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Abstract

This chapter surveys relevant tools, based on operator methods, to describe the evolution in time

of continuous-time stochastic process, over different time horizons. Applications include modeling

the long-run stationary distribution of the process, modeling the short or intermediate run transi-

tion dynamics of the process, estimating parametric models via maximum-likelihood, implications of

the spectral decomposition of the generator, and various observable implications and tests of the

characteristics of the process.

Keywords: Markov process; Infinitesimal Generator; Spectral decomposition; Transition density;

Maximum-Likelihood; Stationary density; Long-run.

1. INTRODUCTION
Our chapter surveys a set of mathematical and statistical tools that are valuable in
understanding and characterizing nonlinear Markov processes. Such processes are used
extensively as building blocks in economics and finance. In these literatures, typically the
local evolution or short-run transition is specified. We concentrate on the continuous
limit in which case it is the instantaneous transition that is specified. In understanding
the implications of such a modeling approach we show how to infer the intermediate
and long-run properties from the short-run dynamics. To accomplish this, we describe
operator methods and their use in conjunction with continuous-time stochastic process
models.

Operator methods begin with a local characterization of the Markov process dynam-
ics. This local specification takes the form of an infinitesimal generator. The infinitesimal
generator is itself an operator mapping test functions into other functions. From the
infinitesimal generator, we construct a family (semigroup) of conditional expectation
operators. The operators exploit the time-invariant Markov structure. Each operator in
this family is indexed by the forecast horizon, the interval of time between the infor-
mation set used for prediction and the object that is being predicted. Operator methods
allow us to ascertain global, and in particular, long-run implications from the local or
infinitesimal evolution.These global implications are reflected in (a) the implied station-
ary distribution, (b) the analysis of the eigenfunctions of the generator that dominate
in the long run, and (c) the construction of likelihood expansions and other estimating
equations.
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The methods we describe in this chapter are designed to show how global and long-run
implications follow from local characterizations of the time series evolution. This con-
nection between local and global properties is particularly challenging for nonlinear time
series models. Despite this complexity, the Markov structure makes characterizations of
the dynamic evolution tractable. In addition to facilitating the study of a given Markov
process, operator methods provide characterizations of the observable implications of
potentially rich families of such processes. These methods can be incorporated into sta-
tistical estimation and testing. Although many Markov processes used in practice are
formally misspecificied, operator methods are useful in exploring the specific nature and
consequences of this misspecification.

Section 2 describes the underlying mathematical methods and notation. Section 3
studies Markov models through their implied stationary distributions. Section 4 develops
some operator methods used to characterize transition dynamics including long-run
behavior of Markov process. Section 5 provides approximations to transition densities
that are designed to support econometric estimation. Section 6 describes the properties of
some parameter estimators. Finally, Section 7 investigates alternative ways to characterize
the observable implications of various Markov models, and to test those implications.

2. ALTERNATIVEWAYS TOMODEL A CONTINUOUS-TIME
MARKOV PROCESS

There are several different but essentially equivalent ways to parameterize continuous
time Markov processes, each leading naturally to a distinct estimation strategy. In this
section, we briefly describe five possible parametrizations.

2.1. Transition Functions

In what follows, (�, F , Pr) will denote a probability space, S a locally compact metric
space with a countable basis, S a σ-field of Borelians in S, I an interval of the real line,
and for each t ∈ I , Xt : (�, F , Pr)→ (S, S) a measurable function. We will refer to
(S, S) as the state space and to X as a stochastic process.

Definition 1 P : (S × S)→ [0, 1) is a transition probability if, for each x ∈ S, P(x, ·) is a
probability measure in S, and for each B ∈ S, P(·, B) is measurable.

Definition 2 A transition function is a family Ps,t , (s, t) ∈ I 2, s < t that satisfies for each
s < t < u the Chapman–Kolmogorov equation:

Ps,u(x, B) =
∫

Pt,u(y, B)Ps,t(x, dy).

A transition function is time homogeneous if Ps,t = Ps′,t′ whenever t − s = t′ − s′. In this case
we write Pt−s instead of Ps,t .
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Definition 3 Let Ft ⊂ F be an increasing family of σ-algebras, and X a stochastic process
that is adapted to Ft . X is Markov with transition function Ps,t if for each nonnegative Borel
measurable φ : S → R and each (s, t) ∈ I2, s < t,

E[φ(Xt)|Fs] =
∫

φ(y)Ps,t(Xs, dy).

The following standard result (for example,Revuz and Yor,1991;Chapter 3,Theorem
1.5) allows one to parameterize Markov processes using transition functions.

Theorem 1 Given a transition function Ps,t on (S, S) and a probability measure Q0 on (S, S),
there exists a unique probability measure Pr on

(
S[0,∞), S[0,∞)

)
, such that the coordinate process

X is Markov with respect to σ(Xu, u ≤ t), with transition function Ps,t and the distribution of
X0 given by Q0.

We will interchangeably call transition function the measure Ps,t or its conditional
density p (subject to regularity conditions which guarantee its existence):

Ps,t(x, dy) = p(y, t|x, s)dy.

In the time homogenous case, we write � = t − s and p(y|x,�). In the remainder of
this chapter, unless explicitly stated, we will treat only the case of time homogeneity.

2.2. Semigroup of Conditional Expectations
Let Pt be a homogeneous transition function and L be a vector space of real-valued func-
tions such that for each φ ∈ L,

∫
φ(y)Pt(x, dy) ∈ L. For each t define the conditional

expectation operator

Ttφ(x) =
∫

φ(y)Pt(x, dy). (2.1)

The Chapman–Kolmogorov equation guarantees that the linear operators Tt satisfy:

Tt+s = TtTs. (2.2)

This suggests another parameterization for Markov processes. Let (L, ‖ · ‖) be a Banach
space.

Definition 4 A one-parameter family of linear operators in L, {Tt : t ≥ 0} is called a semigroup
if (a) T0 = I and (b) Tt+s = TtTs for all s, t ≥ 0.{Tt : t ≥ 0} is a strongly continuous contraction
semigroup if, in addition, (c) limt↓0Ttφ = φ, and (d) ||Tt || ≤ 1.

If a semigroup represents conditional expectations, then it must be positive, that is, if
φ ≥ 0 then Ttφ ≥ 0.
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Two useful examples of Banach spaces L to use in this context are as follows:

Example 1 Let S be a locally compact and separable state space. Let L = C0 be the space of
continuous functions φ : S → R, that vanish at infinity. For φ ∈ C0 define:

‖φ‖∞ = sup
x∈S
|φ(x)|.

A strongly continuous contraction positive semigroup on C0 is called a Feller semigroup.

Example 2 Let Q be a measure on a locally compact subset S of R
m. Let L2(Q) be the space

of all Borel measurable functions φ : S → R that are square integrable with respect to the measure
Q endowed with the norm:

‖φ‖2 =
(∫

φ2dQ
) 1

2

.

In general, the semigroup of conditional expectations determine the finite-
dimensional distributions of the Markov process (see e.g. Ethier and Kurtz, 1986;
Proposition 1.6 of Chapter 4.) There are also many results (e.g. Revuz and Yor, 1991;
Proposition 2.2 of Chapter 3) concerning whether given a contraction semigroup one
can construct a homogeneous transition function such that Eq. (2.1) is satisfied.

2.3. Infinitesimal Generators
Definition 5 The infinitesimal generator of a semigroup Tt on a Banach space L is the (possibly
unbounded) linear operator A defined by:

Aφ = lim
t↓0

Ttφ − φ

t
.

The domain D(A) is the subspace of L for which this limit exists.

If Tt is a strongly continuous contraction semigroup then D(A) is dense. In addition
A is closed, that is if φn ∈ D(A) converges to φ and Aφn converges to ψ then φ ∈ D(A)

and Aφ = ψ. If Tt is a strongly continuous contraction semigroup, we can reconstruct
Tt using its infinitesimal generator A (e.g. Ethier and Kurtz, 1986; Proposition 2.7 of
Chapter 2).This suggests using A to parameterize the Markov process.The Hille–Yosida
theorem (e.g. Ethier and Kurtz, 1986;Theorem 2.6 of Chapter 1) gives necessary and
sufficient conditions for a linear operator to be the generator of a strongly continuous,
positive contraction semigroup. Necessary and sufficient conditions to ensure that the
semigroup can be interpreted as a semigroup of conditional expectations are also known
(e.g. Ethier and Kurtz, 1986;Theorem 2.2 of Chapter 4).

As described in Example 1, a possible domain for a semigroup is the space C0 of
continuous functions vanishing at infinity on a locally compact state space endowed
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with the sup-norm. A process is called a multivariate diffusion if its generator Ad is an
extension of the second-order differential operator:

μ · ∂φ
∂x
+ 1

2
trace

(
ν
∂2φ

∂x∂x′

)
(2.3)

where the domain of this second-order differential operator is restricted to the space
of twice continuously differentiable functions with a compact support. The R

m-valued
function μ is called the drift of the process and the positive semidefinite matrix-valued
function ν is the diffusion matrix. The generator for a Markov jump process is:

Apφ = λ(J φ − φ)

on the entire space C0, where λ is a nonnegative function of the Markov state used to
model the jump intensity and J is the expectation operator for a conditional distribution
that assigns probability zero to staying put.

Markov processes may have more complex generators. Revuz and Yor (1991) show
that for a certain class of Markov processes the generator can be depicted in the following
manner.1 Consider a positive conditional Radon measure R(dy|x) on the product space
X excluding the point {x}2 ∫

X−{x}

|x− y|2
1+ |x− y|2 R(dy|x) <∞.

The generator is then an extension of the following operator defined for twice
differentiable functions with compact support:

Aφ(x) = μ(x) · ∂φ(x)
∂x

+
∫ [

φ(y)− φ(x)− y− x
1+ |y− x|2 ·

∂φ(x)
∂x

]
R(dy|x)

+ 1
2

trace
(
ν(x)

∂2φ

∂x∂x′

)
. (2.4)

The measure R(dy|x) may be infinite to allow for an infinite number of arbitrarily small
jumps in an interval near the current state x.With this representation,A is the generator
of a pure jump process when R(dy|x) is finite for all x,

μ(x) · ∂φ(x)
∂x

= y− x
1+ |y− x|2 ·

∂φ(x)
∂x

R(dy|x),
and ν = 0.

1See Theorem 1.13 of Chapter 7.
2A Radon measure is a Borel measure that assigns finite measure to every compact subset of the state space and strictly positive measure
to nonempty open sets.
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When the measure R(dy|x) is finite for all x, the Poisson intensity parameter is:

λ(x) =
∫

R(dy|x),

which governs the frequency of the jumps.The probability distribution conditioned on
the state x and a jump occurring is: R(dy|x)/∫ R(dy|x). This conditional distribution
can be used to construct the conditional expectation operator J via:

J φ =
∫
φ(y)R(dy|x)∫

R(dy|x) .

The generator may also include a level term −ι(x)φ(x). This level term is added to
allow for the so-called killing probabilities, the probability that the Markov process is
terminated at some future date. The term ι is nonnegative and gives the probabilistic
instantaneous termination rate.

It is typically difficult to completely characterize D(A) and instead one parameterizes
the generator on a subset of its domain that is “big enough.” As the generator is not
necessarily continuous, one cannot simply parameterize the generator in a dense subset
of its domain. Instead one uses a core, that is a subspace N ⊂ D(A) such that (N , AN )

is dense in the graph of A.

2.4. Quadratic Forms
Suppose L = L2(Q) where we have the natural inner product

< φ,ψ >=
∫

φ(x)ψ(x)dQ.

If φ ∈ D(A) and ψ ∈ L2(Q) then we may define the (quadratic) form

f2(φ,ψ) = − < Aφ,ψ > .

This leads to another way of parameterizing Markov processes. Instead of writing down a
generator one starts with a quadratic form. As in the case of a generator it is typically not
easy to fully characterize the domain of the form. For this reason one starts by defining a
form on a smaller space and showing that it can be extended to a closed form in a subset
of L2(Q). When the Markov process can be initialized to be stationary, the measure Q
is typically this stationary distribution. More generally, Q does not have to be a finite
measure.

This approach to Markov processes was pioneered by Beurling and Deny (1958) and
Fukushima (1971) for symmetric Markov processes. In this case both the operator A
and the form f are symmetric. A stationary, symmetric Markov process is time-reversible.
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If time were reversed, the transition operators would remain the same. On the other
hand, multivariate standard Brownian motion is a symmetric (nonstationary) Markov
process that is not time reversible. The literature on modeling Markov processes with
forms has been extended to the nonsymmetric case by Ma and Rockner (1991). In the
case of a symmetric diffusion, the form is given by:

f2(φ,ψ) = 1
2

∫
(∇φ)∗ν(∇ψ)dQ,

where ∗ is used to denote transposition,∇ is used to denote the (weak) gradient3, and the
measure Q is assumed to be absolutely continuous with respect to the Lebesgue measure.
The matrix ν can be interpreted as the diffusion coefficient. When Q is a probability
measure, it is a stationary distribution. For standard Brownian motion,Q is the Lebesgue
measure and ν is the identity matrix.

2.5. Stochastic Differential Equations
Another way to generate (homogeneous) Markov processes is to consider solutions to
time autonomous stochastic differential equations. Here we start with an n-dimensional
Brownian motion on a probability space (�, F , Pr), and consider {Ft : t ≥ 0}, the (aug-
mented) filtration generated by the Brownian motion. The process Xt is assumed to
satisfy the stochastic differential equation

dXt = μ(Xt)dt + σ(Xt)dWt , (2.5)
X0 given.

Several theorems exist that guarantee that the solution to Eq. (2.5) exists, is unique,
and is a Markov diffusion. In this case the coefficients of (2.5) are related to those of the
second-order differential operator (2.3) via the formula ν = σσ′.

2.6. Extensions
We consider two extensions or adaptations of Markov process models, each with an
explicit motivation from finance.

2.6.1. Time Deformation

Models with random time changes are common in finance.There are at least two ways to
motivate such models. One formulation due to Bochner (1960) and Clark (1973) posits
a distinction between calendar time and economic time. The random time changes are
used to alter the flow of information in a random way. Alternatively, an econometrician
might confront a data set with random sample times. Operator methods give a tractable
way of modeling randomness of these types.

3That is,
∫ ∇φψ = ∫

φψ′ for every ψ continuously differentiable and with a compact support.
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A model of random time changes requires that we specify two objects. An underlying
Markov process {Xt : t ≥ 0} that is not subject to distortions in the time scale. For our
purposes, this process is modeled using a generator A. In addition,we introduce a process
{τt} for the time scale.This process is increasing and can be specified in continuous time
as {τt : t ≥ 0}. The process of interest is:

Zt = Xτt .
(2.6)

Clark (1973) refers to {τt} as the directing process and the process {Xt} is subordinated to the
directing process in the construction of {Zt}. For applications with random sampling,
we let {τj : j = 1, 2, . . .} to be a sequence of sampling dates with observations {Zj :
j = 1, 2, . . .}. In what follows we consider two related constructions of the constructed
process {Zt : t ≥ 0}.

Our first example is in which the time distortion is smooth, with τt expressible as a
simple integral over time.

Example 3 Following Ethier and Kurtz (1986), consider a process specified recursively in terms
of two objects: a generator A of a Markov process {Xt} and a nonnegative continuous function ζ

used to distort calendar time.The process that interests us satisfies the equation:

Zt = X∫ t
0 ζ(Zs)ds.

In this construction, we think of

τt =
t∫

0

ζ (Zs) ds

as the random distortion in the time of the process we observe. Using the time distortion we may
write:

Zt = Xτt ,

as in (2.6).

This construction allows for dependence between the directing process and the under-
lying process {Xt}. By construction the directing process has increments that depend on
Zt . Ethier and Kurtz (1986) show that under some additional regularity conditions, the
continuous-time process {Zt} is itself Markovian with generator ζA (see Theorem 1.4
on page 309). Since the time derivative of τt is ζ(Zt), this scaling of the generator is to be
expected. In the case of a Markov diffusion process, the drift μ and the diffusion matrix
ν are both scaled by the function ζ of the Markov state. In the case of a Markov jump
process, ζ alters the jump frequency by scaling the intensity parameter.

Our next example results in a discrete-time process.
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Example 4 Consider next a specification suggested by Duffie and Glynn (2004). Following
Clark (1973), they use a Poisson specification of the directing process. In contrast to Clark (1973),
suppose the Poisson intensity parameter is state dependent.Thus consider an underlying continuous
time process {(Xt , Yt)} where Yt is a process that jumps by one unit where the jump times are
dictated by an intensity function λ(Xt). Let

τj = inf {t : Yt ≥ j},
and construct the observed process as:

Zt = Xτj .

There is an alternative construction of this process that leads naturally to the compu-
tation of the one period conditional expectation operator. First, construct a continuous
time process as in Example 3 by setting ζ = 1

λ
. We then know that the resulting process

{Žt} has generator Ǎ .= ζA = 1
λ
A. In addition to this smooth time distortion, suppose

we sample the process using a Poisson scheme with a unit intensity. Notice that:

E

⎡⎣ ∞∫
0

exp(−t)ψ(Žt)dt|Ž0 = z

⎤⎦ =
⎛⎝ ∞∫

0

exp
[(

Ǎ− I
)

t
]

dt

⎞⎠ψ(z) = (I − Ǎ)−1ψ(z),

where I is the identity operator.Thus, (I − Ǎ)−1 is a conditional expectation operator
that we may use to represent the discrete time process of Duffie and Glynn.

2.6.2. Semigroup Pricing

Rogers (1997),Lewis (1998),Darolles and Laurent (2000),Linetsky (2004),Boyarchenko
and Levendorskii (2007), and Hansen and Scheinkman (2009) develop semigroup theory
for Markov pricing. In their framework, a semigroup is a family of operators that assigns
prices today to payoffs that are functions of the Markov state in the future. Like semigroups
for Markov processes, the Markov pricing semigroup has a generator.

Darolles and Laurent (2000) apply semigroup theory and associated eigenfunction
expansions to approximate asset payoffs and prices under the familiar risk neutral probability
distribution. Although risk neutral probabilities give a convenient way to link pricing
operators to conditional expectation operators, this device abstracts from the role of
interest rate variations as a source of price fluctuations. Including a state-dependent
instantaneous risk-free rate alters pricing in the medium and long term in a nontrivial
way. The inclusion of a interest rate adds a level term to the generator. That is, the
generator B for a pricing semigroup can be depicted as:

Bφ = A− ιφ.
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where A has the form given in representation (2.4) and ι is the instantaneous
risk-free rate.

As we mentioned earlier, a level term is present in the generator depiction given
in Revuz and Yor (1991) (Theorem 1.13 of Chapter 7). For pricing problems, since
ι is an interest rate it can sometimes be negative. Rogers (1997) suggests convenient
parameterizations of pricing semigroups for interest rate and exchange rate models.
Linetsky (2004) and Boyarchenko and Levendorskii (2007) characterize the spec-
tral or eigenfunction structure for some specific models, and use these methods to
approximate prices of various fixed income securities and derivative claims on these
securities.

3. PARAMETRIZATIONS OF THE STATIONARY DISTRIBUTION:
CALIBRATING THE LONG RUN

Over a century ago,Pearson (1894) sought to fit flexible models of densities using tractable
estimation methods. This led to a method-of-moments approach, an approach that was
subsequently criticized by Fisher (1921) on the grounds of statistical efficiency. Fisher
(1921) showed that Pearson’s estimation method was inefficient relative to maximum
likelihood estimation. Nevertheless there has remained a considerable interest in Pearson’s
family of densities. Wong (1964) provided a diffusion interpretation for members of the
Pearson family by producing low-order polynomial models of the drift and diffusion
coefficient with stationary densities in the Pearson family. He used operator methods to
produce expansions of the transition densities for the processes and hence to characterize
the implied dynamics. Wong (1964) is an important precursor to the work that we
describe in this and subsequent sections. We begin by generalizing his use of stationary
densities to motivate continuous-time models, and we revisit the Fisher (1921) criticism
of method-of-moments estimation.

We investigate this approach because modeling in economics and finance often begins
with an idea of a target density obtained from empirical observations. Examples are the
literature on city sizes, income distribution, and the behavior of exchange rates in the
presence of bands. In much of this literature, one guesses transition dynamics that might
work and then checks this guess. Mathematically speaking, this is an inverse problem and
is often amenable to formal analysis. As we will see, the inverse mapping from stationary
densities to the implied transitions or local dynamics can be solved after we specify certain
features of the infinitesimal evolution.Wong’s analysis (Wong,1964) is a good illustration
in which this inverse mapping is transparent.We describe extensions of Wong’s approach
that exploit the mapping between the infinitesimal coefficients (μ, σ2) and the stationary
distributions for diffusions.
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3.1. Wong’s Polynomial Models
To match the Pearson family of densities, Wong (1964) studied the solutions to the
stochastic differential equation:

dXt = �1(Xt)dt + �2(Xt)
1
2 dWt

where {Xt} is a scalar diffusion process and {Wt} is a scalar Brownian motion. The
polynomial �1 used to model the drift coefficient is first order and the polynomial �2
used to model the diffusion coefficient is no more than second order. Using arguments
we sketch in the following section, the stationary density q for this process satisfies the
differential equation:

(ln q)′ = 2�1 − �2
′

�2
(3.1)

where ′ denotes differentiation with respect to the state.The logarithmic derivative of the
density is the ratio of a first-order to a second-order polynomial as required by Pearson
(1894). When the density is restricted to the nonnegative real numbers, we may add a
boundary condition that requires the process to reflect at zero.

Wong (1964) identified the diffusion coefficient �2 up to scale as the denominator of
(ln q)′ expressed as the ratio of polynomials in reduced form. Given �2 the polynomial
�1 can be constructed from the pair ((ln q)′, �2) using formula (3.1). In Section 3.2, we
will discuss generalizations of this identification scheme.

Wong (1964) went on to characterize and interpret the stochastic processes whose
densities reside in the Pearson class. Many of the resulting processes have been used in
economics and finance.

Example 5 When �1 has a negative slope and �2 is a positive constant, the implied density is
normal and the resulting process is the familiar Ornstein–Uhlenbeck process.This process has been
used to model interest rates and volatility. Vasicek (1977) features this process in his construction
of an equilibrium model of the real term structure of interest rates.

Example 6 When �1 has a negative slope and �2 is linear with a positive slope, the implied
density is gamma and the resulting process is the Feller square-root process. Sometimes zero is an
attracting barrier, and to obtain the gamma distribution requires the process to reflect at zero. Cox
et al. (1985) feature the Feller square root process in their model of the term structure of interest rates.

Example 7 When �1 has a negative slope and �2 is proportional to x2, the stationary density has
algebraic tails.This specification is used as a model of volatility and as a model of size distribution. In
particular, Nelson (1990) derives this model as the continuous-time limit of the volatility evolution
for a GARCH(1,1) model.Nelson (1990) uses the fat (algebraic) tail of the stationary distribution
to capture volatility clustering over time.
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Example 8 A limiting case of this example also gives a version of Zipf’s law. (See Rapoport,
1978; for a nice historical discussion.) Consider a density of the form: q ∝ x−2 defined on (y,∞)

for y > 0. Notice that the probability of being greater than some value x is proportional to x−1.
This density satisfies the differential equation:

d ln q(x)
dx

= −2
x

.

Zipf’s law fits remarkably well the distribution of city sizes. For example, see Auerbach (1913) and
Eaton and Eckstein (1997).

Restrict �2(x) ∝ x2. In the context of cities this means that the variance of growth rates is
independent of city sizes, which is a reasonable approximation for the data in Japan 1965–1985
and France 1911–1990 discussed in Eaton and Eckstein (1997). (See also Gabaix, 1999.)
Formula (3.1) implies that

(ln q)′ + (ln �2)
′ = 2�1

�2
= 0.

Thus the drift is zero and the process is a stationary local martingale.The boundary y is an attracting
barrier,which we assume to be reflexive.We will have more to say about this process after we develop
spectral tools used in a more refined study of the dynamics.

The density q ∝ x−2 has a mode at the left boundary y. For the corresponding diffusion model,
y is a reflecting barrier. Zipf’s law is typically a statement about the density for large x, however.
Thus we could let the left boundary be at zero (instead of y > 0) and set �1 to a positive constant.
The implied density behaves like a constant multiple of x−2 in the right tail, but the zero boundary
will not be attainable.The resulting density has an interior mode at one-half times the constant
value of �1.This density remains within the Pearson family.

Example 9 When �1 is a negative constant and �2 is a positive constant, the stationary density
is exponential and the process is a Brownian motion with a negative drift and a reflecting barrier
at zero.This process is related to the one used to produce Zipf’s law. Consider the density of the
logarithm of x.The Zipf’s law implied stationary distribution of ln x is exponential translated by
ln y.When the diffusion coefficient is constant, say α2, the drift of ln x is −α2

2 .

TheWong (1964) analysis is very nice because it provides a rather complete character-
ization of the transition dynamics of the alternative processes investigated. Subsequently,
we will describe some of the spectral or eigenfunction characterizations of dynamic evo-
lution used by Wong (1964) and others. It is the ability to characterize the transition
dynamics fully that has made the processes studied by Wong (1964) valuable building
blocks for models in economics and finance. Nevertheless, it is often convenient to
move outside this family of models.



14 Yacine Aït-Sahalia et al.

Within the Pearson class, (ln q)′ can only have one interior zero. Thus stationary
densities must have at most one interior mode. To build diffusion processes with multi-
modal densities,Cobb et al. (1983) consider models in which �1 or �2 can be higher-order
polynomials. Since Zipf ’s law is arguably about tail properties of a density,nonlinear drift
specifications (specifications of �1) are compatible with this law. Chan et al. (1992)
consider models of short-term interest rates in which the drift remains linear, but the
diffusion coefficient is some power of x other than linear or quadratic. They treat the
volatility elasticity as a free parameter to be estimated and a focal point of their inves-
tigation. Aït-Sahalia (1996b) compares the constant volatility elasticity model to other
volatility specifications, also allowing for a nonlinear drift. Conley et al. (1997) study
the constant volatility elasticity model but allowing for drift nonlinearity. Jones (2003)
uses constant volatility elasticity models to extend Nelson’s (Nelson, 1990) model of the
dynamic evolution of volatility.

3.2. Stationary Distributions
To generalize the approach of Wong (1964), we study how to go from the infinitesimal
generator to the stationary distribution. Given a generator A of a Feller process, we can
deduce an integral equation for the stationary distribution. This formula is given by:

lim
τ↓0

∫ Tτφ − φ

τ
dQ =

∫
AφdQ = 0, (3.2)

for test functions φ in the domain of the generator. (In fact the collection of functions
used to check this condition can be reduced to a smaller collection of functions called
the core of the generator. See Ethier and Kurtz, 1986; for a discussion.)

Integral equation (3.2) gives rise to the differential equation used byWong (1964) [see
(3.1)] and others. Consider test functions φ that are twice continuously differentiable
and have zero derivatives at the boundaries of the scalar state space. Write the integral
equation ∫ (

μφ′ + 1
2
σ2φ′′

)
q = 0.

Using integration by parts once, we see that∫ [
μq− 1

2
(σ2q)′

]
φ′ = 0.

Given the flexibility of our choice of φ′, it follows that

μq− 1
2
(σ2q)′ = 0. (3.3)
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From this equation, we may solve for μ as a function of (q, σ2) or for q′/q as a function
of (μ, σ2). Alternatively, integrating as in Aït-Sahalia (1996a), we may solve for σ2 as a
function of (μ, q).

Equation (3.3) has a multivariate counterpart used in our treatment of Markov dif-
fusion processes using quadratic forms. Suppose that there is an m-dimensional Markov
state, an m-dimensional drift vector μ that is consistent with a given smooth stationary
density q and a diffusion matrix ν = [νij] has component j given by:

μjq = 1
2

m∑
i=1

∂(νijq)

∂yi
.

This choice of μ is not unique, however. As discussed by Chen et al. (2008), it is the
unique symmetric solution where symmetry is defined in terms of quadratic forms. We
will have more to say about this parameterization subsequently.

3.3. Fitting the Stationary Distribution

In applied research in macroeconomics and international economics, motivation for
parameter choice and model selection is sometimes based on whether they produce
reasonable steady-state implications. An analysis like that envisioned by Wong (1964) is
germane to this estimation problem. A Wong (1964)-type approach goes beyond the
fascination of macroeconomists with deterministic steady states and considers the entire
steady state distribution under uncertainty. Although Wong (1964) produced diffusion
models that imply prespecified densities, it is also straightforward to infer or estimate
densities from parameterized diffusion models.

We now consider the problem of fitting an identified model of a generator to the
stationary distribution. By calibrating to the implied stationary density and ignoring
information about transitions, we may gain some robustness to model misspecification.
Of course, we will also lose statistical efficiency and may also fail to identify features
of the dynamic evolution. From a statistical standpoint, the entire joint distribution of
the data should be informative for making inferences about parameters. A misspecified
model may, however, continue to imply correct marginal distributions. Knowledge of
this implication is valuable information to a model-builder even if the joint distributions
are misspecified.

Initially we allow jump processes, diffusion processes, and mixtures, although we will
subsequently specialize our discussion to diffusion models. Hansen and Scheinkman
(1995) use Eq. (3.2) to produce estimating equations. Their idea is to parameterize the
generator and use the empirical distribution of the data to estimate unknown parameters.
That is, consider a family of generators Ab parameterized by b. Given time series data
{xt} and a family of test functions,

E
[
Aβφ(xt)

] = 0, (3.4)
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for a finite set of test functions where β is the parameter vector for the Markov model used
to generate the data. This can be posed as a generalized-method-of-moments (GMM)
estimation problem of the form studied by Hansen (1982).

Two questions arise in applying this approach. Can the parameter β in fact be identi-
fied? Can such an estimator be efficient? To answer the first question in the affirmative
often requires that we limit the parameterization.We may address Fisher’s (Fisher, 1921)
concerns about statistical efficiency by looking over a rich (infinite-dimensional) family
of test functions using characterizations provided in Hansen (1985). Even if we assume
a finite dimensional parametrization, statistical efficiency is still not attained because this
method ignores information on transition densities. Nevertheless, we may consider a
more limited notion of efficiency because our aim is to fit only the stationary distribution.

In some analyses of Markov process models of stationary densities, it is sometimes
natural to think of the data as being draws from independent stochastic processes with
the same stationary density. This is the case for many applications of Zipf ’s law. This
view is also taken by Cobb et al. (1983). We now consider the case in which data were
obtained from a single stochastic process. The analysis is greatly simplified by assuming
a continuous-time record of the Markov process between date zero and T . We use a
central limit approximation as the horizon T becomes large. From Bhattacharya (1982)
or Hansen and Scheinkman (1995) we know that

1√
T

T∫
0

Aβφ⇒ Normal(0,−2 < Aβφ|φ >), (3.5)

where ⇒ denotes convergence in distribution, and

< Aβφ|φ >
.=
∫

φ
(
Aβφ

)
dQ,

for φ in the L2(Q) domain of Aβ. This central limit approximation is a refinement of
(3.4) and uses an explicit martingale approximation. It avoids having to first demonstrate
mixing properties.

Using this continuous-time martingale approximation, we may revisit Fisher’s (Fisher,
1921) critique of Pearson (1894). Consider the special case of a scalar stationary diffusion.
Fisher (1921) noted that Pearson’s (Pearson, 1894) estimation method was inefficient,
because his moment conditions differed from those implicit in maximum likelihood
estimation. Pearson (1894) shunned such methods because they were harder to imple-
ment in practice. Of course computational costs have been dramatically reduced since
the time of this discussion. What is interesting is that when the data come from (a finite
interval of ) a single realization of a scalar diffusion, then the analysis of efficiency is
altered. As shown by Conley et al. (1997), instead of using the score vector for building
moment conditions the score vector could be used as test functions in relation (3.4).
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To use this approach in practice, we need a simple way to compute the requisite
derivatives. The score vector for a scalar parameterization is:

φ = d ln qb

db
(β).

Recall that what enters the moment conditions are test function first and second deriva-
tives (with respect to the state). That is, we must know φ′ and φ′′, but not φ. Thus we
need not ever compute ln q as a function of b. Instead we may use the formula:

ln qb
′ = 2μb

σ2
b

− ln σ2
b
′

to compute derivatives with respect to the unknown parameters. Even though the score
depends on the true parameter, it suffices to use test functions that are depicted in terms
of b instead of β. Asymptotic efficiency will be preserved.

While formally the efficient test function construction uses an assumption of a
continuous-time record, the resulting estimator will remain “approximately” efficient
when discrete-time samples are used to approximate the estimation equations. For a
formal characterization of statistical efficiency of estimators constructed using only infor-
mation about the stationary distribution for a discrete-time Markov process see Kessler
et al. (2001); but in this case the implementation is typically more complicated.4 Finally,
Aït-Sahalia and Mykland (2008) compare estimators of the type proposed by Hansen
and Scheinkman (1995) and Conley et al. (1997) to maximum likelihood counterparts.
They find that such an approach can produce credible estimators of the drift coefficient
for a given diffusion coefficient.

While statistical efficiency presumes a correct specification, any misspecification that
leaves intact the parameterized model of the stationary density will remain consistent
under ergodicity and some mild regularity assumptions. Checking whether a model fits
the stationary density for some set of parameters is an interesting question in its own right.
One possible approach is to add test functions aimed at specific features of the stationary
distribution to obtain an additional set of over-identifying restrictions. Following Bierens
(1990),such a method could be refined using an ever enlarging collection of test functions
as the sample size is increased, but the practical impact of this observation seems limited.

An alternative comprehensive comparison of a parametric density estimator can be
made to a nonparametric estimator to obtain a specification test. Consider the following
comparison criterion: ∫

(qb − q)2qω
(3.6)

4For an earlier and closely related discussion that focuses on sampled diffusions, see Kessler (2000) and for additional discussion, see Bibby
et al. (2010).
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where q is the true density of the data andω a weighting function.5 Instead of constructing
a small number of test functions that feature specific aspects of the distribution, a
researcher specifies the weighting function ω that dictates which ranges of data receive
more emphasis in the statistical test. By design, objective (3.6) is zero only when qb and q
coincide for some admissible value of b.As before,a parameterization of qb can be inferred
from a parameterization of the generator A.The implied model of the stationary density
is parameterized correctly when the objective is zero for some choice of b. Aït-Sahalia
(1996b) uses this to devise a statistical test for misspecification of the stationary density.

Following Aït-Sahalia (1996b), the density q can be estimated consistently from
discrete-time data using nonparametric methods. The parameter b can be estimated
using the method previously described or by minimizing the sample-counterpart to
(3.6). Aït-Sahalia (1996b) derives the limiting distribution of the resulting test statistic
and applies this method to test models of the short-term interest rate process.6 One chal-
lenge facing such nonparametric tests is producing accurate small sample distributions.
The convergence to the asymptotic distribution obtained by assuming stationarity of the
process can be slow when the data are highly persistent, as is the case with US interest
rates. (See Pritsker, 1998; Conley et al., 1999.)

3.4. Nonparametric Methods for Inferring Drift or Diffusion Coefficients

Recall that for a scalar diffusion,the drift coefficient can be inferred from a stationary den-
sity, the diffusion coefficient and their derivatives. Alternatively the diffusion coefficient
can be deduced from the density and the drift coefficient.These functional relationships
give rise to nonparametric estimation methods for the drift coefficient or the diffusion
coefficient. In this section, we describe how to use local parametrizations of the drift
or the diffusion coefficient to obtain nonparametric estimates. The parameterizations
become localized by their use of test functions or kernels familiar from the literature on
nonparametric estimation. The local approaches for constructing estimators of μ or σ2

estimate nonparametrically one piece (μ or σ2) given an estimate of the other piece.
In the framework of test functions, these estimation methods can be viewed as follows.

In the case of a scalar diffusion,

∫ (
μφ′ + 1

2
σ2φ′′

)
q = 0. (3.7)

Construct a test function φ such that φ′ is zero everywhere except in the vicinity of some
prespecified point y. The function φ′ can be thought of as a kernel and its localization

5Distance measures other than this L2 weighted norm can be used, such as an entropy measure.
6See Section 6.4 and Aït-Sahalia (1996b) for an analogous test based on transition densities.
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can be governed by the choice of a bandwidth. As in Banon (1978), suppose that the
diffusion coefficient is known. We can construct a locally constant estimator of μ that
is very close to Banon’s (Banon, 1978) estimator by solving the sample counterpart
to (3.7) under the possibly false assumption that μ is constant. The local specification
of φ′ limits the range over which constancy of μ is a good approximation, and the
method produces a local estimator of μ at the point y. This method is easily extended
to other local parametrizations of the drift. Conley et al. (1997) introduce a local linear
estimator using two local test functions to identify the level and the slope of the linear
approximation. Using logic closely related to that of Florens-Zmirou (1984), these local
estimators sometimes can presumably be justified when the integrability of q is replaced
by a weaker recurrence assumption.

Suppose that a linear function is in the domain of the generator. Then∫
μq = 0. (3.8)

We may now localize the parameterization of the diffusion coefficient by localizing the
choice of φ′′. The specific construction of φ′ from φ′′ is not essential because moment
condition (3.8) is satisfied. For instance, when φ′′ is scaled appropriately to be a density
function, we may choose φ′ to be its corresponding distribution function. Applying
integration by parts to (3.7), we obtain

r∫
l

μ(x)φ′(x)q(x)dx =
r∫

l

⎡⎣ r∫
x

μq

⎤⎦φ′′(x)dx,

provided that the localization function φ′′ has support in the interior of the state space
(l, r). By localizing the parameterization of the diffusion coefficient at x, the limiting
version of (3.7) is:

r∫
x

μq+ σ2(x)q(x)
2

= 0.

Using (3.8),we then obtain the diffusion recovery formula derived inAït-Sahalia (1996a).

σ2 (x) = 2
q (x)

x∫
l

μ(u)q(u)du. (3.9)

For a given estimator of μ, an estimator of σ2 can be based directly on recovery
formula (3.9) as in Aït-Sahalia (1996a) or using a locally constant estimator obtained by
solving the sample counterpart to (3.7). Not surprisingly, the two approaches turn out
to be very similar.
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The local approaches for constructing estimators of μ or σ2 require knowledge of
estimates of the other piece. Suppose we parameterize μ as in Aït-Sahalia (1996a) to be
affine in the state variable,μ(x) = −κ(x− α), and a linear function is in the domain of
the generator, then

A(x− α) = −κ(x− α).

This says that x− α is an eigenfunction of A, with eigenvalue −κ. We shall have more
to say about eigenfunctions and eigenvalues in Section 4. The conditional expectation
operator for any interval t must have the same eigenfunction and an eigenvalue given
via the exponential formula:

Ttx = E [Xt |X0] = α+ e−κt (X0 − α). (3.10)

This conditional moment condition applies for any t > 0. As a consequence, (α, κ) can
be recovered by estimating a first-order scalar autoregression via least squares for data
sampled at any interval t = �. Following Aït-Sahalia (1996a), the implied drift estimator
may be plugged into formula (3.9) to produce a semiparameteric estimator of σ2 (x).
Since (3.10) does not require that the time interval be small, this estimator of σ2 (x) can
be computed from data sampled at any time interval �, not just small ones.

As an alternative,Conley et al. (1997) produce a semiparameteric estimator by adopting
a constant volatility elasticity specification of the diffusion coefficient, while letting the
drift be nonparametric. The volatility elasticity is identified using an additional set of
moment conditions derived in Section 6.4 applicable for some subordinated diffusion
models. Subordinated Markov processes will be developed in Section 6.7.

We will have more to say about observable implications including nonparametric
identification in Section 6.

4. TRANSITION DYNAMICS AND SPECTRAL DECOMPOSITION
We use quadratic forms and eigenfunctions to produce decompositions of both the
stationary distribution and the dynamic evolution of the process. These decompositions
show what features of the time series dominate in the long run and, more generally,
give decompositions of the transient dynamics. Although the stationary density gives
one notion of the long run, transition distributions are essential to understanding the full
dynamic implications of nonlinear Markov models. Moreover,stationary distributions are
typically not sufficient to identify all of the parameters of interest.We followWong (1964)
by characterizing transition dynamics using a spectral decomposition.This decomposition is
analogous to the spectral or principal component decomposition of a symmetric matrix.
As we are interested in nonlinear dynamics, we develop a functional counterpart to
principal component analysis.
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4.1. Quadratic Forms and Implied Generators

Previously, we demonstrated that a scalar diffusion can be constructed using a density
q and a diffusion coefficient σ2. By using quadratic forms described in Section 2, we
may extend this construction to a broader class of Markov process models. The form
construction allows us to define a nonlinear version of principal components.

Let Q be a Radon measure on the state space X . For the time being this measure
need not be finite, although we will subsequently add this restriction. When Q is finite,
after normalization it will be the stationary distribution of the corresponding Markov
process.We consider two positive semidefinite quadratic forms on the space of functions
L2(Q). One is given by the usual inner product:

f1(φ,ψ)
.=< φ,ψ >=

∫
φψdQ.

This form is symmetric [ f1(φ,ψ) = f1(ψ,φ)] and positive semidefinite ( f1(φ,φ) ≥ 0).
The second form is constructed from two objects: (a) a state dependent positive

semidefinite matrix ν and (b) a symmetric, positive Radon measure R on the product
space X × X excluding the diagonal D

.= {(x, x) : x ∈ X} with∫
X×X−D

|x− y|2
1+ |x− y|2 R(dx, dy) <∞.

It is given by:

f2(φ,ψ)
.= 1

2

∫
(∇φ)∗ν(∇ψ)dQ + 1

2

∫
[φ(y)− φ(x)][ψ(y)− ψ(x)]R(dx, dy)

where ∗ is used to denote transposition.7 The form f2 is well-defined at least on the
space C2

K of twice continuously differentiable functions with compact support. Under
additional regularity conditions, the form f2 is closable, that is, it has a closed extension in
L2(Q).8 However, even this extension has a limited domain. Like f1, the form f2 is also
symmetric and positive semidefinite. Notice that f2 is the sum of two forms. As we will
see, the first is associated with a diffusion process and the second with a jump process.9

4.1.1. Implied Generator

We may now follow the approach of Beurling and Deny (1958) and Fukushima (1971)
by constructing a Markov process associated with the form f1 and the closed extension

7We may use weak gradients in the construction of f2.
8For instance, if Q has density q, and q and ν are continuously differentiable, then the form f2 is closable.
9In fact there exist generalizations of this representation in which ν is replaced by a matrix-valued measure, and an additional term∫

φ(x)ψ(x)dk(x) is introduced where k is a killing measure. See Beurling and Deny (1958) and Fukushima et al. (1994).
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of f2. In what follows we will sketch only part of this construction. We describe how to
go from the forms f1 and f2 to an implied generator. The generator A is the symmetric
solution to:

f2(φ,ψ) = −f1[(Aφ),ψ] = −
∫
(Aφ)ψdQ. (4.1)

Since f2 is a positive semidefinite form, A is a negative semidefinite operator.
We explore this construction for each of the two components of f2 separately. Suppose

initially that R is identically zero and write Ad for the corresponding generator. Then

f2(φ,ψ)
.= 1

2

∫
(∇φ)∗ν(∇ψ)q (4.2)

where q is the density of Q. Applying an integration-by-parts argument to (4.2) shows
that Ad can be depicted as a second-order differential operator on the space C2

K of twice
continuously differentiable functions with compact support:

Adφ = 1
2

∑
i,j

νij
∂2φ

∂yi∂yj
+ 1

2q

∑
i,j

∂(qνij)

∂yi

∂φ

∂yj

provided that both q and ν are continuously differentiable.10 In this formula, we set νij
to be the (i, j) element of the matrix ν. Moreover, the implicit drift is

μj = 1
2q

m∑
i=1

∂(νijq)

∂yi
. (4.3)

This gives us a multivariate extension to the idea of parameterizing a Markov diffu-
sion process in terms of a density q and the diffusion matrix ν, with the drift being
implicit.

Next suppose that ν is identically zero, and again assume that Q has a density q.
Write:

f2(φ,ψ) = 1
2

∫
[φ(y)− φ(x)] [ψ(y)− ψ(x)] R(dx, dy)

= −1
2

∫
[φ(y)− φ(x)]ψ(x)

R(dx, dy)
q(x)

q(x)dx+ 1
2

∫
[φ(y)− φ(x)]ψ(y)R(dx, dy)

= −
∫

[φ(y)− φ(x)]ψ(x)
R(dx, dy)

q(x)
q(x)dx

10The continuous differentiability restriction can be weakened by introducing weak derivatives.



Operator Methods for Continuous-Time Markov Processes 23

where we used the symmetry of R. The joint measure R(dx, dy)/q(x) implies a
conditional measure R(dy|x) from which we define:

Apφ
.=
∫

[φ(y)− φ(x)] R(dy|x).

We have just shown how to go from the forms to the generator of Markov processes.
There is one technical complication that we sidestepped. In general, there may be several
closed extensions of f2 depending on boundary restrictions.The smallest of these closed
extensions always generates a semigroup of contractions.This semigroup will correspond
to a semigroup of conditional expectations provided that the associated operator A
conserves probabilities.When this happens all closed extensions that lead to a Markov process
produce exactly the same process constructed with the aid of the minimal extension (e.g.
Chen et al., 2008; Proposition 4.6 and references therein).11

Fukushima et al. (1994) provide sufficient conditions for conservation of probabil-
ities. An implication of the sufficient conditions of Fukushima et al. (1994) is that if
|νij(x)| ≤ c|x|2+2δ and q has a 2δ moment, probabilities are conserved. (See also Chen
et al., 2008.) Another set of sufficient conditions can be obtained by observing that
a recurrent semigroup conserves probabilities (Fukushima et al., 1994; Lemma 1.6.5).
Hasminskii (1960) and Stroock andVaradhan (1979) suggest using Liapounov functions
to demonstrate recurrence.

4.1.2. Symmetrization

There are typically nonsymmetric solutions to (4.1). Given a generator A, let A∗ denote
its adjoint. Define a symmetrized generator as:

As = A+A∗
2

.

Then As can be recovered from the forms f1 and f2 using the algorithm suggested
previously. The symmetrized version of the generator is identified by the forms, while
the generator itself is not.

We consider a third form using one-half the difference between A and A∗. Define:

f3(φ,ψ) =
∫ (A−A∗

2
φ

)
ψdQ.

This form is clearly antisymmetric. That is

f3(φ,ψ) = −f3(ψ,φ)

11When the smallest closed extension fails to conserve probabilities, we may still build an associated Markov process, provided that we
allow the process to be killed in finite time when it hits a boundary. Other boundary protocols are also possible and lead to the study of
alternative closed extensions.
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for all φ and ψ in the common domain of A and its adjoint.We may recover a version of
A+A∗

2 from ( f1, f2) and A−A∗
2 from ( f1, f3). Taken together we may construct A. Thus

to study nonsymmetric Markov processes via forms,we are led to introduce a third form,
which is antisymmetric. See Ma and Rockner (1991) for an exposition of nonsymmetric
forms and their resulting semigroups.

In what follows we specialize our discussion to the case of multivariate diffusions.
When the dimension of the state space is greater than one,there are typically also nonsym-
metric solutions to (4.1). Forms do not determine uniquely operators without additional
restrictions such as symmetry. These nonsymmetric solutions are also generators of dif-
fusion processes. While the diffusion matrix is the same for the operator and its adjoint,
the drift vectors differ. Let μ denote the drift for a possibly nonsymmetric solution,μs

denote the drift for the symmetric solution given by (4.3), and let μ∗ denote the drift
for the adjoint of the nonsymmetric solution. Then

μs = μ∗ + μ

2
.

The form pair ( f1, f2) identifies μs but not necessarily μ.
The form f3 can be depicted as:

f3(φ,ψ) = 1
2

∫ [
(μ− μ∗) · (∇φ)]ψq

at least for functions that are twice continuously differentiable and have compact support.
For such functions we may use integration by parts to show that in fact:

f3(φ,ψ) = −f3(ψ,φ).

Moreover, when q is a density, we may extend f3 to include constant functions via

f3(φ, 1) = 1
2

∫
(μ− μ∗) · (∇φ)q = 0.

4.2. Principal Components

Given two quadratic forms, we define the functional versions of principal components.

Definition 6 Nonlinear principal components are functions ψj , j = 1, 2 . . . that solve:

max
φ

f1(φ,φ)

subject to

f2(φ,φ) = 1

f1(φ,ψs) = 0, s = 0, . . . , j − 1

where ψ0 is initialized to be the constant function one.
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This definition follows Chen et al. (2008) and is a direct extension of that used by
Salinelli (1998) for i.i.d. data. In the case of a diffusion specification, form f2 is given
by (4.2) and induces a quadratic smoothness penalty. Principal components maximize
variation subject to a smoothness constraint and orthogonality. These components are a
nonlinear counterpart to the more familiar principal component analysis of covariance
matrices advocated by Pearson (1901). In the functional version, the state dependent,
positive definite matrix ν is used to measure smoothness. Salinelli (1998) advocated this
version of principal component analysis for ν = I to summarize the properties of i.i.d.
data.As argued by Chen et al. (2008) they are equally valuable in the analysis of time series
data.The principal components, when they exist, will be orthogonal under either form.
That is:

f1(ψj ,ψk) = f2(ψj ,ψk) = 0

provided that j �= k.
These principal components coincide with the principal components from the canon-

ical analysis used by Darolles et al. (2004) under symmetry, but otherwise they differ.
In addition to maximizing variation under smoothness restrictions (subject to orthog-
onality), they maximize autocorrelation and they maximize the long run variance as
measured by the spectral density at frequency zero. See Chen et al. (2008) for an
elaboration.

This form approach and the resulting principal component construction is equally
applicable to i.i.d. data and to time series data. In the i.i.d. case, the matrix ν is used
to measure function smoothness. Of course in the i.i.d. case there is no connection
between the properties of ν and the data generator.The Markov diffusion model provides
this link.

The smoothness penalty is special to diffusion processes. For jump processes, the form
f2 is built using the measure R, which still can be used to define principal components.
These principal components will continue to maximize autocorrelation and long run
variance subject to orthogonality constraints.

4.2.1. Existence

It turns out that principal components do not always exist. Existence is straightforward
when the state space is compact, the density q is bounded above and bounded away
from zero, and the diffusion matrix is uniformly nonsingular on the state space. These
restrictions are too severe for many applications. Chen et al. (2008) treat cases where
these conditions fail.

Suppose the state space is not compact.When the density q has thin tails, the notion of
approximation is weaker.Approximation errors are permitted to be larger in the tails.This
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turns out to be one mechanism for the existence of principal components. Alternatively,
ν might increase in the tails of the distribution of q limiting the admissible functions.
This can also be exploited to establish the existence of principal components.

Chen et al. (2008) exhibit sufficient conditions for existence that require a trade-off
between growth in ν and tail thinness of the density q. Consider the (lower) radial bounds,

ν(x) ≥ c(1+ |x|2)βI

q(x) ≥ exp[−2ϑ(|x|)].
Principal components exist when 0 ≤ β ≤ 1 and rβϑ′(r)→∞ as r gets large. Similarly,
they also exist when ϑ(r) = γ

2 ln(1+ r2)+ c∗, and 1 < β < γ − m
2 + 1.The first set of

sufficient conditions is applicable when the density q has an exponentially thin tail; the
second is useful when q has an algebraic tail.

We now consider some special results for the case m = 1. We let the state space be
(l, r), where either boundary can be infinite. Again q denotes the stationary density and
σ > 0 the volatility coefficient (that is, σ2 = ν.) Suppose that

r∫
l

∣∣∣∣∣∣
x∫

xo

1
q(y)σ2(y)

dy

∣∣∣∣∣∣ q(x)dx <∞ (4.4)

where xo is an interior point in the state space.Then principal components are known to
exist. For a proof see, e.g. Hansen et al. (1998), page 13, where this proposition is stated
using the scale function

s(x)
.=

x∫
xo

1
q(y)σ2(y)

dy,

and it is observed that (4.4) admits entrance boundaries, in addition to attracting
boundaries.

When assumption (4.4) is not satisfied, at least one of the boundaries is natural. Recall
that the boundary l(r) is natural if s(l) = −∞ (s(r) = +∞ resp.) and,

x0∫
l

s(x)q(x)dx = −∞
⎛⎝ r∫

x0

s(x)q(x)dx = +∞ resp.

⎞⎠
Hansen et al. (1998) show that in this case principal components exist whenever

lim sup
x→r

μ

σ
− σ′

2
= lim sup

x→r

σq′

2q
+ σ′

2
= −∞

lim inf
x→l

μ

σ
− σ′

2
= lim inf

x→l

σq′

2q
+ σ′

2
= +∞. (4.5)
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We can think of the left-hand side of (4.5) as a local measure of pull towards the center
of the distribution. If one boundary, say l, is reflexive and r is natural, then a principal
component decomposition exists provided that the lim inf in (4.5) is +∞.

4.2.2. Spectral Decomposition

Principal components,when they exist,can be used to construct the semigroup of condi-
tional expectation operators as inWong (1964).A principal component decomposition is
analogous to the spectral decomposition of a symmetric matrix. Each principal compo-
nent is an eigenfunction of all of the conditional expectation operators and hence behaves
like a first-order scalar autoregression (with conditionally heteroskedastic innovations).
See Darolles et al., 2001; for an elaboration. Thus, principal components constructed
from the stationary distribution must satisfy an extensive family of conditional moment
restrictions.

Both the generator and the semigroup of conditional expectations operators have
spectral (principal component) decompositions.The generator has spectral decomposition:

Aφ =
∞∑
j=0

−δj f1(ψj ,φ)ψj ,

where each δj > 0 and,ψj is a principal component (normalized to have a unit second
moment) and an eigenvector associated with the eigenvalue −δj , that is,

Aψj = −δjψj .

The corresponding decomposition for the semigroup uses an exponential formula:

T�φ =
∞∑
j=0

exp(−�δj)f1(ψj ,φ)ψj . (4.6)

This spectral decomposition shows that the principal components of the semigroup are
ordered in importance by which dominate in the long run.

Associated with (4.6) for a diffusion is an expansion of the transition density. Write:

p(y|x, t) =
∞∑
j=0

exp(−tδj)ψj(y)ψj(x)q(y) (4.7)

where q is the stationary density. Notice that we have constructed p(y|x, t) so that

Ttφ(x) =
∫

φ(y)p(y|x, t)dy.
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The basis functions used in this density expansion depend on the underlying model.
Recall that an Ornstein-Uhlenbeck process has a stationary distribution that is normal
(see Example 5). Decomposition (4.6) is a Hermite expansion when the stationary dis-
tribution has mean zero and variance one. The eigenfunctions are the orthonormal
polynomials with respect to a standard normal distribution.

4.2.3. Dependence

Spectral decomposition does not require the existence of principal components.We have
seen how to construct Markov processes with self adjoint generators using forms.A more
general version of the spectral decomposition of generators is applicable to the resulting
semigroup and generator that generalizes formula (4.6), see Rudin (1973), Hansen and
Scheinkman (1995), and Schaumburg (2005).This decomposition is applicable generally
for scalar diffusions even when a stationary density fails to exist, for a wide class of Markov
processes defined via symmetric forms. The measure q used in constructing the forms
and defining a sense of approximation need not be integrable.

The existence of a principal component decomposition typically requires that the
underlying Markov process be only weakly dependent. For a weakly dependent process,
autocorrelations of test functions decay exponentially. It is possible, however, to build
models of Markov processes that are strongly dependent. For such processes, the auto-
correlations of some test functions decay at a slower than exponential rate. Operator
methods give a convenient way to characterize when a process is strongly dependent.

In our study of strongly dependent, but stationary, Markov processes, we follow Chen
et al. (2008) using two measures of mixing. Both of these measures have been used
extensively in the stochastic process literature.The first measure,ρ-mixing uses the L2(Q)

formulation. Let

U
.= {φ ∈ L2(Q) :

∫
φdQ = 0,

∫
φ2dQ = 1}.

The concept of ρ-mixing studies the maximal correlation of two functions of the Markov
state in different time periods.

Definition 7 The ρ-mixing coefficients of a Markov process are given by:

ρt = sup
ψ,φ∈U

∫
ψ (Ttφ) dQ.

The process {Xt} is ρ-mixing or weakly dependent if limt→∞ ρt = 0.

When the ρ-mixing coefficients of a Markov process decline to zero, they do so
exponentially. When a Markov process has a principal component decomposition, it is
ρ-mixing with exponential decay. In fact, ρ-mixing requires something weaker.
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As argued by Banon (1978) and Hansen and Scheinkman (1995), ρ-mixing is
guaranteed by a gap in the spectrum of the negative semidefinite operator A to the
left of zero. Although not always symmetric, the operator A is negative semidefinite:∫

φ(Aφ)dQ ≤ 0

on the L2(Q) domain of A.This negative-semidefinite property follows from the restric-
tion that Tt is a weak contraction on L2(Q) for each t. A spectral gap is present when
we can strengthen this restriction as follows:

sup
φ∈U

⋂
D(A)

< φ, Aφ > < 0. (4.8)

When this condition is satisfied Tt is a strong contraction on the subspace U for each t,
and the ρ-mixing coefficients decay exponentially.

In the case of a scalar diffusion, Hansen and Scheinkman (1995) show that this
inequality is satisfied provided that

lim sup
x→r

μ

σ
− σ′

2
= lim sup

x→r

σq′

2q
+ σ′

2
< 0

lim inf
x→�

μ

σ
− σ′

2
= lim inf

x→�

σq′

2q
+ σ′

2
> 0. (4.9)

where r is the right boundary and � is the left boundary of the state space.This restriction is
a weakening of restriction (4.5),which guaranteed the existence of principal components.
Condition (4.9) guarantees that there is sufficient pull from each boundary towards the
center of the distribution to imply ρ-mixing. When one of these two limits is zero, the
ρ-mixing coefficients may be identically equal to one. In this case the Markov process
is strongly dependent.12

Since the ρ-mixing coefficients for a Markov process either decay exponentially or
are equal to one, we need a different notion of mixing to obtain a more refined analysis
of strong dependence. This leads us to consider the β-mixing coefficients:

Definition 8 The β-mixing coefficients for a Markov process are given by:

βt =
∫

sup
0≤φ≤1

|Ttφ −
∫

φdQ|dQ.

12Recall that the term in the left-hand side of (4.9) can be interpreted as the drift of a corresponding diffusion with a unit diffusion
coefficient obtained by transforming the scale. As a consequence, condition (4.9) can also be related to Veretennikov’s drift restriction
for a diffusion to be strongly dependent (Veretennikov, 1997).
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The process {Xt} is β-mixing if limt→∞ βt = 0; is β-mixing with an exponential decay rate if
βt ≤ γ exp(−δt) for some δ, γ > 0.

At least for scalar diffusions,Chen et al. (2008) show that the exponential decay of the
ρ-mixing coefficients is essentially equivalent to the exponential decay of the β-mixing
coefficients.When the ρ-mixing coefficients are identically one, however, the β-mixing
coefficients will still decay to zero, but at a rate slower than exponential.Thus, the decay
properties of the β-mixing coefficients provides a more sensitive characterization of
strong dependence.

4.3. Applications
4.3.1. Zipf’s Law

Recall Zipf ’s law discussed in Section 3.1. Zipf suggested a generalization of his law in
which there was a free parameter that related rank to size. Consider a family of stationary
densities that satisfy a power law of the form:qξ ∝ x−(2+ξ) defined on (y,∞)where y > 0

and ξ ≥ 0. Then the rank-size relation becomes size(rank)
1

1+ξ = constant. This family
of densities is of interest to economists, because of power-law distributions that seem to
describe income distribution and city sizes.With σ2(x) = α2x2, the corresponding drift
is, using Eq. (3.3),

μ = −ξα2x
2

Notice that μ(y) < 0, so that y > 0 is an attainable boundary. We make this barrier
reflexive to deliver the requisite stationary density.

To study temporal dependence, we consider the pull measure:

μ

σ
− σ′

2
= −α(1+ ξ)

2
,

which is negative and independent of the state. The negative pull at the right boundary
in conjunction with the reflexive left boundary guarantees that the process has a spectral
gap, and thus it is weakly dependent even in the case where ξ = 0. Because the pull
measure is constant, it fails to satisfy restriction (4.5). The full principal component
decomposition we described in Section 4.2 fails to exists because the boundary pull is
insufficient.

4.3.2. Stationarity and Volatility

Nonlinearity in a Markov diffusion coefficient changes the appropriate notion of mean
reversion. Stationarity can be induced by how volatility changes as a function of the
Markov state and may have little to do with the usual notion of mean reversion as
measured by the drift of the diffusion process. This phenomenon is most directly seen
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in scalar diffusion models in which the drift is zero, but the process itself is stationary.
Conley et al. (1997) generalize this notion by arguing that for stationary processes with
an infinite right boundary, the stationarity is volatility induced when:

∞∫
x

μ(y)
σ2(y)

dy > −∞ (4.10)

for some x in the interior of the state space. This requirement is sufficient for +∞ not
to be attracting. For the process to be stationary, the diffusion coefficient must grow
sufficiently fast as a function of the state. In effect 1/σ2 needs to be integrable.The high
volatility in large states is enough to guarantee that the process eventually escapes from
those states. Reversion to the center of the distribution is induced by this high volatility
and not by the pull from the drift. An example is Zipf ’s with drift μ = 0. Conley et al.
(1997) give examples for models with a constant volatility elasticity.

Jones (2003) uses a stochastic volatility model of equity in which the volatility of volatility
ensures that the volatility process is stationary. Consider a process for volatility that has a
linear drift μ(x) = α− κx and constant volatility elasticity:σ2(x) ∝ x2γ . Jones estimates
that κ is essentially zero for data he considers on equity volatility. Even with a zero value
of κ the pull measure μ/σ − σ′/2 diverges to −∞ at the right boundary provided that
γ is greater than one. Jones (2003) in fact estimates a value for γ that exceeds one.
The pull measure also diverges at the left boundary to +∞. The process is ρ-mixing
and it has a simple spectral decomposition. Stationarity is volatility induced when κ = 0
because relation (4.10) is satisfied provided that γ exceeds one.The state-dependence in
the volatility (of volatility) is sufficient to pull the process to the center of its distribution
even though the pull coming from the drift alone is in the wrong direction at the right
boundary.

Using parameter estimates from Jones (2003), we display the first five principal com-
ponents for the volatility process in Fig. 1.1. For the principal component extraction,
we use the two weighting functions described previously. For the quadratic form in
function levels we weight by the stationary density implied by these parameter values.
The quadratic form in the derivatives is weighted by the stationary density times the
diffusion coefficient. As can be seen from Fig. 1.1, this function converges to a constant
in the right tail of the stationary distribution.

While they are nonlinear, the principal components evaluated at the underlying
stochastic process each behave like a scalar autoregression with heteroskedastic inno-
vations. As expected the higher-order principal components oscillate more as measured
by zero crossings.13 The higher-order principal components are less smooth as measured

13The intuition comes from the Sturm–Liouville theory of second-order differential equations.
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Figure 1.1 The first five principal components for a volatility model estimated by Jones. The weight-
ing functions are the density and the density scaled by the diffusion coefficient. The parameter values
are κ = 0, α = 0.58× 10−6, and σ2 = 6.1252x2.66. Except for κ, the parameter values are taken from
the fourth column of Table 1 in Jones (2003). Although the posterior mean for κ is different from zero,
it is small relative to its posterior standard deviation.

by the quadratic form in the derivatives. Given the weighting used in the quadratic form
for the derivatives, the principal components are flat in the tails.

4.3.3. Approximating Variance Processes

Meddahi (2001) andAndersen et al. (2004) use a nonlinear principal component decom-
position to study models of volatility. Recall that each principal component behaves as a
univariate (heteroskedastic) autoregression and the components are mutually orthogonal.
These features of principal components make them attractive for forecasting conditional
variances and time-averages of conditional variances. Simple formulas exist for predict-
ing the time-average of a univariate autoregression, and Andersen et al. (2004) are able
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to apply those formulas in conjunction with a finite number of the most important
principal components to obtain operational prediction formulas.

4.3.4. Imitating LongMemory Processes

Linear characterizations of time series typically define long memory in terms of the
behavior of the spectral density function (the Fourier transform of the autocovari-
ance function). When the spectral density diverges to infinity at zero, there is strong
linear dependence. The degree of fractional integration is defined using the rate at
which this spectral density diverges. As we have seen, stationary Markov processes
can be strongly dependent as characterized by the behavior of the implied mixing
coefficients.

The spectral density function at frequency zero is typically the variance used in a
central limit approximation. From Bhattacharya (1982) and Hansen and Scheinkman
(1995) and formula (3.5), we know that the asymptotic variance for the central limit
approximation for 1√

T

∫ T
0 Aφ(xt) is:

2f2(φ,φ) = −2
∫

φ(Aφ)dQ =
∫
(∇φ)∗ν(∇φ)q

where the second right-hand side expression is the formula for diffusion processes. The
formula for jump processes is different. Thus, the long-run variance for the process
{Aφ(xt)} is given by the form 2f2 applied to the test function φ.This long-run variance
is also the spectral density at frequency zero.

This long-run variance is not always finite, however. Using this long-run variance, we
may define weak dependence as:

sup
φ∈D(A),

∫ A(φ)2dQ=1
f2(φ,φ) <∞.

This is in effect the inverse counterpart to (4.8) and is equivalent to the restriction that
the ρ-mixing coefficients have exponential decay. This criterion also suggests how we
might construct strongly dependent diffusion processes with a divergent spectral density.
Find a pair (ν, Q) and a test function φ such that for

ψ
.= μ · ∂φ

∂x
+ 1

2
trace

(
ν
∂2φ

∂x∂x′

)

we have
∫ |ψ|2q <∞,

∫
ψq = 0, and

∫ (
∂φ
∂x

)∗
ν
(
∂φ
∂x

)
= ∞.

Such a process gives an alternative way to produce long-range dependence to the self-
similar fractional Brownian motion model of Mandelbrot and Ness (1968). Although
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these diffusions are not self-similar, they have the mathematical advantage of being
semimartingales.

We illustrate a family of scalar diffusion models that are strongly dependent. It is often
argued that strong dependence is a feature of volatility models. One important source
of evidence for strong dependence is a spectral density matrix that diverges at frequency
zero. We now display one construction of a nonlinear diffusion model that is strongly
dependent. This example is taken from Chen et al. (2008).

Consider a scalar process with a zero mean and a diffusion coefficient σ2(x) = (1+
x2)γ for 1/2 < γ < 1. The candidate stationary density is proportional to 1/σ2. In fact
this process is stationary, but its ρ-mixing coefficients are unity. In particular, the pull
measure is zero at both boundaries. Form a new process by taking a time invariant
transformation of the original process. That is, let

ψ = σ2

2
φ′′
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Gamma = .99, eta = 1/2

Figure 1.2 Spectral density functions for different pairs (γ , η). Spectral densities are rescaled to
integrate to one.
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where φ is such that φ′(x) = (1+ x2)−η/2. Restrict η to satisfy: γ − 1/2 ≤ η ≤ 1/2.
Thenψ has mean zero and finite variance when integrated against the stationary density.14

Its long-run variance, however, is infinite. Notice that∫
σ2(φ′)2q = ∞

because η ≤ 1/2.The divergence of the spectral density function near frequency zero is
illustrated in Fig. 1.2.The rate of divergence of this spectral density function at frequency
zero is shown in Fig. 1.3 using logarithmic scaling.

Gamma = .51, eta = 1/4
Gamma = .75, eta = 1/3
Gamma = .99, eta = 1/2
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Log spectral density

Figure 1.3 Spectral density functions for different pairs (γ , η) plotted on a log−log scale. Spectral
densities are rescaled to integrate to one.

14The function φ will not typically be in the L2(Q) domain of the generator.



36 Yacine Aït-Sahalia et al.

5. HERMITE AND RELATED EXPANSIONS OF A TRANSITION DENSITY
We now consider two methods to approximate the transition density of diffusions.These
methods often lead to closed form expressions for the density; and as a consequence, these
expansions are readily usable for parametric estimation. First, we consider the univariate
Hermite expansions of Aït-Sahalia (2002b); by making a judicious change of variable,
these expansions use polynomial basis functions that are common across all models.
This commonality makes them particularly attractive to use in likelihood approximation.
Second, in the multivariate case, we consider the local expansions of Aït-Sahalia (2008),
which rely on expansions in both the time and state dimensions. Prior to our study of
transition densities, we discuss an exponential expansion for approximating conditional
expectations over small time intervals.15 This will be used as input into some of the
subsequent calculations.

5.1. Exponential Expansion
When diffusion coefficients are smooth, a power series expansion can be used for a subset
of functions in the domain of the generator. By a power series we mean:

T�φ ≈
K∑

k=0

�kAkφ

k! ,
(5.1)

which converges in K . Schaumburg (2005) provides a justification for this formula for
a specific collection of functions. Consider a function φ in the image of Tt , that is a
function that satisfies φ = Ttψ for some ψ ∈ L2(Q).Then under an additional arguably
weak regularity condition (see Assumption 2A in Schaumburg, 2005), the power series
converges for � ≤ t.

To illustrate this result, suppose there exists a spectral decomposition of the form given
in (4.6) for ψ and hence for φ. Then

φ =
∞∑
j=0

exp(−δj t)f1(ψj ,ψ)ψj .

Notice that

f1(ψj ,ψ) = f1(φ,ψj) exp(δj t).

This suggests that ψ could be constructed by “inverting” the conditional expectation
operator. For this construction to work, however,

∞∑
j=0

f1(φ,ψj)
2 exp(2δj t) <∞ (5.2)

15Although the spectral depiction 4.6 of the exponential formula is applicable to all functions that are square integrable with respect to Q,
it can be difficult to compute.
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which illustrates the strength of Schaumburg’s (Schaumburg,2005) restriction that φ be in
the image of Tt . See Carrasco et al. (2007) for an extensive discussion of such restrictions
for conditional expectation operators used in a variety of econometric applications.

When restriction (5.2) is satisfied, we can establish the approximation. Write

K∑
k=0

�kAkφ

k! − exp(A) φ =
∞∑
j=0

[
K∑

k=0

(−�δk)
k

k! − exp
(−�δj

)]
f1(ψj ,φ)ψj

=
∞∑
j=0

[
K∑

k=0

(−�δk)
k

k! − exp
(−�δj

)]
exp

(− δj t
)

f1(ψj ,ψ)ψj .

The discounting of the coefficients f1(ψk,ψ) by exp(−δkt) is used to limit the magnitude
of the approximation error. Notice that

exp
(− tδj

) ∣∣∣∣∣
K∑

k=0

(−�δj)
k

k! − exp
(−�δj

)∣∣∣∣∣ ≤ exp
(−�δj

) [ K∑
k=0

(�δj)
k

k! + exp
(−�δj

)] ≤ 2.

This bound together with the pointwise (in �δk) of the power series expansion of the
exponential can be used in conjunction with the Dominated Convergence Theorem to
show that the approximation error converges to zero in the norm on L2(Q).

Schaumburg (2005) establishes this approximation without requiring the simple spec-
tral decomposition we used here. The remaining challenge in using this approach is to
characterize more explicitly the set of functions that are in the image of Tt . For instance,
in Wong’s models (Wong, 1964) with polynomial eigenfunctions, it can be shown that
polynomials are in the image of Tt , but it remains an interesting challenge to establish
this property for more general classes of diffusion models.

Kessler (1997) and Stanton (1997) suggest using this expansion method to construct
conditional moment restrictions to be used in estimation. In what follows we will
see how this expansion can be applied as input into the approximation of transition
densities.

5.2. Hermite Expansion of the Transition Function

We have already noted that a spectral decomposition of the semigroup for an Ornstein-
Uhlenbeck process with a standard normal stationary distribution is a Hermite expansion.
In problems of estimation it is often convenient to use a common expansion for alternative
models, and Hermite expansion is a leading example. In what follows, we follow Aït-
Sahalia (1999) and Aït-Sahalia (2002b) and describe Hermite series expansions for scalar
diffusions. These expansions lead to closed form expressions that can be applied to scalar
diffusions with sufficient regularity.

It is clearly special and limiting to have a stationary distribution that is standard normal.
To make the standard normal distribution useful for approximation, we transform the
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state and rescale the change in the state over an interval of time �. To understand
the construction, the following analogy may be helpful. Consider a standardized sum of
random variables to which the Central LimitTheorem (CLT) apply. Often,one is willing
to approximate the actual sample size by infinity and use the N (0, 1) limiting distribution
for the properly standardized transformation of the data. If not, higher order terms of the
limiting distribution (for example the classical Edgeworth expansion based on Hermite
polynomials) can be calculated to improve the accuracy of the approximation.

Consider now approximating the transition density of a diffusion and think of the
sampling interval � as playing the role of the sample size n in the CLT. For a small
�, the conditional distribution is closer to being normal because of the contribution
from the Brownian increment. If we properly standardize the data, then we can find out
the limiting distribution of the standardized data as � tends to 0 (by analogy with what
happens in the CLT when sample size tends to∞). Properly standardizing the data in the
CLT means subtracting the population mean summing and dividing by the square root of
the sample size. For this application, it involves transforming the original diffusion X into
another one,called Z below. In both cases, the appropriate standardization makes N (0, 1)
the leading term of the approximation. This N (0, 1) approximation is then refined by
including higher order terms based on Hermite polynomials,which are orthogonal with
respect to the leading N (0, 1) term.

5.2.1. Change of Variable and Rescaling

A property of a diffusion is that over small increments of time,first differences divided by√
� are approximately normal.The normal approximation becomes better as the interval

� becomes small, but the variance may be state dependent. Thus prior to shrinking �

to zero, we transform the state to make the limiting approximation a standard normal.
The transformation is:

Yt ≡ γ(Xt) =
Xt∫

du
σ(u) (5.3)

where the lower endpoint of integration is some interior point in the state space.The con-
structed process {Yt} has a unit diffusion coefficient, so as to eliminate heteroskedasticity,
and a drift:

μy(y) = μ
[
γ−1(y)

]
σ
[
γ−1(y)

] − 1
2

dσ
dx

[
γ−1(y)

]
. (5.4)

The stationary density qy for the transformed process is typically not normal, but it
satisfies:

qy(y) ∝ exp

⎡⎣2

y∫
μy(u)du

⎤⎦.

While it is possible for the transformed state to have finite upper or lower bounds, we
focus on the case in which the implied state space is R. The stationary density will
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have exponentially thin tails provided that the drift μy is negative (positive) for large
positive (negative) y and bounded away from zero in the tails. Thus, polynomials have
finite second moments after this transformation has been applied, provided that there
is some pull towards the origin in the implied drift. As discussed in Section 4.2.3,
these conditions on the pull measure imply weak dependence of the diffusion
process.

If the drift of the process {Yt} was zero, then it would be a standard Brownian motion.
The first difference in {Yt} would have a standard normal density only after dividing by
the square root of the sampling interval �. More generally, let py denote the transition
function of the process {Yt}.Without this scaling, the first difference of {Yt}will converge
to a degenerate measure with a unit probability mass (a Dirac mass) at zero. To obtain
the Hermite refinement of a standard normal approximation, we form

Z�
.= �−1/2 (Y� − Y0)

and condition on Y0 = y0 = γ(x0). Let pz denote the conditional distribution of Z�

where � denotes the time interval used in the approximation.
Since Z� is a known transformation of X , we can recover the transition density of X

from the density of Z� using the familiar Jacobian formula:

p(x|x0,�) = py[γ(x)|γ(x0),�]
σ(x)

= pz
(
�−1/2 [γ(x)− γ(x0)] |γ(x0),�

)
σ(x)�1/2 . (5.5)

So this leaves us with the need to approximate the density function pz.

5.2.2. Coefficients of the Expansion

Let hj denote the Hermite polynomials, the orthogonal polynomials with respect to the
standard normal density. They can be computed as:

hj(z)
.= exp

(
z2

2

)
dj

dzj

[
exp

(−z2

2

)]
, j ≥ 0.

The Hermite expansion is

pz(z|y0,�) = exp(−z2/2)√
2π

∞∑
j=0

ηj
(
�, y0

)
hj(z) (5.6)

with coefficients given by:

ηj
(
�, y0

) = (
1
j!
) +∞∫
−∞

hj(z) pz
(
z|y0,�

)
dz

=
(

1
j!
)

E
(
hj
[
�−1/2 (Y� − Y0)

] |Y0 = y0
)

(5.7)

= (
1/j!) T�hj

(
�−1/2(Y� − y0

))
.
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A Hermite approximation to pz uses a finite number of terms in expansion (5.6).
A corresponding approximation for px follows from (5.5).

As the coefficients ηj are specific conditional moments of the process {Yt}, they can
be computed using numerical methods such as Monte Carlo integration. An attractive
alternative proposed inAït-Sahalia (2002b) is to use an exponential expansion of the form
(5.1). With (5.7) in mind, let φ(y) be a polynomial (which also depends on y0, but y0
is held fixed here). Given growth and smoothness of the drift and diffusion coefficients,
polynomials and their iterates obtained by repeated application of the generator A are
in D(A) under regularity assumptions on the boundary behavior of the process. This
guarantees that Taylor series:

K∑
k=0

�kAkφ

k!

is well defined and a viable approximation to T�.
Using this method, Aït-Sahalia (1999) gives the formulae corresponding to popular

models in finance,andAït-Sahalia (2002b) uses this approach to approximate numerically
a parametric likelihood function for scalar diffusion estimation. Jensen and Poulsen (2002)
show that this Hermite approximation works very well in practice and that it dominates
other methods for the benchmark examples they consider.

5.3. Local Expansions of the Log-Transition Function
In the univariate Hermite expansion described in Section 5.2, we first deduced the
Hermite expansion in terms of polynomials in y− y0 for a given �. Once the Hermite
coefficients ηj(�, y0) are replaced by their Taylor series approximation in �, the cor-
responding approximation expansion becomes local in �. In addition to using a finite
number of Hermite polynomials, we limited our use to a finite number of � terms
in the Taylor expansion used to approximate the coefficients.16 Following Aït-Sahalia
(2008), we will use a similar strategy except that we will deduce directly a small �
expansion first. In contrast to the Hermite expansion, this expansion applies directly to
the logarithm of the transition density and permits the diffusion to be multivariate. After
deducing the � expansion, we will explore an approximation based on the discrepancy
between the state to which the diffusion moves to and from the current state. For-
mally we will deduce this as a small discrepancy approximation.Taken together, this joint
expansion provides an operational way to approximate (logarithms) of transition densi-
ties for multivariate diffusions. Extensions to multivariate jump-diffusions are considered
inYu (2003).

16Different ways of gathering the terms are available as in the Central Limit Theorem, where both the Edgeworth and Gram-Charlier
expansions are based on a Hermite expansion.
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5.3.1. Expansion in�

Aït-Sahalia (2008) shows that an expansion at order K in � for �(x|x0,�)
.=

ln p(x|x0,�) can be obtained in the form:

�K (x|x0,�) ≈ C−1(x|x0)�
−1 + C̃(x|x0) ln�+

K∑
k=0

Ck(x|x0)
�k

k!

The derivative with respect to � of the approximating function is therefore:

∂�K

∂�
(x|x0,�) ≈ −C−1(x|x0)�

−2 + C̃(x|x0)�
−1 +

K∑
k=1

Ck(x|x0)
�k−1

(k − 1)! .

Before computing the coefficients of the expansion, reconsider Example 9.

Example 10 Consider a Brownian motion process with a constant drift (see Example 9).The
transition density is known to be normal with mean x0 +�μ and variance �σ2. The log
density is:

�(x|x0,�) = 1
2

[
− ln 2π − ln σ2 − ln�− (x− x0 − μ�)2

�σ2

]
.

We may compute directly the coefficients of the small � expansion:

C−1(x|x0) = − (x− x0)
2

2σ2

C̃(x|x0) = −1
2

C0(x|x0) = − ln σ + (x− x0)μ

σ2 − 1
2

ln 2π

C1(x|x0) = − μ2

2σ2

More generally, these coefficients can be computed using the Kolmogorov forward
and backward equations. In particular, the forward equation is typically stated in terms
of the densities, but it has a log-density counterpart:

∂�

∂�
(x|x0,�) = C∗(x)+

m∑
i=1

μi(x)
∂�

∂xi
(x|x0,�)+

m∑
i=1

m∑
j=1

∂νij(x)

∂xi

∂�

∂xj
(x|x0,�)

+ 1
2

m∑
i=1

m∑
j=1

νij(x)
∂2�

∂xi∂xj
(x|x0,�) (5.8)

+ 1
2

m∑
i=1

m∑
j=1

∂�

∂xi
(x|x0,�)νij(x)

∂�

∂xj
(x|x0,�).
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where

C∗(x) .= −
m∑

i=1

∂μi(x)
∂xi

+ 1
2

m∑
i=1

m∑
j=1

∂2νij(x)

∂xi∂xj

This differential equation is linear in the second derivative of � with respect to x but
quadratic in the first derivative.

5.3.2. Leading Term

The leading term in this expansion must solve:

−C−1(x|x0) = 1
2

[
∂C−1(x|x0)

∂x

]′
ν(x)

[
∂C−1(x|x0)

∂x

]
. (5.9)

This follows because the lowest power in � on the left-hand side of (5.8) is −2. Only
the last term on the right-hand side contributes to this. We consider the solution that
has a strict maximum at x = x0.

Example 11 Suppose that ν(x) = I . Aït-Sahalia (2008) discusses when the state can be
transformed so that this restriction is satisfied.The differential equation (5.9) then has as a solution:

C−1(x|x0) = −|x− x0|2
2

.

This suggests a transition density approximation of the form:

exp
(
−|x− x0|2

2�

)
over an interval �. In turn this suggests a normal approximation as the leading term. Because the
leading term will not even approximately integrate to one, we will need to explore other terms of
the expansion. In this example, by adding the expression

−m
2

ln�− m
2

ln 2π

to the leading term ensures that the resulting approximation is a log density. In fact it is the log
density of a multivariate normal with mean x0 and covariance matrix �I .

Consider next a quadratic (in x− x0) approximation to the solution to Eq. (5.9) deter-
mining C−1(x|x0).The linear term is necessarily zero when the matrix ν is nonsingular.
Write the second-order expansion as:

C−1(x|x0) ≈ −1
2
(x− x0)

′V (x− x0).
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Equation (5.9) implies the Riccati equation,

V = V ν(x0)V

with the solution of interest being:

V = ν−1(x0).

As a consequence the leading term in the expansion is:

− 1
2�

(x− x0)
′ν(x0)

−1(x− x0)

implying an approximate density:

exp
[
− 1

2�
(x− x0)

′ν(x0)
−1(x− x0)

]
when we localize in both the interval � and x− x0. Adding

−m
2
(ln�+ ln 2π)− 1

2
ln det ν(x0)

scales the implied density approximation to integrate to one. The resulting density is
normal with mean x0 and covariance matrix �ν(x0).

We will have more to say about the x− x0 component of the expansion subsequently.

5.3.3. Next Two Terms

We now consider the implications of (5.8) for the next two terms in the small � expan-
sion. Adding a constant term in x does not alter the differential equation. Thus, we do
not expect that the coefficients will be fully determined from this equation alone.

To avoid higher-order terms in ln�, we look for solutions in which C̃(x|x0) is
independent of x. Using the previous discussion as motivation, we set

C̃(x|x0) = −m
2

.

In addition, we initialize C0(x0|x0) = −1
2 ln det ν(x0)− m

2 ln(2π).
From the forward Eq. (5.8), we also have the restriction:

C̃(x|x0) =
m∑

i=1

μi(x)
∂C−1

∂xi
(x|x0)+

m∑
i=1

m∑
j=1

∂νij(x)

∂xi

∂C−1

∂xj
(x|x0)

+ 1
2

m∑
i=1

m∑
j=1

νij(x)
∂2C−1

∂xi∂xj
(x|x0) (5.10)

+
m∑

i=1

m∑
j=1

∂C−1

∂xi
(x|x0)νij(x)

∂C0

∂xj
(x|x0)
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After substituting the solutions for C−1 and C̃, this becomes a first-order partial
differential equation in C0(x|x0).

Recall that in Example 11, we set ν = I . In this example, differential equation (5.10)
simplifies and is satisfied provided that:

m∑
i=1

∂C0

∂xi
(x|x0)(xi − x0i) = −

m∑
i=1

μi(x)(xi − x0i).

Integrating along a line segment between x0 and x we obtain:

C0(x|x0) = −
m∑

i=1

(xi − x0i)

1∫
0

μi [x+ u (x0 − x0)]du

since ln det I = 0.

5.3.4. Remaining Terms

There is a recursive structure to the remaining coefficients. The left-hand side of (5.8)
entails the derivative with respect to �, whereas the right-hand side does not,

Ck+1(x|x0) = C∗k (x)+
m∑

i=1

μi(x)
∂Ck

∂xi
(x|x0)+

m∑
i=1

m∑
j=1

∂νij(x)

∂xi

∂Ck

∂xj
(x|x0)

+ 1
2

m∑
i=1

m∑
j=1

νij(x)
∂2Ck

∂xi∂xj
(x|x0) (5.11)

+ 1

2

m∑
i=1

m∑
j=1

k∑
r=−1

∂Cr

∂xi
(x|x0)νij(x)

∂Ck−r

∂xj
(x|x0).

where C∗0 = C∗ and C∗j = 0 for j ≥ 1. Notice that the right-hand side has a term in

∂Ck+1

∂xj
(x|x0)

obtained when r = −1.The remaining terms are computed as simple functions of deriva-
tives of lower order coefficients. Thus we are again left with a differential equation to
solve, but it is an equation that is linear in this derivative and not quadratic as in par-
tial differential equation (5.9) for C−1(x|x0). We are interested in solutions for which
Ck+1(x0|x0) = 0.

5.3.5. Expansions in Powers of x− x0
Typically one cannot solve the differential equation (5.11). Instead, we can compute the
coefficients of an expansion in powers of x− x0 that is guaranteed to be accurate for x
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close to x0.After constructing an expansion to a given order of each coefficient Cj(x|x0),
the result is a joint expansion in � and x− x0.

Like the expansion in�,a polynomial expansion of Cj(x|x0) can be computed explic-
itly in powers of x− x0: see Aït-Sahalia (2008) for details, and the order at which to
expand the coefficient Cj . These Taylor expansions of Cj(x|x0) may be computed by
solving systems of linear equations with one exception, which fortunately also has an
explicit expansion in x− x0. Consider the Eq. (5.9) determining C−1(x|x0). As we have
previously argued the first nonzero term in the expansion is quadratic:

C−1(x|x0) = −1
2
(x− x0)

′ν(x0)
−1(x− x0),

obtained by solving a Riccati equation. The higher-order terms (x− x0) for C−1 can
be calculated by solving linear equations, however.

In conclusion, combining expansions in � and x− x0, as described in Aït-Sahalia
(2008), provides a sequence of local approximations to the function ln p(x|x0,�).These
expansions can be computed conveniently for a multivariate diffusion process by evalu-
ating derivatives of the drift and diffusion coefficients and solving a Riccati equation for
one term and linear equations for the remaining terms.

6. OBSERVABLE IMPLICATIONS AND TESTS
We have seen in Sections 4 and 5 how to characterize transition densities of Markov
processes. In this section we explore the inverse problem. Suppose from data we can
infer information about transitions, could these data have come from special classes of
continuous-time Markov processes? What are the observable implications of the special
types of Markov processes?

6.1. Local Characterization
By its very nature the generator gives a local counterpart to conditional moment
restrictions. It gives us a formal sense in which:

Eφ(xt+�|xt)− φ(xt)

�
≈ Aφ(xt).

Thus estimation of the left-hand side allows for the approximation of A. By look-
ing at appropriately chosen families of test functions, we can learn about A provided
discretization errors are small.

First, we consider the identification scheme advocated by Johannes (2004). Consider
first linear test functions parameterized as φ(x) = a · (x− x∗) for some a ∈ R

m and some
x∗. Then

Aφ(x) = a · μ(x)+ a ·
[∫

(y− x∗)R(dy|x)− (x− x∗)
]
.
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Evaluating this at x = x∗ gives:

Aφ(x∗) = a · μ(x∗)+ a ·
∫
(y− x∗)R(dy|x∗).

By letting a be each of the coordinate vectors we identify:

μ(x∗)+
∫
(y− x∗)R(dy|x∗).

Using an entirely similar argument for quadratic functions of the form (x− x∗)′V (x−
x∗) for symmetric matrices V , we may infer

ν(x∗)+
∫
(y− x∗)(y− x∗)′R(dy|x∗).

More generally, higher-order polynomials centered around x∗ will reveal higher-order
moments of the conditional jump distribution scaled by the jump intensity. The drift
and diffusion will only contribute to the first two conditional moments. Johannes (2004)
used this observation to infer the importance of jump components in interest rates.

Polynomials will sometimes not be in the domain of the generator. Other collections
of localized test functions can be employed in making these approximations. For instance,
a · (x− x∗)might be replaced by φ(x) = a · (x− x∗)ψ(|x− x∗|2)whereψ is a symmet-
ric twice continuously differentiable function that is one at zero and has compact support.
Notice that the derivative of this test function at x = x∗ is a. In the absence of jumps,

Aφ(x∗) = a · μ(x∗).
Similarly, when φ(x) = (x− x∗)′V (x− x∗)ψ(|x− x∗|2),

Aφ(x∗) = trace[ν(x∗)V ]
which can be used to identify ν.

Given that the diffusion component is a local operator,localization of first- and second-
order polynomials continues to permit the identification of the drift and the diffusion
coefficients.When the jump component is present,we must add corrections that depend
more specifically on the function ψ used in localization.The corrections will cease to be
conditional moments of the jump distribution scaled by the jump intensity parameter λ.

Finally, in the absence of jump components we may also use a localization that is not
smooth. For instance, the infinitesimal parameters can be recovered using the familiar
formulas:

μ
(
x∗
) = lim

�→0

1
�

∫
|y−x∗|<ε

(
y− x∗

)
P�

(
x∗, dy

)
ν
(
x∗
) = lim

�→0

1
�

∫
|y−x∗|<ε

(
y− x∗

)(
y− x∗

)′P�(x∗, dy
)
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where P� is the transition distribution for the diffusion process. Florens-Zmirou (1984),
Stanton (1997),Fan and Zhang (2003),Bandi (2002),Bandi and Phillips (2003),and others
consider estimation of diffusion based on these local conditional moment restrictions.
See also Bandi and Phillips (2010) for a discussion.

6.2. Total Positivity and Testing for Jumps

The local characterizations are justified by taking a limit as �→ 0. We now examine
what can be said if the process is only observed at a finite observation interval � but
arbitrarily large sample sizes. Let R be the state space for a Markov process, and consider
a family of probability distributions indexed by the time interval �: P�(·|x). Could
this family of densities have come from a scalar diffusion process, i.e., a scalar Markov
process with continuous sample paths, or must a more general process be considered?
Aït-Sahalia (2002c) develops statistical tests based on the total positivity restrictions on
transition densities (see Karlin and McGregor, 1959a).

While total positivity has a more general representation and probabilistic interpretation,
it implies

P�(x, B)P�
(
x̃, B̃

)− P�
(
x̃, B

)
P�

(
x, B̃

)
> 0 (6.1)

whenever, x < x̃ and B < B̃ (where B < B̃ is interpreted to mean that every element of
B is less than every element of B̃). Since this must hold for any choice of x̃ and B̃, there
is a local (in the state) counterpart that we express using the logarithm of the density:

∂2

∂x∂y
�(y|x,�) > 0 (6.2)

for all x and y and interval �. This cross derivative restriction for each choice of x, y,
and � is a necessary condition for transition distributions to be those implied by a scalar
diffusion.

A partial converse is also available. Suppose that the family of distribution functions
of a Markov process on R satisfies (6.1) for any positive �, then under a side condition,
there exists a realization of the process such that almost all sample paths are continuous.

The following example shows how criterion (6.2) can be used to eliminate some
transition densities as coming from a model of a scalar diffusion.

Example 12 Suppose that �(y|x,�) depends on the composite state (y, x) only through y− x.
Then criterion (6.2) is equivalent to requiring that � be concave in y− x. It can be shown that the
only admissible solution is

�
(
y|x,�

) = −1
2

ln(2πβ2�)− (y− x− α�)2

2β2�

where α and β are free parameters.That is the transition density is an arithmetic Brownian motion.
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As an alternative, consider the generalized Cauchy density

�
(
y|x,�

) = − ln π + ln α(�)− ln
[
α(�)2 + (y− x)2

]
where α(�) is positive. Criterion (6.2) fails for large y− x.

Aït-Sahalia (2002c) contains other examples. More generally, total positivity implies
restrictions on processes defined on state spaces other than R. Consider a continuous-
time, stationary, Markov chain that can only take countable discrete values, say,
{. . . ,−1, 0, 1, . . .}. In a discrete state space, the appropriate notion of continuity of the
chain’s sample paths is the following intuitive one: the chain never jumps by more than
one state at a time, either up or down. It turns out that the restriction on the chain’s
transition probabilities analogous to (6.1) characterizes precisely this form of continuity:
total positivity across all intervals restricts the process to be a so-called birth-and-death
process (see Karlin and McGregor, 1959b). In this sense, a birth-and-death process is the
discrete-state analog to a scalar diffusion. See Aït-Sahalia (2002c) for further discussion
and implications for derivative pricing methods, such as binomial trees.

For a fixed �, total positivity is a necessary restriction on the transition distribution
but not a sufficient one. Given a candidate transition distribution over an interval �,
we did not construct a diffusion with that transition distribution. Frydman and Singer
(1979) study the analogous question for a finite state birth and death process. In their
study, they show that to embed a single transition matrix (over an interval �) satisfying
total positivity in a continuous-time Markov process it is sometimes necessary that the
continuous-time process be time-inhomogeneous. They show that the total positivity
function is a weaker restriction than embeddability for a continuous-time process that is
restricted to be time-homogeneous.

6.3. Principal Component Approach
We now explore an alternative approach to the embeddability question in the context
of scalar diffusions: when does there exist a (time-homogeneous) scalar diffusion process
that is consistent with a given discrete-time transition distribution? We follow Hansen
et al. (1998) by answering this question using a principal component decomposition. As
we have seen, the existence of this decomposition is restrictive.

First, consider a scalar diffusion with stationary density q and diffusion coefficient σ2.
As we have seen there is a corresponding form constructed with these objects. Each
principal component satisfies the eigenvalue relation:

1
2

∫
φ′ψj

′σ2q = δj

∫
φψjq.
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for any φ that is twice continuously differentiable for which φ′ has compact support. An
integration-by-parts argument implies that

ψj
′(x)σ2(x)q(x) = −2δj

x∫
ψjq (6.3)

because φ′ can be localized at the point x.
To achieve identification, we must construct σ2 from a discrete-time transition oper-

ator. The density q and the principal components ψj and associated eigenvalues δj are
identifiable from discrete-time data. The principle components are identifiable because
they maximize autocorrelation. Moreover, they satisfy the discrete-time conditional
moment restriction:17

E
[
φj(Xt+�)|Xt

] = exp(−�δj)φj(Xt).

We can think of (6.3) as a set of restrictions that can be used to infer σ2. While σ2

can be identified from one of these equations (except for the constant eigenfunction
equation), over-identification comes from the fact that the same σ2 must work for all
eigenfunctions.18 As σ2 is restricted to be positive,there is a testable implication for even a
single choice of j in (6.3) provided the constant eigenfunction is not used. Unfortunately,
statistical testing is likely to be more challenging for testing eigenfunction restrictions
than for testing total positivity.

6.4. Testing the Specification of Transitions
The generator of a semigroup commutes with the family of conditional expectation
operator that it generates:

AT�φ = T�Aφ (6.4)

for any φ in the domain of the generator and any �. This follows from the semigroup
property (2.2) and the construction of the generator as the time derivative of the semi-
group (at t = 0). As emphasized by Hansen and Scheinkman (1995), this gives rise to a
set of testable restrictions beyond stationarity that we now explore.

17An alternative parametric identification and inference approach is suggested by Kessler and Sorensen (1999). They use the fact that
principal components satisfy this conditional moment restriction to build estimating equations for parameterized diffusions. See Bibby
et al. (2010) for further discussion.

18There is a close relation between recovery formula (6.3) and formula (3.9) that we described previously. Suppose that a linear function
is in the domain of the generator, the drift is linear. Then the drift coefficient is an eigenfunction and the corresponding value of δ is
the negative of the derivative of this function. With these substitutions, the two recovery formulas coincide. Demoura (1998) suggests a
similar identification by looking across two distinct eigenfunctions and their first two derivatives to identify the pair (μ, σ2). In contrast,
recovery formula (6.3) avoids using second derivatives and instead uses a single eigenfunction in conjunction with the stationary density.
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From an abstract perspective, given a candidate generator Â (not necessarily A) and
a conditional expectation operator T� suppose

ÂT�φ = T�Âφ (6.5)

for any φ among a rich collection of test functions (formally a core of the generator). In
what way does this restrict the candidate Â? How might we actually test this implication?

If the candidate generator Â commutes with A, then Â cannot be distinguished from
A based on (6.4). In particular, when Â is a scalar multiple of A, they commute and
hence cannot be distinguished. Thus, the most one can hope for from (6.5) is the iden-
tification of the generator up to scale. As illustrated by Hansen and Scheinkman (1995),
without further restrictions, the identification problem can be more severe than this. On
the other hand, Hansen and Scheinkman (1995) show that stationary scalar diffusions
can be identified up to scale by (2.2) and the information encoded in the stationary
distribution.

Stationary scalar diffusions are examples of processes that are reversible. More generally,
stationary Markov processes modeled via symmetric forms are reversible. Such models
are identifiable from discrete time data sampled at any fixed interval �.19 Thus, the
commuting restriction does not encode all of the identifying information contained in
the transition distribution.

For reversible Markov process models, there is an equivalent statement of restriction
(6.5):

E
([

Âφ(xt+1)
]
ψ(xt)

)
= E

(
φ(xt+1)

[
Âψ(xt)

])
(6.6)

for φ and ψ in the domain of Â. The restriction can be tested via statistical methods
by focusing on a limited number of test functions, or it can be made comprehensive by
adapting the approach of Bierens (1990).This type of moment condition is extended in
Conley et al. (1997).20 Instead of analyzing the forward and backward evolution of the
product of two functions, φ(xt+1) and ψ(xt), the evolution of a more general function
ϕ(xt+1, xt) is used. In what follows we describe a different approach.

For stationary diffusions, there is an equivalent statement of restriction (6.5) that is
deduced in Aït-Sahalia (1996b). In contrast to (6.6) reversibility is not required. We
may deduce this directly from the Kolmogorov forward and backward equations as in
Aït-Sahalia (1996b). Alternatively (and essentially equivalently) we may localize the test
function φ in (6.5). Let Â be a candidate generator of a diffusion with drift μ̂ and

19See Proposition 5 in Hansen and Scheinkman (1995).
20See their Appendix E for a justification.
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diffusion matrix ν̂. After localization, the left-hand side of (6.5) becomes:

∑
i

μ̂i(x)
∂

∂xi
p
(
y|x,�

)+ 1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p
(
y|x,�

)
.

Prior to localizing the right-hand side of (6.5), we apply integration by parts to a test
function with compact support in the interior of the state space and write:

T�Âφ(x) = −
∫ [∑

i

∂

∂yi
μ̂i(y)p(y|x,�)

]
φ(y)dy+ 1

2

∫ ⎡⎣∑
i,j

∂2

∂yiyj
ν̂ij(y)p(y|x,�)

⎤⎦φ(y)dy

By localizing the test function around a given value of y, it follows from (6.5) that

∑
i

μ̂i(x)
∂

∂xi
p
(
y|x,�

)+ 1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p
(
y|x,�

)
(6.7)

= −
∑

i

∂

∂yi

[
μ̂i(y)p(y|x,�)

]+ 1
2

∑
i,j

∂2

∂yiyj

[
ν̂ij(y)p(y|x,�)

]
.

Aït-Sahalia (1996b) calls the difference K
(
y|x,�

)
between the left-hand and right-hand

side as the transition discrepancy.21

Indeed, the left-hand side of the inequality is the contribution of the Kolmogorov
forward equation

∂p
(
y, t|x, s

)
∂t

= −
∑

i

∂

∂yi

[
μ̂i(y)p(y, t|x, s)

]+ 1
2

∑
i,j

∂2

∂yiyj

[
ν̂ij(y)p(y, t|x, s)

]
(6.8)

and the right-hand side is the contribution from the backward equation:

−∂p
(
y, t|x, s

)
∂s

=
∑

i

μ̂i(x)
∂

∂xi
p
(
y, t|x, s

)+ 1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p
(
y, t|x, s

)
. (6.9)

These two equations cannot be used as such because their left-hand side contains the
derivative of the transition density with respect to time.Time derivatives cannot be esti-
mated without observations on how the process changes over small intervals of time.
But we can work around this problem by getting rid of the time derivatives as follows.

21Although the above discussion focuses on diffusions, the Kolmogorov equations have natural extensions for more general Markov
processes (such as processes with jumps) and the corresponding transition discrepancy can be defined (see Aït-Sahalia, 1996b).
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Under time-homogeneity, p
(
y, t|x, s

) = p
(
y, t − s|x, 0

) ≡ p
(
y|x, t − s

)
as discussed in

Section 2.1 and therefore: ∂p/∂t = −∂p/∂s. Combining the two Eqs. (6.8)–(6.9) then
yields the transition discrepancy, namely the fact that the sum of the left-hand sides of
(6.8) and (6.9) must be zero.

Restrictions (6.6) or (6.7) could in principle be used to identify a scalar diffusion
nonparametrically up to a free scale parameter on the drift and diffusion coefficients.
They are also of value in estimating and testing parameterized diffusions processes (again
up to free scale parameter). Restriction (6.6) avoids having to estimate second derivatives
of transition densities,but it is applicable only to reversible processes and requires a specific
selection of test functions.22 Restriction (6.7) gives rise to a comprehensive test in Aït-
Sahalia (1996b) formalized by choosing a weighting function to use in conjunction with
the discrepancy measure. Indeed, if we parametrize the diffusion process, then K (with μ
and σ2 replaced by their assumed parametric form μ(·, θ) and σ2(·, θ), respectively) must
be zero at the true parameter value under the null of correct parametric specification.
Given nonparametric estimates of the transition function, K = 0 provides a testable
implication. The statistically efficient choices of test functions or weighting functions
have not been formally analyzed to date.

6.5. Testing Markovianity

The specification analysis described earlier assumes that the process is Markovian. Can
this be tested?A continuous time Markov process sampled with an interval� is a discrete-
time Markov process. One common approach to test a discrete-time Markov process is
to include additional lags of the state vector into the state evolution equation and test
for their statistical significance. Following Aït-Sahalia (2002a),we consider an alternative
approach based on the Chapman–Kolmogorov equation given in Definition 2.

Under time-homogeneity, an implication of the Chapman–Kolmogorov equation is
that T2� = (T�)2 as required by the semigroup property. Stated in terms of transition
densities, the Markov hypothesis can be tested in the form H0 against H1, where

{
H0 : p

(
y|x, 2�

)− r
(
y|x, 2�

) = 0 for all (x, y) ∈ S2

H1 : p
(
y|x, 2�

)− r
(
y|x, 2�

) �= 0 for some (x, y) ∈ S2

with

r
(
y|x, 2�

) .=
∫

z∈S

p
(
y|z,�

)
p (z|x,�)dz. (6.10)

Both p
(
y|x,�

)
and p

(
y|x, 2�

)
can be estimated from data sampled at interval �.The

successive pairs of observed data (X0, X�), (X�, X2�), (X2�, X3�), etc., can be used to

22Hansen and Scheinkman (1995) derive a more general counterpart based on the generator of the reverse-time process.
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estimate the density p
(
y|x,�

)
and hence the function r given by (6.10). Meanwhile, the

successive pairs (x0, x2�), (x�, x3�), . . . , can be used to estimate directly the density
p
(
y|x, 2�

)
. In other words, the test compares a direct estimator of the 2�-interval con-

ditional density, with the indirect estimator of the 2�-interval conditional density based
on formula (6.10). If the process is actually Markovian, then the two estimates should
be close (for some distance measure) in a sense made precise by the use of the statistical
distribution of these estimators.

More generally, we could study the j� transitions where j is an integer greater than
or equal to 2. For larger j, there are more options for comparison. A test could be
based on constructing a j� period transition from shorter ones including (�, ( j − 1)�),
(2�, ( j − 2)�), . . .. It is not necessary to check all of these configurations as many will
be redundant. In general, a vector of transition equalities can be tested in a single pass in a
GMM framework with as many moment conditions as transition intervals.

6.6. Testing Symmetry

The symmetry of the transition distribution implied by our use of forms to build Markov
processes is restrictive. This restriction has motivated the construction of tests of sym-
metry and as we have seen more general formulations that allow for asymmetry. In one
important special case symmetry is not limiting: scalar diffusions on the real line. In
higher dimensions, however, symmetry is restrictive even for diffusions.When a Markov
process is stationary, the symmetry implied by the forms implies that the process is time
reversible when initialized at the stationary distribution. Reversible Markov processes
are identifiable from discrete-time data, even without parametric restrictions. There
is no aliasing problem for these processes. See Hansen and Scheinkman (1995) for a
discussion.

