or forecasts of varying lead times, h.

Considering the AR(1) model from before, the variance of the h-step

ahead forecast is given by

V (eT,h) = σ2(1 + ψ2 + ψ4 + . . .+ ψ2(h−1))

= σ2(1 + φ2 + φ4 + . . .+ φ2(h−1))

= σ2 (1 − φ2h)

(1 − φ2)

due to the fact that, here, ψj = φj. For h → ∞, the variance approaches

a constant from below which is σ2/(1 − φ2). This quantity expresses the

expected variation of the process about the infinite time forecast, µ.
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The ARIMA(0,1,1) model has the h-step ahead forecast error variance

V (eT,h) = σ2(1 + (h− 1)(1 − θ)2)

where ψj = 1 − θ, j = 1, 2, . . .. This variance is linearly increasing in h. For

the ARIMA(0,2,2) with weights ψj = 1 + θ2 + j(1 − θ1 − θ2), j = 1, 2, . . .,

the variance of the h-step ahead forecast error is

V (eT,h) = σ2(1 + (h− 1)(1 + θ2)
2 + 6−1h(h− 1)(2h− 1)(1 − θ1 − θ2)

2)

+h(h− 1)(1 + θ2)(1 − θ1 − θ2).

Thus, this variance, too, is increasing in h.

Using a few examples, we will present the dependence structure of suc-

cessive forecasts and their error variances for varying orders of integration.

First, let us have a look at the previous AR(1) model of the UK interest

rate spread with the parameter estimates φ̂ = 0.856, θ̂0 = 0.176, and σ̂ =

0.870. The spread at T is observed to be xT = −2.27. We, consequently,

obtain the h-step forecast being

fT+h = 0.856h(−2.27) + 0.176(1 + 0.8562 + 0.8564 + . . .+ 0.8562(h−1)).

In the limit, this is 1.23 which is equal to the sample mean of the spread.

The corresponding forecast error variance is

V (eT,h) = 0.8702(1 + 0.8562 + 0.8564 + . . .+ +0.8562(h−1)).

This approaches the constant 0.8702/(1 − 0.8562) = 2.832.

Consider next the random walk ARIMA(0,1,1) model of the spread. Re-

call that θ = 0 and σ̂ = 0.894, in this model. The forecasts are then, for all

h, fT+h = −2.27. This deviates from the sample mean. The corresponding

forecast error variance is V (eT,h) = σ2h = 0.80h which is increasing in h.

The differences between autoregressive models with and without unit roots

with respect to their respective forecasts have become obvious, now.
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A random walk model was also fit to the U.S. Dollar/Sterling exchange

rate. We know that we have a constant forecast for any projection period

h. It is the value of xT = 1.81. But the according variance is, of course,

increasing in h. More exactly, it is the linear function V (eT,h) = 0.0073h

with σ̂ = 0.027.

The logarithms of the FTA All Share index were fitted by the

ARIMA(3,1,0) model

φ(B) = (1 − 0.141B + 0.133B2 − 0.123B3).

This yields

α(B) = (1 − 1.141B + 0.274B2 − 0.256B3 + 0.123B4).

The forecasts, then, are by the recursion

fT,1 = 1.141xT − 0.274xT−1 + 0.256xT−2 − 0.123xT−3 + 0.0067,

fT,2 = 1.141fT,1 − 0.274xT + 0.256xT−1 − 0.123xT−2 + 0.0067,

fT,3 = 1.141fT,2 − 0.274fT,1 + 0.256xT−1 − 0.123xT−3 + 0.0067,

fT,4 = 1.141fT,3 − 0.274fT,2 + 0.256fT,1 − 0.123xT−3 + 0.0067,

and

fT,h = 1.141fT,h−1 − 0.274fT,h−2 + 0.256fT,h−3 − 0.123fT,h−4 + 0.0067,

for h ≥ 5. The polynomial

Ψ(B) = 1 + 1.141B + 1.028B2 + 1.229B3 + 1.392B4 + . . . (3.8)

together with σ̂ = 0.646 suffices to compute the according forecast error

variance which is increasing in h.

In the retrospective at time T + h, the forecast structure yields

xT+h − 1.141xT+h−1 + 0.274xT+h−2 − 0.256xT+h−3 + 0.123xT+h−4

= 0.0067 + aT+h.
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At time T , this difference equation yields

xT+h =
4
∑

i=1

b
(T )
i fi(h) + 0.0067

T+h
∑

j=T+1

ψT+h−j.

We obtain ψ from (3.8). The fi(h), i = 1, . . . , 4 are the roots of the poly-

nomial α(B), respectively, each with exponent h. The roots are 1, 0.45 and

(0.15 ± 0.50i). This provides us with

xT+h = b0 + b
(T )
1 + b

(T )
2 (0.45)h

+b
(T )
3 (0.15 + 0.50i)h + b

(T )
4 (0.15 − 0.50i)h where

b0 = 0.0067
T+h
∑

j=T+1

ψT+h−j.

At time T , the bi are constants for any horizon h. They depend on time T

through the observed xt, though.

A forecasted trend of the process is given by b0 + b
(T )
1 . This is due to the

dependence of ψ and, hence, b0 on h. Additionally, there are a geometrically

declining term, b
(T )
2 (0.45)h and damped sine waves provided by the two com-

plex roots and their respective damping factors along with frequency and

phase all being functions of the process parameters.
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Chapter 4

Non-linearity, Trends and

Volatility in financial data

4.1 Non-linear dynamics and chaos

In economic systems, the fluctuations have been assumed for a long time to

be the result of exogenous shocks of stochastic but stationary nature. On

the other hand, there are attempts noticeable to consider business cycles to

be caused by an endogenous nonlinear deterministic structure.

This section is intended to deal with series generated by deterministic

but non-linear movements. The uniqueness of series driven by processes

following those laws is that they appear stochastic throughout statistical

tests even though they are not. A suitable term is ’deterministic chaos’.1

For an example from Mills (1997), we consider the difference equation

xt = f(xt−1), x0 ∈ [0, 1]

1See Mills (1997).
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such that

f(x) =

{

x/α x ∈ [0, α]
1−x
1−α

, x ∈ [α, 1], 0 < α < 1
.

Samples generated by this process will most likely have ACFs similar to an

AR(1) process xt = (2α − 1)xt−1 + ut rendering the process indiscernibly

different from white noise for α = .5. Keep in mind that our process is

purely deterministic, though.

For considering models in the financial world which this type of process

might be applicable to, we look at the dynamics of the dividend process that

are being passed on to the equilibrium asset prices. The dynamics can be

either of linear, non-linear or even chaotic nature.

The tests for nonlinearity to be presented in the following have no order

with respect to domination of competitors. This depends on the fact that the

different tests may perform better against some alternative models than oth-

ers. Also, a clear definition of the null hypothesis is essential for comparison

of the tests with respect to power.

4.2 Testing for non-linearity

Up to now, the empirical tests presented are designed to linear structures.

But becausse of the increase in interest in deterministic, nonlinear chaotic

systems, the need for suitable tests in this respect are called for, that is

there ought to be tests for chaos and identification methods for the nonlinear

deterministic system generator.

It is alleged in literature that it is often difficult to determine the nature

of deviation from linearity. Many tests are just designed to reject or accept

the hypothesis of linearity. An alternative for linearity is not offered.

Certain tests are apt to reliably reject the null hypothesis H0 when the

true model is of a particular non-linear moving average type but might pos-
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sibly fail to reject H0 if the true process obeys dynamics with conditional

variance, for example.

4.2.1 Linear expansion test

A representative of such a test could be of the form of the expansion

xt = µ+
∞
∑

i=−∞
ψiat−i +

∞
∑

i,j=−∞
ψijat−iat−j +

∞
∑

i,j,k=−∞
ψijkat−iat−jat−k + . . .

where xt can be rejected as linear when any of the coefficients on the right

side where the summands incorporate products of at least two error terms

are non-zero. This test is based on cascading regressions of xt including their

cross-products. Several extensions and modifications of this test exist.

4.2.2 Correlation dimension test

The next test to be presented, here, applies the correlation integral defined

as2

CN = (l, T ) =
2

TN(TN − 1)

∑

t<s

Il
(

xN
t , x

N
s

)

. (4.1)

where TN = T −N + 1. The one-dimensional

xN
t = (xt, xt+1, . . . , xt+N−1),

xN
s = (xs, xs+1, . . . , xs+N−1),

are called m-history with embedding dimension m. 3 Further,

Il(x
N
t , x

N
s ) =

{

1, ||xN
t − xN

s || < l

0, else.

2E.g., see Mills (1997).
3See, for example, Barnett and Serletis (2000).

61



where || · || denotes the supremum-norm.

In words, (4.1) gives an estimate of the probability that any two sets,

xN
t andx

N
s , of length N are within l of each other. Then, in case of existence

of the limit, the so called correlation dimension of {xt} is defined as

v = lim
l→0

[lnCN(l, T )/ ln l].

Intuitively, if v is small, one can assess that the process is driven by a chaotic

deterministic system in contrast to a stochastic one. However, there is no

theoretical support of this notion as of now.

Now, letting N → ∞, we want to know how v changes. If v continuously

increases, then the system is stochastic.4 In the opposite case, that is for a

finite limit, then the series stems from a deterministic generating process.

Sampling properties of the correlation dimension are unknown, though.

This impairs the testing power of this statistic when there are truely sto-

chastic components in the system. The correlation dimension then becomes

stochastic itself and, hence, one needs to know its distribution to use it

effectively. As is argued in literature5, the series has to have a correlation

dimension below 2 log10 TN for one to be able to distinguish a chaotic system.

4.2.3 BDS test

In 1996, a test was presented which was devised by Brock, Dechert, and

Scheinkman, henceforth BDS test. It tests the null hypothesis of iid xt

against an alternative of some sort. The test is nonparametric. Under the

null, the BDS statistic

wN(l, T ) =
√
T [CN(l, T ) − C1(l, T )N ]/σ̂N(l, T )

4See, for example,Barnett and Serletis (2000).
5For example, Barnett and Serletis (2000).
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is asymptotically N(0, 1) distributed. The σ̂2
N(l, T ) is an estimate of the

standard deviation of CN(l, T ) − C1(l, T )N .6

Motivation for the test results from the fact that CN(l, T ) is an estimate

of the probability that the two N -histories, xN
t and xN

s , are less than l apart.

In case of iid xN
t and XN

s , this probability would be equal to CN(l, T ) =

C1(l, T )N .

Under the null of whiteness, the asymptotic distribution of the BDS sta-

tistic is known. Thus, the statistic offers a test against any sort of dependence

including nonwhite linear and nowhite nonlinear dependence. That is, the

alternative could be a linear as well as a non-linear stochastic system or non-

linear deterministic system. It, however, is not adequate for directly testing

for chaos. This test is considered diagnostic in nature since the rejection of

the H0 that the series is iid can be a result of several cases of dependence

structures. Whatever the specific cause for the rejection might be has to be

determined in further testing.

4.2.4 The NEGM test

For this test, we introduce the dominant Lyapunov exponent, λ. It measures

the average exponential divergence between two trajectories that, at some

initial time, started from points with infinitesimally small distance between

them. For the distance in a certain direction between the possibly multi-

dimensional trajectories, the Lypunov exponent is defined as

σ = lim
t→∞

1

t
ln |d(t)|

where d(t) is the average distance between the two trajectories at time t.

Operationally, chaotic behavior can be defined by a bounded system with

positive Lyapunov exponent. An important characteristic of chaotic systems

6For a more detailed account of the properties of the estimator, we refer the reader to

the reference list given in Mills (1997).
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is the dependence on initial conditions.

We assume real valued {xt} generated by a nonlinear autoregressive model

of the form

xt = f(xt−L, xt−2L, . . . , xt−NL) + ǫt, t ∈ {1, . . . , N}.

N is the length of the autoregression and L is the lag parameter. f is a

smooth unknown funtion and the ǫ are independent with zero mean and

constant variance.

For the estimation of the Lyapunov exponent, we set up the state-space

form of (4.2.4)

Xt = F (Xt−L) + Et, F : IRN → IRN .

Here, Xt = (xt, xt−L, . . . , xt−NL)
′

, F (Xt−L) = (f(xt, xt−L, . . . , xt−NL), . . .

. . . , xt−L, . . . , xt−NL)
′

, and Et = (ǫt, 0, . . . , 0)
′

.

An intermediate step is to estimate the individual Jacobian matrices

Jt =
∂F (Xt)

∂X ′
.

This is suggested to be done bythin plate splines or neural nets. The latter

method involves a hidden layer with q units such that

f(Xt−L, θ) = β0 +

q
∑

j=1

βjψ

(

γ0j +
N
∑

i=1

γijxt−iL

)

.

ψ is a known nonlinear function7. The parameter vector θ is fit to the data

through nonlinear least squares, see Barnett and Serletis (2000), by comput-

ing

min
θ
S(θ) =

T
∑

t=1

[xt − f(Xt−1, θ)]
2.

7Commonly, it is the logistic distribution function ψ(u) = 1/(1 + exp(−u)).
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The Bayesian Information Criterion (BIC) is suggested to minimize via the

triple (L,N, q) to obtain estimate values for L,N , and q.

With the estimate Ĵ , we can write Γ̂ = ĴT . . . Ĵ1 to obtain υ̂1(T ) as

the largest eigenvalue of the matrix Γ̂
′

T Γ̂T . The estimate of the dominat

Lyapunov exponent is then

λ̂ =
1

2T
ln |υ̂1(T )|.

4.2.5 The White test

The motivation for the test is that the residuals produced by linearly filter-

ing the process should be uncorrelated with any measurably function of the

process’ history.

The test uses a feed-forward neural network with one hidden-layer to fit

the series.8 The neural network is fitted to find a measurable function of

the process’ history. The test also fits an AR model to the series which

is uncorrelated to the function under H0. Any nonlinear structure in the

residuals from the linear filter the test is designed to detect. The test statistic

is asympotically χ2 distributed.

We need to introduce the notion of linearity in the mean. This is the

case for a process when the conditional mean is a function of elements of the

information set9 in a linear way. The test’s null hypothesis is then linearity

of the process in the mean.

4.2.6 The Kaplan test

This test is performed in the frequency domain to detect deterministic struc-

tures that are nt well pronounced in the time domain. The test statistic

has a strictly positive lower bound only in the case of a stochastic process.

8See Barnett and Serletis (2000).
9Most likely these elements are past observations.
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The test statistic is also produced for a sufficient number of linear stochas-

tic processes mocking the data. If the test statistic of any artificial linear

stochastic process resulting from fitting the data is larger than the value of

the statistic obtained from the real data, then the hypothesis of linearity is

rejected in favor of noisy nonlinear dynamics.

4.2.7 Application to financial data

As stated, for example, in Barnett and Serletis (2000), there is no gener-

ally accepted proof in favor of the existence of nonlinearity, not to mention

chaos. Hence, dynamics of financial series commonly are assumed to have

a stochastic source. The tests just presented, however, merely test linearity

versus nonlinearity or chaos permitted to stem from an unrestricted variety

of sources. So, even if the structure of the series is linear, the test should re-

ject the null when only the shock terms are the results of nonlinear or chaotic

dynamics.

Findings in favor of the nonlinear, chaotic hypothesis should seem rea-

sonable since it appears improbale that shocks in financial or economic data

stem from some merely random stochastic source. The strong hypothesis of

linearity should be easy to overthrow.

In the table given in Barnett and Serletis (2000), results of nonlinearity

and chaos testing reveal that seven East Euopean black-market exchange

rates were shown to not be iid by means of the BDS test. The NEGM test

for the same data revealed some hint in the direction of chaos. Another BDS

test run on real-time rturns on four stock-market indices also showed evidence

against iid data. Here, though, the NEGM test results gave no reason for

suspecting chaos. The FTSE 100 with 60,000 observations provided they

same test results as in the previous case. A BDS tests of S&P 500 and

CRSP data rejected iid observations. A correlation dimension test of gold
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and silver rates of return resulted in a value of v between 6 and 7. Finally, a

BDS test daily CRSP value weighted returns brought forth evidence in favor

of nonlinearity.

Technically, one can apply the tests in a cascading way. If the White test

accepts linearity in mean, then either the Kaplan test or the BDS test can

be performed to check for possible linearity. On the other hand, if the White

test rejects its null of linearity in mean, then the NEGM test could look for

possible signs of chaos. Finally, if full linearity is rejcted but the White test

accepts its null hypothesis, the volatility of the process could be stochastic

which is to presented in the sequel.

4.2.8 Summary

As mentioned in Barnett and Serletis (2000) for an unknown dynamical sys-

tem, the correlation integral as well as the Lyapunov exponents react to

dynamic noise. It might actually be impossible to distinguish between sto-

chasticity and high-dimensional chaos. Also, testing for linearity in contrast

to nonlinearity of a stochastic process becomes extremely difficult with in-

creasing order of the linear filter. In the attempt to detect nonlinearity, it

is therefore essential to keep the order of the linear filter as low as possible

when the data is assumed to be linear. Also, chaos should be of low order

when it the goal to test for nonlinearity caused by chaos.

It is impossible with the existing tests, however, to determine the source

of chaos or nonlinearity. Chaos might come either from external chaotic

shocks as well as being of endogenous origin. Hence, only the detection of

chaos in fincancial data and economic systems is feasible. But the souce will

have to remain hidden until further tests permit a more thorough analysis of

chaos inherent in structures.
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4.3 ARCH process

4.3.1 General introduction

In this section, we consider stochastic processes with time-changing variance,

more precisely, conditional volatility. Now, the variance at time t+ 1 of the

process {xt} conditional on time t is a function of past information up to and

including time t.

A simple example may include a constant and the lagged observations

of the previous period, i.e. σ2
|Ft

= σ2
|xt−1

= c + a1(xt−1 − µ)2. c and

a1 are both positive. The process may be conditionally white noise, i.e.

xt|Ft ∼ NID(µ, σ2
|xt−1

), with unconditional mean µ and unconditional con-

stant variance. In case of a1 < 1, this variance process is stationary. The

unconditional variance of the process {xt} is then σ2 = c/(1 − a1). The

kurtosis

K = 3
1 − a2

1

1 − 3a2
1

(4.2)

exists for 3a2
1 < 1. It is obvious from (4.2), that the unconditonal process

{xt} is leptokurtic, i.e. K > 3.

Introduced by Engle (1982), this model was first introduced. It is known

to be the first-order autoregressive conditional heteroscedastic or ARCH(1)

process. Usually, the notation is ǫt = xt − µ = σ|Ft
· ηt where η has mean

zero and a constant variance of 1 and ht instead of σ|Ft
. Consequently,

ǫt|xt−1, . . . ∼ NID(0, ht)

ht = c+ a1ǫ
2
t−1.

Just as with AR processes, the extension from ARCH(1) to ARCH(p) seems

to be obvious. Thus,

ht = σ2
|Ft

= c+

p
∑

i=1

aiǫ
2
t−1.
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Here again, to assure the variance to be positive, all lag coefficients ai, 1 ≤
i ≤ p have to be nonnegative, and c > 0. As before, in the AR case, all

roots of the characteristic polynomial solving c +
∑p

i=1 Z
i = 0 have to be

outside the unit circle. That is the case if
∑p

i=1 ai < 1. Hence, the process’

unconditional variance turns into σ2 = c/(1−∑p
i=1 ai). This corresponds to

the conditional variance of the form

ht = c+
∑

i=1

aiǫ
2
t .

As, for example, Mills (1997) point out, a problem arises from estimating

the parameters for increasing p. Here, the estimates might possibly become

negative. As a consequence, the obtained conditional variance may no longer

be positive which obviously violates the definition of the variance.

Also, in analogy to combining AR and MA processes to ARMA processes,

the ARCH structure of the conditional variance process can be generalized

to yield the generalized ARCH or GARCH(p, q) process of the form

ht = c+

p
∑

i=1

aiǫ
2
t−1 +

q
∑

i=1

biht−1 (4.3)

= c+ a(L) + b(L)ht.

with q > 0 and bi ≥ 0, 1 ≤ i ≤ q It was first introduced by Bollerslev (1986).

The process is stationary if a(B)+b(B) < 1. Then the unconditional variance

is σǫ = c/(1 − a(1) − a(1)).

The form can be changed by redefining νt = ǫ2t − ht. Hence, (4.3) is now

of the ARMA(m,q) form

ǫ2t = c+
m
∑

i=1

(ai + bi)ǫ
2
t−i + νt −

q
∑

i=1

biνt−1 (4.4)

with m = max{p, q}. The innovations νt are serially uncorrelated but het-

eroskedastic.
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The variance for s periods into the future can be seen from (4.3) to be

ht+s = a+
n
∑

i=1

(aiǫ
2
t+s−i + biht+s−i) +

m
∑

i=s

(aiǫ
2
t+s−i + biht+s−i)

where n = min{m, s− 1}. This yields

E[ht+s|ǫt, . . .] = c+
n
∑

i=1

(ai + bi)E[ht+s−i|ǫt, . . .] (4.5)

+
m
∑

i=s

(aiǫ
2
t+s−i + bht+s−i).

For the unconditional variance, we obtain

σ2
ǫ =

c

1 −∑m
i=1(ai + bi)

.

Then, (4.5) turns into

E[ht+s|ǫt, . . .] = σ2
ǫ +

n
∑

i=1

(ai + bi)(E[ht+s−i|ǫt, . . .] − σ2
ǫ )

+
m
∑

i=s

(ai(ǫ
2
t+s−i − σ2

ǫ ) + b(ht+s−i − σ2
ǫ )).

For s→ ∞, this tends to σ2
ǫ .

The most illustrative example is given by an GARCH(1,1) process

ht = c+ a1ǫ
2
t−1 + b1ht−1, c > 0, a1 ≥ 0, b ≥ 0

which yields a stationarity of {ǫt} when a1+b1 < 1. For s ≥ 2, E[ht+s|ǫt, . . .]=
c+ (a1 + b1)E[ht+s−1|ǫt, . . .].

For c = 0 and a1 + b1 = 1 the model becomes integrated GARCH or

IGARCH(1,1). That is

ht = a1ǫt− 12 + (1 − a1)ht−1
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with

E[ht+s|ǫt, . . .] = E[ht+s−1|ǫt, . . .] = . . .

= E[ht+1|ǫt, . . .] = ht+1.

I.e., for all s > 1, the s step ahead conditional variance equals the one step

ahead conditional variance. In other words, ht has permanent influence on

all future conditional variances. Shocks of the past shape the volatility in the

future. Here, in contrast to the random walk model, the conditional variance

has a unit root. With positive c, the conditional variance also has a trend.

Alternatives as to the conditional normal distribution of the ǫ is commonly

provided by the student’s t distribution with f degrees of freedom. It is

heavier tailed than the Gaussian distribution. For further alternatives, the

reader is referred to the vast amount of literature on this topic.

Up to now, ht has been a function on quadratic lagged innovations ǫt−1.

This restrictin can be relaxed. One possible form is

ht = c+ b1ht−1 + a1|ǫ|λ

where for λ = 2 the well known GARCH(1,1) model is retrieved, and another

alternative is

ht = c+ b1ht−1 + a1(2Φ(ǫ2t−1/γ) − 1).

Φ is the standard normal cumulative distribution function. For very small

γ, the conditional variance process approaches a linear regression on the lag

one, ht−1.

Another alternative is the well known exponential GARCH or EGARCH.

The EGARCH(1,1) is of the form

ln(ht) = c+ b1 ln(ht−1) + a1(θ
ǫt−1

ht−1

+ (| ǫt−1

ht−1

| −
√

2

π
)).
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4.3.2 Estimation of the parameters of ARMA-ARCH

models

Up to now, the error terms, ǫt = xt − µ with possibly zero µ, have been

assumed to be serially uncorrelated. More flexibility is given when the zero

mean xt are considered following an ARMA(p, q) process with ARCH inno-

vations. The model is then

φ(B)(xt) = θ(B)ǫt

ht = E[ǫ2t |ǫt−1, . . .] = c+
r
∑

i=1

aiǫ
2
t−i +

s
∑

i=1

biht−i

where the

ht = z
′

tω = z
′

1tω1 + z
′

2tω2

z
′

t = (z
′

1t; z
′

2t) = (1, ǫ2t−1, . . . , ǫ
2
t−r;ht−1, . . . , ht−s)

ω
′

= (ω
′

1;ω
′

2) = (c, a1, . . . , ar; b1, . . . , bs)

In this context, we will provide two methods to estimate the parameters.

That is a Maximum Likelihood (ML) approach and a Least squares (LS)

regression.

The first approach, now, is to estimate these parameters with the ML

method. We define Θ to be the parameter vector of the form Θ = (ω
′

;φ
′

)

with the ARMA vector φ
′

= (θ1, . . . , φp, θ1, . . . , θq). The true parameters is

supposed to be Θ0 = (ω
′

0;φ
′

0).

The log-likelihood for observation at time t is 10 given to be

lt(Θ) = −1

2
(ln(ht) +

ǫ2t
ht

)

such that over all T observations

LT (Θ) =
1

T

T
∑

t=1

lt(Θ).

10In the Gaussian case.
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The BHHH11 algorithm proceeds as following. Let Θ(i) denote the parameter

estimate at iteration i. The algorith, then, computes the next iteration’s

value through

Θ(i+1) = Θ(i) + λi

(

T
∑

t=1

∂lt
∂Θ

lt
Θ′

)

T
∑

t=1

∂lt
∂Θ

.

∂lt
∂Θ

is evaluated at θ(i). λi is a step size determined for each iteration i. The

information matrix defined as I = −E(∂2lt/∂Θ∂Θ
′

) is block diagonal. This

implies that the ω and φ can be estimated separately, i.e. each partameter set

can be asymptotically efficiently estimated based on the consistent estimate

of the other parameter set.

The strongly consistent estimate Θ̂ML for Θ0 is asymptotically normally

distributed with mean Θ0 and covariance matrix I−1. The later can be

consistently estimated by T (
∑T

t=1(∂lt/∂Θ)(∂lt/∂Θ
′

))−1. The final BHHH

iteration may serve to provide the values for the latter estimate.

The LS estimation is performed in the accustomed manner. That is, since

the variance of the ǫ, σ2 = E(ǫ2t ), is constant and finite, the LS estimates

of the ARMA parameters are found from σ̂2(φ) = T−1
∑

ǫ2t → min. For

finite E(ǫ4t ), the estimates will be consistent and asymptotically normal. The

covariance matrix of the φ̂ is given by

C = E

[

∂ǫt
∂φ

∂ǫt
∂φ′

]−1

E

[

ǫ2t
∂ǫt
∂φ

∂ǫt
∂φ′

]

E

[

∂ǫt
∂φ

∂ǫt
∂φ′

]−1

evaluated at φ0.

For computation of the LS ARCH parameters in equation (4.4), the

squared innovations estimates, et, obtained from the ARMA model are used.

11For details, see, for example, Mills (1997).
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4.3.3 Testing for the presence of ARCH errors

When the ARMA model is being estimated, the obtained residuals, et, have

to be tested for ARCH effects since negligence of which can lead to signifi-

cant model misspecification. The parameter standard errors are usually too

high, then, when ARCH is not considered. This will most likely result in

overparametrizatioon ot the ARMA structure.

The squared residuals inserted into (4.4) can be treated as ARMA which

is shown, for example, in Bollerslev (1986). This will yield the order of the

ARCH or GARCH model underlying the innovations. As shown in literature,

the sample autocorrelations of the e2
t have asymptotic variance T−1. If the

ǫ2t are independent, the according portemanteau statistics of the autocorre-

lations are asymptotically χ2 distributed.

Engle (1982) provides a test for the null hypothesis of constant condi-

tional variance against the hypothesis of a conditional variance given by

an ARCH(r) model. The test is based on the Lagrange multiplier princile,

hence, LM test. The e2
t are regressed on r lagged terms and a constant with

the resulting test statistic R2 · T . R2 is the squared correlation coefficient of

the regression. The statistic is, thus, χ squared distributed with r degrees of

freedom.

With GARCHr, s) as alternative to the null, a test in the above manner

is infeasible. Moreover, for a null of GARCH(r, s), a test for a higher order

structure is also not possible. With the same null, the LM statistics for

GARCH(r, d) and ARCH(r + d), unfortunately, are the same. This means

that the test is indifferent between testing for additional d lagged innovations

terms in an ARCH(r) model and adding d− s lagged variance terms to yield

a GARCH(r, d) model. A feasible test, however, is a null of ARCH(r) against

GARCH(r, s), i.e. H0 : ω2 = 0. The test statistic is T ·R2 from the regression

of (ǫ2th
−1
t − 1) on (htzt).
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4.3.4 The use of GARCH models in applied economet-

rics

In econometrics, for the longest, dependence structures of variables have

been estimated with models minimizing the squared error terms. The idea

of GARCH models, however, is to provide some method to predict the vari-

ance of these error terms which is assumed to change during time. This is

in contrast to the homoscedastic volatility of traditional regression models.

Dynamic volatility is referred to as heteroscedasticity.