Florens et al. (1998) propose a test for reversibility as a necessary condition to embed
a stationary, reversible continuous-time process in a discrete time process sampled at
regular intervals. Their idea is the following. A reversible process should display positive
autocorrelation in the following sense. For any test function φ,

Eφ(Xt)φ(Xt+s) ≥ 0

for any interval s. (See theTheorem in Florens et al.,1998 on page 75.)To build a statistical
test, use a vector of such functions, which we denote by �. Form the symmetrized
autocovariance matrix:

1
2

[
E�(Xt)�(Xt+1)

′ + E�(Xt+1)�(Xt)
′] . (6.11)

While this matrix has real eigenvalues by construction, the eigenvalues should all be pos-
itive if the discretely sampled process can be embedded in a continuous-time, reversible
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Markov process. Because all linear combinations of test functions in � should show
positive persistence, eigenfunctions should also display positive persistence. Thus, eigen-
values must be positive. Florens et al. (1998) suggest building a test based on the smallest
eigenvalue of the sample analog to (6.11).

An alternative approach to testing reversibility is given by Darolles et al. (2004). It is
based on nonlinear canonical analysis of the joint density of adjacent observations, say
(Xt , Xt+1). With limitations on the temporal dependence, canonical analysis produces
principal component pairs of functions say φ(Xt) andψ(Xt+1) that maximize correlation
under orthogonality constraints.This becomes a nonlinear analysis because the functions
φ and ψ can be nonlinear in the Markov state. These principal components can be
used to construct an orthogonal decomposition of the joint density. Dauxois and Nkiet
(1998) use canonical analysis as a test of independence between two random vectors,
and Darolles et al. (2004) use it to produce a test of reversibility. Their statistical tests
are based on the restrictions that reversibility imposes on the canonical analysis. Under
reversibility, the two functions (φ,ψ) in each orthogonal pair should coincide.

6.7. Random Time Changes

As we remarked in Section 2.6.1, models with random time changes are common in
finance. There are at least two ways to motivate such models. One formulation due
to Bochner (1960) and Clark (1973) posits a distinction between calendar time and
economic time. The random time changes are used to alter the flow of information in
a random way. Alternatively an econometrician might confront a data set with random
sample times, a situation we will return to in Section 7.3.

A model of random time changes requires that we specify two objects. An underlying
Markov process {Xt : t ≥ 0} that is not subject to distortions in the time scale. For
our purposes, this process is modeled using a generator A. In addition, we introduce a
process {τt} for a continuous-time specification, or as {τj : j = 1, 2, ...} for discrete time
observations. The discrete time process of interest is:

Zj = Xτj .

In Section 2.6.1, we describe a specification due to Duffie and Glynn (2004) and
showed that the one-step ahead conditional expectation operator for the resulting {Zj :
j = 1, 2, ...} is:

(I − ζA)−1

where A is a generator,ζ distorts the time clock of the process {Xt : t ≥ 0}, and Ǎ = ζA.
As Duffie and Glynn (2004) show, we can avoid computing the operator inverse for test
functions ψ of the form:

ψ = φ − Ǎφ
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for some φ in the domain of the generator Ǎ. For this convenient but flexible choice
of ψ,

E[ψ(Zj+1)|Zj] =
(
I − Ǎ

)−1
ψ(Zj) = φ(Zj),

or

E[φ(Zj+1)− Ǎφ(Zj+1)− φ(Zj)|Zj] = 0. (6.12)

This implies an extensive array of conditional moment restrictions to be used in estimation
and testing.23

Models with random time distortions present special challenges for identification and
estimation. Without observations on the directing process or sampling times, nonpara-
metric identification of even reversible processes breaks down. If the directing process
{τj} is independent of the underlying process {Xt}, then the most we can hope for is its
identification of A up to scale. It will not be possible to distinguish an original process
from one that moves through time say twice as fast. Hansen and Scheinkman (1995)
establish that scalar diffusions can be identified up to a free constant scale parameter
without data on observation times. Identification is even more challenging when the
sampling or directing process is dependent on the underlying process. As we have seen
in examples 3 and 4, the generator of the original process is scaled by a scalar function
of the underlying Markov state in the characterization of the generator for a process
with a distorted time scale. Thus without data on the process {τj}, we are left not being
able to distinguish A from ζ∗A for some positive function ζ∗ of the Markov state. The
free scale factor is a function not a constant. Finite-dimensional parameterizations,when
appropriate, will simplify or in some cases even solve this identification problem.

Consider next the case in which {τj} is directly interpreted as a set of sample times
and not some unobserved distortion in the time scale. These sampling times provide
important identifying information about the possibly dependent sampling scheme and
about the underlying process {Xt}. Direct or indirect (through say trading volume) data
on the directing process will be useful in inferring the underlying process. We will have
more to say about this question in Section 7.3.

7. THE PROPERTIES OF PARAMETER ESTIMATORS
7.1. Maximum Likelihood Estimation

A direct consequence of the expansion approach described in Sections 5.2 and 5.3 is the
practical feasibility of maximum likelihood estimators for discretely sampled diffusions.

23This is a particular case of Duffie and Glynn (2004), who deduce a more general class of conditional moment restrictions by allowing
for test functions that depend on Zj ’s at adjacent integers.
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A fixed interval sample of a time-homogenous continuous-time Markov process is a
Markov process in discrete time. Given that the Markov state vector is observed and
the unknown parameters are identified, properties of the ML estimator follow from
what is known about ML estimation of discrete-time Markov processes.24 There is an
extensive literature applicable to discrete-time stationary Markov processes starting with
the work of Billingsley (1961). The asymptotic covariance matrix for the ML estimator
is the inverse of the score covariance or information matrix where the score at date t is
∂ ln p(Xt+�|Xt ,�, θ)/∂θ where ln p(·|x,�, θ) is the logarithm of the conditional density
over an interval of time � and a parameter value θ.

When the underlying Markov process is nonstationary, the score process inherits this
nonstationarity. The rate of convergence and the limiting distribution of the maximum
likelihood estimator depends upon growth properties of the score process (e.g., see Hall
and Heyde, 1980; Chapter 6.2). A nondegenerate limiting distribution can be obtained
when the score process behaves in a sufficiently regular fashion.The limiting distribution
can be deduced by showing that general results pertaining to time series asymptotics (see
e.g., Jeganathan, 1995) can be applied to the present context. One first establishes that
the likelihood ratio has the locally asymptotically quadratic (LAQ) structure, then within
that class separates between the locally asymptotically mixed Normal (LAMN), locally
asymptotically Normal (LAN), and locally asymptotically Brownian functional (LABF)
structures. As we have seen, when the data generating process is stationary and ergodic,
the estimation is typically in the LAN class.The LAMN class can be used to justify many
of the standard inference methods given the ability to estimate the covariance matrix
pertinent for the conditional normal approximating distribution. Rules for inference
are special for the LABF case. These structures are familiar from the linear time series
literature on unit roots and co-integration. Details for the case of a nonlinear Markov
process can be found in Aït-Sahalia (2002b).

Example 13 As an example of the types of results that can be derived, consider the Ornstein-
Uhlenbeck specification, dXt = −κXtdt + σdWt, where θ = (κ, σ2).The discrete-time process
obtained by sampling at a fixed interval � is a Gaussian first-order autoregressive process with
autoregressive parameter exp(−κ�) and innovation variance σ2

2κ

(
1− e−2κ�

)
.White (1958) and

Anderson (1959) originally characterized the limiting distribution for the discrete-time autoregressive
parameter when the Markov process is not stationary. Alternatively,by specializing the general theory
of the limiting behavior of the ML estimation to this model, one obtains the following asymptotic
distribution for the the ML estimator of the continuous-time parameterization (see Corollary 2 in
Aït-Sahalia, 2002b):

24Identification of a multivariate continuous-time Markov process from discrete-time can be problematic when the process is not reversible.
It is well known that an aliasing problem can be present. For example, see Phillips (1973) and Hansen and Sargent (1983).
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• If κ > 0 (LAN, stationary case):

√
N

((
κ̂N

σ̂2
N

)
−

(
κ

σ2

))

⇒ N

⎛⎜⎝(
0
0

)
,

⎛⎜⎝ e2κ�−1
�2

σ2(e2κ�−1−2κ�
)

κ�2

σ2(e2κ�−1−2κ�
)

κ�2

σ4
((

e2κ�−1
)2+ 2κ2�2(e2κ�+ 1

)+4κ�
(
e2κ�−1

))
κ2�2(e2κ�−1)

⎞⎟⎠
⎞⎟⎠

• If κ < 0 (LAMN, explosive case), assume X0 = 0, then:

e−(N+1)κ��

e−2κ� − 1

(
κ̂N−κ

)⇒ G−1/2 ×N (0, 1)

√
N
(
σ̂2

N − σ2)⇒ N
(
0, 2σ4)

where G has a χ2[1] distribution independent of the N (0, 1).G −1/2 ×N (0, 1) is a Cauchy
distribution.

• If κ = 0 (LABF, unit root case), assume X0 = 0, then:

N κ̂N ⇒
(
1−W 2

1

)⎛⎝2�

1∫
0

W 2
t dt

⎞⎠−1

√
N

(
σ̂2

N − σ2)⇒ N
(
0, 2σ4)

where N is the sample size, {Wt : t ≥ 0} is a standard Brownian motion, and ⇒ denotes
convergence in distribution.

7.2. Estimating the Diffusion Coefficient in the Presence of Jumps
Suppose now that jumps are in fact present, in addition to the usual Brownian noise, as in

dXt = μdt + σdWt + dUt ,

where {Ut} is a pure jump Lévy process with jump measure υ and independent of the
Brownian motion {Wt}. By restricting {Ut} to be a pure Lévy process,we eliminate state
dependence. In terms of the setup in Section 2,we let the conditional measure R(dy|x) =
υ(du) for u = y− x. When υ is a finite measure the jump process is referred to as a
compound Poisson process. Other Lévy processes allow υ([−ε,+ε]) = ∞ for any ε > 0,
so that the process exhibits an infinite number of small jumps in any finite time interval.
Typical examples are members of the class of symmetric stable processes of index 0 < α <

2 and rate ξ > 0, for which υ(dy) = αξαdy/|y|1+α.The Cauchy process corresponds to
α = 1, while the limit α→ 2 (from below) produces a Gaussian distribution. Following
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Aït-Sahalia (2003), we assess the effect of jumps on the estimation of the Brownian
variance parameter σ2.

When the Lévy measure is finite, the tiny jumps ought to be harder to distinguish
from Brownian noise. Surprisingly, using maximum likelihood, it is possible to identify
σ2 with the same degree of precision as if there were no jumps. Specifically, when the
Brownian motion is contaminated by jumps, with a known measure, the asymptotic
variance AVAR of the maximum likelihood estimator ML for the diffusion coefficient
estimator satisfies

AVARML
(
σ2) = 2σ4�+ o(�) (7.1)

so that in the limit when the sample interval shrinks to zero (�→ 0), the MLE of σ2 has
the same asymptotic distribution as if no jumps were present. This result holds not only
for the specific examples considered in Aït-Sahalia (2003) but for all Lévy processes that
stay at a finite distance from the limiting case α = 2 (see Aït-Sahalia and Jacod, 2009).

This result also states that the presence of the jumps imposes no cost on our ability
to estimate σ2. From (7.1), the leading term in the asymptotic variance expansion is
the asymptotic variance that applies when jumps are absent. In contrast, suppose we
contaminated the Brownian motion with another independent Brownian motion with
known variance ς2. In that case, we could still estimate σ2, but the asymptotic variance
of the MLE would be 2

(
σ2 + ς

)2
�.

Aït-Sahalia (2003) also studies the ability of method-of-moments to reproduce the
efficiency of ML, considering, in particular, absolute moments of order r and shows that
the optimal choice of moment functions involves noninteger values of r which are less
than one.

7.3. Maximum Likelihood Estimation with Random Sampling Times

Transaction-level data in finance are not only discretely sampled in time, they are also
sampled at random time intervals. Aït-Sahalia and Mykland (2003a) study the impact of
including or discarding observations on the sampling intervals in that situation. Sampling
intervals {�j : j = 1, 2, . . .} are random where �j = τj − τj−1 is drawn conditionally
upon Xτj−1 from a known distribution. By letting �j be drawn conditionally on Xτj−1 ,
one can capture effects such as an increase in trading activity following a large price
movement say at τj−1. This model is closely related to the models developed in Section
2.6.1 except that the models described previously allow movements in Xt , for τj−1 <

t < τj , to influence the τj .
Aït-Sahalia and Mykland (2003a) study three likelihood-based estimators of θ = (κ, σ)

in the model

dXt = μ(Xt ; κ)dt + σdWt .
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The three estimators are as follows:

• FIML: Full information maximum likelihood using the bivariate observations
(Xτj ,�j);

• IOML: Partial information maximum likelihood estimator using only the state
observations Xτj , with the sampling intervals integrated out;

• PFML: Pseudo maximum likelihood estimator pretending that the sampling intervals
are fixed at �j = �̄.

These estimators are designed so that each one of them is subject to a specific subset of
the different effects they wish to measure. FIML is asymptotically efficient, making the
best possible use of the joint data (Xτj ,�j). The extent to which FIML with these data
is less efficient than the corresponding FIML when the full sample path is observable is
the cost of discreteness. IOML is the asymptotically optimal choice if one recognizes that
the sampling intervals are random �j but does not observe them. The extra efficiency
loss relative to FIML is the cost of discreteness. PFML corresponds to doing as if the
sampling intervals were all identical (pretending that �j = �̄) when in fact they are
random. The extent by which PFML underperforms FIML is the cost of ignoring the
randomness.

All three estimators rely on maximizing a version of the likelihood function of the
observations,i.e.,some functional of the transition density p:p(Xτj |Xτj−1 ,�j , θ) for FIML;
p̃(Xτj |Xτj−1 , θ) = E�j

[
p(Xτj |Xτj−1 ,�j , θ)

]
, that is the over the law of �j|Xτj for IOML;

and p(Xτj |Xτj−1 , �̄, θ) for PFML (which is like FIML except that �̄ is used in place

of the actual �j). Under stationarity, T 1/2(θ̂ − θ̄)→ N (0,�). For FIML and IOML,
θ̄ = θ0, where θ0 = (κ0, σ0) is the true parameter value, but PFML is asymptotically
biased.

Aït-Sahalia and Mykland (2003a) deriveTaylor expansions of the asymptotic variance
and bias of these estimators. A random variable from the common distribution of the
sampling intervals is

� = ε�0, (7.2)

where ε is deterministic and �0 has a given finite distribution conditional on X0. They
computeTaylor expansions in ε of the expectations of interest,around ε = 0 (the limiting
case were the full continuous-time sample path is observable), leading to results of the
form:

� = �(0) + ε�(1) + ε2 �(2) +O
(
ε3) (7.3)

θ̄ − θ0 = ε b(1) + ε2 b(2) +O
(
ε3) (7.4)
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where the higher order terms in ε correct the leading term for the discreteness of the
sampling. Differences between estimation methods and data use the matrices �(i) and
b(i), i = 0, 1, . . ..25

These characterizations are based on a modification of the infinitesimal generator.
Consider first test functions that depend on the elapsed time interval and,as we considered
previously, on an initial state:

f (Xt , X0, t)

A well-known extension of the infinitesimal generator is:

μ(x; κ0)
∂f (x, x0, t)

∂x
+ σ2

0

2
∂2f (x, x0, t)

∂y2 + ∂f (x, x0, t)
∂t

,

which now includes a simple derivative with respect to time.
To analyze sampling under (7.2), Aït-Sahalia and Mykland (2003a) use a related

construction. Consider a test function of the form:

f (Y1, Y0,�, θ̄, ε)

where Yj
.= X�j . While it is possible to condition on the random � and Y0 in taking a

small ε approximation,� and in the case of the PFML estimator, θ̄ depend implicitly on
ε. This gives rise to a related but different extension of the infinitesimal generator:

Gf (y, y0, δ, θ, ε) = δ0

[
μ(y; κ0)

∂f (y, y0, δ, θ, ε)
∂y

+σ2
0

2
∂2f (y, y0, δ, θ, ε)

∂y2 + ∂f (y, y0, δ, θ, ε)
∂δ

]
+ ∂f (y, y0, δ, θ, ε)

∂θ

∂θ̄

∂ε
+ ∂f (y, y0, δ, θ, ε)

∂ε
.

In this depiction, δ0 is used to denote the realized value of �0 and y0 the realized value
of Y0.The scaling by δ0 is needed because of the time distortion induced by sampling. It
is reminiscent of the scaling deduced in Section 2.6.1.The additional terms are included
because of the dependence of the test function on ε directly and indirectly through θ̄.26

The corresponding Taylor approximation for the conditional expectation is:

E
[
f (Y1, Y0,�, θ̄, ε)|Y0 = y0,� = εδ0

] ≈ J∑
j=0

εj

j! G
j f (y, y0, δ, θ̄, ε)|y=y0,δ=0,θ=θ0,ε=0.

25These objects depend implicitly on the underlying parameter value, but we suppress this dependence for notational convenience.
26Aït-Sahalia and Mykland (2003a) refer to this new operator as a generalized infinitesimal generator.
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The two Eqs. (7.3)–(7.4) are used to analyze the effects of a given sampling scheme on
parameter estimation. The cost of discreteness is measured by the coefficient at the first
order i in ε for which the FIML variance differs from its continuous-time limit �(0). It
is also the error that one would make if one were to use continuous-time asymptotics
(�(0)) instead of the full � when the data are in fact discretely sampled.

The cost of ignoring sampling times is quantified by examining the first order i in ε

at which the coefficient �(i) for IOML differs from the corresponding coefficient �(i)

for FIML.The cost is measured by how much bigger the IOML coefficient at that order
is than the FIML coefficient. For this example, the cost of randomness is at least as great,
and often substantially greater than the cost of discreteness.

Because the PFML estimator is asymptotically biased,its asymptotic mean-square error
is dominated by the square of the bias. Its performance under an asymptotic mean-square
error loss function will always be worse than an estimator that is asymptotically unbiased.
Expansion (7.4) can be use to quantify the squared bias.

The main conclusion is that the loss from not observing, or not using, the sampling
intervals, will be at least as great, and often substantially greater, than the loss because
the data are discrete rather than continuous. Although correcting for the latter effect has
been the main focus of the literature in recent years, these results suggest that empirical
researchers using randomly spaced data should pay as much attention, if not more, to
sampling randomness as they do to sampling discreteness. Introducing unknown para-
meters in the sampling distribution for �j will alter the quantitative comparison, but we
know from the related results in the Section 6.7 that full identification of the diffusion
can fail without some knowledge of the sampling distribution.

Aït-Sahalia and Mykland (2003b) extend this approach by developing a theory of
approximation for a broad class of estimators of a diffusion

dXt = μ(Xt ; κ)dt + σ(Xt ; γ)dWt

where κ and γ are unknown parameters. As is the case in general (e.g. see Hansen,1982),
many estimators for the parameters of a continuous time Markov process can be viewed
as belonging to the class of generalized methods of moments estimators for (κ, γ). Aït-
Sahalia and Mykland (2003b) construct small δ expansions of for the asymptotic variances
and,when applicable, the biases of these estimators. Applications of this approach include
the study of Euler approximation and the study of the moment conditions deduced by
Hansen and Scheinkman (1995) when they are used in constructing the estimators of
diffusion parameters when data are sampled at random intervals.

8. CONCLUSIONS
Markov models are designed to be convenient models of nonlinear stochastic processes.
We show how operator methods can contribute to useful characterizations of dynamic
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evolution and approximations of a likelihood function.We described these various char-
acterizations and some of the resulting estimation strategies and tests based on their
observable implications.
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Abstract

Volatility has been one of the most active areas of research in empirical finance and time series

econometrics during the past decade. This chapter provides a unified continuous-time, frictionless,

no-arbitrage framework for systematically categorizing the various volatility concepts, measurement

procedures, and modeling procedures. We define three different volatility concepts: (i) the notional

volatility corresponding to the sample-path return variability over a fixed time interval, (ii) the expected

volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength

of the volatility process at a point in time. The parametric procedures rely on explicit functional form

assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of

models, the expectations are formulated in terms of directly observable variables, while the discrete-

and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric

procedures are generally free from such functional form assumptions and hence afford estimates of

notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns

increases). The nonparametric procedures include ARCH filters and smoothers designed to measure
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the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility

measures for (nontrivial) fixed-length time intervals.

Keywords: realized volatility; stochastic volatility; quadratic return variation; ARCH filters; GARCH

1. INTRODUCTION
Since Engle’s (1982) seminal paper on ARCH models, the econometrics literature has
focused considerable attention on time-varying volatility and the development of new
tools for volatility measurement,modeling,and forecasting.1These advances have, in large
part,been motivated by the empirical observation that financial asset return volatility is time-
varying in a persistent fashion, across assets, asset classes, time periods, and countries.2

Asset return volatility, moreover, is central to finance, whether in asset pricing, portfolio
allocation, or risk management, and standard financial econometric methods and models
take on a very different, conditional, flavor when volatility is properly recognized to be
time-varying.

The combination of powerful methodological advances and important applications
within empirical finance produced explosive growth in the financial econometrics of
volatility dynamics, with the econometrics and finance literatures cross-fertilizing each
other furiously. Initial developments were tightly parametric,but the recent literature has
moved in less parametric, and even fully nonparametric directions. Here, we review and
provide a unified framework for interpreting both the parametric and nonparametric
approaches.

In Section 2, we define three different volatility concepts: (i) the notional volatility
corresponding to the ex-post sample-path return variability over a fixed time interval,
(ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instan-
taneous volatility corresponding to the strength of the volatility process at a point
in time.

In Section 3,we survey parametric approaches to volatility modeling,which are based
on explicit functional form assumptions regarding the expected and/or instantaneous
volatility. In the discrete-time ARCH class of models, the expectations are formulated in
terms of directly observable variables,while the discrete- and continuous-time stochastic
volatility (SV) models both involve latent state variable(s).

In Section 4, we survey nonparametric approaches to volatility modeling, which
are generally free from such functional form assumptions and hence afford estimates
of notional volatility that are flexible yet consistent (as the sampling frequency of the
underlying returns increases).The nonparametric approaches include ARCH filters and

1We use the terms volatility and variation interchangeably throughout, with the exact meaning specifically defined in the relevant context.
2See, for example, Bollerslev et al. (1992).
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smoothers designed to measure the volatility over infinitesimally short horizons, as well
as the recently-popularized realized volatility measures for (nontrivial) fixed-length time
intervals.

We conclude in Section 5 by highlighting promising directions for future research.

2. VOLATILITY DEFINITIONS
Here, we introduce a unified framework for defining and classifying different notions of
return volatility in a continuous-time no-arbitrage setting. We begin by outlining the
minimal set of regularity conditions invoked on the price processes and establish the
notation used for the decomposition of returns into an expected, or mean, return and
an innovation component. The resulting characterization of the price process is central
to the development of our different volatility measures, and we rely on the concepts and
notation introduced in this section throughout the chapter.

2.1. Continuous-Time No-Arbitrage Price Processes

Measurement of return volatility requires determination of the component of a given
price increment that represents a return innovation as opposed to an expected price
movement. In a discrete-time setting, this identification may only be achieved through
a direct specification of the conditional mean return, for example through an asset pric-
ing model, as economic principles impose few binding constraints on the price process.
However,within a frictionless continuous-time framework,the no-arbitrage requirement
quite generally guarantees that, instantaneously, the return innovation is an order of mag-
nitude larger than the mean return.This result is not only critical to the characterization
of arbitrage-free continuous-time price processes but it also has important implications
for the approach one may use for measurement and modeling of volatility over short
return horizons.

We take as given a univariate risky logarithmic price process p(t) defined on a com-
plete probability space (�, F ,P). The price process evolves in continuous time over the
interval [0, T ], where T is a (finite) integer. The associated natural filtration is denoted
(Ft)tε[0,T ] ⊆ F , where the information set, Ft , contains the full history (up to time t)
of the realized values of the asset price and other relevant (possibly latent) state variables,
and is otherwise assumed to satisfy the usual conditions. It is sometimes useful to consider
the information set generated by the asset price history alone. We refer to this coarser
filtration, consisting of the initial conditions and the history of the asset prices only, by
(Ft)tε[0,T ] ⊆ F ≡ FT so that by definition, Ft ⊆ Ft . Finally, we assume there is an asset
guaranteeing an instantaneously risk-free rate of interest although we shall not refer to
this rate explicitly. Many more risky assets may, of course, be available, but we explic-
itly retain a univariate focus for notational simplicity. The extension to the multivariate
setting is conceptually straightforward as discussed in specific instances below.
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The continuously compounded return over the time interval [t − h, t] is then

r(t, h) = p(t)− p(t − h), 0 ≤ h ≤ t ≤ T . (2.1)

We also adopt the following short-hand notation for the cumulative return up to time t,
i.e., the return over the [0, t] time interval:

r(t) ≡ r(t, t) = p(t)− p(0), 0 ≤ t ≤ T . (2.2)

These definitions imply a simple relation between the period-by-period and the
cumulative returns that we use repeatedly in the sequel:

r(t, h) = r(t)− r(t − h), 0 ≤ h ≤ t ≤ T . (2.3)

A maintained assumption throughout is that – almost surely (P) (henceforth denoted
(a.s.)) – the asset price process remains strictly positive and finite so that p(t) and r(t) are
well defined over [0,T] (a.s.). It follows that r(t) has only countably (although possibly
infinitely) many jump points over [0, T ], and we adopt the convention of equating
functions that have identical left and right limits everywhere. We also assume that the
price and return processes are squared integrable.

Defining r(t−) ≡ limτ→t,τ<t r(τ) and r(t+) ≡ limτ→t,τ>t r(τ) uniquely determines
the right-continuous, left-limit (càdlàg) version of the process, for which r(t) = r(t+)
(a.s.), and the left-continuous, right-limit (càglàd) version, for which r(t) = r(t−) (a.s.),
for all t in [0, T ]. In the following, we assume without loss of generality that we are
working with the càdlàg version of the various return processes.

The jumps in the cumulative price and return process are then

�r(t) ≡ r(t)− r(t−), 0 ≤ t ≤ T . (2.4)

Obviously, at continuity points for r(t), we have �r(t) = 0. Moreover, given the at most
countably infinite number of jumps, we generically have

P(�r(t) �= 0) = 0, (2.5)

for an arbitrarily chosen t in [0, T ]. This does not imply that jumps necessarily are rare,
since as already noted,Eq. (2.5) is consistent with there being a (countably) infinite num-
ber of jumps over any discrete interval – a phenomenon referred to as an explosion. Jump
processes that do not explode are termed regular. For regular processes, the anticipated
jump frequency is conveniently characterized by the instantaneous jump intensity, i.e.,
the probability of a jump over the next instant of time, and expressed in units that reflect
the expected (and finite) number of jumps per unit time interval.
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Henceforth, we invoke the standard assumptions of no arbitrage and finite-expected
returns.Within our frictionless setting, these conditions imply that the log-price process
must constitute a (special) semimartingale (see Back, 1991; Harrison and Kreps, 1978).
This, in turn, affords the following unique canonical return decomposition (e.g., Protter,
1992).

Proposition 1 Return Decomposition
Any arbitrage-free logarithmic price process subject to the regularity conditions outlined above

may be uniquely represented as

r(t) ≡ p(t)− p(0) = μ(t)+M (t) = μ(t)+Mc(t)+MJ (t), (2.6)

whereμ(t) is a predictable and finite-variation process,M (t) is a local martingale that may be further
decomposed into Mc(t), a continuous sample path, infinite-variation local martingale component,
and MJ (t), a compensated jump martingale.We may normalize the initial conditions such that
all components may be assumed to have initial conditions normalized such that μ(0) ≡ M (0) ≡
Mc(0) ≡ MJ (0) ≡ 0, which implies that r(t) ≡ p(t).

Proposition 1 provides a unique decomposition of the instantaneous return into an
expected return component and an (martingale) innovation. Over discrete intervals, the
relation becomes slightly more complex. Letting the expected returns over [t − h, t] be
denoted by m(t, h), Eq. (2.6) implies

m(t, h) ≡ E[r(t, h)|Ft−h] = E[μ(t, h)|Ft−h], 0 < h ≤ t ≤ T , (2.7)

where

μ(t, h) ≡ μ(t)− μ(t − h), 0 < h ≤ t ≤ T , (2.8)

and the return innovation takes the form

r(t, h)− m(t, h) = (μ(t, h)− m(t, h))+M (t, h), 0 < h ≤ t ≤ T . (2.9)

The first term on the right-hand side of (2.9) signifies that the expected return pro-
cess, even though it is (locally) predictable, may evolve stochastically over the [t − h, t]
interval.3 If μ(t, h) is predetermined (measurable with respect to Ft−h), and thus
known at time t − h, then the discrete-time return innovation reduces to M (t, h) ≡

3In other words,even though the conditional mean is locally predictable, all return components in the special semimartingale decomposition
are generally stochastic: not only volatility but also the jump intensity, the jump size distribution and the conditional mean process may
evolve randomly over a finite interval.
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M (t)−M (t − h). However, any shift in the expected return process during the interval
will generally render the initial term on the right-hand side of (2.9) nonzero and thus
contribute to the return innovation over [t − h, t].

Although the discrete-time return innovation incorporates two distinct terms, the
martingale component, M (t, h), is generally the dominant contributor to the return
variation over short intervals, i.e., for h small. To discuss the intuition behind this result,
which we formalize in the following section, it is convenient to decompose the expected
return process into a purely continuous, predictable finite-variation part, μc(t), and a
purely predictable jump part,μJ (t). Because the continuous component,μc(t), is of finite
variation, it is locally an order of magnitude smaller than the corresponding contribution
from the continuous component of the innovation term, Mc(t). The reason is – loosely
speaking – that an asset earning, say a positive expected return over the risk-free rate must
have innovations that are an order of magnitude larger than the expected return over
infinitesimal intervals. Otherwise, a sustained long position (infinitely,many periods over
any interval) in the risky asset will tend to be perfectly diversified due to a law of large
numbers, as the martingale part is uncorrelated. Thus, the risk-return relation becomes
unbalanced. Only if the innovations are large, preventing the law of large numbers from
becoming operative, will this not constitute a violation of the no-arbitrage condition
(see Maheswaran and Sims, 1993, for further discussion related to the implications of
the classical Harrison and Kreps, 1978, equivalent martingale assumption).The presence
of a nontrivial MJ (t) component may similarly serve to eliminate arbitrage and retain a
balanced risk-return trade-off relationship.

Analogous considerations apply to the jump component for the expected return pro-
cess,μJ (t), if this factor is present.There cannot be a predictable jump in the mean – i.e.,
a perfectly anticipated jump in terms of both time and size – unless it is accompanied
by large jump innovation risk as well so that Pr(�M (t) �= 0) > 0. Again, intuitively,
if there was a known, say, positive jump, then this induces arbitrage (by going long the
asset) unless there is offsetting (jump) innovation risk.4 Most of the continuous-time asset
pricing literature ignores predictable jumps, even if they are logically consistent with the
framework. One reason may be that their existence is fragile in the following sense.
A fully anticipated jump must be associated with release of new (price relevant) infor-
mation at a given point in time. However, if there is any uncertainty about the timing
of the announcement so that it is only known to occur within a given minute, or even a
few seconds, then the timing of the jump is more aptly modeled by a continuous hazard

4This point is perhaps most readily understood by analogy to a discrete-time setting.When there is a predictable jump at time t, the instant
from t− to t is effectively equivalent to a trading period, say from t − 1 to t, within a discrete-time model. In that setting, no asset can
earn a positive (or negative) excess return relative to the risk-free rate over (t − 1, t] without bearing genuine risk as this would otherwise
imply a trivial arbitrage opportunity. The argument ruling out a predictable price jump without an associated positive probability of a
jump innovation is entirely analogous.
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function where the jump probability at each point in time is zero, and the predictable
jump event is thus eliminated. In addition,even if there were predictable jumps associated
with scheduled news releases, the size of the predictable component of the jump is likely
much smaller than the size of the associated jump innovation so that the descriptive
power lost by ignoring the possibility of predictable jumps is minimal. Thus, rather
than modifying the standard setup to allow for the presence of predictable (but empir-
ically negligible) jumps, we follow the tradition in the literature and assume away such
jumps.

Although we will not discuss specific model classes at length until later sections, it is
useful to briefly consider a simple example to illustrate the somewhat abstract definitions
given in the current section.

Example 1 StochasticVolatility Jump Diffusion with Nonzero Mean Jumps
Consider the following continuous-time jump diffusion expressed in stochastic differential

equation (SDE) form,

dp(t) = (μ+ βσ2(t))dt + σ(t)dW (t)+ κ(t)dq(t), 0 ≤ t ≤ T ,

where σ(t) is a strictly positive continuous sample path process (a.s.), W (t) denotes a standard
Brownian motion, q(t) is a counting process with dq(t) = 1 corresponding to a jump at time t,
and dq(t) = 0 otherwise, while the κ(t) process gives the sizes of the jumps and is only defined
for jump times t for which dq(t) = 1.We assume that the jump size distribution has a constant
mean of μκ and variance of σ2

κ . Finally, the jump intensity is assumed constant (and finite) at a
rate λ per unit time. In the notation of Proposition 1, we then have the return components,

μ(t) = μc(t) = μ · t + β

t∫
0

σ2(s)ds + λ · μκ · t,

Mc(t) =
t∫

0

σ(s)dW (s),

MJ (t) = #0≤s≤t κ(s)dq(s)− λ · μκ · t,

where by definition, the last summation consists of all the jumps that occurred over the [0, T ] time
interval. Notice that the last term of the mean representation captures the expected contribution
coming from the jumps, while the corresponding term is subtracted from the jump innovation process
to provide a unique (compensated) jump martingale representation for MJ .

A final comment is in order. We purposely express the price changes and associated
returns in Proposition 1 over a discrete time interval. The concept of an instantaneous
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return used in the formulation of continuous-time models, as in Example 1 given above,
is mere short-hand notation that is formally defined only through the corresponding
integral representation, such as Eq. (2.6). Although this is a technical point, it has an
important empirical analogy: real-time price data are not available at every instant, and
due to pertinent microstructure features, prices are invariably constrained to lie on a
discrete grid, both in the price and time dimension. Hence, there is no real-world coun-
terpart to the notion of a continuous sample path martingale with infinite variation
over arbitrarily small time intervals (say, less than a second). It is only feasible to measure
return (and volatility) realizations over discrete time intervals. Moreover, sensible mea-
sures can typically only be constructed over much longer horizons than given by the
minimal interval length for which consecutive trade prices or quotes are recorded. We
return to this point later. For now, we simply note that our main conceptualization of
volatility in the next section conforms directly with the focus on realizations measured
over nontrivial discrete time intervals rather than vanishing, or instantaneous interval
lengths.

2.2. Notional, Expected, and Instantaneous Volatility

This section introduces three different volatility concepts, each of which serves to for-
malize the process of measuring and modeling the strength of the return variation within
our frictionless arbitrage-free setting. Two distinct features importantly differentiate the
construction of the different measures. First,given a set of actual return observations,how
is the realized volatility computed? Here, the emphasis is explicitly on ex-post measure-
ment of the volatility. Second, decision making often requires forecasts of future return
volatility. The focus is then on ex-ante expected volatility. The latter concept naturally
calls for a model that may be used to map the current information set into a volatility
forecast. In contrast, the (ex-post) realized volatility may be computed (or approximated)
without reference to any specific model,thus rendering the task of volatility measurement
essentially a nonparametric procedure.

It is natural first to concentrate on the behavior of the martingale component in
the return decomposition (2.6). However, a prerequisite for observing the M (t) process
is that we have access to a continuous record of price data. Such data are simply not
available, and even for extremely liquid markets, microstructure effects (discrete price
grids, bid-ask bounce effects, etc.) prevent us from ever getting really close to a true
continuous sample-path realization. Consequently, we focus on measures that represent
the (average) volatility over a discrete time interval rather than the instantaneous (point-
in-time) volatility.5 This, in turn, suggests a natural and general notion of volatility based

5Of course, by choosing the interval very small, one may, in principle, approximate the notion of point-in-time volatility, as discussed
further below.
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on the quadratic variation process for the local martingale component in the unique
semimartingale return decomposition.

Specifically, let X(t) denote any (special) semimartingale.The unique quadratic variation
process, [X , X ]t , tε[0, T ], associated with X(t) is formally defined as

[X , X ]t ≡ X(t)2 − 2

t∫
0

X(s−)dX(s), 0 < t ≤ T , (2.10)

where the stochastic integral of the adapted càglàd process, X(s−), with respect to the
càdlàg semimartingale, X(s), is well-defined (e.g., Protter, 1992). It follows directly that
the quadratic variation, [X , X ], is an increasing stochastic process. Also, jumps in the
sample path of the quadratic variation process necessarily occur concurrent with the
jumps in the underlying semimartingale process,�[X , X ] = (�X)2.

Importantly, if M is a locally square integrable martingale, then the associated (M 2 −
[M , M ]) process is a local martingale,

E[M (t, h)2 − ([M , M ]t − [M , M ]t−h)|Ft−h] = 0, 0 < h ≤ t ≤ T . (2.11)

This relation, along with the following well-known result, provides the key to the
interpretation of the quadratic variation process as one of our volatility measures.

Proposition 2 Theory of QuadraticVariation6

Let a sequence of partitions of [0, T ], (τm), be given by 0 = τm,0 ≤ τm,1 ≤ τm,2 ≤ · · · ≤
τm,m = T such that supj≥0(τm,j+1 − τm,j)→ 0 for m →∞.Then, for tε[0, T ],

lim
m→∞

{
#j≥1(X(t ∧ τm,j)− X(t ∧ τm,j−1))

2}→ [X , X ]t ,

where t ∧ τ ≡ min(t, τ), and the convergence is uniform in probability.

Intuitively, the proposition says that the quadratic variation process represents the
(cumulative) realized sample-path variability of X(t) over the [0, t] time interval. This
observation, together with the martingale property of the quadratic variation process in
(2.11), immediately points to the following theoretical notion of return variability.

Definition 1 NotionalVolatility
The NotionalVolatility over [t − h, t], 0 < h ≤ t ≤ T, is

υ2(t, h) ≡ [M , M ]t − [M , M ]t−h = [Mc , Mc ]t − [Mc , Mc ]t−h +#t−h<s≤t�M 2(s). (2.12)

6The theory of quadratic variation generalizes to situations in which the“stopping times”or partitions of [0, T ] are random and independent
of X(t), and satisfy, with probability one for m →∞, τm,0 → 0 supj≥1τm,j → T , and supj≥0(τm,j+1 − τm,j )→ 0.; see, e.g., Chung and
Williams (1983).
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This same volatility was first highlighted in a series of papers by Andersen et al.
(2001b, 2003a) and Barndorff-Nielsen and Shephard (2002a,b). The latter authors term
the corresponding concept actual volatility.

Under the maintained assumption of no predictable jumps in the return process and
noting that the quadratic variation of any finite-variation process, such as μc(t), is zero,
we also have

υ2(t, h) ≡ [r , r]t − [r , r]t−h = [Mc , Mc ]t − [Mc , Mc ]t−h +#t−h<s≤t�r2(s). (2.13)

Consequently, the notional volatility equals (the increment to) the quadratic variation
for the return series. Equation (2.13) and Proposition 2 also suggest that (ex-post) it is
possible to approximate the notional volatility arbitrarily well through the accumulation
of ever finely sampled high-frequency squared return, and that this approach remains
consistent independent of the expected return process. We shall return to a much more
detailed analysis of this idea in our discussion of nonparametric ex-post volatility measures
in Section 4.

Similarly,from (2.13) and Proposition 2,it is evident that the notional volatility,υ2(t, h),
directly captures the sample path variability of the log-price process over the [t − h, t]
time interval. In particular, the notional volatility explicitly incorporates the effect of
(realized) jumps in the price process: jumps contribute to the realized return variability
and forecasts of volatility must account for the potential occurrence of such jumps. It
also follows, from the properties of the quadratic variation process, that

E[υ2(t, h)|Ft−h] = E[M (t, h)2|Ft−h] = E[M 2(t)|Ft−h] −M 2(t − h), 0 < h ≤ t ≤ T .
(2.14)

Hence, the expected notional volatility represents the expected future (cumulative) squared
return innovation. As argued in Section 2.1, this component is typically the dominant
determinant of the expected return volatility.

For illustration, consider again the example introduced in Section 2.1. More com-
plicated specifications and issues related to longer horizon returns are considered in
Section 3.

Example 2 StochasticVolatility Jump Diffusion with Nonzero Mean Jumps (Revisited)
The log-price process evolves according to

dp(t) = (μ+ βσ2(t))dt + σ(t)dW (t)+ κ(t)dq(t), 0 ≤ t ≤ T .

The notional volatility is then

υ2(t, h) =
t∫

t−h

σ2(s)ds +#t−h<s≤t κ
2(s),
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where again the last sum is to be interpreted as consisting of all the nonzero squared jumps that
occurred over the [t − h, t] time interval. The expected notional volatility involves taking the
conditional expectation of this expression.Without an explicit model for the volatility process, this
cannot be given in closed form. However, for small h, the (expected) notional volatility is typically
very close to the value attained if volatility is constant. In particular, to a first-order approximation,

E[υ2(t, h)|Ft−h] ≈ σ2(t − h) · h + λ · h · (μ2
κ + σ2

κ) = [σ2(t − h)+ λ(μ2
κ + σ2

κ)] · h,

while

m(t, h) ≈ [μ+ β · σ2(t − h)+ λ · μκ] · h.

Thus, the expected notional volatility is of order h, the expected return is of order h (and the variation
of the mean return of order h2), whereas the martingale (return innovation) is of the order h1/2,
and hence an order of magnitude larger for small h.

It is obvious that, when volatility is stochastic, the ex-post (realized) notional volatil-
ity will not correspond to the ex-ante expected volatility. More importantly, Eq. (2.14)
implies that even the ex-ante expected notional volatility generally is not identical to
the usual notion of return volatility as an ex-ante characterization of future return vari-
ability over a discrete holding period. The fact that the latter quantity is highly relevant
for financial decision making motivates the standard discrete-time expected volatility
concept as defined below.

Definition 2 ExpectedVolatility
The expected volatility over [t − h, t], 0 < h ≤ t ≤ T, is defined by

ζ2(t, h) ≡ E[{r(t, h)− E(μ(t, h)|Ft−h)}2|Ft−h]

= E[{r(t, h)− m(t, h)}2|Ft−h].
(2.15)

If the μ(t, h) process is not measurable with respect to Ft−h, the expected volatility
will typically differ from the expected notional volatility in Eq. (2.14).7 Specifically,
the future return variability in Eq. (2.15) reflects both genuine return innovations, as
in Eq. (2.14), and intraperiod innovations to the conditional mean process. Trivially,
of course, for models with an assumed constant mean return, or for one-period-ahead
discrete-time volatility forecasts with given conditional mean representation, the two
concepts coincide.

7Note that (t, h) refers to the [t − h, t] time interval. So that while the notional volatility, υ2(t, h), is only measurable with respect to Ft ,
the expected volatility, ζ2(t, h), is by definition Ft−h-measurable.
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Of course, for a continuous-time model, any volatility forecast over a discrete time
interval invariably entails multiperiod considerations (typically a continuum). In par-
ticular, following Andersen et al. (2001b), the expected volatility may generally be
expressed as

ζ2(t, h) = E[(r(t, h)− m(t, h))2|Ft−h]
= E[υ2(t, h)|Ft−h] + Var[μ(t, h)|Ft−h] + 2 · Cov[M (t, h),μ(t, h)|Ft−h].

(2.16)

The expected volatility therefore involves the expected notional volatility (quadratic
variation) as well as two terms induced by future within-forecast-period variation in the
conditional mean. The random variation in the mean component is a direct source of
future return variation, and any covariation between the return and conditional mean
innovations will further impact the return variability. However,under standard conditions
and moderate forecast horizons,the dominant factor is indisputably the expected notional
volatility,as the innovations to the mean return process generally will be very small relative
to the cumulative return innovations. Importantly, this does not rule out asymmetric
effects from current return innovations to future return volatility, as in the so-called
leverage and volatility feedback effects discussed further below, which work exclusively
or primarily through the notional volatility process.

Continuous-time models often portray the volatility process as perpetually evolving.
From this perspective, the focus on volatility measurement over a fixed interval length,
h, is ultimately arbitrary. A more natural theoretical concept is provided by the expected
instantaneous volatility,measured as the current strength of the volatility process expressed
per unit of time,

lim
h→0

ζ2(t + h, h)/h = lim
h→0
[E{([M , M ]t+h − [M , M ]t)/h}|Ft]. (2.17)

This is especially true when the underlying logarithmic price path is continuous, i.e.,
MJ (t) ≡ 0, in which case the (scaled) notional and expected instantaneous volatilities
coincide,

lim
h→0

ζ2(t + h, h)/h = lim
h→0
[E{([Mc , Mc ]t+h − [Mc , Mc ]t)/h}|Ft]

= lim
h→0
{([Mc , Mc ]t+h − [Mc , Mc ]t)/h} = lim

h→0
υ2(t + h, h)/h.

(2.18)

Inspired by these relations, we adopt the following definition of instantaneous
volatility.8

8The definition adapted here implies that σ2
t is a càdlàg process. An alternative càglàd definition is sometimes used in the literature.
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Definition 3 InstantaneousVolatility
The instantaneous volatility at time t, 0 ≤ t ≤ T, is

σ2
t ≡ lim

h→0
[E{([Mc , Mc ]t+h − [Mc , Mc ]t)/h}|Ft]. (2.19)

This definition is consistent with the terminology commonly used in the literature on
continuous-time parametric SV models.9 Barndorff-Nielsen and Shephard (2002a,b), in
a slightly different setting, refer to the corresponding concept as SpotVolatility.

The continuous-time models in the theoretical asset and derivatives pricing literature
frequently assume that the sample paths are continuous,with the corresponding diffusion
processes given in the form of SDEs (as in the Example 2 given above),rather than through
(abstract) integral representations for continuous sample path semimartingales along the
lines of Proposition 1. This does not involve any loss of generality, as illustrated by the
following well-known result (e.g., Karatzas and Shreve, 1991; Protter, 1992).

Proposition 3 Martingale RepresentationTheorem
For any univariate, square-integrable, continuous sample path, logarithmic price process, which is

not locally riskless, there exists a representation such that for all 0 ≤ t ≤ T , a.s.(P),

r(t, h) = μ(t, h)+M (t, h) =
t∫

t−h

μ(s)ds +
t∫

t−h

σ(s)dW (s), (2.20)

where μ(s) is an integrable, predictable, and finite-variation stochastic process, σ(s) is a strictly
positive càdlàg stochastic process satisfying

P

⎡⎣ t∫
t−h

σ2(s)ds <∞
⎤⎦ = 1,

and W (s) is a standard Brownian motion.

The integral representation in (2.20) is equivalent to the standard (short-hand) sde
specification for the logarithmic price process,

dp(t) = μ(t)dt + σ(t)dW (t), 0 ≤ t ≤ T . (2.21)

Hence, within the class of continuous sample path semimartingale (diffusion) models,
there are no consequential restrictions involved in stating the model directly through a
SDE. In accordance with Definition 3, the volatility coefficient process in this formula-
tion,

{
σ2

t
}

tε[0,T ], is usually termed the instantaneous volatility, and we have the following

9A definition of instantaneous volatility similar to Eq. (2.17) is suggested by Comte and Renault (1998) in their discussion of alternative
inference procedures for a continuous-time long-memory volatility model.
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direct link between these alternative volatility representations,

σ2
t = lim

h→0
σ2(t + h) = lim

h→0

⎛⎝ t+h∫
t

σ2(s)ds/h

⎞⎠. (2.22)

It is also immediately evident that in this situation,the notional volatility (or the increment
to the quadratic variation process) equals the so-called IntegratedVolatility,

υ2(t, h) = [M , M ]t − [M , M ]t−h =
t∫

t−h

σ2(s)ds. (2.23)

The integrated volatility plays a key role in the SV option pricing literature. Hull
and White (1987) document that option prices follow Black–Scholes with the sim-
ple modification that the constant volatility is replaced by the expected quadratic return
variation over the time to expiry for pure diffusive models without asymmetries between
return and volatility innovations.10 For further discussion of derivatives pricing mod-
els and related empirical procedures, see, e.g., Bates (1996b), Garcia et al. (2001), and
Garcia et al. (2010).

To further appreciate the different volatility concepts, it is instructive to consider an
illustrative example.

Illustration 1 Continuous-Time GARCH Model
The three panels in Fig. 2.1 show the time series of artificially simulated logarithmic prices,

p(t), one-period returns, r(t, 1), and corresponding instantaneous volatilities, σ(t), for t =
1, 2, . . . , 2,500.11 Comparing the middle and bottom panel, it is evident that the instantaneous
volatility from the model directly dictates the strength of the observed return variation.However, even
though the instantaneous volatility is a natural theoretical concept,and we refer to it frequently below,
practical volatility measurement invariably takes place over discrete time intervals.The notational
h-period volatility was introduced with exactly this consideration in mind. Of course, the difference
between the notional and instantaneous volatility will depend upon the persistency of the underlying
process and the value of h. In particular, the two volatility concepts formally coincide in the limit

10More generally, the concept of model-free implied volatility, constructed from the cross-section of out-of-the-money options over
different strikes but at the identical maturity, see, e.g., Britten–Jones and Neuberger (2000) and Carr and Madan (1998), allows for
extraction of a nonparametric measure of the expected notional volatility under the risk-neutral (pricing or martingale) measure. We
discuss these developments briefly later on.

11The data are generated by the continuous-time GARCH model defined in Eq. (4.4) below, dp(t) = σ(t)dW (t) and dσ2(t) = (ω −
θσ2(t))dt + (2α)1/2σ2(t)dV (t), where θ = 0.01005,ω = 0.01005, and α = 0.01095, corresponding to a one-period discrete-time
weak-form GARCH(1,1) model with α1 = 0.09, β1 = 0.9, and unconditional variance equal to unity (see Andersen and Bollerslev,
1998a, for further details).
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Figure 2.1 The first three panels in the figure plot simulated logarithmic prices, p(t), one-period
returns, r(t, 1), and instantaneous volatilities, σt = σ(t), for t = 1, 2, . . . , 2500. The fourth and fifth
panel depict the corresponding scaled h-period notional volatilities, υ(t, h)

√
h, and scaled expected

volatilities, ζ(t, h)
√

h, for h = 22. The prices and volatilities are generated by a continuous-time GARCH
model defined by dp(t) = σ(t)dW (t) and dσ2(t) = (ω − θσ2(t))dt + (2α)1/2σ2(t)dV (t). The parame-
ters in the continuous-timemodel are calibrated tomatch a one-period weak-form GARCH(1,1) model
with α1 = 0.09,β1 = 0.9 and unconditional variance equal to unity; see the discussion in Sections 3.1.1
and 4.1, along with Andersen and Bollerslev (1998a), for further details.
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for h → 0, but for large values of h, the two measures are clearly different, and in the limit for
h →∞, the per period notional volatility, υ2(t, h)/h, will generally be constant (provided that it
exist).To illustrate, the fourth panel in the figure plots the scaled notional volatility,υ(t, h)

√
h, from

the same model corresponding to a “month,” or h = 22.This series is obviously much smoother
than the instantaneous volatility. Finally, the fifth panel in the figure shows the “monthly” expected
volatility,12 where for comparison purposes with the other plots, we have scaled by the forecast hori-
zon, i.e., ζ(t, 22)/

√
22. Because μ(t, h) is constant (and equal to zero), the expected volatility

equals the expected notional volatility, which explains the apparent similarities in the two shapes.
Also, since the underlying volatility process is quite persistent, the (scaled) expected volatility appears
fairly similar to the previously depicted instantaneous volatility, even for h = 22. Nonetheless, the
three volatility measures shown in the figure obviously differ and speak importantly to different
aspects of the underlying data-generating process.

In the next section,we further stress the general relationship between the various volatil-
ity concepts for alternative parametric volatility models and nonparametric volatility
measurements. Specific characterization of the volatility estimates and measurements are
postponed to the following sections, where we present a more detailed study for each
major class of models.

2.3. Volatility Modeling andMeasurement

The approaches for empirically quantifying volatility naturally falls into two separate
categories,namely procedures based on estimation of parametric models and more direct
nonparametric measurements. Within the parametric volatility classification, alternative
models exploit different assumptions regarding the expected volatility, ζ2(t, h), through
distinct functional forms and the nature of the variables in the information set,Ft−h. In
contrast, the data-driven or nonparametric volatility measurements typically quantify the
notional volatility, υ2(t, h), directly. Both set of procedures differ importantly in terms
of the choice of time interval for which the volatility measure applies, e.g., a discrete
interval, h > 0, or a point-in-time (instantaneous) measure, obtained as the limiting case
for h → 0.

Within the discrete-time parametric models, the most significant distinction concerns
the character of the variables in the information set,Ft−h,which in turn governs the type
of estimation and inference techniques that are required for their practical implemen-
tation. In the ARCH class of models, the expected volatility, ζ2(t, h), is parameterized
as a function of past returns only, or Ft−h, although other observable variables could
easily be included in Ft−h. In contrast, the parameterized expectations in the SV class of

12The expected volatility in the continuous-time GARCH model is formally given by ζ2(t, h) = h(ω/θ)+ θ−1[σ2(t)− (ω/θ)]
[1− exp(−hθ)].
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models explicitly rely on latent state variables. As we move to continuous-time paramet-
ric representations of either model, the assumption that all past returns are observable
implies that the distinction between the two classes of models effectively vanishes, as
the latent volatility state variables may be extracted without error from the frictionless,
continuous-time price record.The following definition formalizes these categorizations.

Definition 4 ParametricVolatility Models
Discrete-time parametric volatility models explicitly parameterize the expected volatility,
ζ2(t, h), h > 0, as a nontrivial function of the time t − h information set, Ft−h. In the ARCH
class of models, Ft−h depends on past returns and other directly observable variables only. In the
SV class of models, Ft−h explicitly incorporates past returns as well as latent state variables.
Continuous-time volatility models provide an explicit parameterization of the instantaneous
volatility,σ2

t ,as a (nontrivial) function of the Ft information set,with additional volatility dynamics
possibly introduced through time variation in the process governing jumps in the price path.

In addition to these three separate model classes,so-called implied volatility approaches
also figure prominently in the literature. The implied volatilities are typically based on
a parametric model for the returns, as defined above, along with an asset pricing model
and an augmented information set consisting of options prices and/or term structure
variables. Intuitively, if the number of available derivatives prices at time t − h pertaining
to the price of the asset at time t included in the augmented information set, Ft−h,
exceeds the number of latent state variables in the parametric model for the returns,
it is possible to back out a value for ζ2(t, h) by inverting the theoretical asset pricing
model; see, e.g., Bates (1996b), Renault (1997), and Chapters 9 and 12 in this volume
for a discussion of the extensive literature on options implied volatilities and related
procedures.13,14

In contrast to the parametric procedures categorized above, the nonparametric volatil-
ity measurements are generally void of any specific functional form assumptions about
the stochastic process(es) governing the local martingale, M (t), as well as the predictable

13Most prominent among these procedures are, of course, the Black–Scholes option implied volatilities based on the assumption of an
underlying continuous-time random walk model first analyzed empirically by Latané and Rendleman (1976). More detailed empirical
analyses of Black–Scholes-implied volatilities along with generalizations to allow for more realistic price dynamics have been the subject
of an enormous literature, an incomplete list of which includes Bakshi et al. (1997), Canina and Figlewski (1993), Chernov and Ghysels
(2000), Christensen and Prabhala (1998), Day and Lewis (1992), Duan (1995), Dumas et al. (1998), Fleming (1998), Heston (1993),
Heston and Nandi (2000), Hull and White (1987), and Wiggins (1992). The so-called model-free implied volatilities computed from
option prices without the use of a particular pricing model have recently been proposed by Britten-Jones and Neuberger (2002), Carr
and Madan (1998), and Demeterfi et al. (1999), and analyzed empirically by Bollerslev and Zhou (2006), Bollerslev et al. (2005), Carr
and Wu (2006, 2009), Garcia et al. (2001), and Jiang and Tian (2005).

14The 30-dayVIX-implied volatility index of the Chicago Board Options Exchange (CBOE), for which there is an active futures market,
are based on S&P500 index options along with the model-free-implied volatility formula of Britten–Jones and Neuberger (2002); see
Carr and Wu (2009) for further discussion. A similar construct underlies the VXN index for the NASDAQ-100 and the new VDAX
for the DAX index on the Deutsche Termin Börse (DTB). Earlier versions of these indexes were based on weighted averages of
Black–Scholes-implied volatilities; see Fleming et al. (1995) and Whaley (1993) for further discussion of these historically first volatility
indexes.
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and finite-variation process,μ(t), in the unique return decomposition.These procedures
also differ importantly from the parametric models in their focus on providing mea-
sures of the notional volatility, υ2(t, h), rather than the expected volatility, ζ2(t, h). In
addition, the nonparametric procedures generally restrict the measurements to be func-
tions of the coarser filtration, Ft , generated by the return on the asset only. In parallel
to the parametric measures, the nonparametric procedures may be further differentiated
depending upon whether they let h → 0 and thus provide measures of instantaneous
volatility, or whether they explicitly operate with a strictly positive h > 0 resulting in
realized volatility measures over a discrete nontrivial time interval.

Definition 5 NonparametricVolatility Measurement
Nonparametric volatility measurement utilizes the ex-post returns, or Fτ , in extracting

measures of the notional volatility. ARCH filters and smoothers are designed to measure the
instantaneous volatility,σ2

t .The filters only use information up to time τ = t, while the smoothers
are based on τ > t.Realized volatility measures directly quantify the notional volatility,υ2(t, h),
over (nontrivial) fixed-length time intervals, h > 0.

Within the class of instantaneous volatility measures, the ARCH filters first formally
developed by Nelson (1992) (see also the collection of papers in Rossi, 1996) rely exclu-
sively on the past return record, typically through a weighted rolling regression, while
the smoothers, or two-sided filters, from Nelson (1996b) exploit (ex-post) future prices.
Realized volatility approaches may similarly be categorized according to whether the
measurement of υ2(t, h) exploits only price observations within the interval [t − h, t]
itself or filtering/smoothing techniques are used to also incorporate return observations
outside of [t − h, t].An important advantage of exploiting only interval-specific informa-
tion is it produces asymptotically unbiased measures, and therefore approximately serially
uncorrelated measurement errors, under quite general conditions. A potential drawback
is that useful information from adjacent intervals is ignored. Consistency of both ARCH
filters and smoothers and realized volatility procedures generally require the length of
the underlying sampling interval for the returns within [t − h, t] approaches zero (even
for the ARCH filters and smoothers where h itself is shrinking).We next turn to a more
detailed discussion of these different procedures for modeling and measuring volatility
within the context of the general setup in Section 2.1.

3. PARAMETRICMETHODS
Parametric volatility models and their implementation constitute one of the cornerstones
of modern empirical asset pricing, and a large econometrics and statistics literature has
been devoted to the development and theoretical foundation of differently parameter-
ized volatility models. A thorough review of this literature is beyond the scope of this
chapter; see, e.g., the existing surveys by Andersen et al. (2006a), Bollerslev et al. (1992),
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Bollerslev et al. (1994), Ghysels et al. (1996), and Shephard (1996). Instead, we shall
merely highlight the most important ideas as they relate specifically to the volatility
measurement for the different model classes.

3.1. Continuous-TimeModels

Much of the theoretical asset pricing literature is cast in continuous time. Within this
tradition,the sample path of the price process is also commonly assumed to be continuous.
This approach is convenient because the representation in Proposition 1 then ensures
that, locally, the mean and variance are of the same order. Consequently, the framework
effectively involves a dynamic mean–variance trade-off, which typically allows for a
tractable analysis of asset pricing and portfolio choice problems. On the other hand, we
usually do not observe a record of continuously evolving asset prices, and all but the very
simplest specifications tend to imply intractable conditional return distributions for the
corresponding discretely observed returns.This issue has historically inhibited empirical
work on estimation and inference for realistic continuous-time asset price processes,
although a burst of research activity in this area over the last few years has allowed
important headway to be made. As a result, the parametric approach to continuous-time
modeling is beginning to have a practical impact on return volatility modeling. We will
not discuss estimation and inference techniques for this class of model in any detail,
however, but rather outline the conceptual issues that distinguish this approach from
the discrete-time modeling approach discussed above and the nonparametric volatility
measurement discussed subsequently. Other chapters in this handbook offer extensive
coverage of parametric and semi(non)parametric estimation techniques for diffusion
processes (e.g., Aït-Sahalia et al., 2010; Bandi and Phillips, 2010; Bibby et al., 2010;
Gallant and Tauchen, 2010; Jacod, 2010; Johannes and Polson, 2010)

The continuous-time parametric models are directly compatible with the no-arbitrage
framework outlined in Section 2, so the specific volatility concepts carry over without
modification. However, the specifications of the models traditionally adapted in the
literature differ from the general semimartingale representation, and instead rely (implic-
itly) on Proposition 3 in expressing the models (in short-hand format) as SDEs driven by
underlying Brownian motions and, in the case of discontinuities,Poisson jump processes.

3.1.1. Continuous Sample Path Diffusions

The number of alternative continuous-time specifications for asset returns used in the
literature is much too large for a comprehensive review to be included here. For illus-
trative purposes, we simply consider the relevant volatility concepts implied by a few
standard formulations.

The simplest possible case is provided by the time-invariant diffusion,

dp(t) = μdt + σdW (t), 0 ≤ t ≤ T , (3.1)
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which underlies the Black–Scholes option pricing formula. Obviously, this process has a
deterministic mean return so the expected return volatility trivially equals the expected
notional volatility. Moreover,because the volatility is also constant, the expected notional
volatility is identical to the notional volatility. Formally, we thus have for the Black–
Scholes setting,

ζ2(t, h) = E[(r(t, h)− m(t, h))2|Ft−h] = υ2(t, h) =
t∫

t−h

σ2(s)ds = σ2 · h.

As discussed further in Section 4.1 below, this model is also straightforward to estimate
from discretely sampled data by, e.g., maximum likelihood, as the returns are i.i.d. and
normally distributed. Of course, the model is overwhelmingly rejected for moderately
frequently sampled data (say, daily, weekly, or monthly), as it fails to accommodate the
well-documented strong intertemporal volatility dependencies.

For some price series (notably real commodity prices and exchange rates), it is often
sensible to postulate a stationary logarithmic price process. Popular models for such
series – inspired by the interest rate literature – include the Ornstein–Uhlenbeck (OU)
processes and the square-root, or Cox, Ingersoll and Ross (1985) (CIR), processes.These
models take the general form

dp(t) = φ(μ− p(t))dt + σ(t)dW (t), 0 ≤ t ≤ T . (3.2)

The drift specification ensures mean reversion in the process,given appropriate regularity
conditions and a well-behaved diffusion (volatility) coefficient process. Letting σ(s) ≡ σ

results in the standard OU model, while having σ(s) ≡ σpγ(s) produces a constant elas-
ticity of variance (CEV) model, with the CIR model as a special case for γ = 1/2. The
CEV class of models was first proposed in the asset pricing literature by Cox and Ross
(1976), and further popularized for interest rates by Chan et al. (1992). The attraction
of the specific OU and CIR formulations stems primarily from the tractable distribu-
tions for discretely observed data, and from the accompanying closed-form solutions for
many related asset and derivatives pricing problems. Explicit solutions for the expected
volatility and the expected notional volatility may be derived from existing results in the
literature. One immediate observation is that these two volatility concepts now differ as
the return innovations will impact the mean process randomly over the forecast horizon.
Nonetheless, the expected notional volatility will remain the dominant component in
empirically realistic situations.

Example 3 Ornstein–Uhlenbeck (OU) Processes
To illustrate, consider the simple OU process,

dp(t) = −φp(t)dt + σdW (t), (3.3)
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where for simplicity, we fix μ ≡ 0. Also, for simplicity and without loss of generality, consider
the return r(h, h) ≡ r(h) over the [0, h] time interval, or t − h = 0.The associated martingale
component, M (h) = σ

∫ h
0 dW (s) = σ ·W (h), then implies that the notional volatility equals

υ2(h, h) = σ2 · h. Furthermore, the explicit solution to the OU SDE takes the form

r(h) = p(0)(exp(−φh)− 1)+ σ

h∫
0

exp(−φ(h − s))dW (s)

= {p(0)(exp(−φh)− 1)+ σ

h∫
0

[exp(−φ(h − s))− 1]dW (s)} + σ

h∫
0

dW (s) (3.4)

= μ(h)+M (h).

Notice, the predictable component, corresponding to the first parenthesis in the second equation,
only depends on the martingale innovation process through a weighted average of past realizations,
as the current realization of W (h) receives zero weight from [exp(−φ(h − s))− 1] at time
s = h. Moreover, by (conditional) normality of the OU process, the expected volatility, ζ2(h, h) =
E[(r(h)− m(h))2|F0], may be expressed as

ζ2(h, h) = [(1− exp(−2φh))/(2φ)]σ2 ≈ σ2 · h − φh2σ2 + (2/3) · σ2φ2h3

= E[υ2(h, h)|F0] − φh2σ2 + (2/3) · σ2φ2h3.

Since φ > 0, the expected volatility is thus locally smaller than the expected notional volatility.
This occurs because of the mean-reverting drift coefficient. Large return innovations will tend to be
partially undone over the forecast horizon. However, to first order in h, expected volatility equals
expected notional volatility, confirming the crucial role of the latter concept.15 Further, in reference
to Eq. (2.16) in Section 2, it is possible to show that

Var[μ(h)|F0] = [h + {1− exp(−2φh)/(2φ)} − 2{1− exp(−φh)/φ}] · σ2

≈ (φ2/3)h3σ2,

and

Cov[M (h),μ(h)|F0] = [{1− exp(−φh)/φ} − h] · σ2 ≈ −(φ/2)h2σ2 + (φ2/6)h3σ2.

15A simple numerical example illustrates the orders of magnitude. The OU process is typically estimated, or calibrated, to capture slowly
evolving long-run swings in the logarithmic price process (or interest rate) away from the unconditional mean. Such movements induce
a relatively small degree of predictability in the short-term asset returns, but long-term mean reversion, as manifest by a small mean
reversion parameter for data calibrated to an annual frequency, say φ = 0.1. At the daily frequency, or h = 1/250, clearly φ · h2 ≈ 0 so
that the difference between the expected volatility and the notional volatility is negligible. Even at the quarterly frequency, or h = 1/4,
the deviation is a modest 2.5%. Of course, this number is somewhat sensitive to the assumed strength of the mean reversion.
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Obviously, the contribution of the variation in the drift process is generally (locally) negligible, so
that the main contribution to the expected volatility (beyond the notional volatility) stems from
the covariance between return innovations and the future path of the mean process.The negative
correlation between these components lowers the overall expected volatility (albeit the effect typically
is small).16

Unfortunately, the entire class of one-factor models covered by Eq. (3.2) falter dra-
matically when confronted with actual price or return data. In order to obtain more
satisfactory empirical fits, the literature has moved towards multi-factor parametric
formulations. A natural approach is to let the volatility process be governed by an inde-
pendent source of random variation, leading to a (genuine) continuous-time SV model.
An influential specification is given by the square-root volatility model popularized by
Heston (1993) corresponding to δ = 1/2 in the CEV diffusion,

dσ2(t) = (ω − θσ2(t))dt + ς(σ2(t))2dV (t), 0 ≤ t ≤ T , (3.5)

where the standard Brownian motion process, V (t), may be correlated with the W (t)
process driving the returns, thus introducing an asymmetric return-volatility relation into
the asset price dynamics.This model is particularly attractive as it allows for closed-form
solutions for option prices. An extensive analysis of multivariate square-root (or affine)
processes in modeling term-structure dynamics is provided in Dai and Singleton (2000)
(see also Piazzesi, 2010 in this handbook).

Alternatively, the diffusive volatility may be assumed proportional to σ2(t) as in the
continuous-time GARCH model of Nelson (1990a),

dσ2(t) = (ω − θσ2(t))dt + ςσ2(t)dV (t), 0 ≤ t ≤ T . (3.6)

We will return to a more detailed discussion of this specific model in Section 4.1 below
on ARCH filters and smoothers. This is also the model used in generating the different
volatility sample paths depicted in Fig. 2.1.

Another popular choice is to represent the logarithmic volatility process by an OU
diffusion process. As discussed further in Section 3.2.2 below, this formulation corre-
sponds to an (approximate) discrete-time lognormal stochastic autoregressive volatility
(SARV)(1) model. In either case, the relation between the expected volatility and the
expected notional volatility may be found from the general formula in Eq. (2.16). If
the two Wiener innovation processes are correlated, all three terms become operative,

16Although these calculations are specific to the OU process, the orders of magnitude are indicative of the relative importance of the
components governing the expected volatility. In fact, the OU process displays a very strong covariance between the return innovations
and the expected returns process, suggesting that this example, if anything, overstates the typical contribution of the terms beyond the
(expected) notional volatility in determining the expected volatility for many asset classes.
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although the expected notional volatility (expected quadratic variation) continues to
dominate empirically.

The SV diffusions above are considerably harder to estimate from discretely observed
data than the classical one-factor models of the OU or CIR variety. Intuitively,because of
the latent information structure,any inference procedure must either rely on a (potentially
noisy) proxy for the latent volatility or integrate out the latent stochastic variable(s) from
the model. However, recent progress has made relatively efficient inference possible
through a variety of simulation-based procedures such as Efficient Method of Moments
(EMM) or Markov Chain Monte Carlo (MCMC) methods. More detailed discussions
of these procedures are available in other chapters in the handbook.

Also,optimal measurements of the latent instantaneous volatility process may,in princi-
ple,be obtained by standard nonlinear filtering and smoothing procedures (e.g.,Kitagawa,
1987),although the direct implementation of these procedures in the present context typ-
ically involves prohibitively expensive high-dimensional integration. Important advances
to circumvent these problems allowing for the practical numerical calculation and extrac-
tion of latent volatility measurements include the particle filters in Pitt and Shephard
(1999) and the reprojection approach advocated by Gallant and Tauchen (1998). Again,
we refer to other chapters in this handbook for a more detailed treatment of these pro-
cedures.We will, however, return to a discussion of specialized continuous-time filtering
methods in Section 4.1 below.

Meanwhile, the mounting empirical evidence obtained from the estimation of the
continuous-time SV models discussed immediately above clearly suggest that while the
models do provide major improvements over the traditional one-factor models in which
σ(t) is assumed to depend directly p(t) only, the models continue to be decidedly rejected
(see, e.g., Andersen et al., 2002; Andersen and Lund, 1997; Bollerslev and Zhou, 2002;
Eraker, 2004; Eraker et al., 2003; Gallant and Tauchen, 1997).

These failures have prompted a number of authors to add additional parametrically
specified diffusion factors (e.g., Chernov et al., 2003). In light of the general represen-
tation in Eq. (2.20) in Proposition 3, it is evident that such multifactor models simply
provide an alternative way of specifying the return dynamics that ultimately may be
reduced to a single-factor representation for the univariate process. The advantage is
that the system may be defined through a sum of different factors, each following a
simple dynamic process rather than a single factor with a more complex specification.
For example, one may approximate (apparent) long-range dependencies in the volatility
process through a sum of multiple distinct AR(1) factors (e.g., Gallant et al., 1999).17

17As shown by Chen et al. (2003),nonlinear functions of a continuous-time Markovian process may exhibit long-memory type dependencies
in the form of an unbounded spectrum at frequency zero.Alternative diffusive long-memory type formulations have also been considered
by Comte and Renault (1996, 1998).
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The ability to produce a simple parametric representation is extremely convenient,
if not critical, for economic interpretation and implementation of tractable estima-
tion strategies through standard (simulation based) likelihood and method of moments
techniques. To illustrate, consider the general k-factor model,

r(t) ≡ p(t)− p(0) =
t∫

t−h

μ(s)ds +
∑

j=1,...,k

t∫
t−h

σj(s)dWj(s),

where the σj(t) refer to the jth volatility factor and W (t) = (W1(t), . . . , Wk(t))
denotes a k-dimensional vector process of independent standard Brownian motions.The
notional volatility then follows straightforwardly as the sum of the integrated constituent
components,

υ2(t, h) =
t∫

t−h

σ2(s)ds =
t∫

t−h

⎧⎨⎩ ∑
j=1,...,k

σ2
j (s)

⎫⎬⎭ds =
∑

j=1,...,k

t∫
t−h

σ2
j (s)ds.

As such, none of the general principles change, but the requisite calculations for, say, the
different terms in Eq. (2.16) may certainly become more involved.

It is arguably premature to judge the empirical performance of the parametric multi-
factor continuous sample path (pure diffusion) volatility models for asset returns, as this
work truly is in its infancy. It is clear, nonetheless, that such models serve as alternatives
as well as complements for the parametric jump-diffusion models that we turn to next.

3.1.2. Jump Diffusions and Lévy-Driven Processes

At the highest sampling frequencies, there is compelling evidence of the existence of
jumps in asset price processes. Specifically, the arrival of important news such as macro-
economic announcements (at the aggregate level) or earnings reports (at the firm level)
typically induce a discrete jump associated with an immediate revaluation of the asset;
see, e.g.,Andersen and Bollerslev (1998b),Andersen et al. (2003b), and Johannes (2004)
for direct parametric modeling of jumps along with an analysis of their economic import.
Likewise,much evidence from the implied volatility literature – which extracts informa-
tion about market expectations concerning the future return distribution directly from
option prices – point toward the importance of incorporating discrete jump probabilities
into the analysis of the return dynamics; see, e.g., Bates (1996a) and Bakshi et al. (1997)
for earlier work along these lines.

In the same way that the Brownian motion constitutes the basic building block of
continuous-time martingales, the standard Poisson jump process serves as the basic build-
ing block for pure (compensated) jump martingales (e.g., Merton, 1982).Thus, one may
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accommodate the relevant jump features in an arbitrage-free continuous-time logarith-
mic price process by adding a Poisson jump component with appropriate time variation
in the jump intensity and/or in the jump distribution (as in Example 1 and 2 in Section 2
above). In line with this reasoning, let q(t) denote a Poisson point process,with dq(t) = 1
indicating a jump at time t, and dq(t) = 0 otherwise, and (possibly time-varying) jump
intensity denoted λ(t).18 Also, let the random jump size be denoted by κ(t), where the
process is only defined for dq(t) = 1. We then have the general representation

r(t, h) = μ(t, h)+M (t, h)

=
t∫

t−h

μ(s)ds +
t∫

t−h

σ(s)dW (s)+#t−h≤s≤t κ(s) · dq(s).
(3.7)

The associated notional volatility process explicitly incorporates the jumps,

υ2(t, h) ≡ [M , M ]t − [M , M ]t−h = [Mc , Mc ]t − [Mc , Mc ]t−h +#t−h≤s≤t �M 2(s)

=
t∫

t−h

σ2(s)ds +#t−h≤s≤t κ
2(s) · dq(s). (3.8)

The computation of the corresponding expressions for the expected notional volatility
and the expected volatility will depend on the specific parametric formulation.

To illustrate, consider the simple jump diffusion in Merton (1976) with constant mean
and diffusion volatility coefficients as well as i.i.d. jumps; i.e., σ(t) ≡ σ, λ(t) ≡ λ. Also,
denote the mean and the variance of the jump distribution by μκ and σ2

κ , respectively.
The notional volatility is now a stochastic variable, reflecting the random occurrence
of jumps. Moreover, only if the mean jump size is zero,μκ = 0, the expected notional
volatility will coincide with the expected volatility (the latter does not contain the squared
mean term,μ2

κ, below),

E[υ2(t, h)|Ft−h] = σ2 · h + E[#t−h≤s≤t�M 2(s)|Ft−h] = σ2 · h + λ · h · (μ2
κ + σ2

κ).

Also,considering the corresponding normalized expected volatility for h →∞, it follows
from Eq. (2.16) that

lim
h→0

ζ2(t, h)/h = σ2 + λ · (μ2
κ + σ2

κ),

18Formally, P[q(t)− q(t − h) = 0] = 1− ∫ h
0 λ(t − h + s)ds + o(h), P[q(t)− q(t − h) = 1] = ∫ h

0 λ(t − h + s)ds + o(h), and P[q(t)−
q(t − h) ≥ 2] = o(h).
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which differs from the instantaneous volatility associated with the continuous martingale
component, as defined in Eq. (2.19), and here restricted to be constant, σ2(t) ≡ σ2.

In this context, it is also important to recognize that the assumption on σ(t), and the
corresponding continuous sample path martingale representation in Proposition 3, does
not rule out jumps in the σ(t) process. However, the presence of jumps in either σ(t)
and/or r(t, h) invalidates the standard consistency arguments underlying the nonpara-
metricARCH filters and smoothers discussed in Section 4.1 below,19 while the so-called
realized volatility measures in Section 4.2 generally remains consistent for the notional
volatility, even in the presence of jumps.

As for the multifactor parametric diffusion representations, the empirical evidence on
jump diffusion models for asset returns is still inconclusive. Early work estimated (overly)
simple representations in line with the time-invariant jump diffusion discussed above
(e.g.,Akgiray and Booth, 1986; Ball andTorous, 1985; Jarrow and Rosenfeld, 1984; Press,
1967),but these models are clearly at odds with the data. More realistic models have rece-
ntly been explored by, e.g., Andersen et al. (2002), Duffie et al. (2000), Eraker (2004),
Eraker et al. (2003), and Pan (2002). Although these formulations improve dramatically
on the fit of traditional univariate diffusion and standard SV representations, a general
consensus about the relative performance of the various alternative specifications remains
elusive at this (early) point.

Another recent proposal is to retain the continuous sample path strategy for the asset
returns, but model the volatility process as a non-Gaussian OU process driven by pure
upward Lévy jumps (e.g., Barndorff-Nielsen and Shephard, 2001). A primary moti-
vation for this approach is to retain analytic tractability of the temporal aggregation
process involved in the construction of volatility forecasts within a reasonably descrip-
tive continuous-time setting.20 Technically, the jumps in the volatility process introduces
no new conceptual theoretical issues, as the Lévy processes are semimartingales, and as
such the general apparatus for diffusion processes discussed above applies directly. Lévy-
driven long-memory type formulations have also been proposed byAnh et al. (2002) and
Brockwell and Marquardt (2005).The empirical implementation of these approaches are
still in their infancy, but the preliminary results are intriguing.

3.2. Discrete-TimeModels

Even if trading and pricing are naturally thought of as evolving in continuous time
within the frictionless no-arbitrage setting outlined in Section 2, it is often more conve-
nient to work directly with parametric models for the associated discrete-time returns.
Such an approach is naturally motivated by situations in which prices are only observed

19As discussed further below, the consistence of the ARCH filters may still be established on a case-by-case basis for certain jump processes.
20Although the markets are formally incomplete in this situation, a corresponding analytical option pricing formula based on the minimal-

entropy martingale measure have been developed by Nicolato andVenardos (2003).
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at regular fixed time intervals (daily closing prices, end-of-the-month prices). Alter-
natively, if trading is only feasible at given discrete points in time, the relevant return
distribution is fully described by the conditional discrete-time dynamics. Either per-
spective allows us to embed the discrete-time ARCH and SV models in our basic
continuous-time setting. Hence, for the remainder of this section, we assume that prices
are only observed (and trades only possible) at discrete and equally spaced points in time,
t = 0, h, 2 · h, . . . , T − h, T , where by assumption T is proportional to h.

The discrete-time models, at a minimum, assume that the correct specification of
the one-step-ahead conditional mean and variances is known up to a low-dimensional
parameter vector. That is, the models (parsimoniously) parameterize the first two
conditional return moments,21

m(t, h) = E[r(t, h)|Ft−h] = E[μ(t, h)|Ft−h] = μ(t, h) (3.9)

ζ2(t, h) = E[(r(t, h)− m(t, h))2|Ft−h], (3.10)

where m(t, h) and μ(t, h) coincide because the one-step-ahead conditional mean is
predictable. Of course, in contrast to the continuous sample path diffusion models cor-
responding to h → 0, which may be defined completely through the instantaneous drift
and volatility coefficients, the first two conditional moments of the one-period returns
do not fully characterize the dynamic return distribution.

The restriction of only observing prices at equidistant points in time is readily inter-
preted, within the continuous-time setting, as a pure jump process with known jump
times but random jump sizes. In the notation of the previous section,

�M (t) = r(t, h)− μ(t, h) = r(t, h)− m(t, h), t = h, . . . , T . (3.11)

As such, it follows directly from the definition of the notional volatility over [t − h, t]
that

υ2(t, h) = [M , M ]t − [M , M ]t−h = �M 2(t). (3.12)

Moreover, the expected notional volatility over [t − h, t] simply equals the conditional
one-period-ahead variance as specified by the model,

ζ2(t, h) = E[υ2(t, h)|Ft−h] = E[�M 2(t)|Ft−h]. (3.13)

21The information set, Ft−h , is (implicitly) restricted to the corresponding discrete-time realizations of the process along with any other
discrete-time (possibly latent) state variables.
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This same result is generally not true for multiperiod forecasts, or volatilities over longer
horizons, [t − k · h, t] where k > 1. In this situation, any variation in the conditional
mean process within the forecast horizon will contribute to the return variation, so the
expected notional volatility typically is not equal to the expected volatility. However, as
discussed further below, the contribution from the variation in the conditional mean will
usually only be of second-order importance unless the forecast horizon is very long.

To more explicitly clarify the relationship between the notional volatility and total
return variability within the multiperiod setting, recall the generic return decomposition
for a discrete-time pure-jump process in Proposition 1,

r(t) = μ(t)+MJ (t), t = 0, h, 2 · h, . . . , T − h, T , (3.14)

where

μ(t) = #τ=1,...,t/h E
(
r(τ · h, h)|F(τ−1)·h

) = #τ=1,...,t/h μ(τ · h, h), (3.15)

MJ (t) = #τ=1,...,t/h �M (τ) = #τ=1,...,t/h (r(τ · h, h)− μ(τ · h, h)) (3.16)

Now, for any integer k > 0,

μ(t, k · h) = μ(t)− μ(t − k · h) = #τ=1,...,k μ(t − (k − τ) · h, h).

This μ(t, k · h) term represents the cumulative conditional one-period-ahead expected
returns and not the conditional multistep-ahead expected return. Specifically, for k > 1,
the term μ(t, k · h) is generally not equal to E(r(t, k · h)|Ft−k·h) = m(t, k · h), even
though

E[μ(t, k · h)|Ft−k·h] = m(t, k · h). (3.17)

Hence, we obtain the decomposition of the k-period-expected volatility over [t − k ·
h, t],

ζ2(t, k · h) = E[(r(t, k · h)− m(t, k · h))2|Ft−k·h]
= E[M 2(t, k · h)+ (μ(t, k · h)− m(t, k · h))2 + 2 ·M (t, k · h) · μ(t, k · h)|Ft−k·h]
= E([M , M ]t − [M , M ]t−k·h|Ft−k·h)+ Var[μ(t, k · h)|Ft−k·h]
+ 2 · Cov[M (t, k · h),μ(t, k · h)|Ft−k·h]. (3.18)

Trivially,as noted above,for the one-period-ahead forecasts,or k = 1, there cannot be any
within-period variability in the conditional mean process, so the last two terms in (3.18)
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vanish, and the expected volatility equals the expected notional volatility. However, for
multiple-period forecasts, the stochastic evolution of the conditional mean within the
interval contributes to the overall return variability, both through the variation in the
conditional mean itself and through the covariance between the return innovations and
future (within forecast horizon) changes in the conditional mean return. However, the
period-by-period conditional mean is generally much smaller than the volatility, and the
shifts in the conditional mean are smaller yet. Hence, the expected notional volatility,
or expected quadratic variation, remains the dominant component for the multiperiod
return variability in empirically realistic situations.22

Further, notice that the so-called Leverage Effect (e.g., Black, 1976) impacts only the
expected notional volatility (expected quadratic variation) and none of the other terms.
The hypothesis stipulates a (negative) correlation between the return innovations,�M ,
and the size of future return innovations, (�M )2, essentially predicting a left-skewed
distribution for the return innovations. With no impact on the conditional mean, only
the quadratic variation process is affected.The closely related volatility feedback effect (e.g.,
Campbell and Hentschel,1992) has an impact through the covariance term,but it remains
limited by the size of the shifts in the conditional mean. Again, the hypothesis essentially
implies a leftward skew in the return innovation distribution. Intuitively, given a positive
volatility risk premium, large negative return innovations are magnified, whereas large
positive return innovations are dampened due to the increase in the expected future
return required to compensate for a positive and persistent shock to future volatility.
Hence, technically, the volatility feedback not only tends to raise the expected volatility
directly but it also induces a negative correlation between the return innovations and the
future expected mean returns.

Returning to the basic discrete-time setup, the conditional moments in Eqs. (3.9)
and (3.10) allow for relatively easy and consistent statistical inference concerning the
unknown parameters by a standard generalized method of moments (GMM) esti-
mator (Hansen, 1982), or for SV and latent state variable(s), a Simulated Method of
Moments (SMM) type estimator (Duffie and Singleton,1993). Of course,simple method-
of-moments estimators with ill-chosen moment conditions may behave poorly, both
asymptotically and in finite samples (Andersen et al., 1999), and much of the literature
on discrete-time volatility models has been concerned with the development of more
efficient estimation procedures under auxiliary assumptions. In particular, assuming that
the standardized innovations, (r(t, h)− μ(t, h))/ζ(t, h), belong to a specific paramet-
ric family of distributions, maximum likelihood estimation (MLE) and corresponding

22Of course, the exact terms involved in the multiple-period volatility forecasts will depend upon the specific functional form and the
underlying distributional assumptions. Their practical computation may not be trivial, or even feasible in closed form, necessitating the
use of numerical simulation techniques (see, e.g., Geweke, 1989). We shall not be concerned with these more computationally oriented
aspects of the problem in this chapter.
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Gaussian quasi-MLE (QMLE) procedures (Bollerslev and Wooldridge, 1992) are both
conceptually straightforward to implement for the ARCH class of models, while more
complicated procedures are generally required for discrete-time SV models.

Next, we briefly review some of the popular discrete-time parametric volatility mod-
els.The key distinguishing features for each class of models consist of the functional form
for the conditional moments in Eqs. (3.9) and (3.10), the variables in the information
set Ft−h, along with any additional distributional assumptions. The performance of the
different models, such as the fit to the data and precision of forecasts, as well as the
ease of computing parameter estimates and the various terms in the volatility forecast
expressions, depends importantly on these features.

3.2.1. ARCHModels

The ARCH class of models was first introduced in the seminal paper by Engle (1982).
It has since enjoyed unprecedented empirical success along with a myriad of extensions
and further theoretical developments. Indeed, most of our empirical knowledge to date
concerning the temporal dependencies in financial market volatility have arguably been
gleaned from estimation and inference with ARCH type models. Several surveys of this
burgeoning literature already exist (an incomplete list of which includes,Andersen and
Bollerslev,1998c;Andersen et al.,2006a;Bollerslev et al.,1992,1994;Diebold and Lopez,
1995; Engle and Kroner, 1995; Engle, 2004; Engle and Patton, 2001), and we will not
attempt yet another comprehensive review. However, it is useful to briefly summarize
the key developments and model formulations within the current framework.

The ARCH class of models differ from the discrete-time SV models discussed below,
in that the parameterized conditional expectations in Eqs. (3.9) and (3.10) depend
exclusively on directly observable variables. This assumption greatly facilitates statistical
inference vis-a-vis SV models, and the widespread empirical use of ARCH style models,
in part, stems from the ease with which traditional (quasi-) maximum likelihood–based
procedures may be implemented.

Any time series model in which the conditional variance depends nontrivially on the
time t − h observable information set is now commonly referred to as an ARCH model.
This terminology is explained by the particular parametric formulation first adapted by
Engle (1982). Specifically, in the so-called ARCH(p) model, ζ2(t, h) is parameterized as
an autoregressive distributed lag of p-squared innovations,

ζ2(t, h) = ω +
∑

j=1,...,p

αj · (r(t − j · h, h)− μ(t − j · h, h))2 ≡ ω + α(L, h)(r(t, h)− μ(t, h))2,

(3.19)

where ω > 0 and αj ≥ 0 to ensure positivity of ζ2(t, h) (a.s.), and the α(L, h) lag poly-
nomial is defined by α1Lh + α2L2h + · · · + αpLph. Meanwhile, a more parsimonious
characterization of the intertemporal volatility dependencies is often obtained by the
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generalized ARCH, or GARCH(p, q), model (Bollerslev, 1986),

ζ2(t, h) = ω +
∑

j=1,...,p

αj · (r(t − j · h, h)− μ(t − j · h, h))2 +
∑

i=1,...,q

βi · ζ2(t − j · h, h)

= ω + α(L, h)(r(t, h)− μ(t, h))2 + β(L, h)ζ2(t, h). (3.20)

For the popular GARCH(1,1) model, the parameter restrictions ω > 0, α1 ≥ 0, and
β1 ≥ 0 obviously guarantees positivity of ζ2(t, h). Corresponding conditions for the
general case are presented in Nelson and Cao (1992). Rearranging the terms, the
GARCH(p, q) model is readily interpreted as an ARMA model for [r(t, h)− μ(t, h)]2
in which the autoregressive and moving average polynomials are given by [α(L, h)+
β(L, h)] and [1− β(L, h)], respectively.23 Hence, provided that all the roots of the
characteristic equation, α(x, h)+ β(x, h) = 1, have norm greater than one, the model
is covariance stationary, and the unconditional h-period (one-period) variance equals
E[ζ2(t, h)] = ω(1− α(1, h)+ β(1, h))−1.Weaker conditions for strict stationarity have
been derived by Nelson (1990b) and Bougerol and Picard (1992), while higher order
moment conditions have been developed by Ling and McAleer (2002) among others.

The leverage effect, briefly discussed earlier, stipulates a negative correlation between
current return innovations and future expected conditional variances. The GJR–
GARCH model (Glosten et al.,1993),in which the αj coefficients in α(L, h) in Eq. (3.20)
depend on the sign of the corresponding return innovations, r(t − j · h, h)− μ(t − j ·
h, h), was specifically designed to accommodate such asymmetries. A similar motivation
underlies the EGARCH model in Nelson (1991). Defining the standardized innovations,

z(t, h) ≡ (r(t, h)− μ(t, h))/ζ(t, h), (3.21)

the EGARCH(p, q) model takes the form

log[ζ2(t, h)] = ω + α(L, h) {θ · z(t, h)+ γ · [|z(t, h)| − E(|z(t, h)|)]}
+ β(L, h) log[ζ2(t, h)], (3.22)

where as before α(L, h) and β(L, h) denote pth- and qth- order lag polynomials, respec-
tively. Obviously, for θ < 0, the model predicts a negative relation between current
returns and future conditional variances. The logtransform complicates the calculation
of (unbiased) multistep conditional variance forecasts but conveniently avoids having to
impose nonnegativity constraints on the parameters.The EGARCH model also requires
a specific distributional assumption for z(t, h).

23Note that the assumption of a finite second-order moment in theARMA representation corresponds to finite fourth-order unconditional
moments of the returns.
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Alternatively, as discussed above, asymmetries in the return-volatility relationship may
also be attributed to the so-called volatility feedback effect. This feature is captured
by the ARCH-in-Mean type formulation (Engle et al., 1987), in which the functional
form for the conditional mean, μ(t, h), depends explicitly on the conditional variance
of the process, ζ2(t, h). Which of these competing specifications is best able to capture
the empirically observed asymmetry in equity return volatility has been the subject of
several empirical studies (e.g., Bekaert and Wu, 2000; Campbell and Hentschel, 1992).

Another important empirical finding concerns the strong degree of volatility persis-
tence estimated with most daily and weekly financial rates of return.This is manifested by
the autoregressive polynomials describing the variance dynamics in the GARCH(p, q)
formulations, 1− α(x, h)− β(x, h), and the EGARCH formulations, 1− β(x, h), hav-
ing (their largest) roots very close to unity.The IGARCH model of Engle and Bollerslev
(1986) directly imposes this condition; i.e., α(1, h)+ β(1, h) = 1. However, the impo-
sition of a unit root in the conditional variance arguably exaggerates the true dynamic
dependencies, and several alternative long-memory, or fractionally integrated, ARCH
type formulations have recently been estimated and analyzed more formally in the liter-
ature (e.g., Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Ding et al., 1993; Giraitis
et al.,2000,2004,2005;Robinson,1991,2001;Zumbach,2004). Possible explanations for
the apparent long-memory dependencies based on the aggregation of multiple volatility
components and/or stochastic regime-switching models have been explored byAndersen
and Bollerslev (1997), Diebold and Inoue (2001), and Liu (2000) among others (see also
the related component model in Engle and Lee, 1999). This remains a very active area
of current research.

Our focus in this chapter has been almost exclusively univariate. Nonetheless, most
interesting questions in asset pricing finance and risk management call for a multivariate
framework involving not just conditional variances but also time-varying conditional
covariances. From a conceptual view point, the extension of the univariate ARCH
class of models to a multivariate setting presents few new issues. However, conditions
to ensure that the parameterized conditional covariance matrices are positive definite
(a.s.) and involve only a manageable (small) number of parameters are both impor-
tant considerations from a practical perspective. In the diagonal GARCH model of
Bollerslev et al. (1988), the conditional variances and covariances are parameterized as
univariate GARCH(p, q) processes; i.e., the ijth element in the conditional covariance
matrix depends on a distributed lag of past values of the same element and the cross
products of the corresponding innovations. The related BEKK GARCH formulation
(Engle and Kroner, 1995) guarantees that the covariance matrices are positive definite.
The constant conditional correlation model in Bollerslev (1990) is empirically among
the most frequently applied multivariate ARCH models. This model has recently been
extended to incorporate parsimoneously parameterized time-varying conditional cor-
relations by Engle (2002) and Tse and Tsui (2002). Other multivariate formulations



Parametric and Nonparametric Volatility Measurement 99

allowing for relatively easy implementation in large dimensions include the R-GARCH
model in Gallant and Tauchen (2000), the flexible GARCH model of Ledoit et al.
(2003), the regime-switching dynamic correlation model of Pelletier (2006), the sequen-
tial conditional correlation model of Palandri (2006), and the matrix EGARCH model
of Kawakatsu (2006).

Meanwhile, most industry applications entailing large-scale covariance matrix mea-
surements rely on J.P. Morgan’s RiskMetrics (Morgan, 1997). The RiskMetrics proce-
dure is based on exponential smoothing, and as such corresponds directly to a diagonal
IGARCH(1,1) model in which all the intercepts in the conditional covariance matrix
are fixed at zero and identical values of α and β ≡ 1− α are used across all assets. The
use of the same smoothing parameter (β = 0.94 with daily data) obviously facilitates the
implementation and automatically guarantees that the covariance matrix measurements
are positive definite. Nonetheless, when viewed as a data-generating process as opposed
to a filter, the RiskMetrics procedure is formally degenerate (Nelson, 1990b).

One major theoretical drawback to the GARCH class of models concerns their lack
of closed-form aggregation. This is true both intertemporally and cross-sectionally. For
example,if daily asset returns follow a univariate GARCH(p, q)model,the corresponding
weekly returns are not GARCH(p, q). Similarly, if a collection of asset returns follow a
multivariate GARCH(p, q) model, (nontrivial) portfolio returns are not GARCH(p, q).
TheWeak GARCH class of models was explicitly introduced by Drost and Nijman (1993)
and Nijman and Sentana (1996) to address this issue. In a weak GARCH model, ζ2(t, h)
has the interpretation of a parameterized linear projection for the squared innovation. In
contrast to the conditional expectations underlying the standard ARCH formulations,
the linear projections are closed under temporal (and in the multivariate case cross-
sectional) aggregation. However, the linear projections do not easily translate into the
volatility concepts in Section 2 and,as emphasized by Meddahi and Renault (1996,2004),
asset pricing relationships are based on conditional expectations as opposed to linear
projections. Thus, even though the difference between the linear projections and the
true conditional expectations may be numerically small in empirical realistic situations,
this limits the applicability and the formal interpretation of the weak GARCH class of
models.The discrete-time square-root SARV (SR-SARV) models provide an alternative
formulation that circumvent these problems. We next turn to a discussion of this and
other discrete-time SV models.

3.2.2. Stochastic Volatility Models

The SV models differ from the ARCH class of models in that the information set,
Ft−h, underlying the conditional expectations in Eqs. (3.9) and (3.10) is not directly
measurable with respect to the time t − h observable filtration. This is typically the
result of the inclusion of two separate stochastic innovations: one innovation term relat-
ing the conditional mean of the process to the actually observed return and a second



100 Torben G. Andersen et al.

innovation relating the latent volatility process to its conditional mean. This type of
formulation is typically motivated by the mixture-of-distributions hypothesis (MDH)
and the idea of a latent information arrival process. The MDH was originally put forth
by Clark (1973) as a way of conceptualizing the distributional characteristics of spec-
ulative returns, and the basic hypothesis has subsequently been extended and analyzed
empirically by Epps and Epps (1976),Taylor (1982),Tauchen and Pitts (1983),Andersen
(1996), Andersen and Bollerslev (1997), Ané and Geman (2000), among many others,
to allow for more realistic temporal dependencies in the underlying latent information
arrival process(es). We shall return to a discussion of these ideas in Section 4.2 below.
The actual parameterizations of the most popular discrete-time SV models are often
rationalized through the discretization of specific continuous-time SV models. We do
not provide an exhaustive review of the pertinent discrete-time SV class of models here
but simply refer to the excellent surveys offered in Taylor (1994), Shephard (1996), and
Ghysels et al. (1996).

In parallel to the GARCH and EGARCH class of models discussed above,most of the
parametric SV models used in the literature are based on an autoregressive formulation
for a continuous function of the (now) latent volatility process,

f [ζ2(t, h)] = ω + β(L, h)f [ζ2(t, h)] + u(t, h), (3.23)

where β(L, h) denotes a pth-order distributed lag polynomial, and u(t, h) is a martingale
difference sequence; i.e.,E[u(t, h)|Ft−h] = 0.This class of models is commonly referred
to as a SARV(p), model. Intuitively, it is the innovation term, u(t, h), which distinguishes
the SV from the ARCH class of models.24 Of course, analogous to the GARCH class of
models discussed above, for the SARV(p) model in (3.23) to be well defined,ζ2(t, h)must
be positive (a.s.). Depending on the functional form for f (·), this restricts the admissi-
ble parameters in β(L, h) and/or the support of u(t, h). Most of the models estimated
in the literature have included only a single lag in the β(L, h) polynomial. Conditions
to ensure ergodicity and stationarity for the general SARV(1) model are presented in
Andersen (1994). The two leading cases are given by the lognormal stochastic autore-
gressive volatility model in which f (x) ≡ log(x) and u(t, h) is assumed to be Gaussian,
and the square-root,25 or SR-SARV, model corresponding to f (x) ≡ x.

The lognormal SV model was first analyzed by Taylor (1982) and subsequently
popularized in influential papers by Harvey et al. (1994) and Jacquier et al. (1994).
The logarithmic volatility model arises naturally from the standard return formulation,
r(t, h) = μ(t, h)+ ζ(t, h) · z(t, h), in which z(t, h) is an i.i.d. mean zero, unit variance,

24Formal conditions under which the u(t, h) term in the autoregressive formulation cannot be integrated out of the conditional expectations
in (3.9) and (3.10), resulting in a genuine SV model, are presented in Andersen (1992).

25This terminology derives from Andersen (1994),who parameterizes an AR(1) model for f −1[ζ(t, h)]. Similarly, the lognormal SV model
is sometimes referred to as an exponential SARV model.
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white noise process. Rearranging the terms, squaring both sides, and taking logarithms,
it follows that

y(t, h) ≡ log[r(t, h)− μ(t, h)]2 = log[ζ2(t, h)] + log[z(t, h)2]. (3.24)

Assuming the mean to be known,this may be interpreted as the measurement equation in
a state space representation of the model,with corresponding transition equation defined
by the parametric model for log[ζ2(t, h)]. In particular, for the lognormal SARV(1)
model,

log[ζ2(t, h)] = ω + β · log[ζ2(t − h, h)] + u(t, h). (3.25)

In this situation,filtered and smoothed measurements of the latent log[ζ2(t, h)] volatility
process are readily available by linear Kalman filtering which, as pointed out by Nelson
(1988) and Harvey et al. (1994), in turn allows for relatively easy to compute Gaussian
QMLE parameter estimates. Of course,the innovations in the measurement equation will
generally not be Gaussian, so the Kalman may result in poor measurements of the latent
volatility state variable and correspondingly highly inefficient parameter estimates.26

The lognormal SARV(1) formulation may also be justified as a discrete-time
approximation to the OU diffusion for the logarithmic instantaneous volatility,

d log(σ2(t)) = −β(log(σ2(t))− α)dt + ψdV (t), (3.26)

referred to in Section 3.1.1 above. In particular, by a standard Euler scheme, the discrete-
time version of the model in (3.26) takes the form

log[ζ2(t, h)] = log[ζ2(t − h, h)] − h · β · {log[ζ2(t − h, h)− α]
+ h1/2 · ψ · [V (t, h)− V (t − h, h)].

The actual parameterization is, of course, different from the model in Eq. (3.25), but the
structure corresponds exactly to that of the lognormal SARV(1) model. Interestingly,
the continuous-time OU process in Eq. (3.26) also has the interpretation of being the
diffusion limit of the discrete-time EGARCH model, in the sense that a sequence of
appropriately parameterized EGARCH(1,1) models (as discussed in Section 4.1 below)
converges weakly to this model as the length of the sampling interval,h, approaches zero.

Although the latent logarithmic volatility in (3.25) takes the form of an AR(1) model,
this translates into an ARMA(1,1) correlation structure for the demeaned logarithmic
returns in (3.24), y(t, h). Moreover, following Taylor (1986) and Harvey (1998), this
same approximate correlation structure is present for any positive power transform of

26This motivates the extension of the QMLE procedure for the lognormal SV model to a non-Gaussian state space in Kim et al. (1998).
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the squared returns; i.e., exp[y(t, h)]c where c > 0. Hence, the shape of the autocorrel-
ogram for the squared returns from the log-normal SARV(1) model mimics that of the
empirically popular GARCH(1,1) model.

The second leading class of SV models is given by the SR-SARV(p) model. Following
Meddahi and Renault (2004), the SR-SARV(p) model for ζ2(t, h) is naturally defined by
the marginalization of a p-dimensional latent VAR(1) process.As emphasized by Meddahi
and Renault (1996, 2004), this class of models has the advantage of being closed under
temporal (and in the multivariate setting cross sectional) aggregation. To appreciate this
result, suppose that the true underlying continuous-time volatility is determined by the
CEV diffusion,

dσ2(t) = (ω − θ · σ2(t))dt +√2 · α · (σ2(t))δdV (t), (3.27)

where δ ≥ 1/2 to ensure that the process for σ2(t) is stationary and nonnegative. Since
ζ2(t, h) is an affine function of σ2(t), it follows that for δ ≤ 1, the exact discretization of
the process must adhere to the basic SR-SARV(1) model structure,

ζ2(t, h) = ω + β · ζ2(t − h, h)+ u(t, h), (3.28)

where E[u(t, h)|Ft−h] = 0. Of course, the h-period time interval is arbitrary so that the
expected volatility for the temporally aggregated process,ζ2(t · k, h · k),where k > 1 and
t = 0, 1, 2 . . ., must be governed the same AR(1) model structure. As discussed further
in Section 4.1 below, the CEV model in (3.27) with δ = 1 may also be interpreted as
the diffusion limit of the GARCH(1,1) model.

The discrete-time AR(1) formulations in (3.25) and (3.28) are, of course, somewhat
restrictive. In parallel to the developments within the parametric ARCH class of models
discussed above, long-memory, or fractionally integrated SV models, better suited at
capturing the apparent long-run dependencies in the volatility, have been estimated by
Breidt et al. (1998) and Harvey (1998).

Direct extensions of the univariate discrete-time SV models discussed above to a mul-
tivariate setting was first explored by King et al. (1994), while earlier work by Diebold
and Nerlove (1989) used a related univariate latent ARCH factor structure in parame-
terizing time-varying conditional covariances. More flexible large-dimensional systems
have recently been proposed by Chib et al. (2006).

The SV diffusions (both univariate and multivariate) discussed above are considerably
harder to estimate from discretely observed data than the classical one-factor models of
the OU or CIR variety, as the inference in essence involve the same complications that
plague the estimation of continuous-time SV models. Intuitively, because of the latent
information structure, any inference procedure must either rely on a (potentially noisy)
proxy for the latent volatility or integrate out the latent stochastic variable(s) from the
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model.Again,we refer to other chapters in the handbook for a more detailed discussion of
the different procedures designed for doing so,27 as well as the aforementioned surveys by
Ghysels et al. (1996) and Shephard (1996). Importantly, from the perspective of volatility
measurements, as a by-product of the estimation, many of these procedures result in
(approximately optimal) filtered and/or smoothed measurements of the functional latent
volatility process, f [ζ2(t, h)], conditional on the underlying parametric model and the
observable information.