When heteroscedasticity is observed, the estimated regression parameters

are still unbiased, see, for example, Engle (2001). But their respective stan-

dard errors and confidence intervals are too small. GARCH models, now,

remedy that short coming and, moreover, predict the future variance based

on the given information. Additionally, so called robust standard errors can

be applied instead of the exact standard errors if the sample size is large. If

the sample size should be small, a correction of the standard errors of the

estimated coefficients with respect to heteroscedasticity might be called for.

Precision of estimated regression parameters is of great importance for in

fincancial issues.

When looking at financial time series, one can frequently observe periods

of residuals large in absolute value and, on the other hand, periods with

small abolute model residuals. This is called volatility clustering. Referring

to these residuals as risk, one can, then, say that there is autocorrelation in

the risk. This is the field where GARCH models prevail.

In econometrics, the prediction of mean and variance of financial returns

is of prime interest. The main task is to use available information and incor-

porate it into predictions. In contrast to the mean, there have not been many

sophisticated ways to estimate the variance. Instead of equally weighted ob-

servations of the squared residuals of a fixed length which has been common

75



practice, the weights are estimated in the GARCH models and allow for

greater flexibility. Generally, GARCH weights of past squared residuals are

declining but, because of the structure, never vanish. At each period , a

new squared residual is added as the new information. In applications, this

method of modeling conditional variances has performed successful, e.g. in

Engle (2001).

The form of the GARCH model is such that the conditional variances

are mean reverting. As shown before, the unconditional variance is constant

and in the long run, the conditional variance approaches its unconditional

counterpart.

To give an example, we look at the calculation of the value at risk of a

certain given portfolio which is the value of the loss that is exceeded with a

given probability. In other words, its is the 1 percent quantile of the return

distribution.

The following example is given in Engle (2001). We assume to have a

portfolio worth $ 1,000,000 which we want to estimate the 1 percent value

at risk of. The portfolio consisting of indices and bonds is composed of 50

percent Nasdaq, 30 percent Dow Jones and 20 percent long bonds. The time

of consideration is given to be the 23rd of March in 2000 when volatility was

very high. Plots of the respective returns can be viewed in Figure 4.1.

ARCH effects are striking for all equities when comparing the beginning

part to the end.

In Table 4.1, mean, standard deviation (std. dev.), skewness, and kurtosis

are presented for the constituents as well as the portfolio, in column three.

By looking at the respective std. dev.’s, one can notice the positive effect

diversification has despite the high content of equity.

Table 4.2 shows the autocorrelations of the squared returns along with the

Q-statistics and their corresponding p-values. For all 15 lags, autocorrelation

is significant. More, they are all positive. All this is indicative of GARCH
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Figure 4.1:

effects.

Next, the std.dev.’s are predicted along with the portfolio’s 1 percent

quantile. This is done individually for three different intervals: March 1990

through March 23, 2000, March 1999 through March 23, 2000, and January

1, 2000 through March 23, 2000.

The historical 1 percent value at risk for the ten year period is at $

22,477. The second interval yields a value at risk of $ 24,653, whereas the

last interval’s value at risk is at $ 35,159 which is definitely an increase over

its two predecessors. For a short period into the future, these value at risk

numbers are true if the distribution of the return does not change.

Table 4.3 lists the estimates of a GARCH(1,1) model fitted to the data.

Standard errors of the estimated parameters are the result of a robust me-

thod.12 The sum of the lag coefficients are very close to one indicating that

the variance process reverts to its mean very slowly.

In 4.4, the values of the autocorrelations of the standardized residuals

12For further details, the reader is referred to Engle (2001).
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Portfolio Data

NASDAQ

Dons Fones Rate Portfolio

M 0.0009 0.0005 0.0001 0.0007

STD.D 0.0115 0.0090 0.0075 0.0083

SKE -0.5310 -0.5593 -0.2031 -0.4738

Kurto 7.4936 8.3288 4.9579 7.0026

Sampler: March 23,1990 to March 23,2000

Table 4.1:

are given. For all lags, these values seem to have been noticeably diminished

compared to their counterparts resulting from the returns. When examining

the respective values of the Q statistics, it is striking that any significance

of autoregressive terms has vanished. Hence, there appear to be no ARCH

effects in the residuals.

With the obtained parameter values, one forecasts a std. dev. for the

next day of 0.0146. This is ca. twice the value of the value of the average std.

dev. tabulated proviously. With this value, the normal distribution would

yield a 1 percent quantile of the residuals of std.dev.×Φ(0.01) resulting in a

1 percent value at risk of $33,977.13

As stated, for example, in the original source, the normal distribution,

however, is not a good fit for the empirical distribution of the standardized

residuals. The empirical 1 percent quantile, in this case, is 2.844 which results

in a value at risk of $39,996. The empirical residuals appear to have much

heavier tails in their distribution than the normal distribution permits. This

is definitely reflecting the increased volatility in the returns since 2000.

It is left to notice that one need not go the way to compute the standard

deviations. This might even be impossible to do if the tails of the underlying

13Here, Φ denotes the standard normal distribution function.
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AC Q-Star P

1 0.210 115.07 0.000

2 0.183 202.64 0.000

3 0.116 237.59 0.000

4 0.082 255.13 0.000

5 0.122 294.11 0.000

6 0.163 363.85 0.000

7 0.000 384.95 0.000

8 0.090 401.77 0.000

9 0.081 427.88 0.000

10 0.081 445.03 0.000

11 0.069 457.88 0.000

12 0.000 474.29 0.000

13 0.076 483.42 0.000

14 0.074 563.99 0.000

15 0.083 521.95 0.000

Table 4.2:
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Variance equation

Variable Coef St.Err Z-Stat P-Value

C 1.40E-06 4.49E-07 5.1210 0.0018

ARCH(1) 0.0772 0.0179 4.3046 0.0000

GARCH(1) 0.9046 0.0196 46.1474 0.0000

Notes:Depart Variable,PORT

Sample :March 23,1990 to March 23,2000

Table 4.3:

distribution are too heavy to permit finite variance. Using the quantiles of

the forecasts, instead, provides for a practical alternative.

The portfolio under consideration lost as much $67,000 on a single day,

in the ensuing month through April 14, 2000. This is particularly a result of

the decline in the Nasdaq in that period.

As can be seen in the plot in 4.2, the value at risk was trespassed only

one percent of the time during the sample period which is to be expected

since the parameters are based on this sample.

A plot of the forecasts for the period until the end of the second quarter

of 2001 can be seen in Figure 4.3. Here, parameters are not reestimated, and

the values at risk are merely updated using the latest inormation.

Volatilty models exist of various forms. But sill, the GARCH(1,1) is the

simplest. Moreover, it is very robust.14 A natural extension, though, appears

to be a GARCH(p, q) model. Despite its higher parametrization, it might

sometimes be a benefit to apply when the time series is very long. Generally,

the GARCH(1,1) is very satisfactory, though.

One issue that is not touched by GARCH models is the direction of the

returns. It has been found, however, that negative news affect volatility

more intensely than positive news. One may want to look at EGARCH and

14See Engle (2001).
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Figure 4.2:

TARCH, in this context.

Up to now, the origin of volatility has not been explained by the models.

Investigatin into that direction have not, yet, led to illuminating results.15

In general, it seems mots plausible that volatility is some function of news.

Also, cross influences should be taken into consideration when examining the

volatilities of several assets in one portfolio.

4.3.5 Some alternative parametric ARCH models: an

empirical analysis

Based on tests performed in Loudon, Watt and Yadav (2000), we will present

some empirical results of alternative extensions of the GARCH model with

respect to capturing the volatility inherent in daily UK value-weighted stock

index in the period between 1971-97. The period under investigation will

be split up into three subperiods to provide for comparison between period

15See, for example, Engle (2001).
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Figure 4.3:

related performance of the individual alternatives. Moreover, in addition

to the in-sample performance, the predictive power with respect to out-of-

sample performance will be tested for the individual models and compared

wherever feasible.

As will be seen, outperformance of particular models is generally not con-

sistent across different subperiods. The same is true for the ex-ante predic-

tion power of the respective volatility. Additionally, we will see that ARCH

is highly significant. Skewness and kurtosis of the series will be captured

to some extend by the models. Despite the fact that not all volatility is

captured by the models, except for a few models, the conditional variance is

unbiased with respect to prediction of the individual model variances.

In general, the models perform quite similarly. An exception is the mul-

tiplicative GARCH model.

The testing includes eight model alternatives. All have in common that

the stock index returns are regressed on five business weekday dummies and

a holiday dummy. The remainder is itself regressed against a constant and
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ten autoregressive lags. The final residuals, {ǫ}t, are assumed to conditi-

nally Gaussian with zero mean and time dependent variance ht. The general

parameterization of the models, then, looks as follows

Rt = a1MONt + a2TUEt + a3WEDt + a4THUt + a5FRIt + a6HOLt + νt

vt = b0 +
10
∑

i=1

biνt−i + ǫt.

The conditional variance of the {ǫ}t is given by

ht =

{

|λφt − λ+ 1|1/λ, λ 6= 0

exp(φt − 1), λ = 0.
φt = α0 + φt−1ξ1,t−1 + ξ2,t−1

ξ1,t−1 = α1 + α2|ǫ− c|δ + α3 max(0, c− ǫt)
δ

ǫ2,t−1 = α4
|ǫt − c|δ − 1

δ
+ α5

(max(0, c− ǫt))
δ − 1

δ

The models are distinguisehd by the specifications below.

(1) LGARCH λ = 1, c = 0, δ = 2, α3 = 0, α4 = 0, α5 = 0, α0 > 0, α1 ≥ 0, and α2 ≥ 0

(2) MGARCH λ = 0, c = 0, δ = 0, α2 = 0, α3 = 0, α4 = 2α1, nd α5 = 0

(3) EGARCH λ = 0, c = 0, δ = 1, α2 = 0, and α3 = 0

(4) GJR-GARCH λ = 1, c = 0, δ = 2, α5 = 0, α0 > 0, α1 ≥ 0, α2 ≥ 0, and α2 + α3 ≥ 0

(5) NGARCH λ = 1, δ = 2, α3 = 0, α4 = 0, α5 = 0, α1 ≥ 0, and α2 ≥ 0

(6) VGARCH λ = 1, δ = 2, α2 = 0, α3 = 0, α5 = 0, α0 > 0, α1 ≥ 0, and α4 ≥ 0

(7) TS-GARCH λ = .5, c = 0, δ = 1, α3 = 0, α4 = α2, α5 = 0, α1 ≥ 0, α2 ≥ 0, and

α0 > α1 + α2 + α3 − 1

(8) TGARCH λ = .5, c = 0, δ = 1, α4 = α2, α5 = α3, α1 ≥ 0, α2 ≥ 0, α2 + α3 ≥ 0, and

α0 > α1 + α2 − 1.

Why are different parametrizations necessary. As mentioned by Loudon,

Watt and Yadav (2000), the main reason might be the drawback of original

GARCH(1,1) to use squared residuals. This fails to make use of the direc-

tion of past shocks. In reality, however, asymmetry in the magnitude as a
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result of particular shocks is observed. That is, volatility reacts more pro-

nouncedly to negative shocks than to positive shocks. Hence, models such as

EGARCH, GJR-GARCH, NGARCH, VGARCH, and TS-GARCH are intro-

duced to account for this asymetric relationship. The so called News Impact

Curve provides a good presentation of the conditional volatilities’ dependence

on the directions of the immediately preceding innovations. Except for the

LGARCH model, as is expected, the curve is asymmetricly centered about a

particular value of ǫt−1.

Results of testing the 27 years worth of FT All Share Index data, per-

formed in Loudon, Watt and Yadav (2000) are to presented in brief.16 Pa-

rameters were obtained from conducting a MLE according to the BHHH

algorithm mentioned in (4.3.2). The test incorporates in-sample as well as

out-of-sample (ex ante) volatility estimation.

The following Table 4.5 reveals the respective estimated parameters along

with the p-values. It can be seen that almost all parameters are highly

significant. Generally, the previous value of the conditional variance has

extreme influence on today’s value. Hence, volatility forecasts will put a lot

of weight on the level closest in history. Moreover, when models incorporated

parameters for detection of asymmetry, these were highly significant, as well.

In some cases, the levels of significance grew from period one through the

final period. Also, despite the formal inapplicability of likelihood ratios, they

were computed nevertheless and are listed in Table 4.5, as well.

The eight diagnostic checks conducted are listed in Table 4.5.17 Some

are based on the conditional variance forecast errors, ǫ2t − ht, assuming that

the true volatility in day t is ǫ2t . Standardized errors, ǫt/
√
ht are used for

computation of the skewness, kurtosis, and the LM statistics. Others refer

16For further details, the reader is referred to original source.
17For the complete listing of the tests, the reader is referred to Loudon, Watt and Yadav

(2000).
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Autocorrelations of Squared Standardized Residuals

k AC Q-Star Prob

1 0.005 0.0589 0.808

2 0.039 4.0240 0.134

3 -0.011 4.3367 0.227

4 -0.017 5.0981 0.227

5 0.002 5.1046 0.403

6 0.009 5.3228 0.503

7 -0.015 5.8836 0.553

8 -0.013 6.3272 0.611

9 -0.024 7.8169 0.553

10 -0.006 7.9043 0.638

11 -0.023 9.3163 0.593

12 -0.013 9.7897 0.634

13 -0.003 9.8110 0.709

14 0.009 10.038 0.759

15 -0.012 10.444 0.791

Table 4.4:

to the squared inovations, ǫ2t . Now, Table 4.5 also reports the results from

diagnostic checks for the ex ante forecasts of periods two and three. The

parameters for the ex ante forecasts were obtained from the respective period

preceding the one under investiation.

It should be mentioned that detection of skewness is model-dependent as

well as period specific. In general, it is increasing. Leptokurtosis is always

highly significant and prevailing for all periods.

After removing weekday effects, serial correlation is rejected for the raw

returns, ǫ, but they definitely exhibit ARCH effects up to a lag order of ten.

The news impact curve indicates pronounced dependence of the behavior of
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the squared returns on the direction and magnitude of the previous returns.

This gives reason to assume that models considering asymmetry might out-

perform the others. These findings agree with previous findings causing the

invention of the respective models.

The root mean square errors (RMSE) are quite similar for all models

throughout the three periods. Only for the MGARCH, higher RMSE errors

are reported. Due to the RMSE, no clear preference can be determined since

model orders change between the periods.

When analyzing the equality across all models of the respective condi-

tional variance forecast errors, ǫ2t − ht, reults are not quite obvious. When

out-of-sample values are considered, equality is strongly rejected for both pe-

riods. In the case of in-sample predictions errors, the difference in the errors

depends on the period For example, equality cannot be rejected in the second

period whereas they are different in the remaining two.