4. NONPARAMETRICMETHODS
The data-driven,or nonparametric volatility measurements afford direct empirical apprai-
sals of the notional volatility,υ2(t, h), without any specific functional form assumptions.
The most obvious such measure is, of course, given by the ex-post squared return span-
ning the [t − h, t] time interval. However, even though the (demeaned) squared return
generally provides an unbiased estimator for υ2(t, h), it is also a very noisy estimate.
The nonparametric measurements more generally achieve consistency by measuring the
volatility as (weighted) sample averages of increasingly finer sampled squared (or absolute)
returns over (and possible outside) the [t − h, t] interval.This immediately raises impor-
tant issues of efficiency, rates of convergence, and the (asymptotic) distributions for the
measurement errors associated with different weighting schemes. At a more fundamen-
tal level, however, the nonparametric procedures differ importantly in their assumptions
about the length of the time interval h. The instantaneous volatility filters, or ARCH
filters and smoothers, discussed next, are based on the assumption of ever more observa-
tions over ever finer time intervals (a double limit theory), while the realized volatility
measures build on the idea of an increasing number of observations over fixed length
time intervals (a single limit theory).28

4.1. ARCH Filters and Smoothers

ParametricARCH models were designed to parsimoneously model the expected volatil-
ity as an explicit function of discretely observed returns; i.e., a parameterized conditional
expectation, ζ2(t, h) = E[(r(t, h)− m(t, h))2|Ft−h], where h > 0 and Ft−h denotes the
information set generated by the past returns r(t − h, h), r(t − 2h, h), . . . However, as
observed by Nelson (1992),these same discrete-time parametric models may alternatively

27In addition to the general inference procedures, some noteworthy procedures explicitly developed for the estimation of discrete-time SV
models include the Bayesian MCMC method in Jacquier et al. (1994, 2004) and Kim et al. (1998), the simulated maximum likelihood
technique of Danielsson (1994), the Monte Carlo maximum likelihood approach of Sandmann and Koopman (1998), and the direct
MLE through recursive numerical integration in Fridman and Harris (1998).

28Of course, the discrete-time parametric ARCH and SV models discussed in Section 3.1 may also be given the interpretation of fixed
length interval filters for extracting υ2(t, h), h > 0. However, these type of filters are difficult to characterize and formally justify outside
the realm of a specific parametric framework.
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be given a nonparametric interpretation as filters designed to extract information about
the (latent) instantaneous volatility. In particular, assuming that the sample path of
the price and the corresponding instantaneous volatility processes are both continu-
ous, then, although formally misspecified at all discrete sampling frequencies, h > 0, an
appropriately parameterized sequence of ARCH models, or expected (scaled) volatilities
ζ2(t, h)/h,will consistently (for h →∞) estimate the instantaneous volatility,σ2

t , at each
point in time.

To grasp the intuition behind this powerful result,consider the simple continuous-time
random walk model in Eq. (3.1), previously studied by Merton (1980) in this context,

dp(t) = μdt + σdW (t), 0 ≤ t ≤ T .

Suppose that observations are only available at n + 1 equally spaced points over the
[t − h, t] time interval, where 0 ≤ h < t ≤ T ; i.e., t − h, t − h + (h/n), . . . , t − h +
(n − 1) · (h/n), t. By the definition of the process, the corresponding sequence of
i = 1, 2, . . . , n, discrete (h/n)-period returns,

r(t − h + i · (h/n), h/n) ≡ p(t − h + i · (h/n))− p(t − h + (i − 1) · (h/n)),

is then i.i.d. normally distributed with mean μ · (h/n) and variance σ2 · (h/n). Hence,
the MLE of the drift is simply given by the sample mean of the (scaled) returns,

μ̂n ≡ n−1 ·#i=1,...,n (h/n)−1 · r(t − h + i · (h/n), h/n) ≡ r(t, h)/h.

It follows immediately that

E(μ̂n) = μ.

This fixed-interval,or in-fill asymptotic,estimator for the drift only depends on h and not
n.The sampling frequency is irrelevant, only the span of the data matters.Thus, although
μ̂n is an unbiased estimator for μ, it is not consistent as n →∞.

Consider now the (unadjusted) estimator for σ2 defined by the sum of the (scaled)
squared returns,

σ̂2
n ≡ n−1 ·#i=1,...,n (h/n)−1 · r(t − h + i · (h/n), (h/n)2
= h−1 ·#i=1,...,n r(t − h + i · (h/n), h/n)2.

Because

E[r(t − h + i · (h/n), h/n)2] = σ2 · (h/n)+ μ2 · (h/n)2,

it follows readily that

E
(
σ̂2

n
) = σ2 + μ2 · (h/n).
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Hence, the drift induces only a second-order bias, or O(n−1) term, in the estimation
of σ2 for n →∞. Moreover, this estimator for the diffusion coefficient is consistent as
n →∞. To see this, note that

E[r(t − h + i · (h/n), h/n)3] = 3 · μ · σ2 · (h/n)2 + μ3 · (h/n)3,

E[r(t − h + i · (h/n), h/n)4] = 3 · σ4 · (h/n)2 + 6 · μ2 · σ2 · (h/n)3 + μ4 · (h/n)4,

which along with the second moment given above, and the fact that the returns are i.i.d.,
implies that

Var
(
σ̂2

n
) = 2 · σ4 · n−1 + 4 · μ2 · σ2 · n−2 · h.

Hence by a standard law of large numbers,

plimn→∞ σ̂2
n = σ2.

The consistency result for the sample variance estimator for the time-invariant diffu-
sion hinges on the true volatility being constant over [t − h, t]. Increasing the number
of (scaled) squared return observations over the interval then produces an increasing
number of unbiased and uncorrelated measures of σ2, and simply averaging these yields
a consistent estimator.

This basic idea may, given appropriate regularity conditions, be extended to the
general class of continuous sample path diffusions considered in Proposition 3 and
Eq. (2.21),

dp(t) = μ(t)dt + σ(t)dW (t), 0 ≤ t ≤ T ,

under the additional assumption that the sample path for the σ(t) process also is contin-
uous. The main difference between this general model and the time-invariant diffusion
σ(t) ≡ σ analyzed in detail above, is that the length of the sampling interval, h, now also
must shrink to zero as the sampling intensity within the interval, n, increases.

At an intuitive level, by the assumed sample path continuity, the temporal variation in
σ2(t) is readily bounded by restricting the length of the time interval, h, over which the
variation is measured,

∀ξ > 0, ∃h > 0 : sup t−h≤τ≤t |σ2(τ)− σ2(t)| < ξ, (a.s).

Using this result and refining the arguments above, it is possible to show that the
analogous time t (unadjusted) sample variance estimator,

σ̂n,h(t) ≡ n−1 ·#i=1,...,n (h/n)−1 · r(t − h + i · (h/n), h/n)2, (4.1)
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consistently estimates the instantaneous volatility, provided that h → 0 and n →∞ at
the proper rates,

plimn→∞,h→0 σ̂
2
n,h(t) = σ2(t),

where the convergence is pointwise in probability.
The trade-off between the length of the sampling interval, h → 0, and the number

of observations, n →∞, is analogous to the usual bias-variance trade-off encountered
in nonparametric kernel estimation. Similarly, the sample variance estimator in Eq. (4.1)
corresponds to a flat kernel scheme and the efficiency of this estimator may generally
be improved by using a weighted one- or two-sided average of squared returns. That is
the motivation behind the ARCH filters and smoothers developed in a series of papers
by Nelson (1992, 1996a,b), Nelson and Foster (1994, 1995), and Nelson and Schwartz
(1992) [see also the discussion in Drost and Werker (1996); Duan (1997); Fornari and
Mele (2001), and Mele and Fornari (2000)].29

To illustrate, consider the GARCH(1,1) filter for the (1/n)-period returns defined in
Nelson (1992),

σ̂2
n (t) = ωn + αn · r(t, 1/n)2 + βn · σ̂2

n (t − 1/n)
(4.2)= ωn · (1− βn)

−1 +#i=0,...,∞ αn · βi
n · r(t − i/n, 1/n)2,

where

ωn = ω/n, αn = α · (1/n)1/2, βn = 1− α · (1/n)1/2 − θ/n,

and where ω > 0,α > 0, θ > 0, corresponding to p = q = 1, ζ2(t, 1/n) ≡ σ̂2
n (t), and

μ(t, 1/n) ≡ 0 in Eqs. (3.9–3.10) above.This filter again achieves consistency as n →∞
for σ2(t),

plimn→∞ σ̂2
n (t) = σ2(t),

and, as before, the convergence is pointwise in probability. Note, these arguments explic-
itly rule out jumps, or discontinuities, in either the drift or diffusion coefficients30

so that the sample path for the instantaneous volatility process, σ2(t), is continu-
ous and coincides with that of the expected (scaled) instantaneous volatility, limh→0

υ2(t, h)/h.

29For earlier work on nonparametric diffusion estimation based on stronger assumptions and different asymptotic arguments; see, e.g.,
Banon (1978), Dohnal (1987), Genon-Catalot et al. (1992), and Florens-Zmirou (1993).

30The consistency of ARCH filters may still be established on a case-by-case basis for certain jump processes. For instance, the Lévy-driven
OU SV model of Barndorff-Nielsen and Shephard (2001) permits an ARMA(1,1) representation so that the GARCH(1,1) filter remains
consistent for this particular jump model; see Meddahi and Renault (2004) for further discussion along these lines.
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Heuristically, the GARCH(1,1) filter works analogously to the sample variance
estimator in Eq. (4.1) by using an (infinite weighted) average of increasingly finer sampled
squared returns ever closer to time t. However, the continuous record, or in-fill, asymp-
totics of ever more observations per interval, n →∞, over ever smaller time intervals,
h →∞, is here achieved by a single asymptotic device dictating both the return sam-
pling frequency and the simultaneous down-weighting of the more distant squared return
observations, r(t − i/n, 1/n)2, for large values of i. Note that the parameter configuration
in (4.2) underlying this result implies that

lim
n→∞(αn + βn) = lim

n→∞(1− θ/n) = 1

so that the sequence of GARCH(1,1) filters approaches an IGARCH model,as discussed
in Section 3.2.1, in the limit.

Besides providing a consistent volatility filter, such sequences of GARCH models have
other interesting and useful properties. For example, if the standardized returns,

z(t, 1/n) ≡ n1/2 · r(t, 1/n)/σ̂n(t − 1/n), (4.3)

are i.i.d. normally distributed then, as shown by Nelson (1990a), the sequence of
GARCH(1,1) models defined implicitly by (4.2) converges weakly to the continuous-
time GARCH model previously defined in Eq. (3.6),31

dp(t) = σ2(t)dW (t),
(4.4)

dσ2(t) = (ω − θ · σ2(t))dt + (2 · α)1/2σ2(t)dV (t),

where the twoWiener processes are uncorrelated, Corr(dW (t), dV (t)) = 0. Of course,
it remains true, that when interpreted as a filter, the sequence of GARCH(1,1) models
in (4.2) underlying this diffusion limit consistently extracts the instantaneous volatility,
σ2(t), for any continuous sample path diffusion.

Many other appropriately parameterizedARCH models share this important property.
Specifically, consider the sequence of EGARCH(0,1) models defined by

log
(
σ̂2

n (t)
) = ωn + βn · log

(
σ̂2

n (t − 1/n)
)+ θn · z(t, 1/n)+ γn · [|z(t, 1/n)| − (2/π)1/2]

(4.5)ωn = α · β/n,βn = 1− β/n, θn = ρ · ψ · (1/n)1/2,

γn = ψ · (1− ρ2) · (1− (2/π))−1/2 · (1/n)1/2,

where β > 0,ψ > 0, and the standardized innovations are defined as in Eq. (4.3). Inter-
preted as a sequence of filters, this similarly provides consistent estimates (as n →∞) of

31This particular CEV diffusion process for the instantaneous volatility has also previously been analyzed by Wong (1964).
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the instantaneous volatility at each point in time for any continuous sample path diffusion
of the general form in Eq. (2.21). In parallel to the consistent GARCH(1,1) filter,

lim
n→∞βn = 1

so that the root in the autoregressive polynomial dictating the exponential decay in the
weights associated with the past absolute standardized returns approaches unity. Under
the additional assumption of i.i.d. normally distributed standardized returns,the sequence
of EGARCH(0,1) models defined by Eq. (4.5) converges weakly to the OU diffusion
for log(σ2(t)),

dp(t) = σ(t)dW (t)
(4.6)

d log(σ2(t)) = −β [log(σ2(t))− α]dt + ψdV (t),

where the instantaneous correlation between the twoWiener processes is determined by
the leverage parameter ρ; i.e., Corr(dW (t), dV (t)) = ρdt.

Because many candidate ARCH models may serve as consistent filters for the
instantaneous volatility, this naturally raises the question of efficiency. The asymptotic
distribution theory for the filter errors developed by Nelson and Foster (1994) and
Nelson (1996a) allows for a formal analysis of this issue. Intuitively, in the diffusion
limit (with continuous sample paths), the process is completely characterized by the first
two conditional moments, and the optimal ARCH filter matches both of these. These
results for continuous-time SDEs carry over to the design of optimal ARCH filters for
the type of SDEs used in the formulation of the discrete-time SV models discussed in
Section 3.2.2. In this situation, if the conditional distribution of the innovations are suf-
ficiently fat-tailed, estimating σ2(t) by squaring a distributed lag of past absolute returns,
as originally proposed by Taylor (1986) and Schwert (1989), may be more efficient than
using a distributed lag of past squared returns. A detailed discussion of these results is
beyond the scope of this chapter. However, it is worth noting that the comparisons
in Nelson and Foster (1994) related to the diffusion in Eq. (4.6) show that asymptoti-
cally (for n →∞) the efficiency loss in extracting log(σ2(t)) based on the lognormal
SARV(1) model in Eq. (3.26) coupled with the (suboptimal) linear Kalman filter can be
substantial relative to the (asymptotically) optimal ARCH filter [which essentially looks
like the EGARCH filter defined in Eq. (4.5)]. Of course, this still entails an efficiency
loss relative to the optimal nonlinear extraction filter (e.g., Kitagawa, 1987), but as noted
above, the numerical integration involved in the implementation of such filters is com-
putationally much more demanding than the simple recursions underlying the filtered
volatility estimates from ARCH models.

The ARCH filters explicitly restrict the information set used in the extraction of
σ2(t) to past and current returns only; i.e., Ft . Asymptotic (for n →∞) optimal ARCH
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smoothers involving both lagged and future returns have been developed by Nelson
(1996b). The basic idea behind the construction of optimal ARCH smoothers exploit
principles similar to those involved in the extension of the Kalman filter to a Kalman
smoother (e.g., Anderson and Moore, 1979). It is noteworthy that in contrast to the
optimal ARCH filters, the resulting optimal ARCH smoothers do not necessarily match
the first two conditional moments of the true distribution. An alternative asymptotic
distribution theory for analyzing smoothed volatility measurements is provided by the
rolling regression approach in Foster and Nelson (1996). We return to a discussion of
some of these results in the following section.

4.2. Realized Volatility

The use of historical, ex-post sample variances computed from higher frequency return
data as lower frequency volatility measures has many precedents within the empirical
finance literature. For example,Poterba and Summers (1986),French et al. (1987),Pagan
and Schwert (1990), and Schwert (1989) rely on monthly sample variances computed
from daily returns, Dybvig (1993) uses the cumulative sample variance obtained from
dailyTreasury yields as a diagnostic, noting its link to the square-bracket process from the
theory of semimartingales,while Schwert (1990),Hsieh (1991),andTaylor and Xu (1997)
exploit intraday data to produce daily sample return variance measures.32 In spite of the
intuitive appeal of using sample variance estimators over fixed horizons as simple non-
parametric volatility measures, they appear hard to justify theoretically if volatility truly is
time varying. However, by connecting the sample variances, termed realized volatility in
financial economics, to the theory of quadratic variation, it is possible to more formally
justify and assess the properties of such measures. Moreover, this approach to volatility
measurement has inspired promising and ongoing new research into volatility modeling
based on general distributional assumptions. The formal definition is straightforward.

Definition 6 RealizedVolatility
The realized volatility over [t − h, t], for 0 < h ≤ t ≤ T, is defined by

υ2(t, h; n) ≡ #i=1,...,n r(t − h + (i/n) · h, h/n)2. (4.7)

The realized volatility is simply the second (uncentered) sample moment of the return
process over a fixed interval of length h, scaled by the number of observations n (corre-
sponding to the sampling frequency 1/n) so that it provides a volatility measure calibrated
to the h-period measurement interval.Although the definition is stated in terms of equally

32The work of the Olsen & Associates group in Zürich, Switzerland, as highlighted in the book by Dacorogna et al. (2001), has also been
extremely influential in promoting the use of high-frequency intraday price date for more effectively measuring and modeling financial
market volatility.



110 Torben G. Andersen et al.

spaced observations, most results discussed below carry over to situations in which the
realized volatility is based on the sum of unevenly but increasingly finely sampled squared
returns.

The realized volatility measure is closely related to, but different from, the theoretical
volatility concepts introduced in Section 2. For example, if the mean return is zero,
μ(t) ≡ 0, the realized volatility represents the ex-post sample variance computed from n
discretely sampled (h/n)-period returns over [t − h, t]. In this case, the realized volatility
is (ex-ante) unbiased for the expected volatility, ζ2(t, h). Formally,we have the following
slight extension of Eq. (2.14) (see, e.g., Protter, 1992, Corollary 3 of Theorem 27,
Chapter 2).

Proposition 4 RealizedVolatility as an UnbiasedVolatility Estimator
If the return process is square-integrable and μ(t) ≡ 0, then for any value of n ≥ 1 and h > 0,

ζ2(t, h) = E[υ2(t, h)|Ft−h] = E[M 2(t, h)|Ft−h] = E[υ2(t, h; n)|Ft−h]. (4.8)

As such, the ex-post realized volatility is an unbiased estimator of ex-ante expected
volatility. Of course, the zero mean assumption is highly restrictive but, as we discuss later,
the result remains approximately true for a stochastically evolving mean return process over
relevant horizons under weak auxiliary conditions, as long as the underlying returns are
sampled at sufficiently high frequencies.

Another link to our previous discussion is provided by the theory of rolling sample
variance estimators within the continuous sample path (diffusion) setting, as formally
developed by Foster and Nelson (1996).33 This theory implies that the realized volatility
based on increasingly many return observations over finer and finer time intervals is
consistent for the corresponding instantaneous volatility.That is, for h → 0 and n →∞
(at proper rates),

plimn→∞,h→0 υ
2(t, h; n)/h = plimh→0 υ

2(t, h)/h = σ2(t).

Although this result is of theoretical interest, it is less robust and less useful in practice. One
constraint is that the theory excludes jumps in both the return and volatility processes.
More importantly, from a practical perspective, the result hinges on the length of the time
interval going to zero and the number of observations going to infinity (over the vanishing
interval) simultaneously.This construction is hard to mimic in any relevant sense. Market
microstructure features invariably limit the number of (effectively) uncorrelated return
observations, so even for highly liquid markets, it is not possible to measure returns (or
volatilities) instantaneously. We discuss these practical issues in more detail below.

33See also the related simulation-based evidence in Andreou and Ghysels (2002).
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The rolling regression procedures and associated ARCH filters and smoothers for
the instantaneous volatilities are also usually based on long (weighted) averages of the
returns. Adjacent instantaneous volatility measures will therefore involve overlapping
return observations. This renders formal statistical analysis of the time-series properties
of any such derived volatility series complex. The realized volatility approach explicitly
seeks to avoid such difficulties by fixing h > 0 and interpreting υ2(t, h; n) as a measure
of the overall volatility for the [t − h, t] time interval. We turn now toward a general
discussion of this approach.

The theoretical properties of realized volatility have been discussed from different
perspectives in a number of recent studies including Andersen and Bollerslev (1998a),
Andersen et al. (2001b, 2003a), and Barndorff-Nielsen and Shephard (2001, 2002a,b).
A simple yet fundamental result follows directly by combining the theory of quadratic
variation in Proposition 2 with the Definitions 1 and 6.

Proposition 5 Consistency of RealizedVolatility
The realized volatility provides a consistent nonparametric measure of the notional volatility,

plimn→∞ υ2(t, h; n) = υ2(t, h), 0 < h ≤ t ≤ T , (4.9)

where the convergence is uniform in probability.

The notional volatility plays a crucial role in the return dynamics. From the relation
between expected notional volatility and expected volatility in Eq. (2.16), the ex-ante
expected notional volatility is also the critical determinant of expected volatility. Any
empirical measures of (ex-ante expected) notional volatility based on (2.16) will neces-
sarily depend on the assumed parametric model structure. Proposition 5 implies that, in
the limit for increasingly finely sampled returns, or n →∞, realized volatility is a consis-
tent (nonparametric) estimator of the (realized) notional volatility over any fixed-length
time interval, h > 0.

Illustration 2 Continuous-Time GARCH Model (Revisited)
The first panel in Fig. 2.2 plots the simulated sample path for the one-period notional volatility,

υ(t, h), t = 1, 2, . . . , 2500, for the same continuous-time GARCH model depicted in Fig. 2.1.
To illustrate the consistence of the realized volatility (as n →∞) for the notional volatility, the
last four panels in Fig. 2.2 plot the time series of realized volatilities, υ(t, h; n), for n equal to
1, 3, 24, and 288, respectively.The squared returns (n = 1) shown in the second panel obviously
provide very noise measures of the notional volatilities.While it is possible to pick out the general
shape, the plot is extremely erratic, and it would be hard to accurately assess the true value of
υ(t, h) on a period-by-period basis. Squaring and summing three within period returns, as in the
third panel, clearly helps in reducing the noise. Moving one step further in constructing the realized
volatilities from n = 24 returns, corresponding to an hourly sampling frequency in a 24-h market,
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Figure 2.2 The first panel in the figure plots the one-period notional volatility, υ(t, 1),
t = 1, 2, . . . , 2500, from the same continuous-time GARCH model depicted in Fig. 2.1. The remain-
ing four panels show the corresponding realized volatilities, υ(t, 1, n), for n equal to 1, 3, 24, and 288,
respectively.

or 20-min returns, in a market operating eight hours a day, results in further dramatic improvements.
Finally, the final panel for n = 288, or five-minute returns in a twenty-four hour market, is almost
indistinguishable from the time series of notional volatilities in the top panel.
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It is natural to combine the unbiasedness property of realized volatility in Proposition 4
and the consistency result in Proposition 5 to think of ex-post realized volatility measures,
in general, as approximately unbiased estimators, and the ex-ante expected values of the
realized volatility measures as consistent estimators for the ex-ante expected notional
volatility. That is, subject to a uniform integrability condition, as formally discussed in
Andersen et al. (2003a),34

plimn→∞ E[υ2(t, h; n)|Ft−h] = E[υ2(t, h)|Ft−h], 0 < h ≤ t ≤ T . (4.10)

Importantly, as explained in more detail below, this result and the ability to compute
conditional expectations of the notional volatility from the realized volatility in turn
allow for the construction of easy-to-implement reduced form volatility forecasting
models.

Still, the above consistency results leaves important considerations regarding the size
of potential error terms and any finite-sample biases unanswered. We discuss the issue
of the measurement errors involved in using realized volatilities for volatility measure-
ment and modeling in more detail below. Meanwhile, it is instructive first to consider a
decomposition of the realized volatility measure into the separate terms associated with
the potential sources of error and bias. For that purpose, we apply the canonical decom-
position to each return component of the realized volatility definition in Eq. (4.7) and
simplify notation, so for i = 1, . . . , n,

r(t − h + (i/n) · h, h/n) = μ(t − h + (i/n) · h, h/n)+M (t − h + (i/n) · h, h/n)
(4.11)

≡ μi +Mi.

In the frictionless arbitrage-free setting, the return on a risky asset over time intervals of
length (h/n) has a martingale innovation of order (h/n)1/2,while the corresponding mean
component is at most of order (h/n). In particular, exploiting the notation introduced
in Eq. (4.11), we have

υ2(t, h; n) = #i=1,...,n
[
μ2

i + 2 · μiMi +M 2
i
]

(4.12)
= υ2(t, h)+Op(n−1)+Op(n−1/2)+ [

#i=1,...,n M 2
i − υ2(t, h)

]
.

It is apparent that the realized volatility may differ from the notional volatility for two
distinct reasons. First, the second and third terms on the right-hand side of the last

34The assumption of a bounded return process provides a simple sufficient condition for this convergence in mean; see, e.g., Hoffmann-
Jørgensen (1994), sections 3.22–3.25. For example, one may imagine a bound on the return that prevents a small investment in the asset
from ever producing a return that exceeds a (large) multiple of the expected value of all resources available in the worldwide economy.
Nonetheless, this result is not true for all admittable price processes covered by Proposition 1; see, e.g., Barndorff-Nielsen and Shephard
(2002b) for a counter example.
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equation in (4.12) reflect the mean returns, which only truly vanishes in the limit for
n →∞. However, the expected return over short intervals (large n) are necessarily small,
so the contribution from these terms will be empirically negligible. This conclusion is
only reinforced by noting that the component of the largest order, Op(n−1/2), repre-
sents a covariance term that is limited by the size of the innovations to the expected
return over the (h/n) time interval, which typically will be very small. Second, the last
term on the right-hand side of (4.12) has the interpretation of a measurement error
term, as Proposition 4 shows that the cumulative-squared martingale innovations pro-
vide unbiased estimators for the corresponding notional volatility (quadratic variation).
Hence, this term has a zero expected value. Nonetheless, for any given value of n, it
induces a measurement error that is unrelated to the mean return. This component is
the source of empirically relevant deviations between realized volatility and (realized)
notional volatility.

The actual size and exact distribution of the errors obviously depend on the particular
return process and must be analyzed on a case-by-case basis. Barndorff-Nielsen and
Shephard (2002a) provide specific evidence for the OU specification with a background-
driving Lévy process. Similarly, Meddahi (2002) presents explicit expressions for the
different terms in Eq. (4.12) for the class of eigenfunction SV models and goes on to
numerically compare the size of the unconditional variance of the measurement error
to the unconditional variance of the notional (integrated) volatility for some of the
continuous-time diffusions of the general form in Eq. (2.20) that have been estimated
in the existing literature.

The preceding discussion implies that realized volatility is approximately (apart from
minor biases induced by the mean component) unbiased for the corresponding notional
volatility. Importantly, it also follows from the local martingale property in (2.11) and
the decomposition in (4.12), that the associated measurement errors are approximately
uncorrelated, i.e.,

E[(υ2(t + j, h; n)− υ2(t + j, h)) · (υ2(t, h; n)− υ2(t, h))] = Op(n−1), (4.13)

where j �= 0. Again, the O(n−1) term is identically equal to zero in the case of constant
mean returns and is otherwise likely to be small in empirically realistic situations. This
confirms that realized volatilities provide meaningful and theoretically well-founded
volatility measurements. Moreover, they constitute natural and convenient inputs into
modeling and inference procedures concerning the expected notional volatility and, by
extension, the expected return volatility.35

35This result also underlies the simple GMM estimation procedure for parametric continuous-time SV models in Barndorff-Nielsen and
Shephard (2002a) and Bollerslev and Zhou (2002) based on matching sample moments of realized volatility with corresponding model
implied moments for notional (integrated) volatility.



Parametric and Nonparametric Volatility Measurement 115

It is worth reiterating that the fixed h, large n asymptotics, or realized volatility asymp-
totics, underlying the results discussed above, is pivotal in practice. In particular, in spite
of the theoretical desirability of letting interval size,h, shrink indefinitely as an increasing
number of high-frequency return observations is used within each (vanishing) interval (as
in the ARCH filters and smoothers discussed in Section 4.1), this idea is difficult (impos-
sible) to mimic in practice.The number of data points, n, that adhere (approximately) to
the underlying no-arbitrage semimartingale property over short time intervals is severely
limited by various market microstructure frictions.This invariably puts an effective (asset
and/or market specific) lower bound on the highest sampling frequency that is applicable
in empirical work, say 1/n > 1/N . We return to this important practical consideration
below.

In summary, the realized volatility approach exploiting intraday return observations
allow for directly observable return volatility measures that are consistent, approximately
unbiased,and have uncorrelated measurement errors. It is natural to exploit these proper-
ties by building a time series model directly for the observed realized volatility measures
through standardARMA style modeling. Importantly, such procedures sidestep the com-
plex task of providing an appropriate model for the intraday volatility patterns while
still exploiting the inherent information in the high-frequency data for lower frequency
volatility movements. Of course,the use of nonparametric volatility measurements invari-
ably entails a loss in statistical efficiency relative to the use of a fully (and by assumption
correctly) specified parametric volatility model. We comment further on this issue, and
the practical merits of reduced form realized volatility modeling below.

The imposition of additional restrictions on the return process allows for important
additional insight into the size and asymptotic distribution of the realized volatility errors.
In particular, consider the class of continuous sample path diffusions, characterized by
the sde,

dp(t) = μ(t)dt + σ(t)dW (t), 0 ≤ t ≤ T , (4.14)

where μ(t) is predictable and of finite variation (c.f., Proposition 3 and the correspond-
ing SDE in Eq. (2.21)). Extending the infeasible distributional implications of Jacod
(1994) and Jacod and Protter (1998), the results of Barndorff-Nielsen and Shephard
(2002a, 2004a) provide the following feasible mixed-Gaussian asymptotic (for n →∞)
approximation to the distribution of the measurement errors.

Proposition 6 Asymptotic Mixed Normality of RealizedVolatility
The realized volatility errors for the continuous sample path diffusion in Eq. (4.14) is

distributed as

[υ2(t, h; n)− υ2(t, h)] · [2/3 · υ[4](t, h; n)]−1/2 → N (0, 1), (4.15)
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for n →∞, where

υ[4](t, h; n) ≡ #i=1,...,n r(t − h + i · (h/n), h/n)4. (4.16)

Importantly, as shown in Barndorff-Nielsen and Shephard (2006b), this proposition
remain valid in the presence of leverage effects,or correlations between the σ(t) volatility
process and the Brownian motion, W (t), dictating the price innovations.36 Thus, this
results considerably strengthens the aforementioned convergence of realized volatility
to notional volatility (in probability) by providing the asymptotic distribution of the
corresponding errors. Formally, the variance of the realized volatility errors is given by
2/3 · ∫ t

t−h σ
4(τ)dτ, which is consistently estimated by 2/3 · υ[4](t, h; n) as defined in

Eq. (4.16). Hence, the magnitude of the errors depends upon the level of the (latent)
volatility.This result represents a fundamental extension of the corresponding expression
for the variance of the (uncentered) sample variance for the continuous-time random
walk model discussed in Section 4.1 above, 2 · σ4 · h2 · n−1 +O(n−1). Of course, the
general expression for the variance of the realized volatility errors, or υ[4](t, h; n), is
straightforward to calculate in practice.

The more powerful distributional result in Proposition 6, compared to the weak con-
vergence in Proposition 4,comes at the cost of the stronger assumption on the underlying
log-price process.Although the additional conditions,most notably the absence of jumps
in the price path, likely are violated empirically at the highest sampling frequencies, the
asymptotic distribution should nonetheless serve as a useful theoretical benchmark for
assessing the properties of the realized volatility measures and further assist in guiding
empirical procedures.

In this regard, Barndorff-Nielsen and Shephard (2005) find that an improved finite-
sample (finite n) approximation may be obtained by the log-linearization,

[log(υ2(t, h; n))− log(υ2(t, h))+ 1/2 · s(t, h; n)2] · s(t, h; n)−1 ∼ N (0, 1), (4.17)

where

s(t, h; n)2 ≡ max
{
2/3 υ[4](t, h; n) · υ2(t, h; n)−2, 2/n

}
. (4.18)

The upper bound of 2/n in Eq. (4.18) arises from imposing the theoretical lower bound
for n →∞ on the first ratio.This approximation seems to work well,even for moderately
sized n (say n ≥ 10), in a (stylized) simulation setting.The improvement is related to the
logarithm delivering a variance-stabilizing transformation. In that sense, the improved
finite-sample distribution obtained by Eqs. (4.17) and (4.18) is directly in line with

36This is also corroborated by the related finite-sample (finite n) simulation evidence reported in Andersen et al. (2005).
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the evidence for the parametric discrete-time SV models discussed in Section 3.1.1, for
which the innovation process for the formulations involving the logarithmic volatility
typically exhibits much reduced (conditional) heteroskedasticity.37

The above results speak to the precision in extracting information about the (realized)
notional volatility from the realized volatility measures. Realizations of the notional
volatility are, of course, of direct interest as indicators of return variability. However, they
also provide an indication of the character of the underlying return distribution itself.
In particular, it follows under appropriate conditions that the returns, r(t, h), conditional
on the notional volatility (and the mean return) over the [t − h, t] return interval will
be Gaussian.

Proposition 7 Normal Mixture Distribution
The discrete-time returns r(t, h) over [t − h, t], 0 < h ≤ t ≤ T, for the continuous sample

path diffusion in Eq. (4.14) is distributed as a normal mixture,

r(t, h)|σ{μ(t, h), υ2(t, h)
} ∼ N (μ(t, h), υ2(t, h)), (4.19)

provided that the Brownian Motion, W (t), is independent of μ(p(t), σ(t)) and σ(t).

Of course, the (ex-ante) mean return and the notional volatility is not directly observ-
able. However, integrating out σ{μ(t, h), υ2(t, h)}, the proposition implies that the return
distribution conditional on time t − h information should be governed by a normal mix-
ture distribution.38 This is directly in line with the implications of the MDH pioneered
by Clark (1973) which, as discussed in Section 3.2.2, has motivated the formulation of
some of the most widely used empirical discrete-time SV models.

The consistency of the realized volatility for the notional volatility in Proposition
4 along with the approximate log-normality of the realized volatility distribution and
the normal mixture distribution in Proposition 7 suggest a simple alternative empirical
return-volatility modeling strategy. Assume that the demeaned returns standardized by
the realized volatilities, [r(t, h)− μ(t, h)] · υ2(t, h; n)−1, are (approximately) Gaussian,
coupled with a simple reduced form (approximately) Gaussian time series model for the
logarithmic realized volatilities, log[υ2(t, h; n)]. Effectively, this modeling strategy relies
exclusively on forecasts for the distribution of the future notional volatilities through the
observed realized volatilities, and as such is in principle straightforward to implement
in practice.39 Moreover, leverage effects, or asymmetries, in the notional volatility are

37This is also consistent with the empirical evidence in Andersen et al. (2001a,b) suggesting that the unconditional distribution of realized
volatility is approximately log-normal.

38As discussed further below, the presence of jumps in the price process will generally render the corresponding distribution of the
(standardized) returns nonnormal.This may be exploited in the formulation of tests for (the importance of ) jumps, as in, e.g.,Drost et al.
(1998),Aït-Sahalia (2002, 2004),Andersen et al. (2007b), and Andersen et al. (2009).

39Of course, the realized volatility invariably differs from the true notional volatility for finite n. However, the measurement errors are
(approximately) serially uncorrelated, and therefore, effectively averaged out in any reduced form time-series model for υ2(t, h; n).



118 Torben G. Andersen et al.

easily incorporated by allowing the time series model for log[υ2(t, h; n)] to depend
(nontrivially) on the level of the (past) returns. This empirical modeling framework has
been pursued successfully by Andersen et al. (2003a), who report impressive forecast
performance from the estimation of simple standard time series models for the realized
volatilities.40 Related empirical work by Fleming et al. (2003) also suggests that important
improvement can be obtained by using this realized volatility modeling approach in lieu of
more standard parametric volatility modeling procedures in practical portfolio allocation
decisions.41

As mentioned repeatedly, the realized volatility approach of holding h > 0 fixed is
motivated by the fact that it is undesirable, and due to the presence of market microstruc-
ture frictions indeed practically infeasible, to sample returns infinitely often (n →∞)
over infinitesimally short time intervals (h → 0). To more directly illustrate these issues,
suppose that the observed logarithmic price process, say po(t), is equal to the true (latent)
semimartingale price process that would obtain in the absence of any frictions, p(t),
plus a “noise” term, u(t), coming from the use of discrete price grids, bid-ask spreads,
and other pertinent market microstructure frictions; see, e.g., Hasbrouck (1996) and
Stoll (2000). In this situation, the continuously compounded observed return over the
[t − (i/n)h, t − ((i − 1)/n)h] time interval, i = 1, 2, . . . , n, is then given by,

ro(t − ((i − 1)/n) · h, h/n) = po(t − ((i − 1)/n) · h)− po(t − (i/n) · h)
= r(t − ((i − 1)/n) · h, h/n)

+ u(t − ((i − 1)/n) · h)− u(t − (i/n) · h).
(4.20)

Hence, the realized volatility constructed from the summation of these n-squared returns
within [t − h, t] will typically not provide a consistent estimate of the increment to the
quadratic variation of the true latent return process, or the notional volatility υ2(t, h) ≡
[r , r]t − [r , r]t−h. Indeed, assuming that the variance of the u(t − ((i − 1)/n)h) process
does not depend upon the value of n and is O(1), the realized volatility estimator con-
structed from the observed returns, ro(t − ((i − 1)/n) · h, h/n),will generally diverge for
n →∞. This directly motivates choosing n sufficiently large so as to render the asymp-
totic results discussed above reliable,yet not too large so as not to overwhelm the estimate
by the variation stemming from the noise component. The realized volatility signature
plots ofAndersen et al. (2000a), in which the sample means of υ2(t, h; n), t = 1, 2, . . . , T ,

40These empirical results have been further corroborated by the corresponding theoretical implications for specific continuous-time SV
models derived in Andersen et al. (2004).

41Many other empirical studies highlighting the potential benefits of the realized volatility framework in volatility forecasting, asset and
option pricing, risk management, and other practical financial decision making have emerged over the past few years; see, e.g.,Andersen
et al. (2005),Areal and Taylor (2002), Bandi et al. (2006), Bollerslev and Zhang (2003), Corsi (2003), Deo et al. (2006), Engle and Gallo
(2006), Koopman et al. (2005), Maheu and McCurdy (2002), Martens (2002), and Thomakos and Wang (2003). For a survey of some of
these methods, see also Andersen et al. (2006b).
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for a large value of T , are plotted against different values of n, provides a simple informal
tool for gauging this trade-off and identifying the highest possible sampling frequency at
which the impact of the noise appears negligible. More advanced techniques for directly
determining the optimal, in a mean-square error sense, value of n has also been devel-
oped byAït-Sahalia et al. (2005), and Bandi and Russell (2006a,2008). For many actively
traded assets, this often implies a value of n equivalent to about five minutes. Although
the resulting measurement errors in the realized volatilities invariably depend upon the
true underlying model and the exact form of the frictions, it is nonetheless evident that
in most empirically realistic situations, the errors are often nontrivial.42

This in turn has inspired the development of several modified realized volatility mea-
sures designed to circumvent the impact of the microstructure frictions in estimating
the notional volatility. In particular, suppose that the u(t) noise process is i.i.d. It fol-
lows then readily from Eq. (4.20) that the discretely observed returns will inherent
an MA(1) error structure. Motivated by this, early work along these lines relied on
different MA (and AR) filters to mitigate the impact of the noise component; e.g.,
Andersen et al. (2001a), Areal and Taylor (2002), Bollen and Inder (2002), Corsi et al.
(2001), among many others. Similarly, Zhou (1996) first proposed a kernel-based esti-
mator, adding twice the first-order autocovariance to the realized variance as a way
to account for the spurious first-order serial correlation induced by the i.i.d. noise
component. More sophisticated kernel-based estimators, allowing for a wider variety
of dependent noise processes, have been developed by Barndorff-Nielsen et al. (2008)
and Hansen and Lunde (2006).43 Alternatively, Zhang et al. (2005) suggested the use
of subsampling schemes to correct for the bias induced by the noise component. Intu-
itively, under fairly general assumptions about the noise process, the bias in the realized
volatility will grow at rate n. Thus, by properly combining realized volatilities for differ-
ent sampling frequencies, it becomes possible to annihilate this first-order bias through
a Jackknife-type estimator. As shown in Barndorff-Nielsen et al. (2008), this two-scale
estimator may be expressed as a kernel-type estimator. Refined multiscale estimators have
also been developed by Aït-Sahalia et al. (2006). Comprehensive surveys of this rapidly
growing literature and the many different methods proposed therein can be found inAït-
Sahalia (2007),Bandi and Russell (2006b),Barndorff-Nielsen and Shephard (2006b), and
McAleer and Medeiros (2006).

42Model-specific calculations and simulations by Andersen and Bollerslev (1998a), Andersen et al. (1999), Andersen et al. (2004, 2005),
Andreou and Ghysels (2002), Bai et al. (2004), Barndorff-Nielsen and Shephard (2005), Barucci and Renò (2002), and Zumbach et al.
(2002), among others, illustrate the effects of finite n (and h) in a variety of different settings.

43These estimators have a parallel in the so-called Heteroskedasticity and Autocorrelation Consistent (HAC) estimators used for estimating
long-run covariance matrices (e.g.,Newey andWest,1987,andAndrews,1991). Importantly,however,the realized kernel-based estimators
are not scaled by the sample size, which make their asymptotic properties very different. This also mirrors (in many ways) earlier
developments related to the estimation of Capital Asset Pricing Model (CAPM) beta’s in the presence of asynchronous trading effects by
Scholes and Williams (1977), and the adjustment to the sample variance in French et al. (1987) obtained by including the cross-product
between successive returns.
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Meanwhile, the desire to guard against the potentially distorting impact of high-
frequency real-world frictions has also inspired the use of alternative robust variation
measures. One such measure, dating back to the work of Garman and Klass (1980) and
Parkinson (1980), is the range; i.e., the difference between the maximum and the min-
imum price over some nontrivial [t − h, t] time interval. As argued in Alizadeh et al.
(2002) and Brandt and Diebold (2006), range-based volatility measures that involve only
two as opposed to a large number of intrainterval price observations are less susceptible to
both bid-ask bounce and asynchronous trading effects.44 However, this desirable robust-
ness feature must be weighed against the fact that formal statistical analysis of range-based
estimators generally require specific distributional assumptions conveniently avoided by
the realized volatility measures, as well as other power-based variation measures.

There is a long history in statistics of relying on absolute returns rather than squared
returns as more robust (to outliers) measure of the ex-post variation; e.g., Davidian and
Carroll (1987).45 These results have a direct analog for the continuous sample path diffu-
sion in Eq. (4.14). In particular, returning to the general frictionless arbitrage-free setting,
the following definitions of notional and realized power variation, adapted from Barndorff-
Nielsen and Shephard (2003),directly parallel the notional and realized volatility concepts
discussed earlier.

Definition 7 PowerVariation Measures
The notional sth order power variation and the realized sth order power variation, s > 0,

for the diffusion in Eq. (4.14) over [t − h, t], 0 < h ≤ t ≤ T, are defined, respectively, as

υ[s](t, h) ≡
t∫

t−h

σs(τ)dτ (4.21)

and

υ[s](t, h; n) ≡ μ−1
s (h/n)1−s/2 #i=1,...,n |r(t − h + i · (h/n), h/n)|s, (4.22)

where μs = E(|Z |s), and Z denotes a standard normal distribution.

It is apparent that, for s = 2, the definitions correspond directly to the previ-
ously discussed notional and realized volatility concepts; i.e., υ[2](t, h) ≡ υ2(t, h) and
υ[2](t, h; n) ≡ υ2(t, h; n), respectively. However, other values of s may allow for more
robust measurements. In particular, extending the distributional results for the (standard)

44More formal statistical properties of realized range-based estimator and comparisons with other realized volatility estimators are discussed
in Christensen and Podolskij (2007), Martens and van Dijk (2007), and Dobrev (2007).

45Also, as noted in Section 4.1 above, the optimal ARCH filters for discrete-time SV models may entail a distributed lag of past absolute
returns as opposed to the squared returns (Nelson and Foster, 1994).



Parametric and Nonparametric Volatility Measurement 121

realized volatility in Proposition 5 to the generalized power variation measures defined
above, the following proposition follows directly from Barndorff-Nielsen and Shephard
(2003).

Proposition 8 Asymptotic Mixed Normality of Realized PowerVariation
The realized sth order power variation errors, s ≥ 1/2, for the continuous sample path

diffusion in Eq. (4.11) is distributed as

μs · ω−1/2
s (h/n)s/2−1 · [υ[s](t, h; n)− υ[s](t, h)]υ[2s](t, h; n)−1/2 → N (0, 1), (4.23)

for n →∞, where μs = E(|Z |s),ωs = Var(|Z |s), and Z denotes a standard normal
distribution.

The special case corresponding to s = 1 is naturally termed absolute variation.The real-
ized absolute variation is, of course, simply constructed by the (scaled) summation of
the n absolute returns, |r(t − h + i · (h/n), h/n)|, i = 1, 2, . . . , n, within the [t − h, t]
time interval. From Proposition 8, the asymptotic (for n →∞) distribution of the
corresponding measurement error for the notional absolute variation thus satisfies

(π/2− 1)−1/2 · (h/n)−1/2 · [υ[1](t, h; n)− υ[1](t, h)]υ2(t, h; n)−1/2 → N (0, 1).

This provides a formal theoretical basis for gauging the empirical results in Andersen
and Bollerslev (1998b) among others based on υ[1](t, h; n). Similarly, these distributional
results may be helpful in better understanding the so-called Taylor Effect (e.g., Granger
and Ding, 1995), according to which the autocorrelations of power transforms of the
absolute returns are maximized (empirically) for values of s close to unity.

Meanwhile, the most desirable feature of the power variation measures arguable relates
to their robustness to jumps for appropriate choice of s. In particular, consider the jump-
diffusion model discussed earlier in Section 3.1.2 expressed in short-hand sde form,

dp(t) = μ(t)dt + σ(t)dW (t)+ κ(t)dq(t), 0 ≤ t ≤ T , (4.24)

where q(t) denote a Poisson point process,with dq(t) = 1 indicating a jump at time t,and
dq(t) = 0 otherwise, and the random jump size is determined by the κ(t) process (which
is only defined for dq(t) = 1). From the discussion in Section 3.1.2 and Eq. (3.8) along
with Proposition 5, the realized volatility is then consistent for the integrated volatility
plus the squared jumps,

plimn→∞υ2(t, h; n) = υ2(t, h) =
t∫

t−h

σ2(τ)dτ +#t−h≤τ≤tκ
2(τ) · dq(τ), 0 < h ≤ t ≤ T .

(4.25)
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One may further show (e.g.,Aït-Sahalia, 2004; Barndorff-Nielsen and Shephard, 2003)
that even in the presence of jumps, but for s < 2, the sth-order realized power variation
is unaffected by jumps and remains consistent for the notional sth-order power variation,
as defined above,

plimn→∞υ[s](t, h; n) = υ[s](t, h) ≡
t∫

t−h

σs(τ)dτ, 0 < h ≤ t ≤ T . (4.26)

Hence, by summing high-frequency absolute returns raised to powers less than two, it
is possible to mitigate the impact of the discontinuous jump component in the volatil-
ity measurement. Related realized power variation measures have also recently been
explored empirically in a series of paper by Ghysels et al. (2004, 2006) in the form of
so-called MIDAS, or mixed-data-sample, regressions.

More general so-called multipower variation measures have also recently been ana-
lyzed in the literature,with the following definition adapted from Barndorff-Nielsen and
Shephard (2006a).

Definition 8 MultipowerVariation Measures
The realized multipower variation of order {s1, s2, . . . , sj} over [t − h, t], for 0 < h ≤

t ≤ T, is defined by

υ[s1,s2,...,sj](t, h; n) ≡ μ−1
s1 · . . . · μ−1

sj · (h/n)1−sm/2#i=−j,...,n|r(t − h + i · (h/n), h/n)|s1·

|r(t − h + (i − 1) · (h/n), h/n)|s2 · . . . · |r(t − h + (i − j + 1) · (h/n), h/n)|sj ,
(4.27)

where s1 ≥ 0, . . . , sj ≥ 0, sm ≡ s1+ · · · + sj,μs = E(|Z |s), and Z denotes a standard
normal distribution.

This definition obviously includes the standard realized volatility,

υ[2,0,...,0](t, h; n) = υ2(t, h; n),

and the sth-order power variation measure,

υ[s,0,...,0](t, h; n) = υ[s](t, h; n),

as special cases. However, in contrast to the realized volatility and power variation mea-
sures, which are based on the summation of power transforms of the absolute returns,
the more general multipower variation measures are constructed by the summation of
the product of sequential transformed absolute returns. Just like the power variation mea-
sures may be rendered robust to jumps by considering s < 2, the realized multipower
variation measures may similarly be insulated from the impact of jumps by appropriately
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choosing the different orders of the power transforms. The following proposition, due
Barndorff-Nielsen and Shephard (2006a) and Barndorff-Nielsen et al. (2006), formally
justifies this idea.

Proposition 9 Consistency of Realized MultipowerVariation
The realized multipower variation for the jump-diffusion in Eq. (4.24) provides a consistent

estimate for the corresponding integrated variation,

plimn→∞ υ[s1,s2,...,sj](t, h; n) =
t∫

t−h

σsm(τ)dτ, 0 < h ≤ t ≤ T , (4.28)

where sm ≡ s1+ · · · + sj, and s1 < 2, . . . , sj < 2

Thus, the sum of the powers in the multipower variation measure directly dictates the
specific limiting integrated variation measure. In particular, the so-called bipower vari-
ation measure, constructed by the summation of adjacent absolute returns, consistently
(for n →∞) estimates conventional integrated volatility,

plimn→∞ υ[1,1](t, h; n) =
t∫

t−h

σ2(τ)dτ. (4.29)

Combining this result with the consistency of the realized volatility in Eq. (4.25), the
difference between the two measures affords a relatively simple-to-implement consistent
estimate of the squared jumps that occurred over the [t − h, t] time interval,

plimn→∞ [υ2(t, h; n)− υ[1,1](t, h; n)] = #t−h≤τ≤t κ
2(τ) · dq(τ). (4.30)

Moreover, Barndorff-Nielsen and Shephard (2006a) have shown that for the continuous
sample path diffusion in Eq. (4.14), or q(t) ≡ 0 in Eq. (4.24),

(h/n)−1/2 · [υ2(t, h; n)− υ[1,1](t, h; n)] · [(μ−4
1 + 2μ−2

1 − 5
) · υ[1,1,1,1](t, h; n)

]−1/2 → N (0, 1),
(4.31)

for n →∞. This, therefore, allows for the construction of high-frequency-based
nonparametric tests for the existence jumps. Further, theoretical refinements and actual
empirical applications involving this test have recently been pursued by Andersen et al.
(2007a) and Huang and Tauchen (2005), among others.

Research in the realized volatility area has evolved rapidly over the past few years, and
it is still too early to draw firm conclusions or consensus opinion about the preferred
procedures. However, the theoretical and empirical results reported to date have been
very promising. Recent research into multivariate extensions of the different variation
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measures and propositions discussed above should also help in further establishing a
firm theoretical foundation for corresponding new realized covariation measures,CAPM
betas, and factor loadings. The formulation of feasible co-jump measures and test statis-
tics present another theoretically challenging set of problems. Of course, as discussed
repeatedly, the development of reliable empirical procedures for dealing with the inher-
ent market microstructure frictions at the highest possible sampling frequencies, both
univariate and multivariate, and across different assets and market mechanisms, remains
of the utmost importance from a practical perspective.

5. DIRECTIONS FOR FUTURE RESEARCH
In the last 10 years, there has been a movement toward the use of newly available high-
frequency asset return data, and away from restrictive and hard-to-estimate parametric
models toward flexible and computationally simple nonparametric approaches. Those
trends will continue.Two related directions for future research are apparent: (i) continued
development of methods for exploiting the volatility information in high-frequency
data, and (ii) volatility modeling and forecasting in the high-dimensional multivariate
environments of practical financial economic relevance. The realized volatility concept
tackles both: it incorporates the highly useful information in high-frequency data while
dispensing with the need to actually model the high-frequency data, and it requires
only the most trivial of computations, thereby bringing within reach the elusive goal
of accurate and high-dimensional volatility measurement, modeling, and forecasting.We
look forward to realization of that goal in the foreseeable future.
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1. INTRODUCTION
A large body of recent asset pricing theory is written in continuous time, for which
Merton (1990) and Duffie (1996) are classic references. Notwithstanding the evident
benefit of continuous-time tools for modeling purposes and recent advances in the
econometric treatment of continuous-time models,1 the use of stochastic processes with
continuous (in time) sample paths still poses important challenges when it comes to the
econometric estimation and empirical implementation of modern asset pricing models.
The Econometrics of Financial Markets (Campbell et al.,1997),Financial Econometrics:Problems,
Models and Methods (Gourieroux and Jasiak, 2001), and Analysis of Financial Time Series
(Tsay, 2005) are recent textbooks on the general topic of financial econometrics and
outline some of the relevant issues.

Perhaps the most basic econometric problem arises because, although the relevant
series are often specified as processes that evolve continuously in time, observations of
the process occur only at discrete points in time. The discrete nature of the data has
forced researchers to design estimation methodologies that are capable of circumventing
the so-called “aliasing problem” and that can uniquely identify the fine grain structure
of the underlying process from a sample of observations located along the continuous
sample path rather than from a continuous record of the process over that path. (Readers
are referred to the chapters by Aït-Sahalia et al., 2010; Gallant andTauchen, 2010; Jacod,
2010; Johannes and Polson, 2010, in this handbook for a treatment of these issues.) Such
methodologies generally, but not exclusively (cf., Hansen and Sargent, 1983; McCrorie,
2009;Phillips, 1973), rely on stationarity.The reason is clear. Should the underlying pro-
cess be endowed with a stationary probability density,then the information extracted from
the discrete data can fruitfully be used to identify the probability measure and thereby,
hopefully, characterize the continuous dynamics of the system. In this way, stationarity
can be a powerful aid to identification and estimation.

Despite the advantages of assuming the existence of a time-invariant probability dis-
tribution, it appears that for many empirical applications in continuous-time asset pricing
it would be more appropriate to allow for martingale and other forms of nonstationary
behavior, while not ruling out stationarity either. In such cases, an additional layer of
complication in estimation comes from the necessity of achieving identification without
resorting to the restrictions that are provided by the existence of a stationary probability
density for the process of interest.

This chapter discusses techniques that have been recently introduced to identify poten-
tially nonstationary, time-homogeneous, continuous-time Markov processes. The focus
will be on classes of processes that are widely used in continuous-time asset pricing,

1In his survey on continuous-time methods in finance appeared in the Papers and Proceedings of the Sixtieth Annual Meeting of the
American Finance Association, Sundaresan (2000) writes,“Perhaps the most significant development in the continuous-time field during
the last decade has been the innovations in econometric theory and in the estimation techniques for models in continuous time.”
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namely scalar and multivariate diffusion processes as well as jump-diffusion processes.
Such processes, irrespective of their stationarity properties, have infinitesimal condi-
tional moment definitions.Their infinitesimal moments are known to fully characterize
the temporal evolution of the corresponding system and, in consequence, readily lend
themselves to estimation for the purpose of the identification of the system’s dynamics.
Consider a standard scalar diffusion (i.e., the solution to (3.1) below), but a similar argu-
ment holds for more involved continuous-time Markov processes of the type reviewed
in this chapter. Its transition density (which is, in general, not known in closed form) is
fully determined by the two functions that are commonly known as the drift,μ(.), and
the diffusion, σ2(.). The drift represents the conditional expected rate of change of the
process for infinitesimal time changes, i.e.,

μ(a) = lim
t→0

1
t
E[Xt − X0|X0 = a] = lim

t→0

1
t
Ea[Xt − a], (1.1)

whereas the diffusion gives the conditional rate of change of volatility for infinitesimal
variations in time, i.e.,

σ2(a) = lim
t→0

1
t
E
[(

Xt − X0
)2|X0 = a

]
= lim

t→0

1
t
Ea

[(
Xt − a

)2
]
. (1.2)

Formulae (1.1) and (1.2) are suggestive in that one could hope to identify the functions of
interests, which are defined as conditional expectations over infinitesimal time distances,
using sample analogs to conditional expectations as in standard nonparametric inference
for conditional moments in discrete time. For example, it is natural to estimate the
drift at a by differencing the data and then averaging the first differences Xt+� − Xt

corresponding to observations Xt in the spatial neighborhood of the generic level a.
Provided the level a is visited an infinite number of times over time so that an infinite
number of differences can be averaged asymptotically,we would expect the procedure to
be consistent in the limit (i.e., the sample average converges, in probability at least, to the
conditional moment). Interestingly, the underlying process (and, under some conditions,
the sampled process) visits the level a an infinite number of times provided recurrence is
satisfied. Recurrence implies return of the sample path of the underlying process to any
spatial set of nonzero Lebesgue measure with probability one and is known to be a milder
assumption than stationarity. (Section 2 provides a definition and additional discussions.)

Some recent papers have pursued the econometric implications of these observa-
tions and designed spatial estimation methods for various classes of continuous-time,
time-homogeneous, recurrent Markov processes. The methods are easy to implement
and have some natural appeal because they are based on commonly used nonpara-
metric (and semiparametric) estimation procedures for conditional moments in more
conventional stationary, discrete-time frameworks. However, they have the additional
attraction that their statistical properties apply even though stationarity of the underly-
ing continuous-time model is never assumed. These methods have been introduced in
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research by Bandi and Phillips (2003),Bandi and Nguyen (2003),and Bandi and Moloche
(2004),which develops Nadaraya–Watson (NW) kernel estimation procedures for recur-
rent scalar diffusions, scalar jump-diffusions, and multivariate diffusions, respectively, and
have subsequently been extended in a variety of directions.

Specifically, following work by Brugière (1991, 1993), Florens-Zmirou (1993), and
Jacod (1997) in nonparametric volatility estimation for diffusions, this literature lays
theoretical foundations for using well-understood and conventional nonparametric and
semiparametric methods in the estimation of all the infinitesimal moment functionals
driving the evolution of continuous-time Markov processes (with or without discontinu-
ities in the sample path).The literature explores conditions (like recurrence) under which
consistency and weak convergence results can be obtained in the (potential) absence of
a stationary distribution for the process, and it provides results that can be evaluated in a
manner that is closely related to conventional interpretations of nonparametric estimates
for stationary discrete-time series. Although the findings that emerge from this literature
contain the stationary case as a subcase, their more general form reflects the fact that a
stationary density of the underlying process may not exist,which leads to important issues
of interpretation. We discuss these issues and indicate avenues for future research both
in the estimation of potentially nonstationary continuous-time processes (which are, as
said, the core subject of our review) and in the estimation of potentially nonstationary
(recurrent) discrete-time series.

This chapter is organized as follows. Section 2 provides some intuition for the method-
ology, introduces the notion of recurrence, and discusses the asymptotic features of our
adopted sampling scheme. In particular, consistency is shown to hinge on the joint
implementation of “infill” and “long span” asymptotics. The latter is crucial in exploit-
ing the recurrence properties of the process under investigation. The former is vital in
replicating the infinitesimal features of the functions of interest. Both conditions are
necessary for the identification of continuous-time Markov processes under minimal
assumptions on their dynamic properties and parametric form. Accordingly, the discus-
sion in this chapter focuses on estimation procedures which impose mild assumptions
on the stochastic nature of the underlying process but require the presence, at least in
the limit, of “frequent”observations2 to achieve consistent estimation. In this regard, our
review can be viewed as complementary to those byAït-Sahalia et al. (2010),Phillips and
Yu (2009), and Johannes and Polson (2010). The former two papers discuss functional
and parametric estimation methods for diffusions that do not require infill asymptotics

2 The appropriateness of this asymptotic approximation is an empirical issue which depends on the application. However, it is known to
be a realistic approximation in fields, such as finance, where data sets are often characterized by a large number of observations sampled
at relatively high frequencies. Importantly, the highest frequency we consider here is generally the daily frequency (see Subsections 3.6
and 4.3 for exceptions). Although higher (intra-daily) frequencies would pose additional theoretical and empirical complications induced
by the presence of market microstructure noise contaminations (see, e.g., Bandi and Phillips, 2007, for discussions), it is well known
that daily data are good approximations to very frequent observations for estimators relying on very frequent observations (see, e.g., the
simulation study of Jiang and Knight, 1999).



Nonstationary Continuous-Time Processes 143

but rely on stationarity and mixing for identification and estimation. The latter reviews
Bayesian simulation procedures that are sufficiently flexible to deal with nonstation-
arities but impose a tight parametric structure on the process of interest. This review
is also complementary to recent survey articles on selected nonparametric methods in
continuous-time asset pricing (Cai and Hong, 2003; Fan, 2005).

Sections 3, 4, and 5 specialize the analysis to the estimation of recurrent scalar diffu-
sions, recurrent jump-diffusions, and recurrent multivariate diffusions, respectively. Some
emphasis is also placed on stochastic volatility modeling (with and without discontinu-
ities in the volatility’s sample path) which, in light of the latent nature of volatility, poses
additional challenges and is the subject of much research currently under way.

This chapter is largely self-contained, and its discussion is kept at a fairly intuitive
level. Nonetheless, some basic notions of stochastic process theory and functional esti-
mation in discrete-time econometrics will help the reader. Karatzas and Shreve (1991),
Protter (1995), and Revuz and Yor (1998) are standard references for the former and,
while not providing all the background material for the present chapter, are strongly
recommended references.Thorough discussions of functional methods for discrete-time
series are contained in Härdle (1990), Fan andYao (2003), Pagan and Ullah (1999), and
Li and Racine (2006). A concise and highly accessible introduction to nonparametric
techniques is Härdle and Linton (1994). Chapter 12 of the book by Campbell et al.
(1997) also provides accessible discussions of kernel regression methods similar to those
used here.

2. INTUITION AND CONDITIONS3

As noted in the Introduction, the existence of conditional moments for interesting
classes of continuous-time Markov models provides a mechanism for inference based
on the construction of sample analogs (i.e., weighted averages) to infinitesimal condi-
tional expectations.To fix ideas, consider a simple example in discrete time. Suppose the
observations X1, X2, . . . , Xn are generated by a time-homogeneous Markov process X .
One might be interested in estimating the conditional moment functional

M (a) = Ea[ f (X1, a)], (2.1)

where X0 = a is a generic initial condition and f is some integrable function. A crude
(but intuitively appealing) sample analog estimator for M (a) is

M̂(n)(a) =
∑n

i=1 1Xi=a f (Xi+1, Xi)∑n
i=1 1Xi=a

, (2.2)

3Parts of this section are based on the discussion of the paper“On the functional estimation of jump-diffusion models” (Bandi and Nguyen,
2003) given by Darrell Duffie at the 2001 Winter Meetings of the Econometric Society (New Orleans, January 9, 2001).
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where 1A is the indicator function of the set A. Formula (2.2) implies identification
of the conditional expectation (at X0 = a) of the function f (X1, X0) [as in the defi-
nition of M (a)] through a (weighted) sample average of functions of the observations
[ f (Xi+1, Xi)] taken at values Xi which are equal to a. Simple intuitive arguments based
on the law of large numbers suggest that the level a ought to be visited an infinite
number of times to achieve consistency. In consequence, it appears that the condi-
tion # {i : Xi = a} =∑n

i=1 1Xi=a →∞ as n →∞4 is, in general, necessary to obtain
asymptotic convergence of M̂(n)(a) to M (a).

We now turn to a similar example in the context of a continuous-time Markov process
X not necessarily endowed with a continuous sample path (one such case will be covered
in Section 4 below). Suppose we are interested in estimating the infinitesimal conditional
moment

M (a) = lim
t→0

1
t
E[ f (Xt , X0)|X0 = a] = lim

t→0

1
t
Ea[ f (Xt , a)]. (2.3)

Note that if X is a scalar diffusion and f (y, a) is equal to either (y− a) or (y− a)2, then
M (a) coincides with either the drift in Eq. (1.1) or the diffusion function in Eq. (1.2),
respectively. Then, coherently with (2.2) above and the earlier discussion, one could
estimate (2.3) using

M̂ (1)
(n,�,ε)(a) =

∑n
i=1 1Xi∈(a−ε,a+ε) f (Xi+�, Xi)/�∑n

i=1 1Xi∈(a−ε,a+ε)
, (2.4)

where � is the time distance between discretely observed observations and ε is a band-
width parameter according to which an interval around a on the sample path of the
process is determined. Asymptotically, we send � to 0 to replicate the limit operation in
the definition of M (a) (i.e., limt→0). Furthermore, (i) we let the bandwidth ε vanish so
as to obtain averages of functions f (Xi+�, Xi) such that Xi is in a close neighborhood of
a and (ii) we let n grow to infinity to guarantee that the number of observations Xi in
the actual vicinity of a [i.e.,# {i : Xi ∈ (a − ε, a + ε)} =∑n

i=1 1Xi∈(a−ε,a+ε)] diverges to
infinity for identification. Again, we expect M̂ (1)

(n,�,ε)(a) to converge to M (a) as n →∞,
�→ 0, and ε→ 0.5

Clearly, the function
∑n

i=1 1X∈(a−ε,a+ε) counts the number of observations inside
the window (a − ε, a + ε) and weighs them equally. It seems plausible, however, that
observations that are closer to a contain more useful information than more distant
ones. In consequence, it might be worth replacing the so-called indicator kernel, i.e.,
1X∈(a−ε,a+ε), with a function that is centered at a and converges monotonically to 0 as
|X | → ∞. Such a function would give a higher weight to observations that are closer

4We are purposely nonspecific about the mode of divergence at this point. We will be clear about it in what follows.
5Naturally, any notion of consistency (and convergence in distribution) requires appropriate (limiting) relations among n,�, and ε. In what
follows, we will make these conditions explicit for all estimators.
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to a, thereby increasing efficiency. This is typically achieved using smooth kernels K(.)
satisfying

∫
K(u)du = 1 (see, e.g., Härdle and Linton, 1994 and the assumptions below).

The ubiquitous second-order Gaussian kernel is an example. Hence, we may write

M̂ (2)
(n,�,ε)(a) =

∑n
i=1 K

(Xi−a
ε

)
f (Xi+�, Xi)/�∑n

i=1 K
(Xi−a

ε

) , (2.5)

which is simply a version of (2.4). As earlier, we expect M̂ (2)
(n,�,ε)(a) to be consistent for

M (a) as n →∞,�→ 0, and ε→ 0 at appropriate rates.
We now summarize the features of the asymptotic requirements which appear to be

necessary for consistency. In general, we will need to assume that the distance between
observations � vanishes in the limit (i.e., infill asymptotics) while the time span (T , say)
diverges to infinity (i.e., long span asymptotics) along with the number of observations n.
As briefly mentioned in the introduction and illustrated above in the context of simple
examples, the former assumption (i.e.,�→ 0) is important to replicate the infinitesimal
features of the theoretical quantities.The latter (i.e.,T , n →∞) is crucial to guarantee that
the number of visits that the sampled process makes in the neighborhood of a generic point
a diverges to infinity in the limit (i.e.,

∑n
i=1 1Xi∈(a−ε,a+ε) →∞or

∑n
i=1 K

(Xi−a
ε

)→∞),
provided the same happens for the path of the underlying process. Of course,the additional
assumption ε→ 0 permits proper (asymptotic) conditioning at a.

Coherently with our discussion, the following sampling scheme has been adopted by
the recent literature on the functional estimation of continuous-time Markov processes
and will be used throughout this chapter.We will assume that we observe the process of
interest Xt at points {t = t1, t2, . . . , tn} in the time interval [0, T ] with T > 0. Also, the
data will be taken to be equispaced. Thus,{

X�n,T , X2�n,T , X3�n,T , . . . , Xn�n,T

} (2.6)

will be n observations at{
t1 = �n,T , t2 = 2�n,T , t3 = 3�n,T , . . . , tn = n�n,T

}
, (2.7)

where �n,T = T/n. In the limit, we will let n →∞, T →∞, and �n,T = T/n → 0.
In a few instances, T will be fixed at T . In the sequel, we will be explicit about the
limiting behavior of the time span T .

Based on our discussion, it appears that the only requirements that we have to impose
on the dynamic properties of the processes of interest for identification are those that
guarantee divergence of the number of visits in the spatial vicinity of points in the range
of the process. This is a typical feature of recurrent processes. Specifically, the sample
path of a recurrent process returns to sets of nonzero Lebesgue measure an infinite
number of times over time with probability one.We now rigorously state the definitions
of recurrence used in this review (the interested reader is referred to the classical treatment
in Meyn and Tweedie, 1993, for additional discussions).
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Definition 1 (Null and Positive Harris Recurrence): Let A be a measurable set of the
range D of the process of interest.Define the first hitting time of A as τA = inf {t ≥ 0 : Xt ∈ A}.

The process Xt is called null Harris recurrent if there is a σ−finite measure m∗(dx) such that
m∗(A) > 0 implies Pa[τA <∞] = 1 for every a ∈ D/A, where A is the closure of the set A.

It is called positive Harris recurrent (ergodic) if there is a σ−finite measure m∗(dx) such that
m∗(A) > 0 implies Ea[τA] <∞ for every a ∈ D/A.

Define the occupation time measure of the set A of positive Lebesgue measure as

ηT
A =

T∫
0

1{Xs∈A}ds. (2.8)

The quantity ηT
A gives the amount of time spent by the process at A between 0 and T .

Under both notions of recurrence,we obtain Pa[limT→∞ ηT
A = ∞] = 1 for ∀a ∈ D/A.

Specifically, starting from a level a not belonging to the generic set A, the process Xt

visits A an infinite number of times as T →∞, almost surely.This property is of course
crucial for (pointwise) identification.

Null and positive recurrence are milder assumptions than stationarity. Stationary pro-
cesses are recurrent, but recurrent processes do not have to be stationary. In particular,
recurrent processes do not have to be endowed with a stationary probability measure.
Null recurrent processes, in fact, do not possess a time-invariant probability measure.
Nonetheless, null Harris recurrence implies the existence of a unique invariant measure
m(dx) (= m∗(dx) in the Definition). Assume X (x) is the unique strong solution of the
process with initial condition X (x)

0 = x ∈ D. The invariant measure is such that

m (A) =
∫
D

P
(
X (x)

t ∈ A
)

m (dx) ∀A ⊂ B(D),
(2.9)

for every 0 ≤ t <∞ (see, e.g., Azéma et al., 1967; Karatzas and Shreve, 1991, Exercise
6.18, p. 362).6 If the invariant measure is finite on D (i.e., m(D) <∞), then the process
is positive recurrent (ergodic) and has a time-invariant stationary probability measure
(distribution) to which it converges, at least in the limit. Such measure is given by
f (dx) = m(dx)

m(D)
. A positive-recurrent process that is started in its stationary distribution

remains in the stationary distribution and,as a consequence,is strictly stationary. Examples
will be provided in the sequel. For now it suffices to say that Brownian motion in one
(cf., Example 1 in Section 3) and two dimensions are classical examples of null recurrent
processes. Classical Vasicek (Ornstein–Uhlenbeck) and CIR processes (cf., Cox et al.,

6Alternatively, one could write

m = Ptm ∀t ≥ 0,

where (Pt )t≥0 is the semigroup of the process Xt (cf.,Aït-Sahalia et al., 2010, in this volume; Ethier and Kurtz, 1986).
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1985;Vasicek, 1977) are strictly stationary or positive recurrent depending on whether
they are initiated at their stationary measures or not (cf., Example 5 in Section 3).

To conclude, the estimators reviewed in this chapter are nonparametric or semipara-
metric in nature and either follow the general form of (2.5) above or are constructed
based on it. Null recurrence is all that we require to guarantee consistency of the estimates
for the infinitesimal moments of interest. Importantly, positive recurrence and stationar-
ity, which are clearly more stringent assumptions than null recurrence, will be shown to
only yield an increase in the rates of convergence of the estimators to the corresponding
moments.

We now turn to a detailed analysis of the specific processes mentioned in the introduc-
tion, namely scalar diffusion processes (SDPs), scalar jump-diffusion processes (SJDPs),
and multivariate diffusion processes (MDPs). A separate section will be devoted to each
of these. In what follows we will not review the definitions of recurrence that were laid
out earlier but simply list conditions under which the processes display either ergodic or
null recurrent behavior.

The following, rather standard,Assumption (1) will be imposed on the kernel function
K(.) throughout the present chapter.

(1) The kernel K(.) is a continuously differentiable, symmetric, and nonnegative function on the
real line so that ∫

K(s)ds = 1, K1 =
∫

s2K(s)ds <∞ (2.10)

and

K2 =
∫

K2(s)ds <∞,
∫
|K′(s)|ds <∞. (2.11)

3. SCALAR DIFFUSION PROCESSES
In this section, we model a generic time series as the solution Xt to the stochastic
differential equation

dXt = μ(Xt)dt + σ(Xt)dBt , (3.1)

where Bt is a standard Brownian motion defined on the filtered probability space
(�,�B, (�B

t )t≥0, P). The initial condition X0 = X belongs to L2 and is taken to be
independent of {Bt : t ≥ 0}. Define the left-continuous filtration

�t := σ(X) ∨ �B
t = σ(X , Bs; 0 ≤ s ≤ t) 0 ≤ t <∞,

(3.2)

and the collection of null sets

ℵ := {N ⊆ �; ∃G ∈ �∞ with N ⊆ G and P(G) = 0}. (3.3)
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Create the augmented filtration

�̃X
t := σ(�t ∪ ℵ) 0 ≤ t <∞,

(3.4)

and imposeAssumptions 2 through 4 (5) below, to assure the existence and pathwise uni-
queness of a null recurrent (positive recurrent) and {�̃X

t }-adapted solution to (3.1).

(2) μ(.) and σ(.) are time-homogeneous, B-measurable functions on D = (l, u) with −∞ ≤
l < u ≤ ∞ where B is the σ-field generated by Borel sets on D. Both functions satisfy local
Lipschitz and growth conditions.Thus, for every compact subset J of the range of the process,
there exist constants C1 and C2 such that, for all x and y in J ,

|μ(x)− μ(y)| + |σ(x)− σ(y)| ≤ C1|x− y|, (3.5)

and

|μ(x)| + |σ(x)| ≤ C2{1+ |x|}. (3.6)

(3) σ2(.) > 0 on D.
(4) (Null recurrence) Define the second-order elliptic operator7

Lϕ(.) = ϕ′(.)μ(.)+ 1
2
ϕ′′(.)σ2(.). (3.7)

There is a function ϕ(.) : R\{0} → R of class C2 in the domain of the operator that satisfies

Lϕ(.) ≤ 0 on R\ {0} (3.8)

and is such that $(r) := min|x|=r ϕ(.) is strictly increasing with limr→∞ $(r) = ∞ (cf.,
Karatzas and Shreve, 1991, Exercise 7.13, part (i), p. 370).

(5) (Positive recurrence)There is a function ϕ(.) : R\{0} → R of class C2 in the domain of the
operator that satisfies

Lϕ(.) ≤ −1 on R\ {0} (3.9)

and is such that $(r) := min|x|=r ϕ(.) is strictly increasing with limr→∞ $(r) = ∞ (cf.,
Karatzas and Shreve, 1991, Exercise 7.13, part (iii), p. 371).

Under Assumptions 2 through 4 (5), the stochastic differential equation (3.1) yields a
strong solution Xt which is unique, null recurrent (positive recurrent), and continuous
in t ∈ [0, T ]. In particular, the process Xt satisfies

Xt = X +
t∫

0

μ(Xs)ds +
t∫

0

σ(Xs)dBs (3.10)

7 The operator L is generally called the infinitesimal generator of the SDP Xt . We refer the interested reader to Aït-Sahalia et al. (2010),
in the present volume, and Hansen and Scheinkman (1995) for a discussion of estimation methods for strictly stationary diffusions based
on the properties of the infinitesimal generator.
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almost surely, with
∫ t

0 E
(
X2

s
)

ds <∞, and is a semimartingale. The dynamics of Xt are
determined by the functionsμ(.) and σ(.).These functions are the object of econometric
interest.

Assumptions 4 and 5 are vital in determining recurrent behavior for Xt . As pointed
out earlier, null recurrence is a sufficient condition for the existence of σ-finite invariant
measure m(dx). Such a measure is unique up to multiplication by a constant and, in the
case of SDPs, is known to be equal (up to a proportionality factor) to the so-called speed
measure, i.e.,

m(dx) = 2dx
S′(x)σ2(x)

∀x ∈ D ⊆ R, (3.11)

where S′(x) is the first derivative of the scale function, namely

S(x) =
x∫

c

exp

⎧⎨⎩
y∫

c

[
−2μ(s)
σ2(s)

]
ds

⎫⎬⎭ dy,
(3.12)

where c ∈ D. Under Assumption 5, the SDP is positive recurrent (i.e., m(D) <∞) and
admits a time-invariant probability measure. In particular, the normalized speed measure,
i.e., m(dx)/m(D), is the limiting stationary probability measure of Xt implying

lim
t→∞Px(Xt < z) = m((l, z))

m(D)
∀x, z ∈ D ⊆ R, (3.13)

(see, e.g., Karatzas and Shreve, 1991; Pollack and Siegmund, 1985, Exercise 5.40, p. 353).
More explicitly, we can write the stationary probability density of the process as

f (x) = m(x)
m(D)

= 1
m(D)

exp
{∫ x

c

[
2μ(s)
σ2(s)

]
ds
}

σ2(x)

=

⎛⎜⎜⎝∫
D

exp
{ x∫

c

[
2μ(s)
σ2(s)

]
ds
}

σ2(x)
dx

⎞⎟⎟⎠
−1

exp
{∫ x

c

[
2μ(s)
σ2(s)

]
ds
}

σ2(x)
.

(3.14)

We now provide some examples.

Example 1 (Natural scale diffusions): For general scalar diffusions, if the scale function
S(x) is such that limx→l+ S(x) = −∞ and limx→u− S(x) = ∞, then the process is recurrent,
that is it satisfies Lϕ(.) ≤ 0,where ϕ is defined in (4) above (cf.,Khasminskii, 1980).Apparently,
the solution to dXt = σ(Xt)dBt, with σ(.) continuous and strictly positive, is Harris recurrent
over R with scale function S(x) = x− c and invariant measure m(dx) = 2dx

σ2(x) . Chen et al.

(1999), e.g., discuss the mixing properties of the natural scale diffusion with σ2(x) = (1+ x2)γ

for 1
2 < γ < 1 (see also Aït-Sahalia et al., 2010, in this volume). If 0 ≤ γ ≤ 1

2 , the process is
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null recurrent on R. For values of γ strictly larger than 1
2 , the process is positive recurrent.This

is a case of “volatility-induced” reversion to the mean (Conley et al., 1997).Trivially, standard
Brownian motion (i.e., γ = 0) is null recurrent.

Example 2 (Brownian motion with drift): Assume Xt is the solution to dXt = μdt +
σdBt with σ > 0. The scale function and the speed measure are S(x) = 1−e−α(x−c)

α
and

m(dx) = 2eαx

σ2 dx, where α = 2μ
σ2 , respectively. If μ > 0, then limx→∞ S(x) = 1−eαc

2α and
limx→−∞ S(x) = −∞. The process is not recurrent and P[inf 0≤t<∞ Xt > −∞] = 1. If
μ < 0, then limx→∞ S(x) = ∞ and limx→−∞ S(x) = 1−eαc

2α . The process is not recur-
rent and P[sup0≤t<∞ Xt <∞] = 1. In the former case, Xt has an attracting boundary
at ∞(i.e., P[limt→∞ Xt = ∞] = 1). In the latter case, Xt has an attracting boundary at
−∞(i.e., P[limt→∞ Xt = −∞] = 1). In both cases, it is easy to show that the boundary
is unattainable, i.e., it cannot be reached in finite time with positive probability (cf., Karatzas and
Shreve, 1991; Karlin andTaylor, 1981).

Example 3 (Geometric Brownian motion): Assume Xt is the solution to dXt =
μXtdt + σXtdBt, with μ, σ > 0 and X > 0. Then, S(x) = cα

[
x−α+1

−α+1 − c−α+1

−α+1

]
, where

α = 2μ
σ2 provided α < 1 or α > 1.The process is not recurrent for these choices of α. Specifically,

if α < 1, then limx→0 S(x) = −c
−α+1 and limx→∞ S(x) = ∞ implying P[sup0≤t<∞ Xt <

∞] = 1 = P[limt→∞ Xt = 0]. If α > 1, then limx→∞ S(x) = −c
−α+1 and limx→0 S(x) =

−∞ implying P[inf 0≤t<∞ Xt > 0] = 1 = P[limt→∞ Xt = ∞]. If α = 1, then S(x) =
c[log x− c] which implies limx→0 S(x) = −∞ and limx→∞ S(x) = ∞, giving recurrence.
In addition m(dx) = 2dx

cσ2x and is not integrable.Therefore, geometric Brownian motion is null
recurrent when 2μ = σ2.

Of course, the same implications could have been derived by noticing that monotone transfor-
mations, such as exponentiation, preserve recurrence. By Ito’s lemma, d log(Xt) = θdt + σdBt,
where θ = μ− 1

2σ
2, thereby yielding Example 2, again, for the log transformation.Using Exam-

ple 2, one could readily obtain that log(Xt) (Xt) is not recurrent and has an unattainable, attracting
boundary at∞(∞) if θ > 0 (or if 2μ > σ2). Similarly, log(Xt) (Xt) is not recurrent and has an
unattainable, attracting boundary at−∞ (0) if θ < 0 (or if 2μ < σ2). If θ = 0 (or if 2μ = σ2),
log(Xt) and Xt are null recurrent.

Example 4 (Bessel process): Assume dXt = d−1
2Xs

dt + dBt with d ≥ 2 and X > 0. If

d > 2,we obtain S(x) = cd−1
[

c2−d−x2−d

d−2

]
giving limx→∞ S(x) = c

d−2 and limx→0 S(x) =
−∞. In consequence, the process is not recurrent and P[limt→∞ Xt = ∞] = 1. If d = 2, then
S(x) = c[log x− log c] implying recurrence. Furthermore, the speed measure (i.e., m(dx) =
2xdx

c ) is not integrable between 0 and ∞ giving null recurrence.

Example 5 (Affine models): Assume both the drift and the infinitesimal variance are lin-
ear functions of the state (i.e., μ(x) = c0 + c1x and σ2(x) = c2 + c3x with c2, c3 ≥ 0).The
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well-knownVasicek (Ornestein-Uhlenbeck) and CIR processes belong to this general class and are
obtained by setting c3 and c2 equal to zero, respectively (cf.,Cox et al.,1985;Vasicek,1977).Under
standard assumptions on the parameters (see Piazzesi, 2010, in this volume, for a discussion of
scalar and multivariate affine models and related estimation procedures), affine diffusions are strongly
ergodic (positive recurrent).Should c0 and c1 be equal to zero and σ2(x) = c2 + c3|x| with c2 > 0
and c3 ≥ 0, then the invariant measure would not be integrable over R and the resulting process
would be null recurrent (cf., Example 1).

Before describing the estimation strategy,we wish to discuss descriptive tools that have
been recently introduced to characterize recurrent SDPs.These tools rely on the notion
of local time (Protter, 1995, and Revuz andYor,1998, are classical references). Local time
is a random quantity which measures the amount of time that the process spends in the
vicinity of a point. As a consequence, it might be interpreted as a spatial density and
might be used to analyze the locational features of a possibly nonstationary process (for
which it is defined, of course) in just the same way as a stationary probability density
may be used to study stationary processes (Phillips, 2001, 2004). The next subsection
defines local time and introduces a simple estimation strategy to identify it based on a
discrete sample of observations.We will also discuss the role that estimated local time can
play as a descriptive statistic for recurrent SDPs and its importance in designing robust
(to deviations from stationarity) identification procedures for processes whose dynamics
are driven by (3.1) (Bandi, 2002). The terms “local time,”“spatial density,” and “sojourn
time” will be used interchangeably in what follows.

3.1. Generalized Density Estimation for SDPs
The local time of a continuous semimartingale is defined as the random quantity LX (t, a)
satisfying

LX (t, a) = lim
ε→0

1
ε

t∫
0

1[a, a+ε[(Xs)d[X ]s ∀a, t,
(3.15)

where [X ]t is the quadratic variation process of the underlying continuous semimartin-
gale at t. Formula (3.15) clarifies the sense in which LX (t, a)measures time in information
units or, more rigorously, in units of the quadratic variation process. Interestingly, one
could write

[X ]t =
∞∫

−∞
LX (t, a)da,

(3.16)

thus expressing the quadratic variation process in terms of contributions coming
from fluctuations in the process that occur in the vicinity of different spatial points
a ∈ (−∞,∞). Equation (3.16) is a spatial decomposition of variation. Readers famil-
iar with stationary time series analysis will recognize the similarity of (3.16) to the
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decomposition of the variance σ2
X of a process X in terms of its spectral density at

different frequencies, i.e.,

σ2
X =

π∫
−π

fxx(w)dw,
(3.17)

where fxx(w) is the spectral density of X .
We can specialize the analysis to the case of SDPs and consider a rescaled version of

the standard notion of sojourn time defined as

LX (t, a) = LX (t, a)
σ2(a)

. (3.18)

Because, for an SDP as in (3.10), d[X ]s = σ2(Xs)ds, then formula (3.18) can be inter-
preted as representing time in real-time units rather than in units of the nondecreasing
quadratic variation process. In other words,LX (t, a) records the amount of calendar time
spent by the process in the neighborhood of a and can be defined as “chronological local
time” (Bosq, 1998; Phillips and Park, 1998). Such a notion has an interesting interpreta-
tion. Consider the occupation measure that was introduced in Section 2. As pointed out
earlier, the quantity ηT

A represents the amount of time spent by the process in a certain
spatial set of nonzero Lebesgue measure. Chronological local time is nothing but the
density of the occupation measure of the process. Put differently, chronological local
time is a version of the Radon–Nikodym derivative of the occupation measure with
respect to the Lebesgue measure and is an occupation density (Geman and Horowitz,
1980). In fact, we can write

ηT
A =

T∫
0

1{Xs∈A}ds =
∫
A

LX (T , a)da, ∀A ⊂ B(D), (3.19)

and, by linearity and monotone convergence,

T∫
0

�(Xs)ds =
∫

�(a)LX (T , a)da, (3.20)

where � is a Borel measurable, nonnegative function (Bosq, 1998, inter alia). Equation
(3.20) is typically called the “occupation time formula” and may be regarded as the
analog of a more classical expectation (i.e., the integral with respect to a time-invariant
probability measure) in the analysis of times series which are not necessarily endowed
with a time-invariant probability measure.

From an applied standpoint, the notion of chronological local time is relevant for at
least three mutually reinforcing reasons. First, chronological local time has an appealing
interpretation in terms of calendar time spent by the process in the vicinity of values
in its range. Second, chronological local time arises naturally as the limiting process
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to which density-like kernel estimators converge, provided the underlying process is a
scalar semimartingale and suitable conditions on the relevant bandwidth are met. Third,
as shown in the next subsection, this is the notion of local time which will play a crucial
role in understanding the limiting distributions of kernel estimates of the infinitesimal
moments μ(.) and σ2(.). In what follows, we will use the convention of referring to it
simply as “local time.”

The first two reasons together suggest the usefulness of local time as a new method for
the descriptive analysis of data that might not be stationary so that the techniques may be
used in situations where estimated probability density functions do not make theoretical
sense. Consistent with this logic, recent work has proposed nonparametric estimates of
the local time process and has interpreted them in terms of generalized densities to be
used as new descriptive tools for studying the spatial characteristics of time series which
might be nonstationary. The original intuition is due to Phillips (2001, 2004) in the
context of nonstationary discrete-time series embeddable in Brownian motion (namely
discrete time series of the unit-root type). In continuous-time finance models, local time
was first used as a descriptive tool for possibly nonstationary (recurrent) SDPs of the
form analyzed here by Bandi (2002).

As pointed out earlier, a natural way to identify local time is to use density-like kernel
estimators. Based on the same sampling scheme as in Section 2 with T = T , we define
an estimate of LX (T , a) as

L̂X (T , a) = �n,T

hn,T

n∑
i=1

K

(
Xi�n,T

− a

hn,T

)
,

(3.21)

where hn,T is bandwidth sequence depending on n and K(.) is a conventional kernel
function satisfying the assumptions in Section 2. Theorems 1 and 2 below show consis-
tency of the local time estimator for its theoretical counterpart and provide a limiting
distribution.

Theorem 1 Assume Xt is the solution to (3.1). If hn,T → 0 as n →∞ for a fixed time span
T (= T) in such a way that 1

hn,T
(�n,T log(1/�n,T ))

1/2 = o(1), then

L̂X (T , a)
a.s.→ LX (T , a) ∀a ∈ D. (3.22)

Proof See Florens-Zmirou (1993). For a proof that allows for more general kernel func-
tions than the indicator kernel used in Florens-Zmirou (1993) and uses different statistical
tools, such as the occupation time formula in (3.20), see Bandi and Phillips (2003). Park
(2006) studies uniform L1-consistency.

We now turn to the asymptotic distribution. Here, and in what follows, the notation
MN denotes the mixed Gaussian density.
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Theorem 2 Assume Xt is the solution to (3.1). If hn,T → 0 as n →∞ for a fixed time span
T (= T) in such a way that 1

h3/2
n,T

(�n,T log(1/�n,T ))
1/2 = o(1), then

1√
hn,T

(
L̂X (T , a)− LX (T , a)

)
⇒MN

(
0, 8k

1
σ2(a)

LX (T , a)
)

∀a ∈ D, (3.23)

where k = ∫∞
0

∫∞
0 min(s, q)K(s)K(q)dsdq.

Proof See Bandi (2002) for a proof in the case of an underlying SDP that is assumed
to be the unique and strong solution to a stochastic differential equation like (3.1), in
agreement with the statement of the theorem. See Phillips (2001,2004) for a proof in the
case of the estimated local time of linear, nonstationary, discrete-time series embeddable
in Brownian motion.

Theorem 1 justifies estimating the calendar time that an SDP spends in the local vicinity
of a point by using a density-like kernel estimator. Theorem 2 enables us to construct
asymptotic confidence intervals that closely resemble conventional intervals for probabil-
ity densities obtained from kernel estimates (Bandi,2002;Phillips, 2004).The (estimated)
asymptotic 95% confidence interval of LX (T , a) is, in fact, given by

L̂X (T , a)± 1.96
(

8k
hn,T

σ̂2(a)
L̂X (T , a)

)1/2

. (3.24)

It is worth recalling here that the limiting process LX (T , a) is random. As opposed to
standard probability densities, spatial densities have a time dimension that can be fruitfully
explored by changing the span of data used in the implementation of (3.21). In other
words, L̂X (T 1, a) and L̂X (T 2, a)measure the time spent by the SDP of interest at a in the
time intervals [0, T 1] and [0, T 2], respectively, and can be used as robust (to deviations
from stationarity) descriptive statistics to summarize the spatial evolution of the SDP
over time.

Some additional observations are in order. Given the interpretation of local time, the
following result should come as no surprise.

Theorem 3 Assume Xt the solution to (3.1) and m(D) <∞ (as implied by Assumption 5).
If hn,T → 0 as n, T →∞ in such a way that 1

hn,T
(�n,T log(1/�n,T ))

1/2 = o(1), then

L̂X (T , a)
T

a.s.→ f (a) = m(a)
m(D)

∀a ∈ D. (3.25)

Proof See Bandi and Phillips (2003) and Moloche (2004a). The interested reader is also
referred to Moloche (2004a) for a discussion of the limiting properties of the expected
local time process. An asymptotic theory for estimates of the expected local time is given
in Park (2006).



Nonstationary Continuous-Time Processes 155

This result simply tells us that the standardized local time estimator of a strictly stationary
(or positive recurrent) SDP converges pointwise to the stationary density of the process
with probability one. Loosely speaking, if we divide the estimated time spent by the
process at a between 0 and T by T , by appealing to the conventional frequentist notion
of probability, we expect the ratio to converge to the probability mass at a when letting
T diverge to infinity. Equivalently, we can say that the local time of a stationary, or
positive recurrent, process diverges to infinity linearly with T (see also Bosq, 1997; Bosq
and Davydov, 1998). Naturally, we expect nonstationary, but recurrent, processes to have
local times which diverge at speeds that are slower than T . Such speeds are generally not
quantifiable. Nonetheless, Brownian motion is known to have a local time that diverges
at speed

√
T .The following result can be easily proved for a standard Brownian motion

(see Bandi and Phillips, 2003, and, for a more general method of proof,Moloche, 2004a):

L̂B(T , a)√
T

=
√

TLB

(
1, a√

T

)
√

T
+ oa.s.(1)

a.s.→ LB(1, 0). (3.26)

We will come back to a discussion of the divergence rates of local time when describing
the estimation procedures for drift and diffusion function. For the time being, it suffices
to stress that the class of SDPs that we are studying, namely the class of recurrent SDPs,
has local times that diverge to infinity with probability one when the time span does so.
The reason is easy to explain. Local time measures the time spent by the process at a point
between 0 and T , say. Scalar recurrent processes visit every point an infinite number of
times as T goes to infinity with probability one. Necessarily, therefore, the local time of
a recurrent process diverges to infinity almost surely as T diverges to infinity.

We complete this subsection by pointing out that functions of spatial densities can be
used as descriptive tools for possibly nonstationary SDPs just like functions of probability
densities are used as descriptive statistics in the context of stationary time series (Phillips,
2001, 2004). For example, Phillips (2004) defines a new kind of hazard function for
discrete-time nonstationary time series as

HX (T , a) = LX (T , a)
∞∫
a

LX (T , s)ds
,

(3.27)

where,as usual,LX (T , a) is the standard sojourn time. Such a function can be interpreted
as the spatial counterpart of conventional hazard functions (see, e.g., Prakasa-Rao, 1983;
Silverman, 1986), where probability densities replace local times, and might be used to
quantify hazards of certain financial time series such as inflation rates or interest rates.
When applied to interest rates (as done in Bandi, 2002), for instance, formula (3.27) gives
the conditional risk over the period [0, T ] of an interest rate level of a, given that interest
rates are at least as large as a. An asymptotic theory for kernel estimates of spatial hazard
rates is available to assist statistical inference.
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Theorem 4 Assume Xt is the solution to (3.1). If hn,T → 0 as n →∞ for a fixed time span
T (= T) in such a way that 1

hn,T
(�n,T log(1/�n,T ))

1/2 = o(1), then

ĤX (T , a) = L̂X (T , a)
∞∫
a

L̂X (T , s)ds

a.s.→ HX (T , a) ∀a ∈ D. (3.28)

Furthermore, if hn,T → 0 as n →∞ for a fixed time span T (= T) and

1

h3/2
n,T

(�n,T log(1/�n,T ))
1/2 = o(1), (3.29)

then

1√
hn,T

(
ĤX (T , a)−HX (T , a)

)
⇒MN

(
0,

8k(HX (T , a))2

σ2(a)LX (T , a)

)
∀a ∈ D, (3.30)

where k = ∫∞
0

∫∞
0 min(s, q)K(s)K(q)dsdq.

Proof See Bandi (2002) for a proof in the case of an underlying SDP that is assumed to be
the unique and strong solution to a stochastic differential equation like (3.1), consistent
with the statement of the theorem. See Phillips (2001, 2004) for a proof in the case
of the estimated local time of linear, nonstationary, discrete-time series embeddable in
Brownian motion.

For an introduction to descriptive methods for nonstationary discrete-time series using
local time and related notions, the reader is referred to Phillips (2001, 2004). Estimated
spatial densities and spatial hazard rates have been used by Bandi (2002) in studying the
temporal dynamics of a nonparametric continuous-time specification [as in (3.1) above]
for the short-term interest rate process. We refer the interested reader to that paper for
a discussion about empirical implementation of the methodology in the case of SDPs.
Park (2006) provides an estimation theory for functionals of spatial densities and spatial
distributions while introducing novel (spatial) notions of value-at-risk and stochastic
dominance, among other concepts. We now turn to the estimation of the infinitesimal
conditional moments μ(.) and σ2(.).

3.2. NW Kernel Estimation of the Infinitesimal Moments of an SDP
It is well known that the transition density of the unique solution to (3.1) is completely
characterized by the functions μ(.) and σ2(.). In other words, understanding the
temporal evolution of a general SDP amounts to identifying the drift and the diffusion
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function. As discussed in Section 2, such functions have (infinitesimal) conditional
moment definitions, i.e.,

Ea[Xt − a] = tμ(a)+ o(t) (3.31)

Ea[(Xt − a)2] = tσ2(a)+ o(t), (3.32)

as t ↓ 0, or

μ(a) = lim
t→0

1
t
Ea[Xt − a], (3.33)

σ2(a) = lim
t→0

1
t
Ea [(Xt − a)2

]
, (3.34)

where a is a generic initial condition and Ea is, as earlier in the introduction, the
expectation operator associated with the process started at a. Loosely speaking, (3.31)
and (3.32) can be interpreted as representing the “instantaneous” conditional mean and
the “instantaneous” conditional variance of the process when X0 = a.

Our previous, informal arguments, combined with the definitions of μ(.) and σ2(.)
in (3.31) and (3.32) above, suggest that standard functional techniques for conditional
expectations based on local averages may be natural tools to estimate the two functions
driving the evolution of a general SDP.This is the intuition in Bandi and Phillips (2003)
where sample analogs to infinitesimal conditional expectations are used to estimate both
the drift and the diffusive volatility. Consider the same sampling scheme as in Section 2
(i.e., n, T →∞ with �n,T = T

n → 0). Define

μ̂(n,T )(a) = 1
�n,T

∑n−1
i=1 K

(Xi�n,T−a
hn,T

) (
X(i+1)�n,T − Xi�n,T

)
∑n

i=1 K
(Xi�n,T−a

hn,T

) , (3.35)

σ̂2
(n,T )(a) =

1
�n,T

∑n−1
i=1 K

(Xi�n,T−a
hn,T

) (
X(i+1)�n,T − Xi�n,T

)2

∑n
i=1 K

(Xi�n,T−a
hn,T

) , (3.36)

where K(.) is a kernel function satisfying the assumptions in Section 2. Formulae (3.35)
and (3.36) can be interpreted as the NW kernel estimates corresponding to (3.33) and
(3.34) above, and they belong to the more general class of functional estimates suggested
in Bandi and Phillips (2003).We now consider some aspects of the asymptotic theory in
that paper. We begin with (3.35).

Theorem 5 Assume Xt is the solution to (3.1).Also, assume hn,T is such that

LX (T , a)
hn,T

(�n,T log(1/�n,T ))
1/2 = oa.s.(1) (3.37)
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and hn,T LX (T , a)
a.s.→∞ as n, T →∞ with T

n → 0.Then,

μ̂(n,T )(a)
a.s.→ μ(a). (3.38)

Furthermore, if h5
n,T LX (T , a) = Oa.s.(1), then√
hn,T L̂X (T , a)

{
μ̂(n,T )(a)− μ(a)− %μ(a)

}⇒ N
(
0, K2σ

2(a)
)
, (3.39)

where

%μ(a) = h2
n,T K1

[
μ′(a)m′(a)

m(a)
+ 1

2
μ′′(a)

]
, (3.40)

and m(a) is the speed function of the process X at a, i.e., m(a) = 2
S′(a)σ2(a) .

Proof See Bandi and Phillips (2003).

We now turn to (3.36).

Theorem 6 Assume Xt is the solution to (3.1).Also, assume hn,T is such that

LX (T , a)
hn,T

(�n,T log(1/�n,T ))
1/2 = oa.s.(1) (3.41)

as n, T →∞ with T
n → 0.Then,

σ̂2
(n,T )(a)

a.s.→ σ2(a). (3.42)

Furthermore, if
h5

n,T LX (T ,a)
�n,T

= Oa.s.(1), then√
hn,T L̂X (T , a)

�n,T

{̂
σ2
(n,T )(a)− σ2(a)− %σ2(a)

}⇒ N
(
0, 2K2σ

4(a)
)
,8 (3.43)

where

%σ2(a) = h2
n,T K1

[(
σ2(a)

)′ m′(a)
m(a)

+ 1
2

(
σ2(a)

)′′]
, (3.44)

and m(a) is the speed function of the process X at a, i.e., m(a) = 2
S′ (a)σ2(a)

.

Proof See Bandi and Phillips (2003).

8 The proportionality factor reported in Bandi and Phillips (2003), i.e., 4 rather than 2, is of course a typo (see, e.g., the related findings in
Bandi and Phillips, 2007; Bandi and Moloche, 2004).
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Under appropriate conditions on the bandwidths, the estimators converge to the true
functions with probability one.The asymptotic distributions are normal and centered at
the relevant functions, provided the bandwidth sequences converge to zero sufficiently
fast. If this is not the case, nonrandom bias terms affect the limiting distributions. The

diffusion estimator converges to its theoretical counterpart at a faster rate

(√
hn,T L̂X (T ,a)

�n,T

)
than the drift estimator

(√
hn,T L̂X (T , a)

)
.We will now be more specific about the drift

case, but similar arguments apply to the diffusion function. A discussion of the difference
between the two cases will follow.

When dealing with the drift, local time plays the same role which is played by the
number of observations in the more standard estimation of conditional moments in
discrete time.What matters to identify the drift at a point a is not the rate of divergence
of the number of data points n but the rate of divergence of the number of calendar time
units spent by the process in the vicinity of the level a (cf., Section 2). Not surprisingly,
therefore, the standard condition nhn →∞ (or ThT →∞) is replaced in our case by
hn,T LX (T , a)

a.s.→∞ as n, T →∞ with T
n → 0. Equivalently, the pointwise condition

that needs to be imposed on the bandwidth to prevent the insurgence of a bias term in
the limit is h5

n,T LX (T , a)
a.s.→ 0 as opposed to the more conventional condition h5

nn → 0
(or h5

T T → 0). In other words, the smoothing parameter has to converge to zero slowly

enough as to guarantee that hn,T LX (T , a)
a.s.→∞ (rather than nhn →∞) but sufficiently

fast as to satisfy h5
n,T LX (T , a)

a.s.→ 0 (rather than h5
nn → 0).

Correspondingly, the rate of convergence of the estimator is random and equal to√
hn,T L̂X (T , a) rather than

√
nhn. Let us now consider the asymptotic variance and

bias. These are given by (∫∞
−∞K2(s)ds

)
σ2(a)

hn,T L̂X (T , a)
(3.45)

and

h2
n,T

⎛⎝ ∞∫
−∞

s2K(s)ds

⎞⎠[
μ′(a)m′(a)

m(a)
+ 1

2
μ′′(a)

]
, (3.46)

respectively. Their interpretation is clear when considering well-known findings about
the asymptotic bias and variance of the standard NW estimator of conditional moments
in discrete time (see, for instance, formula (3.60) and Theorem 5 in Pagan and Ullah,
1999). In particular, the spatial density estimate L̂X (T , a) and the ratio between the
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derivative of the speed function and the speed function itself play the same role as that
played by the term Tf (a),where f (a) is the stationary density at a, and the ratio between
the derivative of the density function and the density function itself in conventional
nonparametric time-series analysis under stationarity. The features of the theory we
discuss in this review are a reflection of the mildness of the assumptions imposed on the
underlying process. As pointed out earlier, recurrence is all that is required.

This said, the theory is specializable to the positive recurrent and stationary cases.
The following theorems mirror more conventional results in the functional estimation
of conditional expectations for stationary, discrete-time series and are immediate after
noticing that, under conditions laid out earlier,

L̂X (T , a)
T

a.s.→ f (a) (3.47)

and9

m′(a)
m(a)

= f ′(a)
f (a)

= (
log f (a)

)′ = 2μ(a)− (
σ2(a)

)′
σ2(a)

(3.48)

under positive recurrence or stationarity (cf., the discussion in the previous subsection).

Theorem 7 Assume Xt is the solution to (3.1) and m(D) <∞ (as implied by
Assumption 5). Furthermore, assume hn,T → 0 as n, T →∞ with �n,T → 0 so that

T
hn,T

(�n,T log(1/�n,T ))
1/2 = o(1) and hn,T T →∞.Then,

μ̂(n,T )(a)
a.s.→ μ(a).

(3.49)

Additionally,

√
hn,T T

{
μ̂(n,T )(a)− μ(a)− %μ(a)

}⇒ N

(
0, K2

σ2(a)
f (a)

)
, (3.50)

if hn,T = O(T−1/5), where

%μ(a) = h2
n,T K1

[
μ′(a) f ′(a)

f (a)
+ 1

2
μ′′(a)

]
, (3.51)

and f (a) is the stationary density function of the process at a.

Proof See Bandi and Phillips (2003).