Pairwise comparison of equality with respect to the LAGRCH model,

reveals that the corresponding test statistics are not significant in almost all

cases.

Skewness in the ǫt/
√
ht is found particularly in the first two periods. In

general, there is well pronounced skewness across all models throughout all

three periods. As far as excess kurtosis is concerned, it is found for the

standardized residuals in all models that they are significantly leptokurtotic.

The level of kurtosis, however, is somewhat lower than for the raw returns.

No ranking of the models is possible, in this respect.

The standardized residuals from the different models are apparently not

significantly correlated according to LM tests based on ten lags. However,

when the linear filtering parameters are not constantly adjusted to new infor-

mation, the serial corrrelation becomes more noticeable. When the squared

standardized residuals, ǫ2t/h
2
t , are tested, the LM tests reveal serial corre-

lation in some models. This is evidence for insufficiency in the respective
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models explanation of volatility. One should observe the differences between

the ex-ante and ex-post results.

Impact of sign and magnitude of the previous value is substantially lower

for the standardized residuals than for the raw filtered returns. For the

first ones, there is some significance detected dependent on the sign when

in-sample values are analyzed. Additional tests regress the residuals on the

conditional variance.

All in all, it can be remarked that the appropriate model should be se-

lected period-specifically.
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Panel A:1971-80 LGARCH MGARCH EGARCH GJRCARCH NGARCH VGARCH TSGARCH TGARCH

α0 0.011 1.27 0.065 0.01 0.01 0.001 0.035 0.044

(0.002)c (0.017)c (0.008)c (0.002)c (0.002)c (0.003)c (0.003)c (0.005)c

α1 0.922 0.162 0.991 0.926 0.926 0.992 0.916 0.923

(0.005)c (0.006)c (0.002)c (0.005)c (0.005)c (0.001)c (0.005)c (0.005)c

α2 0.07 0.056 0.066 0.136 0.09 0.072

(0.007)c (0.01)c (0.007)c (0.009)c (0.007)c (0.008)c

α3 0.021 0.025

(0.011)a (0.008)c

α4 0.135

(0.015)c

α5 0.042

(0.015)c

c 0.161 0.119

(0.073)b (0.031)c

Log-L -3664.52 -3968.51 -3671.43 −3663.05a −3662.51b -3672.11 -3673.76 −3670.58b

Panel B:1981-1990 LGARCH MGARCH EGARCH GJRCARCH NGARCH VGARCH TSGARCH TGARCH

α0 0.048 0.805 0.158 0.05 0.061 0.053 0.082 0.129

(0.007)c (0.013)c (0.009)c (0.007)c (0.008)c (0.008)c (0.007)c (0.009)c

α1 0.826 0.128 0.928 0.828 0.782 0.917 0.814 0.817

(0.016)c (0.004)c (0.01)c (0.017)c (0.018)c (0.009)c (0.014)c (0.016)c

α2 0.018 0.058 0.11 0.114 0.141 0.079

(0.011)c (0.014)c (0.013)c (0.011)c (0.007)c (0.013)c

Table continued over page
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LGARCH MGARCH EGARCH GJRCARCH NGARCH VGARCH TSGARCH TGARCH

α3 0.085 0.092

(0.012)c (0.009)c

α4 0.153

(0.023)c

α5 0.136

(0.017)c

c 0.46 0.338

(0.07)c (0.059)c

Log-L -3125.86 -3316.19 -3109.99 −3115.43c −3108.62c -3123.19 -3132.64 −3113.92c

Panel C:1991- October 1997

α0 0.014 0.258 0.074 0.01 0.01 0.003 0.022 0.044

(0.004)c (0.02)c (0.011)c (0.003)c (0.003)c (0.004)c (0.004)c (0.006)c

α1 0.899 0.049 0.982 0.923 0.906 0.977 0.929 0.939

(0.017)c (0.007)c (0.005)c (0.015)c (0.015)c (0.006)c (0.012)c (0.011)c

α2 0.071 0.027 0.052 0.029 0.067 0.031

(0.01)c (0.009)c (0.009)c (0.005)c (0.009)c (0.01)c

α3 0.061 0.051

(0.014)c (0.01)c

α4 0.061

(0.02)c

α5 0.095

(0.019)c

c 0.659 0.703

(0.136)c (0.165)c

Log-L -1742.34 -1812.08 -1729.95 −1735.17c −1730.84c -1741.97 -1738.34 −1729.41c
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Panel A:1971-80 Linearly filtered raw returns LGARCH MGARCH EGARCH GJRCARCH NGARCH VGARCH TSGARCH TGARCH

RMSE

In sample 3.245 3.548 3.271 3.26 3.261 3.331 3.257 3.278

WC χ2

in sample (13.51)c 2.53 0.85 0.72 0.61 0.70 1.69 1.15

DM

in sample 0.47 0.89 0.73 0.87 1.02 1.23 1.51

Skewness

in sample 0.00 −0.27c −0.13c −0.28c −0.26c −0.26c −0.15c −0.30c −0.29c

Kurtosis

in sample 5.09c 1.41c 3.23c 1.47c 1.39c 1.41c 0.87c 1.55c 1.57c

LM (levels)

in sample 0.32 14.85 3.55 14.03 14.32 13.98 10.65 14.54 13.63

LM (squares)

in sample 560.3c 7.67 306.9c 9.54 7.30 7.44 14.44 8.81 7.88

EN Sign bias

in sample 3.81c -0.84 2.19b -0.73 -0.69 -0.76 -0.68 -0.75 -0.59

EN neg.size bias

in sample −8.39c -2.74 -0.99 −2.37b −2.43b −2.42b −2.17b −2.55b −2.08b

EN pos.size bias

in sample 16.13c 0.14 4.57c 0.44 0.48 0.56 1.07 -0.10 0.44
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Panel A:1971-80 Linearly filtered raw returns LGARCH MGARCH EGARCH GJRCARCH NGARCH VGARCH TSGARCH TGARCH

(continued)

RMSE

EN joint bias

in sample 293.6c 8.23b 21.86c 6.01 6.38a 6.30a 5.87 7.58a 4.66

PS χ2

in sample 0.06 24.50c 0.09 0.02 0.01 6.11b 0.17 0.17

PS R2

in sample 0.199 0.019 0.186 0.192 0.191 0.165 1.193 1.183

PS LB

in sample 68.00c 103.6c 86.31c 76.81c 78.97c 162.2c 79.02c 92.41c

PS(log) χ2

in sample 945.0c 1057.6c 949.2c 944.1c 944.3c 945.3c 944.6c 941.8c

PS(log) R2

in sample 0.092 0.026 0.09 0.092 0.092 0.088 0.09 0.09

PS(log) LB

in sample 12.68 105.1c 11.54 13.26 13.09 11.93 10.95 11.00
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Panel B:1981-90

RMSE

in sample 3.175 3.47 3.112 3.124 3.151 3.276 3.293 3.246

out of sample 3.216 3.433 3.258 3.215 3.229 3.264 3.308 3.302

WC χ2

in sample 5.22 1.29 1.32 0.95 1.01 0.99 0.98 0.80

out of sample 63.05c 1.42 0.43 0.01 1.64 1.09 0.61 0.60

DM

in sample 0.03 1.16 -0.72 -0.26 1.13 0.79 1.06

out of sample −3.25c 1.43 -1.23 0.74 −2.03b 1.19 1.43

Skewness

in sample −1.2c −0.94c −0.88c −0.64c −0.80c −0.69c −0.72c −0.80c −0.62c

out of sample −0.97c −1.22c −0.82c −0.93c −0.91c −0.79c −0.91c −0.84c

Kurtosis

in sample 17c 8.65c 8.14c 4.82c 6.93c 5.35c 6.05c 46.32c 4.36c

out of sample 9.33c 12.68c 7.02c 8.80c 8.45c 8.40c 7.87c 7.05c

LM (levels)

in sample 0.10 14.89 3.78 14.39 14.67 14.05 12.40 15.77 14.49

out of sample 17.49a 31.27c 17.78a 17.82a 17.65a 13.65 16.33a 16.91a

LM (squares)

in sample 1027.8c 8.72 490.8c 7.29 5.69 8.40 26.04c 58.59c 36.72c

out of sample 20.16b 539.5c 51.72c 18.17a 23.12b 9.95 140c 123.5c

EN Sign bias

in sample −6.32c -0.06 −3.71c 0.23 0.39 -0.10 -0.38 -1.28 -0.71

out of sample -0.26 -0.85 -0.82 -0.09 -0.28 -0.01 −2.13b −1.84a
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EN neg.size bias

in sample −23.19c -1.49 −11.42c -0.52 -0.72 -0.84 −2.24b −3.57c −2.11b

out of sample −2.74c −4.56c −3.90c −2.50b −2.82c -1.49 −6.60c −5.98c

EN pos.size bias

in sample 5.82c -0.63 0.97 0.01 0.01 -0.04 0.16 -0.98 0.04

out of sample 0.01 0.09 0.30 0.21 0.23 -0.10 0.00 0.28

EN joint bias

in sample 473.4c 5.47 129.4c 1.96 0.90 1.04 6.30a 16.73c 4.81

out of sample 10.66b 24.19c 17.75c 9.12b 10.60b 3.76 46.33c 38.19c

PS χ2

in sample 0.41 4.37 2.61 0.14 0.24 4.75a 1.42 1.24

out of sample 1.06 85.94c 0.46 1.26 0.83 13.01c 0.23 0.09

PS R2

in sample 0.182 0.012 0.281 0.204 0.192 0.247 0.129 0.156

out of sample 0.135 0.03 0.111 0.137 0.129 0.112 0.084 0.087

PS LB

in sample 668.7c 933.2c 470.2c 631.0c 627.6c 606.8c 704.2c 650.1c

out of sample 793.6c 829.6c 820.1c 793.7c 805.5c 878.9c 857.6c 857.1c

PS(log) χ2

in sample 972.2c 1386.6c 957.6c 963.9c 959.9c 987.2c 978.3c 962.8c

out of sample 1072.4c 1947.2c 1052.8c 1070.0c 1056.8c 1156.3c 1080.9c 1058.8c

PS(log) R2

in sample 0.044 0.01 0.043 0.046 0.046 0.044 0.04 0.043

out of sample 0.041 0.006 0.039 0.040 0.04 0.031 0.04 0.039

PS(log) LB

in sample 9.02 47.57c 9.31 9.01 9.02 8.79 11.09 9.63

out of sample 12.86 70.72c 10.84 14.47 14.60 22.54b 8.24 9.57
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Panel C:1991- October 1997

RMSE

in sample 1.125 1.141 1.117 1.118 1.117 1.124 1.12 1.117

out of sample 1.118 1.166 1.107 1.109 1.11 1.118 1.112 1.108

WC χ2

in sample 33.49c 1.30 1.85 2.21 4.16b 0.04 1.05 1.99

out of sample 157.9c 13.71c 2.34 2.79a 2.59 0.01 0.95 1.74

DM

in sample 0.16 0.74 0.71 0.60 1.10 0.76 0.69

out of sample −9.31c 0.69 0.73 −1.68a −2.36b 0.57 -0.21

Skewness

in sample 0.34c 0.04 0.26c 0.06 0.06 0.05 0.09 0.06 0.06

out of sample 0.03 0.22c 0.04 0.07 0.07 0.06 0.00 0.06

Kurtosis

in sample 4.42c 2.35c 3.71c 2.31c 2.40c 2.39c 2.62c 2.41c 2.31c

out of sample 1.79c 4.33c 1.92c 2.01c 2.02c 2.03c 1.77c 2.01c

LM (levels)

in sample 0.32 1.83 0.64 2.59 2.29 2.59 1.88 2.02 2.66

out of sample 15.97 20.15b 16.53a 16.73a 17.18a 16.71a 15.30 16.70a

LM (squares)

in sample 60.3c 4.12 51.6c 5.16 3.74 3.88 5.74 5.48 5.46

out of sample 6.21 36.1c 7.22 6.61 7.78 5.11 7.84 9.09

EN Sign bias

in sample 1.33 0.75 1.46 0.69 0.93 0.70 0.81 0.57 0.66

out of sample 1.20 0.79 1.28 1.52 1.26 1.35 1.01 1.24
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EN neg.size bias

in sample −2.33b 0.43 -0.75 0.80 0.92 0.97 0.31 0.16 0.80

out of sample 0.91 1.44 1.92a 1.46 1.70a 1.42 1.36 2.03b

EN pos.size bias

in sample 4.41c 0.45 2.81c 0.75 0.74 0.79 1.44 0.50 0.74

out of sample 0.66 -0.39 0.72 1.27 1.28 1.22 -0.13 0.84

EN joint bias

in sample 24.8c 0.57 8.79b 1.25 1.39 1.73 2.23 0.39 1.27

out of sample 1.57 2.36 4.27 3.76 4.87 3.54 2.17 5.06

PS χ2

in sample 1.01 6.27b 1.39 0.19 0.18 1.87 0.23 1.13

out of sample 14.45c 104.3c 23.29c 20.35c 24.00c 29.44c 18.57c 27.19c

PS R2

in sample 0.032 0.002 0.047 0.043 0.045 0.035 0.039 0.046

out of sample 0.036 0.005 0.053 0.05 0.049 0.037 0.043 0.052

PS LB

in sample 17.0a 1.15 16.6a 15.4 16.3a 18.9b 18.3a 17.0a

out of sample 14.9 52.3c 14.2 15.9 16.8a 14.8 15.4 13.6

PS(log) χ2

in sample 679.6c 1178.3c 673.7c 675.2c 674.6c 681.8c 678.4c 673.4c

out of sample 870.3c 1222.0c 857.5c 872.9c 901.5c 906.2c 859.2c 882.4c

Panel C:1991- October 1997

PS(log) R2

in sample 0.026 0.003 0.038 0.033 0.036 0.032 0.031 0.038

out of sample 0.027 0.005 0.035 0.031 0.032 0.028 0.03 0.034

PS(log) LB

in sample 3.92 30.06c 2.47 2.69 2.26 3.43 2.43 2.56

out of sample 8.55 33.32c 9.45 8.24 8.12 8.87 9.18 9.85

Table 4.5:
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Chapter 5

Cointegration and Error

Correction Models

The idea of cointegration has, to a great extent, been conceived by Engle and

Granger. The notion behind the theory is that variables may move together,

in the long run, but seem to deviate from a common dynamic in the short-

period movements. The theory of cointegration is economically valuable since

it is observable in macroeconomics and finance that a universe of variables

seem to be driven by a small number of common factors as is stated, for

example, in Diebold (2004).