9The last equality in (3.48) can be proved by solving the equation∫
D

Lϕ(x)f (x)dx = 0

for a function ϕ(.) in the domain of the infinitesimal generator L (cf.,Aït-Sahalia et al., 2010, in this volume). Such an equation holds
by stationarity (cf., Hansen and Scheinkman, 1995).
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Theorem 8 Assume Xt is the solution to (3.1) and m(D) <∞ as implied by
Assumption 5). Furthermore, assume hn,T → 0 as n, T →∞ with �n,T → 0 so that

T
hn,T

(�n,T log(1/�n,T ))
1/2 = o(1).Then,

σ̂2
(n,T )(a)

a.s.→ σ2(a). (3.52)

Additionally,

√
nhn,T

{̂
σ2
(n,T )(a)− σ2(a)− %σ2(a)

}⇒ N

(
0, 2K2

σ4(a)
f (a)

)
, (3.53)

if hn,T = O(n−1/5), where

%σ2(a) = h2
n,T K1

[(
σ2(a)

)′ f ′(a)
f (a)

+ 1
2

(
σ2(a)

)′′]
, (3.54)

and f (a) is the stationary density function of the process at a.

Proof See Bandi and Phillips (2003).

It was noted earlier that the rate of convergence of the drift estimator is
√

hn,T L̂X (T , a).
This rate clarifies the sense in which identification of the infinitesimal first moment of
an SDP requires an enlarging span of data (see, e.g., Geman, 1979). In effect, should T
be fixed, then LX (T , a) would be bounded in probability and the drift estimator would
diverge at the rate

√
hn,T (Bandi, 2002). On the contrary,LX (T , a) diverges to infinity as

T →∞ by the assumption of recurrence, thereby ensuring that
√

hn,T L̂X (T , a)
a.s.→∞,

provided the bandwidth hn,T converges to zero slowly enough. The intuition why an
enlarging span of data for drift estimation is needed was put forward in Section 2,but it is
worth repeating here for clarity.To achieve consistency of the drift estimator at a certain
spatial level, say a, we need the process to visit that level an infinite number of times over
time. In this case, we can take averages of first differences between observations on the
continuous path of the process occurring in the local neighborhood of a (as suggested in
Section 2) and hope to apply an appropriate law of large number. Recurrence guarantees
that every level will be visited an infinite number of times over time provided T →∞.
A diverging local time at a as T →∞ is simply the manifestation of the fact that, with
probability one, the level a is crossed an infinite number of times, as the time span grows
indefinitely.

Importantly, the diffusion function can be identified over a fixed span of data as
shown by Florens-Zmirou (1993), Brugière (1991, 1993), and Jacod (1997) in important
early work. In other words, one can use (3.36) above and fix T = T to derive limiting
results.
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Theorem 9 Assume Xt is the solution to (3.1). Given n →∞, T = T, and hn,T → 0 as
n →∞ so that 1

hn,T
(�n,T log(1/�n,T ))

1/2 = o(1) , the estimator (3.36) converges to the true

function with probability one.
If nh4

n,T
→ 0, then the asymptotic distribution of (3.36) is driven by a “martingale” effect and

has the form √
nhn,T

{
σ̂2
(n,T )

(a)− σ2(a)
}
⇒MN

(
0,

2K2σ
4(a)

LX (T , a)/T

)
. (3.55)

If nh4
n,T
→∞, then the asymptotic distribution of (3.36) is driven by a “bias” effect and has the

form

1

h3/2
n,T

{
σ̂2
(n,T )

(a)− σ2(a)
}
⇒MN

⎛⎜⎝0, 16ϕind

(
σ
′
(a)

)2

LX (T , a)

⎞⎟⎠,
(3.56)

where ϕind = 2
∫∞

0

∫∞
0 abK(a)K(b)min(a, b)dadb.

Proof Florens-Zmirou (1993) was the first to use the estimator (3.36) above to identify
the diffusion function. The kernel used in Florens-Zmirou (1993) is a discontinuous
indicator kernel, and the consistency proof is based on mean-squared deviations (see also
Jacod, 1997, for a interesting refinement of this approach). The asymptotic distribution
(3.55) is provided in Florens-Zmirou (1993) with 2K2 = 1 due to the nature of the
kernel used. Jiang and Knight (1997) modify the Florens-Zmirou estimator and define it
using a continuous kernel.Their consistency proof follows Florens-Zmirou (1993) and is
also in mean-squared.The statement of the theorem above is based on Bandi and Phillips
(2003).The treatment in Bandi and Phillips (2003) highlights the potential for a random
bias term (i.e., in Eq. (3.56) above) which might dominate the asymptotic distribution
should the bandwidth sequence not converge to zero at a fast enough pace.

We now turn to a brief discussion of bandwidth selection.

3.2.1. The Choice of Bandwidth

Optimal bandwidth selection is technically very demanding in these models and represents
an open field of research, no rigorous treatment being available at present, at least to the
knowledge of the authors. Based onTheorem 5, in the drift case, one can write

hdrift
n,T = cdrift

n,T
1

log L̂X (T , a)
L̂X (T , a)−1/5, (3.57)

where L̂X (T , a) is the estimated local time at a and cdrift
n,T is a constant of proportionality.

Such an expression derives from the fact that the asymptotic mean-squared-error (MSE)
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at a generic level a is of order

Oa.s.

((
hdrift

n,T

)4
)
+Oa.s.

⎛⎝ 1

hdrift
n,T L̂X (T , a)

⎞⎠,
(3.58)

and the best rate is obtained by taking hdrift
n,T ∝ L̂X (T , a)−1/5 in which case the lim-

iting MSE is of order L̂X (T , a)−4/5. Premultiplication by 1

log L̂X (T ,a)
is, of course,

somewhat adhoc but useful to achieve a close-to-optimal rate of convergence and under-
smooth slightly, thereby eliminating the influence of the nonrandom bias term from the
asymptotic distribution of the drift estimates.

As for the diffusion function,Theorem 6,and a similar argument to that above, suggests
the expression

hdiff
n,T = cdiff

n,T
1

log
(
L̂X (T , a)/�n,T

) (
L̂X (T , a)/�n,T

)−1/5

(3.59)

and, in consequence, the approximation

hdiff
n,T ≈ cdiff

n,T
1

log n
n−1/5, (3.60)

for a T diverging to infinity sufficiently slowly (or for the case of local time diverging
at speed T , i.e., the stationary case). When T is fixed, as in Theorem 9, the previous
condition becomes

hdiff
n,T
= cdiff

n,T

1
log n

n−1/4. (3.61)

Again, both (3.59) and (3.61) imply close-to-optimal rates, namely rates that almost
maximize the speed of convergence of the proposed estimators to the functions of inter-
est while preventing the insurgence of a (deterministic or random) bias term in the
limit.

Some observations are in order. First, Eq. (3.57) suggests that there is explicit scope
for local adaptation of the drift bandwidth sequence to the number of visits to the point
at which estimation is performed. In fact, it appears that the optimal bandwidth for the
drift should be smaller at levels that are often visited.10 In light of the approximation
(3.60) and the result in (3.61) such an effect is more pronounced in the drift case than in
the diffusion case. Second,Theorems 5 and 6 suggest that the optimal drift bandwidth is

10Bias reduction is the standard justification for suggesting variable bandwidths whose magnitude is inversely related to the estimated
density function (cf., Pagan and Ullah, 1999, p. 31).
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generally larger than the optimal diffusion bandwidth. Both observations are of course
reflections of the fact that the local dynamics of an SDP contain more information about
the diffusion function than about the drift, thereby rendering consistent estimation of
the infinitesimal second moment possible over a fixed span of data.

Unfortunately, despite being widely used in empirical work, standard automatic tech-
nologies (as discussed in Pagan and Ullah, 1999, among others) to select the constants
cdrift
n,T , cdiff

n,T ,and cdiff
n,T

, such as least squares cross-validation,have not been justified in the case
of SDPs. Nonetheless, contrary to drift estimation, conventional cross-validation proce-
dures appear to perform reasonably well when dealing with diffusion function estimation
(cf., Bandi and Nguyen, 1999). Future work should usefully focus on the development
of convincing criteria for determining the constants cdrift

n,T , cdiff
n,T , and cdiff

n,T
in (3.57), (3.59),

(3.60), and (3.61) above and for selecting a preliminary smoothing sequence to define
L̂X (T , a), a fundamental quantity in the theory we are reviewing.

3.3. Extensions in Kernel Estimation for SDPs
3.3.1. Double-Smoothing

The estimators (3.35) and (3.36) belong to the general class of estimators suggested by
Bandi and Phillips (2003). Consistently with the discussion in Bandi and Phillips (2003),
one could envisage a more involved two-step procedure with further smoothing. First,
one could define sample analogs to the values that drift and diffusion take on at the
sampled points, i.e.,

μ̃(n,T )(Xi�n,T ) =
1

�n,T

∑n−1
j=1 K

(Xj�n,T−Xi�n,T
hn,T

) (
X(j+1)�n,T − Xj�n,T

)
∑n

j=1 K
(Xj�n,T−Xi�n,T

hn,T

) , (3.62)

σ̃2
(n,T )(Xi�n,T ) =

1
�n,T

∑n−1
j=1 K

(Xj�n,T−Xi�n,T
hn,T

) (
X(j+1)�n,T − Xj�n,T

)2

∑n
j=1 K

(Xj�n,T−Xi�n,T
hn,T

) .

(3.63)

Second, estimated drift and diffusion values at the sampled points could be averaged
using weights based on smooth kernels to recover the theoretical functions at levels that
the sampled process does not visit, i.e.,

μ(n,T )(a) =
∑n

i=1 K
(Xi�n,T−a

εn,T

)
μ̃(n,T )

(
Xi�n,T

)
∑n

i=1 K
(Xi�n,T−a

εn,T

) , (3.64)

σ2
(n,T )(a) =

∑n
i=1 K

(Xi�n,T−a
εn,T

)
σ̃2
(n,T )

(
Xi�n,T

)
∑n

i=1 K
(Xi�n,T−a

εn,T

) ,

(3.65)
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with K(.) possibly different from K(.) and hn,T possibly different from εn,T . Both K(.)
and K(.) satisfy the assumptions in Section 2.11

Asymptotically, the doubly smoothed estimates (3.64) and (3.65) offer additional flex-
ibility over their simple counterparts in (3.35) and (3.36) above. In effect, they can
improve the asymptotic trade-off between bias and variance effects, thereby delivering
smaller limiting MSEs than simple smoothing. As usual, let us focus on the drift while
keeping in mind that the intuition extends to the diffusion function.

If hn,T satisfies the conditions in Theorem 5 and εn,T /hn,T → φ, then the limiting
bias and variance of the drift estimator (3.64) at a generic point a are, from Bandi and
Phillips (2003),

θφσ
2(a)

hn,T L̂X (T , a)
, (3.66)

with

θφ =
∫ ∫ ∫

K(a)K(e)K(z − φe)K(z − φa)dzdeda, (3.67)

and

h2
n,T Kφ

[
μ′(a)m′(a)

m(a)
+ 1

2
μ′′(a)

]
, (3.68)

with

Kφ =
∫

s2K(s)ds + φ

∫
s2K(s)ds. (3.69)

Clearly, if εn,T /hn,T → φ = 0, then double-smoothing coincides asymptotically with
single-smoothing by a straightforward comparison of (3.66) and (3.68) with (3.45)
and (3.46) above, respectively. Nonetheless, because θφ is a decreasing function of φ
and Kφ is an increasing function of it, there is scope for using convoluted kernels
to achieve asymptotic MSEs which are optimized at values φ that are strictly larger
than zero.

In finite samples, the extra level of smoothing that is implied by the use of convoluted
kernels might be particularly beneficial, especially in the drift case. The intuition is as
follows.We stressed earlier that the optimal smoothing parameter for the drift is generally

11 An interesting, alternative approach is studied in Renò (2008) where the preliminary spot variance estimates σ̃2
(n,T )

at times i�n,T are
Fourier estimates as in Malliavin and Mancino (2002).
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larger than the corresponding choice for diffusion estimation. Nonetheless, there appears
to be a fundamental difficulty in choosing the optimal drift bandwidth as a function of
the estimated local time (as implied by Eq. (3.57)) and, consequently, as a function of the
recurrence properties of the underlying Markov process. The use of convoluted kernels
may achieve, in finite samples, the level of smoothing for the drift that weighted averages
based on simple kernels would guarantee with relatively more appropriate (larger) choices
of the bandwidth (Bandi and Nguyen, 1999).

3.3.2. Local Linear and Polynomial Estimation

It is immediate to see that the estimators (3.35) and (3.36) can be written as

μ̂n,T (a) = arg min
θμ

n−1∑
i=1

K

(
Xi�n,T − a

hn,T

){
1

�n,T

(
X(i+1)�n,T − Xi�n,T

)− θμ
}2

(3.70)

and

σ̂2
n,T (a) = arg min

θσ
2

n−1∑
i=1

K

(
Xi�n,T − a

hn,T

){
1

�n,T

(
X(i+1)�n,T − Xi�n,T

)2 − θσ
2
}2

, (3.71)

respectively. Specifically, as always, the NW estimates of drift and diffusion function fit a
constant line to data in vicinity of the level a. Alternatively, one might fit a polynomial
locally and minimize the criteria

n−1∑
i=1

K

(
Xi�n,T − a

hn,T

){
1

�n,T

(
X(i+1)�n,T − Xi�n,T

)− r∑
s=0

θμs
(
Xi�n,T − a

)s

}2

(3.72)

and

n−1∑
i=1

K

(
Xi�n,T − a

hn,T

){
1

�n,T

(
X(i+1)�n,T − Xi�n,T

)2 −
r∑

s=0

θσ
2

s
(
Xi�n,T − a

)s

}2

(3.73)

with respect to θμ = (θ
μ
0 , θμ1 , . . . , θμr )� and θσ

2 = (θσ
2

0 , θσ
2

1 , . . . , θσ
2

r )� for all levels a.
A simple argument based onTaylor expansions around a suggests that the proper estimates
of μ(a) and σ2(a) are now the first components (̂θμ0 and θ̂σ

2

0 ) of the estimated vectors

θ̂
μ

and θ̂
σ2

.The remaining components are estimates of the (standardized) derivatives of
the functions of interest (provided these derivatives exist, of course).

In the case of recurrent SDPs of the kind analyzed in this review, this approach was
suggested by Moloche (2004a) following classical work by Fan (1992, 1993) and Fan
and Gijbels (1996) in nonparametric regression analysis for discrete-time series (see also
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Pagan and Ullah,1999,p. 93,for discussions). In the stationary SDP case, local polynomial
methods are used by Fan and Zhang (2003).12 Importantly, the estimated vectors θ̂

μ
and

θ̂
σ2

can be expressed in the form of regression estimates because the criteria (3.72) and
(3.73) may be readily interpreted in terms of classical weighted least-squares problems.
As always,we are explicitly only about the drift case but similar observations apply to the
diffusion function. Write

Xn,T (a) =
⎡⎢⎣ 1 (X�n,T − a) . . . (X�n,T − a)r

. . . . . . . . . . . .

1 (X(n−1)�n,T − a) . . . (X(n−1)�n,T − a)r

⎤⎥⎦, (3.74)

yn,T =
⎡⎢⎣

1
�n,T

(X2�n,T − X�n,T )

. . .
1

�n,T
(Xn�n,T − X(n−1)�n,T )

⎤⎥⎦, (3.75)

and

Wn,T (a) = diag
(
�n,T

hn,T
K

(
X�n,T − a

hn,T

)
, . . . ,

�n,T

hn,T
K

(
X(n−1)�n,T − a

hn,T

))
. (3.76)

The pointwise drift estimator θ̂μ0 is the first component of the (r + 1)-vector

θ̂
μ = (X

�
n,T (a)Wn,T (a)Xn,T (a))−1X

�
n,T (a)Wn,T (a)yn,T .

(3.77)

12 In particular,Fan and Zhang (2003) apply local polynomial methods to Stanton’s kth-order approximations to drift and diffusion function
(Stanton, 1997). Write

Et {f (Xt+�, t +�)} = f (Xt , t)+Lf (Xt , t)�+ 1
2
L2 f (Xt , t)�2 + . . .+

+ 1
k!L

kf (Xt , t)�k +O(�k+1),

where L is the infinitesimal generator in Eq. (3.7). Given discrete observations sampled at multiples of � (and weights ck,j with
j = 1, . . . , k), we can write

1
�

k∑
j=1

ck,jEt
{
f (Xt+j�, t + j�)− f (Xt , t)

} =
⎧⎨⎩

k∑
j=1

jck,j

⎫⎬⎭Lf (Xt , t)+
⎧⎨⎩

k∑
j=1

j2ck,j

⎫⎬⎭ L2 f (Xt , t)
2

�

+ . . .+
⎧⎨⎩

k∑
j=1

jk+1ck,j

⎫⎬⎭ Lk+1 f (Xt , t)
(k + 1)! �k +O(�k+1).

Now consider the drift case, i.e., f (Xt , t) = Xt . Clearly, Lf (Xt , t) = μ(Xt ). Thus, if the weights ck,j are chosen so that
∑k

j=1 jck,j = 1

and
∑k

j=1 jpck,j = 0 for all 2 ≤ p ≤ k, then it follows that

1

�

k∑
j=1

ck,jEt
{
Xt+j� − Xt

} = μ(Xt )+O(�k).

NW kernel estimates can now be applied to data sampled at different frequencies (controlled by j) and can be appropriately weighed to
estimateμ(.) (Stanton,1997). Clearly,the case k = 1 corresponds to Eq. (3.33) above. Fan and Zhang (2003) use local polynomial estimates
to show that a large k can be beneficial in terms of asymptotic bias but may translate into an exponentially growing limiting variance.
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Moloche (2004a) shows that under the same conditions on the bandwidth as in
Theorem 5 and provided that the same sampling scheme as in Section 2 is adopted,
the estimate θ̂

μ
0 converges to the true function with probability one and is (mixed)

normally distributed in the limit. The local linear case (r = 1) is particularly rele-
vant. The drift estimator can be conveniently expressed as a weighted NW kernel
estimator

μ̂ll
(n,T )(a) =

1
�n,T

∑n−1
i=1 wll

i (a, hn,T )K
(Xi�n,T−a

hn,T

)
(X(i+1)�n,T − Xi�n,T )∑n−1

i=1 wll
i (a, hn,T )K

(Xi�n,T−a
hn,T

)
(3.78)

with wll
i =&n,2− (Xi�n,T − a)&n,1,where &n,k = 1

hn,T

∑n−1
i=1 (Xi�n,T − a)kK(

Xi�n,T−a
hn,T

)

with k = 1, 2. Its asymptotic variance and bias have the form

K2σ
2(a)

hn,T L̂X (T , a)
, (3.79)

and

h2
n,T K1

1
2
μ
′′
(a). (3.80)

Expressions (3.79) and (3.80) should now be compared to the corresponding quantities
for the NW kernel estimates discussed earlier, namely (3.45) and (3.46) above. The
comparison is standard, and we refer the interested reader to the original work by Fan
(1992) and the review of Pagan (1999, pp. 104–106) for details. Here, we simply stress
that the variances are the same, but the biases are different. In particular, the bias of the

local linear estimator does not depend on the ratio m
′
(.)

m(.) and on the first derivative of μ
at a and is “design adaptive” in the sense of Fan (1992). Similar expressions hold for the
diffusion function estimator θ̂σ

2

0 (Moloche, 2004a).

3.3.3. Finite Sample Refinements

Local linear methods have favorable bias properties but may not guarantee positivity when
positivity is required, as is the case for diffusion function estimation. To this extent, Xu
(2008) suggests a reweighted NW diffusion estimator which is asymptotically equivalent (in
terms of MSE properties) to the local linear estimator while retaining the nonnegativity
features of the classical local constant (or NW) kernel estimator. Write

σ̂
2(rNW )
(n,T ) (a) = 1

�n,T

∑n−1
i=1 wrNW

i (a, hn,T )K
(Xi�n,T−a

hn,T

) (
X(i+1)�n,T − Xi�n,T

)2

∑n−1
i=1 wrNW

i

(
a, hn,T

)
K
(Xi�n,T−a

hn,T

) ,
(3.81)
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where the weights {wrNW
i (a, hn,T )} are such that wi ≥ 0,

∑n−1
i=1 wi = 1, and solve

{
wrNW

i (a, hn,T )
} = max{wi}

n−1∑
i=1

log((n − 1)wi), (3.82)

under

1
hn,T

n−1∑
i=1

wi(Xi�n,T − a)K
(

Xi�n,T − a

hn,T

)
= 0. (3.83)

As emphasized by Xu (2008), the restriction in Eq. (3.83) is motivated by local linear
estimation. It is, in fact, easily satisfied by wll

i . Just like in local linear estimation, this is
the restriction which yields a “design adaptive” bias component

h2
n,T K1

1
2

(
σ2(a)

)′′
(3.84)

and the same asymptotic variance as earlier. The positivity of the weights, of course,
guarantees positivity of the final local estimates. For further discussions about the form
of the weights and their derivation, we refer to Xu (2008). In particular, Xu (2008)
discusses the interpretation of the criterion in terms of empirical likelihood. Inference
for SDPs based on empirical likelihood is studied, e.g., in Chen et al. (2008) and Xu
(2007), and we do not expand on it here.

Although for the data routinely used in continuous-time econometrics, the assump-
tion of a limiting,vanishing distance between discretely sampled observations (�n,T → 0)
represents an empirically valid asymptotic design,finite sample adjustments might some-
times be important. Nicolau (2003) studies the finite-sample bias properties of the NW
diffusion estimator [in Eq. (3.36)] for a fixed distance between adjacent observations. He
shows that if �n,T = � fixed, T →∞, hn,T → 0, and nhn,T →∞ as n →∞,

σ̂2
(n,T )(a)

p→ σ2(a)+ μ2(a)�+'(a)�+O(�2), (3.85)

with

'(a) = σ2(a)μ
′
(a)+ μ(a)σ(a)σ

′
(a)+ 1

2
σ2(a)

(
σ
′
(a)

)2 + 1
2
σ3(a)σ

′′
(a). (3.86)

Hence, of course, the estimator is biased for a fixed �. However, the first bias com-
ponent (μ2(a)�) may be eliminated asymptotically using a (feasible) bias correction.
One could, for instance, compute σ̂2

(n,T )(a) by averaging terms (X(i+1)�n,T − Xi�n,T −
μ̂(n,T )(a)�n,T )

2, where μ̂(n,T )(a) is the drift estimator in Eq. (3.35) rather than the
traditional terms (X(i+1)�n,T − Xi�n,T )

2. Although the asymptotic distribution of the
resulting estimator for an increasing sampling frequency (�n,T = �→ 0) is of course
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identical to that laid out in Theorem 6, the finite sample adjustment might be useful. In
effect, it might work particularly well at levels a corresponding to large (in absolute terms)
drift values (in regions where the degree of drift-induced mean-reversion is substantial).
Renò (2006) provides further discussions.

3.4. Using Nonparametric Information to Estimate and Test Parametric

Models for SDPs
It is natural to use the information contained in the nonparametric estimates to design
more accurate parametric models and test parametric assumptions. Bandi and Phillips
(2007) discuss a simple (semi-)parametric procedure to estimate potentially nonstationary
diffusions which overcomes the usual inference problems posed by the unavailability of a
closed-form expression for the transition density of the underlying process and does not
require simulations.They consider a parametric class (θμ, θσ) = θ ∈ � for the underlying
SDP and compute the parameters of interest as

θ̂
μ

n,T : = arg min
θμ∈�μ⊂�

Qμ
n,T

= arg min
θμ∈�μ⊂�

T
n

n∑
i=1

(
μ̂(n,T )

(
Xi�n,T

)
− μ

(
Xi�n,T

, θμ
))2

, (3.87)

and

θ̂
σ2

n,T : = arg min
θσ

2∈�σ2⊂�
Qσ2

n,T

= arg min
θσ

2∈�σ2⊂�

T
n

n∑
i=1

(
σ̂2
(n,T )

(
Xi�n,T

)
− σ2

(
Xi�n,T

, θσ
2
))2

, (3.88)

where μ̂(n,T )(Xi�n,T
) and σ̂2

(n,T )(Xi�n,T
) are functional estimates (defined over an enlarg-

ing span of data for consistency – see Subsection 3.2) of the NW type [cf., (3.35) and
(3.36) above] at the ith observation.The parameter values are chosen so that the average
squared distance between the nonparametric curves at the sampled points and the adopted
parametric specification is minimized.The asymptotic distributions of the parameter esti-
mates are (variance mixtures of ) normals and can be readily interpreted on the basis of
well-known results for conventional nonlinear least-squares problems. Nonetheless, the
integrals that appear in the limiting variances are not integrals with respect to probability
measures (i.e., expectations) but integrals with respect to local times [i.e., occupation
integrals, cf., (3.20)] due to the generality of the approach in the present context. By
virtue of the averaging, the rates of convergence of the parameter estimates are faster than
the rates of convergence of the functional estimators used to define (3.87) and (3.88)
above. This is, of course, a typical result in semiparametric problems (see, e.g.,Andrews,
1989).
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Apparently, the above criteria can be used to test alternative parametric assumptions
about the functions of interest. Consider the drift case. Assume one wishes to test the
hypotheses H0 : μ0(x) = μ(x, θμ) against H1 : μ0(x) �= μ(x, θμ). Provided a consistent
(under the null) parametric estimate of θμ, say θ̃

μ

n,T , is obtained (the value θ̂
μ

n,T which

minimizes (3.87) is, of course, a viable option) and the distribution of Q̂μ
n,T (̃θ

μ

n,T ) is
derived under the null, standard methods can be used to construct a consistent test. The
use of nonparametric information to test parametric models based on the minimization
of average squared errors like (3.87) and (3.88) above has a long history in hypothesis
testing about density functions. Important early references in discrete-time are Bickel and
Rosenblatt (1973) and Rosenblatt (1975). More recently,Aït-Sahalia (1996) has applied
the idea to the study of stationary scalar diffusion models for the short-term interest
rate process. Corradi and White (1999) focus on the infinitesimal second moment over
a fixed span of data and can, therefore, allow for transient dynamics. Relying on the
informational content of the transition density of the process,Hong and Li (2003) provide
specification tests for both the drift and the diffusion of a stationary diffusion process.
Empirical distribution function-based tests for stationary scalar and multivariate diffusion
processes are proposed in Corradi and Swanson (2005).

To the authors’knowledge, little work exists on parametric inference for null-recurrent
diffusions. In addition to Bandi and Phillips (2007), a recent contribution is the work by
Höpfner and Kutoyants (2001) who discuss a method of inference for the parameter θ
in the SDP

dXt = θ
Xt

1+ X2
t

dt + σdBt , (3.89)

where θ ∈ � = (− σ2

2 , σ
2

2

)
. As they show, θ is the parameter determining the speed

of divergence of additive integrable functionals of the process (in the sense discussed in
Section 5,Theorem 11) and� is the maximal open interval over which the process is null
recurrent. Given knowledge of the diffusion function σ and availability of a continuum
of observations, parametric estimation is conducted by maximum likelihood through
arguments based on measure changes.

3.5. Time-Inhomogeneous SDPs
Allowing for time-dependence in the infinitesimal first and second moment may be
empirically useful. However, although time-inhomogeneous diffusions have received
some emphasis in the mathematical finance literature (see, e.g., Black et al., 1990; Heath
et al., 1992; and the references therein), little work exists on their inference. Rewrite
Eq. (3.1) as

dXt = μ(Xt , t)dt + σ(Xt , t)dBt . (3.90)
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The drift and diffusion function now depend on the state as well as on time. Fan et al.
(2003) parametrize them as functions of Xt with time-varying parameters before local-
izing in time. Assume, as they do, that μ(Xt , t) = α0(t)+ α1(t)Xt . Given discretely
sampled observations Xti for i = 1, . . . , n with�i = ti+1 − ti,a natural local least-squares
criterion minimizes

1
h

n−1∑
i=1

K

(
ti − t̃

h

){
Xti+1 − Xti

�i
− (

θ0 + θ1Xti
)}

(3.91)

with respect to θ0 and θ1. Clearly, both estimates depend on t̃, thereby giving θ̂0 = α̂0(̃t)
and θ̂1 = α̂1(̃t). An analogous procedure can be applied to diffusion estimation under
a similar parametrization. Fan et al. (2003), for instance, assume a constant elasticity-
of-variance diffusion with time-varying parameters and write σ(Xt , t) = β0(t)Xβ1(t).
Noting that the ratio

Yti =
Xti+1 − Xti −

(̂
α0(ti)+ α̂1(ti)Xti

)
�i√

�i
≈ β0(t)X

β1(t)
ti εti (3.92)

is approximately (conditionally) Gaussian, they optimize (for all t̃) the local pseudo log-
likelihood

− 1
2h

n−1∑
i=1

K

(
ti − t̃

h

){(
log(ϑ2

0X2ϑ1
ti

)
+ Y 2

ti

ϑ2
0X2ϑ1

ti

}
(3.93)

to obtain ϑ̂0 = β̂0(̃t) and ϑ̂1 = β̂1(̃t). Alternatively, writing

log(Y 2
ti ) ≈ log(β2

0(ti))+ β1(ti) log(X2
ti )+ log(ε2

ti ), (3.94)

a similar (local) least-squares procedure as in Eq. (3.91) may be applied to the diffusion
estimator.Although notions of consistency for the resulting estimates under suitable sam-
pling schemes have not been established yet, the methods are of course suggestive of the
usefulness of kernel-based approaches to capture time-varying dynamics in parameters.

A fundamental class of models allowing for stochastic time-variation in the infinites-
imal second moment is the family of stochastic volatility models. Consider Eq. (3.90)
and write σ(Xt , t) = σ(t). Assume the dynamics of σ(t) are driven by an homoge-
neous stochastic differential equation and are recurrent. The next section provides a
concise application of the ideas laid out in this section to stochastic volatility modeling
in continuous time. For interesting, recent work focused on testing the null hypothesis
H0 : σ2(Xt , t) = σ2(Xt) against the alternative HA : σ2(Xt , t) = SDP not measurable
with respect to the filtration generated by Xt , we refer the reader to Corradi and Distaso
(2007). In what follows, we work under Corradi and Distaso’s alternative hypothesis.
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3.6. An Empirical Application: Stochastic Volatility

The recent literature on volatility estimation by virtue of high-frequency (intra-daily)
asset price data has provided a set of tools to identify daily variance without the need for
filtering using low-frequency asset returns.These high-frequency variance estimates may
be put to work to understand variance dynamics from a new perspective. Using (i) intra-
daily asset price data to generate spot variance estimates and (ii) NW kernel estimates
of the spot variance drift and diffusion (as suggested by Bandi and Phillips, 2003), Bandi
and Renò (2008) and Kanaya and Kristensen (2008) discuss a nonparametric theory of
(continuous-time) stochastic volatility estimation (see also Comte et al., 2007, for an
alternative approach).The preliminary spot variance estimates in Kanaya and Kristensen
(2008) are local (in time) averages of realized variance estimates as suggested in Kristensen
(2009). In Bandi and Renò (2008), they are local (in time) averages of a family of robust
(to market microstructure noise or jumps in returns) integrated variance estimates (for
which an asymptotic theory of inference is provided in Bandi and Renò, 2008). Both
Bandi and Renò (2008) and Kanaya and Kristensen (2008) discuss conditions (to be
added to those in Theorems 5 and 6) under which the estimation error introduced by
the preliminary spot variance estimates is asymptotically negligible.

To briefly illustrate the methods in the SDP case, we follow Bandi and Renò (2008)
in this review. Specifically, we estimate the spot variance of the S&P 500 index returns
for all days between January 2, 1998, and March 31, 2006, by applying the two-scale
estimator of Zhang et al. (2005) to intra-daily SPY returns (see Bandi and Renò, 2008,
for details).13 Figure 3.1a represents the sojourn time of the spot variance estimates
along with its asymptotic confidence bands (cf.,Theorem 2). Spot variance is expressed
(on the horizontal axis, for instance) in daily terms and is multiplied by 10,000 for
consistency with S&P 500 returns expressed in percentage terms. The sojourn time has
a peak around 1 (corresponding to a volatility of annual S&P 500 returns equal to 15%).
More generally, the stochastic variance process makes most of its visit at levels between
approximately 0.3 and 1.5, namely for a volatility of annual market returns between
approximately 8.5% and 19.5%. In this range, we expect the drift and diffusion estimates
(in Fig. 3.1b and c to be more precisely estimated as implied by pointwise asymptotic
confidence bands whose width is inversely related to the number of visit to each spatial
point. The drift is largely positive over the relevant variance range. The diffusion is a
monotonically increasing and nonlinear function of the variance level. We do not dwell
on these two functions here. We simply point out that the magnitude of the estimated
drift in this subsection may be largely induced by the presence of positive jumps in the
variance process affecting the infinitesimal first moment’s estimates [see Eq. (4.40) below].

13SPY is the ticker symbol for the Standard and Poor’s depository receipts (also known as Spiders). SPYs are shares in a trust which owns
stocks in the same proportion as that found in the S&P 500 index. Importantly, they trade like a stock at approximately one-tenth of
the level of the index. Thus, because changes in SPY value reflect changes in market value, SPY volatility reflects market volatility.
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Figure 3.1 Local time, drift, and diffusion estimates of an SDP for stochastic volatility.

Similarly, the magnitude of the diffusion estimates might be induced by infinitesimal
second moment estimates which, in the presence of variance jumps, comprise genuinely
diffusive volatility as well as the second moment of the discontinuous variance component
[see Eq. (4.41) below]. Consistent with these observations and the analysis in Bandi and
Renò (2008), in Subsection 4.3 we will discuss a functional jump-diffusion model with
exponential jump sizes for the market spot variance. This specification will represent a
considerably superior modeling alternative to the SDP discussed here.

4. SCALAR JUMP-DIFFUSION PROCESSES
Throughout this section, we model a time-series Xt as the solution of a stochastic dif-
ferential equation with infrequent Poisson jumps. The jumps occur with conditional
intensity λ(.) (i.e., λ(a)dt is the infinitesimal probability of a jump at the level a). The
impact of a jump is given by the function g(., y) whose arguments are the level of the
process and a generic random variable y which we assume to be endowed with the
stationary probability measure %(.). Specifically,

�Xt = Xt − Xt− =
∫
Y

g(Xt−, y)N (dt, dy) = dJt ,
(4.1)

where

N�
t =

∑
j=1

1[τj≤t,yτj∈�] (4.2)
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is, given a set �, a Poisson counting measure with stationary and independent increments
(see, e.g., Protter, 1995). Write

dXt =
⎡⎣μ(Xt−)− λ(Xt−)

∫
Y

g(Xt−, y)%(dy)

⎤⎦ dt + σ(Xt−)dBt + dJt

= [μ(Xt−)− λ(Xt−)EY [g(Xt−, y)]] dt + σ(Xt−)dBt + dJt ,

(4.3)

where the standard Brownian motion {Bt : t ≥ 0} and the jump process {Jt : t ≥ 0} are
assumed to be independent.The initial condition X0 = X belongs to L2 and is taken to
be independent of both Bt and Jt .

The functions μ(.) and σ(.) have a similar interpretation as in scalar diffusion models
(cf.,Section 3). Nonetheless,because of the presence of a discontinuous jump-component
dJt = �Xt , the sample path of Xt fails to be continuous in the state space as in the case
of standard SDPs despite being right continuous with left limits (càdlàg).

Conditions 6 through 9 (or 6 through 10) below are imposed on the model (Bandi
and Nguyen, 2003).

(6) The functions μ(.), σ(.), g(., y), and λ(.) are time-homogeneous and B-measurable on
D = (l, u) with −∞ ≤ l < u ≤ ∞, where B is the σ-field generated by Borel sets on
D.They satisfy local Lipschitz and growth conditions.Thus, for every compact subset J of the
domain of the process, there exist constants C1 and C2 so that, for all x and z in J ,

|μ(x)− μ(z)| + |σ(x)− σ(z)| + λ(x)
∫
Y

|g(x, y)− g(z, y)|%(dy) ≤ C1|x− z|, (4.4)

and

|μ(x)| + |σ(x)| + λ(x)
∫
Y

|g(x, y)|%(dy) ≤ C2{1+ |x|}. (4.5)

(7) For a given α > 2, there exists a constant C3 such that

λ(x)
∫
Y

|g(x, y)|α%(dy) ≤ C3{1+ |x|α}. (4.6)

(8) λ(.) > 0 and σ2(.) > 0 on D.
(9) (Null recurrence) Define the second-order elliptic operator L and the integro-differential

operator A of the continuous and discontinuous portions of the solution to (4.3) above as

Lϕ(.) = ϕ′(.)μ(.)+ 1
2
ϕ′′(.)σ2(.) (4.7)

and

Aϕ(.) = λ(.)
∫
Y

[
ϕ(.+ g(., y))− ϕ(.)− ϕ′(.)g(., y)

]
%(dy), (4.8)
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respectively. Assume � is a Borel measurable and bounded function on the closure A.The
exterior Dirichlet problem, i.e.,

(L+ A)e = 0 a.e. in D \ A (4.9)

e = � a.e. in A (4.10)

admits a unique bounded solution e (see, e.g., Menaldi and Robin, 1999).
(10) (Positive recurrence) Assume f is a Borel measurable and bounded function on D \ A.The

exterior Dirichlet problem, i.e.,

−(L+ A)e = f a.e. in D \ A (4.11)

e = 0 a.e. in A (4.12)

admits a unique bounded solution e (see, e.g., Menaldi and Robin, 1999).

Under Assumptions 6 through 9 (10), the SJDP (4.3) has a strong solution which is uni-
que and null recurrent (positive recurrent). In particular, the càdlàg process Xt satisfies

Xt = X +
t∫

0

μ(Xs−)ds +
t∫

0

σ(Xs−)dBs +
t∫

0+

∫
Y

g(Xs−, y)ν(ds, dy)
(4.13)

where

ν(ds, dy) = N (ds, dy)− ν(Xs−, dy)ds (4.14)

= N (ds, dy)− λ(Xs−)%(dy)ds (4.15)

is a compensated random measure, and the notation
∫ t

0+ =
∫
(0,t] denotes the integral

over the half open interval. It is noted that

t∫
0+

∫
Y

g(Xs−, y)ν(ds, dy)
(4.16)

represents the conditional variation between 0+ and t in the path of the process due to
discontinuous jumps of random size y (with impact g(., y)) net of its expected conditional
magnitude at 0+ . The model is defined as “compensated” by virtue of the presence
of the term λ(Xt)EY [g(Xt , y)] denoting the conditional mean of the jump part. Its
presence ensures that the jump component is a martingale, thereby making the solution
to Eq. (4.3) a semimartingale. The semimartingale property, which is trivially satisfied
by standard SDPs of the types analyzed earlier, makes SJDPs of the kind reviewed here
attractive for modeling purposes in continuous-time finance. As is well known, in the
case of price processes, this property implies the existence of an equivalent martingale
measure under which the process is a (local) martingale and absence of arbitrage in the
spaces that preclude doubling strategies (Duffie, 1996).

GivenAssumptions 6 through 8, the infinitesimal conditional moments of the changes
in the solution to (4.3) above can be written in terms of the functions μ(.), σ(.), g(., .),
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and λ(.) (Gikhman and Skorohod, 1972), i.e.,

M 1(a) = lim
t→0

1
t
Ea[Xt − a] = μ(a), (4.17)

M 2(a) = lim
t→0

1
t
E[(Xt − a)2] = σ2(a)+ λ(a)EY [g2(a, y)], (4.18)

Mk(a) = lim
t→0

1
t
E[(Xt − a)k] = λ(a)EY [gk(a, y)] ∀k > 2, (4.19)

for a generic a ∈ D. Specifically, formulae (4.17) through (4.19) suggest that the con-
ditional infinitesimal moments of order higher than two contain important information
about the intensity of the jumps and the distribution of the jump component. These
moments are of course zero in the case of SDPs. Similarly to the case of SDPs, how-
ever, the first and second infinitesimal moments may be used to identify the drift and
the diffusive volatility (given the estimated features of the jumps). These observations
led Johannes (2004) to suggest nonparametric estimates of the infinitesimal moments
and a procedure to extract the parameters and functions of interest from the estimated
moments. We will be more accurate in the sequel. For now it suffices to point out that
the Mk(.)s (for k ≥ 1) will be our object of econometric interest.

We now turn to generalized density estimation for processes that are possibly nonsta-
tionary solutions to stochastic differential equations with infrequent jumps such as (4.3)
above.

4.1. Generalized Density Estimation for SJDPs
The theory of local times for càdlàg semimartingales is well established in the stochastic
process literature. We refer the reader to Protter (1995) for a thorough treatment. Here,
consonant with our discussion in Section 3,we review some basic notions that will serve
the purpose of illustrating the role that estimated local time may play as a descriptive
tool for recurrent SJDPs. Assume Xt is a càdlàg semimartingale, then its sojourn time at
T and a can be written as

LX (T , a) = lim
ε→0

1
ε

T∫
0

1[a,a+ε[(Xs)d[X ]cs, (4.20)

where [X ]ct is the continuous part of the quadratic variation process of Xt , namely the
nondecreasing process defined as

[X ]ct = [X ]t −
∑

0<s≤t

(�Xs)
2 − X2

0 (4.21)

= [X ]t −
∑

0≤s≤t

(�Xs)
2 (4.22)

with

[X ]c0 = 0 (4.23)
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(see, e.g., Yor, 1978). The interpretation is standard. Formula (4.20) represents the
amount of time, in information units, that the càdlàg semimartingale spends in an arbi-
trarily small right neighborhood of a between time 0 and time T . Differently put, local
time is an occupation density relative to the random clock d[X ]cs.

A corresponding notion in calendar units can be easily obtained after noticing that
d[X ]ct = σ2(Xt−)dt in the presence of a process whose dynamics are driven by (4.3)
above. In fact,

LX (T , a) = 1
σ2(a)

LX (T , a) (4.24)

is the chronological counterpart to (4.20) for SJDPs of the type analyzed here. As in
the case of standard SDPs, the chronological sojourn time (4.24) can be interpreted as
a version of the Radon–Nikodym derivative of the occupation measure with respect to
the Lebesgue measure, i.e.,

ηT
A =

T∫
0

1{Xs∈A}ds =
∫
A

LX (T , a)da, ∀A ⊂ B(D), (4.25)

and, as pointed out above, is an occupation density. Additionally, formula (4.25) readily
leads to

[X ]ct =
∞∫

−∞
LX (t, a)da,

(4.26)

which can be interpreted as a decomposition of variance [cf., (3.16)], coherently with
our remarks in Section 3.

We now turn to estimation. As earlier when dealing with SDPs, there is a natural way
to identify (4.24) using a sample of observations generated from (4.3), namely we can
perform density-like kernel estimation as in (3.21).We proceed under the same sampling
scheme as in Section 2.

Theorem 10 Assume Xt is the solution to (4.3). If hn,T → 0 as n →∞ with T = T in
such a way as to guarantee that 1

hn,T
(�n,T log(1/�n,T )

1/2 = o(1), then

L̂X (T , a) = �n,T

hn,T

n∑
i=1

K

(
Xi�n,T

− a

hn,T

)
a.s.→ LX (T , a) ∀a ∈ D. (4.27)

Proof See Bandi and Nguyen (2003).

Coherently withTheorem 1 in Section 3,Theorem 10 justifies using density-like kernel
estimates as descriptive tools for SJDPs even in the presence of processes which might
not possess a time-invariant stationary distribution. All we need to do is modify their
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interpretation because, in general, they cannot be regarded as estimates of the stationary
density of the process and recognize instead the role played by local time in characterizing
the locational features of the process.

We conclude this subsection with two observations. First, recurrence implies diver-
gence of the local time process as T →∞, just as when dealing with standard SDPs.
In general, the rate of divergence cannot be quantified, although we expect positive
recurrent and stationary processes to have local times that diverge at the fastest rate T .
As in the case of the estimation of the infinitesimal moments of an SDP, the divergence
properties of the local time factor affect the convergence properties of the infinitesimal
moment estimators of (4.3) above, as shown in the next subsection. Second, functions of
spatial densities, such as spatial hazard rates, can be readily defined as in Section 3. The
intuition is immediate and follows from our discussion in the previous section. We do
not dwell on it here.

4.2. NW Kernel Estimation of the Infinitesimal Moments of an SJDP

As pointed out earlier, identification of a recurrent solution to (4.3) above essentially
entails estimation of four quantities: the drift μ(.), the diffusive variance σ2(.), the inten-
sity of a jump λ(.), and the distribution of the jump component. Importantly, such
quantities can be identified from the estimated infinitesimal moments, as we show below
by virtue of two examples.

To this extent, we first turn to infinitesimal moment estimation by virtue of NW
kernel estimates. Assume the same sampling mechanism as in Section 2 is adopted and
write

M̂k
(n,T )(a) =

1
�n,T

∑n−1
i=1 K

(Xi�n,T−a
hn,T

) (
X(i+1)�n,T − Xi�n,T

)k

∑n
i=1 K

(Xi�n,T−a
hn,T

) ,
(4.28)

∀k ≥ 1, where K(.) is a kernel function satisfying the assumptions in Section 2. The
limiting properties of M̂k

(n,T )(a) are laid out in Theorem 11.

Theorem 11 Assume Xt is the solution to (4.3). If n →∞,T →∞, T
n → 0, and hn,T → 0

so that LX (T ,a)
hn,T

(�n,T log(1/�n,T ))
1/2 = oa.s.(1) and hn,T LX (T , a)

a.s.→∞, then

M̂k
(n,T )(a)

a.s.→ Mk(a) ∀k ≥ 1. (4.29)

Furthermore, if h5
n,T LX (T , a) = Oa.s.(1), then

√
hn,T L̂X (T , a)

(
M̂k

(n,T )(a)−Mk(a)− %Mk (a)
)
⇒ N

(
0, K2M 2k(a)

)
, (4.30)
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∀k ≥ 1, where

%Mk (a) = h2
n,T K1

((
Mk(a)

)′ m
′
(a)

m(a)
+ 1

2

(
Mk(a)

)′′)
∀k ≥ 1, (4.31)

and m(dx) = m(x)dx is the invariant measure of the process.

Proof See Bandi and Nguyen (2003).

By virtue of our discussion in the case of SDPs, the implications of Theorem 11
should be clear. Here, we focus on the main differences between the case with disconti-
nuities and the case without discontinuities examined in the previous section. Contrary
to diffusion estimation, all the infinitesimal moment estimators converge at the same

rate, namely
√

hn,T L̂X (T , a). The intuition is as follows. The family of estimators in

(4.28) above hinges on averages of terms of probability order
√

dt for every k ≥ 1. In
the case of standard SDPs, the drift estimator (3.35) is an average of terms of order

√
dt,

whereas the diffusion estimator (3.36) averages terms of order dt, leading to a faster rate
of convergence. Apparently, no infinitesimal moment can be identified over a fixed span
of data in the presence of an underlying SJDP. If T were fixed, then L̂X (T , a) would
be bounded in probability and

√
hn,T would not be a proper convergence rate. Again,

the intuition is simple. In jump-diffusion models like (4.3) above, the function μ(.) has
the same interpretation as in the standard setup without jumps. As a consequence, an
enlarging span of data is expected to be necessary for the consistency of M̂ 1

(n,T )(.). As
for the higher moments, formulae (4.18) and (4.19) illustrate their dependence on the
characteristics of the discontinuous jump component. A fixed span of data cannot pos-
sibly contain sufficient information for the identification of the features of infrequent
Poisson jumps because the number of jumps of this type on any fixed time span is finite
with probability one.

We now turn to the identification of the functions and parameters of interest by virtue
of two examples.

Example 6 Assume g(x, y) = y, where y is normally distributed with mean 0 and variance
σ2

y . In other words, dJt = ydNt, with y ∼ N (0, σ2
y ).Then, we can rewrite (4.17), (4.18), and

(4.19) with k = 1, 2, 4, and 6 as

M 1(a) = μ(a), (4.32)

M 2(a) = σ2(a)+ λ(a)σ2
y , (4.33)

M 4(a) = 3λ(a)
(
σ2

y

)2
, (4.34)

M 6(a) = 15λ(a)
(
σ2

y

)3
, (4.35)
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∀a ∈ D. Given (4.32) through (4.35), Johannes (2004) suggested the following identification
scheme: (

σ̂2
y

)
(n,T )

= 1
n

n∑
i=1

M̂ 6
(n,T )(Xi�n,T )

5M̂ 4
(n,T )(Xi�n,T )

, (4.36)

λ̂(n,T )(a) =
M̂ 4

(n,T )(a)

3
(
σ̂4

y

)
(n,T )

, (4.37)

σ̂2
(n,T )(a) = M̂ 2

(n,T )(a)− λ̂(n,T )(a)
(
σ̂2

y

)
(n,T )

, (4.38)

μ̂(n,T )(a) = M̂ 1
(n,T )(a). (4.39)

This simple scheme was successfully applied to the analysis of the continuous-time dynamics of the
short end of the term structure of interest rates ( Johannes, 2004). For an interesting, alternative
approach to identification in this class of discontinuous processes, we refer the reader to Mancini and
Renò (2006).

Example 7 Assume g(x, y) = y, where y is exponentially distributed with mean β. In other
words, dJt = ydNt, with y ∼ exp(β). Also, assume the process Xt is not compensated, thereby
implying that the first infinitesimal moment also contains a component equal to the first conditional
moment of the jump part.We can thus rewrite (4.17), (4.18), and (4.19) with k = 1, 2, 3,
and 4 as

M 1(a) = μ(a)+ λ(a)β, (4.40)

M 2(a) = σ2(a)+ 2λ(a)β2, (4.41)

M 3(a) = 6λ(a)β3, (4.42)

M 4(a) = 24λ(a)β4, (4.43)

∀a ∈ D. Given (4.40) through (4.43), Bandi and Renò (2008) suggested the following
identification scheme:

β̂(n,T ) = 1
n

n∑
i=1

M̂ 4
(n,T )(Xi�n,T )

4M̂ 3
(n,T )(Xi�n,T )

, (4.44)

λ̂(n,T )(a) =
M̂ 4

(n,T )(a)

24̂β4
(n,T )

, (4.45)

σ̂2
(n,T )(a) = M̂ 2

(n,T )(a)− 2̂λ(n,T )(a)̂β2
(n,T ), (4.46)

μ̂(n,T )(a) = M̂ 1
(n,T )(a)− λ̂(n,T )(a)̂β(n,T ). (4.47)
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Given preliminary spot variance estimates (as in Subsection 3.6 above, for instance), Bandi and
Renò (2008) apply this scheme to the analysis of the continuous-time dynamics of the spot variance
process.We will follow their treatment in the empirical application below.

Some observations are in order. First, reasonable parametric assumptions on the jump
component are necessary for identification. Although the identification methods in the
examples above have been shown to be empirically successful in a variety of contexts in
continuous-time finance, more involved (and potentially more efficient) methodologies
making use of alternative moments may have been suggested instead.This said, any sen-
sible identification scheme entails averages of nonparametric estimates for the purpose of
the estimation of the model’s parameters [cf., (4.36) and (4.44) above]. Hence, although
the estimates of the functions of interest [namely μ(.), σ2(.), and λ(.)] converge at the

nonparametric rate
√

hn,T L̂X (T , a) (by a simple application of the delta method), the
parameter estimates σ̂2

y and β̂ converge at a faster rate. Differently put, although causing
a loss in terms of generality of the model, the important (for identification) imposition
of parametric assumptions is, not surprisingly, beneficial for estimation (Bandi and Renò,
2008). Second, the methodology is f lexible. Alternative parametric assumptions could
have been imposed. Obviously, the functions μ(.), σ2(.), and λ(.) are left fairly unre-
stricted, thereby allowing for nonlinearities which, as shown below, might prove useful
in continuous-time finance modeling.

4.3. An Empirical Application: Stochastic Volatility

The estimation scheme in Eq. (4.44) through (4.47) has been applied by Bandi and Renò
(2008) to identify the features of exponential jumps in spot variance while allowing drift,
diffusive variance, and intensity of the jumps to be nonlinear functions of the state.
Here, we consider two-scale estimates of spot market variance relying on SPY data (for
the period between January 2, 1998, and March 31, 2006), as in Subsection 3.6. In
addition to drift and diffusive variance,Fig. 3.2 reports the probability of the exponential
jumps (expressed in terms of the number of annual jumps per variance level) and the
(constant) expected jump size.14 For all plots,we display the parametric estimates (dotted
lines) reported in Eraker et al. (2003) for a model with linear drift (μ(a) = c0 + c1a),
square-root volatility (σ2(a) = c3a), and constant jump intensity (λ(a) = c4) – cf., Eraker
et al., 2003, Table III. As indicated in Subsection 3.6, allowing for jumps reduces the
magnitude of the estimated drift and diffusion vis-à-vis the SDP case reported earlier.
The functional drift implies a bit more mean-reversion than the parametric model. The
nonparametric diffusive function suggests more variability associated with the continuous
component of the process than in the parametric specification of Eraker et al. (2003).

14 The form of the corresponding asymptotic bands is derived in Bandi and Renò, 2008.
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Figure 3.2 Drift, diffusion, jump intensity, and expected jump size estimates of an SJDP for stochastic
volatility.

Although this difference may be visually small and is statistically insignificant, model
diagnostics reported in Bandi and Renò (2008) indicate that it is important. In the more
informative, empirical range of the process (as highlighted by the local time estimates
in Fig. 3.1a), the average annual number of jumps is about 1, which is consistent with
the parametric model. The expected jump size is about 5 with the parametric estimate
(about 1.8) within the 95% asymptotic bands. Importantly, the obtained value for the
expected jump size may be influenced by spot variance estimates (constructed using
the two-scale estimator) which are affected by the presence of jumps in the market
return process. The use of spot variance estimates robust to discontinuities in market
returns would yield an expected jump size of about 2 and roughly unchanged jump
intensities (Bandi and Renò, 2008). These values would therefore lend some support to
the variance jump sizes and the frequency of jumps obtained by Eraker et al. (2003) by
virtue of (i) a fully parametric model allowing for jumps in returns and (ii) a more classical
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volatility-filtering method relying on MCMC methods (for a discussion of MCMC
methods in finance, see Johannes and Polson, 2010, in this volume).

5. MULTIVARIATE DIFFUSION PROCESSES
In this section, we focus on a vector process Xt expressed as the d-dimensional solution
of the multivariate stochastic differential equation

dXt = μ (Xt) dt + σ (Xt) dBs, (5.1)

where B = {
Bt ,�B

t ; 0 ≤ t <∞}
is an m-dimensional standard Brownian motion,

μ(.) = {μi(.)}1≤i≤d is a d × 1 Borel measurable vector, σ(.) = {
σij(.)

}
1≤i≤d
1≤j≤m

is a d × m

Borel measurable matrix, and X0 = X ∈ D ⊆ Rd is a given initial condition taken to
be independent of �B∞ and with finite second moment, i.e., E||X || <∞. Define the
left-continuous filtration

�t := σ(X) ∨ �B
t = σ(X , Bs; 0 ≤ s ≤ t) 0 ≤ t <∞ (5.2)

and the collection of null sets

ℵ := {N ⊆ �; ∃G ∈ �∞ with N ⊆ G and P(G) = 0}. (5.3)

Now create the augmented filtration

�̃X
t := σ(�t ∪ ℵ) 0 ≤ t <∞. (5.4)

Assumptions 11 through 12 (11 and 13) below are imposed on (5.1) to guarantee the
existence of a unique and null recurrent (positive recurrent) solution to (5.1).

(11) μ(.) and σ(.) are time-homogeneous, B-measurable functions on D ⊆ Rd where B is the
σ-field generated by Borel sets on D. Both functions satisfy local Lipschitz and linear growth
conditions.Thus, for every compact subset J of the range of the process, there exist constants C1
and C2 such that, for all x and y in J ,

||μ(x)− μ(y)|| + ||σ(x)− σ(y)|| ≤ C1||x− y|| (5.5)

and

||μ(x)|| + ||σ(x)|| ≤ C2{1+ ||x||}, (5.6)

where ||σ|| =∑d
i=1

∑m
j=1 σ

2
ij and ||μ|| =∑d

i=1 μ
2
i .
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(12) (Null recurrence) Define the positive definite matrix s(x) = σ (x) σ (x)� so that sik (x) =∑m
g=1 σig (x) σgk (x) ∀x ⊂ D ⊆ Rd and assume that every open and bounded set A ∈ D

satisfies

min
x∈A

sii(x) > 0, (5.7)

for some 1 ≤ i ≤ d.Write the second-order elliptic operator

Lϕ(.) =
d∑

i=1

μi(.)
∂ϕ(.)
∂xi

+ 1
2

d∑
i=1

d∑
k=1

sik (.)
∂ϕ(.)
∂xi∂xk

.
(5.8)

There is a function ϕ(.) : Rd\ {0} → R of class C2 in the domain of the operator which
satisfies

Lϕ(.) ≤ 0 on Rd\ {0} (5.9)

and is so that $(r) := min||x||=r ϕ(.) is strictly increasing with limr→∞ $(r) = ∞
(Karatzas and Shreve, 1991, Exercise 7.13, part (i), p. 370).

(13) (Positive recurrence) There is a function ϕ(.) : Rd\{0} → R of class C2 in the domain of
the operator which satisfies

Lϕ(.) ≤ −1 on Rd\ {0} (5.10)

and is so that $(r) := min||x||=r ϕ(.) is strictly increasing with limr→∞ $(r) = ∞
(Karatzas and Shreve, 1991, Exercise 7.13, part (iii), p. 371).

Under Assumptions 11 through 12 (11 and 13), the stochastic differential equation
(5.1) has a strong solution Xt which is unique and null recurrent (positive recurrent).
Specifically, the process Xt satisfies

Xt = X +
t∫

0

μ (Xs) ds +
t∫

0

σ (Xs) dBs (5.11)

and is square integrable, i.e., E||Xt ||2 <∞ ∀t. Equivalently, we can write each
coordinate Xj

t as

Xj
t = Xj +

t∫
0

μj (Xs) ds +
m∑

g=1

t∫
0

σjg (Xs) dBg
s , 0 ≤ t <∞, 1 ≤ j ≤ d. (5.12)

In agreement with the scalar model in Section 3, the dynamics of Xt are driven by
Brownian shocks and determined by the functional forms of the matrices μ(.) and s(.)
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(recall from Assumption 12 above that s(x) = σ(x)σ(x)�). Such matrices will be the
object of econometric interest in the present section. As in the scalar case, they both
have straightforward representations in terms of infinitesimal conditional moments. In
particular,

Ea [Xi
t − ai

] = tμi (a)+ o (t) (5.13)

Ea
[(

Xi
t − ai

) (
Xj

t − aj

)]
= tsij (a)+ o (t) (5.14)

as t ↓ 0 (see, e.g., Karatzas and Shreve, 1991).
The notions of recurrence implied by Assumptions 12 and 13 are standard

(cf., Section 2). Namely, the multidimensional process Xt is Harris recurrent if there
is a σ−finite measure m(dx) so that m(A) > 0 implies limT→∞ ηT

A = ∞ with proba-
bility one ∀A ⊂ B(D), where ηT

A =
∫ T

0 1{Xs∈A}ds is, as earlier, the occupation measure
of A. The following result gives us the (implicit) rate at which ηT

A diverges to infinity
and a weak convergence result for ηT

A .

Theorem 12 Assume Xt is the solution to (5.1) above.15 Consider a nonnegative function δ(.).
If there exists a constant α ∈ [0, 1] and a slowly varying function at infinity L(T ) such that

lim
T→∞Ea

⎡⎣ ∞∫
0

e−
s
T δ(Xs)ds

⎤⎦ /(TαL(T )) = CX > 0 ∀a ∈ D,
(5.15)

then

lim
T→∞Pa

⎧⎨⎩ 1
CX (TαL(T ))

T∫
0

δ(Xs)ds < x

⎫⎬⎭ = Gα(x),
(5.16)

where

Gα(x) = 1
πα

x∫
0

∞∑
j=1

(−1)j−1

j! sin
(
παj

)
%(αj + 1)yj−1dy,

(5.17)

%(.) is the Gamma function, CX = C∗X
∫∞
−∞ δ(x)m(dx), m(dx) is the invariant measure, and

C∗X is a process-specific constant.

Proof See Darling and Kac (1957) for the original statement of the theorem. Bingham
(1971) contains a functional version of the same finding. Several papers discuss limit results
for slowly increasing occupation times associated with null-recurrent Markov processes,
see Höpfner and Löcherbach (2001) for a complete, recent survey of the literature on

15 The theorem, in its form stated here, applies to more general continuous-time Markov processes than MDPs (Darling and Kac, 1957).
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the subject.The interested reader is referred to Khasminskii (2001) and Khasminskii and
Yin (2000) for a detailed treatment of the one-dimensional null-recurrent diffusion case.

We can rewrite (5.16) as follows:

T∫
0
δ(Xs)ds

CX u(T )
⇒ gα, (5.18)

where gα is the Mittag–Leffler density with parameter α, 16 i.e.,

gα(x) = 1
πα

∞∑
j=1

(−1)j−1

j! sin(παj)%(αj + 1)xj−1, (5.19)

and u(T ) = TαL(T ). Theorem 12 shows that additive functionals of the process
(
∫ T

0 δ(Xs)ds) converge weakly to a random variable endowed with the Mittag–Leffler
density gα when standardized appropriately (by u(T )).The rate of divergence to infinity
of the standardizing factor (and, as a consequence, the rate of divergence to infinity of
the continuous averages) depends on the statistical features of the process through the
constant α. Clearly, α defines the nature of the Mittag–Leffler density as well.

Some observations are in order. First, the theorem readily applies to the occupation
measures because we can take δ(.) = 1A (the characteristic function of the generic set A)
giving

∫ T
0 δ(Xs)ds = ηT

A ∀A ⊂ B(D). Second, it extends to a large class of continuous-
time Harris recurrent Markov processes, provided assumption (5.15) is satisfied (Darling
and Kac, 1957). In general, we can apply it to SDPs and SDJPs of the type analyzed
in the present review. Importantly, its implications appear to be particularly interesting
when studying processes for which a standard notion of local time cannot be defined, as
is the case with multivariate diffusions, for example. We do not dwell on this idea here
(and refer the reader to Bandi and Moloche, 2004), but the meaning of the statement
will become clear in the next subsection.

We now briefly consider some interesting special cases. We noticed earlier that the
characteristics of the underlying recurrent process affect the weak convergence result
through the constant α which modifies both the rate of divergence of the occupation
measure and the resulting limiting distribution. This constant is known only for a few
processes. Specifically, if Xt is Brownian motion on the plane, then α = 0 and the Mittag–
Leffler distribution coincides with the exponential distribution, i.e.,∫ T

0 δ(Xs)ds

CX log T
⇒ e−x x ≥ 0. (5.20)

16 We abuse notation somewhat to signify convergence to a limiting random variable endowed with the Mittag–Leffler density.
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If Xt is a scalar Brownian motion, then α = 1
2 and the Mittag–Leffler density is equal to

the truncated normal, i.e., ∫ T
0 δ(Xs)ds

CX
√

T
⇒ 2√

2π
e−x2/2 x ≥ 0, (5.21)

implying, importantly, that the dimensionality of the system has, in general, an impact
on the rate of divergence of continuous averages of the process. It is noted, in fact,
that we go from a

√
T -rate to a log T -rate when moving from the scalar Brownian

case to its bivariate counterpart. Importantly, the dimensionality of the process does not
influence the rate of divergence of the continuous averages (or the rate of divergence of
the occupation measures) if stationarity is satisfied. Under stationarity, α = 1 and∫ T

0 δ(Xs)ds

T
p→

∞∫
−∞

δ(x)f (dx), (5.22)

where f (dx) = f (x)dx is the stationary probability measure of Xt , which is a form of
the classical ergodic theorem. We will return to Theorem 12 and its implications in
the sequel. We now consider generalized density estimation for multivariate solutions
to (5.1).

5.1. Generalized Density Estimation for MDPs
Just as it is natural to estimate multivariate density functions using multidimensional
extensions of kernel estimates for scalar densities (see, e.g., Pagan and Ullah, 1999), it
might appear natural to estimate the local time of a vector process using a multivariate
counterpart of the standard estimator from Section 3, i.e.,

L̂(n,T )(T , a) = �n,T

hn,T

n∑
i=1

⎛⎝ d∏
j=1

K

⎛⎝Xj
i�n,T

− aj

hn,T

⎞⎠⎞⎠, (5.23)

where hn,T = hd
n,T

and a = (a1,a2, . . . , ad) ∈ Rd .17 As it happens, local time is not gen-
erally defined for multidimensional semimartingales (see Brugière, 1991, among others).
In consequence,we cannot build a notion of (spatial) density for multivariate, potentially
nonstationary, continuous-time processes based on local time as suggested in Section 3
for SDPs and in Section 4 for SJDPs. Consistently, over a fixed span of data T , the quan-

tity L̂(n,T )(T , a) cannot be interpreted as a multivariate sojourn time estimator despite

17Solely for notational simplicity, to focus on the main ideas, we assume here that all bandwidths are the same (i.e., hn,T ,j = hn,T for all

j) in which case hn,T =
∏d

j=1 hn,T ,j = hd
n,T

. It is of course straightforward to extend the framework and allow for process-specific

smoothing parameters. We refer the reader to Bandi and Moloche (2004) for discussions.
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being a local time estimator for d = 1. Nonetheless, its asymptotic features as n →∞
for a fixed T = T can still be characterized. Using a multivariate indicator kernel (but
we expect the results not to change in the presence of a continuous kernel function),
Brugière (1993) shows that

1

hn,T log
(
1/h2

n,T

) L̂(n,T )(T , a)
(5.24)

converges weakly (as n →∞) to an exponentially distributed random variable when the
dimension of the system d is equal to two. Furthermore, the quantity

1
hn,T

L̂(n,T )(T , a) (5.25)

converges weakly to

∞∫
0

1{σ(0)Bs<1}ds
(5.26)

when d ≥ 3.
Interestingly, although preventing us from constructing appealing descriptive statistics

for multidimensional (potentially nonstationary) semimartingales based on (5.23), the
nonexistence of a notion of local time is not prohibitive when it comes to dealing
with the estimation of the infinitesimal moments of (5.1). This result might at first
appear surprising because the local time estimates are known to play a fundamental
role in the scalar limit theory for recurrent SDPs and SJDPs. On the other hand, it is
well know that simple matrix functionals of multivariate processes, such as the functional∫ t

0 B (s)B (s)� ds of the vector Brownian motion B,are well defined and sample functions
converge weakly to them, even though these functionals may not have a representation
in terms of local time, as they do from the occupation time formula in the scalar case.

Coherently,we now discuss a finding that is important in building an estimation theory
for recurrent,multivariate diffusions without resorting to a notion of local time.The fol-
lowing result, which heavily hinges on Theorem 12 above, characterizes the behavior of

L̂(n,T )(T , a) over an enlarging span of observations, namely as T →∞ (with n →∞).

In the next subsection, we will show that the asymptotic behavior of L̂(n,T )(T , a) as
T , n →∞ is crucial in interpreting the limit theory of kernel estimates of the infinites-
imal moments of the solution to (5.1).We continue to use the sampling scheme that was
laid out in Section 2.

Theorem 13 Assume Xt is the solution to (5.1). If the vanishing bandwidth hn,T satisfies

(�n,T log(1/�n,T ))
1/2

hn,T
= o(1), (5.27)



190 Federico M. Bandi and Peter C. B. Phillips

as n, T →∞ with �n,T → 0, then

L̂(n,T )(T , a)
CX u(T )

⇒ m (a) gα ∀a ∈ D ⊆ Rd
(5.28)

for some function u(T ) = TαL(T ), with 0 ≤ α ≤ 1 and L(T ) slowly varying, where gα is the
Mittag–Leffler random variable with the same parameter α, and m(dx) = m(x)dx is the invariant
measure of the process. CX is a process-specific constant.

Proof See Bandi and Moloche (2004).

Theorem 13 links the divergence properties of L̂(n,T )(T , a) to those of the occupation

time measure ηT
A . This result is hardly surprising, being that L̂(n,T )(T , a) is an estimate

of the time spent by the process in the vicinity of the spatial point a, even though the
dimensionality of the system prevents us from interpreting it as a consistent estimate of
the local time of the process at a.

Two observations are in order. First, Theorem 13 applies to SDPs of the type
analyzed in Section 3. Previously,we pointed out that the local time estimates of station-
ary processes and standard scalar Brownian motion diverge at rate T and

√
T ,respectively.

The same result can be deduced fromTheorem 13 as a subcase of the more general theory
laid out in this section. Second, in the presence of stationary processes of any dimension,

L̂(n,T )(T , a) represents a well-defined density estimator. In fact, if α = 1, then gα = 1
and CX = 1

m(D)
. Thus,

L̂(n,T )(T , a)
T

= 1
nhn,T

n∑
i=1

⎛⎝ d∏
j=1

K

⎛⎝Xj
i�n,T

− aj

hn,T

⎞⎠⎞⎠
(5.29)

converges to m(a)
m(D)

= f (a), which is a standard finding in multivariate density estimation
for both discrete and continuous-time stationary processes (see, e.g., Prakasa-Rao, 1983;
Silverman, 1986).18 We now turn to the estimation of the infinitesimal moments.

5.2. NW Kernel Estimation of the Infinitesimal Moments of an MDP
Following our discussion in the previous sections, it is natural to estimate the matrices
μ(.) and s(.) = σ(.)σ(.)� using nonparametric kernel estimates of the NW type, i.e.,

μ̂(n,T )(a) =
1

�n,T

∑n−1
i=1 Ka

i

(
X(i+1)�n,T − Xi�n,T

)∑n
i=1 Ka

i

(5.30)

18For invariant density estimation in the case of multidimensional diffusions, we refer the reader to Bianchi (2007) and Dalalyan and Reiss
(2006).
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and

ŝ(n,T )(a) =
1

�n,T

∑n−1
i=1 Ka

i

(
X(i+1)�n,T − Xi�n,T

) (
X(i+1)�n,T − Xi�n,T

)�∑n
i=1 Ka

i
, (5.31)

where

Ka
i =

d∏
j=1

K

⎛⎝Xj
i�n,T

− aj

hn,T

⎞⎠.
(5.32)

As pointed out earlier, the nonexistence of local time for multivariate solutions to (5.1)
above does not represent an impossible obstacle when deriving an estimation theory
based on (5.30) and (5.31). The intuition relies on the following observations: any limit
results for (5.30) and (5.31) in the d ≥ 1 case should collapse in the findings that we
illustrated in Section 3, i.e., (3.39) and (3.43), when reducing the dimensionality of the
system to d = 1. Let us focus on the drift for illustration purposes. Based on (3.39), our
best guess of a weak convergence result for (5.30) is√

hn,T L̂(n,T )(T , a)
{
μ̂(n,T )(a)− μ(a)

}⇒ N
(
0, Kd

2s(a)
)
, (5.33)

where hn,T = hd
n,T . First, (5.33) reduces to (3.39) when d = 1, thereby satisfying our

requirement. Second, the impossibility of interpreting L̂(n,T )(T , a) as a local time esti-
mator for d > 1 does not have an impact on the credibility of the intuition leading to

(5.33). In fact, as shown earlier, L̂(n,T )(T , a) converges (as n, T →∞ and if standard-
ized appropriately) to a well-defined random variable for dimensions higher than one
while also being a local time estimator when d = 1. The following theorem confirms
our intuition. As usual, we adopt the same sampling scheme as in Section 2.

Theorem 14 Assume Xt is the solution to (5.1). Also, assume the vanishing sequence hn,T
satisfies

(�n,T log(1/�n,T ))
1/2u(T )

hn,T
= o(1) (5.34)

and

hn,T u(T )→∞, (5.35)

as n, T →∞ with �n,T → 0, for some function u(T ) = TαL(T ) with L(T ) slowly varying
and a process-specific parameter α so that 0 ≤ α ≤ 1.Then,

μ̂(n,T )(a)
a.s.→ μ(a) ∀a ∈ D ⊆ Rd . (5.36)
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Furthermore, if hn,T = O
(
u(T )−

1
d+4

)
, then√

hn,T L̂(n,T )(T , a)
(
μ̂(n,T )(a)− μ(a)− �μ(a)

)
⇒ (s(a))1/2 N

(
0, Kd

2I
)

∀a ∈ D ⊆ Rd , (5.37)

where

�μ(a) = (bias1, bias2, . . . , biasd)(a), (5.38)

biasi(a) = h2
n,T K1

(
d∑

k=1

∂μi (a)

∂ak

∂m(a)
∂ak

m(a)
+ 1

2

d∑
k=1

∂2μi (a)

∂ak∂ak

)
i = 1, . . . , d, (5.39)

and m(dx) = m(x)dx is the invariant measure of the process.

Proof See Bandi and Moloche (2004).

All our comments in the scalar case apply to the multivariate setup examined here up to
some minor modifications.We will therefore not be as detailed as in Section 3. Nonethe-
less, it should be noted that the asymptotic bias is O(h2

n,T ), as in the scalar case, whereas

the asymptotic variance is of order L̂(n,T )(T , a)−1h−d
n,T rather than L̂(n,T )(T , a)−1hn,T .

In the standard estimation of conditional first moments in the discrete-time, stationary
framework, the limiting bias is O(h2

n,T ), whereas the limiting variance is n−1h−d
n,T rather

than (nhn,T )
−1. In other words, the variance increases with the dimensionality of the

system. This effect is commonly known as the curse of dimensionality (see, e.g., Silverman,
1986). Importantly, here we have a curse of dimensionality which mirrors the classical
result in conventional nonparametric estimation of conditional moments in discrete time
and manifests itself through the factor h−d , as well as an additional curse of dimensionality

operating via the quantity L̂(n,T )(T , a). The latter effect is a genuine by-product of the
generality of this theory and, in particular, is due to robustness to deviations from station-

arity. In fact, should the system be stationary (or positive recurrent), then L̂(n,T )(T , a)
would diverge at speed T (cf., the previous subsection) regardless of the number of equa-
tions and the order of the variance term would simply be T−1h−d

n,T . Hence, we would
be in the presence of a rather ordinary dimensionality problem because only the power
d would be affected by the number of equations in the system. By contrast, consider the
null recurrent situation. We pointed out earlier that scalar Brownian motion and Brow-

nian motion on the plane imply divergence rates for L̂(n,T )(T , a) that are equal to
√

T
and log T , respectively (see the previous subsection).This result has broader implications.
We expect the dimensionality of the system to have a negative influence on the rate of

divergence of the factor L̂(n,T )(T , a) for null recurrent processes that are more general
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than Brownian motion, thereby reinforcing the conventional effect that comes into play
through the term hd

n,T and leading to a slower rate of convergence of the nonparametric
estimates to the theoretical vector μ(.). The optimal bandwidth sequence, i.e.,

hn,T ∝ L̂
− 1

d+4
(n,T ) (T , a)

(5.40)

accounts for both effects or for the two curses of dimensionality, in the terminology of Bandi
and Moloche (2004).

We now turn to diffusion estimation.The symbol ⊗ in the statement of Theorem 15
denotes the standard Kronecker product.When applied to a generic matrix A, the oper-
ator vec stacks the columns of A. The operator vech selects the nonredundant elements
of vec.

Theorem 15 Assume Xt is the solution to (5.1). Also, assume the vanishing sequence hn,T
satisfies

(�n,T log(1/�n,T ))
1/2u(T )

hn,T
= o(1), (5.41)

as n, T →∞ with �n,T → 0, for some function u(T ) = TαL(T ) with L(T ) slowly varying
and a process-specific parameter α so that 0 ≤ α ≤ 1.Then,

ŝ(n,T )(a)
a.s.→ s(a) ∀a ∈ D ⊆ Rd . (5.42)

Furthermore, if h2
n,T

√
hn,T u(T )

�n,T
= O(1), then√√√√hn,T L̂(n,T )(T , a)
�n,T

(
vecĥs(n,T )(a)− vechs(a)− �σ2(a)

)
⇒ (�(a))1/2 N

(
0, Kd

2I
)
, ∀a ∈ D ⊆ Rd , (5.43)

where

�σ2(a) = (bias1,1, bias2,1, . . . , biasd,d)(a), (5.44)

biasi,j(a) = h2
n,T K1

(
d∑

k=1

∂si, j (a)

∂ak

∂m(a)
∂ak

m(a)
+ 1

2

d∑
k=1

∂2si,j (a)

∂ak∂ak

)
i, j = (1, 1), . . . , (d, d), (5.45)

�(a) = LD (2s(a)⊗ s(a))L�D , (5.46)

LD =(D�D)−1D�, (5.47)

D is the standard duplication matrix, i.e., the unique d2 × (d(d + 1))/2 matrix so that LD
eliminates redundant elements, viz.,
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vechs(a) = LDvecs(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1,1

s2,1

s2,2

s3,1

. . .

sd,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.48)

and m(dx) = m(x)dx is the invariant measure of the process.

Proof See Bandi and Moloche (2004).

Our comments in the scalar diffusion case (cf., Section 3) and in the multivariate drift
case should suffice to interpret the results in Theorem 15 above. Here, we simply note
that, as in the scalar case, the local properties of the process contain sufficient information
to identify the diffusion matrix, i.e., s(a) can be estimated consistently over a fixed span
of data T = T . The interested reader is referred to the work by Brugière (cf., Brugière,
1991, 1993) for a thorough treatment in the fixed T case. In particular, Brugière (1991)
discusses weak consistency of (5.31) for the matrix of interest, whereas Brugière (1993)
proves the asymptotic normality of the diffusion matrix estimator. The kernel used in
both papers is the discontinuous indicator kernel. Extending the results in Brugière to
the use of continuous kernels should be immediate. Genon-Catalot and Jacod (1993)
offer interesting, related methods.

In recent work, Jeffrey et al. (2004) propose and study a multivariate nonparametric
volatility estimator in the context of the successful HJM term-structure model (Heath et
al., 1992). An alternative approach to functional multivariate volatility estimation for the
purpose of fixed income pricing is contained in Knight et al. (2006).We refer the reader
to both papers for multidimensional kernel methods for diffusions tailored to flexible
continuous-time pricing issues. The consistency and limiting distribution of derivative
prices obtained by virtue of parametric, semiparametric, and nonparametric estimators
for diffusions is studied in Kristensen (2008).

6. CONCLUDING REMARKS
In surveying the tools that have been recently introduced to describe and study the
formulation and estimation of classes of continuous-time Markov models, this chapter
illustrates the important role that is played by local nonparametric methods along with the
assumption of recurrence. Our focus has been on estimation procedures which are general
both in terms of model specification and in terms of statistical assumptions needed for
identification. Local nonparametric methods achieve the former by being robust (at the
cost of an efficiency loss) to model mispecifications. Recurrence is a promising avenue
to achieve the latter.
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Similar arguments in favor of minimal conditions on the underlying statistical structure
of the process of interest may, however, be put forward when dealing with parametric
models and discrete-time series. Sometimes empirical researchers may be a lot more
comfortable avoiding restrictions like stationarity or arbitrary mixing conditions on the
processes they are modeling. In the same circumstances, it might also seem inappropriate
to impose explicit nonstationary behavior (often of the random walk or 1

2-null recurrent
type) in the specification. Indeed, many practical situations arise where neither station-
arity nor nonstationarity can be safely ruled out in advance, and in such situations, the
assumption of recurrence appears to be a suitable alternative condition that permits a
wide range of plausible sample behaviors and includes both stationary and nonstationary
processes. Interestingly, statistical inference can often be carried out in recurrent mod-
els using limiting laws defined in terms of random norming (the averaged kernel in
the definition of the estimated local time being an example, cf., (3.39) and (3.43) for
instance). Such random norming captures the divergence features of time series with
various degrees of recurrence and allows the user to be agnostic about the recurrence
features of the processes of interest. The practical advantage of this fact is apparent.
Although standard asymptotic theory treats stationary and nonstationary models differ-
ently in deriving implications for statistical inference, reliance on recurrence permits one
to consider both cases as subcases of a more general theory of inference. Additionally,
even when the existence of a stationary density appears to be an unquestionable feature
of the data and/or is dictated by economic theory, the dynamic structure of Markov
processes renders conventional forms of mixing not crucial to derive limiting results and,
consequently, vital tools for statistical analysis.

Having made these points, we should add the qualification that the use of recurrence
as an identifying condition is still in its infancy in the econometrics literature. Harris
recurrence is the identifying assumption in Yakowitz (1989), but the treatment in that
paper only focuses on the discrete-time ergodic case.19 More recently, kernel density
estimation for real-valued positive Harris recurrent Markov chains is discussed inAthreya
and Atuncar (1998). Karlsen and Tjøstheim (2001) provide a theory of inference for
nonparametric (auto-)regressions ofβ-null recurrent discrete-time Markov chains.As was
discussed earlier, should the rate of divergence of the occupation density of the process be
known in closed form,then the optimal bandwidth choice would depend on it. However,
this is not the case in general,and suitable data-driven methods should deliver bandwidths
capable of capturing the recurrence properties of the covariates. This is the proposal
formulated in recent work by Guerre (2004). Karlsen et al. (2007) and Schienle (2008)
focus on the functional estimation of cointegrating relations between β-null recurrent

19In his 1989 paper,Yakowitz conjectured that “…in the Markov case the mixing assumptions are not essential. …Even in the absence
of a stationary distribution, under conditions general enough to include unbounded random walks and ARMA processes, [nonlinear]
regression estimation is possible. We require only stationarity of the transition law, not of the process.”
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discrete-time Markov chains. Moloche (2004b) tackles the nonparametric estimation of
(potentially cointegrating) regressions between (either null or positive) Harris recurrent
discrete-time Markov processes. An alternative approach based on Skorohod embedding
and nonlinear transformations of the embedded process was initiated by Phillips and
Park (1998). They study nonparametric kernel estimation of nonstationary time series
embeddable in Brownian motion. Wang and Phillips (2008, 2009), and the references
therein, expand on that approach and make it applicable more generally, including cases
of fractional limit processes.

The methods reviewed in this chapter, along with the recent treatments mentioned
above, have helped to lay some foundations for econometric inference with continuous-
and discrete-time series under mild assumptions on their parametric form and statistical
evolution.The field is a new one, however, and as this chapter has suggested, much more
needs to be done.
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Abstract

We shall demonstrate that estimating functions can be found not only for ordinary diffusions, but

also for stochastic volatility models and diffusions with jumps. For stochastic volatility models the

estimating functions will be constructed in such a way that asymptotic properties of the estimator can

easily be established. The main advantage of the estimating functions discussed in this chapter is that

they usually require less computation than the alternative methods listed above and in several cases

actually provide explicit estimators. It is therefore a particularly useful approach when quick estimators

are needed. These simple estimators have a rather high efficiency when the estimating function is

well-chosen. The hall-mark of the estimating functions approach is the use of a given collection of

relations between observations at different time points to construct an optimal estimator, i.e. themost

© 2010, Elsevier B.V. All rights reserved.

203



204 Bo Martin Bibby et al.

efficient estimator possible on the basis of these relations. In a high-frequency sampling asymptotic

scenario optimal martingale estimating functions are in fact efficient for diffusion models.

Keywords: martingale estimating functions; prediction-based estimating functions; small-delta opti-

mality; stochastic differential equations; stochastic volatility models

1. INTRODUCTION
Estimating functions provide a general framework for finding estimators and studying
their properties in many different kinds of statistical models, including stochastic process
models. An estimating function is a function of the data as well as of the parameter to
be estimated. An estimator is obtained by equating the estimating function to zero and
solving the resulting estimating equation with respect to the parameter.The idea of using
estimating equations is an old one and goes back at least to Karl Pearson’s introduction of
the method of moments. The term estimating function may have been coined by Kimball
(1946). In the econometric literature, the method was introduced by Hansen (1982) and
is known as the generalized method of moments (GMM).

The estimating function approach has turned out to be very useful in obtaining,
improving,and studying estimators for discretely sampled parametric diffusion-type mod-
els, where the likelihood function is usually not explicitly known. Estimating functions
are often constructed by combining relationships (dependent on the unknown para-
meter) between an observation and one or more of the previous observations that are
informative about the parameters. Estimators obtained by maximization or minimiza-
tion of a differentiable objective function are zero points for the estimating function
obtained by differentiating the objective function. In particular, the estimating function
corresponding to the likelihood function is the score function (the derivative of the
log-likelihood function).

There are a number of approaches that render likelihood inference and Bayesian infer-
ence feasible for ordinary diffusion models; for likelihood inference, see Pedersen (1995),
Poulsen (1999),Aït-Sahalia (2002), Durham and Gallant (2002), Beskos et al. (2006) Aït-
Sahalia (2008) and Aït-Sahalia et al. (2010), and for Markov chain Monte Carlo methods,
see Elerian et al. (2001), Eraker (2001), Roberts and Stramer (2001), and Johannes and
Polson (2010). Markov chain Monte Carlo methods can also be used for more gen-
eral diffusion-type models such as stochastic volatility models, but the usual asymptotic
results for the maximum likelihood estimator (and Bayesian estimators) have not yet
been established for stochastic volatility models. An approximate likelihood function
for stochastic volatility models with tractable asymptotics was proposed by Sørensen
(2003).Another useful approach to inference for general diffusion-type models is indirect
inference, see Gallant and Tauchen (1996) and Gallant and Tauchen (2010).

In this chapter, we shall, only to a very limited extent, be concerned with estimators
obtained by maximizing or minimizing objective functions. The focus of the chapter is
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on estimating functions constructed directly by combining functions of observations at
one or more time points.A review covering more broadly statistical methods for stochas-
tic differential equation models can be found in Sørensen (2004). We shall demonstrate
that estimating functions can be found not only for ordinary diffusions but also for
stochastic volatility models and diffusions with jumps. For stochastic volatility models,
the estimating functions will be constructed in such a way that asymptotic properties of
the estimator can easily be established. The main advantage of the estimating functions
discussed in this chapter is that they usually require less computation than the alterna-
tive methods listed above and in several cases actually provide explicit estimators. It is,
therefore, a particularly useful approach when quick estimators are needed.These simple
estimators have a rather high efficiency when the estimating function is well chosen.The
hallmark of the estimating function approach is the use of a given collection of relations
between observations at different time points to construct an optimal estimator, i.e. the
most efficient estimator possible on the basis of these relations. In a high-frequency sam-
pling asymptotic scenario, optimal martingale estimating functions are in fact efficient
for diffusion models.

Let us give a few examples of estimating functions for a diffusion model given by the
stochastic differential equation

dXt = b(Xt ; θ)dt + σ(Xt ; θ)dWt ,

where W is a Wiener process and θ is a parameter to be estimated. To simplify
the exposition, let us assume here that X and θ are one dimensional and that the
data are observations of X at the time points 1, 2, . . . , n. Hansen and Scheinkman
(1995) proposed the following simple and broadly applicable estimating function.
For any twice continuously differentiable function h, an estimating function can be
defined by

Gn(θ) =
n∑

i=1

(
b(Xi; θ)h′(Xi)+ 1

2
σ2(Xi; θ)h′′(Xi)

)
.

One advantage of this estimating function is that it is an explicit function of θ. The
estimator obtained by solving the estimating equation Gn(θ) = 0 is consistent under weak
conditions. Hansen and Scheinkman (1995) also introduced an easily implementable
estimating function where each term depends on a pair of consecutive observations that
will be presented in Section 3.5. Another type of estimating function introduced by
Bibby and Sørensen (1995) is

Gn(θ) =
n∑

i=1

∂θb(Xi−1; θ)
σ2(Xi−1; θ)

[Xi − Eθ(Xi|Xi−1)],
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which is an approximation to the optimal estimating function based on the relationship
given by the function h(x, y; θ) = y− F(x; θ) with F(x; θ) = Eθ(X2|X1 = x). It can
also be obtained by compensating a discretization of the continuous-time score func-
tion. This estimating function is a martingale, which simplifies the asymptotic theory.
A disadvantage is that for most models, there is not an explicit expression for the con-
ditional expectation F(x; θ), which must in such cases be determined numerically. For
models with mean reversion, there is an explicit expression for F(x; θ). Let us finish this
list of examples with an explicit martingale estimating function. For the diffusion on the
interval (−π/2,π/2) with b(x; θ) = −θ tan(x) and σ(x; θ) = 1,

Gn(θ) =
n∑

i=1

sin(Xi−1)
[

sin(Xi)− e−
(
θ+ 1

2

)
sin(Xi−1)

]
,

(Kessler and Sørensen (1999)) is an approximation to the optimal estimating function

based on the relationship given by the function h(x, y; θ) = sin(y)− e−
(
θ+ 1

2

)
sin(x).

Note that in this example, the estimating equation Gn(θ) = 0 has an explicit solution.
The three examples given here will be treated more fully later in this chapter.

The general theory for estimating functions for time series models is presented in
Section 2. The emphasis is on martingale estimating functions, for which the limit the-
ory is relatively simple and which play an central role for diffusion models.Various types
of estimating functions for diffusion models are presented in Section 3. First, a collection
of useful limit results for ergodic diffusion processes is given and the maximum likelihood
estimator is briefly considered. Then a general class of martingale estimating functions
is presented and discussed. Martingale estimating functions obtained by simulation are
treated, and a thorough discussion is given of how to construct explicit estimating func-
tions, whether martingales or not. A martingale estimating functions for diffusion with
jumps is considered, and finally prediction-based estimating functions that can be used
for non-Markovian diffusion-type models are treated. Stochastic volatility models are
discussed in particular. In Section 4, optimal martingale estimating functions for diffu-
sion models are found. In practice, considerable computational simplifications can often
be obtained by using a suitable approximation to the optimal estimating function. This
aspect is discussed in Section 4.2. A global optimality criterion for estimating functions
for diffusion models,called small�-optimality, is the subject of Section 4.4.This criterion
is particularly suitable at high sampling frequencies, where it is equivalent to efficiency.

2. ESTIMATING FUNCTIONS
Suppose as a model for the data X1, X2, . . . , Xn that they are observations from a stochastic
process model indexed by a p-dimensional parameter θ ∈ �. We are particularly inter-
ested in the case, where the model is a continuous-time model observed at discrete time
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points that need not be equidistant. An estimating function is a p-dimensional function of
the parameter θ and the data: Gn(θ; X1, X2, . . . , Xn). Usually, we suppress the depen-
dence on the observations in the notation and write Gn(θ). We get an estimator by
solving the equation

Gn(θ) = 0.

It is possible that there are several solutions or no solution at all. An estimator obtained
from an estimating functions is usually called a GMM estimator in the econometric
literature. General results on consistency and asymptotic normality of GMM estimators
were given by Hansen (1982). Reviews of asymptotic theory for estimating functions
with a particular view to diffusion models can be found in Sørensen (1999) and Jacod
and Sørensen (2009).

Here,we only very briefly outline the main asymptotic results.An estimating function
is called unbiased if Eθ(Gn(θ)) = 0. We will assume that the unbiasedness condition
is satisfied either exactly (i.e., for all n) or asymptotically as n →∞, which ensures
consistency of the estimator as n →∞ under weak regularity conditions. Consider an
estimating function of the form

Gn(θ) =
n∑

i=r

g(Xi−r+1, . . . , Xi; θ), (2.1)

where the function g is p-dimensional, and where r is a fixed integer smaller than n. We
will suppose that for all values of θ, the process {Xi} is stationary and that Qθ(g(θ))= 0
and Qθ(gi(θ)

2) <∞, where Qθ denotes the joint distribution of (X1, . . . , Xr), and
Qθ( f ) is the expectation of f(X1, . . . , Xr) for a function f : IRr "→ IR. Suppose that
a central limit theorem

1√
n

n∑
i=r

g(Xi−r+1, . . . , Xi; θ)
D−→ N (0, V (θ)) (2.2)

holds for some p × p-matrix V (θ). If Gn(θ) is a Pθ-martingale, this follows from the
central limit theorem for martingales. Under weak regularity conditions, an estimator θ̂n
exists that solves the estimating equation Gn(θ̂n) = 0, with a probability tending to one
as n →∞, and is consistent and asymptotically normal:

√
n
(
θ̂n − θ0

) D−→ N
(
0, S(θ0)

−1V (θ0)(S(θ0)
−1)T

)
, (2.3)

as n →∞, where θ0 denotes the true parameter value, and

S(θ) = {
Qθ

(
∂θj gi(θ)

)}
. (2.4)

Here, and later, ∂θj denotes the partial derivative with respect to θj .
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Suppose we have a class Gn of unbiased estimating functions. How do we choose the
best member in Gn? This is the question studied in the theory of optimal estimating
functions, which has been developed in parallel, but with little interaction, in the econo-
metrics and in the statistics literature. A comprehensive treatment of both literatures and
their relations is outside the scope of this chapter, so here just a few references will be
given. In the statistics literature, the theory dates back to the papers by Godambe (1960)
and Durbin (1960); however, the basic idea was in a sense already used in Fisher (1935).
The theory was extended to stochastic processes by Godambe (1985), Godambe and
Heyde (1987), Heyde (1988), and several others; see the references in Heyde (1997). In
the econometrics literature, the foundation was laid by Hansen (1982), who followed
Sagan (1958) by using selection matrices.This study treats a very general class of models
including time series models. Important extensions to the theory were made by Hansen
(1985), Chamberlain (1987), Newey and West (1987), and Newey (1990); see also the
discussion and references in Hall (2005). Particular attention is given to the time series
setting in Hansen (1985), Hansen (1993),West (2001), and Kuersteiner (2002). Explo-
rations of nonparametric implementations were made by Newey (2004) and others.
A discussion of links between the econometrics and statistics literature can be found in
Hansen (2001).

Ideally, we would base the statistical inference on the likelihood function Ln(θ) and
hence use as our estimating function the score function Un(θ) = ∂θ log Ln(θ).The opti-
mal estimating function G∗

n in Gn is the one that is closest to Un(θ) in a mean square
sense. Under weak regularity conditions, it is also characterized as the estimating function
in Gn for which the asymptotic variance in (2.3) is as small as possible. If an estimating
function G∗

n in Gn satisfies that

SGn (θ)
−1Eθ

(
Gn(θ)G∗

n (θ)
T
)
= SG∗n (θ)

−1Eθ

(
G∗

n (θ)G
∗
n (θ)

T
)

(2.5)

for all θ ∈ � and for all Gn ∈ Gn, then it is optimal in Gn. Here, SGn(θ) denotes the
p × p-matrix

SGn (θ) = Eθ(∂θT Gn(θ)) =
⎛⎜⎝Eθ(∂θ1Gn(θ)1) · · · Eθ(∂θpGn(θ)1)

...
...

Eθ(∂θ1Gn(θ)p) · · · Eθ(∂θpGn(θ)p)

⎞⎟⎠. (2.6)

We denote the transpose of a vector or a matrix a by aT .Vectors are column vectors.

2.1. Martingale Estimating Functions
Estimating functions that are martingales have particularly nice properties and a rela-
tively simple asymptotic theory based on the well-developed martingale limit theory, see,
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e.g., Hall and Heyde (1980). A martingale estimating function is an estimating functions
Gn satisfying that

Eθ(Gn(θ)|Fn−1) = Gn−1(θ), n = 1, 2, . . . ,

where Fn−1 is the σ-field generated by the observations X1, . . . , Xn−1 (G0 = 0 and
F0 is the trivial σ-field). In other words, the stochastic process {Gn(θ) : n = 1, 2, . . .}
is a martingale under the model given by the parameter value θ. As will be discussed
in Section 3.2, the score function is usually a martingale estimating function (for more
details, see, e.g., Barndorff-Nielsen and Sørensen (1994)). When a more easily calcu-
lated alternative is needed, it is natural to approximate the score function by a simpler
martingale estimating function.

Here, we briefly discuss an optimality criterion that is particular to martingale esti-
mating functions. Suppose the estimating function Gn(θ) satisfies the conditions of the
central limit theorem for martingales, and let θ̂n be a solution of the equation Gn(θ) = 0.
Then, under standard regularity conditions, the inverse of the random matrix

IGn(θ) = Gn(θ)
T 〈G(θ)〉−1

n Gn(θ)

estimates the covariance matrix of the asymptotic distribution of the estimator θ̂n;
for details, see Heyde (1997). Here, Gn(θ) is the predictable version (also called the
compensator) of ∂θT Gn(θ) given by

Gn(θ) =
n∑

i=1

Eθ
(
∂θT Hi(θ)|Fi−1

)
,

where Hi = Gi −Gi−1. The quadratic cocharacteristic of two martingales, G and G̃,
both with finite variance, is defined by

〈G, G̃〉n =
n∑

i=1

E
(
HiH̃T

i |Fi−1

)
, (2.7)

where H̃i = G̃i − G̃i−1, and the quadratic characteristic of a martingale Gn is 〈G〉n =
〈G, G〉n. If Gn is a class of martingale estimating functions with finite variance, an
estimating function G∗

n in Gn is called Heyde-optimal in Gn if

IG∗n (θ) ≥ IGn (θ) (2.8)

for all θ ∈ �, for all Gn ∈ Gn, and for all n ∈ IN. The following useful result is similar
to (2.5).
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Theorem 1 (Heyde, 1988). If G∗
n ∈ Gn satisfies

Gn(θ)
−1〈G(θ), G∗(θ)〉n = G∗

n(θ)
−1〈G∗(θ)〉n (2.9)

for all θ ∈ �, Gn ∈ Gn, and n ∈ IN, then it is is Heyde-optimal in Gn.When Gn is closed
under addition, then any Heyde-optimal estimating function G∗

n satisfies (2.9). Moreover, if
G∗

n(θ)
−1〈G∗(θ)〉n is nonrandom, then G∗

n satisfies the optimality condition (2.5) too.

See Lemmas 4.2 and 4.3 in Hansen (1985) for essentially the same result, except that
Hansen uses martingale approximation methods to study a general class of estimating
equations constructed from stationary ergodic processes. Often, condition (2.9) can be
verified by showing that 〈G(θ), G∗(θ)〉n = −Gn(θ) for all Gn ∈ Gn, implying that (2.5)
holds too.

Example 1 Consider the situation that a number of functions,hij(x1, . . . , xi; θ), j = 1, . . . , N,
i = 1, . . . n, are available, which satisfy that

Eθ(hij(X1, . . . , Xi; θ)|Fi−1) = 0

for j = 1, . . . , N , i = 1, . . . n.These relationships (dependent on θ) between an observation Xi
and the previous observations X1, . . . , Xi−1 (or a subset of them) can be used to estimate θ.
Specifically,

Gn(θ) =
n∑

i=1

ai(X1, . . . , Xi−1; θ)hi(X1, . . . , Xi; θ) (2.10)

is a p-dimensional unbiased martingale estimating function. Here, hi denotes the N-dimensional
vector (hi1, . . . , hiN )

T , and ai(x1, . . . , xi−1; θ) is a function from IRi−1 ×� into the set of
p ×N-matrices that is differentiable with respect to θ.

Let Gn be the class of martingale estimating functions of the form (2.10) that have finite variance.
To find the matrices ai that combine the N relations in an optimal way, note that

Gn(θ) =
n∑

i=1

ai(X1, . . . , Xi−1; θ)Eθ(∂θT hi(X1, . . . , Xi; θ)|Fi−1)

and

〈G(θ), G∗(θ)〉n =
n∑

i=1

ai(X1, . . . , Xi−1; θ)Vhi (X1, . . . , Xi−1; θ)a∗i (X1, . . . , Xi−1; θ)T ,

where

G∗
n (θ) =

n∑
i=1

a∗i (X1, . . . , Xi−1; θ)hi(X1, . . . , Xi; θ), (2.11)



Estimating Functions for Discretely Sampled Diffusion-Type Models 211

and

Vhi (X1, . . . , Xi−1; θ) = Eθ
(
hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)T |Fi−1

)
is the conditional covariance matrix of the random vector hi(X1, . . . , Xi; θ) given (X1, . . . , Xi−1).
The optimality condition (2.9) is satisfied for

a∗i (X1, . . . , Xi−1; θ) = −Eθ(∂θT hi(X1, . . . , Xi; θ)|Fi−1)
T Vhi (X1, . . . , Xi−1; θ)−1, (2.12)

so with this choice, the estimating function G∗n (θ) is Heyde-optimal by Theorem 1. Since
G∗

n(θ)
−1〈G∗(θ)〉n = −Ip, the estimating function G∗

n (θ) satisfies the optimality condition
(2.5) too.

Let pi(x; θ|x1, . . . , xi−1) denote the conditional density of Xi given that (X1, . . . , Xi−1) =
(x1, . . . , xi−1).Then the likelihood function for θ based on the data (X1, . . . , Xn) is

Ln(θ) =
n∏

i=1

pi(Xi; θ|X1, . . . , Xi−1)

(with p1 denoting the unconditional density of X1). If we assume that all pis are differentiable with
respect to θ, the score function is

Un(θ) =
n∑

i=1

∂θ log pi(Xi; θ|X1, . . . , Xi−1). (2.13)

We can now see in exactly what sense the optimal estimating function (2.11) approximates the
score function. Let us fix i, x1, . . . , xi−1 and θ.We let xi−1 denote the vector (x1, . . . , xi−1) and
consider the L2-space Ki(xi−1, θ) of functions f : IR "→ IR, for which∫

f (x)2pi(x; θ|xi−1)dx <∞.

We equip Ki(xi−1, θ) with the usual inner product

〈 f , g〉 =
∫

f (x)g(x)pi(x; θ|xi−1)dx,

and let Hi(xi−1, θ) denote the N-dimensional subspace of Ki(xi−1, θ) spanned by the functions
x "→ hij(xi−1, x; θ), j = 1, . . . , N.That the functions are linearly independent in Ki(xi−1, θ)
follows from the earlier assumption that the covariance matrix Vhi (xi−1; θ) is regular.

Now, assume that ∂θj log pi( · | xi−1; θ) ∈ Ki(xi−1, θ) for j = 1, . . . , p, let g∗ij denote
the orthogonal projection with respect to 〈·, ·〉 of ∂θj log pi onto Hi(xi−1, θ), and define a
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p-dimensional function by g∗i = ( gi1, . . . , gip)
T .Then

g∗i (xi−1, x; θ) = a∗i (xi−1; θ)hi(xi−1, x; θ), (2.14)

where a∗i is the matrix defined by (2.12).To see this, note that g∗ must have the form (2.14) with
a∗i satisfying the normal equations

〈∂θj log pi − g∗j , hik〉 = 0,

j = 1, . . . , p and k = 1, . . . , N.These equations can also be expressed in the form

Bi = a∗i Vhi ,

where Bi is the p × p-matrix whose ( j, k)th element is 〈∂θj log pi, hik〉. If we can interchange
differentiation and integration so that∫

∂θj [hik(xi−1, x; θ)p(xi−1, x; θ)]dx = ∂θj

∫
hik(xi−1, x; θ)p(xi−1, x; θ)dx = 0,

it follows that

Bi = −
∫

∂θT hi(xi−1, x; θ)p(xi−1, x; θ)dx,

which proves (2.14).
The result (2.14) was first shown by Kessler (1996) in the case of a Markov process.The proof

in the general case, given here for the first time, is essentially the same as that for a Markov process.
It is important to note that if for all i the functions hij are chosen such that as N →∞, the
subspace Hi(xi−1, θ) converges to a subspace of Ki(xi−1, θ) containing the functions ∂θj log pi,
j = 1, . . . , p, then the optimal estimating function will approach the score function, and it is
possible to obtain a sequence of estimators that is asymptotically fully efficient.

3. ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES
Suppose a d-dimensional continuous-time process X has been observed at discrete time
points: Xt0 , Xt1 , . . . , Xtn , t0 = 0 < t1 < · · · < tn. As a model for these data, we assume
that X is a d-dimensional diffusion, i.e., that X solves the stochastic differential equation

dXt = b(Xt ; θ)dt + σ(Xt ; θ)dWt , (3.1)

with b a d-dimensional vector,σ a d × d-matrix,and W a d-dimensional standard Wiener
process.We assume that the drift b and the diffusion coefficient σ are known apart from
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the parameter θ, which varies in a subset � of IRp. These functions are assumed to be
smooth enough to ensure the existence of a unique weak solution for all θ in �. The
state space of X , i.e., the set of possible values of the process, is assumed not to depend
on θ.The statistical problem considered here is to draw inference about the parameter θ
based on the observations. We consider only the case where the sampling times are not
random. The effect of random sampling times can be considerable, see Aït-Sahalia and
Mykland (2003).

3.1. Limit Results for Diffusion Processes
In this section,we review asymptotic results for ergodic diffusion processes.We shall first
consider one-dimensional diffusion models, i.e., solutions to stochastic differential equations
of the form (3.1), where W is a standard Wiener process. Estimation of the parameter
θ will not be discussed in this section, but the parameter is included in the notation for
consistency with the rest of the section. The state space of X is an interval from � to r ,
where � could possibly be −∞ and r might be ∞.

First, we give a condition ensuring that the solution X of (3.1) is ergodic. The scale
measure of X is a measure on the state space (�, r) with the density

s(x; θ) = exp

⎛⎜⎝−2

x∫
x#

b(y; θ)
v(y; θ)

dy

⎞⎟⎠ (3.2)

with respect to the Lebesgue measure. Here,x# is an arbitrary point in (�, r), so the scale
measure is only defined up to a multiplicative constant, which does not matter in the
following. Since we shall often need the squared diffusion coefficient, we define

v(x; θ) = σ2(x; θ). (3.3)

Condition 1 The following holds for all θ ∈ �:

r∫
x#

s(x; θ)dx =
x#∫
�

s(x; θ)dx = ∞

and
r∫

�

[s(x; θ)v(x; θ)]−1dx = A(θ) <∞.