In this section, the joint behavior of two or more time series will be

discussed. Let “x is I(d)” denote that the time series x has to be first-

differenced d times to become stationary. So, by linearly combining two

processes, xt and yt, in the fashion

ut = yt − axt,

we obtain the I(d) process ut. There is however the chance that we can find

a coefficient a such that ut might be intergrated of lower order than d, say,

k with 0 < k < d. This property can be described by saying that xt and yt
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have long run components that can be cancelled out by aid of a such that u

has no long run components. If this is the case, then xt and yt are said to be

cointegrated.1

The previous results can be extended to high dimensions. Then, an n-

dimensional vector z is said to be cointegrated of order d−k (z is CI(d, d−k))
if there exists at least one n-dimensional vector a(6= 0) such that the resulting

a′z is integrated of order k. There may be up to m < n linearly independent

vectors a1, . . . , am with that property. Hence, m is the cointegration rank of

the vector zt.

When considering cointegration of arbitrarily many processes, one can

understand this as a long-run equilibrium between them, see Mills (1997). To

demonstrate this, we restrict ourselves to the 2-dimensional case, for now,

such that the relationship may be thought of as

yt = axt.

The quantity ut can be understood as extent of deviation from this equilib-

rium, hence, as “equilibrium error”. When xt and yt are I(1), the equilibrium

error is, consequently, I(0). Crossings of the zero line by ut will be the rule,

then, whereas large deviations from zero will be rare exception. To the con-

trary, when xt and yt are not cointegrated, then ut will reveal the reverse

patterns.

In the following, notation will be used that is described in Appendix A.

Bring to mind condition (c) in the Appendix where non-singularity for the

covariance-matrix, Σ, of the innovations, ξt, is required. If |Σ| = σ2
vσ

2
w−σvw =

0, the Σ is no longer non-singular and, hence, the asymptotic results of the

Appendix do not hold. This is equivalent to σvw/(σ
2
vσ

2
w) = 1 so that, over

a longer time horizon, the correlation coefficient of v and w is one. Thus,

singularity of Σ evolves as a necessary condition of cointegration. The case

1See, for example, Mills (1997).
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of zero correlation implies spurious regression of yt on xt. For values between

zero and one, xt and yt are not cointegrated, however, not independent,

either.

The bivariate cointegration of yt and xt is, next, extended to a multivari-

ate regression on a vector xt. The model is

yt = α+ βxt + ut, t = 1, 2, . . . .

Let xt itself be modeled by

xt = π + xt−1 + wt, t = 1, 2, . . . .

From the cointegration of yt and xt it follows that {ut}∞1 is I(0) which causes

{ǫt}∞1 = {(ut, wt)}∞1 to comply with conditions (a) through (d), in the Appen-

dix to allow for some extent of dependence structure as well as simultaneity

and non-stationarity. E(xtut) 6= 0 is permissible, too.

The parameter estimates obtained from the above model with the assump-

tions on {ǫt} are, now, consitent α̂ and β̂ converge favorably at rate O(1/T )

compared to the conventional regression’s case. They are not asymptotically

normal, however, since the sample moments scaled in an appropriate man-

ner converge in distribution to random matrices, see Mills (1997). One may

inquire the Appendix for the functionals of Brownian motions obtained for

the asymptotic distributions.

Let π = 0, for now. For the tests associated with the modified statistics,

we employ {et} to denote the estimates of {ǫt} = {(ut, wt)}. For these,

we obtain as a consistent estimate of the covariance matrix for a long time

horizon of the form

Ωe = Σe + Λe + Λ
′

e

where Σe denotes the estimate of the contemporaneous covariance matrix of
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{et} and

Λe =
∞
∑

i=2

E(e1e
′

1).

Standard tests apply when {ut} ∼ WN(0, σ2).

For the case π 6= 0, the regressors, xt are perfectly correlated in the

limit as a result of the fact that the regressors will be dominated by the

O(T ) trend πT . This leads to the singularity of the covariance matrix of the

β̂. Detrending of the variables is a solution to obtain the distribution from

above.

As a specialization, one can consider the non-zero trend case, π 6= 0,

along with a univariate xt such that the
√
T (α̂ − α) and (

√
T )3(β̂ − β) are

asymptotically normal with standard formulae found, for example, in Mills

(1997), chapter 5.

As a concluding remark to the notion of cointegration, consider the case

that the {wt} and {ut} are independent of each other. It can be shown that

standardized α̂ and β̂ are, again, asymptotically normal.

A note is left to be dropped on testing. The tests are usually of the sort

of a unit root test performed on the regressions residuals obtained from

ût = yt − α̂t − β̂xt.

The null hypothesis in those tests is commonly that of no cointegration.

The Durbin-Watson test is often applied. But, one has to be aware of the

problems arising with respect to the process-depending critical values of the

dw statistic for various sample sizes. An alternative is a regression of ∇ût

on ût−1 and lagged ∇ût. The t-statistic of ût−1 will too often be too high

so that the null might even be rejected falsely, i.e., a type one error would

occur frequently. The literature provides a great variety of results of critical

values from Monte Carlo simulations.
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Chapter 6

The Capital Asset Pricing

Model

6.1 Review of the CAPM

This section is intended to bring to mind the Capital Asset Pricing Model

(CAPM) to those who already have, at least, some knowledge of it as well as

provide those with a brief introduction to the model who have never heard

of it. The facts delivered will suffice to serve as a basis for latter testing in

terms of multi-factor modeling.

The general idea behind the model is to map the tradeoff between ex-

pected returns of portfolios and the risk expressed as variance. This was

first introduced by Markowitz in 1959 in his Nobel Prize awarded work on

investors’ portfolio choice optimization. His conclusion was that an investor

always selects the portfolio with given expected return that exposes him to

the smallest risk, i.e. variance, possible. The converse would be that an

investor picks a portfolio with the highest expected returns for a given level

of risk that he is still willing to bera.1 Later, Sharpe and Lintner refined the

1This model holds if then investor’s utility function is quadratic or the asset returns
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risk-return relationship by stating that the return of a portfolio is a linear

function of the riskfree rate,2 the excess return of a market portfolio, and an

error term such that

Rit = Rf + βim(E[Rm] −Rf ) + ǫt, (6.1)

E[Ri] = Rf + βim(E[Rm] −Rf ). (6.2)

where the {ǫ} are independent mean-zero with variance σ. The regression

coefficient beta is

βim =
Cov[Ri, Rm]

Var[Rm]
.

This model is referred to as the single-period CAPM. Empirical tests have

been performed with respect to whether

(i) Rf is the true intercept,

(ii) the beta captures the entire cross-sectional variatin of expected returns,

and

(iii) the market risk premium is positive.3

Often, the model is written in the form

E[Zi] = βimE[Zm] (6.3)

where Zi denotes the excess return of portfolio i. The regression equation

for OLS estimation is, then,

Zit = aim + βimZmt + ǫit.

are normally distributed.
2That is if a riskless asset exists.
3The term E[Ri] −Rf is referred to as risk premium.
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An alternative model, the so called Black’s model, does not include the risk-

less asset. It is based on the fact that every4 portfolio on the efficient set has

a unique zero-covariance portfolio.5 That means that every portfolio i has a

unique portfolio 0i such that Cov[Ri, R0i] = 0. In case of the portfolio with

globally minimum variance, the so called minimum variance portfolio, has

itself as the zero-covariance portfolio. The Black regression model is, then,

written as

E[Ri] = E[R0m] + βim(E[Rm] − E[R0m]) = αim + βimE[Rm]. (6.4)

The question of what the market portfolio actually is, usually, is answered in

tests by using the largest index of the market. In the USA, this is the S&P

500 index.

A note on efficient set theory is dropped, here, to facilitate further under-

standing. Markowitz’s optimization problem can be stated in the following

way. Let ω denote the portfolio weights and Ω denote the variance-covariance

matrix of the individual assets’ returns, then, the optimal portfolios are de-

termined by6

min
ω
ω

′

Ωω

s.t. ω
′

µ = µp

ω
′

1 = 1.

Solving the resulting Lagrangian, we obtain as a result for the optimal port-

folio weights

ωp = g + hµp

4It will be shown that only the global minimum-variance portfolio has positive covari-

ance with every ohther portfolio.
5The efficient set is the locus of all portfolios that yield a particular expected return

with the least amount of risk.
6Note that, here, no riskfree asset is available.
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where

g =
1

D
[B(Ω−11) − A(Ω−1µ)]

h =
1

D
[C(Ω−1µ) − A(Ω−11)],

and

A = 1
′

Ω−1µ,

B = µ
′

Ω−1µ,

C = 1
′

Ω−11, and

D = BC − A2.

Then, from any two distinct portfolios with minimum variance, the entire

efficient frontier can be generated. Also, any linear combination of minimum-

variance portfolios results in a portfolio that has minimum variance itself.

Additionally, for any two portfolios p and r with minimum variance, the

covariance can be written in the form

Cov[Rp, Rr] =
C

D

(

µp −
A

C

)(

µr −
A

C

)

+
1

C
.

The global minimum-variance portfolio has mean A/C and variance 1/C.

Hence, it has, as an exception, no zero-covariance portfolio.

Any return on a portfolio q can be expressed as a regression on a minimum

variance portfolio p and its zero-covariance portfolio 0p such that

Rq = β0 + β1Rp + β2R0p + ǫ

E[ǫ|Rp, R0p] = 0.

Figure 6.1 illustrates this. As one can see, graphically, the zero-covariance

portfolio 0p is determined by running the perpendicular to the y-axis through

the intersection of y-axis and the tangent in point p. The intersection of the
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perpendicular and the minimum-variance frontier is at the point 0p. The

global minimum variance portfolio is at g.

When a riskfree asset is added,7 the optimization problem is altered to

min
ω
ω

′

Ωω

s.t. ω
′

µ+ (1 − ω
′

1)Rf = µp.

Again, after solving the Lagrangian for the optimal portfolio weight, one

obtains for the weights invested in risky assets

ωp =
(µp −Rf )

(µ−Rf1)′Ω−1(µ− Rf1)
Ω−1(µ−Rf1).

7E.g. a defaultfree governmant bond.
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By setting

ω̄ = Ω−1(µ−Rf1)

and

cp =
(µp −Rf )

(µ−Rf1)Ω−1(µ−Rf1)

we can express the optimal portfolio weights as proportional to the standard-

ized weight vector

ωq =
1

1′Ω−1(µ−Rf1)
Ω−1(µ−Rf1) (6.5)

The denominator is required for the vector to sum to one. The portfolio

q in 6.5 represents the tangency portfolio. It contains zero investment in

the riskless asset. Thus, any minimum-variance portfolio is composed of an

investment in the riskfree asset and the tangency portfolio, respectively.

The tangency portfolio is characterized additionally by the fact that it has

the biggest Sharpe ratio. The Sharpe ratio of the portfolio p with (µp, σp) is

given by the relationship between excess return compensation per unit risk,

i.e.

srp =
µp −Rf

σp

.

This is demonstrated in Figure 6.1.

6.2 Estimating and Testing the CAPM

Let us take on the CAPM with unrestricted borrowing and lending, first. Let

there be N assets with excess returns vector Zt such that the model to test
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for is

Zt = a+ βZmt + ǫt

E[ǫt] = 0

E[ǫtǫ
′

t] = Σ

E[Zmt = µm, E[(Zmt − µm)2] = σ2
m

Cov[Zmt, ǫt] = 0.

Under the null hypothesis of the Sharpe-Lintner version, the vector a is zero

as well as m, the market portfolio, is equal to the tangent portfolio.

Maximum likelihood tests are performed to retrieve the coefficients a and

β.8 Further, it is assumed that the returns follow a multinomial normal law

8They are the same as if estimated by OLS. Minimization is performed via the inverse
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such that

f(Zt|Zmt) =

(

2

π

)−N
2

|Σ|− 1

2

× exp

(

−1

2
(Zt − a− βZmt)

′

Σ−1(Zt − a− βZmt)

)

.

Then, persuing the usual process of taking logarithms as well as differentiat-

ing with respect to a and β, one obtains the estimates

â = µ̂− β̂µ̂m

β̂ =

∑T
t=1(Zt − µ̂)(Zmt − µ̂m)
∑T

t=1(Zmt − µ̂)2
(6.6)

Σ̂ =
1

T

T
∑

t=1

(Zt − âβ̂Zmt)(Zt − âβ̂Zmt). (6.7)

The mean return parameter estimates are given by

µ̂ =
1

T

T
∑

t=1

Zt

µ̂m =
1

T

T
∑

t=1

Zmt.

Conditional on the values of Zm1, . . . , ZmT , the distributions of the estimators

are9

â ∼ N
(

a,
1

T

[

1 +
µ̂2

m

σ̂2
m

]

Σ

)

β̂ ∼ N
(

β,
1

T

[

1

σ̂2
m

Σ

])

T Σ̂ ∼ WN(T − 2,Σ)

of the Fisher information matrix which is the negative expectation of the second order

derivative of the log-likelihood function.
9See, for example, Campbell, Lo, and MacKinlay (1997).
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where σ̂2
m is the uncorrected sample variance.10

We will consider three statistics to test for the CAPM with a risklees

asset, next. First, state the test properly. Let the alternatives be denoted by

H0 : a = 0 and

H1 : a 6= 0.

The Wald test statistic is given by

J0 = â
′

[Var[â]]−1â

= T
[

1 + µ̂2
m

σ̂2
m

]−1

â
′

Σ−1â.

Under the null, J0 will be chi-square distributed with N degrees of freedom.

Here, the maximum likelihood estimator Σ̂ serves as a consistent estimator

for Σ so that the distributional null assumption will be guaranteed, asymp-

totically.

An alternative from the realm of finite-sample distribution by the follow-

ing statistic

J1 =
T −N − 1

N

[

1 +
µ̂2

m

σ̂2
m

]−1

â
′

Σ̂−1â.

Under the null, J1 is unconditionally distributed central F with N degrees

of freedom in the numerator and (T − N − 1) degrees of freedom in the

denominator.

As the third alternative, we consider the estimators β̂ and Σ̂ form the

constrained model, i.e. the Sharpe-Lintner model with â = 0.11 We, then,

look at the likelihood ratio of the unconstrained versus the constrained model

10W(·) denotes the Wishart distribution with T − 2 degrees of freedom.
11These estimators β∗ and Σ∗ are derived by simply setting µ̂ = 0 and â = 0 in (6.6)

and (6.7), respectively,. The estimator β∗ has asymptotic variance 1/T (1/µ̂2

m + σ̂2

m)Σ and

Σ∗ is distributed with one degre of freedom less.

109



which is defined by

LR = L∗ − L
= −T

2
[log|Σ∗| − log|Σ̂|].

as the basis for the test with L∗ being the likelihood function of the con-

strained model.12 The test statistic is, now, given by

J2 = −2LR
= T

[

log|Σ∗| − log|Σ̂|
]

asymp∼ χ2(N).

The statistic J2 is a monotonic transformation of the finite-sample statistic

J1 and, hence, has a finite-sample distribution related to that of J1. The

relationship can be expressed by

β∗ = β̂ +
µ̂m

µ̂2
m + σ̂2

m

â and

Σ∗ = Σ̂ +

(

σ̂2
m

µ̂2
m + σ̂2

m

)

ââ
′

. (6.8)

Developping the determinants of (6.2) and a few intermediate steps not car-

ried out, here, one derives at

J1 =
T −N − 1

N

(

exp

(

J2

T

)

− 1

)

.

indicating the likelihood ratio test characteristic of J1. Because of differences

between the large-sample and finite-sample distributions of J2 under the null,

an adjustment is made leading to

J3 = J2

T − N
2
− 2

T

asymp.∼ χ2(N).

Turning our attention, once more, to the Black version of the CAPM

E[Rt] = 1E[R0mt] + β(E[Rmt] − E[R0mt]),

12For further details on the derivation, the reader is referred Campbell, Lo, and MacKin-

lay (1997), for example.
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the model for the N assets’ real returns to be tested is

Rt = a + βRmt + ǫt (6.9)

E[ǫt] = 0

E[ǫtǫ
′

t] = Σ

E[Rmt] = µy, E[(Rmt − µm)2] = σ2
m

Cov[Rmt, ǫt] = 0.

The above is the general unrestricted version of the real returns. If the

Black model is true, then a = (1 − β)E[R0mt] has to hold. This is complex

because of its non-linear relationship of the regression vectors. Moreover,

if the returns are assumed to be i.d.d. normally distributed, the Maximum

Likelihood estimators of the unrestricted model (6.9) one obtains are

â = µ̂− β̂µ̂m

β̂ =

∑T
t=1(Rt − µ̂)(Rmt − µ̂m)
∑T

t=1(Rmt − µ̂m)2

Σ̂ =
1

T

T
∑

t=1

(Rtâβ̂Rmt)(Rtâ − β̂Rmt)
′

µ̂ =
1

T

T
∑

t=1

Rt, µ̂m =
1

T

T
∑

t=1

Rmt.

The distribution of the estimators conditional on the (Rm1, . . . , RmT )
′

are

â ∼ N
(

a,
1

T

[

1 +
µ̂2

m

σ̂2
m

Σ

])

β̂ ∼ N
(

β,
1

T

[

1

σ2
m

])

T Σ̂ ∼ WN(T − 2,Σ)

σ̂2
m =

1

T
σT

t=1(Rmt − µ̂m)2.
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The relationship between â and β̂ can be expressed by their covariance

Cov[â, β̂] = −
[

µ̂m

σ̂2
m

]

Σ.

Now, with threstriction from the Black’s model, the log-likelihood function

is

L(E[R0mt], β,Σ) = −NT
2

log(2π) − T
2

log |Σ|
−1

2

∑T
t=1(Rt − E[R0mt](1 − β) − βRmt)

′

Σ−1

×(Rt − E[Romt](1 − β) − βRmt).

The ususal differentiation with respect to the unknown parameters13 yields

the estimates

Ê∗[R0mt] =
(1β̂∗)

′

Σ̂∗−1(µ̂− µ̂− β̂)µ̂m

(1 − β̂∗)′Σ̂∗−1(1 − β̂∗)

β̂∗ =

∑T
t=1(Rt − Ê∗[R0mt]1)(Rmt − Ê∗[R0mt])

∑T
t=1(Rmt − Ê∗[R0mt])2

Σ̂∗ = 1
T

∑T
t=1(Rt − Ê∗[R0mt](1 − β̂∗) − β̂∗Rmt)

×(Rt − Ê∗[R0mt](1 − β̂∗) − β̂∗Rmt).

Usually, one takes the unconstrained estimates as initial values since the

constrained estimates cannot be solved explicitly for.

For comparison of the two models, the constrained as well as the uncon-

strained, a likelihho ratio test can be performed using the unconstrained and

constrained Maximum Likelihood estimates. The null hypothesis is, then,

stated as

H0 : a = (1 − β)E∗[R0mt]

H1 : a 6= (1 − β)E∗[R0mt].

The corresponding statistic is given by

J4 = T [log |Σ̂∗| − log |Σ̂|] asymp.∼ χ2(N − 1).

13Omitted, here.
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Notice that, here, a dgree of freedom is lost compared to the Sharpe-Lintner

version because it is used up for the estimation of the zero-beta expected

return. For the residual covariance matrix, N(N − 1)/2 parameters have

to be estimated in addition to 2N parameters for a and β. In case of the

constrained model, there are the same number of parameters for the covari-

ance matrix and parameter β but only one estimate for E∗[R0mt] yielding a

surplus of N − 1 free parameters over the unconstrained version.

It is argued in literature that the true distribution of J4 in finite samples

does not match the χ2 very well. Just as in the Sharpe-Lintner version, the

finite-sample properties of the likelihood ratio statistic can be improved by

an alteration resulting in

J5 =

(

T − N

2
− 2

)

[

log |Σ̂∗| − log |Σ̂|
]

asymp.∼ χ2(N − 1).

Conducting the estimation via iteration of the first-order conditions as well

as relying on asymptotic behavior can be very unsatisfactory as argued in

Campbell, Lo, and MacKinlay (1997). A solution is given by the following

alternative approach.14 Regress on the relationship of the excess returns, i.e.

Rt − E[R0mt] = a + β(Rmt − E[R0mt]) + ǫt (6.10)

with known E[R0mt]. Then, Maximum Likelihood estimation yields the esti-

mators

â(E[R0mt]) = µ̂− E[R0mt]1 − β̂(µ̂m − E[R0mt]),

β̂ =

∑T
t=1(Rt − µ̂)(Rmt − µ̂)
∑T

t=1(Rmt − µ̂)2
,

Σ̂ =
1

T

T
∑

t=1

[Rt − µ̂− β̂(Rmtµ̂)][Rt − µ̂− β̂(Rmtµ̂)]
′

.

14The procedure presented follows Campbell, Lo, and MacKinlay (1997), pp. 200 closely.
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The unconstrained log-likelihood ratio independent of E[R0mt] is given to be

L = −NT
2

log(2π) − T

2
log |Σ̂| − NT

2
. (6.11)

The constrained estimates obtained by setting a = (1 − β)E[R0mt] are

β̂∗ =
PT

t=1
(Rt−E[R0mt]1)(Rmt−E[R0mt])PT

t=1
(Rmt−E[R0mt])2

,

Σ̂∗ = 1
T

∑T
t=1

[

Rt − E[R0mt](1 − β̂∗) − β̂∗Rmt

]

×
[

Rt − E[R0mt](1 − β̂∗) − β̂∗Rmt

]′

turning (6.11) into

L∗(E[R0mt]) = −NT
2

log(2π) − T

2
log |Σ̂∗(E[R0mt])| −

NT

2
.

The according log-likelihood ratio is, then,

LR(E[R0mt]) = −T
2

[

log |Σ̂∗(E[R0mt])| − log |Σ̂|
]

. (6.12)

Without presenting the individual steps, the optimal E[R0mt] is retrieved

by minimizing (6.12).15 Generally, the optimal estimator, Ê∗[R0mt], is the

solution to a quadratic equation. The benefit of this procedure is that we

arrive at the estimators analyticaly instead of iteratively.

The variance of the estimator is

Var(Ê∗[R0mt]) =
1

T

(

1 +
(µm − E[R0mt])

2

σ2
m

)

[(1 − β)Σ−1(1 − β)]−1

which is necessary for inferences concerning the true value of the parameter.

Theoretically, as can be seen, the true values of β and Σ have to be inserted.

But evaluation at the Maximum Likelihood estimates yield confidence bounds

based on the asymptotic normality of Ê∗[R0mt].

15For the reader interested in the details, Campbell, Lo, and MacKinlay (1997) is

strongly recommended.
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Now, testing for a zero intercept in (6.10), one can resort to the statistic

J6(E[R0mt]) =
T −N − 1

N

[

1 +
(µ̂m − E[R0mt])

2

σ̂2
m

]

â(E[R0mt])Σ̂
−1â(E[R0mt])

which, under the null hypothesis of a zero intercept, is distributed F (N, T −
N − 1). Usually, E[R0mt] is not known, however. Still the test can be

performed aproximately using Ê∗[R0mt]. However, it will be harder to reject

the null compared to the true value of E[R0mt] due to the fact that Ê∗[R0mt]

minimizes J6.

A problem arises when infering if one falsely relies on either normal or

i.i.d. returns. Theoretically, the CAPM does not exclusively hold for nor-

mal returns, though, this assumption is sufficient. It looks different in the

case of temporal dependence of returns. But, still, empirical testing of the

performance may be enlightening.

Given the ergodicity, finite fourth moments, and stationarity, a General-

ized Method of Moments (GMM) is used, here, to conduct a robust test of

the Sahrpe-Lintner version of the CAPM.16 Let the notation be as follows,

h
′

t = [1Zmt],

ǫt = Zt − a − βZmt, and

θ
′

= [a
′

β
′

].

Define

ft(θ) = ht ⊗ ǫ

with x ⊗ y denoting the 2 × N products of each component of x with each

component of y. For the true parameter vector, θ0, E[ft(θ0)] has to hold.

16For a detailed account of the method, the reader is referred to Campbell, Lo, and

MacKinlay (1997).
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This moment condition is approached by the sample average of the

gT (θ) =
1

T

T
∑

t=1

ft(θ).

The GMM estimator θ̂ has to satisfy

min
θ

gT (θ)
′

WgT (θ) (6.13)

with positive definite 2N × 2N weighting matrix W. Now, pick θ̂ as the

estimate setting the sample average of the gT equal to zero. This is legitimate

since the system of 2N conditions is exactly identified. The GMM estimator

is independent of the matrix W in (6.13). The estimators are

â = µ̂− β̂µ̂m,

β̂ =

∑T
t=1(Zt − µ̂)(Zmt − µ̂m)
∑T

t=1(Zmt − µ̂)2
.

Setting

D0 = E

[

∂gT (θ)

∂θ′

]

, and

S0 =
+∞
∑

l=−∞
E[ft(θ)ftt− l(θ)

′

],

the distribution of the estimator is given by

θ̂
asymp.∼ N

(

θ,
1

T
[D

′

0S
−1
0 D0]

−1

)

.

Consistent estimators of D0 are found by inserting the Maximum Likelihood

estimates of µm and σ2
m. For details of a consistent estimator, ST , of S0, the

reader is asked to consult Campbell, Lo, and MacKinlay (1997). Skipping

further details, a test statistic fo rthe Sharpe-Linter CAPM is, then, provided

by

J7 = T â
′

[

R[D
′

TS−1
T DT ]R

′

]−1

â

which under the null hypothesis of a = 0 is asymptotically distributed χ2(N).
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6.3 Multifactor Models

Motivation

The opinion of the validity as well as usefulness is controversial. This is

despite the fact that the CAPM is still commonly used in practice. Some

say, however, that the notion of the market portfolio serving as the single

factor is ambiguous. Moreover, one factor alone is considered insufficient

given the vast varitey of economic quantities with the potential of having

influence on prices of traded assets. Hence, multifactor models have been

introduced. Basically, two main approaches exist. One is the Arbitrage

Pricing Theory (APT) by Ross and the other is the Intertemporal Capital

Asset Pricing Model (ICAPM) by Merton.

The APT admits multiple risk factors, here K. In contrast to the CAPM,

there is no need for a market portfolio. The assumptions made are that

markets are competitive and that they are frictionless. The model looks like

R = a + Bf + ǫ

E[ǫ|f ] = 0

E[ǫǫ
′ |f ] = Σ

where R is the n-dimensional return vector of the n assets, a ∈ IRn, B

is the n × K matrix of factor loadings, and ǫ is the n-dimensional vector

of approximately uncorrelated, asset-specific noise terms. The factors are

assumed to be the source of the common variation of the returns. Hence,

the overall disturbance vanishes in a well-diversified portfolio. The name is

intuitive since the theory of the exact model prohibits the creation of any

arbitrage possibilities. Hence, a portfolio that is created of an ever growing

number of assets with zero initial investment and bearing no risk should

be expected to yield zero return. The unsystematic risk is diversified away

by n → ∞. Bearing no systematic risk can be achieved by composing a
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portfolio such that the accumulated factor sensitivities add to unity. The

expected value of the portfolio, then, is a constant required to be zero.

When there is arbitrage, however, it is shown that the APT is no longer

exact such that

µ ≈ 1λ0 + BλK.

Here, λ0 is a zero-beta parameter possibly equal to the riskless asset if exists

and λK is a (K × 1) vector of factor risk premia.

In contrast to the APT, the ICAPM is an exact factor pricing model.

Also an unshared feature is that the ICAPM requires certain assumption

with respect to the conditional distribution of the returns. Just like the

APT, it is a multi-factor model, however, one factor is the market portfolio

and the remaining are state variables.

In the succeeding analysis, exact factor pricing will be under scrutiny,

only. One factor is a market portfolio proxy such as an index and the ad-

ditional factors may be returns of real traded portfolios or, to the contrary,

any other quantities that are not traded, at all.

Estimation and Testing

Before we approach the different models, a few prerequisites have to be men-

tioned. Throughout time, returns conditional on the factor realizations are

understood to be serially i.i.d.. Jointly, they are multivariate normal. The

factors will neither be determined in number nor in nature. All estimation

will be performed by means of the Maximum Likelihood method. For all four

subsequent models, likelihood ration tests will be appropriate to test for the

significance of the respective constraints. The statistic will be of the familiar

form

J = −
(

T − N

2
−K − 1

)

(log |Σ̂| − log |Σ̂∗|)
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where the estimates of the residual covariance matrices of the unconstrained

models are Σ̂, respectively, and of the constrained models Σ̂∗, respectively.

T indicates the length of the time series of observations and N indicates the

number of included portfolios. There will be K factors throughout. The

term in front of the difference of the logarithms is a scale factor to improve

convergence of the finite-sample null distribution to its large sample coun-

terpart which is χ2 with as many degrees of freedom as there are restrictions

stated by the null hypothesis.

The first of the four alternative models employs portfolios as factors in

addition to the existence of a riskfree asset. Let the unconstrained model of

the excess returns Zt be formulated as

Zt = a + BZKt + ǫt

E[ǫt] = 0

E[ǫǫ
′

] = Σ

E[ZKt] = µK , E[(ZKt − µK)(ZKt − µK)
′

] = ΩK

Cov[ZKt, ǫ
′

t] = 0

where the ZKt are the factor excess returns, B is the (N × K) matrix of

factor sensitivities, a is the vector of asset returns intercepts, and the ǫt are

disturbances. The covariance matrices of the disturbances and the factor

portfolio excess returns, respectively, are indicated accordingly.