Under Condition 1, the process X is ergodic with an invariant probability measure that
has density

μθ(x) = [A(θ)s(x; θ)v(x; θ)]−1, x ∈ (�, r), (3.4)
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with respect to the Lebesgue measure on (�, r).We will assume that X0 ∼ μθ so that X is
a stationary process with Xt ∼ μθ for all t ≥ 0.The distribution of (Xt , Xt+s) t > 0, s > 0
has density

Qs
θ(x, y) = μθ(x)p(s, x, y; θ), (3.5)

where y "→ p(s, x, y; θ) is the transition density, i.e., the conditional density of Xt+s given
that Xt = x. For a function f : (�, r)2 "→ IR, we use the notation

Qs
θ( f ) =

∫
(�,r)2

f (x, y)p(s, x, y; θ)μθ(x)dydx

(provided, of course, that the integral exists). Similarly, we define

μθ( f ) =
r∫

�

f (x)μθ(x)dx

for a function f : (�, r) "→ IR.
Suppose Condition 1 holds, that f : (�, r) "→ IR satisfies μθ(| f |) <∞, and that g :

(�, r)2 "→ IR satisfies Q�
θ (|g|) <∞ for a � > 0. Then

1
n

n∑
i=1

f(Xi�)
a.s.−→ μθ( f ) (3.6)

and

1
n

n∑
i=1

g(X(i−1)�, Xi�)
a.s.−→ Q�

θ ( g) (3.7)

as n →∞, see Billingsley (1961b).The result (3.6) is obviously a particular case of (3.7).
If we assume that the sum

∑n
i=1 g(X(i−1)�, Xi�) is a martingale with finite variance,

i.e., that
r∫

�

g(x, y)p(�, x, y; θ)dy = 0 for all x ∈ (�, r)

and that Q�
θ ( g2) <∞, then under Condition 1,

1√
n

n∑
i=1

g(X(i−1)�, Xi�)
D−→ N (0, V (θ)) (3.8)

as n →∞, where V (θ) = Q�
θ ( g2); see Billingsley (1961a). The central limit

theorem (3.8) holds in the multidimensional case g : (�, r)2 "→ IRp too, provided that
each coordinate of

∑n
i=1 g(X(i−1)�, Xi�) is a martingale with finite variance. In the
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multidimensional case, V (θ) = Q�
θ

(
ggT

)
. Here, and later, T denotes transposition and

vectors are column vectors.
In cases where

∑n
i=1 g(X(i−1)�, Xi�) is not a martingale, stronger conditions on the

diffusion are needed to ensure the central limit result (3.8). Often, it is assumed that the
process X is geometrically α-mixing, i.e., α-mixing with mixing coefficients that tend
to zero exponentially fast. Sufficient conditions for geometrical α-mixing were given
by Veretennikov (1987), Doukhan (1994), Hansen and Scheinkman (1995), Kusuoka
and Yoshida (2000), and Genon-Catalot et al. (2000); see also Aït-Sahalia et al. (2010).
Suppose the diffusion is stationary and geometrically α-mixing. Then (3.8) holds in the
multidimensional case with

V (θ) = Q�
θ

(
ggT )+ ∞∑

k=1

[
Eθ

(
g(X�, X0)g(X(k+1)�, Xk�)

T
)

(3.9)
+ Eθ

(
g(X(k+1)�, Xk�)g(X�, X0)

T
)]

,

provided that V (θ) is strictly positive definite,and that Q�
θ

(
gi(θ)

2+ε) <∞, i = 1, . . . , p,
for some ε > 0, see, e.g., Doukhan (1994). Here gi denotes the ith coordinate of g.

Finally, we consider briefly the case where X is a multivariate diffusion, i.e., when X
is the d-dimensional process that solves (3.1) with b now a d-dimensional vector, σ
a d × d-matrix, and W a d-dimensional standard Wiener process. We assume that X
moves freely on an open, connected set D ⊆ IRd (that does not depend on θ),C(x; θ) =
σ(x; θ)σ(x; θ)T is strictly positive definite for all x ∈ D, θ ∈ �, and X is ergodic for all θ
with an invariant density μθ(x). Under these assumptions, the above results (3.6), (3.7),
and (3.8) hold in the multivariate case too for martingales, and more generally when X
is geometrically α-mixing. The problem is that the conditions ensuring ergodicity are
not as simple as those for one-dimensional diffusions. A rich theory including conditions
for exponential ergodicity was presented in Meyn and Tweedie (1993). An application
of these results to one-dimensional diffusions can be found in Chen et al. (2008).

3.2. Maximum Likelihood Estimation
The diffusion process X is a Markov process, so the likelihood function (conditional
on X0) is

Ln(θ) =
n∏

i=1

p(ti − ti−1, Xti−1 , Xti ; θ), (3.10)

where y "→ p(s, x, y; θ) is the transition density. Under weak regularity conditions, the
maximum likelihood estimator is efficient, i.e., it has the smallest asymptotic variance
among all estimators.The transition density is only rarely explicitly known, but there are
a number of numerical approaches that render likelihood inference feasible for diffusion
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models. Pedersen (1995) proposed a method for obtaining an approximation to the
likelihood function by rather extensive simulation. Pedersen’s method was very con-
siderably improved by Durham and Gallant (2002), whose method is computationally
much more efficient. Poulsen (1999) obtained an approximation to the transition den-
sity by numerically solving a partial differential equation, while Aït-Sahalia (2002) and
Aït-Sahalia (2008) proposed to approximate the transition density by means of a Hermite
expansion, see also Aït-Sahalia et al. (2010). A Gaussian approximation to the likelihood
function obtained by local linearization of the stochastic differential equation was pro-
posed by Ozaki (1985). Bayesian estimators with the same asymptotic properties as the
maximum likelihood estimator can be obtained by Markov chain Monte Carlo methods,
see Elerian et al. (2001), Eraker (2001), Roberts and Stramer (2001), and Johannes and
Polson (2010). Finally, exact and computationally efficient likelihood-based estimation
methods were presented by Beskos et al. (2006).These various approaches to maximum
likelihood estimation will not be considered further in this chapter.

The vector Un(θ) of partial derivatives of the log-likelihood function log Ln(θ) with
respect to the coordinates of θ is called the score function (or score vector).The maximum
likelihood estimator solves the estimating equation Un(θ) = 0.The score function based
on the observations Xt0 , Xt1 , . . . , Xtn is

Un(θ) =
n∑

i=1

∂θ log p(�i, Xti−1 , Xti ; θ), (3.11)

where �i = ti − ti−1. The score function is a martingale estimating function, which is
easily seen provided that the following interchange of differentiation and integration is
allowed:

Eθ

(
∂θ log p(�i, Xti−1 , Xti ; θ)

∣∣Xt1 , . . . , Xti−1

) = Eθ

(
∂θp(�i, Xti−1 , Xti ; θ)

p(�i, Xti−1 , Xti ; θ)

∣∣∣∣Xti−1

)

=
r∫

�

∂θp(�i, Xti−1 , y; θ)

p(�i, Xti−1 , y; θ)
p(�i, Xti−1 , y, θ)dy = ∂θ

r∫
�

p(�i, Xti−1 , y; θ)dy

︸ ︷︷ ︸
=1

= 0.

A wide spectrum of estimators based on estimating functions other than the score
function have been proposed and are useful alternatives to the maximum likelihood esti-
mator in situation where simpler estimators that require less computation are needed.
Some of these alternatives are not much less efficient than the maximum likelihood
estimator, and in some cases, they are even fully efficient. Another advantage of these
alternative approaches is that the estimators are often more robust to model misspecifica-
tion than the maximum likelihood estimator because typically the estimating functions
do not involve the full model specification. For instance, the martingale estimating func-
tions considered below depends only on the conditional moments of certain functions of
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the observations. In the following sections, some of these alternative estimating functions
will be reviewed and discussed.

3.3. Martingale Estimating Functions for Diffusion Models
The score function is a martingale estimating function of the form

Gn(θ) =
n∑

i=1

g(�i, Xti−1 , Xti ; θ). (3.12)

It is therefore natural to approximate the score function by martingale estimating
functions of the general form (3.12) with

g(�, x, y; θ) =
N∑

j=1

aj(�, x; θ)hj(�, x, y; θ), (3.13)

where hj(�, x, y; θ), j = 1, . . . , N are given real-valued functions satisfying that

r∫
�

hj(�, x, y; θ)p(�, x, y; θ)dy = 0

for all � > 0, x ∈ (�, r), and θ ∈ �. Each of the functions hj could separately be used
to define an estimating function of the form (3.12), but more efficient estimators are
obtained by combining them in an optimal way. The p-dimensional functions aj in
(3.13) determine how much weight is given in the estimation procedure to each of the
relationships defined by the hjs. These functions, which we will refer to as the weights,
can be chosen in an optimal way using the theory of optimal estimating functions. This
is quite straightforward, see Section 2.The choice of the functions hj , on the other hand,
is an art rather than a science. The ability to tailor these functions to a given model or
to particular parameters of interest is a considerable strength of the estimating functions
methodology. It is,on the other hand,also a source of weakness since it is not always clear
how best to choose the hjs. However, for diffusion models, the global small �-optimality
criterion presented in Section 4.4 gives some guidance to the choice of the functions
hj . In what follows and in Section 3.5, we shall present some standard ways of choosing
these functions that usually work in practice. Note that the weights aj are usually called
instruments in the econometric literature.

Martingale estimating functions have turned out to be very useful in obtaining esti-
mators for discretely sampled diffusion-type models; see, for instance,Bibby and Sørensen
(1995), Bibby and Sørensen (1996), Sørensen (1997), Kessler and Sørensen (1999),
Kessler (2000), Bibby and Sørensen (2001), Jacobsen (2001a), and Sørensen (2007).
Applications to financial data can be found in Bibby and Sørensen (1997), and Larsen
and Sørensen (2007).
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A simple type of estimating function is the linear estimating function obtained for
N = 1 and

h1(�, x, y; θ) = y− F(�, x; θ),

where

F(�, x; θ) = Eθ(X�|X0 = x) =
r∫

�

yp(�, x, y; θ)dy. (3.14)

In some models, the conditional expectation F(�, x; θ) and the conditional variance
φ(�, x; θ) = Varθ(X�|X0 = x) are known, but in most cases, they are not and must be
determined by simulations,which can usually be done easily;see the following subsection.
Linear martingale estimating functions for diffusion models were studied by Bibby and
Sørensen (1995), where they were derived as an approximation to the continuous-time
likelihood function.An advantage of this type of estimating functions is that the estimators
are very robust to model misspecification. If only the first moment F of the transition
distribution is correctly specified, the estimator is consistent.

When the diffusion coefficient (the volatility) σ depends on a parameter, the linear
estimating function are too simple to be useful, whereas the quadratic estimating functions
are a natural, generally applicable choice. They are obtained for N = 2 and, when the
diffusion is one dimensional,

h1(�, x, y; θ) = y− F(�, x; θ)

h2(�, x, y; θ) = (y− F(�, x; θ))2 − φ(�, x, θ),

where

φ(�, x; θ) = Varθ(X�|X0 = x) =
r∫

�

[y− F(�, x; θ)]2p(�, x, y; θ)dy. (3.15)

The version for multivariate diffusions is defined in an analogous way. An argument for
using this type of estimating function goes as follows. When � is small, the transition
density p(�, x, y; θ) is well approximated by a Gaussian density function with expectation
F(�, x; θ) and variance φ(�, x; θ). By inserting this Gaussian density in the expression
for the likelihood function (3.10), an approximate likelihood function is obtained, and
the corresponding approximate score function is

n∑
i=1

{
∂θF(�i, Xti−1 ; θ)

φ(�i, Xti−1 ; θ)
[Xti − F(�i, Xti−1 ; θ)]

(3.16)

+ ∂θφ(�i, Xti−1 ; θ)

2φ2(�i, Xti−1 ; θ)�i
[(Xti − F(�i, Xti−1 ; θ))2 − φ(�i, Xti−1 ; θ)]

}
.
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Quadratic martingale estimating functions for diffusion models were considered in Bibby
and Sørensen (1996). Estimators obtained from this type of estimating functions are also
rather robust to model misspecification. If the first and the second conditional moments,
F and φ, are correctly specified, the estimator is consistent.

Example 2 For a mean-reverting diffusion model given by

dXt = −β(Xt − α)dt + σ(Xt)dWt , (3.17)

where β > 0,

F(t, x;α,β) = xe−βt + α
(
1− e−βt) (3.18)

under weak conditions on σ.This can be seen by noting that for fixed x,α,and β,the function f (t) =
F(t, x;α,β) solves the ordinary differential equation f ′ = −β( f − α).Thus, linear estimating
functions can be easily calculated.

If we make the further assumption that σ(x) = τ
√

x (τ > 0), we obtain the model proposed
by Cox et al. (1985) for interest rates (the spot rate). In the rest of the chapter, we will refer to
this model as the CIR model or the CIR process. It was originally introduced by Feller (1951) in
a biological context, and it is often referred to as the square root process. For the CIR model, the
function φ and hence quadratic estimating functions can be found explicitly:

φ(x;α,β, τ) = τ2

β

((
1
2
α− x

)
e−2β − (α− x)e−β + 1

2
α

)
.

Another model, where φ can be found explicitly is the mean-reverting model with σ = √
β + x2.

For this model (with α = 0),

φ(x;β) = x2e−2β(e− 1)+ β

2β − 1

(
1− e1−2β).

A natural generalization of the quadratic martingale estimating functions is obtained
by choosing hjs of the form

hj(�, x, y; θ) = fj(y; θ)− πθ�( fj(θ))(x) (3.19)

for suitably chosen functions fj and with the transition operator πθ� defined by

πθs ( f )(x) =
∫
D

f (y)p(s, x, y; θ)dy = Eθ( f (Xs)|X0 = x), (3.20)

where D denotes the state space.We refer to the functions fj , j = 1, . . . , N as the base of
the estimating function. Almost all martingale estimating functions proposed in the liter-
ature are of this form. An example is the higher order polynomial martingale estimating
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functions for one-dimensional diffusions considered by Pedersen (1994a) and Kessler
(1996). These are obtained by choosing the base as fj(y) = y j , j = 1, . . . , N . However,
there is no reason to believe that polynomial estimating functions are in general the best
possible way to approximate the true score function when the transition distribution is
far from Gaussian, and it may be useful to choose a base that is tailored to a particular
diffusion model. An example are the estimating functions based on eigenfunctions of
the generator of the diffusion that were proposed by Kessler and Sørensen (1999).These
estimating functions and other examples will be discussed in Section 3.5.

3.4. Constructing Estimating Functions by Simulation
In many cases, the conditional moments needed in a martingale estimating function
are not explicitly available and must be calculated numerically, for instance by means of
simulations. In this section,we briefly consider the effect on the variance of the estimator
caused by simulation. Suppose that we need the conditional expectation of f (Xt+�)
given that Xt = x for a particular value θ of the parameter. As usual, it is assumed that X
solves (3.1). Then we can use one of the approximation schemes in Kloeden and Platen
(1999) with a step size δ much smaller than � to generate an approximation Y (δ, θ, x)
to X starting at x. A simple example is the Euler scheme

Yiδ = Y(i−1)δ + b(Y(i−1)δ; θ)δ+ σ(Y(i−1)δ; θ)Zi, Y0 = x,

where the Zis are independent and Zi ∼ N (0, δ). By generating N independent sim-
ulations Y ( j)(δ, θ, x), j = 1, . . . , N , we can approximate the conditional expectation of
f (Xt+�) given that Xt = x by

1
N

N∑
j=1

f
(
Y ( j)
� (δ, θ, x)

)
.

The discretization error is indicated by δ.We can avoid the discretization error by simu-
lating the diffusion X exactly by the methods in Beskos and Roberts (2005) and Beskos
et al. (2006). Under strong boundedness conditions, this algorithm is relatively simple,
whereas it is considerably more involved for general diffusions.

This procedure is closely related to the simulated method of moments, see Duffie
and Singleton (1993) and Clement (1997). General results on asymptotic properties of
simulated estimating functions were given by Pakes and Pollard (1989). The asymptotic
properties of the estimators obtained when the conditional moments are approximated
by simulation of diffusion models were investigated by Kessler and Paredes (2002), who
considered approximations to martingale estimating functions of the form

Gn(θ) =
n∑

i=1

[
f (Xi�, X(i−1)�; θ)− F(X(i−1)�; θ)

]
, (3.21)
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where F(x; θ) is the conditional expectation of f (X�, x; θ) given X0 = x when the
parameter value is θ. Let θ̂N ,δ

n denote the estimator obtained from the approximate
martingale estimating function

GN ,δ
n (θ) =

n∑
i=1

⎡⎣f (Xi�, X(i−1)�; θ)− 1
N

N∑
j=1

f
(
Y ( j)
� (δ, θ, X(i−1)�), X(i−1)�; θ

)⎤⎦. (3.22)

If an exact simulation method is used, there is no discretization error, so only the usual
Monte Carlo effect of a finite value of N will increase the asymptotic variance of the
estimator. Under usual regularity conditions

√
n
(
θ̂N ,δ

n − θ0

) D−→ N (0, (1+ 1/N )#), (3.23)

as n →∞,where θ0 is the true parameter value and# denotes the asymptotic covariance
matrix for the estimator obtained from the estimating function (3.21); see (2.3).

To consider simulation schemes with a discretization error, suppose that Y (δ, θ, x)
satisfies that there exists a δ > 0 such that∣∣Eθ( g(X�(x), x; θ))− E( g(Y�(δ, θ, x), x; θ))

∣∣ ≤ R(x; θ)δβ (3.24)

for all x ∈ IR and θ ∈ �, and for δ sufficiently small. Here, g(y, x; θ) = f (y, x; θ)−
F(x; θ), Xt(x) is a solution of (3.1) with X0(x) = x, and R(x; θ) is of polynomial growth
in x uniformly for θ in compact sets. According to Kessler and Paredes (2002), condition
(3.24) is satisfied by the order β weak schemes based on Ito–Taylor expansions given in
chapter 14 of Kloeden and Platen (1999). Under (3.24) and a number of further reg-
ularity conditions, Kessler and Paredes (2002) showed that if δ goes to zero sufficiently
fast that

√
nδβ → 0 as n →∞, then the result (3.23) is still valid. Thus by choosing

δ sufficiently small, the asymptotic variance of the estimators obtained with simulated
moments is only inflated by the factor (1+ 1/N ) compared to the estimator obtained
by using exact conditional moments, and obviously, we can make this factor as close to
one as we like by choosing N sufficiently large. However, Kessler and Paredes (2002)
also gives a warning against using a simulation method with a too large discretization
error. When 0 < limn→∞

√
nδβ <∞,

√
n
(
θ̂N ,δ

n − θ0

) D−→ N (m(θ0), (1+ 1/N )#),

and when
√

nδβ →∞,

δ−β
(
θ̂N ,δ

n − θ0

)
→ m(θ0)
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in probability, where the p-dimensional vector m(θ0) depends on f and is generally
different from zero. Thus, the estimator can be badly misbehaved if a value of δ is used
that is too large.

3.5. Explicit Estimating Functions

In this section, we focus on estimating functions for which explicit analytic expressions
are available. These are particularly useful because the problem of finding the resulting
estimators then amounts to solving p explicitly given equations, and although typically
the solution must be obtained numerically, that will not create practical problems if the
dimension of the parameter is not too large – in particular no simulations are required
for the calculations.

We start the discussion of explicit estimating functions by considering first martingale
estimating functions of the form (3.12), (3.13), and (3.19), i.e.,

Gn(θ) =
n∑

i=1

a(�i, Xti−1 , θ)
(

f
(
Xti ; θ

)− πθ�( f (θ))(Xti−1)
)

(3.25)

with f = ( fj)1≤ j≤N a (column) vector of given functions, the base, and a =
(akj)1≤k≤p,1≤ j≤N a p ×N -matrix of given functions, the weights.The transition operator,
πθ�, is defined by (3.20).We shall call Gn(θ) explicit if all the fj and akj are given in explicit
form and the conditional expectations πθ�( f (θ))(x) can be determined explicitly. In this
section, the weight matrix a can be chosen in any way we please, so we shall not be
concerned with the explicit determination of a. In the next section,we shall discuss how
to determine a in an optimal or approximately optimal way. Then, we shall also discuss
when an explicit expression for the optimal a is available.

By far, the simplest case in which πθ�( f (θ))(x) can be found explicitly is when the
base consists of eigenfunctions for the generator of the diffusion as proposed by Kessler
and Sørensen (1999) for one-dimensional diffusions. The differential operator

L θ = b(x; θ)
d
dx
+ 1

2
σ2(x; θ)

d2

dx2 (3.26)

is called the generator of the diffusion process given by (3.1). Generators of Markov
processes are treated more fully inAït-Sahalia et al. (2010).A twice differentiable function
φ(x; θ) is called an eigenfunction for the generator L θ if

L θφ(x; θ) = −λ(θ)φ(x; θ), (3.27)

where the real number λ(θ) ≥ 0 is called the eigenvalue corresponding to φ(x; θ). Under
weak regularity conditions, see, e.g., Kessler and Sørensen (1999),

πθ�(φ(θ))(x) = Eθ(φ(X�; θ)|X0 = x) = e−λ(θ)�φ(x; θ). (3.28)
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We can therefore define a martingale estimating function by (3.12) and (3.13) with

hj(�, x, y; θ) = φj(y; θ)− e−λj(θ)�φj(x; θ), (3.29)

where φ1(·; θ), . . . ,φN (·; θ) are eigenfunctions for Lθ with eigenvalues λ1(θ), . . . ,
λN (θ).

An important class of one-dimensional diffusions for which explicit eigenfunctions
are available is the class of Pearson diffusions.This is the class of diffusions with linear drift
and quadratic squared diffusion coefficient, i.e., b(x) = −β(x− α) and σ2(x) = ax2 +
bx+ c. Because in this case, the generator (3.26) maps polynomials into polynomials, it is
easy to find explicit polynomial eigenfunctions.This class of diffusions was introduced by
Wong (1964).The class of stationary distributions equals the Pearson class of distributions
introduced in Pearson (1895). If X is a Pearson diffusion, an explicit eigenfunction is also
available for the diffusion F(X), where F is a twice differentiable, invertible mapping.
Explicit estimating functions for the Pearson diffusions and their transformations (and
for more complex models build using these processes) have recently been studied by
Forman and Sørensen (2008). In the following examples, the observed process is either
a Pearson diffusion or a transformation of a Pearson diffusion.

Example 3 For the Cox-Ingersoll-Ross model, the eigenfunctions are the Laguerre polynomials,
and we obtain polynomial estimating functions, some of which were discussed in Example 2.

Example 4 The class of diffusions, which solve the equation

dXt = −θ tan(Xt)dt + dWt , X0 = x0

is more interesting because here the eigenfunctions are not polynomials, and we get estimating
functions that we have not seen before. For θ ≥ 1

2 , the process X is an ergodic diffusion on
the interval (−π/2,π/2), which can be thought of as an Ornstein–Uhlenbeck process on a
finite interval. The eigenfunctions are φi(x; θ) = Cθ

i (sin(x)), i = 0, 1, . . . , with eigenvalues
i(θ + i/2), i = 0, 1, . . . , where Cθ

i is the Gegenbauer polynomial of order i.This model was
studied in more detail in Kessler and Sørensen (1999).An asymmetric version was introduced in
Larsen and Sørensen (2007).

Example 5 In Larsen and Sørensen (2007), the following model is proposed for the random
variation of an exchange rate in a target zone between realignments.Let X denote the logarithm
of the exchange rate.Then

dXt = −β[Xt − (m + γZ)]dt + σ
√

Z2 − (Xt − m)2 dWt , (3.30)

where β > 0 and γ ∈ (−1, 1).This is a diffusion on the interval (m − Z , m + Z) with mean
reversion around m + γZ.Here,m denotes the central parity and Z = log(1+ z)with z denoting
the largest deviation from m that is allowed.The quantities m and z are known fixed quantities.
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When β(1− γ) ≥ σ2 and β(1+ γ) ≥ σ2, X an ergodic diffusion, for which the stationary
distribution is the beta-distribution on (m − Z , m + Z) with parameters β(1− γ)σ−2 and
β(1+ γ)σ−2. For γ = 0, the target zone model proposed by De Jong et al. (2001) is obtained.
The purpose of introducing the parameter γ is to allow an asymmetric stationary distribution,which
is usually needed to fit observations of exchange rates in a target zone, see Larsen and Sørensen
(2007).The eigenfunctions for the generator of the diffusion (3.30) are the Jacobi polynomials

φi(x;β, γ , σ) =
i∑

j=1

2−j
(
β(1− γ)σ−2 + i − 1

i − j

)(
2βσ−2 − 2+ i + j

j

)
[(x− m)/Z − 1] j

with eigenvalues λi = i
[
β + 1

2σ
2(i − 1)

]
, i = 1, 2, . . . .

Although it is quite natural to search for eigenfunctions for the generator of a one-
dimensional diffusion, it is less natural in higher dimensions (e.g., the eigenvalues need
no longer be real). Instead, one may use invariant subspaces and do the following. Let X
be a general d-dimensional diffusion satisfying (3.1) with b a d-dimensional vector and
σ a d × d-matrix. For a d-dimensional diffusion, the generator is defined by

L θ f (x) =
d∑

k=1

bk(x; θ)∂xk f (x)+ 1
2

d∑
k,�=1

Ck�(x; θ)∂2
xkx� f (x),

where f is a real twice differentiable function defined on the d-dimensional state space of
X and C = σσT with σT denoting the transpose of σ. Suppose that for every θ, Lθ is a
finite-dimensional vector space of twice differentiable real-valued functions f ∗ such that
Lθ f ∗ ∈ Lθ for all f ∗ ∈ Lθ (the simplest case is, of course,when Lθ is a one-dimensional
eigenspace). If

(
fj
)
1≤j≤N is a basis for Lθ, we may write

L θ f = $θ f , (3.31)

where $θ is an N ×N -matrix of constants and f is the column vector
(

fj
)
1≤ j≤N . The

basis f will typically depend on θ, but that dependence is suppressed in the notation. By
L θ f we mean that L θ is applied to each coordinate of f , i.e., L θ f is the column vector
(L θ fj)1≤ j≤N . Then by Itô’s formula

πθt f (x) = f (x)+
t∫

0

$θ

(
πθs f

)
(x)ds (x ∈ D) (3.32)

provided all fj(Xs) are integrable, Eθ
(∣∣ fj (Xs)

∣∣ ∣∣X0 = x
)
<∞, for all x, and provided

each of the local martingales

M
fj

t =
d∑

k=1

t∫
0

∂xk fj(Xs)

d∑
�=1

σk�(Xs) dW�,s
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is a true martingale conditionally on X0 = x. In that case, (3.32) gives ∂tπ
θ
t f = $θπ

θ
t f

with the boundary condition πθ0 f = f so that

πθt f (x) = et$θ f (x) (x ∈ D) (3.33)

with the matrix exponential function defined through its series expansion,

et$θ =
∞∑

m=0

tm

m!$
m
θ .

It is perhaps debatable whether (3.33) is an explicit expression, but at least, if N is not
too large, a more compact expression may be found.

Note that (3.18) in Example 2 (where the diffusion is one-dimensional) may be
deduced as a special case of (3.33) with Lθ = L equal to the space of polynomials of
degree less than or equal to one. We have N = 2 and can use f1(x) = 1 and f2(x) = x
as basis for L. Then L θ f1 = 0, L θ f2 = αβf1 − βf2 so that

$θ =
(

0 0
αβ −β

)
.

A straightforward calculation gives

et$θ =
(

1 0
α
(
1− e−tβ

)
e−tβ

)
,

and by multiplying from the right with the vector (1, x)T , formula (3.18) is recovered.
The integrability conditions from above may be verified as follows. If X has an invariant

density μθ, and all fjs are μθ-integrable, then since∫
D

μθ(dx)Eθ
(∣∣ fj (Xs)

∣∣ ∣∣X0 = x
) = μθ

(∣∣ fj
∣∣) <∞,

it follows (at least for μθ-almost all x) that fj(Xs) is integrable. Similarly, if all functions

η�(x) =
(∑

k

∂xk fj(x)σk�(x)

)2

(1 ≤ � ≤ d)

are μθ-integrable, it can be verified that for μθ almost all x, M fj is a true martingale when
conditioning on X0 = x.

A particularly nice case of the setup above arises when Lθ = L is the space of polyno-
mials of degree less than or equal to r for some r ∈ IN. Then the invariance, L θL ⊆ L,
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holds for all r , provided each bk(x; θ) is a polynomial in x of degree less than or equal to
one and each Ck�(x; θ) is a polynomial in x of degree less than or equal to two. These
conditions are, for instance, satisfied by the affine term structure models, see Duffie and Kan
(1996),where the Ck� are of degree≤ 1.Thus,with these conditions on b and C satisfied,
the conditional moments

πt

(
d∏

k=1

x pk
k

)
= E

(
d∏

k=1

Xpk
t

∣∣∣∣∣X0 = x

)

with all pk ∈ IN0 may be found from (3.33) provided they exist and the relevant local
martingales are true martingales.

Note that since L θ1 = 0, where 1 = (1, . . . , 1)T , the constant functions may always
be included in L, and it is not really required that the basis f satisfy the linear relationship
(3.31) – it is sufficient that there is a vector c of constant functions such that L θ f =
c+$θ f .

We now turn to some estimating functions of the form (3.12) that are not martingale
estimating functions but can be found in explicit form. Consider first simple estimating
functions, where the function g appearing in (3.12) is of the form

g(�, x, y; θ) = h(x; θ)

(or= h(y; θ)).We assume in the following that the diffusion X is ergodic with invariant
density μθ.The unbiasedness property,Eθ(Gn(θ)) = 0, is satisfied if μθ(h(θ)) = 0. Note
that here it holds exactly only when X0 has distribution μθ. Otherwise, it holds only
asymptotically (as n →∞).This is in contrast to (3.25), where exact unbiasedness holds
regardless of the distribution of X0.

A simple example is

h(x; θ) = ∂θ logμθ(x), (3.34)

which was proposed by Kessler (2000). This estimating function corresponds to assum-
ing that all observations are independent with density μθ.The unbiasedness condition is
satisfied under usual conditions allowing the interchange of differentiation and integra-
tion.A somewhat complex modification of this simple estimating function was shown by
Kessler et al. (2001) to be efficient in the sense of semiparametric models.The semipara-
metric model for X considered in the study by Kessler et al. (2001) was that the process
is Markovian with only the invariant measures {μθ| θ ∈ �} specified parametrically.The
modified version of the estimating function was derived by Kessler and Sørensen (2005)
in a completely different way.

The unbiasedness property holds for all h of the form

h(x; θ) = L θ f (x) (3.35)
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provided each coordinate fj and L θ fj belong to L2(μθ) and that limx→r f ′(x)σ2(x; θ)
μθ(x) = limx→� f ′(x)σ2(x; θ)μθ(x). This is the basic property of the invariant measure
expressed in terms of the generator, a fact noted and used to construct estimating func-
tions by Hansen and Scheinkman (1995), see also Kessler (2000), Baddeley (2000), and
Aït-Sahalia et al. (2010). A simple choice for f in (3.35) is a polynomial, but better
results can often be obtained by choosing an f that is related to the model at hand.
Conley et al. (1997) proposed the model-based choice f = ∂θ logμθ such that

h(x; θ) = L θ∂θ logμθ(x). (3.36)

They proved, under the simplifying assumption that a continuous record of the process is
available, that an efficient estimator is obtained. Using approximations to the score func-
tion for continuous-time observation of the diffusion X , Sørensen (2001) independently
derived the choice (3.36), and Jacobsen (2001a) showed that for parameters appearing
in the drift, the resulting estimator is small �-optimal, a concept that is the subject of
the Section 4.4. The latter result was recently rediscovered by Aït-Sahalia and Mykland
(2008), who obtain similar results for estimating functions given by (3.37) below.

Example 6 An example of successful use of a simple estimating function is given by Kessler
(2000), who considered estimation of the drift parameter in the one-dimensional Ornstein–
Uhlenbeck model

dXt = −θXtdt + dWt

where θ > 0 to make X ergodic.Kessler used (3.35) with f (x)= x2 so that h(x; θ)=−2θx2+ 1
resulting in the estimator

θ̂ = n

2
∑n

i=1 X2
(i−1)�

,

which he showed is the most efficient of all estimators that can be obtained using estimating
functions of the form (3.35). Since the invariant probability measure is the N (0, 2θ)-distribution,
Kessler’s choice is equivalent to using (3.36), which is known to give a small �-optimal estimator.
Thus, this result is not surprising.The estimator is, however, better than could be expected. Kessler
showed that the estimator performs remarkably well with an asymptotic efficiency relative to the
(complicated) maximum-likelihood estimator that is always greater than or equal to 95.6%,no matter
what � is.

That simple estimating functions can also be very bad is illustrated by Kessler (2000) using the
example

dXt = −θXtdt +
√
θ + X2

t dWt

where the estimator based on (3.35) with f (x) = x2 behaves terribly for all values of �. For the
second model, this choice of f is not equivalent to (3.36) and is not small �-optimal.
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One might consider it a major weakness that (3.35) depends on the argument x
only. In fact, Hansen and Scheinkman (1995) proved that only parameters on which
the invariant density μθ depends can be estimated by (3.35). The same is obviously
true of (3.34). Hence, the importance of the class of explicit, transition dependent estimating
functions introduced and studied thoroughly by Hansen and Scheinkman (1995),viz. each
coordinate gj is of the form

gj,�(x, y; θ) = hj(y)L θ fj(x)− fj(x)L̂ θhj(y). (3.37)

Both here and in (3.35), the functions f and h are allowed to depend on θ and � – mostly,
however, we think of cases where they do not. The general form of (3.37) requires an
explanation: when X0 has distribution μθ, the process X is stationary (for that value of
θ), and for any finite T > 0, the fragment (XT−t)0≤t≤T has the same distribution as
(X̂t)0≤t≤T ,where X̂ is another diffusion, stationary with X̂0 having distribution μθ.This
new diffusion, the time reversal of X , has generator

L̂ θ f (x) =
d∑

k=1

b̂k(x; θ)∂xk f (x)+ 1
2

d∑
k,�=1

Ck�(x; θ)∂2
xkx� f (x),

where

b̂k(x; θ) = −bk(x; θ)+ 1
μθ(x)

d∑
�=1

∂x� (μθCkl)(x; θ),

see, e.g., Hansen and Scheinkman (1995). It is the dual generator L̂ θ that appears in
(3.37). As Hansen and Scheinkman (1995) make clear along with Conley et al. (1997),
an important motivation for estimating functions given by (3.35) and (3.37) is that they
also work when the observed process is a subordinated diffusion, so the estimation is
robust to temporally dependent forms of sampling. Thus, the models for the observed
process can be non-Markovian.

We call X reversible if X̂ and X are the same diffusion, i.e., X is reversible if and only
if b̂(x; θ) = b(x; θ) for all x. For d = 1, X is always reversible – the equation b̂ ≡ b when
solved for μθ immediately gives the expression (3.4). For d ≥ 2, it is the exception rather
than the rule that X be reversible, and that makes (3.37) an explicit estimating function
only ifμθ is known explicitly which,again in contrast to the one-dimensional case,hardly
ever happens. Thus in practice, the class (3.37) of estimating functions will be relevant
mostly for reversible diffusion models, in particular always when d = 1. For reversible
models, it seems natural to enlarge the class (3.37) by considering functions g of the form

gi,�(x, y; θ) =
r∑

q=1

[
hiq(y)L θ fiq(x)− fiq(x)L θhiq(y)

]
. (3.38)
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Much more generally, Conley et al. (1997) showed that a large class of functions g can
be used, which is not restricted to be multiplicatively separable.

3.6. A Diffusion with Jumps
In this section,we consider a simple example where the stochastic process {Xt} is a Markov
process,but not a standard diffusion process.The process is, in fact,a diffusion with jumps.
It is well known that if the price, Pt , of a stock is described by the Black–Scholes model
(geometric Brownian motion), that is,

dPt = α%Ptdt + σPtdWt ,

then the logarithm of the price is a Brownian motion with drift, more precisely Xt =
log Pt solves the stochastic differential equation

dXt = αdt + σdWt , (3.39)

where α = α% + 1
2σ

2. This follows from Itô’s formula.
Suppose now that we want to allow jumps in the price process (and therefore also

in the log-price process X ). One of the simplest ways to achieve this is by adding a
compound Poisson process term to the log-price process, that is to modify (3.39) in the
following way,

dXt = αdt + σdWt + dZt , (3.40)

where

Zt =
Nt∑
j=0

Yj ,

and {Nt} is a Poisson process with intensity λ. The stochastic process {Nt} is thus a
counting process with independent increments and Nt , the number of jumps in the time
interval [0, t], is Poisson distributed with parameter λt. The jump sizes Yj , j = 1, 2, . . . ,
are assumed to be i.i.d. normal with mean μ and variance τ2. Furthermore, we assume
that {Wt}, {Nt}, and {Yj} are independent and that N0 = Y0 = 0 so that Z0 = 0. This
is a simplified version of the kind of jump-diffusion models studied in Andersen et al.
(2002). The solution to (3.40) is given by

Xt = αt + σWt + Zt , t ≥ 0.

For simplicity, we consider observations X1, X2, . . . , Xn. The parameter vector is in
this case five dimensional, θ = (α, σ2, λ,μ, τ2)T . We will derive an optimal martingale
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estimating function based on the functions

h(x, y; θ) =
⎛⎜⎝ y− F(x; θ)

(y− F(x; θ))2 − φ(x; θ)

ey − κ(x; θ)

⎞⎟⎠,

where

F(x; θ) = Eθ(Xi|Xi−1 = x) = x+ α+ λμ,

φ(x; θ) = Varθ(Xi|Xi−1 = x) = σ2 + λ
(
μ2 + τ2),

κ(x; θ) = Eθ
(
eXi |Xi−1 = x

) = exp
(

x+ α+ 1
2
σ2 + λ

(
eμ+

1
2 τ

2 − 1
))

.

To find an expression for the optimal martingale estimating function based on h, we
need the following quantities, see (2.12). The conditional covariance matrix for h is
given by

Vh(x; θ) = Eθ
(

h(Xi−1, Xi; θ)h(Xi−1, Xi; θ)T
∣∣∣Xi−1 = x

)
=

⎛⎜⎝φ(x; θ) η(x; θ) ν(x; θ)

η(x; θ) ψ(x; θ) ρ(x; θ)

ν(x; θ) ρ(x; θ) ζ(x; θ)

⎞⎟⎠,

where

η(x; θ) = Eθ((Xi − F(Xi−1; θ))3|Xi−1 = x) = λμ
(
μ2 + 3τ2),

ψ(x; θ) = Eθ((Xi − F(Xi−1; θ))4|Xi−1 = x)− φ(x; θ)2

= 2σ4 + λ
[
4σ2(μ2 + τ2)+ (2λ+ 1)μ4 + (2λ+ 3)τ2(τ2 + 2μ2)],

ν(x; θ) = Eθ
(
(Xi − F(Xi−1; θ))

(
eXi − κ(Xi−1; θ)

)|Xi−1 = x
)

=
(
σ2 − λμ+ λ

(
μ+ τ2)eμ+ 1

2 τ
2
)
κ(x; θ),

ρ(x; θ) = Eθ
(
(Xi − F(Xi−1; θ))2 − φ(Xi−1; θ))

(
eXi − κ(Xi−1; θ)

)|Xi−1 = x
)

=
(
σ2 + λ

(
τ2 + (

μ+ τ2)2)eμ+ 1
2 τ

2
)
κ(x; θ)+ (ν(x; θ)+ F(x; θ)κ(x; θ))2

κ(x; θ)

− 2F(x; θ)v(x; θ)− F(x; θ)2κ(x; θ)− φ(x; θ)κ(x; θ),

ζ(x; θ) = Varθ
(
eXi |Xi−1 = x

)
= e2x+2α+σ2−λ(exp

(
σ2 + λe2μ+2τ2

)
− exp

(
2λeμ+

1
2 τ

2 − λ
))

.
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Table 4.1 Empirical mean and standard error of
500 simulated estimates of the parameters in (3.40)

Parameter Mean Standard error

α −0.0009 0.0070
σ 0.0945 0.0180
λ 0.0155 0.0209
μ 0.9604 0.5126
τ 0.2217 0.3156

The true parameter values are α = 0.0001,σ = 0.1,λ = 0.01,
μ = 1, and τ = 0.1.

Furthermore,

−Eθ(∂θh(Xi−1, Xi; θ)|Xi−1 = x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 κ(x; θ)

0 1
1
2
κ(x; θ)

μ μ2 + τ2
(
eμ+ 1

2 τ
2 − 1

)
κ(x; θ)

λ 2λμ λeμ+ 1
2 τ

2
κ(x; θ)

0 λ
1
2
λeμ+ 1

2 τ
2
κ(x; θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, an explicit expression for the optimal martingale estimating function is
obtained, though the corresponding estimating equations have to be solved numerically.
Note that if we do not use all the three functions defining h, fewer than the required five
estimating equations are obtained.

Table 4.1 summarizes the result of a simulation study.The empirical mean and standard
error of 500 independent estimates of the five parameters are given. Each estimate is
obtained from a simulated data set with 500 simulated n = 500 and X0 = 0. The true
parameter values in the simulation study are α = 0.0001,σ = 0.1, λ = 0.01,μ = 1, and
τ = 0.1.

From Table 4.1, we see that the means of the parameter estimates are quite close to
the true values. It is also clear from the standard errors that, for this particular choice of
parameter values, the parameters associated with the jump size (μ and τ) are harder to
estimate than the other parameters. This is not surprising as there are rather few jumps
in each data set because the jump intensity λ is small.

3.7. Non-Markovian Models
An important type of a non-Markovian model that is widely used in finance is the
stochastic volatility model

dYt = √vtdWt (3.41)

dvt = b(vt ; θ)dt + c(vt ; θ)dBt ,
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where W and B are independent standard Wiener processes. We assume that v is an
ergodic, positive diffusion with invariant probability measure μθ, and that v0 ∼ μθ and
is independent of B and W . The process Y is, for instance, used as a model for the
logarithm of the price of a stock.The returns Xi = Y�i − Y�(i−1) are observations from
a stationary non-Markovian process. More complex stochastic volatility models have
been proposed in the literature. In particular, it is well-established that to model equity
prices, it is important to allow the Wiener processes W and B to be correlated (the
leverage effect), see, e.g., Andersen et al. (2002). For simplicity of exposition, we will
here only consider the most basic type.

A number of approaches are available for inference about the parameters in stochas-
tic volatility models. One is indirect inference or the efficient method of moments, see
Gourieroux et al. (1993), Gallant and Tauchen (1996), and Gallant and Tauchen (2010).
Likelihood based methods for stochastic volatility models have been proposed by Kim
et al. (1998), Sørensen (2003), and Durham (2003), and simulation-based Bayesian meth-
ods using Markov chain Monte Carlo have been developed by Elerian et al. (2001) and
Eraker (2001), see also Johannes and Polson (2010). Estimating functions for stochastic
volatility models were proposed by Genon-Catalot et al. (1999) and Genon-Catalot et al.
(2000). Here,we concentrate on the prediction-based estimating functions introduced by
Sørensen (2000) that are widely applicable to non-Markovian diffusion models. Example
are estimation for integrals of diffusions in Ditlevsen and Sørensen (2004) and sums of
diffusions in Forman and Sørensen (2008).

We consider the general situation that the model for the data X1, . . . , Xn is a class
of stationary non-Markovian processes parametrized by the parameter θ ∈ � ⊆ IRp.
For Markovian models, we used martingale estimating functions to approximate the
score function, which is a martingale. For non-Markovian models, the score function
is a martingale too, so it must be expected that it is best approximated by a martingale
estimating function. However, the conditional expectations appearing in martingale esti-
mating functions are too complicated to be calculated in practice, so it is desirable to
approximate them as well as possible by other predictors. This is the idea behind the
prediction-based estimating functions.

Assume that fj , j = 1, . . . , N are one-dimensional functions defined on the state
space of X such that Eθ( fj(X1)

2) <∞ for all θ ∈ �. A martingale estimating function
could have been based on the difference between fj(Xi) and the conditional moment
Eθ

(
fj(Xi)|X1, . . . , Xi−1

)
. We shall now introduce an estimating function with a similar

structure, where the intractable conditional expectation is replaced by a simpler expres-
sion that can be interpreted as an approximation to the conditional expectation. For each
j, we predict fj(Xi) by predictors of the form

π
(i−1)
j = αj0 + αj1hj1(Xi−1, . . . , Xi−s)+ · · · + αjqhjq(Xi−1, . . . , Xi−s), (3.42)
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where hjk, k = 1, . . . q are given functions from IRs into IR satisfying that Eθ(hjk(X1, . . . ,
Xs)

2) <∞. Note that the predictor depends only on observations s time steps back in
time.This is essential and simplifies the asymptotic theory for the estimators enormously.
The minimum mean square error unbiased predictor of fj(Xi) of the form (3.42) is
given by

π̆
(i−1)
j (θ) = ᾰj0(θ)+ ᾰj(θ)

T Z (i−1)
j , (3.43)

where Z (i−1)
j = (

Z (i−1)
j1 , . . . , Z (i−1)

jq

)T with Z (i−1)
jk = hjk(Xi−1, . . . , Xi−s), k = 1, . . . q,

ᾰj(θ) = (ᾰj1(θ), . . . , ᾰjq(θ))
T = Cj(θ)

−1bj(θ), (3.44)

and

ᾰj0(θ) = Eθ

(
fj(X1)

)− ᾰj(θ)
T Eθ

(
Z (s)

j

)
. (3.45)

As earlier,T denotes transposition. In formula (3.44),Cj(θ) denotes the covariance matrix

of Z (s)
j , while

bj(θ) =
(
Covθ

(
Z (s)

j1 , fj(Xs+1)
)

, . . . , Covθ
(
Z (s)

jq , fj(Xs+1)
))T

. (3.46)

Thus the minimum mean square error unbiased predictor can be calculated whenever
we can find the covariances in Cj(θ) and bj(θ). When these moments cannot be found
explicitly, they are usually easy to obtain by simulation. A simple and natural choice of
Z (i−1)

j is Z (i−1)
j = ( fj(Xi−1), . . . , fj(Xi−q))

T , in which case the coefficients ᾰj0, . . . , ᾰjq

can easily be found by means of the Durbin-Levinson algorithm, see Brockwell and
Davis (1991).

The minimum mean square error unbiased predictor of fj(Xi) is the projection in the
L2-space of functions of Xi, Xi−1, . . . , Xi−s with finite variance onto the linear subspace
of functions on the form (3.42). Therefore, π̆(i−1)

j (θ) satisfies the normal equation

Eθ
(
π
(i−1)
j

{
fj(Xi)− π̆

(i−1)
j (θ)

})
= 0 (3.47)

for all π(i−1)
j of the form (3.42).This implies (3.44).The fact that π̆(i−1)

j (θ) is a projection
also shows that it can be interpreted as an approximation to the conditional expectation
of fj(Xi) given X1, . . . , Xi−1 because this conditional expectation is the projection of
fj(Xi) onto the linear space of all functions of X1, . . . , Xi−1 with finite variance.

Now, we can introduce estimating functions with weights similar to those appearing
in martingale estimating functions that can be used to improve the efficiency of the
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estimators. The normal equation (3.47) show that

Gn(θ) =
n∑

i=s+1

N∑
j=1

'
(i−1)
j (θ)

{
fj(Xi)− π̆

(i−1)
j (θ)

}
, (3.48)

is an unbiased estimating function, i.e., Eθ(Gn(θ)) = 0, whenever '
(i−1)
j (θ) =(

π
(i−1)
1, j (θ), . . . ,π(i−1)

p, j (θ)
)T

, where the coordinates are of the form (3.42). Thus, we

can expect (3.48) to produce a consistent estimator. An estimating function of the type
(3.48) is called a prediction-based estimating function.

Note the computational advantage of prediction-based estimating functions in com-
parison to nonexplicit martingale estimating functions. Here,we need only unconditional
moments that are relatively easy to compute by simulation, whereas for martingale esti-
mating functions,moments conditional on all data points are needed,which involve much
more computation. Note also that since π̆(i−1)

j (θ) depends exclusively on the first- and

second-order moments of the random vector
(

fj(Xi), Z (i−1)
j1 , . . . , Z (i−1)

jq

)
, only param-

eters appearing in these moments for at least one j can be estimated using (3.48).This is
intuitively obvious and indeed follows from Condition 2 given later in this section. Of
course, one would usually choose the functions fj and hjk in such a way that it is possible
to estimate all parameters of interest.

Example 7 For the stochastic volatility model (3.41), the returns Xi = Y�i − Y�(i−1)
satisfy that

Xi =
i�∫

(i−1)�

√
vtdWt (3.49)

so that

Xi =
√

SiZi, (3.50)

where

Si =
i�∫

(i−1)�

vtdt (3.51)

and where the Zis are independent, identically standard normal distributed random variables, that
are independent of {Si}. It is easy to see from (3.50) that the returns are uncorrelated (which is
a stylized feature of empirical returns; for data with correlated returns, a stochastic volatility model
of the type (3.41) can obviously not be used).Therefore, the function f (x) = x cannot be used
to define a prediction-based estimating function.A simple alternative with N = 1 is f (x) = x2,
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and hk(xq, . . . , x1) = x2
q−k+1, k = 1, . . . , q. Here s = q. In this way, we obtain the estimating

function

Gn(θ) =
n∑

i=q+1

'(i−1)(θ)
{
X2

i − ᾰ0(θ)− ᾰ1(θ)X2
i−1 − · · · − ᾰq(θ)X2

i−q

}
, (3.52)

where the quantities ᾰk(θ), k = 0, . . . , q are given by

ᾰ0(θ) = Eθ
(
X2

1

){
1− (

ᾰ1(θ)+ · · · + ᾰq(θ)
)}

and (3.44) with C(θ) equal to the covariance matrix of the stochastic vector
(
X2

q , . . . , X2
1

)
, and

b(θ)T = (
Covθ

(
X2

q+1, X2
q
)
, . . . , Covθ

(
X2

q+1, X2
1

))
.

To ensure that the quantities C(θ) and b(θ) are well-defined, we must assume that
Eθ(X4

1 ) <∞.This is the case provided that the second moment of the volatility process v exists.
Let us briefly discuss how to calculate the covariances. It follows from (3.50) that

Eθ
(
X2

i
) = Eθ(S1)

Varθ
(
X2

i
) = 3Varθ(S1)+ 2Eθ(S1)

2

Covθ
(
X2

i , X2
i+j

) = Covθ(S1, S1+j).

Define ξ(θ) = Eθ(vt), ω(θ) = Varθ(vt), and r(u; θ) = Covθ(vt , vt+u)/ω(θ). Using (3.51),
it is not difficult to see that

Eθ
(
X2

n
) = �ξ(θ) (3.53)

Varθ
(
X2

n
) = 6ω(θ)R∗(�; θ)+ 2�2ξ(θ)2

(3.54)
Covθ

(
X2

n , X2
n+i

) = ω(θ)
[
R∗(�(i + 1); θ)− 2R∗(�i; θ)+ R∗(�(i − 1); θ)

]
,

where

R∗(t; θ) =
t∫

0

∫ s

0
r(u; θ)duds;

see Barndorff-Nielsen and Shephard (2001). For numerical calculations, it is perhaps more useful
that

Covθ
(
X2

n , X2
n+i

) = ω(θ)

i�∫
(i−1)�

s+�∫
s

r(u; θ)duds, (3.55)

which follows by easy calculations.Thus, all that is needed to compute the minimal mean squared
error predictor in (3.52) are the first- and second-order moments of the volatility process. For general
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diffusion models, the autocorrelation function is rarely explicitly known and must be determined
numerically. Flexible classes of processes for which an explicit expression is available can be found in
Barndorff-Nielsen et al. (1998),Barndorff-Nielsen and Shephard (2001),and Bibby et al. (2005).
In particular, r(u; θ) = e−βu when b(v; θ) = −β(v − α) under weak regularity conditions on
c(v; θ).The models discussed in these studies can also fit data where the volatility is the sum of a
slowly and a quickly moving component as found for instance by Alizadeh et al. (2002).

To discuss the asymptotic properties of an estimator obtained from a prediction-based
estimating function of the general type (3.48), we first give it a more compact form.
Write the �th coordinate of the vector '(i−1)

j (θ) as

π
(i−1)
�, j (θ) =

q∑
k=0

α�jk(θ)Z
(i−1)
jk ,

with Z (i−1)
j0 = 1. Then (3.48) can be written in the form

Gn(θ) = A(θ)
n∑

i=s+1

Z (i−1)(F(Xi)− π̆(i−1)(θ)
)
, (3.56)

where

A(θ) =
⎛⎜⎝α110(θ) · · · α11q(θ) · · · · · · α1N0(θ) · · · α1Nq(θ)

...
...

...
...

αp10(θ) · · · αp1q(θ) · · · · · · αpN0(θ) · · · αpNq(θ)

⎞⎟⎠, (3.57)

F(x) = ( f1(x), . . . , fN (x))T , π̆(i−1)(θ) =
(
π̆
(i−1)
1 (θ), . . . , π̆(i−1)

N (θ)
)T

, and Z (i−1) is the

N (q+ 1)×N -matrix given by

Z (i−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z (i−1)
10 0 · · · 0
...

...
...

Z (i−1)
1q 0 · · · 0

0 Z (i−1)
20 · · · 0

...
...

...
0 Z (i−1)

2q · · · 0
...

...
...

0 0 · · · Z (i−1)
N0

...
...

...
0 0 · · · Z (i−1)

Nq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.58)
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The following condition implies the existence of a
√

n-consistent and asymptotically
normal estimator. As usual, θ0 denotes the true parameter value.

Condition 2

1. The process X is stationary and geometrically α-mixing.

2. Eθ0

(∣∣∣Z (s)
jk fj(Xs+1)

∣∣∣2+δ) <∞ and Eθ0

(∣∣∣Z (s)
jk Z (s)

j�

∣∣∣2+δ) <∞, j = 1, . . . , N , k, � =
0, . . . q.

3. The matrix A(θ) and the vector ă(θ) given by

ᾰ(θ) = (ᾰ10(θ), ᾰ11(θ), . . . , ᾰ1q(θ), . . . , ᾰN0(θ), . . . ᾰNq(θ))
T , (3.59)

where ᾰjk is given by (3.44) and (3.45), are twice continuously differentiable with respect to θ.
4. The matrix A(θ0)D(θ0)∂θT ă(θ0) has rank p.The matrix D(θ0) is given by

D(θ) = Eθ
(
Z (i−1)(Z (i−1))T

)
. (3.60)

Under Condition 2 (1)–(2) the covariance matrix of
∑n

i=s+1 H (i)(θ)/
√

n − s,

Mn(θ) = Eθ
(
H (s+1)(θ)H (s+1)(θ)T

)
+

n−s−1∑
k=1

(n − s − k)
(n − s)

(3.61){
Eθ

(
H (s+1)(θ)H (s+1+k)(θ)T

)
+ Eθ

(
H (s+1+k)(θ)H (s+1)(θ)T

)}
,

where H (i)(θ) = Z (i−1)
(
F(Xi)− π̆(i−1)(θ)

)
, satisfies that

Mn(θ0)→ M (θ0),

and a central limit theorem holds for Gn(θ0), provided that M (θ0) is strictly positive
definite; see, e.g., theorem 1 in section 1.5 of Doukhan (1994). The rest of Condi-
tion 2 implies that with a probability tending to one as n →∞, the estimating equation
Gn(θ) = 0 defines a

√
n-consistent estimator θ̂n satisfying that

√
n(θ̂n − θ0)

D−→ N
(
0, S(θ0)

−1A(θ0)M (θ0)A(θ0)
T (S(θ0)

−1)T
)
, (3.62)

where

S(θ0) = −Eθ0

(
A(θ0)Z (i−1)(Z (i−1))T ∂θT ᾰ(θ0)

)
= −A(θ0)D(θ0)∂θT ᾰ(θ0).

We conclude this subsection by finding the optimal choice of the weights '(i−1)
j (θ),

j = 1, . . . , N for a class of prediction-based estimating functions of the general type
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(3.48). Consider the compact representation (3.56). We are free to choose the matrix
A(θ) in an optimal way, whereas the N (q+ 1)-dimensional vectors Z (i−1)

(
F(Xi)−

π̆(i−1)(θ)
)

are fixed by our earlier choice of the functions fj and hjk. The matrix A(θ)
must have rank p in order that we can estimate all p parameters.The p × p matrix (2.6) is
given by

SGn (θ) = −(n − q)A(θ)D(θ)∂θT ᾰ(θ),

and if we denote the optimal choice of the matrix A(θ) by A∗n(θ), then

Eθ
(
Gn(θ)G∗

n (θ)
T
)
= (n − q)A(θ)Mn(θ)A∗n(θ)T ,

where Mn(θ) is given by (3.61). Under weak regularity conditions, the matrix Mn(θ)

is invertible, see Sørensen (2000), in which case the optimality criterion (2.5) is
satisfied for

A∗n(θ) = ∂θᾰ(θ)
T D(θ)Mn(θ)

−1. (3.63)

An estimator with the same asymptotic variance is obtained if A∗n(θ) is replaced by
A∗n(θ̃n), where θ̃n is some consistent preliminary estimator. This modification is highly
recommended because the calculation of A∗n(θ) usually requires a considerable amount of
simulation so that a dramatic reduction of computing time can be achieved by calculating
it at only one parameter value.The preliminary estimator θ̃n can, for instance,be obtained
from (3.56) with A(θ) equal to some simple matrix that does not depend on θ.

If we know Cj(θ), bj(θ), Eθ
(
Z (q)

j

)
, Eθ( fj(X1)), j = 1, . . . , N , their derivatives with

respect to θ, and the moments appearing in (3.61), we can calculate the optimal
prediction-based estimating function. Note that only moments and derivatives of
moments are needed. Note also that Cj(θ), bj(θ),Eθ

(
Z (q)

j

)
, and Eθ( fj(X1)) were needed

earlier to find the predictor π̆(i−1)
j (θ), so the only new requirements to compute the

optimal estimating function are the derivatives and the moments in (3.61). Many models
are sufficiently mixing that there exist K > 0 and λ > 0 such that the absolute values
of all entries in the expectation matrices in the kth term in the sum in (3.61) are dom-
inated by Ke−λ(k−q) when k > q. Therefore, the sum in (3.61) can in practice often be
truncated so that only a few moments need to be calculated.

Example 8 To find the optimal estimating function of the form (3.52) for the stochastic volatility
model (3.41), we must assume that Eθ

(
X8

i

)
<∞, and apart from the quantities mentioned

above, we need to find Eθ
(
X2

i X2
j X2

1

)
and Eθ

(
X2

i X2
j X2

k X2
1

)
for i ≥ j ≥ k.We can essentially

find these moments by integrating the moments Eθ(vsvtvu) and Eθ(vsvtvuvz) of the volatility
process as functions of s, t, u, and z over suitable sets. For details, see Sørensen (2000).
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The moments of the volatility process must, in general, be found by simulation, but can in
some cases be found explicitly.This is, for instance, the case for the Pearson diffusions discussed in
Section 3.5, see Forman and Sørensen (2008).An example is the CIR process

dvt = −θ(vt − α)dt + σ
√

vtdBt , (3.64)

for which we obtain the stochastic volatility model proposed by Hull andWhite (1988) and Heston
(1993).

Another example of a stochastic volatility model, for which the necessary moments can be found
explicitly, is when vt = exp(Ut), where U is a stationary Ornstein–Uhlenbeck process,

dUt = −θ(Ut − α)dt + σdBt

with θ > 0 (Wiggins, 1987; Chesney and Scott, 1989; Melino andTurnbull, 1990).This model
can be obtained as a limit of the EGARCH(1,1) model, see Nelson (1990). Here,

Eθ(vsvtvuvz) = Eθ,α,σ
{
exp(Us + Ut + Uu + Uz)

}
,

which is the Laplace transform of a Gaussian distribution, and hence is explicitly known.

4. OPTIMAL ESTIMATING FUNCTIONS FOR DIFFUSIONMODELS
We now again focus on diffusion models where X is supposed to be the solution to
a stochastic differential equation (3.1). To simplify matters, we assume that X is one
dimensional, except in Section 4.4, where a d-dimensional diffusion is considered.

4.1. Optimal Linear Combinations of Relationships between

Consecutive Observations
Consider a class of estimating functions of the form (3.12) and (3.13), i.e.,

Gn(θ) =
n∑

i=1

a(�i, Xti−1 , θ)h(�, Xti−1 , Xti ; θ), (4.1)

where h = (h1, . . . , hN )
T is a column vector of N given functions satisfying that

r∫
�

hj(�, x, y; θ)p(�, x, y; θ)dy = 0 (4.2)

for all � > 0,x ∈ (�, r), and θ ∈ �,while the weight matrix a, a p ×N -matrix, can vary
freely. The functions hj define relationships (dependent on θ) between an observation
Xi and the previous observation Xi−1 that can be used to estimate θ. We shall now find
the weight matrix a∗ for which we obtain optimal combination of these relationships.
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The class of estimating functions considered here is a particular case of the general type
studied in Example 1, so by (2.12), the optimal estimating function is

G∗
n (θ) =

n∑
i=1

a∗(�i, Xti−1 ; θ)h(�i, Xti−1 , Xti ; θ), (4.3)

where

a∗(�, x; θ) = −
r∫

�

∂θh(�, x, y; θ)T p(�, x, y; θ)dyVh(�, x; θ)−1, (4.4)

with

Vh(�, x; θ) =
r∫

�

h(�, x, y; θ)h(�, x, y; θ)T p(�, x, y; θ)dy. (4.5)

Here, it is assumed that Vh(�, x; θ) is invertible, or equivalently, that the functions hj , j =
1, . . .N are linearly independent.

When the functions h are of the form (3.19) with πθ� defined by (3.20), the optimal
estimating function is given by (4.3) with

a∗(�, x; θ) = B(�, x; θ)V (�, x; θ)−1, (4.6)

where

B(�, x; θ)ij = −
r∫

�

∂θi fj(y; θ)p(�, x, y; θ)dy+ ∂θiπ
θ
�( fj(θ))(x), (4.7)

i = 1, . . . , p, j = 1, . . . , N , and

V (�, x; θ)ij =
∫ r

�

fi(y; θ)fj(y; θ)p(�, x, y; θ)dy− πθ�( fi(θ))(x)πθ�( fj(θ))(x), (4.8)

i, j = 1, . . . , N .
Particularly important examples are the linear and quadratic estimating functions.The

optimal linear estimating function for a one-dimensional diffusion is

n∑
i=1

∂θF(�i, Xti−1 ; θ)

φ(�i, Xti−1 ; θ)
[Xti − F(�i, Xti−1 ; θ)], (4.9)

where F and φ are given by (3.14) and (3.15). In the expression for the optimal linear
estimating function, the derivative of F appears. If F is determined by simulation, it
is necessary to be careful to ensure that the derivative is correctly calculated. Pedersen
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(1994a) proposed a procedure for determining ∂θF(�, x; θ) by simulation based on results
in Friedman (1975). However, it is often easier to use an approximation to the optimal
estimating function, see the following section.

If the first and second moment of the transition distribution are both correctly spec-
ified, the estimator obtained from (4.9) is efficient in the nonparametric model that
assumes X is a Markov process but specifies only the first two moments, seeWefelmeyer
(1996) and Wefelmeyer (1997). Moreover, the estimator is consistent whenever the first
moment is correctly specified.This is an interesting robustness property of the estimating
function. For models with linear drift, the first conditional moment does not depend
on the diffusion coefficient. For models with nonlinear drift, the same is true to order
�i. Continuous-time processes with the same first and second conditional moments as
a diffusion model can be obtained for other types of driving processes, e.g.,more general
compensated Lévy processes. From a robustness point of view, the functions hj appearing
in (4.1) should, more generally, be chosen in such a way that (4.2) is expected to hold
under relevant deviations from the diffusion model to preserve consistency. To preserve
efficiency, it is necessary that the conditional moments appearing in (4.4) are robust to
model misspecification too, which in general is not easy to achieve.

The optimal quadratic estimating function depends on the third and fourth moments
of the transition distribution. For a one-dimensional diffusion, it is given by

n∑
i=1

{
α∗(�i, Xti−1 ; θ)[Xti − F(�i, Xti−1 ; θ)]

+ β∗(�i, Xti−1 ; θ)[(Xti − F(�i, Xti−1 ; θ))2 − φ(�i, Xti−1 ; θ)]}, (4.10)

with

α∗(x; θ) = ∂θφ(x; θ)η(x; θ)− ∂θF(x; θ)ψ(x; θ)
φ(x; θ)ψ(x; θ)− η(x; θ)2

and

β∗(x; θ) = ∂θF(x; θ)η(x; θ)− ∂θφ(x; θ)φ(x; θ)
φ(x; θ)ψ(x; θ)− η(x; θ)2

,

where the �s have been omitted,

η(x; θ) = Eθ([X� − F(x; θ)]3|X0 = x)

and

ψ(x; θ) = Eθ([X� − F(x; θ)]4|X0 = x)− φ(x; θ)2.
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If the first four moments of the transition distribution are correctly specified,the estimator
is efficient in the nonparametric model that assumes a Markov process but specifies only
the first four moments, see Wefelmeyer (1996, 1997).

Example 9 For a mean-reverting diffusion model given by (3.17) with β > 0, the first
conditional moment F is given by (3.18). Hence, the optimal linear estimating function is

G∗
n (α,β) =

⎛⎜⎜⎜⎝
n∑

i=1

1− e−β

φ(Xi−1;α,β)

[
Xi − Xi−1e−β − α

(
1− e−β

)]
n∑

i=1

e−β(α− Xi−1)

φ(Xi−1;α,β)

[
Xi − Xi−1e−β − α

(
1− e−β

)]
⎞⎟⎟⎟⎠,

where for simplicity of exposition, we have taken �i = 1.There is in general no explicit expression
for the function φ that must be found by simulation or be approximated, see Sections 3.4 and 4.2.
The following simpler estimating function gives us exactly the same estimators:

G̃∗
n (α,β) =

⎛⎜⎜⎜⎝
n∑

i=1

1
φ(Xi−1;α,β)

[
Xi − Xi−1e−β − α

(
1− e−β

)]
n∑

i=1

Xi−1

φ(Xi−1;α,β)

[
Xi − Xi−1e−β − α

(
1− e−β

)]
⎞⎟⎟⎟⎠.

This is because G̃∗
n (α,β) = M (α,β)G∗n (α,β), where the matrix

M (α,β) =
⎛⎜⎝

1

1− e−β
0

α

1− e−β
−e−β

⎞⎟⎠
is invertible. Quite generally, if G(θ) is an estimating function and if M (θ) is an invertible matrix,
then the estimating function M (θ)G(θ) defines the same estimators as G(θ). Moreover, if G(θ)

is optimal, then so is M (θ)G(θ).We say that the two estimating functions are equivalent. Usually,
we use the simplest possible version of the estimating function.

For the CIR model where σ(x) = τ
√

x, the functions φ, η, and ψ, and hence the optimal
quadratic estimating function can be found explicitly:

φ(x;α,β, τ) = τ2

β

((
1
2
α− x

)
e−2β − (α− x)e−β + 1

2
α

)
η(x;α,β, τ) = τ4

2β2

(
α− 3(α− x)e−β + 3(α− 2x)e−2β − (α− 3x)e−3β)

ψ(x;α,β, τ) = 3τ6

4β3

((
α− 4x

)
e−4β − 4(α− 3x)e−3β + 6(α− 2x)e−2β − 4(α− x)e−β + α

)
+ 2φ(x;α,β, τ)2.
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In view of Example 3 and results given in the following, it is not surprising that the conditional
moments can be found explicitly for the CIR model.

The optimal estimating function takes a particularly simple form in the case where
the base f1, . . . , fN of the class of estimating functions consists of eigenfunctions of the
generator, see (3.26) and the discussion below that formula. For such a base, the optimal
estimating function is given by (4.6) with

B(�, x; θ)ij = −
∫

∂θiϕj(y; θ)p(�, x, y; θ)dy+ ∂θi [e−λj(θ)�ϕj(x; θ)],

i = 1, . . . , p, j = 1, . . . , N and

C(�, x; θ)ij =
∫

ϕi(y; θ)ϕj(y; θ)p(�, x, y; θ)dy− e−[λi(θ)+λj(θ)]�ϕi(x; θ)ϕj(x; θ),

i, j = 1, . . . , N .These expressions are relatively easy to determine by simulation because
the differentiation is inside the integral. As mentioned earlier, numerical determination
of quantities like ∂θF in (4.9) requires care, but this problem disappears in the case of an
eigenfunction base.

For many models where eigenfunctions can be found, they are of the form

ϕi(y; θ) =
i∑

j=0

ai, j(θ)κ(y) j , (4.11)

where κ is a real function defined on the state space and independent of θ. This is the
case for the Pearson diffusions and transformations of Pearson diffusions, seeWong (1964)
and Forman and Sørensen (2008). In this situation, the optimal estimating function is
explicit. To see this, note that

Ci, j(x, θ) =
i∑

r=0

j∑
s=0

ai,r (θ)aj,s(θ)

∫
κ(y)r+sp(�, x, y; θ)dy− e−[λi(θ)+λj(θ)]� ϕi(x; θ)ϕj(x; θ)

and

Bi(x, θ) = −
i∑

j=0

∂θai,j(θ)

∫
κ(y)ip(�, x, y; θ)dy+ ∂θ(e−λj(θ)�ϕi)(x; θ).

Hence, if we can find the moments
∫
κ(y)ip(�, x, y; θ)dy for 1 ≤ i ≤ 2N ,we have found

the optimal estimating function based on the first N eigenfunctions. But this is easy
because by integrating both sides of (4.11) with respect to p(�, x, y; θ) for i = 1, . . . , 2N ,
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we obtain the following system of linear equations

e−λi(θ)ϕi(x; θ) =
i∑

j=0

ai,j(θ)

∫
κ(y) jp(�, x, y; θ)dy (4.12)

for i = 1, . . . , 2N .

Example 10 For the model considered in Example 4, the eigenfunctions are φi(x; θ) =
Cθ

i (sin(x)), i = 0, 1, . . . , with eigenvalues i(θ + i/2), i = 0, 1, . . . , where Cθ
i is the

Gegenbauer polynomial of order i. The optimal estimating function based on any set of eigen-
functions can thus be found explicitly using (4.12).The optimal estimating function based on the
first nontrivial eigenfunction, sin(x), is

G∗
n (θ) =

n∑
i=1

sin(Xti−1)[sin(Xti )− e−(θ+ 1
2 )� sin(Xti−1)]

1
2 (e

2(θ+1)� − 1)/(θ + 1)− (e� − 1) sin2(Xti−1)
.

When � is small, the optimal estimating function can be approximated by

G̃n(θ) =
n∑

i=1

sin(Xti−1)[sin(Xti )− e−(θ+
1
2 )� sin(Xti−1)],

which yields the explicit estimator

θ̃n = −�−1 log
(∑n

i=1 sin(Xti−1) sin(Xti )∑n
i=1 sin2(Xti−1)

)
− 1/2,

provided the numerator is positive. In a simulation study with � ≤ 0.5, this estimator was almost
as efficient as the optimal estimator based on G∗, see Kessler and Sørensen (1999).

Statistical inference based on an optimal estimating function with an eigenfunction
base is invariant under twice continuously differentiable transformations of data, see
Kessler and Sørensen (1999). After such a transformation, the data are, by Itô’s formula,
still observations from a certain diffusion process, and the eigenfunctions transform in
exactly the way needed to keep the optimal estimating function invariant. Inference
based on polynomial estimating functions is not invariant under transformations of the
data.As mentioned above, the optimal estimating functions with eigenfunction base have
clear computational advantages over other estimating functions.The problem is that it is
not always possible to find eigenfunctions for the generator of a given diffusion model.
However,the class of Pearson diffusions and transformations of Pearson diffusions provide
a very flexible class of diffusion models for which explicit optimal estimating functions
of this type are available, see Forman and Sørensen (2008). For models where eigenfunc-
tions cannot be found, the polynomial estimating functions, in particular the quadratic,
provide a very useful alternative.
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A further justification for estimating functions based on eigenfunctions is that the
eigenvalue problem (3.27) is a Sturm–Liouville problem. By a classical result of this
theory,we have, for an ergodic diffusion with invariant probability μθ, a series expansion
in terms of the eigenfunctions (φi)i≥0 of any function f satisfying that μθ( f 2) <∞ (see
Coddington and Levinson, 1955), i.e.,

f (y) =
∞∑
i=0

ciφi(y), (4.13)

where (ci) is a sequence of real numbers and the series converges with respect to the
norm given by ‖ f ‖θ = μθ( f 2)

1
2 . Thus for a fixed x,

∑k
j=0 αj(x; θ) φj(y; θ) can be seen

as a truncated series of the form (4.13). The estimating function given by (3.29) is
obtained when one compensates the sum to obtain a martingale. The transition density
can usually be expanded in the form (4.13),which mainly depends on the eigenfunctions
with the smallest eigenvalues. In fact, the weights ci decrease exponentially with the
eigenvalues. If the score function can be expanded similarly, there is reason to expect
rather efficient estimators. Suppose that the union∪∞k=1Vk,where Vk is the space spanned
by {φ1(· ; θ), . . . ,φk(· ; θ)}, is dense in the space L2(p(�, x, y; θ)dy) for every x. Then
there exists a sequence Nn such that the estimator θ̂n,Nn is efficient. Here θ̂n,N is the
optimal estimator based on N eigenfunctions and n observations. For details, see Kessler
(1996). In particular, in the case of a bounded state interval, where it is well known that
the sequence φ1(· ; θ),φ2(· ; θ), . . . is complete in L2(μθ), the union ∪∞k=1Vk is dense
in L2(p(�, x, y; θ)dy), so in this case, there generally exists a sequence Nn such that
the estimator θ̂n,Nn is efficient. In the case of an unbounded state interval, the sequence
φ1(.; θ),φ2(.; θ), . . . is also complete in L2(μθ)when the set of eigenfunctions is discrete,
but to deduce denseness of ∪∞k=1Vk in L2(p(�, x, y; θ)dy), additional conditions are
needed. The efficiency of θ̂n,N obviously increases with increasing N , but so does the
computational complexity. It is conjectured that for many models, ∪∞k=1Vk is dense in
L2(p(�, x, y; θ)dy) so that the efficiency is high, provided that N is sufficiently large, and
a compromise between efficiency and computational feasibility must be found. Recently,
Sørensen (2007) has shown that in a high-frequency asymptotics, efficient estimators are
obtained with optimal estimating functions as soon as N ≥ 2.

Example 11 For the target zone model in Example 5, the eigenfunctions are the Jacobi poly-
nomials with eigenvalues λi = i[β + 1

2σ
2(i − 1)], i = 1, 2, . . ..Therefore, it is easy to apply

(4.12) to obtain explicit expressions for the optimal estimating function based on any fixed num-
ber of eigenfunctions. In Larsen and Sørensen (2007), the asymptotic variances of the estimators
obtained from several combinations of eigenfunctions were calculated for certain parameter values.
It turned out that in no case was the efficiency much above that obtained when using the optimal
estimating function based on the first two eigenfunctions φ1 and φ2. In view of the results on
efficiency discussed above, it is reasonable to assume that, for the parameter values considered in
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the paper, this estimating function is close to fully efficient, at least when the sampling frequency is
sufficiently high. In the study, weekly data were considered.

4.2. Approximately Optimal Estimating Functions

For models where the optimal weight matrix a∗(�, x; θ) is not explicit and must be
calculated by means of simulations, it is often preferable to use a good explicit approxi-
mation to a∗(�, x; θ) instead.This will usually save a lot of computer time and make the
estimation procedure more numerically robust.

To make such an approximation, the following result is useful. As in the previous
section, we focus here on one-dimensional diffusions, but a similar result holds for mul-
tivariate diffusions. Suppose f is a 2(k + 1) times continuously differentiable function.
Then under weak conditions on f and the diffusion model

Eθ( f (Xt+s)|Xt) =
k∑

i=0

si

i!L
i
θ f (Xt)+O

(
sk+1), (4.14)

where L θ is the generator (3.26), and Li
θ denotes i-fold application of the generator.

Note that (4.14) is an expansion result, so the corresponding power series does not
necessarily converge. For a fixed k, the sum is a good approximation to the conditional
expectation when s is small.The remainder term depends on k, θ, and Xt .The following
explicit sufficient condition for (4.14) to hold for ergodic diffusions was given in Jacobsen
(2001a). Let �θ be the class of real functions ϕ defined on the state space (�, r) that are
twice continuously differentiable and satisfy that

r∫
�

ϕ2(x)μθ(x)dx <∞

r∫
�

(L θϕ(x))2μθ(x)dx <∞

r∫
�

ϕ′(x)2σ2(x; θ)μθ(x)dx <∞,

where, as usual,μθ(x) denotes the invariant probability measure (3.4). If Li
θ f ∈ �θ, i =

1, . . . , k, then (4.14) holds. Under this condition, the expansion can be derived by iter-
ated application of Ito’s formula. Schaumburg (2005) gave rather high-level sufficient
conditions that can be hard to verify.

By applying (4.14) to f (x) = x and f (x) = x2, it follows that

Eθ(X�|X0 = x) = x+�b(x; θ)+ 1
2
�2{b(x; θ)∂xb(x; θ)

(4.15)
+ 1

2
v(x; θ)∂2

xb(x; θ)} +O(�3)
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and

Varθ(X�|X0 = x) = �v(x; θ)+�2
[

1
2

b(x; θ)∂xv(x; θ)
(4.16)

+ v(x; θ){∂xb(x; θ)+ 1
4
∂2

xv(x; θ)}
]
+O(�3),

where v(x; θ) = σ2(x; θ).
If we insert the approximations

∂θF(t, x; θ)
.= t∂θb(x; θ) and φ(t, x; θ)

.= tv(x; θ) (4.17)

in the expression for the optimal linear estimating function (4.9), we obtain the
approximately optimal estimating function

n∑
i=1

∂θb(Xti−1 ; θ)

v(Xti−1 ; θ)
[Xti − F(�i, Xti−1 ; θ)], (4.18)

which is usually considerably easier to calculate than (4.9).When t is small, the approxi-
mation (4.17) is good, but the approximately optimal estimating function (4.18) works
surprisingly well for large values of �i too. By means of the formulae (4.15) and (4.16),
Bibby and Sørensen (1995) showed that in the case of equidistant sampling times (i.e.,
for �i = �), the asymptotic variance of the estimators based on the optimal estimating
function (4.9) and the approximation (4.18) coincide up to and including terms of order
O(�2).The term of order O(�) is equal to the similar term for the maximum likelihood
estimator found by Dacunha-Castelle and Florens-Zmirou (1986). Numerical calcula-
tions in Bibby and Sørensen (1995) indicate that for the CIR model, the efficiencies of
the two estimators are similar even for large values of �.

To simplify the optimal quadratic estimating function, we supplement (4.17) by the
Gaussian approximations

η(t, x; θ)
.= 0 and ψ(t, x; θ)

.= 2φ(t, x; θ)2 (4.19)

that are also good for small �-values. By inserting these approximations into (4.10), we
obtain the approximately optimal quadratic estimating function

n∑
i=1

{
∂θb(Xti−1 ; θ)

v(Xti−1 ; θ)
[Xti − F(�i, Xti−1 ; θ)]

(4.20)
+ ∂θv(Xti−1 ; θ)

2v2(Xti−1 ; θ)�i

[
(Xti − F(�i, Xti−1 ; θ))2 − φ(�i, Xti−1 ; θ)

]}
,

which is a very considerable computational improvement over (4.10). This is not
least because in (4.20), there are only derivatives of known functions, while (4.10)
contains derivatives of functions that must often be determined by simulation. The
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approximately optimal quadratic estimating function (4.20) can be obtained from
the score corresponding to the Gaussian pseudo-likelihood (3.16), by using the
approximations (4.17) in the weights.

Example 12 For the CIR model given by (3.17) with σ(x) = τ
√

x, we obtain the
approximately optimal quadratic estimating function⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

1
Xi−1

[
Xi − Xi−1e−β − α

(
1− e−β

)]
n∑

i=1

[
Xi − Xi−1e−β − α

(
1− e−β

)]
n∑

i=1

1
Xi−1

[(
Xi − Xi−1e−β − α

(
1− e−β

))2 − τ2

β

((
α
2 − Xi−1

)
e−2β − (α− Xi−1)e−β + α

2

)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

As earlier, we have assumed that ti = i and given the simplest possible version of the estimating
function, which is obtained by multiplying the estimating function obtained from (4.20) by the
matrix ⎧⎪⎪⎨⎪⎪⎩

τ2/β 0 0

ατ2/β −τ2 0

0 0 τ3

⎫⎪⎪⎬⎪⎪⎭.

We find the following explicit estimators of the parameters

α̃n = 1
n

n∑
i=1

Xi + e−β̃n

n
(
1− e−β̃n

) (Xn − X0)

e−β̃n = n
∑n

i=1 Xi/Xi−1 −
(∑n

i=1 Xi
)(∑n

i=1 X−1
i−1

)
n2 − (∑n

i=1 Xi−1
)(∑n

i=1 X−1
i−1

)
τ̃2

n =
∑n

i=1 X−1
i−1

(
Xi − Xi−1e−β̃n − α̃n

(
1− e−β̃n

))2

∑n
i=1 X−1

i−1

(( 1
2 α̃n − Xi−1

)
e−2β̃n − (α̃n − Xi−1)e−β̃n + 1

2 α̃n

)
/β̃n

,

which exist provided that the expression for e−β̃n is strictly positive, an event that happens with a
probability tending to one as n →∞.A simulation study and an investigation of the asymptotic
variance of the estimators α̃n and β̃n in Bibby and Sørensen (1995) indicate that these estimators
are quite efficient; see also the simulation study in Overbeck and Rydén (1997). Note that the
level α is essentially estimated by the average of the observations. In practice, it is easier to use the
average as this causes no lost of asymptotic efficiency.
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The expansion (4.14) can be used to simplify the expressions for the optimal weights
in many other estimating functions. This will save computer time and improve the
numerical performance of the estimation procedure. The approximation will not affect
the consistency of the estimators, and if �i is not too large, it will just lead to a minor
loss of efficiency. The magnitude of this loss of efficiency can be calculated by means of
(4.14) or in the case of the quadratic estimating function by means of (4.15) and (4.16).

It is tempting to go on and approximate the functions F and φ still appearing in (4.18)
and (4.20) by F(t, x; θ)

.= x+ tb(x; θ) and φ(t, x; θ)
.= tv(x; θ). This certainly leads to a

very simple estimation procedure that has often been used, but it is important to note
that there is a dangerous pitfall here. First, if F and φ are replaced by approximations, the
martingale property is destroyed so that stronger conditions on the process are needed
to ensure asymptotic normality, see the discussion in Section 3.1.This is usually a minor
problem. What is much worse is that the estimating function becomes biased, which
implies that the estimator becomes inconsistent, at least under the kind of asymptotics
considered so far. For consistency of the estimators to hold for an estimating function
of the form (3.12), it is important that the estimating function is unbiased, i.e., that
Q�
θ ( g(�, θ)) = 0 so that as n →∞,

1
n

n∑
i=1

g(�, X�(i−1), X�i; θ)→ 0.

For biased estimating functions,

θ̂n → θ

in probability under Pθ0 as n →∞, where θ is the solution to the equation

Q�
θ0
( g(�, θ)) = 0, (4.21)

which we assume to be unique. As usual, θ0 is the true parameter value.

Example 13 For a general mean-reverting process (3.17), the approximate linear estimating
function where the conditional expectation is replaced by the first-order expansion is (for equidistant
observation, ti = �i)

⎛⎜⎜⎜⎝
n∑

i=1

1
v(X�(i−1))

[
X�i − X�(i−1) +�β(X�(i−1) − α)

]
n∑

i=1

X�(i−1)

v(X�(i−1))

[
X�i − X�(i−1) +�β(X�(i−1) − α)

]
⎞⎟⎟⎟⎠. (4.22)
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For the CIR process, the weights are X−1
�(i−1) and 1, and it is not difficult to find the explicit

estimators obtained from (4.22) for this model:

α̂n = 1
n

n∑
i=1

X�(i−1) + 1

β̂n�n
(X�n − X0)

β̂n =
1
n (X�n − X0)

∑n
i=1 X−1

�(i−1) −
∑n

i=1 X−1
�(i−1)(X�i − X�(i−1))

�
[
n − (∑n

i=1 X�(i−1)
)(∑n

i=1 X−1
�(i−1)

)/
n
] .

The asymptotic bias of these estimators as n →∞ can easily be found using the ergodic theorem
and the fact that the invariant probability measure for the CIR model is a gamma distribution.
However, a result for general mean-reverting processes can be obtained by solving the Eq. (4.21) for
the estimating function (4.22).The solutions are

α = α0 and β� = 1− e−β0� ≤ 1.

Thus, the estimator of α is in fact consistent.Contrary to this, the estimator of the reversion parameter
β is reasonable only when β0� is considerably smaller than one. Note that β ≤ �−1, so the
estimator will always converge to a limit smaller than the sampling frequency.When β0� is large,
the behavior of the estimator is bizarre, see Bibby and Sørensen (1995).Without prior knowledge
of the value of β0, it is thus a very dangerous estimator, which has unfortunately frequently been
applied in the literature.

Using (4.15), it is easy to see that in general the bias of

n∑
i=1

∂θb(X�(i−1); θ)
v(X�(i−1); θ)

[
X�i − X�(i−1) −�b(X�(i−1); θ)

]
is of order �2 when the observation time points are equidistant. One would therefore
expect that in an asymptotic scenario, where � goes to zero as n →∞, the estimator
is consistent. This is in fact true. Dorogovcev (1976), Prakasa Rao (1983), Prakasa Rao
(1988),Florens-Zmirou (1989),and Yoshida (1990) proved that the estimator is consistent
provided that�→ 0 and n�→∞ as n →∞. Moreover,the estimator is asymptotically
normal if it is further assumed that n�2 → 0. A general result comprising also more
accurate approximations of F and φ in (4.20) was given by Kessler (1997). By choosing
the approximations in a suitable way, Kessler obtained estimators that are asymptotically
normal provided just that n�k → 0 for a k ∈ IN that depends on the order of the
approximation.As similar, result for general martingale estimating functions can be found
in Sørensen (2007).



Estimating Functions for Discretely Sampled Diffusion-Type Models 251

4.3. Simple Diffusion Models for Interest Rates

In this section, we consider monthly observations of U.S. one-month treasury bill yields
from June 1964 to December 1989.These data were also analyzed by Chan et al. (1992).
The rates have been annualized and converted into continuously compounded yields. In
Fig. 4.1, the yields are plotted against time.

We use two different diffusion process models to describe the data. One is the model
introduced in Chan et al. (1992), which we refer to as the CKLS-model. If Xt denotes
the yield at time t, then the CKLS-model is given by the stochastic differential equation,

dXt = κ(θ − Xt)dt + σXγ
t dWt , (4.23)

where, as usual, W denotes a standardWiener process.The second model is given by the
stochastic differential equation

dXt =
(
aX2γ−1

t + bXt

)
dt + σXγ

t dWt (4.24)

where a, b ∈ IR, γ �= 1, and σ > 0. For γ = 1
2 , this is the stochastic differential equation

for the CIR-process, see Example 2.The generalization (4.24) is arrived at by considering
all powers X̃ρ of a CIR process with ρ �= 0. More precisely, if X solves (4.24), then the
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Figure 4.1 The one-month treasury bill yields plotted against time.
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associated CIR process is X̃ = X2−2γ solving

dX̃t =
(̃
a + b̃X̃t

)
dt + σ̃

√
X̃tdWt , (4.25)

where

b̃ = (2− 2γ) b, σ̃2 = (2− 2γ)2 σ2, ã − 1
2
σ̃2 = (2− 2γ)

(
a − 1

2
σ2

)
. (4.26)

This also explains why γ = 1 is not allowed in (4.24).The process (4.24) was introduced
in Jacobsen (2002), where it was called the generalized Cox-Ingersoll-Ross model (or gen-
eralized CIR process). Because of the connection to the CIR process, the generalized
CIR process is much simpler to handle mathematically than the more standard CKLS
model (4.23). In particular, for (4.24), it is easy to find martingale estimating functions
of the form (3.25) (although the base will now depend on the parameter γ). The gen-
eralized CIR model (GCIR model) will be considered again in Example 14. In (4.24),
the parameter space has dimension p = 4. We shall want X to be strictly positive and
ergodic,which happens if and only if the associated CIR process X̃ is strictly positive and
ergodic,i.e.,when b̃ < 0 and 2̃a ≥ σ̃2,or equivalently,when either γ < 1, b < 0, 2a ≥ σ2

or γ > 1, b > 0, 2a ≤ σ2. Since the invariant distribution for X̃ is a %-distribution, the
invariant distribution for X is that of a %-distributed random variable raised to the power
(2− 2γ)−1. Because a %-distribution has finite moments of all orders m ∈ IN, we have
Eθ(X

(2γ−2)m
0 ) <∞ for all m ∈ IN when X0 ∼ μθ, and πθ�x(2γ−2)m <∞ for all � > 0,

m ∈ IN, and all x > 0. Furthermore, since the conditional moments for a CIR process
are known, for the generalized CIR process all πθ�x(2γ−2)m are known explicitly. The
generalized CIR-model (GCIR-model) will be considered again in Example 14.

The observations are denoted as X�, X2�, . . . , Xn�, where n is 307 and � = 1/12.
For both models, the parameters are estimated using the approximation to the optimal
quadratic martingale estimating function given by (4.20). For the CKLS model, the
conditional expectation can be found explicitly, while the conditional variance is found
using simulations. In case of the GCIR model, both the conditional mean and the
conditional variance are determined by simulations. In Tables 4.2 and 4.3, the estimates
for the parameter in the two models are given based on both the whole time series and
for the period June 1964 to September 1979 (n = 184).The reason for considering the
latter period separately is that between October 1979 and October 1982, the U.S. Federal
Bank employed a monetary rather than an interest rate–targeting policy resulting in a
quite different stochastic regime.

For a more detailed analysis of these data based on the CKLS model, see Christensen
et al. (2001). Note from Table 4.3 that the estimate of the parameter γ in the GCIR
model is quite close to 1. In Fig. 4.2, a Q-Q plot of uniform residuals corresponding to
both models and both time periods are given. We see that the two models fit the data
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Table 4.2 Estimates for the
parameters in the CKLS model based on
two periods

1964–1989 1964–1979

θ 0.0735 0.0676
κ 0.3309 0.3376
σ 1.0119 0.6311
γ 1.3833 1.2755

Table 4.3 Estimates for the
parameters in the GCIR model based on
two periods

1964–1989 1964–1979

α 1.4093 0.7571
β −1.2110 −0.5491
σ 0.3905 0.2987
γ 0.9997 0.9997
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Figure 4.2 Q-Q-plots of uniform residuals corresponding to the CKLS model and the GCIR model
based on observations in two periods. The points should follow the identity line for a perfect fit.
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equally well. We may also note that the models clearly fit the data from June 1964 to
September 1979 better than the whole data set. Model diagnostics based on uniform
residuals was introduced and discussed by Pedersen (1994b).

Let us complete the discussion here by pointing out that simple diffusion models
have been found to give a less satisfactory fit to short-term interest rate data than
stochastic volatility models, see,e.g.,Durham (2003),where interesting alternative models
are given.

4.4. Small�-optimality

We shall here discuss an optimality criterion for unbiased estimating functions for diffu-
sion models, called small �-optimality, which was introduced by Jacobsen (2001a) and
explored further in the case of martingale estimating functions of the form (3.25) in
Jacobsen (2001b). The same idea was later applied in Aït-Sahalia and Mykland (2004)
and Aït-Sahalia and Mykland (2008). Recently, Sørensen (2007) has shown that for
martingale estimating functions, small �-optimality is equivalent to rate optimality and
efficiency in a high-frequency asymptotics.

Throughout this section, we shall assume that the observation times are equidistant,
i.e., ti = i�, 0 ≤ i ≤ n,where � is fixed.That an estimating function is small �-optimal
implies that for � > 0 small, the resulting estimator is nearly efficient. Furthermore, as
will be demonstrated, it is easy to find explicitly given estimating functions that are small
�-optimal.

To illustrate the main idea, consider a martingale estimating function as in (3.12).
The covariance matrix of the asymptotic distribution of θ̂n is (with θ denoting the true
parameter value)

Var�,θ
(

g, θ̂
) = S(θ)−1V (θ)

(
S−1(θ)

)T
, (4.27)

where the matrices S(θ) = (
Sij(θ)

)
i≤i,j≤p and V (θ) = (

Vij(θ)
)
i≤i,j≤p are given by

Sij(θ) = Eθ
(
∂θj gi(�, X0, X�; θ)

)
, Vij(θ) = Eθ

(
gi(�, X0, X�; θ)gj(�, X0, X�; θ)

)
, (4.28)

see (2.3). Now allow � > 0 to vary freely and consider the covariance matrix
Var�,θ( g, θ̂) as a function of �. The optimal martingale estimating function with base
f (c.f. (3.25)) comes about by minimizing Var�,θ( g, θ̂) for a given � > 0 when the
weights vary (minimizing in the partial order on the space of covariance matrices). Dif-
ferent choices of f lead to different optimal martingale estimating functions of different
quality. Each of them is locally optimal in the sense that the resulting estimator is the
best within the subclass of estimators given by the chosen base f , but estimators from
subclasses given by other choices of f may do better.
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By contrast, for the discussion of small�-optimality,we consider Var�,θ( g, θ̂) given by
(4.27) for �→ 0 and show that in the limit, a universal lower bound for the asymptotic
covariance can be obtained. This implies that for small values of � (high-frequency
data), the estimator obtained from a small �-optimal estimating function is in practice
(almost) as good as the maximum likelihood estimator.Thus,small�-optimality is a global
optimality criterion.Although small �-optimality refers explicitly to the limit �→ 0, for
any given fixed � > 0, the estimator obtained is still

√
n-consistent and asymptotically

Gaussian as the sample size goes to infinity. There is no guarantee that it is optimal in
the sense discussed in Section 2 (relative to the base f ), but for � not too large, it should
still behave well, as has been verified in several examples.

The martingale estimating functions we shall use for the discussion here are of the
form (3.12) with the ith coordinate of g given by

gi
(
�, x, y; θ

) = N∑
j=1

aij(x; θ)
(

fj(y)− πθ�( fj) (x)
) (

1 ≤ i ≤ p
)
. (4.29)

It is assumed that neither the base functions fj nor the weights aij depend on �. The
fj may depend on θ, but for the time, we ignore such a dependence. We also make the
following vital assumption.

Condition 3 The functions fj(x) are twice differentiable.Also, the base f has full affine rank N
on the state space D, i.e., the identity

N∑
j=1

cj fj(x)+ γ = 0 (x ∈ D)

for some constants cj , γ implies that c1 = · · · = cN = γ = 0.The functions aij(x; θ) satisfy that
for any θ, the p N-dimensional functions x → (ai1(x; θ), . . . , aiN (x; θ)) forming the rows of
a(x; θ) are linearly independent on D.

As �→ 0, neighboring observations
(
X(i−1)�, Xi�

)
will, since X is continuous, get

very close together. It is therefore not surprising that it is the limit

gi,0(x, y; θ) = lim
�→0

gi(�, x, y; θ) =
N∑

j=1

aij(x, θ)
(

fj(y)− fj(x)
)

(4.30)

and its behavior close to the diagonal y = x that determines the structure of Var�,θ( g, θ̂)
as �→ 0. More specifically, using Itô–Taylor expansions of the random variables that
determine the matrices V (θ) and S(θ) in the expression for Var�,θ( g, θ̂), see (4.27) and
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(4.28), subject to integrability conditions, we obtain an expansion of the form

Var�,θ( g, θ̂) = 1
�

v−1,θ( g, θ̂)+ v0,θ( g, θ̂)+ o(1) (4.31)

as�→ 0 ( Jacobsen (2001a),section 6).The expressions for the coefficient matrices v−1,θ

and v0,θ depend in an essential way on the structure of the model, and we shall distinguish
between three cases (i), (ii), and (iii) (where to achieve the structure in (iii), it may be
necessary first to reparametrize the model). For each case,we list conditions under which
the relevant coefficients are minimized, i.e., conditions under which small �-optimality
is achieved. For the cases (i) and (ii), we also give the universal lower bounds on v−1,θ

[case (i)] and v0,θ [case(ii)]. In this section,X is a general d-dimensional diffusion satisfying
(3.1) with b a d-dimensional vector and σ a d × d-matrix. As previously, C = σσT with
σT denoting the transpose of σ.

(i) C(x; θ) = C(x) does not depend on θ. In this case, the main term in (4.31) is always
present and small �-optimality is achieved by minimizing globally (over all g) the
quantity v−1,θ( g, θ̂). A sufficient condition for a given g to be small �-optimal
is that

∂yg0(x, x; θ) = ḃT (x; θ)C−1(x). (4.32)

Here,∂yg0(x, x; θ) evaluates ∂yg0(x, y; θ) = (
∂yk gi,0(x, y; θ)

) ∈ IRp×d along the diag-
onal y = x, and ḃ(x; θ) ∈ IRd×p with

(
ḃ(x; θ)

)
ki = ∂θi bk(x; θ). If (4.32) holds,

v−1,θ( g, θ̂) attains its lower bound

[
Eθ

(
ḃT (X0; θ)C−1(X0) ḃ (X0; θ)

)]−1
.

(ii) C(x; θ) depends on all parameters θ1, . . . , θp.Then the main term in (4.31) vanishes pro-
vided ∂yg0(x, x; θ) ≡ 0,and small�-optimality is achieved by minimizing v0,θ( g, θ̂).
A sufficient condition for g to be small �-optimal is that

∂yg0(x, x; θ) = 0, ∂2
yyg0(x, x; θ) = ĊT (x; θ)

(
C⊗2(x; θ)

)−1
, (4.33)

where ∂2
yyg0(x, x; θ) ∈ IRp×d2

evaluates the second derivatives ∂2
yky�gi,0(x, y; θ) along

the diagonal y = x, Ċ(x; θ) ∈ IRd2×p with (Ċ(x; θ))k�,i = ∂θi Ck�(x; θ), and C⊗2 ∈
IRd2×d2

is given by (C⊗2)k�,k′�′ = Ckk′C��′ . If (4.33) holds, v0,θ( g, θ̂) attains its
lower bound

2
[
Eθ

(
ĊT (X0; θ)

(
C⊗2 (X0; θ)

)−1
Ċ (X0; θ)

)]−1
.
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(iii) Cθ depends on the parameters θ1, . . . , θp′ but not on θp′+1, . . . , θp for some p′ with 1 ≤
p′ < p. Here, parts of the main term in (4.31) can be made to disappear so that

v−1,θ
(
g, θ̂

) = (
0p′×p′ 0p′×(p−p′)

0(p−p′)×p′ v22,−1,θ
(
g, θ̂

)).

Here, 0r×s denotes the r × s-matrix with all entries equal to zero. Furthermore, the
matrix v22,−1,θ

(
g, θ̂

) ∈ IR(p−p′)×(p−p′) can be minimized, and small �-optimality
is achieved by, in addition, minimizing the upper left p′ × p′-block v11,0,θ

(
g, θ̂

)
of

v0,θ
(
g, θ̂

)
. A sufficient condition for small �-optimality is that

∂yg0(x, x; θ) =
(

0p′×d

ḃT
2 (x; θ)C−1(x; θ)

)
, (4.34)

∂2
yyg1,0(x, x; θ) = ĊT

1 (x; θ)
(
C⊗2(x; θ)

)−1
, (4.35)

where ḃ2 ∈ IRd×(p−p′) comprises the last p − p′ columns of ḃ, g1,0 the first p′
coordinates of g0, and Ċ1 ∈ IRd2×p′ the first p′ columns of Ċ.

The complicated case (3) may best be understood as follows: for θ1, . . . , θp′ fixed,
(4.34) requires in particular that the last p − p′ coordinates of g be small �-optimal
for estimating θp′+1, . . . , θp, see case (i); and for θp′+1, . . . , θp fixed, (4.34) and (4.35)
require that the first p′ coordinates of g be small �-optimal for estimating θ1, . . . , θp′ , see
case (ii).

As mentioned above, to check for small �-optimality, more is required than just
checking (4.32), (4.33) or (4.34), (4.35), viz., it must be verified that various matrices
involving expectations of quantities related to ḃ, Ċ, ∂yg0, and ∂2

yyg0 are nonsingular, see
theorem 2 in Jacobsen (2001a).

We used the special structure (4.29) above to get directly an expression for the limit
gi,0(x, y; θ) in (4.30). For a general martingale estimating function, the existence of a
nontrivial (in particular nonzero) limit must be assumed, and to find it in concrete cases,
it may be necessary to renormalize g, i.e., replace g(�, x, y; θ) by K�(θ)g(�, x, y; θ)
for some nonsingular p × p-matrix K�(θ) not depending on x or y. As discussed
earlier, such a renormalization does not affect the solutions to the estimating equa-
tions. Small �-optimality can be discussed also for any family of unbiased estimating
functions defined by a class of functions (g�)�>0. For details, see Jacobsen (2001a),
section 6.

It is important to comment further on the qualitatively different forms that the expan-
sion (4.31) takes under small �-optimality in the three cases (i), (ii), and (iii). Obviously,
a major gain in estimation accuracy is obtained for � small, if the leading term v−1 can
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be dispensed with, and the reason why this is possible in case (ii), partly in case (iii), and
never in case (i) is best understood by considering complete observation of X in contin-
uous time on a finite time interval – as �→ 0, we are getting close to continuous-time
observation. So let T > 0 be fixed and denote by Pθ,T the distribution of (Xt)0≤t≤T
when X is stationary and the true parameter value is θ. In case (i), when θ varies, only
the drift b(x; θ) changes, and for θ �= θ′, the measures Pθ,T and Pθ′,T will typically be
equivalent with a Radon–Nikodym derivative given by Girsanov’s theorem. By con-
trast, in case (ii) where also C(x; θ) changes with θ, it may well happen that Pθ,T and
Pθ′,T are singular for θ �= θ′, i.e., it is (in principle) possible to read off the exact value
of θ from the observed sample path of X . Of course, for the discrete time observations
(Xi�)0≤i≤n, perfect information about θ is not available, but through small �-optimality,
it is possible to increase the information about θ per observation Xi� from O(�) in
case (i) to O(1) in case (ii). Note that for the general martingale estimating functions,
even in case (ii), the leading term v−1 will be present unless one is careful, and the
result will then be an estimator that as �→ 0 is infinitely worse than a small �-optimal
estimator.

We shall now again return to the specific martingale estimating functions emanat-
ing from (4.29) and discuss when and how, for a given base f = ( fj)1≤j≤N satisfying
Condition 3, the weights a may be chosen so as to achieve small �-optimality. In
particular, this will reveal a critical value

dim(d) := d +
(

d +
(

d
2

))
= d(d + 3)/2

for the dimension N of the base.The value dim(d) comes about naturally by fixing a base
f of dimension d and then supplementing this with the functions fj fj′ for 1 ≤ j ≤ j′ ≤ d.
The discussion splits into the same three cases as before, but for illustration, we just
consider case (i). From (4.30),

∂yg0(x, x; θ) = a(x; θ)∂x f (x),

which is required to equal ḃT (x; θ)C−1(x),see (4.32). Solving for a(x; θ) is clearly possible
if N = d provided the d × d-matrix ∂x f (x) with jkth element ∂xk fj(x) is nonsingular,
and possible also if N > d provided ∂x f (x) has full rank d. In cases (ii) and (iii), similar
linear equation systems are obtained (but now involving d first derivatives of g0 and all
the different second derivatives, i.e., dim(d) derivatives in all), resulting in the following
shortened version of theorem 2 of Jacobsen (2002). In the theorem,we use the following
notation: if M ∈ IRr×d2

is a matrix with entries Mq,k� for 1 ≤ q ≤ r and 1 ≤ k, � ≤ d
that are symmetric in k and �, we write MR ∈ IRr×ρ(d) for the matrix with entries Mq,k�

for 1 ≤ q ≤ r and 1 ≤ k ≤ � ≤ d obtained by multiplying M by the reduction matrix
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R ∈ IRd2×ρ(d) with entries Rk′�′,k� = 1 if k′ = k and �′ = � and Rk′�′,k� = 0 otherwise
(1 ≤ k′, �′ ≤ d and 1 ≤ k ≤ � ≤ d). Here, ρ(d) is the number of choices for (k, �) such
that 1 ≤ k ≤ � ≤ d, i.e., ρ(d) = d + (d

2

) = dim(d)− d.