The estimators of the unconstrained model are

â = µ̂− B̂µ̂K

B̂ =

[

T
∑

t=1

(Zt − µ̂)(ZKt − µ̂K)
′

][

T
∑

t=1

(ZKt − µ̂K)(ZKt − µ̂K)
′

]−1

Σ̂ =
1

T

T
∑

t=1

(Zt − â − B̂ZKt)(Zt − â − B̂ZKt)
′
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where

µ̂ =
1

T

T
∑

t=1

Zt and µ̂K =
1

T

T
∑

t=1

ZKt.

When the constraint of a = 0 holds, the estimators are

B̂∗ =

[

T
∑

t=1

ZtZ
′

Kt

][

T
∑

t=1

ZtZ
′

Kt

]−1

Σ̂∗ =
1

T

T
∑

t=1

(Zt − B̂∗ZKt)(Zt − B̂∗ZKt)
′

.

The likelihood ratio test statistic J , under the null, is distributed χ2 with

N degrees of freedom due to the number of restrictions being N . An exact

F -test which is possible, here, can be performed using the statistic

J1 =
T −N −K

N
[1 + µ̂

′

KΩ̂−1
k µ̂K ]−1â

′

Σ̂−1â

with

Ω̂K =
1

T

T
∑

t=1

(ZKt − µ̂K)(ZKt − µ̂K)
′

.

Under the null hypothesis of the restricted model, J1 is unconditionally dis-

tributed central F with N degrees of freedom in the numerator and (T −
N − K) degrees of freedom in the denominator. The benefit, in this case,

is the exact distribution of the statistic circumventing the problems arising

with asymptotic distribution theory.17

The second model still uses traded portfolios as factors. In contrast to

the model just presented, however, we drop the assumption of the existence

of a riskless asset. Now, a multifactor zero-beta equivalent to the CAPM

is created. The zero-beta portfolio is conceived as having no sensitivity to

17See Campbell, Lo, and MacKinlay (1997).
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any other factor. Let Rt denote the N -dimensional vector of real returns for

the N assets. The factor sensitivites are expressed by the (N × K) matrix

B. The N -dimensional vectors a and ǫt are the asset return intercept and

disturbenace, respectively. The unconstrained K-factor linear model, then,

is given by

Rt = a + BRKt + ǫt

E[ǫt] = 0

E[ǫtǫ
′

t] = Σ

E[RKt] = µK , E[(RKt − µK)(RKt − µK)
′

] = ΩK

Cov[RKt, ǫ
′

t] = 0.

The Maximum Likelihood estimators are obtained to be

â = µ̂− B̂µ̂K

B̂ =

[

T
∑

t=1

(Rt − µ̂)(RKt − µ̂K)
′

][

T
∑

t=1

(RKt − µ̂K)(RKt − µ̂K)
′

]−1

Σ̂ =
1

T

T
∑

t=1

(Rt − â − B̂RKt)(Rt − â − B̂RKt)
′

with

µ̂ =
1

T

T
∑

t=1

Rt and µ̂ =
1

T

T
∑

t=1

RKt.

In the unconstrained model, the asset returns enter into a linear relationship

with the factor senistivity matrix. The factors are assumed to be portfolio

returns in excess of the zero-beta portfolio in the form of the intercept.

Rt = 1γ0 + B(RKt − 1γ0) + ǫt = (1 − B1)γ0 + BRKt + ǫt.
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The estimators of the constrained model are given by

B̂∗ =

[

T
∑

t=1

(Rt − 1γ̂0)(RKt − 1γ̂0)
′

]

×
[

T
∑

t=1

(RKt − 1γ̂0)(RKt − 1γ̂0)
′

]−1

Σ̂∗ =
1

T

T
∑

t=1

[Rt − 1γ̂0 − B̂∗(RKt − 1γ̂0)]

×[Rt − 1γ̂0 − B̂∗(RKt − 1γ̂0)]
′

γ̂0 = [(1 − B̂∗1)
′

Σ̂∗−1(1 − B̂∗1)]−1

×[(1 − B̂∗1)
′

Σ̂∗−1(µ̂− B̂∗1)]. (6.14)

The asmptotic variance of γ̂0 is

Var[γ̂0] =
1

T

(

1 + (µ̂K − γ̂01)
′

Ω−1
K (µ̂k − γ̂01)

)

×[(1 − B̂∗1)
′

Σ̂∗−1(1 − B̂∗1)]−1.

The estimators are found iteratively by entering the unconstrained estimates

for B and Σ into (6.3). The restriction is

a = (1 − B1)γ0.

The log-likelihood ration test statistic J has N−1 degrees of freedom, under

the null hypothesis. This is one degree less compared to the unconstrained

model since, in the constrained model, the return on the zero-beta portfolio,

γ0 has to estimated.

The third model assumes that the factors are non-traded portfolios of,

for example, macroeconomic quantities such as changes in the GNP, interest

rates, bond yields, and unemployment etc. We will test exact models. With

the notation from the previous settings, we only introduce as additional vari-

ables the (K × 1) vector of factor realizations, fKt. Then, we have for the
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unconstrained model

Rt = a + BfKt + ǫt

E[ǫt] = 0

E[ǫtǫ
′

t] = Σ

E[fKt] = µfK , E[(fKt − µfK)(fKt − µfK)
′

] = ΩK

Cov[fKt, ǫ
′

t] = 0.

The Maximum Likelihood estimators are

â = µ̂− B̂µ̂fK

B̂ =

[

T
∑

t=1

(Rt − µ̂)(fKt − µ̂fK)
′

][

T
∑

t=1

(fKt − µ̂fK)(fKt − µ̂fK)
′

]−1

Σ̂ =
1

T

T
∑

t=1

(Rt − â − B̂fKt)(Rt − â − B̂fKt)
′

Again,

µ̂ =
1

T

T
∑

t=1

Rt and µ̂fK =
1

T

T
∑

t=1

fKt.

The constrained model is found by setting equal the unconditional expecta-

tions

µ = a + BµfK
!
= 1λ0 + BλK

to yield the restriction

a = 1λ0 + B(λK − µfK)

≡ 1λ0 + Bγ1

with the K-dimensional vector of the factor risk premia λK . The constrained

regression is, now,

Rt = 1γ0 + Bγ1 + BfKt + ǫt.
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where γ0 ≡ E[λ0]. Then, the estimators are

B̂∗ =

[

T
∑

t=1

(Rt − 1γ̂0)(fKt + γ1)
′

][

T
∑

t=1

(fKt + γ1)(fKt + γ1)
′

]−1

Σ̂∗ =
1

T

T
∑

t=1

[(Rt − 1γ̂0) − B̂∗(fKt + γ̂1)]

×[(Rt − 1γ̂0) − B̂∗(fKt + γ̂1)]
′

γ̂ = [X
′

Σ̂∗X]−1[X
′

Σ̂∗−1(µ̂− B̂∗µ̂Kt)]

with γ ≡ [γ0, γ
′

1]
′

and X ≡ [1B̂∗]. The asymptotic variance of γ̂ is given by

Var[γ̂] =
1

T

(

1 + (γ̂1 + µ̂fK)
′

Ω̂−1
K (γ̂1 + µ̂fK)

)

×[X
′

Σ̂∗−1X]−1.

The asymptotic variances of the respective components of γ̂ can be found

in many text books on this subject such as Campbell, Lo, and MacKinlay

(1997).

The fourth model incorporates portfolios spanning the mean-variance ef-

ficient frontier. Hence, the intercept λ0 is zero. The portfolios are well-

diversified in the APT sense. With this particularity, the setting is left un-

changed with respect to the previious three alternatives. The unconstrained

model, then, is exactly that of the unconstrained model of the second case.

The constraints are as follows,

a = 0 and B1 = 1.

This can be made more accessible, intuitively, by referring to Black’s version

of the CAPM. Let it be written as an unconstrained model in the form

Rt = a + β0mR0t + βmRmt + ǫt
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where Rmt and R0t are the returns on the market portfolio and its zero-beta

portfolio, respectively. In that instance, a = 0 and β0m + βm = 1 which is

equivalent to the restrictions from above. The unconstrained estimators are

â = µ̂+ B̂µ̂K

B̂ =

[

T
∑

t=1

(Rt − µ̂)(RKt − µ̂K)
′

]

×
[

(RKt − µ̂K)(RKt − µ̂K)
′

]

Σ̂ =
1

T

T
∑

t=1

(Rt − â − B̂RKt)(Rt − â − B̂RKt)
′

with

µ̂ =
1

T

T
∑

t=1

Rt and µ̂ =
1

T

T
∑

t=1

RKt.

The constrained model, basically, has the same shape as the unconstrained

counterpart. We just have to partition B into a (N × 1) column vector b1

and the remaining (N × (K − 1)) matrix B1. The factor returns are split

into the first row R1t and the remaining (K − 1) rows R̄Kt. The constraint,

then, is b1 + B11 = 1. The constrained model is of the form

Rt − 1R1t = B1(R̄Kt − 1R1t) + ǫt.

The resulting Maximum Likelihood estimators are

B̂∗
1 =

[

(Rt − 1R1t)(R̄Kt − 1R1t)
′

]

×
[

(R̄Kt − 1R1t)(R̄Kt − 1R1t)
′

]−1

.

b̂∗ = 1 − B̂∗
11

Σ̂∗ =
1

T

T
∑

t=1

(R1 − B̂∗
Kt)(R1 − B̂∗

Kt)
′
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The test statistic J is distributed with 2N degrees of freedom being equal to

the number of restrictions, under the null. An exact version of a test statistic

is given by Campbell, Lo, and MacKinlay (1997) as

J2 =
T −N −K

N

[

|Σ̂∗|
|Σ̂|

− 1

]

.

This is central F distributed with 2N degrees of freedom in the numerator

and 2(T −N −K) degrees of freedom in the denominator.

Factor selection

So far, the number of factors have been assumed knwon as well their identi-

tities. Here, neither is assumed, so that attention is given to their retrieval.

For the specification of the factors, basiclally, two methods exist. The first

is of statistical nature which is inherent in the APT. The second is of more

theoretical nature in that the factors are selected based on their respective

ability to capture the risks of markets in an economic sense.

We will begin with the first approach, the statistical one. Here, usually,

te set of returns to use for the retrieval is much larger than in the estimation

and testing case of the pervious paragraphs. The general model is

Rt = a + Bf t + ǫt

E[ǫtǫ
′

t] = Σ,

Rt ∈ IRN , ft ∈ IRK , ǫt ∈ IRN .

The statistical analysis itself is subdivided into two groups of which the

first is the factor analysis and the second is the principal component analysis.

We will focus on the first, for now.

The factor analysis is basically a two-step procedure. The first step es-

timates the sensitivity matrix, B, and the (N × N)disturbance covariance
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matrix, Σ. The second step is intended to construct measures of factor real-

izations.

In the first step, a strict factor structure of, say, K factors is determined

such that the (N × N) matrix Σ is diagonal since the K factors account

for all the cross covariation. The covariance matrix of the N returns, in the

strict factor structure case, can be decomposed in the way

Ω = BΩKB
′

+ Σ

with E[ftf
′

t ] = ΩK .18 Here, B is not unique. If the factors are orthogonal

to each other, B is unique up to rotational transformation. Because of the

orthogonality of the factors,

Ω = BB
′

+ D.

With the joint i.i.d. normal assumption of the returns, B and D can be

found through Maximum Likelihood estimation, though maybe, in a slow

and difficult process.

In the second step, we estimate the factors. The will be assumed to have

mean zero, even though, results will not change much if this assumption is

dropped. Let µ denote the vector of expected values of the N returns. So,

we can write

(Rt − µ) = Bf t + ǫt.

We, now, find the factors through Generalized Least Squares (GLS) method,

i.e.

f̂t = (B̂
′

D̂−1B̂)−1B̂
′

D̂−1(Rt − µ). (6.15)

The factors are linear combinations of the returns and, hence, there can be

constructed portfolios that are perfectly correlated with the factors. From

18Σ is a diagonal matrix.
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(6.15), we obtain for the factor return vector

R̂Kt = AWRt

with

W = (B̂
′

D̂−1B̂)−1B̂
′

D̂−1

and a matrix of norming entries, A such that the weights in the factor port-

folios add to unity.

The weights are such that the factors’ contributions to the residual vari-

ance are minimal, respectively. Formally,

min
ωj

ω
′

jΣ̂ωj, s.t.

ω
′

jb̂k = 0, ∀k 6= j

ω
′

jb̂k = 1, ∀k = j.

If the population values of B and Σ are known, then the factor estimates will

have the maximum correlation with the population fators, when returns are

normal. In practice, things, however, are a little different.19

We will, now, turn to principal component analysis. It is a technique to

reduce the number of variables under analysis. This has to be done, though,

in a way that will not cause loss of too much information in the covariance

matrix. Here, the reduction will be from N → K. The principal components

(PC) serve as factors. The first PC is a linear combination of asset returns

with maximum variance. The second PC is as the first a linear combincation

with maximum variance, however, of all combinations orthogonal to the first.

The will be repeated until the Kth factor is found. Formally, the first PC is

x∗1Rt where x∗1 is the (N × 1) solution to

max
x

x
′

Ω̂x, s.t.

x
′

x = 1.

19Any thorough monograph on multivariate analysis will cover this.
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From algebra, we know that x∗1 is the eigenvector associated with the largest

eigenvalue of Σ̂. The first factor, then, is ω1Rt ≡ x∗1/(
∑

x∗1,i)Rt. x
∗
2 is found

analogously to x∗1 but with the orthogonality requirement x∗
′

2 x
∗
1 = 0. x∗2 is the

eigenvector, then, associated with second largest eigenvalue of Ω̂. Rescaling

of x∗2 to unity yields the weights vector of the second factor. This will be

repeated up to the Kth factor.

We will discuss briefly the issue of selecting the number of factors, K.

The importance is that K should be sufficiently small. Basically, two ap-

proaches exist. The first is a repetition of estimation and testing for various

K. Subsequently, the estimators are tested for their, respective sensitivity to

varying sizes of K. The second approach tests explicitly. This is done by an

asymptotic likelihood ratio test with statistic

J5 = −
(

T − 1 − 1

6
(2N + 5) − 2

3
K

)

×[ln |Ω̂| − ln |B̂B̂
′

+ D̂|]

where all estimators in the above equation are obtained from Maximum

Likelihood estimation. Asymptotically, this statistic is χ2 distributed with

1/2[(N −K)2 −N −K] degrees of freedom.