Theorem 2 Consider martingale estimating functions of the form

Gn(θ) =
n∑

i=1

a∗(X(i−1)�, θ)
(

f(Xi�; θ)− πθ�( f(θ))(X(i−1)�)
)
, (4.36)

where the base f = (
fj
)
1≤ j≤N is of full affine rank N, and where the matrix-valued function

a∗(x, θ) is chosen differently in the following three cases.

(i) Suppose that N = d, that for μθ-a.a. x, the matrix ∂x f (x) ∈ IRd×d is nonsingular, and
that the p d-variate functions of x forming the columns of ḃ(x; θ) are linearly independent.
Then the rows of

a∗(x; θ) = ḃT (x; θ)C−1(x)
(
∂x f (x)

)−1 (4.37)

are linearly independent as required by Condition 3,and the estimating function (4.36) satisfies
the small �-optimality condition (4.32).

(ii) Suppose that N = dim(d), that for μθ-a.a. x, the matrix

Q(x) = (
∂x f (x) ∂2

xx f (x)R
)∈ IRdim(d)×dim(d) (4.38)

is nonsingular and that the p d2-variate functions of x forming the columns of Ċ(x; θ) are
linearly independent.Then the rows of

a∗(x; θ) =
(
0p×d ĊT (x; θ)

(
C⊗2(x; θ)

)−1 R
)
(Q(x))−1 (4.39)

are linearly independent, and the estimating function (4.36) satisfies the small �-optimality
condition (4.33).

(iii) Suppose that N = dim(d), that for μθ-a.a. x, the matrix Q(x) given by (4.38) is nonsin-
gular, that the p − p′ d-variate functions forming the columns of ḃ2,θ are linearly independent
and the p′ d2-variate functions forming the columns of Ċ1,θ are linearly independent.Then
the rows of

a∗(x; θ) =
⎛⎝ 0p′×d ĊT

1 (x; θ)
(
C⊗2(x; θ)

)−1 R

ḃT
2 (x; θ)C−1(x; θ) 0(p−p′)×ρ(d)

⎞⎠(Q(x))−1 (4.40)
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are linearly independent, and the estimating function (4.36) satisfies the small �-optimality
conditions (4.34) and (4.35).

For models with a special structure, the critical value dim(d) for the dimension of
the base f may be lowered. This is, for instance, the case when X = (X1, . . . , Xc) with
X1, . . . , Xc independent diffusions of dimensions d1, . . . , dc ,where

∑c
m=1 dm = d. In this

situation, small �-optimality can be achieved using a base of dimension
∑c

m=1 dim (dm).
In general, however, dim(d) is the critical dimension, even for the optimal martingale
estimating function determined by a given base for any given � > 0 to be small �-
optimal ( Jacobsen, 2002, theorem 2.3). Thus, it may well happen if d = 1 for a model
belonging to case (ii), that the optimal martingale estimating function determined by
a base of dimension 1, will result in an estimator that behaves disastrously for high-
frequency data.

In case (iii) of Theorem 2, one may find a host of small �-optimal martingale esti-
mating functions other than that specified by (4.40), in fact the entry 0(p−p′)×ρ(d)
may be replaced by an arbitrary matrix depending on x and θ (subject to Condi-
tion 3 and smoothness and integrability requirements).Another useful recipe (adopted in
Example 14 below) for finding small �-optimal estimating functions in case (iii),
is to fix a base f ◦ of dimension d, augment it to a base f of dimension dim(d)
by adding the products f ◦j f ◦j′ for 1 ≤ j ≤ j′ ≤ d, and then defining the first p′ rows
of a∗(x; θ) by

(
0p′×d ĊT

1 (x; θ)
(
C⊗2(x; θ)

)−1 R
)
(Q(x))−1

and the last p − p′ rows by

ḃT
2 (x; θ)C−1 (x; θ)

(
∂x f (x)

)−1.

Sørensen (2007) showed that martingale estimating functions that are optimal in the
sense of Section 2 are, under regularity conditions, also small �-optimal.

Although it is easy to obtain small �-optimality for martingale estimating functions, it
is not known what happens in general with the classes of simple and explicit, transition-
dependent estimating functions also discussed above, see (3.35) and (3.38). It is known
( Jacobsen, 2001a) that for d = 1 and if C = σ2 does not depend on θ, then the simple
estimating function with h given by (3.35) is small �-optimal provided that f satis-
fies that ∂x f (x) = Kθ ḃT

θ (x)/σ
2(x) for some nonsingular matrix Kθ not depending on

x. This is the case for Kessler’s estimating function in the Ornstein–Uhlenbeck model,
see Example 6, and more generally, as follows easily using (3.4), also for the estimating
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function proposed by Conley et al. (1997), which is obtained for f = ∂θ logμθ. How-
ever, if either d ≥ 2 or the model is of type (ii) or (iii), it seems virtually impossible
to achieve small �-optimality. For the much wider class (3.38), nothing much is
known, but it does appear difficult to obtain small �-optimality for models belonging
to case (ii).

We shall conclude this section by showing how small �-optimality works for the one-
dimensional diffusion model with four parameters discussed in Section 4.3. The model
was introduced by Jacobsen (2002) and the simulation study below is from Jacobsen
(2001b).

Example 14 Consider the problem of estimating the four-dimensional parameter vector θ in the
generalized CIR process from discrete observations.The generalized CIR process is the solution
of the one-dimensional (d = 1) stochastic differential equation (4.24). It is clear that the model
(4.24) belongs to case (iii) with p = 4, p′ = 2.We need a base of dimension dim(1) = 2 and
shall simply use f = (

fj
)
1≤ j≤2 given by

f1(x) = x2−2γ and f2(x) = x4−4γ , (4.41)

which trivially satisfies Condition 3.This corresponds to choosing f ◦(x) = x2−2γ (see page 260
for the general use of f ◦). By the methods described above, one may then show that the martingale
estimating function given by

g(�, x, y; θ) =

⎛⎜⎜⎜⎜⎝
−2 log x x2γ−2 log x

−2 x2γ−2

x2γ−2 0

1 0

⎞⎟⎟⎟⎟⎠
(

y2−2γ − πθ�x2−2γ

y4−4γ − πθ�x4−4γ

)
(4.42)

is small �-optimal. Here, the conditional expectations are given by the expressions

πθ�x2−2γ = eb̃�
(
x2−2γ − ξ̃1

)
+ ξ̃1,

πθ�x4−4γ = e2b̃�
(
x4−4γ − ξ̃2 − 2(ξ̃2/ξ̃1)

(
x2−2γ − ξ̃1

))
+ 2(ξ̃2/ξ̃1)eb̃�

(
x2−2γ − ξ̃1

)
+ ξ̃2

where ξ̃1 = Eθ

(
X2−2γ

0

)
= −ã/b̃ and ξ̃2 = Eθ

(
X4−4γ

0

)
= ã/(2b̃2)

(
2ã + σ̃2

)
with ã, b̃, σ̃2

as in (4.26); see Section 4.3.
The results of a simulation study using this small �-optimal estimating function are given in

Table 4.4.Note that in agreement with the theory, the estimators of a and b deteriorate for � small,
while the estimators of γ and σ2 perform well throughout.
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Table 4.4 The result of a simulation study using the estimating function given by (4.42)
with the parameter values a = 1, b = −1, y = 1

2 , and σ
2 = 1

� Success Mean Standard deviation Smallest Largest

0.01 50/50 a 1.77 0.864 0.737 4.51
b −1.88 0.872 −4.84 −0.612
γ 0.493 0.054 0.396 0.641
σ2 1.00 0.073 0.806 1.17

0.1 50/50 a 1.04 0.207 0.685 1.62
b −1.08 0.262 −2.01 −0.662
γ 0.494 0.050 0.393 0.571
σ2 1.00 0.086 0.786 1.18

0.5 45/50 a 1.22 0.335 0.597 1.92
b −1.22 0.308 −1.93 −0.674
γ 0.545 0.081 0.361 0.680
σ2 0.995 0.087 0.730 1.24

Simulations were done for the indicated values of � based on n + 1 = 501 observations. For each value
of �, 50 data sets were simulated. The column labeled “success” indicates the proportion of data sets for
which estimates for all four parameters were obtained.The mean value and the standard deviation of these
estimates are given in the table. The columns labeled “smallest” and “largest” indicate the range of the
estimates obtained.
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Abstract

This chapter is devoted to the econometric treatment of portfolio choice problems. The goal is to

describe, discuss, and illustrate through examples the different econometric approaches proposed in

the literature for relating the theoretical formulation and solution of a portfolio choice problem to the

data. In focusing on the econometrics of the portfolio choice problem, this chapter is at best a cursory

overview of the broad portfolio choice literature. In particular, much of the discussion is focused on

the single period portfolio choice problem with standard preferences, normally distributed returns,

and frictionless markets. There are many recent advances in the portfolio choice literature, some cited

below but many regrettably omitted, that relax one or more of these simplifying assumptions. The

econometric techniques discussed in this chapter can be applied to these more realistic formulations.

The chapter is divided into three parts. Section 2 reviews the theory of portfolio choice in discrete

and continuous time. It also discusses a number of modeling issues and extensions that arise in

formulating the problem. Section 3 presents the two traditional econometric approaches to portfolio

choice problems: plug-in estimation and Bayesian decision theory. In Section 4, I then describe a more

recently developed econometric approach for drawing inferences about optimal portfolio weights

without modeling return distributions.
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1. INTRODUCTION
After years of relative neglect in academic circles, portfolio choice problems are again at
the forefront of financial research. The economic theory underlying an investor’s opti-
mal portfolio choice, pioneered by Markowitz (1952), Merton (1969, 1971), Samuelson
(1969), and Fama (1970), is by now well understood. The renewed interest in port-
folio choice problems follows the relatively recent empirical evidence of time-varying
return distributions (e.g., predictability and conditional heteroskedasticity) and is fueled
by realistic issues including model and parameter uncertainty, learning, background risks,
and frictions. The general focus of the current academic research is to identify key
aspects of real-world portfolio choice problems and to understand qualitatively as well as
quantitatively their role in the optimal investment decisions of individuals and institutions.

Whether for academic researchers studying the portfolio choice implications of return
predictability, for example,or for practitioners whose livelihood depends on the outcome
of their investment decisions, a critical step in solving realistic portfolio choice problems
is to relate the theoretical formulation of the problem and its solution to the data.There
are a number of ways to accomplish this task, ranging from calibration with only vague
regard for the data to decision theoretic approaches which explicitly incorporate the
specification of the return model and the associated statistical inferences in the investor’s
decision process. Surprisingly, given the practical importance of portfolio choice prob-
lems, no single econometric approach has emerged yet as clear favorite. Because each
approach has its advantages and disadvantages, an approach favored in one context is
often less attractive in another.

This chapter is devoted to the econometric treatment of portfolio choice problems.
The goal is to describe,discuss, and illustrate through examples the different econometric
approaches proposed in the literature for relating the theoretical formulation and solution
of a portfolio choice problem to the data.The chapter is intended for academic researchers
who seek an introduction to the empirical implementation of portfolio choice problems
as well as for practitioners as a review of the academic literature on the topic. In focusing
on the econometrics of the portfolio choice problem, this chapter is at best a cursory
overview of the broad portfolio choice literature. In particular, much of the discussion
is focused on the single period portfolio choice problem with standard preferences,
normally distributed returns, and frictionless markets.There are many recent advances in
the portfolio choice literature, some cited below but many regrettably omitted, that relax
one or more of these simplifying assumptions.The econometric techniques discussed in
this chapter can be applied to these more realistic formulations.

The chapter is divided into three parts. Section 2 reviews the theory of portfolio
choice in discrete and continuous time. It also discusses a number of modeling issues and
extensions that arise in formulating the problem. Section 3 presents the two traditional
econometric approaches to portfolio choice problems: plug-in estimation and Bayesian
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decision theory. In Section 4, I then describe a more recently developed econometric
approach for drawing inferences about optimal portfolio weights without modeling
return distributions.

2. THEORETICAL PROBLEM
2.1. Markowitz Paradigm

The mean–variance paradigm of Markowitz (1952) is by far the most common for-
mulation of portfolio choice problems. Consider N risky assets with random return
vector Rt+1 and a riskfree asset with known return Rf

t . Define the excess returns
rt+1 = Rt+1 − Rf

t and denote their conditional means (or risk premia) and covariance
matrix by μt and #t , respectively. Assume, for now, that the excess returns are i.i.d. with
constant moments.

Suppose the investor can only allocate wealth to the N risky securities. In the absence
of a risk-free asset, the mean–variance problem is to choose the vector of portfolio
weights x, which represent the investor’s relative allocations of wealth to each of the N
risky assets, to minimize the variance of the resulting portfolio return Rp,t+1 = x′Rt+1

for a predetermined target expected return of the portfolio Rf
t + μ:

min
x

var[Rp,t+1] = x′#x, (2.1)

subject to

E[Rp,t+1] = x′(Rf + μ) = (Rf + μ) and
N∑

i=1

xi = 1. (2.2)

The first constraint fixes the expected return of the portfolio to its target, and the sec-
ond constraint ensures that all wealth is invested in the risky assets. Setting up the
Lagrangian and solving the corresponding first-order conditions (FOCs), the optimal
portfolio weights are as follows:

x* = +1 ++2μ (2.3)

with

+1 = 1
D

[
B(#−1ι)− A(#−1μ)

]
and +2 = 1

D

[
C(#−1μ)− A(#−1ι)

]
, (2.4)

where ι denotes an appropriately sized vector of ones and where A = ι′#−1μ, B =
μ′#−1μ,C = ι′#−1ι, and D = BC − A2.The minimized portfolio variance is equal to
x*′#x*.

The Markowitz paradigm yields two important economic insights. First, it illustrates
the effect of diversification. Imperfectly correlated assets can be combined into portfolios



272 Michael W. Brandt

0% 10% 20% 30% 40% 50% 60%
0%

5%

10%

15%

20%

25%

30%

Portfolio return volatility

E
xp

ec
te

d 
po

rt
fo

lio
 r

et
ur

n

Rt
f

Global minimum variance portfolio 

Tangency portfolio Mean–variance
efficient frontier

without risk-free rate

Mean–variance
efficient frontier 
with risk-free rate

o

o

o

10 industry portfolios 
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of monthly returns on 10 industry-sorted portfolios. Expected return and volatility are annualized.

with preferred expected return-risk characteristics. Second, the Markowitz paradigm
shows that, once a portfolio is fully diversified, higher expected returns can only be
achieved through more extreme allocations (notice x* is linear in μ) and therefore by
taking on more risk.

Figure 5.1 illustrates graphically these two economic insights. The figure plots as
hyperbola the mean–variance frontier generated by the historical moments of monthly
returns on 10 industry-sorted portfolios. Each point on the frontier gives along the
horizonal axis the minimized portfolio return volatility (annualized) for a predetermined
expected portfolio return (also annualized) along the vertical axis. The dots inside the
hyperbola represent the 10 individual industry portfolios from which the frontier is
constructed. The fact that these dots lie well inside the frontier illustrates the effect of
diversification. The individual industry portfolios can be combined to generate returns
with the same or lower volatility and the same or higher expected return. The figure
also illustrates the fundamental trade-off between expected return and risk. Starting with
the least volatile portfolio at the left tip of the hyperbola (the global minimum variance
portfolio), higher expected returns can only be achieved at the cost of greater volatility.

If the investor can also allocate wealth to the risk-free asset, in the form of unlimited
risk-free borrowing and lending at the risk-free rate Rf

t , any portfolio on the mean–
variance frontier generated by the risky assets (the hyperbola) can be combined with the
risk-free asset on the vertical axis to generate an expected return-risk profile that lies on a
straight line from the risk-free rate (no risky investments) through the frontier portfolio
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(fully invested in risky asset) and beyond (leveraged risky investments). The optimal
combination of the risky frontier portfolios with risk-free borrowing and lending
is the one that maximizes the Sharpe ratio of the overall portfolio, defined as
E[rp,t+1]/std[rp,t+1] and represented graphically by the slope of the line from the risk-free
asset through the risky frontier portfolio.The highest obtainable Sharpe ratio is achieved
by the upper tangency on the hyperbola shown in Fig. 5.1. This tangency therefore
represents the mean–variance frontier with risk-free borrowing and lending.The critical
feature of this mean–variance frontier with risk-free borrowing and lending is that every
investor combines the risk-free asset with the same portfolio of risky assets – the tangency
portfolio in Fig. 5.1.

In the presence of a risk-free asset, the investor allocates fractions x of wealth to the
risky assets and the remainder (1− ι′x) to the risk-free asset.The portfolio return is there-
fore Rp,t+1 = x′Rt+1 + (1− ι′x)Rf

t = x′rt+1 + Rf
t and the mean–variance problem can

be expressed in terms of excess returns:

min
x

var[rp] = x′#x subject to E[rp] = x′μ = μ. (2.5)

The solution to this problem is much simpler than in the case without a risk-free asset:

x* = μ

μ′#−1μ︸ ︷︷ ︸
λ

×#−1μ, (2.6)

where λ is a constant that scales proportionately all elements of #−1μ to achieve the
desired portfolio risk premium μ. From this expression, the weights of the tangency
portfolio can be found simply by noting that the weights of the tangency portfolio must
sum to one, because it lies on the mean–variance frontier of the risky assets. For the
tangency portfolio:

λtgc = 1
ι′#−1μ

and μtgc =
μ′#−1μ

ι′#−1μ
. (2.7)

The formulations (2.1) and (2.2) or (2.5) of the mean–variance problem generate a
mapping from a predetermined portfolio risk premium μ to the minimum–variance
portfolio weights x* and resulting portfolio return volatility

√
x*′#x*. The choice of

the desired risk premium, however, depends inherently on the investor’s tolerance for
risk. To incorporate the investor’s optimal trade-off between expected return and risk,
the mean–variance problem can be formulated alternatively as the following expected
utility maximization:

max
x

E[rp,t+1] − γ

2
var[rp,t+1], (2.8)
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where γ measures the investor’s level of relative risk aversion. The solution to this
maximization problem is given by Eq. (2.6) with λ = 1/γ , which explicitly links the
optimal allocation to the tangency portfolio to the investor’s tolerance for risk.

The obvious appeal of the Markowitz paradigm is that it captures the two fundamental
aspects of portfolio choice – diversification and the trade-off between expected return
and risk – in an analytically tractable and easily extendable framework. This has made it
the de-facto standard in the finance profession. Nevertheless, there are several common
objections to the Markowitz paradigm. First, the mean–variance problem only represents
an expected utility maximization for the special case of quadratic utility, which is a
problematic preference specification because it is not monotonically increasing in wealth.
For all other utility functions, the mean–variance problem can at best be interpreted as a
second-order approximation of expected utility maximization. Second, but related, the
mean–variance problem ignores any preferences toward higher-order return moments, in
particular toward return skewness and kurtosis. In the context of interpreting the mean–
variance problem as a second-order approximation, the third and higher-order terms
may be economically nonnegligible. Third, the mean–variance problem is inherently
a myopic single-period problem, whereas we think of most investment problems as
involving longer horizons with intermediate portfolio rebalancing. Each criticism has
prompted numerous extensions of the mean–variance paradigm.1 However, the most
straightforward way to address all these issues, and particularly the third, is to formulate
the problem explicitly as an intertemporal expected utility maximization.

2.2. Intertemporal Expected Utility Maximization
2.2.1. Discrete Time Formulation

Consider the portfolio choice at time t of an investor who maximizes the expected utility
of wealth at some future date t + τ by trading in N risky assets and a risk-free asset at
times t, t + 1, . . . , t + τ − 1. The investor’s problem is

V (τ, Wt , zt) = max
{xs}t+τ−1

s=t

Et
[
u(Wt+τ)

]
, (2.9)

subject to the budget constraint:

Ws+1 = Ws
(
xs
′rs+1 + Rf

s
)

(2.10)

and having positive wealth each period,Ws ≥ 0.The function u(·)measures the investor’s
utility of terminal wealth Wt+τ , and the subscript on the expectation denotes that

1The majority of extensions deal with incorporating higher-order moments. For example, in Brandt et al. (2005), we propose a fourth-
order approximation of expected utility maximization that captures preferences toward skewness and kurtosis.While the optimal portfolio
weights cannot be solved for analytically, we provide a simple and efficient numerical procedure. Other work on incorporating higher-
order moments include Kraus and Litzenberger (1976), Kane (1982), Simaan (1993), de Athayde and Flores (2004), and Harvey et al.
(2004).
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the expectation is taken conditional on the information set zt available at time t.
For concreteness, think of zt as a K <∞ dimensional vector of state variables and
assume that yt ≡ [rt , zt] evolves as a first-order Markov process with transition density
f (yt |yt−1).2

The case τ = 1 corresponds to a static single-period optimization. In general,however,
the portfolio choice is a more complicated dynamic multiperiod problem. In choosing at
date t the optimal portfolio weights xt conditional on having wealth Wt and information
zt , the investor takes into account that at every future date s the portfolio weights will
be optimally revised conditional on the then available wealth Ws and information zs.

The function V (τ, Wt , zt) denotes the investor’s expectation at time t, conditional
on the information zt , of the utility of terminal wealth Wt+τ generated by the current
wealth Wt and the sequence of optimal portfolio weights {x*s }t+τ−1

s=t over the next τ
periods. V (·) is called the value function because it represents the value, in units of
expected utils,of the portfolio choice problem to the investor.Think of the value function
as measuring the quality of the investment opportunities available to the investor. If
the current information suggests that investment opportunities are good, meaning, for
example, that the sequence of optimal portfolio choices is expected to generate an above
average return with below average risk, the current value of the portfolio choice problem
to the investor is high. If investment opportunities are poor, the value of the problem
is low.

The dynamic nature of the multiperiod portfolio choice is best illustrated by
expressing the problem (2.9) as a single-period problem with state-dependent utility
V (τ − 1, Wt+1, zt+1) of next period’s wealth Wt+1 and information zt+1:

V (τ, Wt , zt) = max
{xs}t+τ−1

s=t

Et
[
u
(
Wt+τ

)]
= max

xt
Et

[
max

{xs}t+τ−1
s=t+1

Et+1
[
u
(
Wt+τ

)]]
(2.11)

= max
xt

Et
[
V
(
τ − 1, Wt

(
xt
′rt+1 + Rf

t
)
, zt+1

)]
,

subject to the terminal condition V (0, Wt+τ , zt+τ) = u(Wt+τ). The second equality
follows from the law of iterated expectations and the principle of optimality. The third
equality uses the definition of the value function as well as the budget constraint. It
is important to recognize that the expectation in the third line is taken over the joint
distribution of next period’s returns rt+1 and information zt+1,conditional on the current
information zt .

2The first-order assumption is innocuous because zt can contain lagged values.
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Equation (2.11) is the so-called Bellman equation and is the basis for any recursive
solution of the dynamic portfolio choice problem. The FOCs for an optimum at each
date t are3

Et

[
V2

(
τ − 1, Wt

(
xt
′rt+1 + Rf

t
)
, zt+1

)
rt+1

]
= 0, (2.12)

where Vi(·) denotes the partial derivative with respect to the ith argument of the value
function.These FOCs make up a system of nonlinear equations involving possibly high-
order integrals and can in general be solved for xt only numerically.

CRRA Utility Example For illustrative purposes, consider the case of constant rela-
tive risk aversion (CRRA) utility u(Wt+τ) = Wt+τ1−γ/(1− γ), where γ denotes the
coefficient of relative risk aversion. The Bellman equation then simplifies to:

V (τ, Wt , zt) = max
xt

Et

[
max

{xs}t+τ−1
s=t+1

Et+1

[Wt+τ1−γ

1− γ

]]

= max
xt

Et

[
max

{xs}t+τ−1
s=t+1

Et+1

[(
Wt

∏t+τ−1
s=t

(
xs
′rs+1 + Rf

s
))1−γ

1− γ

]]
(2.13)

= max
xt

Et

[ (
Wt

(
xt
′rt+1+ Rf

t
))1−γ

1− γ︸ ︷︷ ︸
u
(
Wt+1

)
max

{xs}t+τ−1
s=t+1

Et+1

[(∏t+τ−1
s=t+1

(
xs
′rs+1 + Rf

s
))1−γ]

︸ ︷︷ ︸
ψ(τ − 1, zt+1)

]

In words, with CRRA utility the value function next period, V (τ − 1, Wt+1, zt+1), is
equal to the product of the utility of wealth u(Wt+1) and a function ψ(τ − 1, zt+1)

of the horizon τ − 1 and the state variables zt . Furthermore, as the utility function is
homothetic in wealth we can, without loss of generality, normalize Wt = 1. It follows
that the value function depends only on the horizon and state variables, and that the
Bellman equation is

1
1− γ

ψ(τ, zt) = max
xt

Et

[(
xt
′rt+1 + Rf

t
)1−γ

1− γ
ψ
(
τ − 1, zt+1

)]
. (2.14)

The corresponding FOCs are

Et

[(
xt
′rt+1 + Rf

t
)−γ

ψ
(
τ − 1, zt+1

)
rt+1

]
= 0, (2.15)

which,despite being simpler than in the general case, can still only be solved numerically.

3As long as the utility function is concave, the second-order conditions are satisfied.
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The Bellman equation for CRRA utility illustrates how the dynamic and myopic
portfolio choices can differ. If the excess returns rt+1 are contemporaneously independent
of the innovations to the state variables zt+1, the optimal τ and one-period portfolio
choices at date t are identical because the conditional expectation in the Bellman equation
factors into a product of two conditional expectations. The first expectation is of the
utility of next period’s wealth u(Wt+1), and the second is of the function of the state
variablesψ(τ − 1, zt+1). Because the latter expectation does not depend on the portfolio
weights, the FOCs of the multiperiod problem are the same as those of the single-period
problem. If, in contrast, the excess returns are not independent of the innovations to
the state variables, the conditional expectation does not factor, the FOCs are not the
same, and, as a result, the dynamic portfolio choice may be substantially different from
the myopic portfolio choice.The differences between the two policies are called hedging
demands because by deviating from the single-period portfolio choice the investor tries
to hedge against changes in the investment opportunities.

More concretely,consider as data generating process f (yt |yt−1) the following restricted
and homoscedastic vector auto-regression (VAR) for the excess market return and
dividend yield (in logs):4 [

ln(1+ rt+1)

ln dpt+1

]
= β0 + β1 ln dpt + εt+1, (2.16)

where dpt+1 denotes the dividend-to-price ratio and εt+1
i.i.d.∼ MVN[0,#]. Table 5.1

presents ordinary least squares (OLS) estimates of this return model for quarterly real
data on the value weighted CRSP index and 90-day Treasury bill rates from April 1952

Table 5.1 OLS estimates of the VAR using quarterly real data on the value weighted
CRSP index and 90-day Treasury bill rates from April 1952 through December 1996

Dependent variable Intercept lndpt var[εt+1] (×10−3)

ln(1+ rt+1) 0.2049 0.0568
(0.0839) (0.0249) [

6.225 −6.044
−6.044 6.316

]
ln dpt+1 −0.1694 0.9514

(0.0845) (0.0251)

Standard errors in parentheses.

4This data generating process is motivated by the evidence of return predictability by the dividend yield (e.g., Campbell and Shiller, 1988;
Fama and French, 1988) and has been used extensively in the portfolio choice literature (e.g., Barberis, 2000; Campbell and Viceira, 1999;
Kandel and Stambaugh, 1996).
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through December 1996.5 The equation-by-equation adjusted R2s are 2.3 and 89.3%,
reflecting the facts that is it quite difficult to forecast excess returns and that the dividend
yield is highly persistent and predictable.

Taking these estimates of the data generating process as the truth, the FOCs (2.15) can
be solved numerically using a variety of dynamic programming methods (see Judd,1998,
for a review of numerical methods for dynamic programming). Figure 5.2 presents the
solution to the single-period (one-quarter) problem. Plot A shows the optimal fraction
of wealth invested in stocks x*t as a function of the dividend yield. Plot B shows the
corresponding annualized certainty equivalent rate of return Rce

t (τ), defined as the risk-
free rate that makes the investor indifferent between holding the optimal portfolio and
earning the certainty equivalent rate over the next τ periods.6 The solid, dashed-dotted,
and dotted lines are for relative risk aversion γ of 2, 5, and 10, respectively.

At least three features of the solution to the single-period problem are noteworthy.
First, both the optimal allocation to stocks and the certainty equivalent rate increase
with the dividend yield, which is consistent with the fact that the equity risk premium
increases with the dividend yield. Second, the extent to which the investor tries to
time the market decreases with risk aversion. The intuition is simple. When the risk
premium increases, stocks become more attractive (higher expected return for the same
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Figure 5.2 Plot A shows the optimal fraction ofwealth invested in stocks as a function of the dividend
yield for a CRRA investor with one-quarter horizon and relative risk aversion of 2 (solid line), 5 (dashed-
dotted line), and 10 (dotted line). Plot B shows the corresponding annualize certainty equivalent rates
of return (in percent).

5Note that the evidence of return predictability by the dividend yield has significantly weakened over the past 7 years (1997–2003) (e.g.,
Ang and Bekaert, 2007; Goyal and Welch, 2003). I ignore this most recent sample period for illustrative purposes and to reflect the
literature on portfolio choice under return predictability by the dividend yield (e.g., Barberis, 2000; Campbell and Viceira, 1999; Kandel
and Stambaugh, 1996). However, keep in mind that the results do not necessarily reflect the current data.

6For CRRA utility, the certainty equivalent rate is defined by
[
Rce

t (τ)Wt
]1−γ

/(1− γ) = V (τ, Wt , zt ).
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level of risk), and consequently the investor allocates more wealth to stocks. As the
stock allocation increases, the mean of the portfolio return increases linearly while the
variance increases quadratically and hence at some point increases faster than the mean.
Ignoring higher-order moments, the optimal allocation sets the expected utility gain
from a marginal increase in the portfolio mean to equal the expected utility loss from the
associated increase in the portfolio variance.The willingness to trade off expected return
for risk at the margin depends on the investor’s risk aversion. Third, the benefits from
market timing also decrease with risk aversion.This is because a more risk averse investor
allocates less wealth to stocks and therefore has a lower expected portfolio return and
because, even for the same expected portfolio return, a more risk averse investor requires
a smaller incentive to abstain from risky investments.

Figure 5.3 presents the solution to the multiperiod portfolio choice for horizons τ
ranging from one quarter to 10 years for an investor with γ = 5 (corresponding to the
dashed-dotted lines in Fig. 5.2). Rather than plotting the entire policy fuction for each
horizon, plot A shows only the allocations for current dividend yields of 2.9% (25th per-
centile, dotted line), 3.5% (median, dashed-dotted line), and 4.1% (75th percentile, solid
line). Plot B shows the expected utility gain, measured by the increase in the annualized
certainty equivalent rates (in percent), from implementing the dynamic multiperiod port-
folio policy as opposed to making a sequence of myopic single-period portfolio choices.

It is clear from plot A that the optimal portfolio choice depends on the investor’s
horizon. At the median dividend yield, for example, the optimal allocation is 58% stocks
for a one-quarter horizon (one period), 66% stocks for a 1-year horizon (four periods),
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Figure 5.3 Plot A shows the optimal fraction of wealth invested in stocks as a function of the
investment horizon for a CRRA investor with relative risk aversion of five conditional on the current
dividend yield being equal to 2.9 (dotted line), 3.5 (dashed-dotted line), and 4.1 (solid line) percent.
Plot B shows the corresponding increase in the annualized certainty equivalent rates of return from
investing optimally as opposed to myopically (in percent).
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96% stocks for a 5-year horizon (20 periods), and 100% stocks for all horizons longer
than 6 years (24 periods). The differences between the single-period allocations (23, 58,
and 87% stocks at the 25th, 50th, and 75th percentiles of the dividend yield, respectively)
and the corresponding multiperiod allocations represent the investor’s hedging demands.
Plot B shows that these hedging demands can lead to substantial increases in expected
utility.At the median dividend yield, the increase in the certainty equivalent rate is 2 basis
points per year for the 1-year problem, 30 basis points per year for the 5-year problem,
and 57 basis points per year for the 10-year problem. Although these gains are small
relative to the level of the certainty equivalent rate (5.2% at the median dividend yield),
they are large when we ask “how much wealth is the investor willing to give up today
to invest optimally, as opposed to myopically, for the remainder of the horizon?”The
answer is less than 0.1% for a 1-year investor, but 1.5% for a 5-year investor and 5.9% for
a 10-year investor.

Although it is not the most realistic data generating process, the homoscedasticVAR
has pedagogical value. First, it demonstrates that in a multiperiod context the optimal
portfolio choice can be substantially different from a sequence of single-period portfolio
choices,both in terms of allocations and expected utilities. Second,it illustrates the mech-
anism by which hedging demands arise.The expected return increases with the dividend
yield and the higher-order moments are constant. A high (low) dividend yield therefore
implies a relatively high (low) value of the portfolio choice problem. In a multiperiod
context, this link between the dividend yield and the value of the problem means that
the investor faces not only the uncertainty inherent in returns but also uncertainty about
whether in the future the dividend yield will be higher, lower, or the same and whether,
as a result, the investment opportunities will improve, deteriorate, or remain the same,
respectively.Analogous to diversifying cross-sectionally the return risk, the investor wants
to smooth intertemporally this risk regarding future investment opportunities. Because
theVAR estimates imply a large negative correlation between the stock returns and inno-
vations to the dividend yield, the investment opportunities risk can be smoothed quite
effectively by over-investing in stocks, relative to the myopic allocation. By over-investing,
the investor realizes a greater gain when the return is positive and a greater loss when
it is negative. A positive return tends to be associated with a drop in the dividend yield
and an expected utility loss due to deteriorated investment opportunities in the future.
Likewise, a negative return tends to be associated with a rise in the dividend yield and
an expected utility gain due to improved investment opportunities. Thus, the financial
gain (loss) from over-investing partially offsets the expected utility loss (gain) associated
with the drop (rise) in the dividend yield (hence, the name “hedging demands”).

2.2.2. Continuous-Time Formulation

The intertemporal portfolio choice problem can alternatively be expressed in continuous
time.The main advantage of the continuous-time formulation is its analytical tractability.
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As Merton (1975) and the continuous-time finance literature that followed demon-
strates, stochastic calculus allows us to solve in closed-form portfolio choice problems in
continuous-time that are analytically intractable in discrete time.7

The objective function in the continuous-time formulation is the same as in Eq. (2.9),
except that the maximization is over a continuum of portfolio choices xs, with t ≤ s <
t + τ, because the portfolio is rebalanced at every instant in time. Assuming that the
risky asset prices pt and the vector of state variables evolve jointly as correlated Itô vector
processes:

dpt

pt
− rdt = μp(zt , t)dt +Dp(zt , t)dBp

t

dzt = μz(zt , t)dt +Dz(zt , t)dBz
t ,

(2.17)

the budget constraint is

dWt

Wt
= (

xt
′μp

t + r
)
dt + xt

′Dp
t dBp

t , (2.18)

Using the abbreviated notation ft = f (zt , t), μp
t and μz

t are N - and K-dimensional
conditional mean vectors, Dp

t and Dz
t are N ×N and K × K conditional diffusion

matrices that imply covariance matrices #p
t = Dp

t Dp′
t and #z

t = Dz
t Dz′

t , and Bp
t and Bz

t
are N - and K-dimensional vector Brownian motion processes with N × K correlation
matrix ρt . Finally, r denotes here the instantaneous riskfree rate (assumed constant for
notational convenience).

The continuous time Bellman equation is (Merton, 1969):

0 = max
xt

[
V1(·)+Wt

(
xt
′μp

t + r
)

V2(·)+ μz′
t V3(·)+ 1

2
W 2

t xt
′#p

t xt V2 2(·)

+Wtxt
′Dp

t ρt
′Dz′

t V2 3(·)+ 1
2

tr
[
#z

t V3 3(·)
]]

,

(2.19)

subject to the terminal condition V (0, Wt+τ , zt+τ) = u(Wt+τ).
As one might expect, Eq. (2.19) is simply the limit, as �t→0, of the discrete time

Bellman equation (2.11).To fully appreciate this link between the discrete and continuous
time formulations, rearrange Eq. (2.11) as:

0 = max
xt

Et
[
V (τ − 1, Wt+1, zt+1)− V (τ, Wt , zt)

]
(2.20)

and take the limit of �t → 0:

0 = max
xt

Et
[
dV (τ, Wt , zt)

]
. (2.21)

7See Shimko (1999) for an introduction to stochastic calculus. Mathematically more rigorous treatments of the material can be found in
Karatzas and Shreve (1991) and Steele (2001).
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Then, apply Itô’s lemma to the value function to derive:

dV (·) = V1(·)dt + V2(·)dWt + V3(·)dzt + V2 2(·)dWt
2 + V2 3(·)dWtdzt + V3 3(·)dzt

2.
(2.22)

Finally, take the expectation of Eq. (2.22), which picks up the drifts of dWt , dzt ,
dWt

2, dWt dzt , and dzt
2 (the second-order processes must be derived through Itô’s

lemma), plug it into Eq. (2.21), and cancel out the common term dt. The result is
Eq. (2.19).

The continuous-time FOCs are

μ
p
t V2(·)+Wt xt

′#p
t V2 2(·)+Dp

t ρt
′Dz′V2 3 = 0, (2.23)

which we can solve for the optimal portfolio weights:

x*t = −
V2(·)

Wt V2 2(·)
(
#

p
t
)−1

μ
p
t︸ ︷︷ ︸

myopic demand

− V2(·)
Wt V2 2(·)

V2 3(·)
V2(·) (#

p
t )
−1 Dp

t ρt
′Dz′

t︸ ︷︷ ︸
hedging demand

. (2.24)

This analytical solution illustrates more clearly the difference between the dynamic
and myopic portfolio choice.The optimal portfolio weights x*t are the sum of two terms,
the first being the myopically optimal portfolio weights and the second representing
the difference between the dynamic and myopic solutions. Specifically, the first term
depends on the ratio of the first to second moments of excess returns and on the inverse
of the investor’s relative risk aversion γt≡−WtV2 2(·)/V2(·). It corresponds to holding
a fraction 1/γt in the tangency portfolio of the instantaneous mean–variance frontier.
The second term depends on the projection of the state variable innovations dBz

t onto
the return innovations dBp

t , which is given by
(
#

p
t
)−1 Dp

t ρt
′Dz′

t , on the inverse of the
investor’s relative risk aversion, and on the sensitivity of the investor’s marginal utility
to the state variables V2 3(·)/V2(·). The projection delivers the weights of K portfolios
that are maximally correlated with the state variable innovations and the derivatives of
marginal utility with respect to the state variables measure how important each of these
state variables is to the investor. Intuitively, the investor takes positions in each of the
maximally correlated portfolios to partially hedge against undesirable innovations in the
state variables. The maximally correlated portfolios are therefore called hedging portfolios,
and the second term in the optimal portfolio weights is labeled the hedging demand.
It is important to note that both the myopic and hedging demands are scaled equally
by relative risk aversion and that the trade-off between holding a myopically optimal
portfolio and intertemporal hedging is determined by the derivatives of marginal utility
with respect to the state variables.
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CRRA Utility Example Continued To illustrate the tractability of the continuous-time
formulation,consider again the CRRA utility example. Conjecture that the value function
has the separable form:

V (τ, Wt , zt) = W 1−γ
t

1− γ
ψ(τ, zt), (2.25)

which implies that the optimal portfolio weights are

x*t =
1
γ

(
#

p
t
)−1

μ
p
t +

1
γ

ψ2(·)
ψ(·)

(
#

p
t
)−1Dp

t ρt
′Dz′

t . (2.26)

This solution is sensible given the well-known properties of CRRA utility. Both the
tangency and hedging portfolio weights are scaled by a constant 1/γ and the relative
importance of intertemporal hedging, given by ψ2(·)/ψ(·), is independent of wealth.

Plugging the derivatives of the value function (2.25) and the optimal portfolio
weights (2.26) into the Bellman equation (2.19),yields the nonlinear differential equation:

0 = ψ1(·)+ (1− γ)
(
x*t
′
μ

p
t + r

)
ψ(·)+ μz′

t ψ2(·)− 1
2
γ(1− γ) x*t

′
#

p
t x

*
t ψ(·)

+ (1− γ)x*t
′Dp

t ρt
′Dz

t ψ2(·)+ 1
2

tr
[
#z

t ψ2 2(·)
]
.

(2.27)

The fact that this equation, which implicitly defines the function ψ(τ, zt), does not
depend on the investor’s wealth Wt confirms the conjecture of the separable value
function.

Continuous Time Portfolio Policies in Discrete Time Because the continuous-time
Bellman equation is the limit of its discrete-time counterpart, it is tempting to think that
the solutions to the two problems share the same limiting property. Unfortunately, this
presumption is wrong.The reason is that the continuous time portfolio policies are often
inadmissible in discrete time because they cannot guarantee nonnegative wealth unless
the portfolio is rebalanced at every instant.

Consider a simpler example of logarithmic preferences (CRRA utility with γ = 1)
and i.i.d. log-normal stock returns with annualized risk premium of 5.7% and volatility
of 16.1% (consistent with the VAR in the previous section). In the continuous-time
formulation, the optimal stock allocation is x*t = 0.057/0.1612 = 2.20, which means
that the investor borrows 120% of wealth to invest a total of 220% in stocks.Technically,
such levered position is inadmissable over any discrete time interval, irrespective of how
short it is. The reason is that under log-normality the gross return on stocks over any
finite interval can be arbitrarily close to zero, implying a positive probability that the
investor cannot repay the loan next period. This constitutes a possible violation of the
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no-bankruptcy constraint Ws ≥ 0 and, with CRRA utility, can lead to infinite disutility.
The continuous-time solution is therefore inadmissable in discrete time, and the optimal
discrete-time allocation is x*t ≤ 1.

Whether this inadmissability is important enough to abandon the analytical conve-
nience of the continuous-time formulation is up to the researcher to decide. On the
one hand, the probability of bankruptcy is often very small. In the log utility exam-
ple, for instance, the probability of realizing a sufficiently negative stock return over the
period of one quarter is only 1.3× 10−9. On the other hand, in reality an investor always
faces some risk of loosing all, or almost all wealth invested in risky securities due to an
extremely rare but severe event, such as a stock market crash, the collapse of the financial
system, or investor fraud.8

2.3. When is it Optimal to Invest Myopically?

Armed with the discrete and continuous-time formulations of the portfolio choice
problem, we can be more explicit about when it is optimal to invest myopically. The
myopic portfolio choice is an important special case for practitioners and academics
alike. There are, to my knowledge, few financial institutions that implement multi-
period investment strategies involving hedging demands.9 Furthermore, until recently
the empirically oriented academic literature on portfolio choice was focused almost
exclusively on single-period problems, in particular, the mean–variance paradigm of
Markowitz (1952) discussed in Section 2.1.

In addition to the obvious case of having a single-period horizon, it is optimal to
invest myopically under each of the following three assumptions:

2.3.1. Constant Investment Opportuntities

Hedging demands only arise when the investment opportunities vary stochastically
through time. With constant investment opportunities, the value function does not
depend on the state variables, so that zt drops out of the discrete time FOCs (2.12)
and V2 3(·) = 0 in the continuous-time solution (2.24). The obvious case of constant
investment opportunities is i.i.d. returns. However, the investment opportunities can be
constant even when the conditional moments of returns are stochastic. For example,
Nielsen and Vassalou (2006) show that in the context of the diffusion model (2.17),
the investment opportunities are constant as long as the instantaneous riskfree rate and
the Sharpe ratio of the optimal portfolio of an investor with logarithmic preferences are

8Guided by this rare events argument, there are at least two ways to formally bridge the gap between the discrete and continuous-time
solutions.We can either introduce the rare events through jumps in the continuous-time formulation (e.g., Longstaff et al., 2003) or allow
the investor to purchase insurance against the rare events through put options or other derivatives in the discrete-time formulation.

9A common justification from practitioners is that the expected utility loss from errors that could creep into the solution of a complicated
dynamic optimization problem outweighs the expected utility gain from investing optimally as opposed to myopically. Recall that in the
dividend yield predictability case the gain for CRRA utility is only a few basis points per year.
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constant. The conditional means, variances, and covariances of the individual assets that
make up this log-optimal portfolio can vary stochastically.

2.3.2. Stochastic but Unhedgable Investment Opportunities

Even with stochastically varying investment opportunities, hedging demands only arise
when the investor can use the available assets to hedge against changes in future invest-
ment opportunities. If the variation is completely independent of the returns, the optimal
portfolio is again myopic. In discrete time, independence of the state variables and returns
implies that the expectation in the Bellman equation can be decomposed into an expec-
tation with respect to the portfolio returns and an expectation with respect to the state
variables. The FOCs then turn out to be the same as in the single-period problem. In
continuous time, a correlation ρt = 0 between the return and state variable innovations
eliminates the hedging demands term in the optimal portfolio weights.

2.3.3. Logarithmic Utility

Finally, the portfolio choice reduces to a myopic problem when the investor has log-
arithmic preferences u(W ) = ln(W ). The reason is that with logarithmic preferences
the utility of terminal wealth is simply the sum of the utilities of single-period portfolio
returns:

ln(Wt+τ) = ln

(
Wt

t+τ−1∏
s=t

(
x′srs+1 + Rf

s
)) = lnWt +

t+τ−1∑
s=t

ln
(
x′srs+1 + Rf

s
)
. (2.28)

The portfolio weights that maximize the expectation of the sum are the same as the ones
that maximize the expectations of each element of the sum, which are, by definition, the
sequence of single-period portfolio weights. Therefore, the portfolio choice is myopic.

2.4. Modeling Issues and Extensions
2.4.1. Preferences

The most critical ingredient to any portfolio choice problem is the objective function.
Historically, the academic literature has focused mostly on time-separable expected utility
with hyperbolic absolute risk aversion (HARA),which includes as special cases logarith-
mic utility, power or constant relative risk aversion (CRRA) utility, negative exponential
or constant absolute risk aversion (CARA) utility, and quadratic utility. The reason for
this popularity is the fact that HARA is a necessary and sufficient condition to obtain
asset demand functions expressed in currency units, not percent of wealth, that are linear
in wealth (Merton, 1969). In particular, the portfolio choice expressed in currency units
is proportional to wealth with CRRA utility and independent of wealth with CARA
utility. Alternatively, the corresponding portfolio choice expressed in percent of wealth
is independent of wealth with CRRA utility and inversely proportional to wealth with
CARA utility.
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In the HARA class, power or CRRA preferences are by far the most popular because
the value function turns out to be homogeneous in wealth (see the examples men-
tioned earlier). However, CRRA preferences are not without faults. One critique that
is particularly relevant in the portfolio choice context is that with CRRA the elasticity
of intertemporal substitution is directly tied to the level of relative risk aversion (one
is the reciprocal of the other), which creates an unnatural link between two very dif-
ferent aspects of the investor’s preferences – the willingness to substitute consumption
intertemporally versus the willingness to take on risk. Epstein and Zin (1989) and Weil
(1989) propose a generalization of CRRA preferences based on recursive utility that sev-
ers this link between intertemporal substitution and risk aversion. Campbell andViceira
(1999) and Schroder and Skiadas (1999) consider these generalized CRRA preferences
in portfolio choice problems.

A number of stylized facts of actual investment decisions and professional investment
advice are difficult to reconcile with HARA or even Epstein–Zin–Weil preferences.
The most prominent empirical anomaly is the strong dependence of observed and rec-
ommended asset allocations on the investment horizon.10 There have been a number
of attempts to explain this horizon puzzle using preferences in which utility is defined
with respect to a nonzero and potentially time-varying lower bound on wealth or con-
sumption, including a constant subsistence level ( Jagannathan and Kocherlakota, 1996;
Samuelson, 1989), consumption racheting (Dybvig, 1995), and habit formation (Lax,
2002; Schroder and Skiadas, 2002).

Experiments by psychologists, sociologists, and behavioral economists have uncovered
a variety of more fundamental behavioral anomalies. For example, the way experimental
subjects make decisions under uncertainty tends to systematically violate the axioms of
expected utility theory (e.g., Camerer, 1995). To capture these behavioral anomalies in
an optimizing framework, several nonexpected utility preference formulations have been
proposed, including loss aversion and prospect theory (Kahneman and Tversky, 1979),
anticipated or rank-dependent utility (Quiggin, 1982), ambiguity aversion (Gilboa and
Schmeidler, 1989), and disappointment aversion (Gul, 1991). These nonexpected utility
preferences have been applied to portfolio choice problems by Benartzi andThaler (1995),
Shefrin and Statman (2000),Aït-Sahalia and Brandt (2001), Liu (2002),Ang et al. (2005),
and Gomes (2005), among others.

Finally, there are numerous applications of more practitioner-oriented objective func-
tions, such as minimizing the probability of a short-fall (Kataoka,1963;Roy,1952;Telser,
1956), maximizing expected utility with either absolute or relative portfolio insurance
(Black and Jones, 1987; Grossman andVila, 1989; Perold and Sharpe, 1988), maximizing
expected utility subject to beating a stochastic benchmark (Browne, 1999;Tepla, 2001),

10E.g., see Bodie and Crane (1997), Canner et al. (1997), and Ameriks and Zeldes (2004).
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and maximizing expected utility subject to maintaining a critical value at risk (VaR)
(Alexander and Baptista, 2002; Basak and Shapiro, 2001; Cuoco et al., 2007).

2.4.2. Intermediate Consumption

Both the discrete- and continuous-time formulations of the portfolio choice problem
can be amended to accommodate intermediate consumption. Simply add to the utility
of terminal wealth (interpreted then as the utility of bequests to future generations) the
utility of the life-time consumption stream (typically assumed to be time-separable and
geometrically discounted), and replace in the budget constraint the current wealth Wt

with the current wealth net of consumption (1− ct)Wt , where ct denotes the fraction
of wealth consumed. The investor’s problem with intermediate consumption then is to
choose at each date t the optimal consumption ct as well as the asset allocation xt .

For example, the discrete-time problem with time-separable CRRA utility of con-
sumption and without bequests is

V (τ, Wt , zt) = max
{xs,cs}t+τ−1

s=t

Et

[ t+τ∑
s=t

βs−t (ctWt)
1−γ

1− γ

]
, (2.29)

subject to the budget constraint:

Ws+1 = (1− cs)Ws

(
xs
′rs+1 + Rf

s

)
, (2.30)

the no-bankruptcy constraint Ws ≥ 0, and the terminal condition ct+τ = 1. Following a
few steps analogous to the case without intermediate consumption,the Bellman equation
can in this case be written as:

1
1− γ

ψ(τ, zt) = max
xt,ct

⎡⎢⎣ c1−γ
t

1− γ
+ β Et

⎡⎢⎣
(
(1− ct)

(
xt
′rt+1 + Rf

t
))1−γ

1− γ
ψ(τ − 1, zt+1)

⎤⎥⎦
⎤⎥⎦,

(2.31)

where ψ(τ, zt) is again a function of the horizon and state variables that is in general
different from the case without intermediate consumption.

Although the Bellman equation with intermediate consumption is more involved
than without, in the case of CRRA utility the problem is actually easier to handle
numerically because the value function can be solved for explicitly from the enve-
lope condition ∂V (τ, W , z)/∂W = ∂u(cW )/∂(cW ). Specifically, ψ(τ, z) = c(τ, z)−γ
for γ > 0 and γ �= 1 or ψ(τ, z) = 1 for γ = 1. This explicit form of the value func-
tion implies that in a backward-recursive dynamic programming solution to the policy
functions x(τ, z) and c(τ, z), the value function at date t + 1, which enters the FOCs
at date t, is automatically provided by the consumption policy at date t + 1 obtained in
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the previous recursion. Furthermore,with CRRA utility the portfolio and consumption
choices turn out to be sequential. Because the value function is homothetic in wealth
and the consumption choice ct only scales the investable wealth (1− ct)Wt , the FOCs
for the portfolio weights xt are independent of ct .Therefore, the investor first makes the
portfolio choice ignoring consumption and then makes the consumption choice given
the optimal portfolio weights.

As Wachter (2002) demonstrates, the economic implication of introducing interme-
diate consumption in a CRRA framework is to shorten the effective horizon of the
investor. Although the myopic portfolio choice is the same with and without intermedi-
ate consumption, the hedging demands are quite different in the two cases. In particular,
Wachter shows that the hedging demands with intermediate consumption are a weighted
sum of the hedging demands of a sequence of terminal wealth problems, analogous to
the price of a coupon-bearing bond being a weighted sum of the prices of a sequence
of zero-coupon bonds.

2.4.3. Complete Markets

A financial market is said to be complete when all future outcomes (states) are spanned
by the payoffs of traded assets. In a complete market, state-contingent claims or so-called
Arrow–Debreu securities that pay off one unit of consumption in a particular state and
zero in all other states can be constructed for every state. These state-contingent claims
can then be used by investors to place bets on a particular state or set of states.

Markets can be either statically or dynamically complete. For a market to be statically
complete, there must be as many traded assets as there are states, such that investors
can form state-contingent claims as buy-and-hold portfolios of these assets. Real asset
markets, in which there is a continuum of states and only a finite number of traded
assets, are at best dynamically complete. In a dynamically complete market, investors can
construct a continuum of state-contingent claims by dynamically trading in the finite set
of base assets. Dynamic completion underlies, for example, the famous Black and Scholes
(1973) model and the extensive literature on derivatives pricing that followed.11

The assumption of complete markets simplifies not only the pricing of derivatives but,
as Cox and Huang (1989, 1991) demonstrate, also the dynamic portfolio choice. Rather
than solve for a dynamic trading strategy in a set of base assets, Cox and Huang solve
for the optimal buy-and-hold portfolio of the state-contingent claims. The intuition is
that any dynamic trading strategy in the base assets generates a particular terminal payoff
distribution that can be replicated by some buy-and-hold portfolio of state-contingent
claims. Conversely, any state-contingent claim can be replicated by a dynamic trading

11Dynamic completion arises usually in a continuous time setting, but Cox et al. (1979) illustrate that continuous trading is not a critical
assumption.They construct an (N+ 1) state discrete time economy as a sequence of N binomial economies and show that this statically
incomplete economy can be dynamically completed by trading in only two assets.
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strategy in the base assets. It follows that the terminal payoff distribution generated by the
optimal dynamic trading strategy in the base assets is identical to that of the optimal static
buy-and-hold portfolio of state-contingent claims. Once this static problem is solved
(which is obviously much easier than solving the dynamic optimization), the optimal
dynamic trading strategy in the base assets can be recovered by adding up the replicating
trading strategies of each state-contingent claim position in the buy-and-hold portfolio.

The Cox and Huang (1989, 1991) approach to portfolio choice relies on the exis-
tence of a state price density or equivalent Martingale measure (see Harrison and Kreps,
1979) and is therefore often referred to as the“Martingale approach” to portfolio choice.
Cox and Huang solve the continuous time HARA problem with intermediate con-
sumption and confirm that the results are identical to the dynamic programming solution
of Merton (1969). Recent applications of the Martingale approach to portfolio choice
problems with frictionless markets and the usual utility functions includeWachter (2002),
who specializes Cox and Huang’s solution to CRRA utility and a return process similar
to the VAR mentioned earlier, Detemple et al. (2003), who show how to recover the
optimal trading strategy in the base assets as opposed to the Arrow–Debreu securities
for a more general return processes using simulations, and Aït-Sahalia and Brandt (2007),
who incorporate the information in option-implied state prices in the portfolio choice
problem.

Although originally intended for solving portfolio choice problems in complete mar-
kets, the main success of the Martingale approach has been in the context of problems
with incompleteness due to portfolio constraints, transaction costs, and other frictions,
which are notoriously difficult to solve using dynamic programming techniques. He
and Pearson (1991) explain how to deal with market incompleteness in the Martingale
approach. Cvitanic (2001) surveys the extensive literature that applies the Martingale
approach to portfolio choice problems with different forms of frictions. Another popu-
lar use of the Martingale approach is in the context of less standard preferences (see the
references in Section 2.4.1).

2.4.4. Infinite or Random Horizon

Solving an infinite horizon problem is often easier than solving an otherwise identical
finite horizon problem because the infinite horizon assumption eliminates the depen-
dence of the Bellman equation on time. An infinite horizon problem only needs to be
solved for a steady-state policy,whereas a finite horizon problem must be solved for a dif-
ferent policy each period. For example,Campbell andViceira (1999) and Campbell et al.
(2003) are able to derive approximate analytical solutions to the infinite horizon portfolio
choice of an investor with recursive Epstein–Zin–Weil utility, intermediate consumption,
and mean-reverting expected returns.The same problem with a finite horizon can only
be solved numerically, which is difficult (in particular in the multi-asset case considered
by Campbell et al.) and the results are not as transparent as an analytical solution.
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Intuitively, one would expect the sequence of solutions to a finite horizon problem to
converge to that of the corresponding infinite horizon problem as the horizon increases.12

In the case of CRRA utility and empirically sensible return processes, this convergence
appears to be quite fast. Brandt (1999), Barberis (2000), and Wachter (2002) document
that 10- to 15-year CRRA portfolio policies are very similar to their infinite horizon
counterparts. This rapid convergence suggests that the solution to the infinite horizon
problem can, in many cases, be confidently used to study the properties of long- but
finite-horizon portfolio choice in general (e.g., Campbell andViceira, 1999, 2002).

Having a known finite or an infinite horizon are pedagogical extremes. In reality,
an investor rarely knows the terminal date of an investment, which introduces another
source of uncertainty. In the case of intermediate consumption, the effect of horizon
uncertainty can be substantial because the investor risks either running out of wealth
before the terminal date or leaving behind accidental bequests (e.g.,Barro and Friedman,
1977; Hakansson, 1969). An alternative motivation for a random terminal date is to set
a finite expected horizon in an infinite horizon problem to sharpen the approximation of
a long-horizon portfolio choice by its easier-to-solve infinite horizon counterpart (e.g.,
Viceira, 2001).

2.4.5. Frictions and Background Risks

Arguably the two most realistic features of an investor’s problem are frictions, such as
transaction costs and taxation, and background risks, which refers to any risks other than
those directly associated with the risky securities. Frictions are particularly difficult to
incorporate because they generally introduce path dependencies in the solution to the
portfolio choice problem. For example, with proportional transaction costs, the costs
incurred by rebalancing depend on both the desired allocations for the next period and
the current allocation inherited from the previous period. In the case of capital gains taxes,
the basis for calculating the tax liability generated by selling an asset depends on the price
at which the asset was originally bought. Unfortunately, in the usual backward recursive
solution of the dynamic program, the previous investment decisions are unknown.

Because of its practical relevance, the work on incorporating frictions, transaction
costs and taxation in particular, into portfolio choice problems is extensive and ongoing.
Recent papers on transaction costs include Davis and Norman (1990), Duffie and Sun
(1990), Akian et al. (1996), Balduzzi and Lynch (1999), Leland (2001), Liu (2004), and
Lynch and Tan (2009). The implications of capital gains taxation are considered in a
single-period context by Elton and Gruber (1978) and Balcer and Judd (1987) and in a
multiperiod context by Dammon et al. (2001a,b), Garlappi et al. (2001), Leland (2001),

12Merton (1969) proves this intuition for the continuous time portfolio choice with CRRA utility. Kim and Omberg (1996) provide
counter-examples with HARA utility for which the investment problem becomes ill-defined at sufficiently long horizons (so-called
nirvana solutions).
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Dammon et al. (2004), DeMiguel and Uppal (2005), Gallmeyer et al. (2006), and Huang
(2008), among others.

In principle,background risks encompass all risks faced by an investor other than those
directly associated with the risky securities. The two most common sources of back-
ground risk considered in the academic literature are uncertain labor or entrepreneurial
income and both the investment in and consumption of housing. Recent work on incor-
porating uncertain labor or entrepreneurial income include Heaton and Lucas (1997),
Koo (1998), Chan and Viceira (2000), Heaton and Lucas (2000),Viceira (2001), and
Gomes and Michaelides (2003). The role of housing in portfolio choice problems is
studied by Grossman and Laroque (1991), Flavin and Yamashita (2002), Cocco (2000,
2005), Campbell and Cocco (2003), Hu (2005), and Yao and Zhang (2005), among
others. The main challenge in incorporating background risks is to specify a realistic
model for the joint distribution of these risks with asset returns at different horizons and
over the investor’s life-cycle.

3. TRADITIONAL ECONOMETRIC APPROACHES
The traditional role of econometrics in portfolio choice problems is to specify the data
generating process f (yt |yt−1). As straightforward as this seems, there are two different
econometric approaches to portfolio choice problems:plug-in estimation and decision theory.
In the plug-in estimation approach, the econometrician draws inferences about some
investor’s optimal portfolio weights to make descriptive statements,while in the decision
theory approach,the econometrician takes on the role of the investor and draws inferences
about the return distribution to choose portfolio weights that are optimal with respect
to these inferences.

3.1. Plug-In Estimation

The majority of the portfolio choice literature, and much of what practitioners do, falls
under the heading of plug-in estimation or calibration, where the econometrician esti-
mates or otherwise specifies the parameters of the data generating process and then plugs
these parameter values into an analytical or numerical solution to the investor’s opti-
mization problem. Depending on whether the econometrician treats the parameters as
estimates or simply assumes them to be the truth, the resulting portfolio weights are
estimated or calibrated. Estimated portfolio weights inherit the estimation error of the
parameter estimates and therefore are almost certainly different from the true optimal
portfolio weights in finite samples.

3.1.1. Theory

Single-Period Portfolio Choice Consider first a single-period portfolio choice prob-
lem. The solution of the investor’s expected utility maximization maps the preference
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parameters φ (e.g., the risk aversion coefficient γ for CRRA utility), the state vector zt ,
and the parameters of the data generating process θ into the optimal portfolio weights xt :

x*t = x(φ, zt , θ), (3.1)

where φ is specified ex-ante and zt is observed. Given data YT ≡ {yt}Tt=0,we can typically
obtain unbiased or at least consistent estimates θ̂ of the parameters θ. Plugging these
estimate into Eq. (3.1) yields estimates of the optimal portfolio weights x̂*t =x(φ, zt , θ̂).

Assuming θ̂ is consistent with asymptotic distribution
√

T (θ̂ − θ)
T→∞∼ N[0, Vθ] and

the mapping x(·) is sufficiently well-behaved in θ, the asymptotic distribution of the
estimator x̂*t can be computed using the delta method:

√
T
(
x̂*t − x*t

) T→∞∼ N
[
0, x3(·)Vθx3(·)′

]
. (3.2)

To be more concrete,consider the mean–variance problem (2.8).Assuming i.i.d. excess
returns with constant risk premia μ and covariance matrix #, the optimal portfolio
weights are x* = (1/γ)#−1μ. Given excess return data {rt+1}Tt=1, the moments μ and
# can be estimated using the following sample analog:

μ̂ = 1
T

T∑
t=1

rt+1 and #̂ = 1
T −N − 2

T∑
t=1

(rt+1 − μ̂)(rt+1 − μ̂)′ (3.3)

(notice the unusual degrees of freedom of #̂). Plugging these estimates into the expression
for the optimal portfolio weights gives the plug-in estimates x̂* = (1/γ) #̂−1μ̂.

Under the assumption of normality, this estimator is unbiased:

E[x̂*] = 1
γ

E[#̂−1]E[μ̂] = 1
γ
#−1μ, (3.4)

where the first equality follows from the standard independence of μ̂ and #̂, and the
second equality is due to the unbiasedness of μ̂ and #̂−1.13 Without normality or with
the more standard 1/T or 1/(T − 1) normalization for the sample covariance matrix,
the plug-estimator is generally biased but nonetheless consistent with plim x̂* = x*.

The second moments of the plug-in estimator can be derived by expanding the esti-
mator around the true risk premia and return covariance matrix. With multiple risky
assets, this expansion is algebraicly tedious because of the nonlinearities from the inverse

13The unbiasedness of μ̂ is standard. For the unbiasedness of #̂−1, recall that with normality, the matrix Ŝ=∑T
t=1(rt+1− μ̂)(rt+1− μ̂)′

has a Wishart distribution (the multivariate extension of a chi-squared distribution) with a mean of (T− 1)#. Its inverse Ŝ−1 therefore
has an inverse Wishart distribution, which has a mean of (T−N− 2)#−1 (see Marx and Hocking, 1977). This implies that #̂−1 is an
unbiased estimator of #−1 and explains the unusual degrees of freedom.
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of the covariance matrix (see Jobson and Korkie, 1980). To illustrate the technique,
consider therefore a single risky asset. Expanding x̂* = (1/γ)μ̂/σ̂2 around both μ and
σ2 yields:

x̂* = 1
γ

1
σ2

(
μ− μ̂

)− 1
γ

μ

σ4

(
σ2 − σ̂2). (3.5)

Take variances and rearrange:

var
[
x̂*
] = 1

γ2

( μ

σ2

)2
(

var[μ̂]
μ2 + var[σ̂2]

σ4

)
. (3.6)

This expression shows that the imprecision of the plug-in estimator is scaled by the
magnitude of the optimal portfolio weight x* = (1/γ)μ/σ2 and depends on both the
imprecision of the risk premia and volatility estimates, each scaled by their respective
magnitudes.

To get a quantitative sense for the estimation error, evaluate Eq. (3.6) for some realistic
values for μ, σ, var[μ̂], and var[σ̂2]. Suppose, for example, we have 10 years of monthly
data on a stock withμ = 6% and σ = 15%.With i.i.d. data, the standard error of the sam-
ple mean is std[μ̂] = σ/

√
T = 1.4%. Second moments are generally thought of as being

more precisely estimated than first moments. Consistent with this intuition, the stan-
dard error of the sample variance under i.i.d. normality is std[σ̂2] = √2σ2/

√
T = 0.3%.

Putting together the pieces, the standard error of the plug-in estimator x̂* for a reasonable
risk aversion of γ = 5 is equal to 14%,which is large relative to the magnitude of the true
x* = 53.3%. This example illustrates a more general point: portfolio weights tend to be
very imprecisely estimated because the inputs to the estimator are difficult to pin down.

It is tempting to conclude from this example that, at least for the asymptotics, uncer-
tainty about second moments is swamped by uncertainty about first moments. As Cho
(2007) illustrates, however, this conclusion hinges critically on the assumption of i.i.d.
normality. In particular, the precision of the sample variance depends on the kurtosis
of the data. The fatter are the tails, the more difficult it is to estimate second moments
because outliers greatly affect the estimates. This means that conditional heteroskedas-
ticity, in particular, can considerably inflate the asymptotic variance of the unconditional
sample variance. Returning to the example, suppose that, instead of i.i.d. normality, the
conditional variance ht of returns follows a standard GARCH(1,1) process:

ht = ω + αε2
t−1 + βht−1. (3.7)

In this case, the variance of the unconditional sample variance is

var
[
σ̂2] = 2σ4

T

(
1+ κ

2

)(
1+ 2ρ

1− α− β

)
, (3.8)
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where κ denotes the unconditional excess kurtosis of returns and ρ denotes the first-
order autocorrelation of the squared return innovations. Both κ and ρ can be computed
from the GARCH parameters α and β. With reasonable GARCH parameter values of
α = 0.0175 and β = 0.9811, the variance of the sample variance is inflated by a factor
of 233.3. As a result, the standard error of x̂* is 105.8%, as compared to 14% under i.i.d.
normality. Although this example is admittedly extreme (as volatility is close to being
nonstationary), it illustrates the point that both return moments, as well as high-order
moments for other preferences, can contribute to the asymptotic imprecision of plug-in
portfolio weight estimates.

Returning to the computationally more involved case of multiple risky assets,
Britten-Jones (1999) derives a convenient way to draw asymptotic inferences about
mean–variance optimal portfolio weights. He shows that the plug-in estimates of the
tangency portfolio:

x̂*tgc =
#̂−1μ̂

ι′#̂−1μ̂
(3.9)

can be computed from OLS estimates of the slope coefficients b of regressing a vector
of ones on the matrix of excess returns (without intercept):

1 = b rt+1 + ut+1, (3.10)

where x̂*tgc = b̂/(ι′b̂). We can therefore use standard OLS distribution theory for b̂ to
draw inferences about x*tgc. For example, testing whether the weight of the tangency
portfolio on a particular asset equals zero is equivalent to testing whether the corre-
sponding element of b is zero, which corresponds to a standard t test. Similarly, testing
whether an element of x*tgc equals a constant c is equivalent to testing whether the corre-
sponding element of b equals c(ι′b),which is a linear restriction that can be tested using a
joint F test.

Multiperiod Portfolio Choice The discussion mentioned earlier applies directly to
both analytical and approximate solutions of multiperiod portfolio choice problems,
in which the optimal portfolio weights at time t are functions of the preference param-
eters φ, the state vector zt , the parameters of the data generating process θ, and perhaps
the investment horizon T − t. In the case of a recursive numerical solution, how-
ever, the portfolio weights at time t depend explicitly on the value function at time
t + 1, which in turn depends on the sequence of optimal portfolio weights at times
{t + 1, t + 2, . . . , T − 1}. Therefore, the portfolio weight estimates at time t not only
reflect the imprecision of the parameter estimates but also the imprecision of the esti-
mated portfolio weights for future periods (which themselves reflect the imprecision of
the parameter estimates). To capture this recursive dependence of the estimates, express
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the mapping from the parameters to the optimal portfolio weights as a set of recursive
functions:

x*t+τ−1 = x(1,φ, zt+τ−1, θ)

x*t+τ−2 = x
(
2,φ, zt+τ−2, θ, x*t+τ−1

)
x*t+τ−3 = x

(
3,φ, zt+τ−3, θ,

{
x*t+τ−1, x*t+τ−2

})
· · ·

x*t = x
(
τ,φ, zt , θ,

{
x*t+τ−1, . . . , x*t+1

})
.

(3.11)

To compute the asymptotic standard errors of the estimates x̂*t we also need to account for
the estimation error in the preceding portfolio estimates {x̂*s }T−1

s=t+1.This is accomplished
by including in the derivatives x4(·) in Eq. (3.2), also the terms:

T−1∑
s=t+1

∂x
(
t,φ, zt , θ,

{
x*s
}T−1

s=t+1

)
∂x*s

∂x*s
∂θ

. (3.12)

Intuitively, the longer the investment horizon, the more imprecise are the estimates of
the optimal portfolio weights, because the estimation error in the sequence of optimal
portfolio weights accumulates through the recursive nature of the solution.

Bayesian Estimation There is nothing inherently frequentist about the plug-in esti-
mation. Inferences about optimal portfolio weights can be drawn equally well from a
Bayesian perspective. Starting with a posterior distribution of the parameters p(θ|YT ),
use the mapping (3.1) or (3.11) to compute the posterior distribution of the portfolio
weights p(x*t |YT ) and then draw inferences about x*t using the moments of this posterior
distribution.

Consider again the mean–variance problem. Assuming normally distributed returns
and uninformative priors, the posterior of μ conditional on #−1, p(μ|#−1, YT ), is
Gaussian with mean μ̂ and covariance matrix #/T . The marginal posterior of #−1,
p(#−1|YT ), is aWishard distribution with mean#

−1= (T−N )Ŝ−1 and T−N degrees
of freedom.14 It follows that the posterior of the optimal portfolio weights x* =
(1/γ)#−1μ, which can be computed from p(μ,#−1|YT ) ≡ p(μ|#−1, YT ) p(#−1|YT ),
has a mean of (1/γ)#

−1
μ̂.15 As is often the case with uninformative priors, the poste-

rior means, which are the Bayesian estimates for quadratic loss, coincide with frequentist
estimates (except for the difference in degrees of freedom).

14See Box and Tiao (1973) for a review of Bayesian statistics.
15Although the posterior of x = (1/γ)#−1μ is not particularly tractable, its mean can be easily computed using the law of iterated

expectations E[#−1μ] = E
[
E[#−1μ|#]] = E

[
#−1E[μ|#]] = E[#−1]μ̂ = #

−1
μ̂.
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Economic Loss How severe is the statistical error of the plug-in estimates in an eco-
nomic sense? One way to answer this question is to measure the economic loss from
using the plug-in estimates as opposed to the truly optimal portfolio weights. An intu-
itive measure of this economic loss is the difference in certainty equivalents. In the
mean–variance problem (2.8), for example, the certainty equivalent of the true portfolio
weights x* is

CE = x*′μ− γ

2
x*′#x* (3.13)

and the certainty equivalent of the plug-in estimates x̂* is

ĈE = x̂*′μ− γ

2
x̂*′#x̂*. (3.14)

The certainty equivalent loss is defined as the expected difference between the two:

CE loss = CE− E
[
ĈE

]
, (3.15)

where the expectation is taken with respect to the statistical error of the plug-in estimates
(the certainty equivalents already capture the return uncertainty). Cho (2007) shows that
this certainty equivalent loss can be approximated by:

CE− E
[
ĈE

] ) γ

2
× tr

[
cov[x̂*]#]

. (3.16)

The certainty equivalent loss depends on the level of risk aversion, the covariance matrix
of the plug-in estimates, and the return covariance matrix. Intuitively, the consistency
of the plug-in estimator implies that on average the two portfolio policies generate the
same mean return, so the first terms of the certainty equivalents cancel out.The statistical
error of the plug-in estimates introduces additional uncertainty in the portfolio return,
referred to as parameter uncertainty, which is penalized by the utility function the same
way as the uncertainty inherent in the optimal portfolio returns.

For the mean–variance example with a single risky asset above:

CE loss ) γ

2
× var[x̂*]σ2. (3.17)

Plugging in the numbers from the example, the certainty equivalent of the optimal
portfolio is CE = 0.533× 0.06− 2.5× 0.5332 × 0.152 = 1.6% (the investor is indif-
ferent between the risky portfolio returns and a certain return equal to the risk-free rate
plus 1.6%) and the (asymptotic) certainty equivalent loss due to statistical error under
normality is CE loss = 2.5× 0.142 × 0.152 = 0.11%. Notice that, although the stan-
dard error of the plug-in portfolio weights is the magnitude as the portfolio weight
itself, the certainty equivalent loss is an order of magnitude smaller. This illustrates the
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point made in a more general context by Cochrane (1989), that for standard preferences
first-order deviations from optimal decision rules tend to have only second-order utility
consequences.

Given an expression for the economic loss due to parameter uncertainty, we can
search for variants of the plug-in estimator that perform better in terms of their potential
economic losses.This task is taken on by Kan and Zhou (2007),who consider estimators
of the form ŵ* = c × #̂−1μ̂ and solve for an “optimal” constant c. Optimality here is
defined as the resulting estimator being admissible, which means that no other value of
c generates a smaller economic loss for some values of the true μ and #. Their analysis
can naturally be extended to estimators that have different functional forms.

3.1.2. Finite Sample Properties

Although asymptotic results are useful to characterize the statistical uncertainty of plug-in
estimates, the real issue, especially for someone considering to use plug-in estimates in
real-life applications, is finite-sample performance. Unfortunately, there is a long line of
research documenting the shortcomings of plug-in estimates, especially in the context of
large-scale mean–variance problems (e.g., Best and Grauer, 1991; Chopra and Ziemba,
1993; Jobson and Korkie, 1980, 1981; Michaud, 1989). The general conclusions from
these papers is that plug-in estimates are extremely imprecise and that, even in relatively
large samples, the asymptotic approximations above are quite unreliable. Moreover, the
precision of plug-in estimates deteriorates drastically with the number of assets held in
the portfolio. Intuitively, this is because, as the number of assets increases, the number of
unique elements of the return covariance matrix increases at a quadratic rate. For instance,
in the realistic case of 500 assets the covariance matrix involves more than 125,000 unique
elements,which means that for a post-war sample of about 700 monthly returns we have
less than three degrees of freedom per parameter (500× 600 = 350,000 observations
and 125,000 parameters). I first illustrate the poor finite-sample properties of plug-in
estimates through a simulation experiment and then discuss a variety of ways of dealing
with this problem in practice.

Jobson–Korkie Experiment Jobson and Korkie (1980) were among the first to doc-
ument the finite-sample properties of plug-in estimates. The following simulation
experiment replicates their main finding. Consider 10 industry-sorted portfolios. To
address the question of how reliable plug-in estimates of mean–variance efficient portfolio
weights are for a given sample size, take the historical sample moments of the portfo-
lios to be the truth and simulate independent sets of 250 hypothetical return samples of
different sample sizes from a normal distribution with the true moments. For each hypo-
thetical sample, compute again plug-in estimates of the mean–variance frontier and then
evaluate how close these estimates come to the true frontier. Figures 5.4 and 5.5 illustrate
the results graphically, for the unconstrained and constrained (nonnegative weights) case,
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Figure 5.4 The solid line in each plot is the unconstrained mean–variance frontier for 10 industry
portfolios, taking sample moments as the truth. The dotted lines show the mean–variance trade-off,
evaluated using the true moments, of 250 independent plug-in estimates for 25, 50, 100, and 150
simulated returns.

respectively. Each figure shows as solid line the true mean–variance frontier and as dotted
lines the mean–variance trade-off, evaluated using the true moments, of the 250 plug-in
estimates for samples of 25, 50, 100, and 150 monthly returns.

The results of this experiment are striking. The mean–variance trade-off achieved by
the plug-in estimates are extremely volatile and on average considerably inferior to the
true mean–variance frontier. Furthermore, increasing the sample size, for example from
50 to 150, does not substantially reduce the sampling variability of the plug-in estimates.
Comparing the constrained and unconstrained results, it is clear that constraints help
reduce the sampling error, but clearly not to a point where one can trust the plug-in
estimates, even for a sample as large as 150 months (more than 10 years of data).

To get a sense for the economic loss due to the statistical error, Fig. 5.6 shows his-
tograms of the Sharpe ratio, again evaluated using the true moments, of the estimated
unconstrained and constrained tangency portfolios for 25 and 150 observations. As a
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Figure 5.5 The solid line in each plot is the constrained (nonnegative portfolio weights) mean–
variance frontier for 10 industry portfolios, taking sample moments as the truth. The dotted lines
show the mean–variance trade-off, evaluated using the true moments, of 250 independent plug-in
estimates for 25, 50, 100, and 150 simulated returns.

reference, the figure also shows as vertical lines the Sharpe ratios of the true tangency
portfolio (0.61 and 0.52 for the unconstrained and constrained problems, respectively).
The results in this figure are as dramatic as in the previous two figures.The Sharpe ratios
of the plug-in estimates are very volatile and on average considerably lower than the
truth. For example, even with 150 observations, the unconstrained Sharpe ratios have an
average of 0.42 with 25th and 75th percentiles of 0.37 and 0.48, respectively. In stark
contrast to the asymptotic results discussed earlier, the economic loss due to statistical
error in finite samples is substantial.

In addition to being very imprecise,plug-in estimates tend to exhibit extreme portfolio
weights, which, at least superficially, contradicts the notion diversification (more on this
point below). For example,in the unconstrained case,the plug-in estimate of the tangency
portfolio based on the historical sample moments allocates 82% to the nondurables
industry and −48% to the manufacturing industry. Furthermore, the extreme portfolio
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Figure 5.6 The vertical line in each plot represents the Sharpe ratio of the true unconstrained or
constrained (nonnegative portfolio weights) tangency portfolios for 10 industry portfolios, taking
sample moments as the truth. The histograms correspond to the Sharpe ratios, evaluated using the
true moments, of 250 independent plug-in estimates for 25 or 150 simulated returns.

weights tend to be relatively unstable. Small changes in the inputs (the risk premia
and covariance matrix) result in large changes in the plug-in estimates. Both of these
issues have significant practical implications. Extreme positions are difficult to implement
and instability causes unwarranted turnover, tax liabilities, and transaction costs. Michaud
(1989) argues that extreme and unstable portfolio weights are inherent to mean–variance
optimizers because they tend to assign large positive (negative) weights to securities with
large positive (negative) estimation errors in the risk premium and/or large negative
(positive) estimation errors in the volatility. Mean–variance optimizers therefore act as
statistical “error maximizers.”

Motivated by the poor finite-sample property of plug-in estimates, there exists by
now an extensive literature suggesting different, but to some extent complementary,
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ways of improving on plug-in estimates for practical applications. These approaches
include (i) shrinkage estimation, (ii) the use of factor models, and (iii) imposing portfolio
constraints. I discuss each of these approaches in turn.

Shrinkage Estimation The idea of shrinkage estimation is attributed to James and
Stein (1961), who noted that for N ≥ 3 independent normal random variables, the
vector of sample means μ is dominated in terms of joint mean-squared error by a
convex combination of the sample means and a common constant μ0 (see also Efron
and Morris, 1977), resulting in the estimator:

μs = δμ0 + (1− δ)μ, (3.18)

for 0 < δ < 1.The James–Stein estimator“shrinks” the sample means toward a common
value, which is often chosen to be the grand mean across all variables. The estimator
thereby reduces the extreme estimation errors that may occur in the cross-section of
individual means, resulting in a lower overall variance of the estimators that more than
compensates for the introduction of small biases.The optimal trade-off between bias and
variance is achieved by an optimal shrinkage factor δ*, given for mean-squared error
loss by:

δ* = min
[
1,

(N − 2)/T
(μ− μ0)′#−1(μ− μ0)

]
. (3.19)

Intuitively, the optimal shrinkage factor increases in the number of means N , decreases in
the sample size T (which determines the precision of the sample means), and decreases
in the dispersion of the sample means μ from the shrinkage target μ0.

Shrinkage estimation for risk premia has been applied to portfolio choice problems
by Jobson et al. (1979), Jobson and Korkie (1981), Frost and Savarino (1986), and Jorion
(1986), among others. Jorion shows theoretically and in a simulation study that the opti-
mality of the shrinkage estimator in the mean-squared error loss context considered by
James and Stein (1961) carries over to estimating risk premia in the portfolio choice
context. Plug-in portfolio weight estimates constructed with shrunk sample means
dominate, in terms of expected utility, plug-in estimates constructed with the usual
sample means.

To illustrate the potential benefits of shrinkage estimation, consider again the mean–
variance example with 10 industry portfolios.Table 5.2 reports the average Sharpe ratios,
evaluated using the true moments, of the 250 plug-in estimates of the unconstrained
tangency portfolios for different sample sizes with and without shrinkage. To isolate the
effect of statistical error in sample means, the table shows results for both a known and
unknown covariance matrix. The improvement from using shrinkage is considerable.
For example, with 50 observations, the average Sharpe ratio without shrinkage is 0.24
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Table 5.2 Average Sharpe ratios, evaluated using the true moments, of plug-in
estimates with and without shrinkage of the unconstrained tangency portfolio for 10
industry portfolios with known and unknown covariance matrix

Known � Unknown �

T Truth Sample means Shrinkage Sample means Shrinkage

25 0.624 0.190 0.428 0.169 0.270
50 0.624 0.236 0.446 0.223 0.371

100 0.624 0.313 0.477 0.298 0.443
150 0.624 0.362 0.495 0.348 0.473
250 0.624 0.418 0.512 0.411 0.501

The results are based on 250 simulated samples of size T .

or 0.22, depending on whether the covariance matrix is know or unknown, compared
to the Sharpe ratio of the true tangency portfolio of 0.62. With shrinkage, in contrast,
the average Sharpe ratio is 0.45 with known covariance matrix (87% improvement) and
0.37 with unknown covariance matrix (63% improvement).The average shrinkage factor
with a known covariance matrix ranges from 0.78 for T = 25–0.71 for T = 250. This
means that the individual sample means are shrunk about two-thirds toward a common
mean across all portfolios. The reason for why shrinkage estimation is in relative terms
less effective with an unknown covariance matrix is that the optimal shrinkage factor in
Eq. (3.19) is evaluated with a noisy estimate of the covariance matrix, which, due to the
nonlinearity of optimal shrinkage factor, results in a less shrinkage overall. In particular,
the average shrinkage factor with an unknown covariance matrix is 0.51 for T = 25,
0.72 for T = 100, and 0.69 for T = 250.

Shrinkage estimation can also be applied to covariance matrices. In the portfolio
choice context, Frost and Savarino (1986) and Ledoit and Wolf (2003, 2004) propose
return covariance matrix estimators that are convex combinations of the usual sample
covariance matrix #̂ and a shrinkage target S (or its estimate Ŝ):

#̂s = δŜ + (1− δ)#̂. (3.20)

Sensible shrinkage targets include an identity matrix, the covariance matrix cor-
responding to a single- or multifactor model, or a covariance matrix with equal
correlations.

Ledoit and Wolf (2003) derive the following approximate expression for the optimal
shrinkage factor assuming mean-squared error loss:

δ* ) 1
T

A− B
C

, (3.21)
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with

A =
N∑

i=1

N∑
j=1

asy var
[√

T σ̂i,j
]

B =
N∑

i=1

N∑
j=1

asy cov
[√

T σ̂i,j ,
√

T ŝi,j
]

C =
N∑

i=1

N∑
j=1

(
σi,j − si,j

)2.

(3.22)

The optimal shrinkage factor reflects the usual bias versus variance trade-off. It decreases
in the sample size T , increases in the imprecision of #̂ (through A), decreases in the
covariance of the errors in estimates of #̂ and Ŝ (through B), and decreases in the bias
of S (through C). Ledoit andWolf (2003) also describe how to consistently estimate the
asymptotic second moments needed to evaluate the optimal shrinkage factor in practice.
Finally, they show that, besides reducing sampling error, shrinkage to a positive definite
target guarantees that the resulting estimate is also positive definite,even when the sample
covariance matrix itself is singular (when N > T ). This makes shrinkage a particularly
practical statistical tool for constructing large-scale equity portfolios.

The idea of shrinkage estimation can in principle also be applied directly to the plug-in
estimates of the optimal portfolio weights, resulting in an estimator of the form:

ŵ*
s = δw0 + (1− δ)ŵ*, (3.23)

for some sensible shrinkage target w0.There are several potential advantages of shrinking
the plug-in estimates,compared to shrinking their inputs. First, it may be easier to specify
ex-ante sensible shrinkage targets, such as equal weights 1/N or observed relative market
capitalization weights in a benchmark portfolio. Second, shrinking the plug-in estimates
may be more effective because it explicitly links first and second moments. It is possible,
for example, to shrink both first and second moments toward zero, thinking that the sta-
tistical error has been reduced, but leave the plug-in portfolio weights unchanged.Third,
shrinkage of the plug-in estimates can be more naturally combined with an economic
loss function. Specifically, the optimal shrinkage factor could be chosen to maximize
the expected utility from using the shrunk plug-in estimates, as opposed to minimize
its mean-squared error. Whether any of these advantages are materialized in practice
remains to be seen.

Any form of shrinkage estimation involves seemingly ad-hoc choices of the shrinkage
target and the degree of shrinkage (or equivalently the loss function which determines
the optimal degree of shrinkage). Both of these issues are naturally resolved in a Bayesian
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framework, where the location of the prior beliefs can be interpreted as the shrinkage
target and the variability of the prior beliefs relative to the information contained in the
data automatically determines how much the estimates are shrunk toward the prior. I will
return to the Bayesian interpretation of shrinkage and the choice of priors in Section 3.2.

Factor Models The second approach to reducing the statistical error of the plug-in
estimates is to impose a factor structure for the covariation among assets to reduce the
number of free parameters of the covariance matrix. Sharpe (1963) first proposed using
the covariance matrix implied by a single-factor market model in the mean–variance
problem:

ri,t = αi + βi rm,t + εi,t , (3.24)

where the residuals εi,t are assumed to be uncorrelated across assets. Stacking the N
market betas βi into a vector β, the covariance matrix implied by this single-factor
model is

# = σ2
mββ

′ +#ε, (3.25)

where#ε is a diagonal residual covariance matrix with non-zero elements σ2
ε,i = var[εi,t].

The advantage of this approach is that it reduces the dimensionality of the portfolio
problem to 3N + 1 terms

({
αi,βi, σ2

ε,i

}N
i=1 and σ2

m
)
. The drawback, in exchange, is that

a single factor may not capture all of the covariation among assets, leading not only to a
biased but potentially systematically biased estimate of the return covariance matrix.

The obvious way to overcome this drawback is to increase the number of factors
capturing the covariation among assets. In a more general K-factor model:

ri,t = αi + β′i ft + εi,t , (3.26)

where βi is now a vector of factor loadings, ft is a vector a factor realizations (which still
need to be specified), and the residuals εi,t are again assumed to be uncorrelated across
asset. The implied return covariance matrix is

# = B#f B′ +#ε, (3.27)

where B denotes the N × K matrix of stacked factor loadings, #f is the covariance
matrix of the factors, and #ε is a diagonal residual covariance matrix. If the factors
are correlated, the portfolio problem is reduced to K (K + 1)/2+N (K + 2) terms. If
the factors are uncorrelated, which is a common assumption implying that #f is also
diagonal, the problem is further reduced to K +N (K + 2) terms.To illustrate the degree
of dimension reduction achieved by multifactor models, consider again the case of 500
assets.With five factors, there are 3515 coefficients to estimate if the factors are correlated,
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as opposed to 125,000 in the case without factors.This translates into a more than 33-fold
increase in the degrees of freedom (from less than 3 to more than 99).

The practical difficulty with implementing a multifactor model is the choice of com-
mon factors. There are essentially three ways to approach this problem. First, the choice
of factors can be based on economic theory. Examples include using the market or
aggregate wealth portfolio, as implied by the CAPM, which results in the approach of
Sharpe (1963), or using multiple intertemporal hedge portfolios that are maximally cor-
related with changes in the aggregate investment opportunity set, as implied by Merton’s
(1973) ICAPM. Second, the choice of factors can be based on empirical work, includ-
ing, for example, macroeconomic factors (e.g., Chen et al., 1986), industry factors, firm
characteristic-based factors (e.g.,Fama and French,1993),and combinations thereof (e.g.,
BARRA’s equity risk models). Third, the factors can be extracted directly from returns
using a statistical procedure such as factor analysis or principal components analysis (e.g.,
Connor and Korajczyk, 1988). Moving from theoretical factors, to empirical factors, to
statistical factors,we capture,by construction, increasingly more of the covariation among
assets. In exchange, the factors become more difficult to interpret, which raises concerns
about data mining.

Chan et al. (1999) study the performance of different factor model specifications
in a realistic rolling-sample portfolio choice problem. Their results show that factor
models clearly improve the performance of the plug-in estimates. However, no clear
favorite specification emerges, both in terms of the number and the choice of factors.
A simple CAPM-based single-factor model performs only marginally worse than a high-
dimensional model with industry and characteristic-based factors.

Portfolio Constraints The third approach to reducing the statistical error inherent in
plug-in estimation is to impose constraints on the portfolio weights. It is clear from
comparing the results in Figs. 5.4 and 5.5 that imposing portfolio constraints helps.
Frost and Savarino (1988) confirm this impression more scientifically by demonstrating
that portfolio constraints truncate the extreme portfolio weights and thereby improve
the performance of the estimates. Their results suggest that, consistent with Michaud’s
(1989) view of optimizers as error maximizers, the extreme portfolio weights that being
truncated are associated with estimation error.

There are numerous ways of constraining portfolio weights. The most popular con-
straints considered in the academic literature are constraints that limit short-selling and
constraints that limit the amount of borrowing to invest in risky assets. Although these
constraints are obviously also very relevant in practice, realistic investment problems are
subject to a host of other constraints, such as constraints on the maximum position in a
single security,on the maximum exposure to a given industry or economic sector,on the
liquidity of a security, or on the risk characteristics of a security. In addition, it is com-
mon practice to perform an initial screening of the universe of all securities to obtain a



306 Michael W. Brandt

smaller and more manageable set of securities.These initial screens can be based on firm
characteristics, including accounting and risk measures, liquidity measures, transaction
cost measures, or even return forecasts.

Although portfolio constraints are an integral part of the investment process in prac-
tice, Green and Hollifield (1992) argue that, from a theoretical perspective, extreme
portfolio weights do not necessarily imply that a portfolio is undiversified. The intu-
ition of their argument is as follows. Suppose returns are generated by a single-factor
model and therefore contain both of systematic and idiosyncratic risk. The aim is to
minimize both sources of risk through diversification. Instead of using a mean–variance
optimizer, consider an equivalent but more transparent two-step procedure in which we
first diversify away idiosyncratic risk and then diversify away systematic risk. In the first
step, sort stocks based on their factor loading and form equal-weighted portfolios with
high factor loadings and with low factor loadings. With a large number of stocks, each
of these portfolios will be well diversified and therefore only exposed to systematic risk.
In the second step, take partially offsetting positions in the systematic risk portfolios to
eliminate, as much as possible given the adding-up constraint on the overall portfolio
weights, the systematic risk exposure. Although the outcome is a portfolio that is well
diversified in terms of both idiosyncratic and systematic risk, Green and Hollifield show
that the second step can involve extreme long-short positions. The implication of this
argument is that, contrary to popular belief and common practice, portfolio constraints
may actually hurt the performance of plug-in estimates.

Relating Shrinkage Estimation, FactorModels, andPortfolio Constraints The argu-
ment of Green and Hollifield (1992) creates tension between economic theory and the
empirical fact that imposing portfolio constraints indeed improves the performance of
plug-in estimates in practice.This tension is resolved by Jagannathan and Ma (2003),who
show that certain constraints on the portfolio weights can be interpreted as a form of
shrinkage estimation. Because shrinkage improves the finite-sample properties of plug-in
estimates, it is no longer puzzling that constraints also help, even if they are not theoret-
ically justified. As with all forms of shrinkage estimation, constrained plug-in estimates
are somewhat biased but much less variable than unconstrained plug-in estimates.

Specifically, for the problem of finding a global minimum variance portfolio (in
Fig. 5.1) subject to short-sale constraints xt ≥ 0 and position limits xt ≤ x, the con-
strained portfolio weights x+t are mathematically equivalent to the unconstrained
portfolio weights for the adjusted covariance matrix:

#̃ = #+ (δι′ + ιδ′)− (λι′ + ι′λ), (3.28)

where λ is the vector a Lagrange multipliers for the short-sale constraints and δ is the
vector of Lagrange multipliers for the position limits. Each Lagrange multiplier takes
on a positive value whenever the corresponding constraint is binding and is equal to
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zero otherwise. To understand better how Eq. (3.28) amounts to shrinkage, suppose the
position limit constraints are not binding but the short-sale constraint is binding for stock
i, so that δ = 0 and λi > 0. The variance of stock i is reduced to σ̃i,i = σi,i − 2λi and
all covariance are reduced to σ̃i,j = σi,j − λi − λj . As stocks with negative weights in
minimum variance portfolios tend to have large positive covariances with other stocks,
short-sale constraints effectively shrink these positive covariances toward zero. Analo-
gously, suppose the short-sale constraints are not binding but the position limit constraint
is binding for stock i, so that λ = 0 and δi > 0. In that case, the variance of stock i is
increased to σ̃i,i = σi,i + 2δi and the covariances are all increased to σ̃i,j = σi,j + δi + δj .
Since stocks with large positive weights in minimum variance portfolios tend to have
large negative covariances with other stocks, position limit constraints effectively shrink
these negative covariances toward zero.

A similar result holds for the constrained mean–variance problem. The constrained
mean–variance efficient portfolio weights x+t are mathematically equivalent to the
unconstrained portfolio weights for the adjusted mean vector:

μ̃ = μ+ 1
λ0
λ− 1

λ0
δ (3.29)

and adjusted target return:

μ̃ = μ+ 1
λ0
δ′x, (3.30)

where λ0 > 0 is the Lagrange multiplier for the expected return constraint x′tμ = μ,
which is always binding. If the position limit constraints are not binding but the short-
sale constraint is binding for stock i, the expected return on stock i is increased to μ̃i =
μi + λi/λ0. Since stocks with negative weights in mean–variance efficient portfolios
tend to have negative expected returns, the short-sale constraints shrink the expected
return toward zero. Analogously, if the short-sale constrains are not binding but the
position limit constraint is binding for stock i, the expected return on stock i is decreased
to μ̃i = μi − δi/λ0. Since stocks with large positive weights tend to have large positive
expected returns, position limit constraints also shrink the expected return toward zero.

3.2. Decision Theory

In the second traditional econometric approach, decision theory, the econometrician
takes on the role of the investor by choosing portfolio weights that are optimal with
respect to his or her subjective belief about the true return distribution.16

16An alternative way of dealing with parameter uncertainty is “robust control,” where instead of improving on the statistical side of
the problem, the decision maker adjusts the optimization problem. For example, in the max-min approach pioneered by Hansen and
Sargent (1995), the decision maker maximizes expected utility evaluated under a worst-case return distribution (for a set of candidate
distribution). See Maenhout (2004, 2006) for applications of robust control to portfolio choice problems.
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In the presence of statistical uncertainty about the parameters or even about the
parameterization of the data generating process, this subjective return distribution may
be quite different from the results of plugging point estimates in the data generating
process. As a result, the econometrician’s optimal portfolio weights can also be quite
different from the plug-in estimates described earlier.

3.2.1. Parameter Uncertainty

Consider, for illustrative purposes, a single-period or myopic portfolio choice with i.i.d.
returns. We can write the expected utility maximization more explicitly as:

max
xt

∫
u
(
x′t rt+1 + Rf )p(rt+1|θ)drt+1, (3.31)

where p(rt+1|θ) denotes the true return distribution parameterized by θ. Until now, it
was implicitly assumed that this problem is well posed, in the sense that the investor has
all information required to solve it. However, suppose instead that the investor knows
the parametric form of the return distribution but not the true parameter values, which,
of course, is far more realistic. In that case, the problem cannot be solved as it is because
the investor does not know for which parameter values θ to maximize the expected
utility.

There are at least three ways for the investor to proceed. First, the investor can naively
use estimates of the parameters in place of the true parameter values, analogous to the
plug-in estimation approach (except now it is the investor who needs to make a decision,
not an econometrician drawing inferences, relying on point estimates). The resulting
portfolio weights are optimal only if the estimates happen to coincide with the true values,
a zero-probability event in finite samples, and suboptimal otherwise. Second, the investor
can consider the parameter values that correspond to the worst case outcome under some
prespecified set of possible parameter values, leading to extremely conservative portfolio
weights that are robust, as opposed to optimal, with respect to the uncertainty about the
parameters (a decision theoretic approach called robust control). Third, the investor can
eliminate the dependence of the optimization problem on the unknown parameters by
replacing the true return distribution with a subjective distribution that depends only
on the data the investor observes and on personal ex-ante beliefs the investor may have
had about the unknown parameters before examining the data. The resulting portfolio
weights are optimal with respect to this subjective return distribution but suboptimal
with respect to the true return distribution. However, this suboptimality is irrelevant, in
some sense, because the truth is never revealed anyway. To the extent that the subjective
return distribution incorporates all of the available information (as oppose to just a point
estimate or worst case outcome), this third approach is the most appealing to many.

Zellner and Chetty (1965),Klein and Bawa (1976),and Brown (1978) were among the
first to advocate using subjective return distributions in portfolio choice problems. Given
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the data YT and a prior belief about of the parameters p0(θ), the posterior distribution
of the parameters is given by Bayes’ theorem as:

p(θ|YT ) = p(YT |θ) p0(θ)

p(YT )
∝ p(YT |θ) p0(θ), (3.32)

where the distribution of the data conditional on the parameters can also be interpreted as
the likelihood function L(θ|YT ).This posterior distribution can then be used to integrate
out the unknown parameters from the return distribution to obtain the investor’s subjective
(since it involves subjective priors) return distribution:

p
(
rt+1|YT

) = ∫
p
(
rt+1|θ

)
p
(
θ|YT

)
dθ. (3.33)

Finally,we simply replace the true return distribution in the expected utility maximization
with this subjective return distribution and solve for the optimal portfolio weights.

Formally, the investor solves the problem:

max
xt

∫
u
(
x′t rt+1 + Rf )p(rt+1|YT

)
drt+1, (3.34)

which can we can rewrite, using the construction of the posterior, as:

max
xt

∫ [ ∫
u
(
x′t rt+1 + Rf )p(rt+1|θ

)
drt+1

]
p
(
θ|YT

)
dθ. (3.35)

Comparing Eqs. (3.31) and (3.35), it is now clear how the investor overcomes the issue
of not knowing the true parameter values. Rather than solving the optimization problem
for a single choice of parameter values, the investor effectively solves an average problem
over all possible set of parameter values, where the expected utility of any given set of
parameter values, the expression in brackets above, is weighted by the investor’s subjective
probability of these parameter values corresponding to the truth.

Uninformative Priors The choice of prior is critical in this Bayesian approach. Priors
are either informative or uninformative. Uninformative priors contain little if any infor-
mation about the parameters and lead to results that are comparable, but not identical in
finite samples, to plug-in estimates. Consider the simplest possible example of a single
i.i.d. normal return with constant mean μ and volatility σ. Assume initially that the
volatility is known. Given a standard uninformative prior for the mean, p(μ) ∝ c, the
posterior distribution of the mean is

p(μ|σ, YT ) = N
[
μ̂, σ2/T

]
, (3.36)
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where μ̂ is the usual sample mean. This posterior distribution of the mean then implies
the following predictive return distribution:

p(rT+1|σ, YT ) =
∫

p(rT+1|μ, σ)p(μ|σ, YT )dμ = N
[
μ̂, σ2 + σ2/T

]
. (3.37)

Comparing this predictive return distribution to the plug-in estimate N[μ̂, σ2] illustrates
one of the effects of parameter uncertainty. In the Bayesian portfolio choice problem,
the variance of returns is inflated because, intuitively, returns differ from the sample mean
for two reasons. Returns have a known variance around the unknown true mean of σ2,
and the sample mean is a noisy estimate of the true mean with a variance of σ2/T . The
posterior variance of returns is therefore σ2 + σ2/T .

Relaxing the assumption of a known volatility, an uninformative prior of the form
p(μ, ln σ) = c leads to the joint posterior distribution of the parameters:

p(μ, σ|YT ) ∝ 1
σN+1 exp

{
−N (μ− μ̂)2

2σ2 − (N − 1)σ̂2

2σ2

}
, (3.38)

which, in turn, implies the following predictive return distribution:

p(rT+1|YT ) =
∫∫

p(rT+1|μ, σ)p(μ, σ|YT )dμ dσ = t
[
μ̂, σ̂2 + σ̂2/T , N − 1

]
, (3.39)

where t[m, s2, v] denotes a Student-t distribution with mean m,variance s2,and v degrees
of freedom. The mean of the predictive distribution is again the sample mean and the
variance is analogous to the case with a known volatility, except with sample estimates.
The only difference between the posteriors (3.37) and (3.39) is the distributional form.
Specifically, since the t distribution has fatter tails than the normal distribution, especially
for small degrees of freedom, parameter uncertainty about the volatility causes the tails
of the posterior return distribution to fatten, relative to the case with a known volatility.
Intuitively, the predictive return distribution turns into a mixture of normal distributions,
each with a different volatility, as the uncertainty about the volatility is averaged out.

Although the aforementioned discussion is fairly simplistic, in that it only deals with
a single risky asset and i.i.d. returns, the basic intuition extends directly to cases with
multiple assets and with more complicated return models. In general, uncertainty about
unconditional and/or conditional first moments tends to increase the posterior variance
of returns, and uncertainty about unconditional and/or conditional second moments
tends to fatten the tails of the predictive return distribution.

Equations (3.37) and (3.39) illustrate that there are differences between the Bayesian
portfolio choice and plug-in estimates. However, it is important to acknowledge
that, at least in this simple i.i.d. example, these differences are in practice a small-
sample phenomenon. For example, suppose the volatility is known to be 18%. With
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only 12 observations, the posterior volatility of returns in Eq. (3.37) is equal to√
(1+ 1/12)× 18% = 18.75%. Parameter uncertainty increase the return volatility by

4%.With a more realistic sample size of 120 observations,however, the posterior volatility
of returns is

√
1+ 1/120× 18% = 18.07%, an increase of a negligible 0.4%. Similarly,

in the case with an unknown volatility. The 5% critical value of the t distribution with
11 degrees of freedom (for T = 12) equals 2.18,considerably larger than 1.96 under nor-
mality. However, with 119 degrees of freedom, the critical value is 1.97, which means
that the predictive distribution is virtually Gaussian (and in fact identical to its plug-in
counterpart).

Guided by the long-held belief that returns unpredictable, the initial papers on param-
eter uncertainty were formulated in the context of i.i.d. normal returns. Following the
relatively recent evidence of return predictability, Kandel and Stambaugh (1996) and
Barberis (2000) reexamine the role of parameter uncertainty when returns are predictable
by the dividend yield in the context of the VAR model (2.16). In particular, Barberis
(2000) documents that, even in moderate size sample, parameter uncertainty can lead
to substantial differences in the optimal allocation to stocks in a long-horizon portfolio
choice problem.The intuition for this result is the following.As the horizon increases, the
variance of returns around the true conditional mean increases linearly, because returns
are conditionally uncorrelated. The variance of the estimated conditional mean around
the true conditional mean, however, increases more than linearly, because the estimation
error is the same in every future time period (ignoring the important issue of learning).
As a result, the contribution of parameter uncertainty to the posterior variance of returns
increases in relative terms as the return horizon increases.

Informative Priors Most applications of Bayesian statistics in finance employ unin-
formative priors, with the reasoning that empirical results with uninformative priors
are most comparable to results obtained through classical statistics and therefore are
easier to relate to the literature. In the context of an investor’s portfolio choice prob-
lem, however, the main advantage of the Bayesian approach is the ability to incorporate
subjective information through informative priors. Because portfolio choice problems
are by nature subjective decision problems, not objective inference problems, there is no
need to facilitate comparison.

The difficulty with using informative priors lies in maintaining analytic tractability of
the posterior distributions. For this reason, the literature deals almost exclusively with
so-called conjugate priors, for which the conditional posteriors are members of the same
distributional class as the priors. For example,the most common conjugate prior problem
involves a Gaussian likelihood function,a Gaussian prior for first moments,and an inverse
gamma (or inverseWishard in the multivariate case) prior for second moments.With this
particular combination, the conditional posteriors of the first and second moments are
once again Gaussian and inverse gamma, respectively. Conjugate priors are particularly
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convenient in problems that involve updating of previously formed posteriors with new
data. In such problems, the old posterior becomes the new prior,which is then combined
with the likelihood function evaluated at the new data.With conjugate priors,the updated
posterior has the same distributional form as the old posterior.

To illustrate the role of informative priors and the similarities to classical shrinkage
estimation, consider again the case of a single risky asset with i.i.d. normal returns and a
known volatility. Assume that the investor has a normally distributed prior belief about
μ centered at a prior mean of μ with a variance of τ2:

p(μ) = N[μ, τ2]. (3.40)

Because of the conjugate structure, combining this prior with the likelihood function
yields the posterior distribution:

p(μ|σ, YT ) = N
[

τ2

τ2 + σ2/T
μ̂+ σ2/T

τ2 + σ2/T
μ,

(σ2/T )τ2

σ2/T + τ2

]
. (3.41)

The posterior mean is simply a relative precision weighted average of the sample and prior
means.The smaller the prior uncertainty τ, the more weight is placed on the prior mean
μ and,conversely,the larger T or the smaller σ,both of which imply that the sample mean
is more precisely estimated, the more weight is placed on the sample mean μ̂. Intuitively,
the posterior mean shrinks the sample mean toward the prior mean, with the shrinkage
factor depending on the relative precisions of the sample and prior means.The posterior
variance is lower than the variance of the sample mean by a factor of τ2/(σ2/T + τ2),
reflecting the fact that information is added through the informative prior. Finally, given
the posterior of the mean, the predictive return distribution is obtained analogous to
Eq. (3.37):

p(rT+1|σ, YT ) =
∫

p(rT+1|μ, σ)p(μ|σ, YT )dμ

= N
[

τ2

τ2 + σ2/T
μ̂+ σ2/T

τ2 + σ2/T
μ︸ ︷︷ ︸

E[μ|σ, YT ]

, σ2 + (σ2/T )τ2

σ2/T + τ2︸ ︷︷ ︸
var[μ|σ, YT ]

]
. (3.42)

There are many ways of coming up with a subjective guess for the prior mean μ. One
approach considered in the statistics literature is to take a preliminary look at the data
and simply estimate the prior by maximum likelihood. Frost and Savarino (1986) apply
this so-called empirical Bayes approach to the mean–variance problem. Imposing a prior
belief of equal means across assets and estimating this grand mean from the data, the
resulting posterior mean is remarkably similar to the James–Stein shrinkage estimator.
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3.2.2. Incorporating Economic Views andModels

Arguably a more intuitive and certainly a more popular way of specifying a prior in the
portfolio choice context is to rely on the theoretical implications of an economic model.
The most famous example of this approach is Black and Litterman (1992),who use as prior
the risk premia implied by mean–variance preferences and market equilibrium. Before
elaborating on their model and two other examples of incorporating economic models,
I describe a more general framework for combining two sources of information about
expected returns, through Bayes theorem, into a single predictive return distribution.

Mixed Estimation Mixed estimation was first developed by Theil and Goldberger
(1961) as a way to update the Bayesian inferences drawn from old data with the infor-
mation contained in a set of new data. It applies more generally, however, to the problem
of combining information from two data sources into a single posterior distribution.
The following description of mixed estimation is tailored to a return forecasting prob-
lem and follows closely the econometric framework underlying the Black–Litterman
model (GSAM Quantitative Strategies Group, 2000). A very similar setup is described
by Scowcroft and Sefton (2003).

Assume excess returns are i.i.d. normal:

rt+1 ∼ MVN[μ,#]. (3.43)

The investor starts with a set of benchmark beliefs about the risk premia:

p(μ) = MVN[μ,+]. (3.44)

which can be based on theoretical predictions, previous empirical analysis, or dated
forecasts. In addition to these benchmark beliefs, the investor has a set of new views or
forecasts v about a subset of K ≤ N linear combinations of returns P rt+1, where P is
a K ×N matrix selecting and combining returns into portfolios for which the investor
is able to express views. The new views are assumed to be unbiased but imprecise, with
distribution:

p(v|μ) = MVN[Pμ,�]. (3.45)

Besides the benchmark beliefs, the estimator requires three inputs: the portfolio selection
matrix P , the portfolio return forecasts v, and the forecast error covariance matrix �.

To demonstrate the flexibility of this specification, suppose there are three assets. The
investor somehow forecasts the risk premium of the first two assets to be 5% and 15%,
but, for whatever reason, is unable or unwilling to express a view on the risk premium
of the third asset. This scenario corresponds to:

P =
[
1 0 0
0 1 0

]
and v =

[
0.05
0.15

]
. (3.46)



314 Michael W. Brandt

If instead of expressing views on the levels of the risk premia, the investor can only
forecast the difference between the risk premia to be 10%, the matrices are

P = [
1 −1 0

]
and v = [−0.10

]
. (3.47)

Once the views have been formalized, the investor also needs to specify their accuracy
and correlations through the choice of �. In the first scenario, for instance, the investor
might be highly confident in the forecast of the first risk premium, with a 1% forecasts
error volatility, but less certain about the forecast of the second risk premium, with
a 10% forecast error volatility. Assuming further that the two forecasts are obtained
independently, the covariance matrix of the forecast errors is

� =
[
0.012 0

0 0.102

]
. (3.48)

The off-diagonal elements of � capture correlations between the forecasts. Specifically,
high confidence in the forecast of μ1 − μ2 is intuitively equivalent to very low confi-
dence in the forecasts of μ1 and μ2,but with a high correlation between the two forecast
errors.

Combining Eqs (3.45) and (3.45) using Bayes’ theorem:

p(μ|v) ∝ p(v|μ) p(μ)

= MVN
[
E[μ|v], var[μ, v]], (3.49)

where the posterior moments of μ are given by:

E[μ|v] = [
+−1 + P ′�P

]−1[
+−1μ+ P ′�−1v

]
var[μ|v] = [

+−1 + P ′�P
]−1.

(3.50)

Finally, assuming # is known, the predictive return distribution is given by:

p(rT+1|v) = MVN
[
E[μ|v], [#−1 + var[μ|v]−1]−1

]
. (3.51)

Alternatively, if # is unknown, the predictive return distribution with conjugate prior
for the covariance matrix is multivariate t with the same first and second moments,
analogous to the univariate case in Eq. (3.39).

As in the more general case of informative priors, the posterior mean is simply a
relative precision weighted average of the benchmark means μ and the forecasts v (a
form of shrinkage).The advantage of this particular mixed estimation setup is the ability
to input forecasts of subsets and linear combinations of the risk premia.This is particularly
relevant in real-life applications where forecasting the returns on every security in the
investable universe (e.g.,AMEX, NASDAQ, and NYSE) is practically impossible.
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Black–Litterman Model The Black and Litterman (1992) model is an application of
this mixed estimation approach using economically motivated benchmark beliefs p(μ)
and proprietary forecasts v (obtained through empirical studies, security analysis,or other
forecasting techniques).The benchmark beliefs are obtained by inferring the risk premia
that would induce a mean–variance investor to hold all assets in proportion to their
observed market capitalizations. Since such risk premia clear the market by setting the
supply of shares equal to demand at the current price, they are labeled equilibrium risk
premia.

More specifically, the equilibrium risk premia are calculated by reversing the inputs
and outputs of the mean–variance optimization problem. In the mean–variance problem
(2.8), the inputs are the mean vector μ and covariance matrix #. The output is the
vector of optimal portfolio weights x* = (1/γ)#−1μ. Now suppose that the market
as a whole acts as a mean–variance optimizer, then, in equilibrium, the risk premia
and covariance matrix must be such that the corresponding optimal portfolio weights
equal the observed market capitalization weights, denoted x*mkt. Assuming a known
covariance matrix, the relationship between the market capitalization weights and the
equilibrium risk premia μequil is therefore given by x*mkt = (1/γ)#−1μequil. Solving
for the equilibrium risk premia:

μequil = γ# x*mkt. (3.52)

The inputs to this calculation are the market capitalization weights, return covariance
matrix, and aggregate risk aversion γ .The output is a vector of implied equilibrium risk
premia.

Black and Litterman (1992) center the benchmark beliefs at these equilibrium risk
premia and assume a precision matrix + proportional to the return covariance matrix #:

p(μ) = MVN[μequil, λ#]. (3.53)

The constant λ measures the strength of the investor’s belief in equilibrium. For instance,
a value of λ = 1/T places the benchmark beliefs on equal footing with sample means.
Combining the benchmark beliefs with proprietary views v results in a posterior
distribution for the risk premia with the following moments:

E[μ|v] = [
(λ#)−1 + P ′�−1P

]−1 [
(λ#)−1μequil + P ′�−1v

]
= [

(λ#)−1 + P ′�−1P
]−1

[γ
λ

x*mkt + P ′�−1v
]

var[μ|v] = [
(λ#)−1 + P ′�−1P

]−1
,

(3.54)

where the second line for the posterior mean,which follows from substituting Eq. (3.52)
into the first line, makes clear the dependence of the mixed estimator on the observed
market capitalization weights.
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The idea of implied equilibrium risk premia is best illustrated through an example.
Table 5.3 presents descriptive statistics for the returns on six size and book-to-market
sorted stock portfolios. Table 5.4 shows in the third column the corresponding market
capitalization weights for December 2003 and in the next four columns the equilibrium
risk premia implied by the covariance matrix from Table 5.3 and relative risk aversion
ranging from γ = 1 to γ = 7.5. For comparison, the last column repeats the sample risk
premia from Table 5.3.

The results in the second table illustrate two important features of the implied equilib-
rium risk premia. First, the levels of the risk premia depend on the level of risk aversion,
which therefore needs to be calibrated before using the results in the mixed estimator.
One way to calibrate γ is to set the implied Sharpe ratio of the market portfolio to a
sensible level. For instance, with γ = 5 the annualized Sharpe ratio of the market port-
folio is 0.78,which is reasonable though still on the high side of historical experience for
the market index. The second striking result in the table is that the implied equilibrium

Table 5.3 Descriptive statistics of six portfolios of all AMEX, NASDAQ, and NYSE stocks sorted by
their market capitalization and book-to-market ratio

Book to Risk
Size market premia (%) Volatility (%) Correlations

Small Low 5.61 24.56 1
Small Medium 12.75 17.01 0.926 1
Small High 14.36 16.46 0.859 0.966 1
Big Low 9.72 17.07 0.784 0.763 0.711 1
Big Medium 10.59 15.05 0.643 0.768 0.763 0.847 1
Big High 10.44 13.89 0.555 0.698 0.735 0.753 0.913

Monthly data from January 1983 through December 2003.

Table 5.4 Equilibrium risk premia implied by market capitalization weights of six portfolios of all
AMEX, NASDAQ, and NYSE stocks sorted by their market capitalization and book-to-market ratio on
December 2003 and mean–variance preferences with different levels of risk aversion

Equilibrium risk premia (%)Book to Market Historical
Size market weight (%) γ = 1 γ = 2.5 γ = 5 γ = 7.5 risk premia (%)

Small Low 2.89 3.07 7.69 15.37 23.06 5.61
Small Medium 3.89 2.21 5.52 11.03 16.55 12.75
Small High 2.21 2.04 5.11 10.22 15.33 14.36
Big Low 59.07 2.62 6.55 13.10 19.64 9.72
Big Medium 23.26 2.18 5.44 10.88 16.32 10.59
Big High 8.60 1.97 4.91 9.83 14.74 10.44
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risk premia are quite different from the empirical risk premia, in particular for the small
and low book-to-market portfolio. In fact, the two sets of risk premia are negatively cor-
related in the cross-section (a correlation coefficient of −0.83). A mixed estimator that
places equal weights on the equilibrium risk premia and the sample risk premia, which
corresponds to using λ = 1/T and historical moments for v, therefore generates return
forecasts that are substantially less variable in the cross-section than either the equilibrium
risk premia or the sample risk premia.

Return Forecastingwith a Belief in No Predictability Another interesting example of
incorporating economic views is the problem of forecasting returns with an prior belief
in no predictability, studied by Kandel and Stambaugh (1996) as well as Connor (1997).
Consider the regression:17

rt+1 = a + b zt + εt+1, (3.55)

where εt+1 ∼ N
[
0, σ2

ε

]
and zt are assumed exogenous with zero mean and a variance

of σ2
z . Using a standard OLS approach, the one-period ahead return forecast is given by

â + b̂ zT ,with b̂ols = σ̂z,r
/
σ̂2

z . Unfortunately, this forecast tends to be very noisy because
the regression usually has an R2 around 1% and a t-statistic of the slope coefficient close
to two. The potential for large estimation error renders the forecast practically useless,
particularly when the forecast is used as an input to an error maximizing portfolio
optimizer.

Kandel and Stambaugh (1996) and Connor (1997) recommend imposing an infor-
mative prior centered on the case of no predictability, which implies that the slope
coefficient should be zero. Specifically, using the prior p(b) = N

[
0, σ2

b

]
in a standard

Bayesian regression setup yields a posterior of the slope coefficient with a mean of:

b̂Bayes =
[

T σ̂2
z
/
σ̂2
ε(

T σ̂2
z/σ̂

2
ε

)+ (
1/σ2

b

)]b̂ols. (3.56)

As expected, the OLS estimate is shrunk toward the prior mean of zero,with a shrinkage
factor that depends on the relative precisions of the OLS estimate and the prior mean.
The critical ingredient of this approach is obviously the prior variance σ2

b .
Because it is difficult to specify a sensible value for this prior variance ex-ante,especially

without knowing σ2
r and σ2

z ,Connor (1997) reformulates the problem in a more intuitive
and practical way. Define:

ρ = E
[

R2

1− R2

]
, (3.57)

17Although often associated in the literature,no predictability does not necessarily corresponding to market efficiency. In particular, returns
can well be predictable in an efficient market with time-varying preferences or fundamental uncertainty.
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Table 5.5 Shrinkage factor for the slope coefficient of a univariate return
forecast regression with belief in market efficiency for different sample sizes
and expected degrees of return predictability

ρ � E [ R2] (%) T = 24 T = 48 T = 60 T = 120

0.50 0.11 0.19 0.23 0.38
0.75 0.15 0.26 0.31 0.47
1.00 0.19 0.32 0.38 0.55
2.00 0.32 0.49 0.55 0.71
3.00 0.42 0.59 0.64 0.78

which, for the low values of R2 we observe in practice, is approximately equal to the
expected degree of predictability E[R2]. Equation (3.56) can then be rewritten as:

b̂Bayes =
[

T
T + (1/ρ)

]
b̂ols, (3.58)

where the degree of shrinkage toward zero depends only on the sample size T and on
the expected degree of predictability ρ.

The appealing feature of the alternative formulation (3.58) is that the shrinkage factor
applies generically to any returns forecasting regression with a prior belief in no pre-
dictability (or a regression slope of zero). Table 5.5 evaluates the shrinkage factor for
different sample sizes and expected degrees of predictability. The extend of shrinkage
toward zero is striking. With a realistic expected R2 of 1% and a sample size between 5
and 10 years, the OLS estimate is shrunk roughly half-way toward zero (62% for T = 60
and 45% for T = 120).

Connor (1997) further shows that in the case of a multivariate return forecast regression
rt+1 = b′zt + εt+1, the shrinkage factor applied to each slope coefficient is also given by
Eq. (3.58), except that the expected degree of return predictability ρ is replaced by a
“marginal” counterpart ρi.This marginal expected degree of return predictability simply
measures the marginal contribution of variable i to the expected regression R2. For
example,suppose the expected R2 of a regression with three predictors is 1% and T = 60.
If each variable contributes equally to the overall predictability,ρi = 0.33% and each slope
coefficient is shrunk about 84% toward zero. In contrast, if the first variable accounts for
2/3 of the overall predictability, its slope coefficient is only shrunk 71% toward zero.

Cross-Sectional Portfolio Choice with a Belief in an Asset Pricing Model The third
example of incorporation economic beliefs, this time originating from an equilibrium
asset pricing model, is formulated by Pastor (2000). Suppose returns are generated by a
single-factor model:

ri,t+1 = αi + βi rm,t+1 + εi,t+1 (3.59)
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with uncorrelated residuals εi,t+1 ∼ N[0, σ2
ε ].The theoretical prediction of the CAPM is

that differences in expected returns in the cross-section are fully captured by differences
in market betas and that αi = 0, for all stocks i. Therefore, an investor’s ex-ante belief in
the CAPM can be captured through an informative prior for the stacked intercepts α:

p(α) = MVN[0, σαI ]. (3.60)

This prior is centered at zero, the theoretical prediction of the CAPM, with a dispersion
σα measuring the strength of the investor’s belief in the equilibrium model.

Combining the informative prior (3.60) with uninformative priors for the market
betas and residual variances, the resulting posterior distribution has the following means:

E[α|YT ] = (1− δ)α̂ols

E[β|YT ] = β̂ols + ξ
(3.61)

Intuitively, the intercepts are shrunk toward zero with the shrinkage factor δ depending,
as usual, on T , σ2

m, σ2
ε , and σ2

α. However, the problem is somewhat more complicated
because, as the intercepts are shrunk toward zero, the market betas also change by ξ

to better fit the cross-sectional differences in expected returns. Pastor (2000) provides
expressions for δ and ξ and also considers the case of multifactor asset pricing models.
Further extensions and applications are pursued by Pastor and Stambaugh (2000, 2002)
and Avramov (2004).

3.2.3. Model Uncertainty

The idea of dealing with parameter uncertainty by averaging the return distribution over
plausible parameter values can be naturally extended to dealing with model uncertainty
by averaging over plausible model specifications. Define a model Mj as being a particular
specification of the conditional return distribution and consider a finite set of J models
containing the true model M ∈ {M1, M2, . . . , MJ }. For any model j, the return distribu-
tion is p(rt+1|Mj , θj), where the parameter vector θj can have different dimensions across
models. Analogous to parameter uncertainty, the problem of model uncertainty is that
the investor does not know which of the models to use in the portfolio choice problem.

Assume the investor can express a prior belief about each model j being the true data
generator, p(Mj), as well as a prior belief about the parameters of each model, p(θj|Mj).
Combining these priors and the likelihood function,p(YT |Mj , θj),Bayes’theorem implies
for each model the following posterior model probability:

p(Mj |YT ) = p(YT |Mj) p(Mj)∑J
j=1 p(YT |Mj) p(Mj)

, (3.62)

where

p(YT |Mj) =
∫

p(YT |Mj , θj) p(θj |Mk)dθj (3.63)

denotes the marginal likelihood of model j after integrating out the parameters θj .
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The posterior model probabilities serve a number of purposes. First, they help to char-
acterize the degree of model uncertainty. For instance, suppose there are five plausible
models. Model uncertainty is obviously more prevalent when each model has a posterior
probability of 20%, than when one model dominates with a posterior probability of 90%.
Second, the posterior model probabilities can be used to select a model with highest pos-
terior probability, or to eliminate models with negligible probabilities from the set of all
models, thereby reducing the inherently high dimensionality of model uncertainty.Third,
the posterior model probabilities can be used to construct a predictive return distribution
by averaging across all models according to their posterior probabilities. This so-called
model averaging approach is particularly useful when the degree of model uncertainty is
too high for the investor to confidently single out a model as being the true data genera-
tor. Model averaging is analogous to averaging the return distribution over all parameter
values according to the posterior distribution of the parameters [as in Eq. (3.35)].

Formally, we construct the following posterior probability weighted average return
distribution:

p(rT+1|YT ) =
J∑

j=1

p(rT+1|YT , Mj) p(Mj |YT ), (3.64)

where

p(rT+1|YT , Mj) =
∫

p(rt+1|Mj , θj) p(θj , YT , Mj)dθj (3.65)

denotes the marginal return distribution after integrating out the parameters θj . An
extremely convenient property of this averaged predictive return distribution is that, due
to the linearity of the average, all noncentral moments are also model-averaged:

E
[
rq
T+1

∣∣YT
] = J∑

j=1

E
[
rq
T+1

∣∣YT , Mj
]

p(Mj |YT ), (3.66)

for any order q. Equation (3.66) can be used to construct (subjective) mean–variance
efficient portfolio weights using as inputs the posterior return moments implied by each
model as well as the posterior model probabilities.

Although intuitive and theoretically elegant, the practical implementation of model
averaging is less straightforward, both from a computational and conceptual perspec-
tive. There are at least two computational issues. First, the marginal distributions (3.63)
and (3.65) are typically analytically intractable and need to be evaluated numerically.
Second, even in the context of linear regression models, which are most common in
practice, the model space with K regressors contains 2K permutations, for which the
marginal distributions have to be evaluated (numerically).With 15 regressors, a relatively
modest number, there are over 32,000 models to consider. Both of these issues can be
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overcome, with some effort, using the Markov chain Monte Carlo (MCMC) approach
of George and McCulloch (1993).

The conceptual difficulties lie in the choice of the model set and the choice of the
model priors, which are intimately related issues. By having to specify ex-ante the list of
all plausible models,the investor explicitly rules out all nonincluded models (by essentially
setting the prior probabilities of those models to zero). Given the existing disagreement
about return modeling in the literature, it is hard to imagine that any model can be ruled
out ex-ante with certainty. As for the form of the priors, an obvious choice is an unin-
formative prior assigning equal probabilities to all models. However, such uniform prior
may actually be surprisingly informative about certain subsets of models. For example,
consider a linear forecasting regression framework with K regressors. Only one of the
2K models does not include any forecasters and is therefore consistent with the notion
of market efficiency. The remaining models all exhibit some violation of market effi-
ciency.With equal priors of 1/2K for each model, the implied prior odds against market
efficiency are an overwhelming (2K − 1) to one. An economically more intuitive prior
might assign a probability of 1/2 to the no-predictability case and distribute the remain-
ing probability of 1/2 evenly across all other model. Unfortunately, even this approach
does not fully resolve the issue. Suppose that two-thirds of the K predictors are (highly
correlated) price-scaled variables (e.g., dividend yield, earnings yield, book-to-market)
and one-third are (highly correlated) interest rate variables (e.g., short rate, long rate).
In that case, an evenly distributed prior across all models with predictability assigns odds
of 3:2 in favor of predictability due to price-scaled variables as opposed to interest rate
variables. The point of this example is to illustrate that the choice of model priors is a
tricky issue that requires careful economic reasoning.

There have been a number of recent applications of model averaging to portfolio
choice. Specifically, Avramov (2002) and Cremers (2002) both consider model uncer-
tainty in linear return forecasting models. Tu and Zhou (2004) considers uncertainty
about the shape of the return distribution in cross-sectional applications,and Nigmatullin
(2003) introduces model uncertainty in the nonparametric approach of Aït-Sahalia and
Brandt (2001) (discussed further below). The fundamental conclusion of all of these
papers is that model uncertainty contributes considerably to the subjective uncertainty
faced by an investor. For example,Avramov (2002) demonstrates that the contribution
of model uncertainty to the posterior variance of returns is as large or even larger than
the contribution of parameter uncertainty discussed earlier. It is clear from this recent
literature that model uncertainty is an important econometric aspect of portfolio choice.

4. ALTERNATIVE ECONOMETRIC APPROACH
The traditional econometric approach is fundamentally a two-step procedure. In the
first step, the econometrician or investor models and draws inferences about the data
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generating process (either through plug-in estimation or by forming a subjective belief)
to ultimately, in the second step, solve for the optimal portfolio weights. The majority
of my own research on portfolio choice has focused on ways to skip the first step of
modeling returns and directly draw inferences about the optimal portfolio weights from
the data.

Besides the obvious fact that the optimal portfolio weights are the ultimate object
of interest, there are at least three other benefits from focusing directly on the portfo-
lio weights. First, the return modeling step is without doubt the Achilles’ heel of the
traditional econometric approach. There is vast disagreement even among finance aca-
demicians on how to best model returns, and the documented empirical relationships
between economic state variables (forecasters) and return moments are usually quite
tenuous. Combined, this leads to substantial risk of severe model mispecification and
estimation error, which are subsequently accentuated by the portfolio optimizer in the
second step of the procedure.The intuition underlying my research is that optimal port-
folio weights are easier to model and estimate than conditional return distributions. A
second but related benefit of focusing on the portfolio weights is dimension reduc-
tion. Consider once again an unconditional mean–variance problem with 500 assets.
The return modeling step involves more than 125,000 parameters, but the end-result of
the two-step procedure are only 500 optimal portfolio weights. Focusing directly on the
optimal portfolio weights therefore reduced considerably the room for model mispeci-
fication and estimation error.Third, drawing inferences about optimal portfolio weights
lends itself naturally to using an expected utility-based loss function in a classical setting,
as opposed to the obviously inconsistent practice of using standard squared error loss
to estimate the return model in the first step and then switching to an expected utility
function to solve for the optimal portfolio weights in the second step.

4.1. Parametric Portfolio Weights

The simplest way to directly estimate optimal portfolio weights is to parameterize the
portfolio weights as functions of observable quantities (economic state variables and/or
firm characteristics) and then solve for the parameters that maximize expected utility.
This idea is developed in the context of single and multiperiod market timing problems
by Brandt and Santa-Clara (2006) and in the context of a large cross-sectional portfolio
choice problem by Brandt et al. (2009). Since the implementations in these two papers
are somewhat different, yet complimentary, I explain each in turn.

4.1.1. Conditional Portfolio Choice by Augmenting the Asset Space

In Brandt and Santa-Clara (2006), we solve a market timing problem with parameteri-
zed portfolio weights of the form xt = θzt . We demonstrate that solving a conditional
problem with parameterized portfolio weights is mathematically equivalent to solving
an unconditional problem with an augmented asset space that includes naively managed
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zero-investment portfolios with excess returns of the form zt times the excess return of
each basis asset.This makes implementing our approach to dynamic portfolio choice no
more difficult than implementing the standard Markowitz problem.

Consider first a single-period mean–variance problem. Assuming that the optimal
portfolio weights are linear functions of K state variables zt (which generally include a
constant):

xt = θzt , (4.1)

where θ is a N × K matrix of coefficients, the investor’s conditional optimization
problem is

max
θ

Et
[
(θzt)

′rt+1
]− γ

2
vart

[
(θzt)

′rt+1
]
. (4.2)

We use the following result from linear algebra:

(θzt)
′rt+1 = z′tθ′rt+1 = vec(θ)′(zt ⊗ rt+1), (4.3)

where vec(θ) stacks the columns of θ and ⊗ denotes a Kronecker product, and define:

x̃ = vec(θ)

r̃t+1 = zt ⊗ rt+1.
(4.4)

The investor’s conditional problem can then be written as:

max
x̃

Et
[
x̃′ r̃t+1

]− γ

2
vart

[
x̃′ r̃t+1

]
. (4.5)

Since the same x̃ maximizes the conditional mean–variance tradeoff at all dates t (hence
no time-subscript), it also maximizes the unconditional mean–variance tradeoff:

max
x̃

E
[
x̃′ r̃t+1

]− γ

2
var

[
x̃′ r̃t+1

]
, (4.6)

which corresponds simply to the problem of finding the unconditional mean–variance
optimal portfolio weights x̃ for the expanded set of N × K assets with returns r̃t+1.The
expanded set of assets can be interpreted as managed portfolios, each of which invests in
a single basis asset an amount proportional to the value of one of the state variables. We
therefore label these expanded set of assets “conditional portfolios.” Given the solution
to the unconditional mean–variance problem:

x̃* = 1
γ

var[r̃t+1]−1 E[rt+1], (4.7)
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we recover the conditional weight invested in each of the basis assets at any time t by
simply adding up the corresponding products of elements of x̃* and zt in Eq. (4.1).

The idea of augmenting the asset space with naively managed portfolios extends to
the multiperiod case. For example, consider a two-period mean–variance problem:

max Et
[
rp,t→t+2

]− γ

2
vart

[
rp,t→t+2

]
, (4.8)

where rp,t→t+2 denotes the excess portfolio return of a two-period investment strategy:

rp,t→t+2 =
(
Rf

t + x′t rt+1
)(

Rf
t+1 + x′t+1rt+2

)− Rf
t Rf

t+1

= x′t
(
Rf

t+1rt+1
)+ x′t+1

(
Rf

t rt+2
)+ (

x′t rt+1
)(

x′t+1rt+2
)
.

(4.9)

The first line of this equation shows that rp,t→t+2 is a two-period excess return. The
investor borrows a dollar at date t and allocates it to the risky and risk-free assets according
to the first-period portfolio weights xt . At t + 1, the one-dollar investment results in(
Rf

t + x�t rt+1
)

dollars, which the investor then allocates again to the risky and risk-free
assets according to the second-period portfolio weights xt+1. Finally,at t + 2,the investor
has

(
Rf

t + x�t rt+1
)(

Rf
t+1 + x�t+1rt+2

)
dollars but pays Rf

t Rf
t+1 dollars for the principal

and interest of the one-dollar loan.The second line of the equation decomposes the two-
period excess return into three terms.The first two terms have a natural interpretation as
the excess return of investing in the risk-free rate in the first (second) period and in the
risky asset in the second (first) period.The third term captures the effect of compounding.
Comparing the first two terms to the third, the latter is two orders of magnitude smaller
than the former.The return

(
x�t rt+1

)(
x�t+1rt+2

)
is a product of two single-period excess

returns, which means that its units are of the order of 1/100th of a percent per year.
The returns on the first two portfolios, in contrast, are products of a gross return

(
Rf

t

or Rf
t+1

)
and an excess return

(
rt+1 or rt+2

)
, so their units are likely to be percent per

year. Given that the compounding term is orders of magnitude smaller, we suggest to
ignore it.

Without the compounding term, the two-period problem involves simply a choice
between two intertemporal portfolios, one that holds the risky asset in the first period
only and the other that holds the risky asset in the second period only. Using these two
intertemporal portfolios, which we label “timing portfolios,” we can solve the dynamic
problem as a static mean–variance optimization. The solution is

x̃* = 1
γ

var[r̃t→t+2]−1 E[r̃t→t+2], (4.10)

with r̃t→t+2 =
[
Rf

t+1rt+1, Rf
t rt+2

]
.The first N elements of x̃, corresponding to Rf

t+1rt+1,
represents the fraction of wealth invested in the risky assets in the first period, and the
remaining elements,corresponding to Rf

t rt+2,are for the risky assets in the second period.
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In a general H-period problem, we proceed in exactly the same way. We construct a
set of timing portfolios:

r̃t→t+H =

⎧⎪⎪⎨⎪⎪⎩
H−1∏
i=0
i �=j

Rf
t+i rt+j+1

⎫⎪⎪⎬⎪⎪⎭
H−1

j=0

, (4.11)

where each term represents a portfolio that invests in risky assets in period t + j and in
the risk-free rate in all other periods t + i, with i �= j, and obtain the mean–variance
solution:

x̃* = 1
γ

var[r̃t→t+H ]−1 E[r̃t→t+H ] (4.12)

In addition, we can naturally combine the ideas of conditional and timing portfolios.
For this, we simply replace the risky returns rt+j+1 in Eq. (4.11) with the conditional
portfolio returns zt+j ⊗ rt+j+1.The resulting optimal portfolio weights then provide the
optimal allocations to the conditional portfolios at each date t + j.

The critical property of the solutions (4.7) and (4.12) is that they depend only on
the unconditional moments of the expanded set of assets and therefore do not require
any assumptions about the conditional joint distribution of the returns and state variables
(besides that the unconditional moments exist). In particular, the solutions do not require
any assumptions about how the conditional moments of returns depend on the state
variables or how the state variables evolve through time. Furthermore, the state variables
can predict time-variation in the first, second, and, if we consider more general utility
functions,even higher-order moments of returns. Notice also that the assumption and the
optimal portfolio weights are linear functions of the state variables is innocuous because
zt can include non-linear transformations of a set of more basic state variables yt . The
linear portfolio weights can be interpreted as more general portfolio weight functions
xt = g(yt) for any g(·) that can be spanned by a polynomial expansion in the more basic
state variables yt .

The obvious appeal of our approach is its simplicity and the fact that all of the statistical
techniques designed for the static mean–variance problem can be applied directly to the
single- and multiperiod market timing problems. Naturally, this simplicity comes with
drawbacks that are discussed and evaluated carefully in Brandt and Santa-Clara (2006).
We also demonstrate in the chapter how our parametric portfolio weights relate to the
more traditional approach of modeling returns and state variables with a VAR in logs
(equation (2.16)). Finally, we provide an extensive empirical application.

4.1.2. Large-Scale Portfolio Choice with Parametric Weights

Our approach in Brandt et al. (2009) is similar, in that we parameterize the optimal
portfolio weights, but is geared toward large-scale cross-sectional applications. Suppose
that at each date t there are large number of Nt stocks in the investable universe. Each
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stock i has an excess return of ri,t+1 from date t to t + 1 and a vector of characteristics
yi,t observed at date t. For example, the characteristics could be the market beta of
the stock, the market capitalization of the stock, the book-to-market ratio of the stock,
and the lagged 12-month return on the stock. The investor’s problem is to choose the
portfolio weights xi,t to maximize the expected utility of the portfolio return rp,t+1 =∑Nt

i=1 xi,t ri,t+1.
We parameterize the optimal portfolio weights as a function of the characteristics:

xi,t = xi,t + 1
Nt

θ′ŷi,t (4.13)

where xi,t is the weight of stock i in a benchmark portfolio, θ is a vector of coefficients
to be estimated, and ŷi,t are the characteristics of stock i standardized cross-sectionally
to have a zero mean and unit standard deviation across all stocks at date t. This par-
ticular parameterization captures the idea of active portfolio management relative to a
performance benchmark. The intercept is the weight in the benchmark portfolio and
the term θ′ŷi,t represents the deviations of the optimal portfolio from the benchmark.
The characteristics are standardized for two reasons. First, the cross-sectional distribu-
tion of ŷi,t is stationary through time, while that of yi,t can be nonstationary (depending
on the characteristic). Second, the standardization implies that the cross-sectional aver-
age of θ′ŷi,t is zero, which means that the deviations of the optimal portfolio weights
from the benchmark weights sum to zero, and that the optimal portfolio weights always
sum to one. Finally, the term 1/Nt is a normalization that allows the portfolio weight
function to be applied to an arbitrary number of stocks.Without this normalization,dou-
bling the number of stocks without otherwise changing the cross-sectional distribution
of the characteristics results in twice as aggressive allocations, although the investment
opportunities are fundamentally unchanged.

The most important aspect of our parameterization is that the coefficients θ do not vary
across assets or through time. Constant coefficients across assets implies that the portfolio
policy only cares about the characteristics of the stocks, not the stocks themselves. The
underlying economic idea is that the characteristics fully describe the stock for investment
purposes. Constant coefficients through time means that the coefficients that maximize
the investor’s conditional expected utility at a given date are the same for all dates and
therefore also maximize the investor’s unconditional expected utility. This allows us to
estimate θ by maximizing the sample analogue of the unconditional expected utility:

max
θ

1
T

T−1∑
t=0

u(rp,t+1) = 1
T

T−1∑
t=0

u

( Nt∑
i=1

xi,t ri,t+1

)

= 1
T

T−1∑
t=0

u

( Nt∑
i=1

(
xi,t + 1

Nt
θ′ŷi,t

)
ri,t+1

)
,

(4.14)

for some prespecified utility function (e.g., mean–variance, quadratic, or CRRA utility).
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Our approach has several practical advantages. First, it allows us to optimize a portfolio
with a very large number of stocks, as long as the dimensionality of the parameter vector
is kept reasonably low. Second, but related, the optimal portfolio weights are less prone
to error maximization and over-fitting because we optimize the entire portfolio by
choosing only a few parameters. The optimized portfolio weights tend to be far less
extreme than the portfolio weights resulting from a more standard plug-in approach.
Third, our approach implicitly takes into account the dependence of expected returns,
variances, covariances, and higher-order moments on the stock characteristics, to the
extent that cross-sectional differences in these moments affect the expected utility of the
portfolio returns.

We develop several extensions of our parametric portfolio weights approach in Brandt
et al. (2009), including parameterizations that restrict the optimal portfolio weights to
be nonnegative and nonlinear parameterizations that allow for interactions between
characteristics (e.g., small stocks with high momentum). We also show how the idea of
cross-sectionally parameterizing the optimal portfolio weights can be combined naturally
with the idea of parametric market timing described earlier. In particular, to allow the
impact of the characteristics on the optimal portfolio weights to vary through time as a
function of the macroeconomic predictors zt , we suggest the parameterization:

xi,t = xi,t + 1
Nt

θ′
(
zt ⊗ ŷi,t

)
(4.15)

where ⊗ again denotes the Kronecker product of two vectors. As in the pure mar-
ket timing case, the optimization problem can then be rewritten as a cross-sectionally
parameterized portfolio choice for an augmented asset space with naively managed
portfolios.

4.1.3. Nonparametric Portfolio Weights

Although parameterized portfolio weights overcome the dependence on return models,
they still suffer from potential mispecification of the portfolio weight function. In Brandt
(1999), I develop a nonparametric approach for estimating the optimal portfolio weights
without explicitly modeling returns or portfolio weights, which can be used as a mis-
pecification check. The idea of my nonparametric approach is to estimate the optimal
portfolio weights from sample analogues of the FOCs or Euler equations (2.12). These
Euler equations involve conditional expectations that cannot be conditioned down to
unconditional expectations, because the portfolio weights solving the Euler equations
are generally different across economic states and dates. Instead, I replace the conditional
expectations with nonparametric regressions and then solve for the portfolio weights
that satisfy the resulting sample analogs of the conditional Euler equations.

Consider a single-period portfolio choice.The optimal portfolio weights xt are char-
acterized by the conditional Euler equations Et

[
u′
(
xt
′rt+1 + Rf

t
)
rt+1

] = 0. Suppose the
returns are i.i.d. so that the optimal portfolio weights are the same across all states. In that
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case,we can take unconditional expectations of the conditional Euler equations to obtain
a set of unconditional Euler equations that characterize the optimal unconditional port-
folio weights xt≡x. Replacing these unconditional expectations with sample averages
in the spirit of method of moments estimation yields the estimator:

x̂ =
{

x :
1
T

T∑
t=1

u′
(
x′rt+1 + Rf

t
)
rt+1 = 0

}
. (4.16)

The same logic applies to a time-varying return distribution, except that the Euler equa-
tions cannot be conditioned down because the optimal portfolio weights depend on
the macroeconomic state variables zt (and/or firm characteristics yi,t). Instead, we can
directly replace the conditional expectations with sample analogs, where the sample
analog of a conditional expectation is a locally weighted (in state-space) sample aver-
age. For a given state realization zt = z, the resulting estimator of the optimal portfolio
weights is

x̂(z) =
{

x :
1

ThK
T

T∑
t=1

ω
(zt − z

hT

)
u′
(
x′rt+1 + Rf

t
)
rt+1 = 0

}
, (4.17)

Where ω(·) is a kernel function that weights marginal utility realizations according to
how similar the associated zt is to the value z on which the expectations are conditioned,
and hT denotes a sequence of kernel bandwidths that tends to zero as T increases.18 (The
factor ThK

T assures that the weighted average is not degenerate.) Applying Eq. (4.17) to
all values of z, one value at a time, recovers state-by-state the optimal portfolio weights.

To better understand this estimator,we can interpret it in a more standard nonparamet-
ric regression framework. For any portfolio weights x, the weighted average represents a
kernel regression of the marginal utility realizations on the state variables. With optimal
bandwidths, this kernel regression is consistent, in that:

1

ThK
T

T∑
t=1

ω
(zt − z

hT

)
u′
(
x′rt+1 + Rf

t
)
rt+1

T→∞−→ E
[
u′
(
x′rt+1 + Rf

t
)
rt+1

∣∣∣zt = z
]
. (4.18)

It follows that the portfolios weights that set to zero the nonparametric regressions
converge to the portfolio weights that set to zero the corresponding conditional
expectations.

18The kernel function must satisfy ω(u) =∏K
i=1 k(ui) with

∫
k(u)du = 1,

∫
uk(u)du = 0, and

∫
u2k(u)du <∞. A common choice is a

K-variate standard normal density with k(u) = exp{−1/2u2}/√2π. See Härdle (1990) or Altman (1992) for a more detailed discussion
of kernel functions.
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The estimator is developed in greater detail and for a more general multiperiod port-
folio choice problem with intermediate consumption in Brandt (1999). I also discuss
the optimal bandwidth choice, derive the asymptotics of the estimator

(
with optimal

bandwidths, it is consistent and asymptotically Gaussian with a convergence rate of√
ThK

T

)
, and examine its finite sample properties through Monte Carlo experiments.

In Brandt (2003), I locally parameterize the portfolio weights to further improve the
finite sample properties (in the spirit of the local polynomial regression approach of Fan,
1993).

Kernel regressions are not the only way to nonparametrically estimate optimal portfo-
lio weights from conditional Euler equations.Another way is to flexibly parameterize the
portfolio weights with polynomial expansions, condition down the Euler equations, and
estimate the polynomial coefficients using a standard method of moments approach.Yet
another way is to flexibly parameterize the conditional expectations and construct sample
analogs of the conditional Euler equations through polynomial regressions. Irrespective
of the method, however, all of these estimators are limited in practice by some form of
the“curse of dimensionality.”For kernel regressions, the curse of dimensionality refers to
the fact that the rate of convergence of the estimator to its asymptotic distribution deteri-
orates exponentially with the number of regressors. For polynomial expansion methods,
the number of terms in an expansion of fixed order increases exponentially. Realistically,
the curse of dimensionality means that we cannot reliably implement nonparametric
estimators with more than two predictors (given the usual quarterly or monthly
postwar data).

In Aït-Sahalia and Brandt (2001), we propose an intuitive way to overcome the curse
of dimensionality in a portfolio choice context. Borrowing from the idea of index
regressions (Powell et al., 1989), we collapse the vector of state variables zt into a single
linear index z′tβ and then implement the kernel regression approach described earlier
with this univariate index. The index coefficients β are chosen such that the expected
utility loss relative to the original problem is minimized. (Empirically, the expected
utility loss turns out to be negligible in most cases). We interpret the relative magnitude
and statistical significance of each index coefficient as a measure of how important the
corresponding state variable is to the investor’s portfolio choice. We then use this inter-
pretation to single out the one or two most important predictors for a range of different
preferences.
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Abstract

In this chapter, we summarize and add to the evidence on the large and systematic differences in

portfolio composition across individuals with varying characteristics and evaluate some of the the-

ories that have been proposed in terms of their ability to account for these differences. Variation in
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background risk exposure – from sources such as labor and entrepreneurial income or real estate hold-

ings and from factors such as transaction costs, borrowing constraints, restricted pension investments,

and life-cycle considerations – can explain some but not all aspects of the observed cross-sectional

variation in portfolio holdings in a traditional utilitymaximizing framework. In particular, fixed costs and

life-cycle considerations appear necessary to explain the lack of stock market participation by young

and less affluent households. Remaining challenges for quantitative theories include the apparent lack

of diversification in some unconstrained individual portfolios and nonparticipation in the stock market

by some households with significant financial wealth.

Keywords: portfolio allocation; investor heterogeneity; non-tradable risk; business risk; labor income

risk; household allocations

1. INTRODUCTION
Data on financial behavior of households points to considerable heterogeneity in port-
folio allocations. A large fraction of households holds neither common stock nor other
risky financial securities. Others invest in stocks almost exclusively.The extent to which
risky asset holdings are diversified also varies greatly, ranging from exclusive reliance on
diversified index funds to holdings concentrated in a few individual stocks. Employees
often have significant holdings in the stock of their employers. To make sense of these
observations, it is useful to look for empirical regularities in the way that households
with different characteristics invest their savings and to interpret these regularities using
theories of portfolio choice that allow heterogeneity among investors. In this chapter,
we summarize and add to the evidence on the large and systematic differences in portfo-
lio composition across individuals with varying characteristics and evaluate some of the
theories that have been proposed in terms of their ability to account for these differences.

If heterogeneity in portfolio allocations is to be explained in a traditional utility
maximizing framework, it must be accounted for by heterogeneity in preferences, het-
erogeneity in circumstances, or a combination of the two. The recent literature on
portfolio choice has emphasized both of these possibilities. Heterogeneity in circum-
stances encompasses a wide range of potential explanatory factors including the presence
of nondiversifiable background risks,demographics, information asymmetries, and trans-
action costs. Potential sources of nondiversifiable background risks include labor income
and proprietary business income (or more broadly human capital), restricted pension
investments, and owner-occupied real estate. Demographic factors include age, occu-
pation, inherited wealth, and education. Transaction costs include taxes, the fixed and
variable costs of trading in securities markets, and also the time or psychic costs of
learning about asset markets.

To provide context for the empirical findings,we briefly review some of the extensive
theoretical literature on portfolio choice,with an emphasis on calibrated models explicitly
designed to quantitatively explain heterogeneity. Early papers by Mossin (1968), Merton
(1969),and Samuelson (1970,1969) were the first to address the dynamic portfolio choice
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problem in preference-based theories. Friend and Blume (1975) found that, consistent
with average asset holdings, calibrated versions of these theoretical portfolio share rules
imply a fairly even division of wealth between stocks and bonds, assuming moderate
risk aversion. For the next several decades, portfolio choice was thought to be a largely
solved problem. Recently, however, there has been renewed interest in this area. This
can be attributed to the greater availability of data that reveals apparent idiosyncrasies in
individual behavior and also to the increasing interest in the implications of incomplete
markets. Both naturally lead to an examination of optimal portfolio behavior in the
presence of market frictions that can affect portfolio allocation rules.1

Apart from explaining data, understanding portfolio choice can shed light on a variety
of broader issues. For one, asset pricing models presume a theory of portfolio choice.
Unresolved issues in the asset pricing literature,such as the equity premium puzzle (Mehra
and Prescott, 1985), are related to unsettled questions in the portfolio choice literature,
such as explaining nonparticipation in the stock market, or that many portfolios are
skewed toward safe assets. For instance, without the existence of a significant differential
between the average return on stocks and that on short-term risk-free bonds (the equity
premium), it would be quite easy to account for low stock market participation by
appealing to moderate transaction costs or background risk using conventional models.
Research on portfolio choice may help explain the behavior of return differentials and
asset prices by suggesting the characteristics of the“marginal investor” in asset markets or
by pointing toward a direction in which to modify our models of preferences or beliefs.
Second, public policy questions, such as whether investing social security contributions
in the stock market would be welfare improving or whether current tax laws favoring
investments in own company stock should be changed, are also informed by a clearer
understanding of the reasons for current asset allocations. Finally, investment advisers
need to understand the causes and implications of investor heterogeneity to provide
their clients with sound advice.

The remainder of the chapter is organized as follows. Section 2 presents summary
statistics on heterogeneity in portfolio choice and some of the factors that suggest partial
explanations for the cross-sectional variation. Section 3 briefly surveys the theoretical
literature on portfolio choice. Section 4 reviews the results of many of the calibrated
theoretical models that have been proposed to explain portfolio choice in the presence of
market frictions and with uninsurable background risks,and it discusses model predictions
are often ambiguous. Section 5 reviews the statistical evidence on background income
risk and its effect on portfolio allocations and the some unresolved measurement issues.
Section 6 concludes.

1The issue of background risk generally does not arise in the earlier work on portfolio theory which implicitly assumed that all income
is capitalized into wealth. The allocation of wealth between risky stocks and risk-free bonds is therefore unaffected by the statistical
properties of background risk.
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2. SUMMARY STATISTICS ON STOCKMARKET PARTICIPATION AND
PORTFOLIO CHOICE

There is much heterogeneity in portfolio composition to be explained, as documented
for the United States in a number of papers including Bertaut (1994), Blume and Zeldes
(1994), Friend and Blume (1975), Heaton and Lucas (2000b), and Poterba (1993). We
begin by presenting statistics on portfolio allocations that are consistent with these studies
and that incorporate more recent data. These summary statistics are primarily based on
tabulations from the Survey of Consumer Finances (SCF). The SCF is a leading source
of information on household portfolio choice in the United States and includes detail on
the various components of wealth (see e.g., Aizcorbe et al., 2003, and references therein).
It oversamples the wealthy,but inferences can be drawn about the overall population using
the provided survey weights. Because the SCF lacks a time series dimension, researchers
interested in life-cycle effects often turn to the Panel Survey of Income Dynamics (PSID).
Although the PSID tracks households over time, it provides less financial detail than
the SCF, and it surveys a much smaller sample of the wealthy households that own a
disproportionate share of total financial assets.

Although much of the portfolio choice literature restricts attention to wealth in the
form of stocks, bonds, and cash (liquid assets),2 several other types of financial assets
comprise a significant portion of wealth as do nonfinancial assets such as human capital.
This raises the question of what measure of wealth to use in the denominator when
reporting percentage portfolio allocations. In this chapter, we use a measure of “total
financial wealth,” which includes liquid assets plus real estate and privately held busi-
nesses.We emphasize this measure because of the quantitative importance of these assets
and because these components of financial wealth represent potentially important risk
factors that may influence the composition of liquid asset holdings. Table 6.1 shows the
breakdown of financial wealth from the 2001 SCF. Averaging across households using
the survey weights, total financial wealth consists of stocks (15.8%), bonds (7.6%), cash
(24.4%), housing (41.3%), other real estate (4.8%), and the market value of private busi-
nesses (4.2%). Stocks and bonds in various types of accounts (e.g., retirement accounts,
mutual funds, and brokerage accounts) are aggregated in these statistics. Other miscella-
neous assets such as pensions or trusts that cannot be allocated to an asset class total 1.9%.
Notice that liquid assets only average 47.8% of total financial assets. Notice also that
leverage, which for many households is in the form of a home mortgage, is not reflected
in these statistics. Although household debt management can be thought of as an aspect
of household portfolio choice broadly defined, we do not emphasize it here (see, e.g.,
Gross and Souleles, 2002; Laibson, 1997).

2We use the term liquid assets to refer to cash, bonds, and stocks, even though some components of these holdings are not readily tradable,
such as funds held in pension plans.The measure of cash in the SCF is not comprehensive because it excludes currency, but this is unlikely
to be significant for the relatively wealthy households that are the main focus of analyses of portfolio choice.
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Table 6.1 The composition of financial wealth

Percent

Asset class
Cash 24.4
Bonds 7.6
Stocks 15.8
Subtotal liquid assets 47.8

Housing 41.3
Other real estate 4.8
Private businesses 4.2
Other 1.9

Total 100

Tabulations are from 2001 SCF using survey weights. Percent
of asset classes in aggregate household wealth.Aggregate value
of each class calculated by averaging across households using
survey weights.

A significant portion of financial wealth is held in dedicated retirement accounts.
Discussions of pension investing often abstract from the broader context of portfolio
choice. Conversely, the portfolio choice literature generally ignores the institutional
features of pension plans that may help explain important aspects of portfolio choice. In
this chapter, we emphasize the connections between these literatures. The Investment
Company Institute (ICI) estimates that in 2003, the value of the retirement market
stood at $10.2 trillion in 2002. Defined contribution (DC) plans (including individual
retirement accounts,employer-sponsored DCs,and federal government DCs) have grown
from 35% of the market in 1990 to about 45% of the total market in 2002. Over the same
period, defined benefit (DB) plans, which can be thought of as providing workers with
a partially indexed bond, have shrunk from 52 to 44% in 2002. The remaining share is
attributable to annuities. Interestingly, over 28% of the retirement market is provided by
local, state, and federal governments to their employees. Purcell (2002) provides statistics
from the U.S. Department of Labor that show DB coverage in terms of numbers of
participants shrunk over the 1990 to 1998 period, whereas DC plan coverage almost
doubled so that there are now more than twice as many participants in DC plans than in
DB plans (50 million participants versus 22 million participants, respectively). Estimates
from the 2001 SCF suggest that 52% of households participate in some form of DC tax-
deferred retirement account (21% held employer-sponsored DC plans, 18% held IRAs,
and 13% held both). These retirement account assets comprise 13.4% of the financial
assets of U.S. households. The median retirement account balance for households who
held them was $29,000.
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One aspect of portfolio choice that receives considerable attention is the decision by
many households to opt out of the stock market entirely,despite the increasing participa-
tion rates seen in recent years.As emphasized by many authors (e.g.,Bertaut and Haliassos,
1995; Mankiw and Zeldes, 1991; Saito, 1995), the phenomenon of stock market non-
participation poses a challenge to portfolio theory, as well as to representative consumer
asset pricing theory. To illustrate the trend in stock market participation rates over the
last decade,Table 6.2 presents summary statistics on the distribution of the share of stocks
in financial wealth in each SCF survey from 1989 to 2001. These statistics include all
households with positive net worth, adjusted by the survey weights. Consistent with
the relative growth of the stock market, mean stockholdings as a percentage of wealth
have increased over this period. Participation rates in the stock market increased in the
1990s, although the percentage of nonparticipants remains strikingly high. Before 2001,
stockholdings as a fraction of financial wealth were virtually zero in the 50th percentile.
In the 75th percentile, this share increases from only 4.7% in 1989 to 26% in 2001. The
increase in standard deviation and sharp decrease in skewness over the 12 years further
indicate the increasingly wide, but still concentrated, distribution of stockholdings.

These statistics are consistent with the findings in earlier studies. Poterba (1998) reports
approximately 69.3 million shareholders in the United States in 1995, compared with
61.4 million in 1992 and 52.3 million in 1989. There is also some evidence that people
start buying stocks at a younger age than in the past. For example, Poterba and Samwick
(1997) argue that baby boomers are participating more heavily in the stock market.
Further Ameriks and Zeldes (2002) show that there may be important cohort effects
explaining trends in participation.

The trend of increasing participation is consistent with a number of possible expla-
nations including a fall in the costs of participation over time, for instance because of
changes in risk attitudes or expected returns or reductions in background risk. It also
coincides with the growth of low-cost mutual funds and employer-sponsored DC pen-
sion plans. The latter can significantly lower the cost of participation through employer

Table 6.2 Cross-sectional variation of share of stock in financial assets

Year 25% 50% 75% Mean Standard deviation Skewness

1989 0 0 0.047 0.058 0.133 3.560
1992 0 0 0.077 0.077 0.158 3.005
1995 0 0 0.110 0.099 0.188 2.587
1998 0 0.021 0.217 0.140 0.210 1.800
2001 0 0.042 0.260 0.162 0.229 1.598

Tabulations are from the SCF, various years, using survey weights. Columns 2, 3, and 4 report averages
across households of the share of stock in household wealth for households in the 25th, 50th, and 75th
percentiles of the cross-sectional share of stock in financial assets.
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contributions or matches, virtually no direct transaction costs, and relatively easy access
to information. Based on the survey data from the Investment Company Institute (2002),
48% of U.S. households owning stock in January 2002 initially bought equities inside
employer plans. In fact, the same study finds that the majority of equity investors own
equities in employer-sponsored retirement plans in 2002. Data from the SCF, summa-
rized in Table 6.3, confirms the importance of DC pensions and of mutual funds as the
vehicles for increased participation.

Despite increases in participation, wealth and stockholdings in the United States
remain highly concentrated in dollar terms. For example, in 1989, the top 10% of the
wealth distribution held 84% of the stock. This dropped slightly to 83% in 1995 and
further to 76.6% in 2001.

In fact, households with stock in their portfolio look considerably different than
nonstockholders in many dimensions. In tabulations from the SCF that summarize some
of these differences,we include only those households with positive net worth and adjust
the results by the survey weights. We designate as “nonstockholders” those households
with less than $500 in stock and as “stockholders” those households with at least $500
in stock.We set this cutoff above zero to avoid classifying households with economically
insignificant holdings as stockholders, but the results are not very sensitive to this choice.
Based on this classification, Table 6.4 reports the mean and median of total financial
wealth, housing wealth, mortgage debt, other real estate wealth, business wealth, labor
income, age, education, self-reported risk tolerance, and the number of households, both
in 1992 and in 2001, for each group. Not surprisingly, the data reveals that stockholders
are considerably wealthier,with larger holdings in all asset categories, are better educated,
and describe themselves as less risk-averse (risk tolerance of 1=willing to take substantial
financial risks, 4 = not willing to take financial risks).These differences are all greater in
2001 than in 1992.

The very limited wealth of many nonparticipants suggests that they may have little
incentive to optimize their portfolios or that they may be discouraged from doing so by

Table 6.3 How stocks are held (% of population)

Year Directly owns Only owns equity Only owns Owns equity
mutual fund in pension fund direct equity (all account types)

1989 6.0 11.2 12.6 31.8
1992 8.4 14.9 11.1 36.7
1995 11.3 17.6 10.5 40.4
1998 15.2 20.2 10.4 48.9
2001 16.7 21.2 9.8 51.9

Tabulations are from the SCF, various years, and based on survey weights. Proportion of households with equity
ownership through a mutual fund, a pension fund, or directly.
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Table 6.4 Characteristics of stockholders and nonstockholders (2001 dollars)

Nonstockholders Stockholders

Mean Median Mean Median

1992
Total financial wealth 171,687 74,799 525,880 207,092
Owner-occupied RE wealth 78,489 51,969 143,474 107,651
Mortgage 22,854 0 47,815 18,560
Net other RE wealth 21,132 0 54,494 0
Business wealth 32,810 0 99,689 0
Labor income 35,590 25,985 79,759 56,919
Age 52.1 50 49.8 48.0
Education 12.3 12.0 14.3 15.0
Risk tolerance 3.5 4.0 3.0 3.0

Number of households 43,058,522 35,571,987

2001
Total financial wealth 167,729 77,885 794,817 290,850
Owner-occupied RE wealth 80,458 60,000 198,482 135,000
Mortgage 23,080 0 66,929 37,000
Net other RE wealth 20,065 0 62,980 0
Business wealth 28,315 0 140,125 0
Labor income 35,659 25,000 107,120 65,000
Age 55.3 54.0 49.0 47.0
Education 12.1 12.0 14.3 15.0
Risk tolerance 3.5 4.0 2.8 3.0

Number of households 39,937,214 49,606,571

Tabulations are from the 1992 and 2001 SCF using survey weights. Households are limited to those with
positive net worth. Nonstockholders are those with less than $500 in stock, and stockholders are those with
at least $500 in stock. Mean and median characteristics across households in each group. “RE”denotes “real
estate.” Risk tolerance is “1” if the household reports, they are willing to take substantial risk to achieve
higher returns,“2” if willing to take above average risk,“3” if willing to take average risk, and“4” if unwilling
to take risk.

fairly small fixed costs. Calibrated theoretical papers that investigate this are discussed in
Section 4.

Among stockholders, there is considerable heterogeneity in the share of wealth held in
stocks. Conditioning on those households who have more than $500 in stock,Table 6.5
illustrates that for this group, in the 2001 SCF, the average stock share in financial wealth
is 26.9% and ranges from 7.0% at the 25th percentile to 40.5% at the 75th percentile.
These statistics suggest that heterogeneity is important, but not necessarily that any of
these investors are making mistakes when differences in preferences and circumstances
are accounted for.
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Table 6.5 Cross-sectional distribution of share of stock in financial assets
(stockholders only)

25% 50% 75% Mean Standard deviation Skewness

0.070 0.200 0.405 0.269 0.242 1.048

Tabulations are from the 2001 SCF using survey weights. Stockholders are defined as those
households with more than $500 in stock. Share of stock in financial assets calculated for each
household. Statistics for the distribution of this share across households.

Some of the variation in portfolio share appears to be related to age and net worth,
although these two factors only explain a small portion of the cross-sectional variance.
Table 6.6 shows the relative shares of various assets in financial wealth across age and
net worth brackets, where net worth is defined as financial wealth net of all personal
debt, based on the 2001 SCF.Within each demographic category, there is also significant
variation,and holdings are often highly skewed in individual portfolios. Owner-occupied
housing is the largest component of wealth for all but the wealthiest households, and
private business wealth is an important component for the wealthy, particularly those
under 45.

Earlier studies on stockholding over the life cycle are largely consistent with the
findings in Table 6.6. King and Leape (1987) emphasize the increase in stockholdings
until retirement and attribute it to the increase over time in knowledge when financial
information is costly. Others emphasize the decline in stockholdings among the very
old. Poterba and Samwick (1997) analyze the relationship between age and portfolio
structure, with a focus on distinguishing between age effects and cohort effects. They
find evidence of both age and cohort effects. Heaton and Lucas (2000b) suggest that the
age effect on stockholding is sensitive to whether wealth is broadly or narrowly defined,
with a smaller negative effect of age when wealth is broadly defined.

The relation between stock market participation and portfolio shares and various
household characteristics can be summarized using regression analysis.Tables 6.7 and 6.8
show the results of probit and ordinary least squares regressions of stock ownership on
household characteristics using the 2001 SCF,with an emphasis on how various measures
of housing affect these choices. Households with a net worth greater than $10,000 are
included, and the survey weights are used.3 Table 6.7 shows that, controlling for wealth,
the probability of stock ownership is decreasing with age and home equity/net worth,
and home value and mortgage scaled by total financial wealth.4 Participation in a DB
plan slightly decreases the probability of stock market participation,whereas participation

3We use a positive threshold for net worth because it is used to normalize real estate holdings, but the results are not sensitive to the exact
cutoff.

4In Table 6.7 the dependent variable= 1 if the stockholdings are greater than $500.
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Table 6.6 Shares of financial assets by age and net worth (mean/median)

Age <35 35–44 45–54 55–64 65–74 75+

Panel A: $10K < net worth < $100K

Stocks 16.2/5.8 16.2/3.7 11.2/0.9 9.2/0.0 0.6/0.0 1.7/0.0
Bonds 7.0/0.3 8.3/0.6 7.8/0.0 5.2/0.0 4.2/0.0 4.9/0.0
Cash 12.9/3.2 9.2/3.1 9.8/3.1 9.6/2.0 15.8/4.8 29.8/9.1
Owner-occupied housing 52.4/70.9 57.6/72.3 64.6/81.4 68.6/85.1 72.7/89.2 60.1/85.1
Other real estate 3.7/0.0 4.5/0.0 3.2/0.0 3.4/0.0 4.5/0.0 2.2/0.0
Business 2.9/0.0 2.4/0.0 1.9/0.0 2.8/0.0 1.2/0.0 0.0/0.0
Income ($1000) 51.6/50.0 52.4/46.0 46.4/42.0 32.3/29.0 25.6/20.0 19.8/15.0

Panel B: $100K < net worth < $1M

Stocks 19.7/12.1 21.2/15.9 21.4/15.7 21.2/15.0 16.8/3.1 13.3/0.0
Bonds 3.4/0.3 6.8/1.0 7.1/1.8 8.6/0.7 7.5/0.0 5.5/0.0
Cash 7.8/3.4 6.2/3.2 8.2/3.6 8.7/3.4 16.5/9.1 21.1/12.0
Owner-occupied housing 50.4/51.6 51.1/51.6 47.9/45.6 48.0/44.1 47.7/46.5 52.1/51.0
Other real estate 5.8/0.0 5.7/0.0 6.5/0.0 7.2/0.0 6.3/0.0 5.8/0.0
Business 10.7/0.0 7.4/0.0 6.8/0.0 4.9/0.0 3.4/0.0 0.7/0.0
Income ($1000) 84.5/78.0 93.3/77.0 87.2/75.0 64.9/58.0 47.0/37.0 34.3/28.0

Panel C: net worth > $1M

Stocks 20.4/6.1 23.8/20.2 29.4/23.1 33.9/33.4 31.5/30.1 37.3/37.8
Bonds 9.0/0.1 5.0/0.5 8.5/3.3 12.3/4.7 11.4/5.9 18.0/12.1
Cash 4.2/1.3 4.9/2.1 5.6/2.3 6.1/2.4 9.9/3.6 7.0/3.8
Owner-occupied housing 10.6/4.3 24.7/22.7 22.9/19.1 17.7/16.1 16.5/16.0 20.1/17.6
Other real estate 6.4/0.0 8.3/0.7 11.5/1.8 12.6/2.6 18.2/8.7 9.3/0.8
Business 41.7/28.6 31.9/27.3 19.8/3.2 14.8/0.0 11.2/0.0 7.1/0.0
Income ($1000) 317.5/130.0 413.6/235.0 443.2/200.0 365.6/168.0 222.5/120.0 144.4/97.0

Tabulations are from the 2001 SCF using survey weights. Mean and median across households of relative shares of assets in wealth. Reported as mean/median in each
cell. Households are limited to those within stated age and net worth categories. Net worth is financial wealth net of personal debt. Panel A is for households with net
worth between $10,000 and $100,000. Panel B is for households with net worth between $100,000 and $1 million. Panel C is for households with net worth greater
than $1 million.
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Table 6.7 Probit regressions on stock ownership

1 2 3 4 5 6

Intercept −4.40 (13.78) −5.47 (15.92) −4.96 (16.25) −5.88 (17.93) −4.22 (13.01) −5.24 (15.04)
Age −0.02 (8.46) −0.01 (3.00) −0.02 (9.04) −0.01 (3.87) −0.02 (8.45) −0.01 (2.93)
Log(income) 0.14 (5.01) 0.08 (2.60) 0.15 (5.53) 0.09 (3.01) 0.14 (4.89) 0.08 (2.43)
Log(assets) 0.26 (10.63) 0.32 (11.93) 0.28 (11.78) 0.33 (12.75) 0.25 (10.34) 0.31 (11.59)
Number of children −0.02 (0.77) −0.05 (1.77) −0.03 (1.16) −0.06 (1.82) −0.01 (0.49) −0.04 (1.43)
Married (yes = 1) 0.14 (2.09) 0.10 (1.40) 0.12 (1.76) 0.09 (1.27) 0.15 (2.22) 0.11 (1.53)
Years of education 0.09 (8.41) 0.09 (7.62) 0.10 (9.13) 0.10 (8.23) 0.09 (8.36) 0.09 (7.45)
Real estate equity/

net worth 0.005 (6.34) 0.004 (5.54)
Mortgage/financial

wealth 0.003 (2.30) −0.01 (3.46)
House/financial wealth −0.01 (7.43) −0.01 (6.93)
In defined benefit plan −0.05 (0.59) −0.06 (0.77) −0.03 (0.33)
In defined contribution

plan 1.34 (17.23) 1.38 (17.69) 1.34 (17.37)
Pseudo-R2 0.28 0.35 0.27 0.35 0.28 0.36

Estimated probit coefficients for stock ownership using the 2001 SCF. A household is defined as a stockholder if the household owns more than $500 in stock. Only
households with net worth > $10K are included. T-statistics are in parenthesis.
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Table 6.8 OLS regressions on stock as a share of liquid financial assets – stockholders only

1 2 3

Intercept 37.98 (4.65) 29.08 (3.62) 37.23 (4.52)
Age −0.19 (−4.07) −0.19 (−3.98) −0.19 (−4.24)
Log(income) −1.31 (−1.48) −1.06 (−1.19) −1.27 (−1.44)
Log(financial assets) 3.23 (5.00) 3.51 (5.41) 3.30 (5.11)
Number of children 1.13 (2.20) 0.92 (1.78) 1.18 (2.28)
Married (yes = 1) −0.86 (−0.62) −1.44 (−1.03) −0.86 (−0.62)
Years of education 0.51 (2.04) 0.58 (2.32) 0.53 (2.13)
Real estate equity/net worth −0.07 (−4.31)
Mortgage/Financial wealth −0.02 (−0.64)
House/financial wealth −0.07 (−3.66)
Adj.-R2 0.03 0.03 0.03

Estimated coefficients from regressions using the 2001 SCF using survey weights. Stock/liquid financial assets (stocks +
bonds + cash) are the dependent variable in all regressions. All households with positive stockholdings and net worth >
$10K and stockholding greater than $000 are included in these regressions. T-statistics are in parenthesis.

in a DC plan (which usually includes stock) significantly increases the probability. The
fraction of liquid financial assets5 invested in stock has a similar relationship with these real
estate measures, as shown inTable 6.8.The negative relation between stockholdings and
real estate is consistent with a substitution effect – for a given level of wealth, households
that choose to spend more on housing have less to invest in other assets. If fixed costs
are associated with stock investments, this would imply lower participation rates. The
negative relation could also result from a reduced willingness to take on stock market
risk when leveraged real estate represents a significant background risk.

Perhaps the aspect of data on portfolio choice that is most challenging to traditional
theories is the apparent lack of diversification in the stockholdings of a significant number
of households. Table 6.9 presents tabulations from the SCF, indicating the prevalence of
investments in individual stocks and also of investments in own company stock.Although
the SCF does not allow a precise measure of diversification (for instance, the number of
stocks in DC pension accounts are not reported), we define undiversified households as
those with more than 50% of their equity holdings in brokerage accounts with fewer
than 10 stocks and implicitly treat all other holdings as diversified. By this measure,diver-
sification has increased since the early 1990s, when more than 30% of households with
equity fell into this category. In 2001, this percentage had fallen to 13.7%. Undiversified
households were older by about 5 years, but wealth differences varied over the 5 sur-
veys with diversified households slightly wealthier on average in 2001. Diversified and
undiversified households hold similar average shares of real estate and private businesses.

5Liquid financial assets are defined as the sum of stocks, bonds, and cash.
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Table 6.9 Evidence on the diversification of stockholdings

1989 1992 1995 1998 2001

Panel A: all households

Mean percent of equity held in
Brokerage accounts 36.4 38.4 21.4 20.0 19.3
Mutual funds 8.9 11.6 15.3 15.7 14.6
Rusts and managed accounts 4.2 3.3 2.6 4.2 4.8
Defined contribution pensions 50.4 56.7 60.7 60.2 61.3
Mean percent own company

stock/total 12.3 8.9 6.4 5.2 5.3

Panel B: undiversified households

Percent of total equity reported 21.0 18.3 13.6 11.3 12.0
Percent of households with equity 32.5 23.7 17.8 14.8 13.7
Mean percent own company

stock/total 35.0 31.5 30.5 25.2 29.2
Mean age 50.9 51.0 53.9 51.7 50.3
Mean equity/net worth 16.7 18.3 23.6 29.1 28.4
Mean business/net worth 7.6 8.3 5.5 5.3 5.2
Mean real estate/net worth 51.8 48.0 47.9 49.7 50.0

Real net worth 461,327 413,194 392,998 429,649 517,481

Panel C: diversified households

Mean percent own company
stock/total 1.4 1.9 1.2 1.7 1.5

Mean age 47.0 47.6 46.0 47.2 47.1
Mean equity/net worth 20.0 26.5 31.4 35.7 36.2
Mean business/net worth 5.6 6.1 4.3 5.7 5.8
Mean real estate/net worth 53.8 49.5 50.1 42.9 45.2

Real net worth 466,896 360,744 341,218 433,978 549,104

Tabulations are from the 2001 SCF, using survey weights. Average across households of shares, levels of investments, and
household characteristics. Households with positive stockholdings greater than $500 are included. Panel A is for all such
households. Panel B is for undiversified households defined as those households with more than 50% of their equity
positions in a brokerage account that has fewer than 10 stocks. Panel C is for all other households with stockholding
greater than $500.

For undiversified households, own company stock is a significant factor in all survey
years, comprising 35.0% of total stock in 1989 and 28.4% in 2001. Holdings of own
company stock are particularly difficult to explain from a diversification perspective
because returns are correlated with labor income risk. Undiversified households invested
in own company stock and households invested in other stocks appear to be quite distinct
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groups (less than 20% of undiversified households held both own company stock and
other stocks in all years).

Despite the apparent fall in undiversified households directly invested into single secu-
rities captured by the SCF, over the same period own company stock investments have
grown rapidly in retirement accounts. Some of the increase in own company stock-
holding may be the result of a corporate shift away from stock option, bonus, and
purchase plans toward stock-based compensation in more tax-favored retirement plans.
According to the Investment Company Institute (2003), 8.8 million households owned
individual stock inside employer-sponsored retirement plans, with 51% owning exclu-
sively employer stock.The role of employer incentives to hold own company stock in DC
pension plans via Employee Stock Ownership Plans (ESOPs), as discussed in Section 3.4,
is likely one reason for this phenomenon. Further evidence on the role of employer stock
is discussed in Section 5.3.

3. THEORIES OF PORTFOLIO CHOICE
This section provides a brief overview of the main strands of the traditional literature
on portfolio choice, which has been surveyed more extensively elsewhere.6 A common
feature of many of the earlier theories is that wealth from all income sources is implicitly
assumed to be capitalized and to be held in financial assets that can be freely traded. One
can think of these theories as implicitly applying to a complete markets setting. We also
survey the more recent theoretical literature that relaxes the assumption that all income
is capitalized, complicating the portfolio choice problem but potentially explaining some
of the heterogeneity observed in the data.

3.1. Basic Analytic Framework

Much of the theoretical literature shares a basic analytic framework, a representative
version of which is developed here. We assume that period utility is of the constant
relative risk aversion (CRRA) form because it is the most commonly used specification
and it allows the derivation of some closed form results.

Assume that an investor maximizes expected utility over a horizon T :

Ut = Et

[
T∑

x=0

(
C1−γ

t+x − 1
)/
(1− γ)

]
(3.1)

The agent chooses to invest st+1 in stocks and bt+1 in bonds and consumes ct at time t.
The consumption and saving choice is subject to the flow wealth constraint:

ct + st+1 + bt+1 ≤ st
(
1+ r s

t
)+ bt

(
1+ rb

t
)+ yt , (3.2)

6See, e.g., Heaton and Lucas (2000a).
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where r s
t is the return on stocks at time t, rb

t is the return on bonds at time t, and yt is
risky nontradable income.

For an unconstrained investor j, the resulting Euler equation is

Et

⎧⎨⎩
(

c j
t+1

c j
t

)−γ (
r s
t+1 − rb

t+1

) = 0

⎫⎬⎭. (3.3)

Under the assumption that consumption growth and returns are lognormally distributed
conditional on information at time t, (3.3) can be written as

μs
t = μb

t −
1
2

vart
(
r s
t+1

)+ γcovt
[

log
(
c j
t+1/c

j
t
)
, r s

t+1

]
(3.4)

where μ denotes a mean return. Relation (3.4) implies a joint restriction on individual
consumption growth and investment returns.

With assumed dynamics for returns and nontradable income, this setting yields impli-
cations for savings and the proportion of wealth invested in each security. Early and
enduring contributions include Merton (1969, 1971) and Samuelson (1969). Merton
(1969, 1971) develops conditions for optimal portfolio shares under a variety of assump-
tions about the returns process and utility specification using dynamic programming.
Closed-form solutions are obtained when returns are generated by a Brownian motion
process, and for HARA utility functions, a class with CRRA and constant absolute risk
aversion (CARA) is included.

One important result that emerges from Merton’s analysis is a two-fund separation
theorem where there is no risk in nontradable income. The separation theorem states
that given n assets with lognormally distributed prices, there exists a unique pair of
“mutual funds” consisting of a linear combination of the assets such that independent of
preferences, wealth distribution, or time horizon; investors will be indifferent between
choosing from a linear combination of these two funds or a linear combination of
the original n assets. This reduces the analysis of many assets to a two-asset case as assu-
med in (3.2).

When there is no nontradable income (yt ≡ 0) and the conditional distribution of
asset returns is constant over time, Merton shows that the portfolio share of risky assets
in wealth,ω, is constant and is given by

ω = μs − μb

var(r s)γ
(3.5)

3.2. Time Variation in Returns

Barberis (2000), Campbell and Viceira (1999), Kandel and Stambaugh (1996), Nielsen
and Vassalou (2002), Wachter (2002), and Xia (2001), among others, study dynamic
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models of optimal portfolio choice in the face of time variation in the distribution
of asset returns. Typically, expected returns are assumed to move with aggregate infor-
mation such as price-dividend ratios and interest rates. Calibrations of these models
predict considerable variation in portfolios shares because variation in expected returns
is assumed not to be simultaneously accompanied by changes in risk.

Campbell andViceira (2001, 2002) tackle the application of time variation in real and
nominal interest rates in a model with a long-lived agent motivated by the desire to
smooth their stream of real consumption. They show that the relative magnitude of real
and inflationary components of interest rate volatility drives the demand for short- and
long-term bonds. In low inflation regimes, nominal bonds are an adequate substitute
for inflation indexed bonds and thus provide an effective hedge against real interest rate
movements. Hence, a policy of inflation stabilization would appear to provide a motive
for long horizon investors to hold long-term nominal bonds. Brennan and Xia (2001)
provide closed form results on inflation hedging with long and short nominal bonds.

Campbell and Viceira (2002) and Lynch (2001) use a partial equilibrium analysis to
show that the cost of ignoring return predictability through lost market timing oppor-
tunities can be significant. Because the variation in investment opportunities considered
in these papers is due to aggregate information, these analyses cannot address the hetero-
geneity in portfolio holdings that is the subject of this chapter. A further issue is that in
equilibrium, the average investors cannot arbitrarily adjust their portfolio shares. For this
reason, these decision theoretic analyses are unable to address the fundamental question
of whether the time variation reflects changes in preferences or other risk factors that
diminish the apparent advantages of market timing.

3.3. Uninsurable Background Risk

When some income (e.g., labor or private business income) cannot be capitalized,
investors must evaluate their financial investments taking into account this background
risk. Undiversified investments in risky assets such as housing also generate background
risk. The earlier analyses relevant to these types of complications consider the effect
of constraints on portfolio weights (e.g., Anderson and Danthine, 1981; Cvitani’c and
Karatzas, 1992; Mayers, 1973). In these analyses, it is assumed that a subset of risky assets
must be held in fixed amounts. Under fairly standard assumptions, this produces an addi-
tional hedging term that depends on the covariance between the constrained asset and
the freely traded assets but not on risk preferences. Notice that these analyses imply
that heterogeneity resulting from uninsurable risk invalidates the convenient two-fund
separation theorems of Merton (1971). If background risks vary across individuals in
their co-variation with individual stocks, holding a combination of a diversified market
portfolio and risk-free securities no longer is optimal. Rather, portfolio optimization
requires underweighting or shorting stocks that hedge the nontraded component of
income risk.
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More recently, a number of authors have derived some analytical results on portfolio
choice in the present background risk (quantitative results from related calibrated theories
are discussed in detail in Section 4). For example, Cuoco (1997), Duffie et al. (1997),
He and Pagès (1993), Svensson and Werner (1993), andVila and Zariphopoulou (1997)
present existence results and some characteristics of the solution to the continuous-
time portfolio choice problem with nontradable stochastic labor income and borrowing
constraints. Gollier (2001) provides slightly more general results (in terms of the utility
and distributional assumptions required) on portfolio choices with background risk in
the context of two-period and discrete time models.

Notice that in the absence of borrowing or short-sales constraints, (3.3) and (3.4) hold
not only when all income comes from financial investments but also for investors with a
nontraded income stream yt .This income could come from a variety of sources, including
wages, restricted pension holdings,housing rents, and private businesses.The background
income process does affect portfolio composition, but only indirectly, through its effect
on the variability of consumption and its correlation with financial returns.

The theoretical literature establishes that nontradable background risk can affect the
desired level and composition of liquid asset holdings.When combined with fixed partici-
pation costs,it is also possible to justify nonparticipation in the stock market by households
with low wealth levels or short horizons. Unfortunately, a number of theoretical compli-
cations make it difficult, if not impossible, to tease out sharp empirical predictions from
these models.These caveats may help explain the mixed success of empirical attempts to
explain cross-sectional variation in portfolio holdings with variation in background risk
and moderate participation costs, which are surveyed in Section 4.

Intuitively, one might expect theory to predict that the fraction of investments held
in risky stocks would be inversely related to the correlation between the stock returns
and the background risk source because positive correlation magnifies total consumption
risk. Further, one might expect that all else equal, people exposed to higher variance
background risk would be expected to hold less wealth in stocks because they would
have a reduced tolerance for risk. Theoretically it is easy to construct counterexamples
to this intuition due to the following considerations:

1. Only utility functions exhibiting “proper risk aversion” [like the CRRA utility func-
tion of (3.1)] have the property that increased background risk, which induces higher
effective risk aversion.

2. More importantly, the addition of a risky income stream that is bounded below can
reduce overall consumption risk, increasing effective risk tolerance even with proper
risk aversion.

3. Portfolio composition and savings decisions are intertwined.With CRRA preferences,
this interaction can result in stock market participation rates that rise with the assumed
coefficient of risk aversion.
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Pratt and Zeckhauser (1987) characterize utility functions with“proper risk aversion,”
which is defined by the property that an undesirable lottery can never be made desirable
by the presence of an independent, undesirable lottery. They show that this is a feature
of exponential, power, and logarithmic utility functions, so it holds for all of the most
commonly used utility specifications. Kimball (1993) and Gollier and Pratt (1996) further
examine the relation between utility functions and background risk.

A number of papers (e.g., Bertaut and Haliassos, 1997; Cocco et al., 1998; Heaton and
Lucas, 1997, 2000b; Koo, 1995; Campbell andViceira, 2002) demonstrate that adding a
risky income stream that cannot be capitalized (i.e., labor income) may actually increase
tolerance for stock market risk. The reason is that any assumed floor level of exogenous
income effectively is a risk-free asset,which is a perfect substitute for risk-free bond hold-
ings. Although nontradable income is risky, it limits bad outcomes relative to investment
income, which significantly reduces effective risk aversion. For this reason, including
background income risk can make it more difficult to explain nonparticipation in the
stock market or low levels of stockholdings. More generally, these models suggest that
quantitative predictions of calibrated models are highly sensitive to the assumed stochastic
processes, an implication explored further in Section 5.

3.4. Trading Frictions

A number of authors maintain the assumption that all wealth is held in financial assets
but incorporate some type of trading friction. Examples of theoretical models with
exclusively financial assets and trading frictions include He and Pearson (1991), Karatzas
et al. (1991), and Xu and Shreve (1992). These authors analytically examine the case
where the payoffs to financial securities do not span all the uncertainty in the economy,
and there are short-sales restrictions.

Constantinides (1986) and Davis and Norman (1990) consider the effect of propor-
tional transaction costs on trades of risky securities. In these papers, the only reason to
trade is to rebalance one’s portfolio between the risk-free and risky assets. Constantinides
(1986) finds that such transaction costs do not discourage stockholding – target portfolio
allocations are similar to those in a frictionless environment. Rather the effect of the
costs is to discourage frequent trading so that portfolio shares fluctuate more than in
a frictionless environment. Interestingly, this finding contrasts with the implications of
calibrated models with risky labor income, where the primary reason to trade is con-
sumption smoothing rather than portfolio rebalancing, and the demand for trading is
relatively inelastic. In that case, Heaton and Lucas (1997) find that transaction costs can
influence portfolio shares, causing agents to tilt their portfolio toward assets with lower
trading costs. More generally, trading frictions are often incorporated into models with
nontradable income risk and nonparticipation, but a detailed discussion of their effects
in more complicated environments is discussed in Section 4.
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Some types of taxes, such as those levied on capital gains, are theoretically analogous
to proportional transaction costs. These taxes, by analogy, can be expected to discour-
age portfolio rebalancing but to have less effect on consumption smoothing. Relative
taxes on different sources of capital income may also affect portfolio allocations. For
instance, Black (1980) and Tepper (1981) and more recently Shoven and Sialm (2003)
and Dammon et al. (2004) consider the optimal division of portfolio holdings between
tax favored and taxable accounts. These studies generally reach the intuitive conclusion
that placing relatively highly taxed investments in tax protected accounts is optimal.
Empirical evidence, however, suggests that many people ignore this logic, holding highly
taxed investments in taxable accounts. Amromin (2002) summarizes this evidence and
suggests that liquidity considerations may partially explain this behavior.

The tax treatment and regulations governing DC pension plans are another friction
with potentially important implications for portfolio choice. Specifically, the interaction
between tax law and pension regulations may help account for the prevalence of con-
centrated investments in employer stock, despite the diversification losses for employees.
Where employer stock is provided via employer contributions, it is common to provide
it through an Employee Stock Ownership Plan (ESOP), a type of retirement plan often
coupled with an employer sponsored DC plans. From an employer perspective, an ESOP
is an effective vehicle for compensating employees with employer stock because it offers
several tax advantages.7 To qualify for these tax advantages, an ESOP must comply with
many of the regulatory requirements of a 401(k) plan, including the rules that man-
date nondiscrimination and that limit the share of benefits going to highly compensated
employees. This may be a reason for companies providing stocks to lower paid workers;
even if in the absence of tax incentives and regulations, they would choose to target stock
distributions more narrowly.

Because employees are restricted from diversifying ESOP holdings, they are a source
of background risk that can be expected to affect other aspects of portfolio choice. Inter-
estingly, ESOP participants have a legal right to partially diversify their ESOP holdings
once they have attained age 55 and have 10 years of service with the firm (the employer
may impose less stringent rules). Under these rules, each participant may diversify up to
25% of their ESOP shares in the five years following eligibility and this fraction increases
to 50% in the sixth year after becoming eligible. The remaining balance of shares is
held in the ESOP until the employee leaves the firm. These rules create natural exper-
iments to determine the extent that employees voluntarily maintain large exposures to
the idiosyncratic risk of their company.

7ESOPs have also been attractive to companies attempting to fend off unwelcome merger overtures by placing the firm’s equity in friendly
employee hands. Additionally, they have been used as part of corporate restructurings where employees take a long-term equity stake in
exchange for lower wages.
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3.5. Life-Cycle Effects

Agents generally accumulate more wealth when a nontradable income source is consid-
ered than in similar models with only financial assets because a “buffer stock” of savings
is used to partially self-insure against the risk from nontradable income. In finite hori-
zon versions of the model, the life-cycle pattern of background income often creates an
additional retirement motive for saving starting in middle age. A bequest motive also can
influence the level of and allocation of savings.

An important question for portfolio theory is whether the share of savings invested in
risky assets should vary with age? A well-known, if unintuitive, result due to Samuelson
(1969) is that under normally assumed preference specifications, there is no age varia-
tion in portfolio shares when capital income is a person’s only source of income. This
contradicts the common view of many financial advisors (Bodie and Crane, 1997),
who counsel that older people should reduce the share held in stocks. Bodie et al.
(1992) provide some theoretical underpinnings for the popular view. They show that if
the ability to smooth income shocks by adjusting labor supply is greater for younger
workers, then older people should hold less stock in their portfolios. Jagannathan
and Kocherlakota (1996), Cocco et al. (1998), Benzoni et al. (2007), and Farhi and
Panageas (2007) also discuss reasons for changing portfolio investments over the life
cycle.

3.6. Nonparticipation

There are two, not necessarily mutually exclusive, ways to motivate stock market non-
participation in standard models. One is that some people are limited by a short-sales
constraint. The second is that fixed costs discourage participation. This fixed cost could
be tangible, such as brokerage fees or the cost of becoming informed about investing in
stocks. Alternatively the cost could be some type of psychic cost of putting savings at risk
that is not captured by the standard preference assumptions. Because of the difficulty of
obtaining closed form solutions when these factors are considered, there are few ana-
lytical results, although an exception is Basak and Cuoco (1998). (See Section 4.4 for a
discussion of calibrated theories of nonparticipation.)

An interesting but indirect implication of analyses with uninsurable background risk
is that nonparticipation in the stock market cannot be explained by background risk
alone – other market frictions such as short-sales constraints or fixed costs of market
participation must also be present. The reason is that although background risk changes
the target ratio of stocks to other liquid assets, and may even motivate a short position
when stock returns are highly correlated with large background risks, the probability that
the demand for stocks is exactly zero is negligible.This fact, together with the observation
that many households hold no stock, is one motivation for routinely imposing short-sales
constraints in these analyses.
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It is often assumed that investors can borrow at most a limited amount in the bond
market and cannot go short in stocks. When a short-sales constraint is binding, the
equality in (3.3) is replaced by an inequality, and the constant share rule (3.5) need not
hold. Perhaps the most important implication of these constraints is for asset pricing
theory because they imply that the marginal investor might not have a consumption
pattern proportional to aggregate consumption.

Where the agent does not participate in either the stock or the bond market and is
thus against both the borrowing and short-sale constraints requires that the following
inequalities are satisfied:

βEt
[(

yt+1/yt
)−γ(1+ r s

t+1

)] ≤ 1 (3.6)

and

βEt
[(

yt+1/yt
)−γ(1+ rb

t+1

)] ≤ 1 (3.7)

An empirical difficulty with this formulation,as emphasized by Heaton and Lucas (1997),
is finding plausible parameters where people choose to hold risk-free assets but do not
hold stocks;where (3.6) holds but (3.7) does not. For instance,when background income
risk is uncorrelated with the market, and even assuming an equity premium significantly
below its historical average, standard parameterizations of this model counterfactually
predict that agents with low levels of wealth will put all their savings in stocks. Only at
higher levels of financial wealth does the risk of stocks start to dominate the attraction
of the equity premium, leading to limited investment in stocks. When stock returns are
strongly positively correlated with shocks to nontraded income, the model can generate
policy rules that include risk-free securities at lower wealth levels. Alternatively, a fixed
cost of stock market participation can discourage stockholdings at low wealth levels.

3.7. Generalized Preferences
Recent results in the asset pricing literature emphasize the importance of relaxing the
restrictive assumptions of time-separable CRRA utility. In models with habit persistence,
current consumption is evaluated relative to a weighted average of past consumption.
Works by Constantinides (1990), Campbell and Cochrane (1999), Heaton (1995), and
others demonstrate that this modification to the representative consumer model can
help explain the equity premium puzzle along with observed time variation in expected
returns. Another successful class of models builds on the recursive utility specification
of Kreps and Porteus (1978) and allows for separate parameters governing the elasticity
of intertemporal substitution and risk aversion.This added flexibility has proven useful in



358 Stephanie Curcuru et al.

simultaneously understanding observed risk premia and risk-free rates (see, e.g., Epstein
and Zin, 1989;Weil, 1990).

Evaluation of decision theoretic models with these alternative preference assumptions
opens additional avenues for understanding portfolio choice. First, the predicted level of
savings is altered, especially under standard models of habit persistence. The first-order
effect is to increase savings in reaction to an increased aversion to variation in con-
sumption over time (Heaton and Lucas, 1997). Second, under both habit persistence
and recursive utility models that build on the Kreps–Porteus specification, the individ-
ual investor chooses portfolios to hedge against variation in future consumption. This
additional hedging demand can be significant, especially in the context of time vary-
ing investment opportunities as considered by Campbell andViceira (1999) and Skiadas
and Schroder (1999), for example. Even without time varying investment opportuni-
ties, there can be important variation in the optimal investment in risky assets when an
investor is faced with variation in nontraded risks, again especially in models with habit
persistence. This occurs because of the variation in risk aversion induced by the model.
The result is substantial trading that may be counterfactual (Heaton and Lucas, 1997).
The predicted dynamics of trading does allow the model’s predictions to be compared
to observed trading patterns, however.

The confounding effect of higher risk aversion on stock market participation in the
presence of fixed participation costs is due to the connection between the risk aversion
and the precautionary motive for savings under CRRA utility. In models with CRRA
utility,the precautionary demand for savings depends on the assumed dynamics of income
and investment opportunities. When the model assumptions induce a precautionary
motive, increasing risk aversion with other parameters held fixed typically results in
increased savings. Because the importance of the equity premium relative to the fixed
participation cost increases with the level of savings,more risk-averse agents are therefore
more likely to participate in the stock market. This mechanism is explored by Gakidis
(1997) and Gomes and Michaelides (2003). They consider general settings that also
allow for the separation between the risk aversion and the intertemporal elasticity of
substitution. In these models,savings are also determined by the deterministic component
of income along with the assumed value of the intertemporal elasticity of substitution.
These types of analyses suggest that separating the coefficient of relative risk aversion from
the elasticity of intertemporal substitution improves the capability to generate predictions
consistent with intuition and observed behavior.

4. QUANTITATIVE ANALYSES
The cross-sectional data presented in Section 2 suggests that many households manage
their financial wealth in a way that is inconsistent with frictionless markets. Once the
assumptions of frictionless markets and a representative agent are relaxed, however, there
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are many possible avenues to explore. We begin by describing the results of several of
the first studies to reinterpret traditional theories to take into account heterogeneity and
its empirical implications. We then turn to calibrated theories exploring heterogeneity
arising from uninsurable background risks – from sources such as labor income, private
business or employer stockholdings,restrictions on pension investments,and concentrated
real estate holdings – which can create considerable heterogeneity in optimal portfolio
allocations. Recall that the reason for the effect on portfolio choice is that these risks affect
the consumption process and hence the tolerance for tradable financial risks. Researchers
have concentrated on these particular background risks because of their quantitative
importance for many households (see Table 6.4) and the apparent difficulty of avoiding
or insuring against them.These analyses provide some support for the idea that differential
background risk systematically influences portfolio choice but overall account for only
a limited amount of the observed cross-sectional variation.

4.1. The Consumption of Stockholders and Nonstockholders

A counterfactual empirical implication of calibrating (3.3) with aggregate consumption
data, the historical equity premium, and standard values of the risk aversion coefficient is
that the representative consumer would invest all wealth in the stock market or even takes
a levered position in stocks. This is because aggregate consumption is neither very risky
nor highly correlated with the stock market and because of the high equity premium.
The difficulty of explaining low or even moderate levels of stockholdings in a model
calibrated with aggregate consumption is the partial equilibrium counterpart of the
equity premium puzzle proposed by Mehra and Prescott (1985).

The simplest way to incorporate heterogeneity as a potential solution to this empir-
ical failure to predict portfolio shares with aggregate consumption is to calibrate (3.3)
using consumption data for individuals who actually hold stocks. If markets are relatively
complete for stock market participants, then the covariance of stock returns with total
stockholder consumption, not aggregate consumption, is the relevant predictor of risky
asset holdings.

Mankiw and Zeldes (1991) were the first to propose and test this idea, using data on
food consumption in the PSID. They find that the consumption of stockholders has a
higher variance and is more highly correlated with stock returns.A number of studies have
repeated this type of analysis using broader measures of consumption from the Consumer
Expenditure Survey (see e.g., Brav et al., 1999; Parker, 2001; Vissing-Jorgensen, 2002a,b)
and the U.K. Family Expenditure Survey (Attanasio et al., 2002). Similar to the results
of Mankiw and Zeldes (1991), these studies report that the consumption of identified
stockholders is more consistent with the predictions of (3.3) for moderate levels of risk
aversion than that of nonstockholders. In addition, Ait-Sahalia et al. (2004) find that
the consumption of wealthy individuals, as represented by the consumption of luxury
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goods, covaries more highly with stock returns than does aggregate consumptions. To
the extent that wealthier individuals are stockholders, this is also consistent with the idea
that stockholders hold riskier consumption bundles.

Collectively, these studies show that model performance is improved by focusing on
the consumption of market participants. Assuming moderate risk aversion, these models
still predict far larger investments in stocks than observed in practice. However, these
studies continue to impose significant aggregation by imposing that all stockholders
experience the same consumption growth process. The models described in the rest of
this section take heterogeneity further, by assuming that even stockholders have limited
opportunities for consumption smoothing.

4.2. Calibrated Models with Background Risk

In the last decade, a number of authors have used numerical methods to examine the
quantitative implications of background risk for portfolio choice in theoretical models.
Many of these studies also assume other types of trading frictions, such as borrowing and
short-sale constraints or fixed or variable trading costs. For convenience,we classify these
analyses under the broad heading of background risk, even though the trading frictions
are often essential elements of the story.

4.2.1. Labor Income

Labor income, because of its importance for most households and the difficulty of
insuring it, is a natural source of background risk to consider. Koo (1995) studies a
decision-theoretic model of portfolio choice in which infinitely lived investors with
time and state separable preferences face uninsurable labor income risk. Heaton and
Lucas (1997) consider a similar structure that also allows for transaction costs and habit
formation. Bertaut and Haliassos (1997), Cocco et al. (1998), and Campbell andViceira
(2002) analyze similar environments with finitely lived agents.

All analyses using infinite horizon models and standard preferences find that despite
high levels of assumed background risk, savings are held mostly or entirely in the stock
market. In fact, for reasonable parameter values, agents often want to take a leveraged
position in stocks. This is because the assumed floor on labor income tends to reduce
overall risk exposure, thereby increasing risk tolerance. Further, labor income has a low
correlation with stock returns, at least over the annual horizons that most of these stud-
ies focus on. These factors, in combination with a sizable equity premium, imply that
stockholdings tend to dominate bond holdings.

The counterfactual prediction of portfolios concentrated in stocks has led researchers to
look for alternative specifications that generate a demand for risk-free assets. It is possible,
for instance, to increase the predicted share invested in risk-free bonds under alternative
preferences. Assuming habit formation, Heaton and Lucas (1997) report positive bond
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holdings when effective risk aversion is high but income is low. Habit formation,however,
has the undesirable property that portfolio composition is unrealistically volatile, varying
sharply with the habit stock.

In general, life-cycle models appear to be more successful than infinite horizon mod-
els in explaining many aspects of observed portfolio choices and their interaction with
labor income.Age can affect portfolio choice in a variety of ways. For instance, risk toler-
ance may vary with time horizon,earning potential or health status; and the age-earnings
profile,and timing of bequests, affects savings behavior in the presence of borrowing con-
straints. Life-cycle models, in combination with time nonseparability in preferences,have
been particularly successful at matching certain features of the data. Gakidis (1997) con-
siders a finite horizon model with nontime-separable preferences where the coefficient
of relative risk aversion can be separated from the elasticity of intertemporal substitution.
He finds that it is possible to get positive bond holdings for the elderly, by assuming
a higher elasticity of intertemporal substitution than with standard preferences. More
recently, Gomes and Michaelides (2003) show that in a life-cycle model with steeply
sloping age income profiles for young workers, it is relatively easy to explain nonpartici-
pation.Young people want to consume, not save, because they anticipate higher income
in the future, and they are constrained by borrowing and short-sales constraints. Even a
relatively small fixed cost of stock market participation is large relative to the gains from
investing their limited savings. It is also easier to explain positive bond holdings, even
using standard preferences, for older people, who have primarily financial wealth rather
than human capital.

4.2.2. Business Income

The higher volatility and higher correlation of business income with stock returns, as
well as its prevalence in wealthy households, motivates its consideration as a potentially
important background risk. It can be incorporated into models that are theoretically
identical to those with nontradable labor income under the assumption that any direct
effect of business ownership on utility is additively separable. Then, the main effect of
including private business income is to change the stochastic process associated with
background risk. As for labor income, when business income puts a floor on income,
including them can make it more difficult to explain the low level of stockholdings by
many households.

Heaton and Lucas (2000a) show that a background risk process that reflects pro-
prietary business income, in combination with somewhat higher risk aversion than
assumed in their earlier analysis, is sufficient to generate considerable variation in
predicted portfolio shares, although it does not explain stock market nonparticipation.
Polkovnichenko (2007) also considers income generated from privately held businesses or
“entrepreneurial income.”In part due to its higher correlation with stock market returns,
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he finds that the predicted demand for stocks is lower than in models that focus on labor
income but still higher than what is commonly observed.

4.2.3. Housing

The largest financial investment of a typical household is owner-occupied housing. Its
salient features for portfolio choice are that it is undiversified,highly leveraged and costly
to adjust. These factors suggest its potential to influence portfolio choice, but there are
offsetting considerations. The accompanying leverage and limitations on diversification
suggest it might induce lower stockholdings, but the low correlation of housing returns
with the stock market suggests it has diversification advantages that could encourage
greater stockholding.

Housing is incorporated into portfolio choice models in a variety of ways. In some
cases, authors posit a direct effect on utility that is separate from other types of con-
sumption. In other models, it is treated as a lumpy investment with adjustment costs
that provides a stream of consumption or income that is not distinguished in the utility
function. In either case, analyzing the risk and return to housing is complicated by the
unobservable consumption stream that it generates.

Henderson and Ioannides (1983) introduce the constraint that housing investment is at
least as large as housing consumption. In a theoretical model,Brueckner (1997) shows that
when this constraint is binding,there is a distortion in both housing and nonhousing assets
and the portfolio is inefficient in a mean-variance sense. Flavin and Yamashita (2002),also
abstracting from labor income, posit that the consumption demand for housing is likely
to create a highly levered position in real estate for younger households. This levered
position in a risky asset should affect their tolerance for stock market risk relative to older
households who have paid down their mortgage. Flavin and Yamashita simulate what
optimal portfolio shares should be in theory, calibrating the model with estimates of the
correlation between housing and other investments. Because the return to housing has a
low correlation with the return to stocks, housing improves the mean-variance efficient
investment frontier. In their framework, using reasonable risk parameters, the optimal
stock to net worth ratio is 9% for the youngest households and 60% for the oldest. In
addition, it is optimal for each home to be fully mortgaged at all ages.These predictions
differ from empirical evidence on stockholding by age in Table 6.6 and evidence on
mortgage use in Curcuru (2005). Curcuru finds that only 66% of all households, and
26.4% of seniors, had a mortgage on their primary residence in the 2001 SCF.

The large transaction costs of adjusting real estate decrease housing returns and have
other portfolio implications as well. Grossman and Laroque (1990) develop a theoreti-
cal model with a single illiquid durable consumption, which incurs a large transaction
cost when sold. They show that it is optimal to adjust consumption of the durable
only after a large wealth change, and that with CRRA utility the transaction cost
reduces the optimal amount of risky asset investment. In a continuous-time framework,
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Cauley et al. (2003) show that the inability to freely adjust housing investment sub-
stantially alters target holdings of financial assets. In particular, this constraint results in
significantly decreased stockholdings for households with large house value to net worth
ratios. Additionally when there is a rental market for housing, the relationship between
rental prices and stock returns produces another source or risk when investors consider
jointly housing and stockholding (see Sinai and Souleles, 2005).

As with models of portfolio choice incorporating labor income, the effect of illiquid
housing also plays a larger role in a life-cycle setting. Cocco (2004) and Holden and
Hu (2001) present similar models in which housing provides consumption and invest-
ment services and where the frictions in the housing market influence portfolio choice
differently at different ages. For households saving to meet a down-payment constraint,
there is a potential tension between the higher average returns on stocks that reduce the
expected time to purchase, and greater risk that could delay purchase. In these analyses,
young households anticipating a house purchase or with a highly levered position in
housing are predicted to hold a smaller fraction of liquid assets in stocks than in the
absence of a housing decision.

4.3. Restricted Pension Investments

As discussed earlier,a DC retirement account with investment choice allows an individual
to accumulate wealth for retirement in a variety of assets free from annual taxation.When
an optimizing agent has access to a retirement account, their choice set is enriched: in
addition to conventional saving and portfolio choices on a taxable basis, there are saving
and portfolio choices on a tax-deferred basis. Section 3.3 discussed the tax efficiency
arguments for holding high-taxed assets in tax-deferred retirement accounts. However,
in a precautionary life-cycle model with exogenous stochastic labor income,Amromin
(2002) shows there will be situations where bonds are voluntarily held both inside and
outside of the retirement habitat.

Restrictions on pension investments, such as limitations on diversifying out of ESOP
investments, variations in 401(k) employer matching contributions, and pre-retirement
withdrawal rules, also are expected to influence portfolio choice. Moore (2007) explores
the effects of typical pension plan restrictions on life-cycle portfolio choice behavior.
In the model, an employee can freely allocate his retirement contributions to stocks and
bonds as well as his outside portfolio, the employer makes matching contributions, and
withdrawals or loans are available for emergency consumption. Calibrations suggest that
the majority of wealth should be accumulated through retirement account contributions
and only a small stock of wealth should be maintained outside of the retirement account
to buffer income fluctuations. When employers match retirement contributions using
employer stock with long holding requirements, the pension account is less attractive,
and the remaining portfolio choices become more conservative. Heterogeneity in plan
rules can create significant differences in optimal plan participation and asset allocations.
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Counterfactually, however, the model predicts that the outside portfolio will be more
aggressively invested in stocks than the retirement portfolio, a manifestation of the tax
efficiency argument presented in Section 3.3.

4.4. Explaining Nonparticipation

There have been a number of attempts to calibrate the size of the fixed costs necessary to
discourage stock market participation. One of the earliest analyses is by Saito (1995),who
calibrates a model in which all wealth is held in the form of stocks or bonds,and calculates
how large a fixed cost would be required at time 0 to result in some agents holding only
bonds. He finds costs ranging from 3 to 54% of wealth, depending on the assumed risk
aversion and size of equity premium. These numbers are high for the same reason that
agents are predicted to put all their wealth into stocks in the calibrated models discussed
above – it is costly to forego the high equity premium.8 Polkovnichenko (2007) finds that
in a model with heterogeneous risk aversion and heterogeneous idiosyncratic income
risk, the fixed cost required to generate nonparticipation is potentially much lower.