In contrast to the statistical approaches we just discussed, there are also

theoretical methods as promised. These can be further subdivided into two

groups. The first specifies factors from macroeconomic and financial quanti-

ties. They are supposed to adequately capture the systematic risks inherent

in the market. Examples include yield spreads, expected as well as unex-

pected inflation, and industrial production growth. The second specifies

characteristics of firms that assumed to be comprised in the systematic risk.

The factors are portfolios of stocks based on those characteristics. Examples

include market value of equity, price-to-earnigs ratio, and book-to-market

value of equity ratio.
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Deviations from exact factor pricing

In empirical studies of multifactor models, deviations from the exact form

have been detected. Since additional factors are only of temporary usefulness

to guarantee better fit, two basic sources have to be analyzed. Deviations re-

sult from either risk-based or non-risk-based misspecifications. To testfor the

possible origin, the maximum squared Sharpe ratio will aid since it behaves

differently in the two distinct cases. For risk-based deviations, it has an up-

per bound whereas this is not the case when deviations are of non-risk-based

nature.

In order to illuminate the possibilities and the effect of introducing an

additional factor portfolio when the existing K factor portfolios fail to ex-

plain the exact linear excess return relationship, we consider, as before, the

equations system

Zt = a + BZKt + ǫt.

Notation is as in the accustomed way from the previous sections. The covari-

ance matrix Ω has full rank. In case of exact factor pricing, a = 0. Then, a

linear combination of the factor portfolios will assemble the tangency port-

folio with excess returns Zqt and (N × 1) weights vector

ωq = (1
′

Ω−1µ)−1Ω−1µ.

If factor pricing is not exact, the tangency portfolio cannot be formed from

the K factor portfolios. The intercept a, now, is no longer equal to zero. In

order to fill the gap, a so called optimal orthogonal portfolio20 has to be found

which is orthogonal to the linear subspace spanned by K factor portfolios.

Formally,

Definition 6.3.1. Let the K factor portfolios fail to generate the tangency

portfolio. The optimal orthogonal portfolio weights ωh with respect to the

20See Campbell, Lo, and MacKinlay (1997).
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K factor portfolios satisfy

ωq = Wpω + ωh(1 − 1
′

ω)

and

ω
′

hΩWp = 0

where ωq are the weights of the tangency portfolio and W is the matrix of

the weights of the K factor portfolios.

Adding this portfolio will render a = 0 and, due to its orthogonality to

the K factor portfolios, B will remain unchanged. Thus,

Zt = BZKt + βhZht + ut

E[ut] = 0

E[utu
′

t] = Φ

E[Zht] = µh, E[(zht − µh)
2] = σ2

h

Cov[ZKt,ut] = 0

Cov[Zht,ut] = 0.

Setting

a = βhµh,

the residual variance Σ can be written as

Σ = βhβ
′

hσ
2
h + Φ = aa

′ σ2
h

µ2
h

+ Φ.

Hence, it becomes obvious that there has to be the common component in

the residual variance. Otherwise, a portfolio could be formed with positive

deviation and vanishing residual variance achieved through naive diversifiac-

tion.21

21Diversification is referred to as naive when, simply, the number of securities with

approximately same variances is increased.
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We will turn our attention to the squared Sharpe ratio, now. We know

that this measure is maximal for the tangency portfolio q. It is, then,

s2
q = µ

′

Ω−1µ.

We also know from before that, in case the K factor portfolios should not

suffice, the tangency portflio can be constructed by aid of an additional

optminal orthogonal factor portfolio. Due to its orthogonality to the K

factor portfolios, the tangency portfolios Sharpe ratio can be split into the

two parts

s2
q = s2

h + s2
K .

Campbell, Lo, and MacKinlay (1997) provide the relationships s2
h = µ2

h/σ
2
h

and S2
K = µ

′

KΩ−1
K µK . Interestingly, similar results hold when, as is the case

in empirical tests, merely a subset of the N assets is analyzed. Here, to

express the tangency portfolio via the maximum squared Sharpe ratio, the

excess returns vector has to be composed of the subset returns and the K

factor returns yielding [Z
′

tZ
′

Kt] with means µ∗′
s and covariance matrix Ω∗

s.

Hence, the squared Sharpe ratio of the subset’s tangency portfolio is

s2
qs

= µ∗′
s Ω∗−1

s µ∗
s.

22

In terms of the subset’s intercept as and residual covariance matrix Σs, the

squared Sharpe ratio of the subset’s tangency portfolio satisfies the following

relationship,

s2
qs
− s2

K = a
′

sΣ
−1
s as

such that it becomes evident that

s2
hs

= a
′

sΣ
−1
s as ≤ s2

h
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and

s2
qs

= s2
hs

+ S2
K .

In the following, alternative theories explaining the deviations of exact

multifactor models are discussed. Basically, as mentioned previously, two

directions of reasoning exist, i.e., on the one hand, additional factor portfo-

lios do improve the model and, on the other hand, additional factors only

work in-sample since they lack any theoretical motivation. Both competing

alternative hypotheses are tested against the null hypothesis of a = 0. The

generaliezed F-test statistic

J1 =
T −N −K

N
[1 + µ̂

′

KΩ̂−1
K µ̂K ]−1â

′

Σ̂−1â

will be applied. It is distributed FN,T−N−K(δ). The non-centrality parameter

is

δ = T [1 + µ̂
′

KΩ̂−1
K µ̂K ]−1â

′

Σ̂−1â.

Under the assumption that the deviations are risk-based, i.e. factors are

missing,

δ = T [1 + µ̂
′

KΩ̂−1
K µ̂K ]−1s2

hs
< Ts2

h ≤ Ts2
q.

Hence, there is an upper bound for the non-centrality parameter. Conse-

quently, the diffrenece in distributions under the null hypothesis and the

alternative hypothesis, respectively, is bounded, no matter if all asset prices

are mispecified. However, when the assumption excludes a missing factor,

i.e. it is non-risk-based, the squared Sharpe ratio becomes meaningless and

posssibly may rise beyond all bounds. Thus, everything left equal, when

comparing the two competing alternatives, the test statistic should be larger

in the non-risk-based case since no boundaries exist.
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We will consider, here, an example of real data presented in Campbell,

Lo, and MacKinlay (1997) to demonstrate the behavior of δ under the two

competing alternative hypotheses. The model is given to be a one-factor asset

pricing model using excess returns. The time series consists of 342 monthly

observations. The dependent variables are 32 portfolios whereas the one

independent factor is the market. Hence, if the null hypothesis holds, a = 0

and we obtain the CAPM. Under the null, the test statistic J1 is distributed

F with 32 degrees of freeedom in the numerator and 309 degrees of freedom

in the denominator.

Now, we first consider the risk-based case. Of interest is the distribution

of the upper bound for the noncentrality parameter. From tests, we obtian

estimates for s2
q of ≈ .031 per month and s2

h of ≈ .021 per month. We,

then, receive for the distribution of J1 a noncentral F32,309(7.1) distribution.

Alternatively in the non-risk based case, we assume that the components of

the intercept a are normally distributed with zero mean and standard devi-

ation of, first, σ
(1)
a = .0007 and, second, of σ

(2)
a = .001. The parameter Σ is

obtained from portfolios sorted by market capitalization during the sample

period between 1963-91. For the first case, we have an expected value of

for δ of 39.4. In the second instance, we have 80.3. The noncentral F dis-

tributions change accordingly. The four cases just discussed are illustrated

in Figure The plot reveals that the distribution under the null hypothesis

and the risk-based case almost coincide. The two non-risk-based alternative

distributions are further to the right. This a result of the boundedness of

the noncentrality parameter in the risk-based case whereas the mode of the

distribution increases along with increasing standard deviations for the two

non-risk-based alternatives. A test statistic of 1.91 found in literature sug-

gests that the risk-based alternative fails, as can be seen. This value seems

to correspond more to the non-risk-based alternative with lower standard

deviation. However, one and the same parametrization of the non-risk-based
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distribution can be obtained from different reasonings. Thus, there is no

uniqueness. It is left to be said that, unfortunately, misspecification of mul-

tifactor models is not easily solved and requires more thorough analysis.

6.4 Different alterations of the CAPM

Conditional CAPM

Still, as in the historical CAPM, we assume that investors have common

subjective expectations with respect to returns and covariances. However,

along with time, these expectations vary so that the moments turn into

random variables, themselves. Some consistency remains, though. Based on

time t−1, all market participants share identical expectations, again, for the

ensuing time t. This calls for the need to incorporate an information process

or filtration into the model yielding the Conditional CAPM or CCAPM.

Let Ft denote the filtration so that

E[Rit|Ft−1] = E[Rft|Ft−1] + βimt(E[Rmt|Ft−1] − E[Rft|Ft−1])

where i denotes the asset, m denotes the market portfolio, and the riskfree

asset is indicated by f . The beta parameter is conditional on time, as well,

hence,

βimt =
Cov[Rit, Rmt|Ft−1]

Var[Rmt|Ft−1]
.

Since, at time t− 1, the riskfree return is known for the ensuing period, we

might as well drop the condition.

It has been shown that if the model cannot be rejected when it is condi-

tioned on a subset It of the filtration process, then, it also must hold for the

entire F .23

23See Javed (2000).
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In testing, observing the return of the market portfolio is circumvented

by assuming the market price of risk constant,

λ =
(E[Rmt|It−1] −Rft)

Var[Rmt|It−1]
.

In turn,

Rmt = Rft + λVar[Rmt|It] + umt

with

E[Rmt|It] = Rft + λVar[Rmt|It]

finite conditional variance of the innovation umt. For the individual asset i,

we have

Rit = Rft + λCov[Rit, Rmt|It] + uit.

Both, umt and uit are orthogonal to the information set It−1. Hence, the

relationship between asset i and the market portfolio m in terms of their

common covariance can be expressed as the covariance of their respective

innovations. That is,

Cov[Rmt, Rit|It] = E[umt · uit|It].

The entire cross-sectional return relationship between assets i and the market

portfolio can be formulated in terms of the innovations such that

Rit = Rft + λCov[uit, umt|It] + uit.

Conditional variance processes

A particular version of the forgone paragraphs is presented, here. As men-

tioned in previous chapters, changing moments, particularly the variance,
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can be well described as clustering. Moments of the returns incoporate past

shocks in a linear or non-linear way. The latter, as we well know, is the case

with the ARCH processes. In this context, let the excess asset returns be

written as

Zimt = a+ βZmt + ǫt

ǫt|Ft ∼ N(0, σ2
t )

σ2
t = ω + φ1ǫ

2
t−1 + . . .+ φpǫt−p + θ1σ

2
t−1 + . . .+ θqǫt−q.

However, the first moment, the mean, can also be conditional on past in-

novations. This is commonly encountered by adding a function f of the

conditional variance such that

Zimt = a+ βimZmt + f(σ2
t ) + ǫt

with everything else equal. The function f can be interpreted as extra com-

pensation for higher. In case, the variance increases, the function which

may monotone in σ2
t increases such that the investor is compensated with a

premium for the additional risk.

CAPM with higher order co-moments

As mentioned before and as is widespread understanding, asset returns are

mostly not normally distributed. Also, quadratic utility functions are found

to be of questionable usefulness in reality. These concerns are of essential

importance with respect to basic prerequisites of the CAPM. Particularly the

first issue concerning the return distribution has been given a lot of attention.

Hence, it is only natural that effort has been taken to incorporate findings of

non-normality into the factor models. Since some of the indicator statistics

for rejection of the normal distribution are the skewness and kurtosis, it is

intuitive to use these statistics to explain deviations of the cross-sectional
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expected returns from theory. The problem with skewness and kurtosis is

that these two statistics cannot be diversified away by an increasing number

of assets.

Introduction of higher-order co-moments can be found in some models, as

well as conditional skewness and systematic co-skewness. It was detected that

in many cases, the use of skewness could well capture the asymmetry in the

returns. After correcting for it, the CAPM performed better. Concludingly,

it can be stated that as long as it is not guaranteed that the returns are

normal, testing for the traditional single-factor as well as multifactor versions

of the CAPM does not make sense.

For an account of several alternatives, the reference list will give initial

information.
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Appendix A

Notation

A.1 Brownian Motion

Let W (t) and V (t) denote two independent standard Brownian motions on

C[0, 1], such that their respective increments (W1 −W0, . . . ,Wt −Wt−1) and

(V1−V0, . . . , Vt−Vt−1) are multivariate normally distributed with zero means

and covariance, and variances equal to ti − ti−1. The differences are written

as wj ≡ Wj −Wj−1 and vj ≡ Vj −Vj−1, respectively. Additionally, we denote

Qt =
t
∑

j=1

wjPt =
t
∑

j=1

vj.

We obtain the following covariance matrix for PT and QT as T → ∞

Σ =

[

σ2
v σvw

σvw σ2
w

]

where

σvw ≡ lim
T→∞

1

T
EPTQT .
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A.2 Asymptotic behavior

1 With wt and vt from A.1 we define

ξt ≡ (vt, wt)
′

St ≡
t
∑

j=1

ξj, S0 ≡ 0

Let the estimated linear regression be

yt = α̂+ β̂xt + ut.

Conditions on {ξt}∞1 for permitting yt and xt to be correlated I(1) processes

with differences that are “weakly dependent”2 and permit heterogeneous in-

novations

(a) Eξt = 0, ∀t

(b) supi,tE|ξit|β+ǫ <∞, β > 2, ǫ > 0, ξ1t = vt, ξ2t = wt

(c) ∃ Σ ≡ limT→∞
1
T
ESTST ′ (pos. definite).

(d) {ξt}∞1 is strong mixing. That means that temporal dependence as well

as heterogeneity is permitted to some extend.

Further, define dw to be the Durbin-Watson statistic. Let

µvw ≡
∫ 1

0

v(r)w(r)dr −
∫ 1

0

v(r)dr

∫ 1

0

w(r)dr.

With V and W from (A.1), we set

φ ≡
∫ 1

0

V (r)dr − µvw

µww

∫ 1

0

W (r)dr

1For further interpretation of the respective statements, consult Mills (1997).
2See Mills (1997).
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Asymptotic properties are given for the estimated regression parameters

and corresponding statistics by the list below.

(i) β̂ ⇒ σv

σw

µvw

µww

(ii) 1√
T
α̂⇒ σvφ

(iii) 1
tβ

⇒ µvw√
v

(iv) 1
tα

⇒ φ µww√
v
R

1

0
W (r)2dr

(v) R2 ⇒ mu2
vw

µvvµww

(vi) dw
P−→ 0.
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