Because stockholdings are highly skewed toward households with high net worth, any
convincing explanation of heterogeneity in portfolio holdings must also be consistent
with this fact. Explanations emphasizing fixed costs are consistent with this observation
because such costs are especially onerous for people with low wealth. Building on the
work by Luttmer (1999),Paiella (2001) uses the Consumer Expenditure Survey and esti-
mates the necessary fixed costs to preclude stock market participation when controlling
for wealth and demographic variation at the household level. She finds that the fixed costs
needed to explain nonparticipation might not be large. Vissing-Jorgensen (2002a,b) finds
that an annual fixed participation cost of only $50 can explain 50% of nonparticipants,
whereas $260 explains 75%.

4.5. Exploiting the Covariance of Background andMarket Risks
The models discussed in Section 3.4 establish that holding stocks in the form of a diver-
sified market portfolio need not be optimal in the presence of nontradable background
risk. Most calibration exercises to date,however,abstract from the possibility of exploiting
the correlation structure between tradable and nontraded risks and continue to treat a
maximally diversified market portfolio as the benchmark risky asset. A partial exception
is Davis andWillen (2000a,b), who measure the correlation between market returns and
labor income for households with different levels of education, broad occupation group,
and by sex, and they suggest that there are significant differences between groups in
the effective risk of stock market investments. They do not, however, consider whether
optimized portfolios could improve the ability to hedge nontradable risks.This question
is addressed by Massa and Simonov (2004), using a unique panel of Swedish data with

8Basak and Cuoco (1998) and Vissing-Jorgensen (1997) also explore these issues.
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detailed time series information on portfolio composition and income. They examine
whether people use individual stocks to hedge nonfinancial income risk and find little
evidence for hedging. Rather, they find a tendency to invest in stocks that are familiar
in terms of geography or professional proximity. Further, exploration of these issues is
likely a fruitful area for future research.

5. EMPIRICAL EVIDENCE AND ISSUES
The predictions of calibrated models, such as those outlined in Section 4,depend critically
on the assumed statistical properties of background risks and their correlations with
financial assets. In Section 5.1, we illustrate this issue with a stylized example. Aggregate
statistics can be a starting point for many measurements of background risks. Summary
statistics based on aggregate measures of background risks and their correlations with
financial returns are presented in Section 5.2. Although these aggregate measures are
suggestive about which risks might be important, panel data, when it is available, is
arguably more informative about the individual risks that are most relevant to explaining
cross-sectional differences in household portfolio choices. Section 5.3 summarizes the
growing body of evidence based on panel data and attempts to link it to cross-sectional
differences in portfolio choice. Although some studies find that various background risks
influence portfolio choice, data limitations and statistical difficulties suggest that these
results must be interpreted with caution.

5.1. An Illustrative Example
To illustrate the importance of the measurement issue,we review an example from Heaton
and Lucas (2000a). At time t, the investor is assumed to maximize the utility function
given by (3.1) with T = ∞ and subject to the budget equation given by (3.2). Fur-
ther, there is a strict restriction against borrowing and short positions in the stock. To
characterize the dynamics for stock returns and nontraded income, let

X ′
t =

[
log

(
yt/yt−1

)
log

(
1+ r s

t
)]

(5.1)

The vector X t is assumed to follow a first-order autoregressive process:

X t = μ+ AXt−1 + Bεt , (5.2)

where the parameters are chosen to match several alternative assumptions about non-
traded income. In Sections 5.2 and 5.3, we discuss evidence that can be used to calibrate
the process (5.2).

In the “low background risk case,” the mean and standard deviation of nontraded
income growth are assumed to be 1 and 15%, respectively. This level of variability is
consistent with studies that examine labor income risk faced by individuals. We also
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consider a“high background risk case”where the standard deviation of nontraded income
is assumed to be 29%. As in Deaton (1991) and other studies, we assume that nontraded
income growth is negatively correlated over time.This induces a precautionary demand
for savings. For this example, we assume that the first-order autocorrelation of income
is −0.4, which is consistent with the estimates of MaCurdy (1982).

Stock returns are assumed to have a mean of 7.75% and a standard deviation of
15.7% but are unpredictable over time. To capture the potential for hedging, we allow
for correlation between the innovations in nontraded income and stock returns. The
model is solved numerically using the methods described in Heaton and Lucas (1997).
Table 6.10 reports summary statistics from simulations of the model under several alter-
native assumptions. In the table, “Corr” denotes the correlation between stock returns
and nontraded income. In all cases, the discount factor β is assumed to be 0.9. This low
value is needed to prevent the model from producing large levels of savings. In this way,
the model can mimic some features of a life-cycle model where the individuals do not
save early in life because of predictable increases in income. Because nontraded income is

Table 6.10 Model predictions of average stock and bond holdings

Corr = −0.1 Corr = 0 Corr = 0.1 Corr = 0.2

A. γ = 5, low background risk case

Average bond holdings 0.03 0.05 0.07 0.11
Average stockholdings 1.12 1.14 1.15 1.15
Average proportion stock 0.98 0.97 0.96 0.93

B. γ = 8, low background risk case

Average bond holdings 0.46 0.52 0.68 0.83
Average stockholdings 0.98 0.95 0.83 0.70
Average proportion stock 0.72 0.68 0.58 0.48

C. γ = 5, high background risk case

Average bond holdings 0.18 0.24 0.39 0.46
Average stockholdings 1.11 1.08 0.96 0.92
Average proportion stock 0.89 0.85 0.74 0.70

D. γ = 8, high background risk case

Average bond holdings 0.75 0.79 0.89 0.97
Average stockholdings 0.67 0.64 0.55 0.48
Average proportion stock 0.50 0.46 0.39 0.34

Model predicted holdings. Averages across simulations. “Corr” is the assumed correlation between stock returns and
labor income growth.



Heterogeneity and Portfolio Choice: Theory and Evidence 367

assumed to grow over time, the level of savings in each security is normalized by current
income.

As we discussed in Section 4, this type of model has a difficult time producing
reasonable levels of stock and bond holdings simultaneously, unless relatively extreme
assumptions are imposed. In particular, at low levels of the risk-aversion parameter γ and
for any correlation in the assumed range, there is little savings in bonds. For example,
when γ = 5 and Corr = 0, 97% of savings is held in the form of stock in the low back-
ground risk case. Only with very high risk aversion and high levels of background risk
are there significant bond holdings. If we use the more extreme parameters (panel D)
as a basis for experimentation, notice that relatively small variation in the correlation
between stock returns and nontraded income causes relatively large changes in the aver-
age stock position in savings.These results imply that measurement of the characteristics
of background risk is critically important.

5.2. Aggregate Income Statistics

Summary statistics on the major income components and their aggregate properties in
the United States are reported in Table 6.11. Wage income is “real wages and salaries,”
and business income is real“nonfarm proprietary income,” from the national income and

Table 6.11 Aggregate income statistics – 1947–2003

2003 values from NIPA ($ billions)

Percentage of total

Wage income 5,100.2 59.9
Business income 673.2 7.9
Dividend income 431.0 5.1
Interest income 583.2 6.9
Rental income 176.3 2.1
Housing services 1,544.9 18.2

Total 8,508.8

Annual real log growth rate 1947–2003

Correlation with
Mean Standard deviation stock returns

Wage income 3.14% 2.06% 0.06
Business income 1.94% 4.52% 0.11
Housing 1.96% 2.21% 0.051
Value-weighted stock 6.80% 16.71% 1

Income, housing services, and tax data is from NIPA tables. The value-weighted stock returns are from
CRSP. Housing returns are from Piazessi et al. (2007).
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product accounts, 1947 to 2003. Aggregate wage income, which makes up over 62% of
total income, has a low contemporaneous correlation with the stock market and is not
very risky.The results of Table 6.10 illustrate that models calibrated using aggregate wage
income predict a counterfactually high demand for stocks. As discussed earlier, housing
can be considered another source of nontraded or background risk. In the aggregate, the
correlation between housing and stock returns is low at only 5.1%, and housing has a
very low real return and standard deviation. This increases the difficulty of explaining
low stockholdings in models calibrated with aggregate data because in aggregate housing
is essentially a risk-free asset. Aggregate proprietary income is both riskier and more
correlated with stock returns than is labor or housing income, suggesting it could be a
slightly greater deterrent to stockholding than labor income risk. Notice, however, that
at the aggregate level, this risk is still relatively small. For this reason, empirically more
successful models are calibrated using measurements from individual data.

5.3. Evidence on Background Risk
5.3.1. Labor Income

Econometric analysis of panel data suggests that individual labor income is considerably
more volatile than aggregate labor income. Individual labor income shocks appear to
have a permanent and a transitory component, although estimates of the relative mag-
nitude of each component vary depending on the types of heterogeneity considered
and the statistical model used. For instance, Carroll and Samwick (1997) find that aver-
age individual labor income risk is roughly double aggregate risk, whereas Meghir and
Pistaferri (2004) find that the risks are of the same magnitude but that aggregate risk
is 2 to 3 times more persistent. There is evidence of significant heterogeneity in labor
income risk. Using the PSID, Hubbard et al. (1995) find that labor income risk for
individuals with only a household diploma is double that for individuals with a college
degree. Gourinchas and Parker (2002) also find related differences across occupations.
Managers and highly skilled professionals have about two-thirds the labor income risk
of laborers or administrative staff.

Estimating the correlation between individual labor income and stock returns is com-
plicated by the lack of data on portfolio composition that has both time series and panel
dimension and by the difficulty of identifying unanticipated income shocks for individ-
ual households. These problems also make it difficult to detect a statistically significant
relation between individual income processes and portfolio decisions. Nevertheless, sev-
eral authors have tried to estimate these effects. Heaton and Lucas (2000a) examine
income and imputed asset holdings from the 1979–1990 panel of individual tax returns.
They find extensive heterogeneity in both the variability of individual income and the
correlation of this income with stock returns. Using U.S. data from the PSID, Gakidis
(1997) finds that households with a larger probability of realizing extremely low wage
income are less likely to participate in the stock market. He finds that for those who are
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participating, the probability of very low wages reduces the portion invested in stocks.
Heaton and Lucas (2000b) find weak evidence supporting the idea that background
income risk exerts a downward influence on risky financial asset holdings. Campbell
et al. (2001) and Davis andWillen (2000b) find that the correlation between labor income
shocks and aggregate equity returns rises with education. However, Davis and Willen
(2000a) find little evidence that occupation-level income innovations are correlated with
aggregate equity returns. However, they find that for some occupations, the returns on
portfolios formed on market capitalization are correlated with occupation-level income
innovations.

Although much of the evidence presented in this chapter is based on U.S. data, there is
a growing body of international evidence on the effect of background risk on portfolio
choice. The results are also mixed. Guiso et al. (1996) find that in Italian household
data, background risk has a small effect on portfolio choice. Hochguertel (1997) finds
that in the Netherlands, households who report more risky income streams hold safer
investment portfolios.

5.3.2. Business Ownership

Gentry and Hubbard (1998) examine the savings and investment decisions of entrepre-
neurs and conclude that this group accumulates more wealth than nonentrepreneurs,
perhaps due to a precautionary demand for financing. Using SCF data, Heaton and
Lucas (2000b) find that for those investors who hold a significant fraction of their
wealth in stocks, proprietary business income is a large and more correlated background
risk factor than labor income. Further, their cross-sectional regressions indicate that
households with more private business wealth hold fewer stocks relative to other liquid
assets.

The importance of private business ownership for households with significant stock-
holdings is confirmed by data in the 2001 SCF, as summarized in Table 6.12. All
households with net worth above $10,000 are included, and the survey weights are
used. Business owners include households who report a businesses value of more than
$500.The average net worth of business owners is about four times greater than nonown-
ers, and on average, their business accounts for 32.5% of their wealth. Consistent with
higher average risk tolerance, business owners have 55.8% of their liquid financial wealth
invested in stocks, whereas nonowners have 47.8%. Polkovnichenko (2007) also finds
that entrepreneurs appear to be less risk-averse than average, using a variable from the
SCF that polls people about their risk tolerance.

5.3.3. Employer Stock

Employers’ stock is another source of concentrated risk for a significant number of
households. To the extent that these holdings are voluntary, they cannot properly be
considered uninsurable background risk. If, on the other hand, there are restrictions on
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Table 6.12 Mean portfolio characteristics of business owners versus nonowners

Owners Nonowners

Liquid financial assets/total assets 24.9 37.9
Stocks/liquid financial assets 55.8 47.8
Bonds/liquid financial assets 18.2 20.3
Cash/liquid financial assets 26.1 31.9
Owner-occupied housing/total assets 34.3 54.2
Other real estate/total assets 6.8 5.7
Business/total assets 32.5 –
Age 49.1 52.0
Education (years) 14.4 13.5
Risk tolerance* 2.8 3.0
Income $169,693 $69,533
Net worth $1,298,065 $323,255

Tabulations are from the 2001 SCF and based on survey weights. Averages across households of share
of household asset classes in total assets or liquid financial assets. Liquid assets are stocks, bonds, and
cash. Averages household characteristics also reported. Risk tolerance is “1” if the household reports,
they are willing to take substantial risk to achieve higher returns,“2” if willing to take above average
risk,“3” if willing to take average risk, and “4” if unwilling to take risk.

pension holdings, as discussed below, they represent a source of background risk that may
influence portfolio choices. Consistent with the idea that the concentrated risk that is
assumed by holding employer’s stock discourages investment in other risky stocks,Heaton
and Lucas (2000b) report regression results indicating that the more of the employer’s
stock held, the lower is the share of other stocks in liquid assets.

Some evidence is available on the rising historical incidence of employer stockhold-
ing, both within and outside the retirement market. For top management, employer’s
stocks (and stock options) are used extensively as motivation (see Murphy, 1998, for a
review). Simple information theoretic models are able to predict qualitatively some of
the observed differences in executive compensation across firms, particularly the degree
of pay-performance sensitivity. There is a trade off, however, between overcoming such
agency costs through performance contingent payments and the cost to shareholders
and lost diversification of risk-averse managers. Hall and Murphy (2002) examine the
diversification cost of executive options in a certainty equivalent framework and review
relevant literature. Aggarwal and Samwick (1999) support the idea that diversification
costs matter, finding empirically that pay performance sensitivities appear to vary with
the volatility of the firm’s equity so that executives in the most volatile firms have the
least dollar exposure to the company’s equity.

There is an extensive empirical literature on employer stock held in retirement
accounts. The National Center for Employee Ownership cites increasingly prevalent
employee ownership patterns over time. According to their estimates, as of 2003, there
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were about 700 private and public companies that were majority owned by their ESOPs
and about 500 of the top 2000 public companies offer broad-based employee ownership
plans in some form (such as 401(k) plans, ESOP plans, option or stock purchase plans).
They also report steady growth in ESOP coverage from around 250,000 participants
in 1975 to over 8 million in 2001. In terms of asset values, total 401(k) holdings of
company stock are estimated at around $400 billion and there is an estimated additional
$120 billion held by ESOPs.

Mitchell and Utkus (2002) provide a review of the recent evidence on the extent
of employer stockholdings in DC plans. Estimates from the 1998 U.S. Department of
Labor data suggest that roughly 16% of all plan assets are held in company stock. Not all
401(k) plans offer company stock as an investment option, but among plans that do offer
company stock,it is estimated from the Employee Benefit Research Institute (EBRI)/ICI
401(k) database that 29% of balances are invested in company stock. Similarly, Benartzi
(2001) reports that about 1/3 of the assets in large companies’ retirement savings plans
is invested in own company stock. Plans offering company stock as a 401(k) option are
estimated to cover 42% of all plan participants and 59% of all plan assets.

Mitchell and Utkus also report a great deal of diversity in the concentration of
employer stockholding across plans. Of the plans offering company stock, roughly half
held less than 20% of the plan balance in company stock.At the other end of the spectrum,
more than 25% of plans held at least 60% of the plan balance in company stock.Although
a large quantity of this stock appears to be voluntarily held by participants, a significant
portion is contributed by the company and cannot be diversified.This is common in large
listed firms using the previously discussed ESOP/401(k) combination arrangements. For
example, Brown et al. (2006) study a sample of firms that match employee contributions
with company stock finding that on average 28% of new contributions to a 401(k) plan
are required to be held in company stock and an additional 17.1% is voluntarily directed
to company stock.They also suggest that firms with high dividend payout are more likely
to offer matches in company stock due to the tax deductibility of dividends paid under
ESOP arrangements. However, they do not find evidence that factors usually associated
with agency costs in studies of executive compensation have any impact on the provision
of company stock in retirement plans.

Using the EBRI/ICI 401(k) database of participant level data,VanDerhei (2002) pro-
vides evidence on portfolio allocation in 401(k) plans and on the employee reaction to
employer mandated company stockholding.The average share of retirement assets volun-
tarily allocated to equities across participants is lower in plans that match in company stock
than plans that match in cash. However, employees enrolled in plans offering employer
stock as an investment option are more likely to hold the employer’s stock instead of more
diversified forms of equity if the company matches in stock (a finding consistent with
Brown et al.). Furthermore, at least 15% of participants in every age cohort voluntarily
hold nearly all their 401(k) balance in employer stock. Choi et al. (2004b) support this
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evidence and also report that employer securities are voluntarily held by participants for a
significant amount of time (usually a large number of years) due to the overall passivity in
trading their accounts, as discussed further under Pension Investments. Bernartzi (2001),
Purcell (2002), and Huberman and Sengmueller (2002), studying data at the plan (rather
than participant) level, find that plans that match in company stock and plans whose
stock outperformed the S&P 500 index in recent years are the ones most likely to be
heavily invested in company stock.

A Vanguard report by Utkus and Waggoner (2003) surveys sponsor and participant
attitudes to employer stock in 401(k) plans. Plan sponsors appear to be divided into two
camps on the basis of whether the employer’s match is directed to employer stock or
made in cash. Those who direct in stock emphasize the role of incentives and retaining
control in friendly employee hands and are less worried about employee diversification
and fiduciary risks (consistent with this, Brown et al., 2004, find that low-risk firms are
more likely to provide the employer match in company stock). The opposite appears to
be the case for those that match in cash. Sales restrictions go hand in hand with matching
employee contributions in stock.

TheVanguard survey also examines 401(k) participants’ understanding of their invest-
ment in employer securities. Participants are found to have good recall of past perfor-
mance of the employer’s stock, but poor recall of the value of their stake and a poor
understanding of risk and return concepts, with many believing their employer’s stock
to be as safe as or safer than a diversified equity portfolio. This is partially attributed to
past performance of the employer’s stock: those believing their employer’s stock to be
safe having experienced good past investment returns. If offered a choice between cash
and stock sold to the employee at a discount that cannot be sold until age 50, 40% of
respondents required a discount of less than 10% (many required no discount at all).

5.3.4. Pension Investments

An emerging strand of literature is that devoted to documenting empirical patterns in
retirement plan participation rates, contribution levels, and portfolio choices. A recent
review is Choi et al. (2004a).As in the closely related literature on employer stockholdings
in pension plans discussed above, much of this research focuses on whether observed
household retirement saving and portfolios appear to be more consistent with irrational
psychological impulses than rational forward looking motives. Because most of these
studies rely on data capturing only a portion of financial assets, however, it is often hard
to infer the reason for the observed behavior.

Holden and VanDerhei (2003) provide estimates for the year 2002 of aggregate
401(k) asset allocation using the EBRI/ICI 401(k) database. The breakdown of asset
allocation across all plans in their database is 45% to equity funds (including mutual
funds and brokerage accounts), 23% to bond and money market funds, 16% to guaran-
teed investment contracts (GICs), and 16% to stock of the employer. However, there is
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a great deal of cross-sectional variation in these allocations across both plans and indi-
viduals. Some plans do not offer employer stock or GICs, and some plans choose the
asset allocation of both employee and employer matching contributions. Holden and
VanDerhei also show that asset allocation is more conservative for older participants and
participants with lower salaries.There is also some evidence that asset allocation is more
aggressive in 401(k) plans when the individual (or their family) participates in a DB plan,
a relatively safe asset (see Uccello, 2000).

Papke (2004) looks at the impact individual free choice in 401(k) asset allocation has
on contribution activity. She estimates that participants in a plan with investment choice
are more likely to make contributions,make larger contributions, invest more aggressively
in risky securities, and have larger plan balances. Iyengar and Jiang (2003), in contrast
with Papke,actually find that too much choice can be a bad thing. Increasing the number
of plan options (such as the number of mutual funds on offer) is associated with lower
participation rates and contribution levels and more conservative portfolio choices.This
is related to findings of Benartzi andThaler (2001), who suggest participants apply naïve
diversification strategies where they apportion funds equally among the available choices
despite differences in the risk. Benartzi and Thaler (2002) argue that most individuals
would prefer to have their investment allocation selected by a financial adviser than make
the choice themselves.

An important finding about 401(k) participant behavior is the apparent inertia in plan
choices (see e.g., Choi et al., 2004a; Madrian and Shea, 2001). Low tenure participants
often opt into the default level of salary deferrals and asset allocation decisions rather
than make an active decision. Furthermore, it often takes a period of several years before
the participant deviates from these default choices.Thus,otherwise similar participants at
different firms can end up with quite different retirement account balances and asset allo-
cation just because of differences in the default choices. Such observations are consistent
with participants being uninformed about their retirement plans. Using survey evidence,
Gustman and Steinmeier (2001) find ignorance about retirement plans is widespread,but
that individuals who are most reliant on their retirement plan as a source of retirement
income are more likely to be well informed about their plan.

Other studies (e.g., Holden andVanDerhei, 2003) are more optimistic about the role
of DC pension plans in fostering diversification and participation in equity markets.
As discussed in Section 2, much of the growth in mutual fund participation has been
through DC plans, and the prevalence of apparently diversified holdings in these plans
and overall has increased over time (see Table 6.3).

5.3.5. Housing

PSID estimates of the idiosyncratic variance in housing returns are much higher than
the aggregate risk. Flavin and Yamashita (2002) estimate idiosyncratic housing risk of
14.2%,using the PSID.The idea that housing affects portfolio choice has found empirical
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support from a variety of data sources. Using the 1983 SCF, Brueckner (1997) shows
that when a housing investment constraint is binding (households are overinvested in
housing because of consumption demands), nonhousing assets are different than they
would be if housing allocation was optimal from an investment view.

Although all studies agree that housing affects portfolio choice, the effect of home
ownership and mortgage debt on asset allocation is not yet clear. Existing research varies
widely in its approach to this difficult problem,and the results are seemingly contradictory.
Examination of this relationship is complicated by heterogeneity simultaneously affecting
portfolio allocations and housing choices. Fratantoni (1998) finds that households with
higher mortgage payment to income ratios have lower risky asset holdings in the 1989
SCF. Chetty and Szeidl (2004) find that a $1 increase in mortgage debt results in a
portfolio shift of $0.50 from stocks to bonds. In their dynamic consumption model,
Yao and Zhang (2001) posit that in the presence of labor income risk, home owners
increase the proportion of stocks in liquid assets because of the diversification benefit
and find some empirical support in the 1998 SCF. Decreases in the house value to net
worth ratio as household age correspond to increases in stock to net worth ratio with age.
Similarly, Flavin and Yamashita (2002) find evidence that the housing constraint induces
a life-cycle pattern in holdings of stocks and bonds in the 1984 and 1989 PSID, with
households holding more stock as they age and reduce the amount of mortgage debt.
de Roon et al. (2002) use quarterly data for five major United States cities through 1997
and find that in each region home ownership had no impact on the relative holdings of
stocks and bonds but significantly decreased the total assets allocated to stocks and bonds.
Using the 1984–1999 PSID, Kullman and Siegel (2002) find that homeowners are more
likely to participate in the stock market than renters, but contrary to these other results,
as the amount of home equity increases, households increase the share of risk-free assets
in their financial asset portfolio.

The evidence from international data also is mixed. Pelizzon and Weber (2008) per-
form an analysis similar to that of Flavin and Yamashita (2002) for Italian households and
find that household portfolios are not conditionally efficient given housing investment.
However, le Blanc and Lagarenne (2004) perform this analysis on French households,
and they find that the portfolios of French households are efficient conditional on
housing and observe the life-cycle pattern of risky asset holdings predicted by Flavin
and Yamashita (2002).

6. CONCLUSIONS
There is substantial heterogeneity in the portfolio allocations of households. Although
the majority of investors with significant net worth appear to hold diversified portfolios,
a large number of households still hold no position in risky securities, whereas others
take significant undiversified positions in stocks.This lack of diversification sometimes is



Heterogeneity and Portfolio Choice: Theory and Evidence 375

in the form of large holdings in an employer’s stock. Understanding the choices made by
investors will shed light on the important factors explaining the pricing of risk in financial
markets. Also many public policy choices have an impact on the portfolio allocations
of households. Examples include the privatization of social security and the taxation of
capital income. The potential effects of these policies greatly depend on the predicted
impact on the savings and portfolio choices of households.

We presented evidence that the typical household is becoming more diversified over
time and is participating more in financial markets. These changes likely reflect the
evolution of institutions that make diversification easier and increases in financial edu-
cation. A better understanding of the interaction between this institutional change and
household behavior should be a focus of future work. For example, we presented evi-
dence that stockholders often take undiversified positions in businesses and real estate.
There have been significant changes in the marketability of real estate through real estate
investment trusts and other securities. Further, there have been, and continue to be,
significant changes in the way that entrepreneurial activity is financed. These changes
undoubtedly will change the structure of the“background”risk faced by investors leading
to significant changes in household portfolios. This will ultimately lead to an evolution
in the pricing of risk in financial markets. A better understanding of the interaction
of these markets for difficult to diversify assets and “standard” financial markets will be
fundamental.

We reviewed several of the theoretical attempts to understand portfolio allocations
in the context of important nondiversifiable income. The goal of these models is to
fit the stylized facts demonstrating that human capital, privately held businesses, and
the like have an important impact both on whether households participate in financial
markets and the positions they choose in those markets. The current theoretical models
often provide predictions inconsistent with the substantial cross-sectional heterogeneity
in household portfolio choice. The models do, however, point to theoretical insights
that will be important for future models to consider. These features include frictions
such as trading costs, alternative preferences that separate risk aversion and intertemporal
preferences for consumption, and the lumpiness in consumption such as housing.

An inability to contract on assets such as private business can be explained by infor-
mational frictions that result in moral hazard or adverse selection in markets. Actively
chosen undiversified positions in a small number of stocks or an employer’s stock cannot
easily be explained by this economic mechanism. Institutional frictions, such as costs of
trading, restrictions on pension investments, costs of setting up brokerage accounts, costs
of education, and so on, are more consistent with this observed lack of diversification. In
fact, both participation in financial markets and the level of diversification of households
have increased with the rise of mutual funds and DC funds.The fall in real or perceived
costs of investing due to these institutional changes is an important determinant of the
increased stock market participation and diversification of households. Understanding
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the impact on household portfolio choice of past and predicted institutional changes
remains a fruitful area of investigation.
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Abstract

Classic asset pricing research assumes only that prices eventually reach their equilibrium value, the

route taken and speed of achieving equilibrium are not specified. The introduction of widely available

ultra high frequency data sets over the past decade has spurred interest in empiricalmarketmicrostruc-

ture. The black box determining equilibrium prices in financial markets has been opened up. Intraday

transaction by transaction dynamics of asset prices, volume, and spreads are available for analysis.

These vast data sets present new and interesting challenges to econometricians. We first discuss mod-

els for the timing of events when the arrival rate may be time varying. Models for the marks are also

discussed. Finally, while artificially discretizing the time intervals at which prices (or other marks) is a

common practice in the literature, it does not come without cost. Different discretizing schemes trade

of bias associated with temporally aggregating with variance. Averaging reduces the variability but

blurs the timing of events. We also show, in a stylized model, that causal relationships can be artificially

induced by discretizing the data.
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1. INTRODUCTION
From a passing airplane one can see the rush hour traffic snaking home far below. For
some,it is enough to know that the residents will all get home at some point.Alternatively,
from a tall building in the center of the city one can observe individuals in transit from
work to home. Why one road is moving more quickly than another can be observed.
Roads near the coastal waters might be immersed in a thick blanket of fog forcing the
cars to travel slowly due to poor visibility while roads in the highlands, above the fog,
move quickly. Traffic slows as it gets funneled through a narrow pass while other roads
with alternate routes make good time. If a critical bridge is washed out by rain then
some travelers may not make it home at all that night.

Like the view from the airplane above, classic asset pricing research assumes only that
prices eventually reach their equilibrium value, the route taken and speed of achiev-
ing equilibrium is not specified. How does the price actually adjust from one level to
another? How long will it take? Will the equilibrium be reached at all? How do market
characteristics such as transparency, the ability of traders to view others actions, or the
presence of several markets trading the same asset affect the answers to these questions?
Market microstructure studies the mechanism by which prices adjust to reflect new
information.

Answers to these questions require studying the details of price adjustment. From the
passing plane in the sky, the resolution is insufficient.With high-frequency financial data
we stand atop the tall building, poised to empirically address such questions.

1.1. Data Characteristics

With these new data sets come new challenges associated with their analysis. Modern data
sets may contain tens of thousands of transactions or posted quotes in a single day time
stamped to the nearest second. The analysis of these data are complicated by irregular
temporal spacing, diurnal patterns, price discreteness, and complex often very long lived
dependence.

1.1.1. Irregular Temporal Spacing

Perhaps most important is that virtually all transactions data are inherently irregularly
spaced in time. Figure 7.1 plots 2 h of transaction prices for an arbitrary day in March
2001. The stock used is the U.S. stock Airgas, which will be the subject of several
examples throughout the chapter.The horizontal axis is the time of day, and the vertical
axis is the price. Each diamond denotes a transaction. The irregular spacing of the data
is immediately evident as some transactions appear to occur only seconds apart while
others, for example between 10:30 and 11:00 may be 5 or 10 min apart.

Because most econometric models are specified for fixed intervals this poses an imme-
diate complication. A choice must be made regarding the time intervals over which to
analyze the data. If fixed intervals are chosen, then some sort of interpolation rule must
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Figure 7.1 Plot of a small sample of transaction prices for the Airgas stock.

be used when no transaction occurs exactly at the end of the interval. Alternatively if
stochastic intervals are used, then the spacing of the data will likely need to be taken into
account. The irregular spacing of the data becomes even more complex when dealing
with multiple series each with its own transaction rate. Here, interpolation can introduce
spurious correlations due to nonsyncronous trading.

1.1.2. Discreteness

All economic data is discrete.When viewed over long time horizons the variance of the
process is usually quite large relative to the magnitude of the minimum movement. For
transaction by transaction data, however, this is not the case and for many data sets the
transaction price changes take only a handful of values called ticks. Institutional rules
restrict prices to fall on a prespecified set of values. Price changes must fall on multiples
of the smallest allowable price change called a tick. In a market for an actively traded
stock it is generally not common for the price to move a large number of ticks from
one transaction to another. In open outcry markets the small price changes are indirectly
imposed by discouraging the specialist from making radical price changes from one
transaction to the next and for other markets, such as the Taiwan stock exchange, these
price restrictions are directly imposed in the form of price change limits from one
transaction to the next (say two ticks).The result is that price changes often fall on a very
small number of possible outcomes.
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Figure 7.2 Histogram of transaction price changes for Airgas stock.

U.S. stocks have recently undergone a transition from trading in one-eighth of a dollar
to decimalization. This transition was initially tested for seven NYSE stocks in August
of 2000 and was completed for the NYSE listed stocks on January 29, 2001. NASDAQ
began testing with 14 stocks on March 12,2001 and completed the transition on April 9,
2001. In June of 97 NYSE permitted 1/16th prices.

As an example, Fig. 7.2 presents a histogram of the Airgas data transaction price
changes after deleting the overnight and opening transactions. The sample used here
contains 10 months of data spanning from March 1, 2001 through December 31, 2001.
The horizontal axis is measured in cents. Fifty two percent of the transaction prices are
unchanged from the previous price. Over 70% of the transaction prices fall on one of
three values; no change, up one cent or down one cent. Over 90% of the values lie
between −5 and +5 cents. Because the bid and ask prices are also restricted to the same
minimum adjustment, the bid, ask, and the midpoint of the bid ask prices will exhibit
similar discreteness. Of course data prior to decimalization is even more extreme. For
these data sets it is not uncommon to find over 98% of the data taking just one of five
values.This discreteness will have an impact on measuring volatility, dependence, or any
characteristic of prices that is small relative to the tick size.

This discreteness also induces a high degree of kurtosis in the data. For example, for the
Airgas data the sample kurtosis is 66. Such large kurtosis is typical of high frequency data.

1.1.3. Diurnal Patterns

Intraday financial data typically contain very strong diurnal or periodic patterns. For most
stock markets volatility, the frequency of trades, volume, and spreads all typically exhibit
a U-shaped pattern over the course of the day. For an early reference, see McInish and
Wood (1992). Volatility is systematically higher near the open and generally just prior
to the close. Volume and spreads have a similar pattern. The time between trades, or
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Figure 7.3 Diurnal pattern for durations and standard deviation of mid-quote price changes.

durations, tend to be shortest near the open and just prior to the close. This was first
documented in Engle and Russell (1998).

Figure 7.3 presents the diurnal patterns estimated for the ARG data. The diurnal
patterns were estimated by fitting a piecewise linear spline to the duration between
trades and the squared midquote price changes. The vertical axis is measured in seconds
for the duration and (to get the two plots on the same scale) one-tenth of a cent for the
standard deviation of price changes.

Diurnal patterns are also typically present in the foreign exchange market, although
here there is no opening and closing of the market.These markets operate 24 h a day,7 days
a week. Here the pattern is typically driven by “active” periods of the day. See Andersen
and Bollerslev (1997) and Dacorogna et al. (2001) and for patterns in foreign exchange
volatility. For example,prior to the induction of the Euro,U.S. dollar exchange rates with
European countries typically exhibit the highest volatility during the overlap of time that
both the U.S. markets and the European markets were active. This occurred in the late
afternoon GMT when it is morning in the United States and late afternoon in Europe.

1.1.4. Temporal Dependence

Unlike their lower frequency counterparts,high-frequency financial returns data typically
display strong dependence.The dependence is largely the result of price discreteness and
the fact that there is often a spread between the price paid by buyer and seller initiated
trades. This is typically referred to as bid-ask bounce and is responsible for the large
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first-order negative autocorrelation. Bid-ask bounce will be discussed in more detail
in Section 2.3. Other factors leading to dependence in price changes include traders
breaking large orders up into a sequence of smaller orders in hopes of transacting at a
better price overall.These sequences of buys or sells can lead to a sequence of transactions
that move the price in the same direction. Hence at longer horizons we sometimes find
positive autocorrelations. Figure 7.4 contains a plot of the autocorrelation, function for
changes in the transaction, and midpoint prices from one transaction to the next for
the Airgas stock using the 10 months of data. Again, overnight price changes have been
deleted.

Similar to lower frequency returns, high-frequency data tends to exhibit volatility
clustering. Large price changes tend to follow large price changes and vice-versa. The
ACF for the absolute value of the transaction price change for ARG is shown in Fig. 7.5.
Because the diurnal pattern will likely influence the autocorrelation function, it is first
removed by dividing the price change by the square root of its variance by time of day.
The variance by time of day was estimated with linear splines. The usual long set of
positive autocorrelations is present.

The transaction rates also exhibit strong temporal dependence. Figure 7.6 presents
a plot of the autocorrelations for the durations between trades after removing the
deterministic component discussed earlier. Figure 7.7 presents the autocorrelations for
the log of volume. Both series exhibit long sets of positive autocorrelation spanning
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many transactions. These autocorrelations indicate clustering of durations and volume,
respectively.

Under temporal aggregation the dependence in the price changes tends to decrease.
However, even at intervals of a half hour or longer negative first-order autocorrelation
often remains.



390 Jeffrey R. Russell and Robert F. Engle

�0.05

0

0.05

0.1

0.15

0.2

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188199

Figure 7.7 Autocorrelations for the log of volume.

1.2. Types of Economic Data
We begin this section with a general discussion of the types of high-frequency data cur-
rently available.With the advancement and integration of computers in financial markets,
data sets containing detailed information about market transactions are now common-
place. High-frequency data generally refers to data that is collected at a very rapid rate.
The highest rate at which data can be collected is every time that new information arrives
and is referred to as ultrafrequency data. The information that arrives can take different
forms in different data sets and different markets. The most fundamental data must be
prices and quantities, however, there might be more than one type of price and more
than one type of quantity that can be reported. Many data sets report transaction prices
that are the price paid for in a given trade and the quantity (number of shares) trans-
acted. These are usually referred to as transaction prices and trade size. A second type
of price and quantity data is the limit order book. The limit order book is a historical
reference to the physical books that the specialist on the NYSE would use to keep track
of orders that had been placed to buy or sell fixed quantities once the price reached
a designated price level. The limit order book refers to a set of prices and quantities
available for sale (on the ask side of the market) and buy (on the bid side of the mar-
ket). New information arrival might correspond to a change in any of these prices or
quantities.

In most markets, trades or updates to the limit order book do not occur at regularly
spaced intervals, but rather at the pace of the market. Some periods might be active with
many trades or updates to the limit order book occurring over short periods of time and
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other periods have little information occurring. Most data sets contain one observation
each time that a new piece of information arrives and a time stamp indicating a recorded
time at which the transaction or change took place.

Markets can be centralized (a common point through which all trades occur) or decen-
tralized (trades occur bilaterally between parties). The NYSE and the Paris Bourse are
two such markets commonly analyzed.These centralized markets might be order-driven
(such as NASDAQ or the Paris Bourse) where a computer algorithm matches to market
participant orders or they might be open outcry where there is a centralized trading floor
that market participants must trade through (like the Chicago Mercantile Exchange or
the Chicago Board Options Exchange). In either case, the data sets constructed from
these markets typically contain detailed information about the transactions and quotes
for each asset traded on the market. The exact time of a transaction usually down to
the second, and the price and quantity transacted are common data. Similarly, the bid
and ask quotes are also generally available along with a time stamp for when the quotes
became active. The trades and quotes (TAQ) data set distributed by the NYSE is the
leading example of this type of data for US equities.

The currency exchange market is a commonly analyzed decentralized market. Here
the market participants are banks that communicate and arrange transactions on a one-
on-one basis with no central recording institution. Quotes are typically fed through
Reuters for customers with a Reuters account to view continuous updates of quotes.
Olsen and Associates has been downloading and storing this quote data and made it
available for academic research. The most comprehensive data sets contain all quotes
that pass through the Reuters screens and an associated time stamp. As the transactions
do not pass through a centralized system there is no comprehensive source for transac-
tion data.

The definition of the quote can vary across markets with important implications.
Foreign exchange quotes are not binding. Quotes from the NYSE are valid for a fixed
(typically small) quantity or depth. Quotes in electronic markets can come in various
forms. For example, quotes for the Paris bourse are derived from the limit order book
and represent the best ask and bid prices in the book. The depth here is determined
by the quantity of volume at the best prices. Alternatively, the Taiwan stock exchange,
which is an electronic batch auction market, posts a “reference price” derived from the
past transaction and is only a benchmark from which to gauge where the next transaction
price may fall. These difference are important not only from an economic perspective
but also determine the reliability of the data. Nonbinding quotes are much more likely
to contain large errors than binding ones.

Many empirical studies have focused on the stock and currency exchange high-
frequency data. However, data also exists for other markets, most notably the options
and futures markets. These data sets treat each contract as a separate asset reporting time
quotes and transactions just as for the stocks.The Berkeley Options data base is a common
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source for options data. New high-frequency data sets have been created for fixed income
as well. GovPX now offers tick-by-tick U.S. treasury prices and volume.

Other specialized data sets are available that contain much more detailed information.
The TORQ data set, put together by Joel Hasbrouck and the NYSE, was one of the
first such data sets widely distributed. This data set is not very comprehensive in that it
contains only 144 stocks traded on U.S. markets covering 3 months in the early 1990s.
However, it contains detailed information regarding the nature of the transactions includ-
ing the order type (limit order, market order, etc.) as well as detailed information about
the submission of orders. The limit order information provides a widow into the limit
order book of the specialist, although it cannot be exactly replicated. The Paris Bourse
data typically contain detailed information about the limit order book near the current
price.

1.3. Economic Questions
Market microstructure economics focuses on how prices adjust to new information and
how the trading mechanism affects asset prices. In a perfect world, new information
would be immediately disseminated and interpreted by all market participants. In this
full information setting prices would immediately adjust to a new equilibrium value
determined by the agents preferences and the content of the information. This imme-
diate adjustment, however, is not likely to hold in practice. Not all relevant information
is known by all market participants at the same time. Furthermore, information that
becomes available is not processed at the same speed by all market participants imply-
ing variable lag time between a news announcement and the agents realization of price
implications. Much of modern microstructure theory is therefore driven by models of
asymmetric information and the relationship between traded prices and the fair market
value of the asset.

In the simplest form, there is a subset of the agents that are endowed with superior
knowledge regarding the value of an asset. These agents are referred to as privately
informed or simply informed agents. Agents without superior information are referred
to as noise or liquidity traders and are assumed to be indistinguishable from the informed
agents. Questions regarding the means by which the asset price transitions to reflect the
information of the privately informed agents can be couched in this context. Early
theoretical papers utilizing this framework include Glosten and Milgrom (1985), Easley
and O’Hara (1992), Copeland and Galai (1983), and Kyle (1985). A very comprehensive
review of this literature can be found by O’Hara (1995).

The premise of these models is that market makers optimally update bid and ask
prices to reflect all public information and remaining uncertainty. For the NYSE it
was historically the specialist who plays the role of market maker. Even in markets
without a designated specialist bid and ask quotes are generally inferred either explicitly
or implicitly from the buy and sell limit orders closest to the current price. Informed
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and uniformed traders are assumed to be indistinguishable when arriving to trade so the
difference between the bid and the ask prices can be viewed as compensation for the
risk associated with trading against potentially better informed agents. Informed traders
will make profitable transactions at the expense of the uninformed.

In this asymmetric information setting, two types of prices can be defined. Prices
that trades occur at and a notional fair market value that reflects both public and private
information.We call the prices that trades occur at a“transaction price,”although it could
be a posted bid, ask, or midpoint of the bid and ask prices. Following the microstructure
literature, we will call the notional fair market value an “efficient price” in the sense that
it reflects all information, both public and private. If the two prices do not coincide then
trades occur away from their efficient values so there is a gain to one party and a loss to
another in a transaction. Natural questions arise. The larger these deviations, the larger
the loss to one party. Measures of market quality can be constructed to reflect the size of
these deviations.The simplest example would be half the bid-ask spread. If prices occur
at the bid or the ask price and the midpoint of the bid and ask quotes are on average
equal to the efficient price, then this distance reflects the average loss to trader executing
a market order and the gain to the trader executing the limit order. How do the rules of
trade affect market quality? How is market quality affected by the amount of asymmetric
information? How does market quality vary across stocks with different characteristics
such as volatility or daily volume?

In a rational expectations setting market makers learn about private information by
observing the actions of traders. Informed traders only transact when they have private
information and would like to trade larger quantities to capitalize on their information
before it becomes public.The practical implications is that characteristics of transactions
carry information. An overview of the predictions of these models is that prices adjust
more quickly to reflect private information when the proportion of uninformed traders is
higher.Volume is higher, transaction rates are higher when the proportion of uninformed
traders is higher.The bid ask spread is therefore predicted to be increasing in volume and
transaction rates. This learning process is central in the study of market microstructure
data and is often referred to as price discovery. Specific examples include price impact
studies where the impact of an event such as a trade on future prices is studied. Related
questions involve multivariate studies of the prices of a single asset traded in multiple
markets. Here questions regarding the origin of price discovery are relevant. For example,
does price discovery tend to occur in the options derivative market or in the underlying.
Similar questions can be asked in regional markets when one asset is traded, say in a U.S.
market and a European market.

A related issue is market quality. In an ideal market, a trader should be able to transact
large quantities at a price very close to the fair value of the asset, over a short period of
time. In reality, the rules of the market, including the algorithms used to match buyers
with sellers,who trades first (priority issues),and the cost or incentive structure for posting
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limit orders all play a role in the overall quality of the market. Accurate measurement of
market quality is another central area in market microstructure. These measures are as
simple as bid ask spreads but can also be modeled with more sophisticated techniques.

Empirical market microstructure plays a role in two larger areas. First, an ideal market
would have transaction prices that accurately reflect all information.That is, the efficient
price and the transaction prices would coincide. In absence of this perfect world, the
deviation would be as small as possible. Because the rules of trade, that is the market
structure, play a role in this relationship,market designers play a large role in determining
market quality with the rules imposed. This can be a natural objective or imposed by
government regulations. A more complete understanding about market features across
different trading rules and platforms aides in market design.

Recently, a second role of microstructure has emerged. Market participants may pre-
fer assets traded in more desirable, higher quality markets. In this case, market quality
may have an effect on how traders value an asset and therefore potentially reflect their
equilibrium value. Following the analogy in the introduction, a house with a sole access
road that is occasionally impassable due to flooding might reduce the value of the home.
The price path towards the equilibrium actually affects the equilibrium value.

Clearly assessing the market microstructure effects requires studying data at an intraday,
high frequency. Data aggregated over the course of a day will not contain the detailed
information of price adjustment discussed in this section. Implementing the econometric
analysis, however, is complicated by the data features discussed in the previous section.
This chapter provides a review of the techniques and issues encountered in the analysis
of high-frequency data.

2. ECONOMETRIC FRAMEWORK
Empirical answers to the economic questions posed in the previous section require
econometric models for high frequency, intraday data. In this section, we begin with a
fundamental description of the data that accounts for the irregular spacing of the data. As
such, all models considered in this review can be viewed through a single lens. The goal
of this section is to specify this structure from a purely econometric perspective. Later
sections will present specific models that are useful for addressing specific questions.

In the statistics literature, models for irregularly spaced data have been referred to as
a point process and a large body of literature has been produced studying and applying
models of point processes. Examples of applications include the study of firing of neurons
or the study of earthquake occurrences. More formally, let t1, t2, . . . , ti, . . . denote a
sequence of strictly increasing random variables corresponding to event arrival times
such as transactions. Jointly, these arrival times are referred to as a point process. It is
convenient to introduce the counting function N (t), which is simply the number of
event arrivals that have occurred at or prior to time t. This will be a step function with
unit increments at each arrival time.
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Often, there will be additional information associated with the arrival times. In the
study of earthquake occurrences, there might be additional information about the mag-
nitude of the earthquake associated with each arrival time. Similarly, for the financial
transactions data there is often a plethora of information associated with the transaction
arrival times including price, volume, bid and ask quotes, depth, and more. If there is
additional information associated with the arrival times then the process is referred to
as a marked point process. Hence, if the marks associated with the ith arrival time are
denoted by an M-dimensional vector yi then the information associated with the ith
event is summarized by its arrival time and the value of the marks [ti, yi].

Depending on the economic question at hand, either the arrival time, the marks, or
both may be of interest. Often models for how the market learns in an asymmetric
information setting operate in transaction time with calendar time playing little if any
role. In such cases, it may be sufficient to simply examine the sequence of prices and trade
characteristics without reference to the trade times. Clearly, if a model is formulated in
transaction time,and a forecast in calendar time (say 5 min) is required then it is necessary
to consider the trade times. Alternatively, the distribution of prices might depend on the
temporal spacing of the data, again requiring a model that accounts for the spacing of
the data.

We denote the filtration of arrival times and marks at the time of the ith event arrival
by t̂i = {ti, ti−1, . . . , t0} and ŷi = {yi, yi−1, . . . , y0}, respectively. The probability structure
for the dynamics associated with a stationary, marked point process can be completely
characterized and conveniently expressed as the joint distribution of marks and arrival
times given the filtration of past arrival times and marks:

f
(
tN (t)+1, yN (t)+1 |̂ tN (t), ŷN (t)

)
. (2.1)

Although this distribution provides a complete description of the dynamics of a marked
point process, it is rarely specified in practice. Often the question of economic interest
can be expressed in one of four ways. When will the next event happen? What value
should we expect for the mark at the next arrival time? What value should we expect
for the mark after a fixed time interval? Or, how long should we expect to wait for a
particular type of event to occur?

The answers to the first two questions are immediately obtained from (2.1). If the
contemporaneous relationship between yi and ti is not of interest, then the analysis may
be greatly simplified by restricting focus to the marginalized distributions provided that
the marks and arrival times are weakly exogenous. If the waiting time until the next event
regardless of the value of the marks at termination is of interest, then the marginalized
distribution given by

ft
(
tN (t)+1 |̂ tN (t), ŷN (t)

) = ∫
f
(
tN (t)+1, y|̂ tN (t), ŷN (t)

)
dy (2.2)

may be analyze. This is simply a point process where the arrival times may depend on
the past arrival times and the past marks. We will refer to this as a model for the event



396 Jeffrey R. Russell and Robert F. Engle

arrival times, or simply a point process. Examples here include models for the arrival of
traders.

More elaborate economic questions regard the dynamic of the marks such as prices.
The distribution of the mark conditional on when the next trade occurs can be obtained
from (2.1). In this case, one may be interested in modeling or forecasting the value for
the next mark, regardless of when it occurs, given the filtration of the joint process.This
is given by

fy
(
yN (t)+1 |̂ tN (t), ŷN (t)

) = ∫
f
(
t, yN (t)+1 |̂ tN (t), ŷN (t)

)
dt. (2.3)

Here, the information set is updated at each event arrival time and we refer to such
models as event time or tick time models of the marks. Of course, multiple step forecasts
from (2.2) would require, in general, a model for the marks and multiple step forecasts
for the mark in (2.3) would generally require a model for the durations.

Yet another alternative approach is to model the value of the mark to be at some future
time t + τ (τ > 0) given the filtration at time t. That is

g
(
yN (t+τ) |̂ tN (t), ŷN (t)

)
. (2.4)

Here the conditional distribution associated with the mark over a fixed time interval is
the object of interest. Theoretically, specification of (2.1) implies a distribution for (2.4),
only in very special cases,however,will this exist in closed form. Because the distribution
of the mark is specified over discrete fixed calendar time intervals, we refer to this type
of analysis as fixed interval analysis. A final approach taken in the literature is to study
the distribution of the length of time it will take for a particular type of event, defined
by the mark, to occur. For example, one might want to know how long will it take for
the price to move by more than a specified amount, or how long will it take for a set
amount of volume to be transacted.This can be expressed as the conditional distribution

g
(
t + τmin |̂ tN (t), ŷN (t)

)
, (2.5)

where if Et defines some event associated with the marks, then τmin = min
τ>0

yN (t+τ) ∈ Et .

Again, only in special cases can this distribution be derived analytically from (2.1). tmin is
called the hitting time in the stochastic process literature. Because the marks are associated
with arrival times, the first crossing times will simply be a subset of the original set of
arrival times. In the point process literature the subset of points is called a thinned point
process.

This section proceeds to discuss each of the above approaches. We begin with a dis-
cussion and examples of point processes. Next, we consider tick time models. We then
consider fixed interval analysis by first discussing methods of converting to fixed time
intervals and then give examples of various approaches used in the literature.
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2.1. Examples of Point Processes
It is convenient to begin this section with a discussion of point processes with no marks.
A point process is referred to as a simple point process if, as a time interval goes to zero, the
probability of multiple events occurring over that time interval can be made an arbitrarily
small fraction of the probability of a single event occurring. In this case, characterization
of the instantaneous probability of a single event dictates the global behavior of the
process. A convenient way of characterizing a simple point process, therefore is by the
instantaneous arrival rate of the intensity function given by:

λ(t) = lim
�t→0

Pr(N (t +�t) > N (t))

�t
. (2.6)

Perhaps the most well-known simple point process is the homogenous Poisson pro-
cess. For a homogeneous Poisson process the probability of an event arrival is constant.
A homogenous Poisson process can therefore be described by a single parameter where
λ(t) = λ. For many types of point process the assumption of a constant arrival rate is
not likely realistic. Indeed, for financial data we tend to observe bursts of trading activity
followed by lulls. This feature becomes apparent when looking at the series of the time
between transactions and durations. Figure 7.6 presents the autocorrelations associated
with the intertrade durations of Airgas. The plot indicates strong temporal dependence
in the durations between transaction events. Clearly the homogenous Poisson model is
not suitable for such data.

For a point process with no marks, Snyder and Miller (1991) conveniently classify
point processes into two categories, those that evolve with after-effects and those that do
not. A point process on [t0,∞] is said to evolve without after-effects if for any t > t0 the
realization of events on [t,∞) does not depend on the sequence of events in the interval
[t0, t). A point process is said to be conditionally orderly at time t ≥ t0 if for a sufficiently
short interval of time and conditional on any event P defined by the realization of
the process on [t0, t) the probability of two or more events occurring is infinitessimal
relative to the probability of one event occurring. Our discussion here focuses on point
processes that evolve with after-effects and are conditionally orderly. A point process
that evolves with after-effects can be conveniently described using the conditional intensity
function,which specifies the instantaneous probability of an event arrival conditional upon
filtration of event arrival times. That is, the conditional intensity is given by

λ(t|N (t), ti−1, ti−2, . . . , t0) = lim
�t→0

P
(
N (t +�t) > N (t)|N (t), tN (t), tN (t)−1, . . . , t0

)
�t

. (2.7)

The conditional intensity function associated with any single waiting time has tradition-
ally been called a hazard function in the econometrics literature. Here, however, the
intensity function is defined as a function of t across multiple events, unlike much of the
literature in macroeconomics that tends to focus on large cross-sections with a single
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spell. In addition, because the intensity function is defined conditional on past event
arrival times, Eq. (2.7) is referred to as a self-exciting point process. It was originally
proposed by Hawkes (1971) and by Rubin (1972) and are sometimes called Hawkes
self-exciting processes. Numerous parameterizations have been proposed in the statistics
literature.

Perhaps the simplest example of a point process that evolves with after effects is a
first-order homogeneous point process where

λ
(
t|N (t), tN (t)−1, tN (t)−2, . . . , t0

) = λ
(
t|N (t), tN (t)

)
, (2.8)

and the durations between events xi = ti − ti−1 form a sequence of independent random
variables. If in addition,the durations are identically distributed then the process is referred
to as a renewal process. More generally, for an mth order self-exciting point process the
conditional intensity depends on N (t) and the m most recent event arrivals.

As discussed by Snyder and Miller (1975), for example, the conditional intensity func-
tion, the conditional survivor function, and the durations or “waiting times” between
events each completely describe a conditionally orderly point process. Letting pi be a
family of conditional probability density functions for arrival time ti, the log likelihood
can be expressed in terms of the conditional density or intensity as

L =
N (T )∑
i=1

log pi(ti|t0, . . . . , ti−1), (2.9)

L =
∑
i=1

log λ(ti|i − 1, t0, . . . . , ti−1)−
T∫
t0

λ
(
u|N (u), t0, . . . . , tN (u)−1

)
du (2.10)

We now turn to some specific modeling strategies for the conditional intensity function
that are particularly well suited for the analysis of financial event arrival times.

2.1.1. The ACDModel

Engle and Russell (1998) propose the Autoregressive Conditional Duration (ACD),
which is particularly well suited for high-frequency financial data.This parameterization
is most easily expressed in terms of the waiting times (or durations) between events, xi.
The distribution of the durations is directly specified in terms of the past durations. The
ACD model is then defined by two conditions. Let ψi be the expectation of the duration
given, the past arrival time is given by

E(xi|xi−1, xi−2, . . . , x1) = ψi (xi−1, xi−2, . . . , x1) = ψi. (2.11)

Furthermore, let

xi = ψiεi, (2.12)
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where εi˜ i.i.d. with density p(ε;φ) with nonnegative support, and θ and φ are variation
free. The baseline intensity, or baseline hazard, is given by

λ0 = p(ε;φ)
S(ε;φ)

, (2.13)

where S(ε;φ) = ∫∞
ε

p(u;φ)du is the survivor function. The intensity function for an
ACD model is then given by

λ(t|N (t), ti−1, ti−2, . . . , t0) = λ0

(
t − tN (t)−1

ψN (t)

)
1

ψN (t)
. (2.14)

Because ψi enters the baseline hazard, this type of model is referred to as an accelerated
failure time model in the duration literature. The rate at which time progresses through
the hazard function is dependent upon ψi, and therefore it can be viewed in the context
of time deformation models. During some periods the pace of the market is more rapid
than other periods.

The flexibility of the ACD model stems from the variety of choices for parameteriza-
tions of the conditional mean in (2.11) and the i.i.d. density p(ε;φ). Engle and Russell
(1998) suggest and apply linear parameterizations for the expectation given by

ψi = ω +
p∑

j=1

αjxi−j +
q∑

j=1

βjψi−j . (2.15)

Because the conditional expectation of the duration depends on p lags of the duration and
q lags of the expected duration,this is termed anACD( p, q) model. Popular choices for the
density p(ε;φ) include the exponential and theWeibull distributions suggested in Engle
and Russell (1998).These models are termed the exponential ACD (EACD) andWeibull
ACD (WACD) models, respectively. The exponential distribution has the property that
the baseline hazard is monotonic. The Weibull distribution relaxes this assumption and
allows for a hump-shaped baseline intensity. An appropriate choice of the distribution,
and hence the baseline intensity will depend on the characteristics of the data at hand.
Other choices include the Gamma distribution suggested by Lunde (1998) and Zhang
et al. (2001) or the Burr distribution suggested by Grammig and Maurer (2000). These
distributions allow for even greater flexibility in the baseline hazard. Given a choice for
(2.11) and p(ε;φ) the likelihood function is constructed from (2.9).

For each choice of p(ε;φ) from (2.13) and (2.14) there is an implied intensity function.
Because the exponential distribution implies a constant hazard, the intensity function
takes a particularly simple form given by

λ(t|N (t), ti−1, ti−2, . . . , t0) = 1
ψN (t)

(2.16)
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and for the Weibull distribution the intensity is slightly more complicated

λ(t|N (t), ti−1, ti−2, . . . , t0) = γ

⎛⎝%
(
1+ 1

γ

)
ψN (t)

⎞⎠γ(
t − tN (t)

)γ−1 , (2.17)

which reduces to (2.16) when γ = 1.
The ACD( p, q) specification in (2.15) appears very similar to a ARCH( p, q) models of

Engle (1982) and Bollerslev (1986) and indeed the two models share many of the same
properties. From (2.12) and (2.15) it follows that the durations xi follow an ARMA(max
(p, q), q). Let ηi ≡ xi − ψi, which is a martingale difference by construction then

xi = ω +
max(p,q)∑

j=1

αjxi−j +
q∑

j=1

βjηi−j + ηi.

If α(L) and β(L) denote polynomials in the lag operator of orders p and q, respectively,
then the persistence of the model can be measured by α (1)+ β (1). For most duration
data this sum is very close to (but less than) one indicating strong persistence but sta-
tionarity. It also becomes clear from this representation that restrictions must be placed
on parameter values to ensure nonnegative durations.These restrictions impose that the
infinite AR representation implied by inverting the MA component must contain non-
negative coefficients for all lags.These conditions are identical to the conditions derived
in Nelson and Cao (1992) to ensure nonnegativity of GARCH models. For example,
for the ACD(1,1) model this reduces to ω ≥ 0, α ≥ 0, β ≥ 0.

Similarly, the most basic application of the ACD model to financial transactions data
is to model the arrival times of trades. In this case, it denotes the arrival of the ith
transaction and xi denotes the time between the ith and (i − 1)th transactions. Engle
and Russell (1998) propose using an ACD(2,2) model with Weibull errors to model the
arrival times of IBM transactions. Like volatility, the arrival rate of transactions on the
NYSE can have a strong diurnal (intraday) pattern.Volatility tends to be relatively high
just after the open and just prior to the close; that is, they have volatility for stocks tends
to exhibit a U-shaped diurnal pattern. Similarly, Engle and Russell (1998) document
that the durations between trades have a diurnal pattern with high activity just after the
open and just prior to the close; that is, the durations exhibit an inverse U-shaped diurnal
pattern. Let φN (t)+1 = E

(
xN (t)+1|tN (t)

)
denote the expectation of the duration given

time of day alone. Engle and Russell (1998) suggest including an additional term on
the right-hand side of (2.12) to account for a diurnal pattern so that the ith duration is
given by:

xi = φiψiεi. (2.18)

Now,ψi is the expectation of the duration after partialing out the deterministic pattern
and is interpreted as the fraction above or below the average value for that time of day.
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The expected (nonstandardized) duration is now given by φiψi. It is natural to refer to φi

as the deterministic component and ψi as the stochastic component. Engle and Russell
(1998) suggest using cubic splines to model the deterministic pattern.

The parameters of the two components as well as any parameters associated with εi can
be estimated jointly by maximizing (2.9) or,a two-step procedure can be implemented in
which first the terms of the deterministic pattern are estimated and in a second stage the
remaining parameters are estimated.The two-step procedure can be implemented by first
running an OLS regression of durations on a cubic spline. Let φ̂i denote the prediction
for the ith duration obtained from the OLS regression. Then let x̃i = xi

φi
denote the

normalized duration. This standardized series should be free of any diurnal pattern and
should have a mean near unity. An ACD model can then be estimated by MLE using the
normalized durations x̃i in place of xi in (2.9). Although this is not efficient, the two-
step procedure will provide consistent estimates under correct specification. Figure 7.3
presents a plot of the estimated diurnal pattern for ARG. This plot was constructed by
regressing the duration on a linear spline for the time of day at the start of the duration.
We find the typical inverted U-shaped pattern with durations longest in the middle of
the day and shortest near the open and close.

The similarity between the ACD model and GARCH model is greater than the
dynamic specification. Engle and Russell (1998) provide the following corollary.

Corollary 1 QMLE results for the EACD(1,1) model

If

1. Ei−1(xi) = ψi = ω + αxi−1 + βψi−1,
2. εi = xi

ψi
is

i. strictly stationary
ii. nondegenerate
iii. has bounded conditional second moments
iv. supiEi−1 [ln (β + αεi)] < 0

3. θ0 ≡ (ω,α,β) is in the interior of �

4. L(θ) = −
N (T )∑
i=1

(
log (ψi)+ xi

ψi

)
Then the maximizer of L will be consistent and asymptotically normal with a cova-

riance matrix given by the familiar robust standard errors from Lee and Hansen (1994).
This result is a direct corollary from the Lee and Hansen (1994) and Lumsdaine (1996)

proofs for the class of GARCH(1,1) models.The theorem is powerful because under the
conditions of the theorem we can estimate an ACD model assuming an exponential dis-
tribution, and even if the assumption is false,we still obtain consistent estimates although
the standard errors need to be adjusted as in White (1982). Furthermore, the corollary
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establishes that we can use standard GARCH software to perform QML estimation of
ACD models.This is accomplished by setting the dependent variable equal to the square
root of the duration and imposing a conditional mean equation of zero. The result-
ing parameter values provide consistent estimates of the parameters used to forecast the
expected duration.

In addition, an estimate of the conditional distribution can be obtained nonpara-
metrically by considering the residuals ε̂i = xi

ψ̂i

, where ψ̂i = Ei−1
(
xi |̂θ

)
. Under correct

specification the standardized durations ε̂i should be i.i.d. and the distribution can be
estimated using nonparametric methods such as kernel smoothing. Alternatively, it is
often more informative to consider the baseline hazard. Given an estimate of the density
the baseline hazard is obtained from (2.13). Engle and Russell (1998), therefore, pro-
pose a semiparametric estimation procedure where in the first step QMLE is performed
using the exponential distribution and in a second step the density of ε is estimated
nonparametrically. This is referred to as a semiparametric ACD model.

ACD Model Diagnostics The properties of the standardized duration also provide a
means to assess the goodness of fit of the estimated model. For example, the correlation
structure or other types of dependence can be tested. Engle and Russell (1998) suggest
simply examining the Ljung-Box statistic, although other types of nonlinear dependence
can be examined.

Engle and Russell (1998) suggest examining autocorrelations associated with nonlinear
transformations of the residuals ε̂i, for example, squares or square roots.An alternative test
of nonlinearity advocated in Engle and Russell (1998) is to divide the diurnally adjusted
durations into bins.Then regress ε̂i on a constant and indicators for the magnitude of the
previous duration. One indicator must be omitted to avoid perfect multicollinearity. If
the ε̂i are indeed i.i.d., then there should be no predictability implied from this regression.
Often these tests suggests that the linear specification tends to over predict the duration
following extremely short or extremely long durations.This suggests that a model where
the expectation is more sensitive following short durations and less sensitive following
long durations may work well.

Tests of the distributional assumptions of ε can also be examined. A general test is
based on the fact that the integrated intensity over the duration

ui =
ti∫

s=ti−1

λ(s|N (s), ti−1, ti−2, . . . , t0)ds, (2.19)

will be distributed as a unit exponential as discussed in Russell (1999). Often this takes a
very simple form. For example, substituting the exponential intensity (2.16) into (2.19)

simply yields the residual ûi = ε̂i = xi

φ̂iψ̂i
. Similarly, for the substituting the Weibull
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intensity (2.17) into (2.16) yields ûi =
(
%
(
1+ 1

γ

)
xi

φ̂iψ̂i

)γ

.The variance of ui should be unity

leading Engle and Russell (1998) to suggest the test statistic

√
N (T )

(̂σu − 1)√
8

, (2.20)

which should have a limiting standard normal distribution. This is a formal test for
remaining excess dispersion often observed in duration data. Furthermore, because the
survivor function for an exponential random variable U is simply exp (−u), a plot of the
the negative of the log of the empirical survivor function should be linearly related to ui

with a slope of unity hence providing a graphical measure of fit.

Nonlinear ACDModels The tests for nonlinearity discussed earlier often suggest non-
linearity. Zhang et al. (2000) propose a nonlinear threshold ACD model with this feature
in mind. Here the dynamics of the conditional mean are given by

ψi =
⎧⎨⎩
ω1 + α1xi−1 + β1ψi−1 if xi−1 ≤ a1

ω2 + α2xi−1 + β2ψi−1 if a1 < xi−1 ≤ a2,
ω3 + α3xi−1 + β3ψi−1 if a2 < xi−1

where a1 and a2 are parameters to be estimated. Hence, the dynamics of the expected
duration depend on the magnitude of the previous duration. Indeed,using the same IBM
data as analyzed in Engle and Russell (1998) they find α1 > α2 > α3 as expected from
the nonlinear test results. Estimation is performed using a combination of a grid search
across a1 and a2 and maximum likelihood for all pairs of a1 and a2. The MLE is the pair
of a1 and a2 and the corresponding parameters of the ACD model for each regime that
produces the highest maximized likelihood.

Another nonlinear ACD model applied in Engle and Lunde (2003),Russell and Engle
(2008) is the Nelson Form ACD model. The properties of the Nelson form ACD are
developed by Bauwens and Giot (2000) and for further discussion see Bauwens and Giot
(2001). We refer to this as the Nelson form ACD model because it is in the spirit of
Nelson (1991) EGARCH model and we want to minimize confusion with the version
of the ACD model that uses the exponential distribution for ε. Here the log of the
expected duration follows a linear specification.

ln(ψi) = ω +
p∑

j=1

αjεi−j +
q∑

j=1

βj ln(ψi−j).

This formulation is particularly convenient when other market variables are included in
the ACD model because nonnegativity of the expected duration is directly imposed.
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An interesting approach to nonlinearity is taken by Fernandes and Grammig (2006)
who propose a class of nonlinear ACD models.The parametrization is constructed using
the Box Cox transformation of the expected duration and a flexible nonlinear function
of εi−j that allows the expected duration to respond in a distinct manner to small and
large shocks.The model nests many of the common ACD models and is shown to work
well for a variety of duration data sets. Another interesting nonlinear model is proposed
by Bauwens and Giot (2003) who propose a model where the dynamics of the duration
model depend on the most recent price move.

ACD Example Appendix (A) contains parameter estimates for an EACD(3,2) model
estimated using the GARCH module of EVIEWS. The durations were first adjusted
by dividing by the time of day effect estimated by linear splines in Fig. 7.3. The sum
of the α and β coefficients is in excess of 0.999 but less than one indicating strong
persistence but the impact of shocks dies off after a sufficient period of time. A plot of
the autocorrelations of the residuals is presented in Fig. 7.8.The autocorrelations are no
longer all positive and appear insignificant. A formal test for the null that the first 15
autocorrelations are zero yields a 12.15 with a p-value of 67%.

A test for remaining excess dispersion in (2.20) yields a test statistic of
√

32365(1.41−1)√
8

=
26.07.There is evidence of excess dispersion indicating that it is unlikely that ε is expo-
nential. However, under the conditions of the corollary the parameter estimates can be
viewed as QML estimates. A plot of the nonparametric hazard is given in Fig. 7.9. The
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Figure 7.9 Nonparametric estimate of baseline intensity.

estimate was obtained using a nearest neighbor estimator. The hazard is nearly mono-
tonically decreasing indicating that the longer it has been since the last transaction the
less likely it is for a transaction to occur in the next instant. This is a common finding
for transactions data.

2.1.2. Thinning Point Processes

Models for regularly spaced data explain dynamics per unit time. When the spacing
is irregular, an alternative approach is available that may be more natural. Instead of
modeling the change in the mark per unit time, one could model the time until the
mark changes by some threshold value. The result is a model for the time between unit
changes in the mark as opposed to the change per unit time in standard models. For
example,when foreign exchange data are examined many of the posted quotes appear to
be simply noisy repeats of the previous posted quotes. Alternatively, for stock data, often
times many transactions are recorded with the exact same transaction price. Another
example might be the time until a set amount of volume has been transacted – a measure
related to liquidity. Models of this type focus on the distribution of τmin in (2.5). The
sequence of arrival times corresponding to the times at which the marks take special
values is called a thinned point process because the new set of arrival times will contain
fewer events than the original series.
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Engle and Russell (1998) refer to the series of durations between events constructed
by thinning the events with respect to price and volume as price-based and volume-based
durations. They suggest that the ACD model might be a good candidate for modeling
for these thinned series. In Engle and Russell (1997), a Weibull ACD model is applied
to a thinned series of quotes arrival times for the Dollar Deutchemark exchange rate
series. More formally if ti denotes the arrival times of the original series of quotes
then let τ0 = t0 Next, let N ∗(t) denote the counting function for the thinned process
defined by tN∗(t)+1 = t + τN∗(t)+1 where τN∗(t)+1 = min

τ>0

∣∣pN (t+τ) − pN∗(t)
∣∣ > c and

N (t0) = N ∗(t0) = 0. So, the sequence of durations τi corresponds to the price durations
defined by price movements greater than a threshold value c. An ACD Weibull model
appears to provide a nice fit for the thinned series.

The authors suggest that this provides a convenient way of characterizing volatility
when the data are irregularly spaced. The intuition is that instead of modeling the price
change per unit time, as is typically done for volatility models constructed using regularly
spaced data, the model for price durations models the time per unit price change. In
fact, assuming that the price process locally follows a geometric Brownian motion leads
to implied measures of volatility using first crossing time theory.

Engle and Lange (2001) combine the use of price durations discussed earlier with the
cumulative signed volume transacted over the price duration to measure liquidity. For
each of the U.S. stocks analyzed, the volume quantity associated with each transaction is
given a positive sign if it is buyer initiated and negative sign if it is seller initiated using
the rule proposed by Lee and Ready (1991). This signed volume is then cumulated for
each price duration. The cumulative signed volume, referred to as VNET, is the total
net volume that can be transacted before inducing a price move hence providing a
time varying measure of the depth of the market. For each price duration several other
measures are also constructed including the cumulative (unsigned) volume and number
of transactions. RegressingVNET on these market variables suggest that market depth is
lower following periods high transaction rates and high volatility.WhileVNET increases
with past volume it does so less than proportionally indicating that order imbalance
as a fraction of overall (unsigned) volume decreases with overall volume. Jointly these
results suggest that market depth tends to be lower during periods of high transaction
rates, high volatility, and high volume. In an asymmetric information environment this is
indicative of informed trading transpiring during period of high transaction rates and high
volume.

2.2. Modeling in Tick Time – the Marks

Often, economic hypothesis of interest are cast in terms of the marks associated with the
arrival times. For example, many hypothesis in the asymmetric information literature
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focusing on the mechanism by which private information becomes impounded asset
prices. In a rational expectations environment, the specialist will learn about a traders
private information from the characteristics of their transactions. Hence, many asym-
metric information models of financial participants have implications about how price
adjustments should depend on the characteristics of trades such as volume or frequency of
transactions. By the very nature of market micro structure field, these theories often need
to be examined at the transaction by transaction frequency. This section of this chapter
examines transaction by transaction analysis of the marks. We refer to this approach
generally as tick time analysis.

2.2.1. VARModels for Prices and Trades in Tick Time

Various approaches to tick time modeling of the marks have been considered in the
literature. The approaches are primarily driven by the economic question at hand as
well as assumptions about the role of the timing of trades. Many times the hypothesis
of interest can be expressed as how the prices adjust given characteristics of past order
flow. In this case, it is not necessary to analyze the joint distribution in (2.1) but only the
marginal distribution of the mark given in (2.3).

Perhaps the simplest approach in application is to assume that timing of past of transac-
tions has no impact on the distribution of the marks, that is fy

(
yi+1 |̂ ti, ŷi

) = fy
(
yi+1|, ŷi

)
.

This is the approach taken in Hasbrouck (1991) where the price impact of a trade on
future transaction prices is examined. Hasbrouck focuses on the midpoint of the bid and
ask quotes as a measure of the price of the asset. We refer to this as the midprice and
would appear to be a good approximation to the value of the asset given the information
available. Hasbrouck is interested in testing and identifying how buyer and seller initiated
trades differ in their impact on the expectation of the future price.

Let�mi denote the change in the midprice from the (i − 1)th to the ith transactions or
mi − mi−1.The bid and ask prices used to construct the midprice are those prevailing just
prior to the transaction time ti. Let wi denote the signed volume of a transaction taking a
positive value if the ith trade is buyer initiated and a negative value if it is seller initiated.
The direction of trade is inferred using the Lee and Ready rule. Hasbrouck persuasively
argues that market frictions induce temporal correlations in both the price and volume
series. Regulations require the specialist to operate an“orderly”market meaning that the
price should not fluctuate dramatically from one trade to the next. Hence, in the face of a
large price move, the specialist will have to take intervening transactions at intermediate
prices to smooth the price transition.Volume might also be autocorrelated as a result of
the common practice of breaking up large orders into multiple small orders to achieve at
a better overall price than had the order been executed in one large transaction. Finally,
because neither price nor direction of trades can be viewed as exogenous the series must
be analyzed jointly to get a full picture of the series dynamics. Hasbrouck analyzes the
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bivariate system using the followingVAR:

�mi =
J∑

j=1

aj�mi−j +
J∑

j=0

bjwi−j + v1i

(2.21)

wi =
J∑

j=1

cj�mi−j +
J∑

j=1

djwi−j + v2i.

Notice that the signed volume appears contemporaneously on the right-hand side of the
quote update equation. The quote revision equation is therefore specified conditional
on the contemporaneous trade. In reality, it is likely that the contemporaneous quote
revision will influence the decision to transact as the marginal trader might be enticed
to transact when a new limit order arrives improving the price. In fact, our application
suggests some evidence that this may be the case for the Airgas stock.We estimate aVAR
for price changes and a trade direction indicator variable taking the value 1 if the trade is
deemed buyer initiated and −1 if the trade is deemed seller initiated using the Lee and
Ready rule.Volume effects are not considered here. As expected, the bj coefficients tend
to be positive meaning that buys tend to lead to increasing quote revisions and sells tend
to lead to decreasing quote revisions. The market frictions suggest that the full impact
of a trade may not be instantaneous, but rather occur over a longer period of time. To
gauge this effect theVAR can be expressed as an infinite vector moving average model.
The coefficients then form the impulse response function.

The cummulants of the impulse response functions then provide a measure of the
total price impact of a trade. Because the model operates in transaction time, these price
impacts are therefore also measured in transaction time. The asymptote associated with
the cumulative impulse response function is then defined as the total price impact of a
trade. Because the data are indexed in tick time, the price impact is measured in units
of transactions. The results indicate that it can take several transactions before the full
price impact of a transaction is realized. Figure 7.10 presents a price impact plot for
the stock Airgas. Similar to Hasbrouck’s findings using the earlier data sets, we find that
the price impact can take many periods to be fully realized and that the function is
concave. The price impact is in the expected direction – buys increase the price and
sells decreased the priced. Looking at a cross-section of stocks, Hasbrouck constructs
measures for the information asymmetry by taking the ratio of the price impact of a
90th percentile volume trade over the average price. This measure is decreasing with
market capitalization suggesting that firms with smaller market capitalization have larger
information asymmetries.

Engle and Dufour also analyze the price impact of trades,but relax the assumption that
the timing of trades has no impact on the marginal distribution of price changes. Easley
and O’Hara (1992) propose a model with informed and uninformed traders. On any
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Figure 7.10 Cummulative price impact of an unexpected buy.

given day private information may or may not exist. Informed and uninformed traders
are assumed to arrive in a random fashion. Informed traders only transact when private
information is present, so on days with no private information, all transactions are by the
uninformed. Days with high transaction rates are therefore viewed as days with more
informed trading. Admati and Pfleiderer (1988) suggest that in the presence of short sales
constraints the timing of trades should also carry information. Here, long durations imply
bad news and suggest falling prices.The important thread here is that the timing of trades
should carry information. This leads Dufour and Engle (2000) to consider expanding
Hasbrouck’s VAR structure to allow the durations to impact price updates.The duration
between trades is treated as a predetermined variable that influences the informativeness
of past trades on future quote revisions. This is done with by allowing the bj parameters
in (2.21) to be time varying parameters. In particular,

bj = γj +
K∑

k=1

δkDk,i−j + ηj ln
(
xi−j

)
,

where Dk,i−j are dummy variables for the time of day and xi is the duration. Because
the bj dictate the impact of past trades on quote revisions, it is clear that these effects will
be time varying whenever the coefficients δk or ηj are nonzero. The model therefore
extends the basicVAR of Hasbrouck by allowing the impact of trades to depend on the
time of day as well the trading frequency as measured by the elapsed time between trades.
A similar adjustment is made to the coefficients dj in the trade equation.

The modified VAR is specified conditional on the durations and may therefore be esti-
mated directly. Impulse response function, however, will require complete specification
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of the trivariate system of trades quotes and arrival times. Dufour and Engle propose
using the ACD model for the arrival times.

Parameters are estimated for 18 stocks. As in the simple HasbrouckVAR the impact of
past transactions on quote revisions tends to be positive meaning that buys tend to lead
to increasing quote revisions and sells lead to decreasing quote revisions.The magnitude
of the dk indicate some degree of time of day effects in the impact of trades. Trades
near the open tend to be more informative, or have a larger price impact than trades at
other times during the day although this effect is not uniform across all 18 stocks. The
coefficients on the durations tend to be negative indicating that the longer it has been
since the last trade, the smaller the price impact will be.The cumulative impulse response
from an unanticipated order can be examined only now these functions will depend on
the state of the market as dictated by transaction rates measured by the durations. The
result is that the price impact curves will shift up when the transaction occurs with a
short duration and shift down when transactions occur with long durations.

TheVAR approach to modeling tick data is particularly appealing because of its ease
of use. Furthermore, information about the spacing of the data can be included in these
models as suggested by Dufour and Engle (2000). TheseVAR models can, of course, be
expanded to include other variables such as the bid ask spread or measures of volatility.

2.2.2. Volatility Models in Tick Time

The VARs of the previous section proved useful in quantifying the price impact of
trades. As such, they focus on the predictable change in the quotes given characteristics
of a transaction. Alternatively, we might want to ask how characteristics of a transaction
affect our uncertainty about the quote updates. Volatility models provide a means of
quantifying our uncertainty.

The class of GARCH models by Engle (1982) and Bollerslev (1986) have proven to be
a trusted work horse in modeling financial data at the daily frequency. Irregular spacing
of transaction by transaction data seems particularly important for volatility modeling
of transaction by transaction data because volatility is generally measured over fixed
time intervals. Furthermore, it is very unlikely that, all else equal, the volatility of the
asset price over a 1 h intertrade duration should be the same as the volatility over a 5 s
intertrade duration. Early work on time deformation models linked the volatility over
a fixed time interval to measures of market activity like trading volume. This includes
work by Mandelbrot andTaylor (1967),Clark (1973) andTauchen and Pitts (1983). Engle
(2000) takes a different approach and proposes adapting the GARCH model for direct
application to irregularly spaced transaction by transaction data.

Let the return from the i − 1th to the ith transaction be denoted by ri. Define the
conditional variance per transaction as

Vi−1 (ri|xi) = hi, (2.22)
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where this variance is defined conditional on the contemporaneous duration as well as
past price changes. The variance of interest, however, is the variance per unit time. This
is related to the variance per transaction as

Vi−1

(
ri√
xi
|xi

)
= σ2

i , (2.23)

so that the relationship between the two variances is hi = xiσ
2
i .

The volatility per unit time is then modeled as a GARCH process. Engle proposes an
ARMA(1,1) model for the series ri√

xi
. Let ei denote the innovation to this series. If the

durations are not informative about the variance per unit time then the GARCH(1,1)
model for irregularly spaced data is simply

σ2
i = .

ω + .
αe2

i−1 +
.
βσ2

i−1, (2.24)

where we have placed dots above the GARCH parameters to differentiate these from
the parameters of the ACD model with similar notation. Engle terms this model the
UHF-GARCH model or ultra high-frequency GARCH model.

A more general model is inspired by the theoretical models of Easley and O’Hara
(1992) and Admati and Pfleiderer (1985) discussed in Section 2.2.1 earlier.These models
suggest that the timing of transactions is related to the likelihood of asymmetric trading
and hence more uncertainty. Engle therefore proposes augmenting the GARCH(1,1)
models with additional information about the contemporaneous duration and perhaps
other characteristics of the market that might be thought to carry information about
uncertainty such as spreads and past volume.

Although the model specifies the volatility per unit time,it is still operates in transaction
time updating the volatility on a time scale determined by transaction arrivals. If calendar
time forecasts of volatility are of interest then a model for the arrival times must be
specified and estimated. Toward this end, Engle proposes using an ACD model for the
arrival times. If the arrival times are deemed exogenous, then the ACD model and the
GARCH model can be estimated separately although this estimation may be inefficient.
In particular, under the exogeneity assumption, the ACD model could be estimated first
and then the volatility model could be specified conditional on the contemporaneous
duration and expected duration in a second step using canned GARCH software that
admits additional explanatory variables.This is the approach taken in Engle (2000) where
estimation is performed via (Q)MLE. Engle considers the following specification

σ2
i = .

ω + .
αe2

i−1 +
.
βσ2

i−1 + γ1x−1
i + γ2

xi

ψi
+ γ3ψ

−1
i + γ4ξi−1,

where ψi is the expected duration obtained from an ACD model, and ξi−1 characterizes
the long run volatility via exponential smoothing of the squared return per unit time.
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An alternative approach to modeling volatility of irregularly spaced data was simul-
taneously and independently developed by Ghysels and Jasiak (1998). Here the authors
suggest using temporal aggregation to handle the spacing of the data. GARCH mod-
els are not closed under temporal aggregation so the authors propose working with
the weak GARCH class of models proposed by Drost and Nijman (1993). For the
weak GARCH class of models Drost and Nijman derive the implied low-frequency
weak GARCH model implied by a higher frequency weak GARCH model. Ghysels
and Jasiak propose a GARCH model with time varying parameters driven by the
expected spacing of the data. This approach is complicated, however, by the fact that
the temporal aggregation results apply to aggregation from one fixed interval to another,
exogenously specified, fixed interval. The spacing of the transactions data is not fixed,
and it is unlikely that transaction arrival times are exogenous. Nevertheless, the authors
show that the proposed model is an exact discretization of a time deformed diffusion
with ACD as the directing process. The authors propose using GMM to estimate the
model.

2.3. Models for Discrete Prices
Discrete prices in financial markets pose an additional complication in the analysis of
financial data. For the U.S. markets the graduation to decimalization is now complete,
but we still find price changes clustering on just a handful of values.This discreteness can
have an important influence on analysis of prices. Early analysis of discrete prices focused
on the notion of a “true” or efficient price.The efficient price is defined as the expected
value of the asset given all currently available public information. The focus of these
early studies, therefore, was on the relationship between the efficient price and observed
discrete prices. In particular, much emphasis was placed on how inference about the
efficient price is influenced by measurement errors induced by discreteness.

Let Pt denote the observed price at time t and let Pe
t denote the efficient or “true”

price of the asset at time t. Early models for discrete prices can generally be described
in the following setting:

Pe
t = Pe

t−1 + vt

Pt = round
(
Pe

t + ctQt , d
)

vt˜N
(
0, σ2

t
) , (2.25)

where d ≥ 0 is the tick size and round is a function rounding the argument to the nearest
tick. Qt is an unobserved i.i.d. indicator for whether the trade was buyer or seller initiated
taking the value 1 for buyer initiated and −1 for seller initiated trades and probability
given by 1/2.The parameter ct ≥ 0 denotes the cost of market making. It includes both
tangible costs of market making as well as compensation for risk.
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With c = 0 and σ2
t = σ2, we obtain the model of Gottlieb and Kalay (1985)1. When

d = 0 (no rounding) we obtain the model of Roll (1984). Harris (1990) considers the
full model in (2.25). In this case, we can write

�Pt = c(Qt −Qt−1)+ ηt − ηt−1 + vt , (2.26)

where ηt = Pe
t − Pt is the rounding error. The variance of the observed price series is

therefore given by

E(�Pt)
2 = σ2 + 2c2 + E(ηt+1 − ηt)

2. (2.27)

Hence, the variance of the observed transaction price will exceed the variance by an
amount that depends on the cost of market making and the discrete rounding errors.
Furthermore, the first-order serial correlation is given by

E(�Pt�Pt−1) = −c2 + E(ηt+1 − ηt) (ηt − ηt−1), (2.28)

which is shown to be negative by Harris (1990). The first-order serial correlation will
be larger in absolute value when the cost of market making is larger and depends on
the discreteness rounding errors. The Harris model goes a long way in describing key
features of price discreteness and the implications regarding inference on the efficient
price dynamics, but it is still very simplistic in several dimensions because it assumes that
both the volatility of the efficient price and the cost of market making is constant. As
new information hits the market the volatility of the efficient price will change. Because
part of the cost of making market is the risk of holding the asset, the cost of making
market will also be time varying.

Hasbrouck (1999a) builds on the previous discrete price literature by relaxing these
two assumptions – both the volatility of the efficient price and the cost of making market
are time varying. He also proposes working with bid and ask prices as opposed to the
transaction prices circumventing the need to sign trades as buyer or seller initiated. Pt
of Eq. (2.25) is therefore replaced by two prices, Pa

t and Pb
t , the bid and ask prices,

respectively, where

Pa
t = ceiling

(
Pe

t + ca
t , d

)
Pb

t = floor
(
Pe

t − cb
t , d

) , (2.29)

ca
t > 0 and cb

t > 0 are the cost of exposure on the ask and bid side, respectively. These
costs are the economic cost to the specialist including both the fixed cost of operation and
the expected cost incurred as a result of the obligation to trade a fixed quantity at these

1For simplicity we have neglected a drift term in the efficient price equation and the possibility of dividend payments considered in
Gottlieb and Kalay (1985).
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prices with potentially better informed traders. The ceiling function rounds up to the
nearest discrete tick and the floor function rounds down to the nearest tick recognizing
the market maker would not set quotes that would fail to cover the cost.

The dynamics of this model are not suited for the type of analysis presented by Harris
because of it’s more complex dynamic structure. Instead, Hasbrouck focuses on charac-
terizing the dynamics of the both cost of exposure and, second, estimating models for
the volatility of the efficient price given only observations of the perturbed discrete bid
and ask prices. Hasbrouck proposes using a GARCH model for the dynamics of the
efficient price volatility σ2

t .The dynamics of the cost of exposure is assumed to be of an
autoregressive form.

ln
(
ca
t
) = μt + α

(
ln
(
ca
t
)− μt−1

)+ ναt (2.30)
ln
(
cb
t
) = μt + α

(
ln
(
cb
t
)− μt−1

)+ ν
β
t ,

where μt is a common deterministic function of time of day and α is the common
autoregressive parameter. ναt and ν

β
t are assumed to be i.i.d. and independent of the

efficient price innovation νt .
Estimation of the model is complicated by the fact that the efficient price is inherently

unobserved – only the discrete bid and ask quotes are observed. Hasbrouck (1999a)
proposes using a non-Gaussian, nonlinear state space of Kitagawa (1987) and Hasbrouck
(1999b), and Manrique and Shephard (1997) propose using MCMC methods that treat
the price at any given date as an unknown parameter.We refer the reader to this literature
for further details on the estimation.

The early work with no time varying parameters focused on the impact of discrete
rounding errors on inference regarding the efficient price. Hasbrouck also treats the
object of interest as the dynamics of the efficient price and demonstrates a methodology
to study the second moment dynamics of the efficient price while accounting for the
discrete rounding errors. In addition, the model allows for asymmetric cost of exposure.
In some states of the world the specialist may set quotes more conservatively on one side
of the market than the other.

More recently, Zhang et al. (2008) appeal to the asymmetric information microstruc-
ture theory that suggests that transaction characteristics should influence the market
makers perception of the exposure risk. They include in the cost of exposure dynamics
(2.30) measures of the order imbalance and overall volume and find that the cost of
exposure is affected by order imbalance. In particular, unexpectedly large buyer initiated
volume tends to increase the cost of exposure on the ask side and decrease the cost of
exposure on the bid side with analogous results for unexpected seller initiated volume.
These effects are mitigated, however, the larger the total volume transacted.

If the structural parameters are not of primary interest, then an alternative is to directly
model transaction prices with a reduced form model for discrete valued random variables.
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This is the approach taken in Hausman Lo and MacKinlay (1992).They propose modeling
the transaction by transaction price changes with an ordered Probit model. In doing so,
the structural models linking the unobserved efficient price to the observed transaction
price is replaced by a reduced form Probit link. The model is applied to transaction by
transaction price dynamics. Let k denote the number of discrete values that the price
changes can take which is assumed to be finite. Let si denote a vector of length k with
values given by the jth column of the kxk identity matrix, if the jth state occurs on the
ith transaction. Let πi denote a k-dimensional vector with jth, where πi = E (si|Ii−1)

and Ii is the information set associated with the ith transaction. Clearly, the jth element
of xi denotes the conditional probability of the jth state occurring. At the heart of the
Probit model lies the assumption that the observed discrete transaction price changes can
be represented as a transformation of a continuous latent price given by �P∗˜i N

(
μi, σ2

i

)
,

where μi and σ2
i are the mean and variance of the latent price given Ii−1.The Hausman

Lo and MacKinlay model assumes that the jth element of πi is given by

π
j
˜ FP∗i

(
cj−1

)− FP∗i
(
cj
)
, (2.31)

where FP∗i is the cdf associated with the price changes �P∗i and cj , j = 1, k − 1 are time
invariant parameters.

Because bid-ask bounce induces dependence in the price changes, it is natural to
allow the conditional mean of price changes to depend on past price changes. Hausman
Lo and Mackinlay are particularly interested in testing asymmetric information theories
regarding the information content in a sequence of trades. In particular, they study how
transaction prices respond to a sequence of buyer initiated trades versus a sequence of
seller initiated trades. By conditioning on recent buys and sells the authors find evidence
that persistent selling predicts falling prices and persistent buying predicts rising prices.
The authors also suggest that the conditional variance may depend on the contempora-
neous duration so that the variance associated with a price change over a long duration
may not be the same as the variance of a price change associated with a relatively short
duration. Indeed, they find that long durations lead to higher variance per transaction.

Russell and Engle (2002) are also interested in reduced form models for discrete prices
that explicitly account for the irregular spacing of the data.They propose joint modeling
the arrival times and the price changes as a marked point process.The joint likelihood for
the arrival times and the price changes is decomposed into the product of the conditional
distribution of the price change given the duration and the marginal distribution of the
arrival times that are assumed to be given by an ACD model. More specifically if xi
denotes the ith intertransaction duration and ẑi = (zi, zi−1, zi−2 . . .) then

f
(
xi+1,�pi+1| x̂i, �̂pi

) = ϕ
(
�pi+1| x̂i+1, �̂pi

)
χ
(
xi+1| x̂i, �̂pi

)
,

where ϕ denotes the distribution of price changes given the past price changes and
durations as well as the contemporaneous duration. χ denotes the distribution of price
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changes given the past price changes and durations. Russell and Engle propose using the
ACD model for the durations and the autoregressive conditional multinomial (ACM)
model for the conditional distribution of the discrete price changes. A simple model
for the price dynamics might assume aVARMA model for the state vector si. Because
the state vector is simply a vector of ones and zeros, its expectation should be bounded
between zero and one. Russell and Engle use the logistic transformation to directly
impose this condition. Using the logistic link function theVARMA model is expressed
in terms of the log odds. Let hj denote a k − 1 vector with jth element given by ln

(
πj/πk

)
.

Let s̃i and π̃i denote k − 1 dimensional vectors consisting of the first k − 1 elements of
si and πi. Hence, the kth element has been omitted and is referred to as the base state.
Then the ACM(u, v) model with duration dependence is given by:

hi = c +
u∑

m=1

Am( s̃i−m − π̃i)+
v∑

m=1

Bmhi−m +
w∑

m=1

χm ln(xi−m+1), (2.32)

where Am and Bm are (k − 1) x (k − 1) parameter matrices and ω and χm are k − 1
parameter vector. Given the linear structure of the log oddsVARMA the choice of the
base state is arbitrary. The first k − 1 probabilities are obtained by applying the logistic
link function

πi = 1
1+ ι′ exp(hi)

exp (hi), (2.33)

where ι′ is a k − 1 vector of ones and exp(hi) should be interpreted as applying the
exponential function element by element.The omitted state is obtained by imposing the
condition that the probabilities sum to 1. The ACD( p, q) specification for the durations
allows feedback from the price dynamics into the duration dynamics as follows:

ln(ψi) = ω +
p∑

m=1

αm
xi−m

ψi−m
+

q∑
m=1

βm ln(ψi−m)+
r∑

m=1

(
ρm�pi−m + ζm�p2

i−m
)
.

For the stocks analyzed,the longer the contemporaneous duration the lower the expected
price change and large price changes tend to be followed by short durations.

Another reduced form model for discrete prices is proposed by Rydberg and
Shephard (2002). The model decomposes the discrete price changes into the trivari-
ate process �Pi = ZiDiMi, where Zi is an indicator for the ith transaction price change
being nonzero and is referred to as activity. Conditional on a price move (Zi �= 0), Di
takes the value of 1 or −1 denoting an upward or downward price change, respectively.
Given a nonzero price change and its direction, Mi is the magnitude of the price change
given it is nonzero and the direction.The authors suggest decomposing the distribution
of price changes given an information set Ii Pr(�Pi|Ii−1) = Pr(Zi|Ii−1)Pr(Di|Zi, Ii−1)

Pr(Mi|Zi, Di, Ii−1). The authors propose modeling the binary variables Zi and Di fol-
lowing an autoregressive logistic process first proposed by Cox (1958). A simple version
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for the activity variable is given by:

ln
(

Pr(Zi = 1)

1− Pr(Zi = 1)

)
= c +

u∑
m=1

Zi−m. (2.34)

The direction indicator variable is modeled in a similar fashion. Finally, the magnitude
of the price change is modeled by a distribution for count data. Hence, it is positively
valued over integers. The integers here are measured in units of ticks, or the smallest
possible price change.

The Russell–EngleACM approach and the Rydberg–Shephard components model are
very similar in spirit both implementing an autoregressive structure. While this decom-
position breaks the estimation down into a sequence of simpler problems it comes with
a cost. To estimate the model sequentially the first model for the activity cannot be
a function of lagged values of Pr(Di|Ii−1) or Pr(Mi|Ii−1). Similarly the model for the
direction cannot depend on the past probability associated with the magnitude. The
importance of this restriction surely depends on the application at hand.A second advan-
tage of the Rydberg–Shephard model easily accounts for a large number of states (possibly
infinite).

2.4. Calendar Time Conversion
Most financial econometric analyses are carried out in fixed time units. These time
intervals for many years were months, weeks, or days, but now time intervals of hours,
five minutes, or seconds are being used for econometric model building. Once the
data are converted from their natural irregular spacing to regular spaced observations,
econometric analysis typically proceeds without considering the original form of the
data. Models are constructed for volatility, price impact, correlation, extreme values, and
many other financial constructs. In this section,we discuss the most common approaches
used to convert irregularly spaced data to equally spaced observations, and in the next
sections we will examine the implications of this conversion.

Suppose the data on prices arrive at times {ti; i = 1, . . . , N (T )} so that there are N
observations occurring over time (0, T ).These times could be times at which transactions
occur and the price could be either the transaction price or the prevailing midquote at
that time.An alternative formulation would have these times as the times at which quotes
are posted and then the prices are naturally considered to be midquotes. Let the log of
the price at time ti be denoted p∗i .

The task is to construct data on prices at each fixed interval of time. Denoting the
discrete time intervals by integers of t = 1, . . . , T , a task is to estimate pt . The most
common specification is to use the most recent price at the end of the time interval as
the observation for the interval. Thus:

pt = p∗i where ti ≤ t < ti+1. (2.35)
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For example, Huang and Stoll (1994) use this scheme where p is the prevailing
midquote at the time of the last trade. Andersen et al. (2001) use the last trade price.

Various alternative schemes have been used. One could interpolate the price path
from some or all of the p∗ observations and then record the value at time t. For example,
smoothing splines could be fit through all the data points. A particularly simple example
of this uses the weighted average of the last price in one interval and the first price in
the next interval:

p̃t =
(
λp∗i + (1− λ) p∗i+1

)
where ti ≤ t < ti+1, and λ = t − ti

ti+1 − ti
. (2.36)

Andersen et al. (2001, 2002) use this procedure with the natural log of the midpoints
of the quotes to get 5 and 30 min calendar time data.The advantage of this formulation is
supposed to be its reduced sensitivity to measurement error in prices. Clearly this comes
at a cost of using future information. The merits of such a scheme must be evaluated in
the context of a particular data generating process and statistical question.

A third possibility is adopted by Hasbrouck (2002). Because the time of a trade is
recorded only to the nearest second, then if t is measured in seconds, there is at most
one observation per time period. The calendar price is either set to this price or it is
set to the previous period price.This version follows Eq. 2.35 but does not represent an
approximation in the same sense.

Returns are defined as the first difference of the series.

y∗i = p∗i − p∗i−1, yt = pt − pt−1, and ỹi = p̃i − p̃i−1, (2.37)

Thus, y∗ defines returns over irregular intervals while y defines returns over calendar
intervals. In the case of small calendar intervals, there will be many zero returns in y. In
this case, there are some simplifications. Means and variances are preserved if there never
is more than one trade per calendar interval

N (T )∑
i=1

y∗i =
T∑

t=1

yt and
N (T )∑
i=1

(
y∗i
)2 =

T∑
t=1

y2
t . (2.38)

If the calendar time intervals are larger, then means will still be preserved but not
variances as there may be more than one price in a calendar interval.

N (T )∑
i=1

y∗i =
T∑

t=1

yt and
N (T )∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

multiple
trades

y∗i

⎞⎟⎟⎟⎟⎟⎟⎠

2

=
T∑

t=1

y2
t . (2.39)

However, if the prices are Martingales, then the expectation of the cross products is
zero and the expected value and probability limit of the calendar time and event time
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variances is the same. The Martingale assumption will be (nearly) satisfied for returns
constructed over longer time horizons but is unlikely to hold for returns constructed over
short-time horizons. Over short-time horizons, market microstructure effects induce
autocorrelation in the return series as shown in Fig. 7.4.

When prices are interpolated, these relations no longer hold. In this scheme, there
would be many cases of multiple observations in a calendar interval. The mean will
approximately be the same in both sets of returns; however, the variances will not. The
sum of squared transformed returns is given by:

N (T )∑
i=1

[̃yi]2 =
N (T )∑
i=1

[
λip∗i + (1− λi) p∗i−1 − λjp∗j −

(
1− λj

)
p∗j−1

]2

=
N (T )∑
i=1

[
λi
(
p∗i − p∗i−1

)+ (
p∗i − p∗j

)+ (
1− λj

)(
p∗j − p∗j−1

)]2
. (2.40)

where i and j are the events just after the end points of the calendar intervals. In the
right-hand side of expression 2.40, the returns will all be uncorrelated if the y∗ are
Martingale differences, hence the expected variance and the probability limit of the
variance estimators will be less than the variance of the process. Furthermore, the returns
will be positively autocorrelated because they are formulated in terms of future prices.
This is easily seen in Eq. 2.40 because the change in price around the interval endpoints
is included in both adjacent returns.

2.4.1. Bivariate Relationships

A different question that could be considered is how irregular spacing of the data impacts
bivariate analysis. Several papers have studied the nonsynchronous trading of more than
one asset effects regression estimates to calculate market betas. Early work includes Fisher
(1966), Dimson (1979), and the more explicit models of Scholes and Williams (1977),
Cohen et al. (1978), Dimson (1979), and Lo and MacKinlay (1990). The early papers
focus on empirical applications of the CAPM and Arbitrage Pricing theory with non-
synchronous daily returns.We consider a different structure that is more compatible with
high-frequency data. Our setup closely mirrors the setup of Lo and MacKinlay (1990)
but our goal differs in that we are concerned with high-frequency bivariate regression
coefficients while Lo and MacKinlay are concerned with autocorrelation structure. Our
setup considers two correlated assets with Martingale prices. One of these asset prices
is only observed at random time periods while the other is continuously observable.
In this case the stochastic process of the infrequently observed process is defined on
times {ti; i = 1, . . . , N (T )}. Let the log price of the second asset be qt , and let its return,
measured respectively in the first asset trade time and in calendar time, be:

z∗ti ≡ z∗i = qti − qti−1 , zt = qt − qt−1.
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The return on the first asset is given by

y∗i = βz∗i + ε∗i , (2.41)

where the innovation is a Martingale difference sequence, independent of z,with poten-
tial heteroskedasticity because each observation may have a different time span. Because
this model is formulated in transaction time, it is natural to estimate the unknown param-
eter beta with transaction time data. It is straightforward to show that least squares will
be consistent.

Calendar time data on y can be constructed from (2.41) and (2.37). Consider the most
disaggregated calendar time interval and let dt be a dummy variable for the time periods
in which a price is observed on the first asset. Then a useful expression for yt is

yt = dt

(
(βzt + εt)+ (1− dt−1)(βzt−1 + εt−1)

+ (1− dt−2)(βzt−2 + εt−2)+ · · ·
)

. (2.42)

With this data and the comparable calendar data on z, we are in a position to estimate
beta by ordinary least squares in calendar time. The estimator is simply

β̂ =

T∑
t=1

ztyt

T∑
t=1

z2
t

, (2.43)

which has an interesting probability limit under simplifying assumptions.

Theorem 1 If

a) (zt , εt)are independent Martingale difference sequences with finite variance
b) dt ˜ independent Bernoulli with parameter π

Then

plimβ̂ = πβ (2.44)

Proof Substituting and taking probability limits:

plimβ̂ = 1
σ2

z
E [ztdt((βzt + εt)+ (1− dt−1)(βzt−1 + εt−1)+ · · · )] . (2.45)

Writing the expectation of independent variables as the product of their expectation
gives

plimβ̂ = 1
σ2

z

[
E(dt)E

(
βz2

t + ztεt
)+

E(dt)E(zt)E(1− dt−1)E(βzt−1 + zεt−1)+ · · ·

]
= βπ.
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QED
The strking result is that the regression coefficient is heavily downward biased purely because of the
nontrading bias. If trading is infrequent, then the regression coefficient will be close to zero. In this
setting, researchers will often regress y on many lags of z.Suppose the regression includes k lags of z.

yt = β0zt + β1zt−1 + · · · + βkzt−k + εt . (2.46)

The result is given byTheorem 2.

Theorem 2 Under the assumptions of Theorem 1 the regression in (2.46) has a probability
limit

plimβ̂K = π (1− π)j−1β,

and the sum of these coefficients approaches β as k gets large.

Proof Because z is a Martingale difference sequence, the matrix of regressors approaches
a diagonal matrix with the variance of z on the diagonals. Each row of the z′y matrix
has dummy variables dt (1− dt−1) (1− dt−2) . . .

(
1− dt−j

)
multiplying the square of z.

The result follows from independence.

QED
The regression coefficients decline from the contemporaneous one but ultimately summing up to the
total impact of asset one on two.The result is, however, misleading because it appears that the price
movements in asset two predict future movements in asset one.There appears to be causality orprice
discovery between these assets merely because of the random trade times.

Similar results can be found in more general contexts including dynamic structure in the price
observations and dependence with the z’s. Continuing research will investigate the extent of the
dependence and how results change with the economic structure.

3. CONCLUSION
The introduction of widely available ultra high-frequency data sets over the past decade
has spurred interest in empirical market microstructure. The black box determining
equilibrium prices in financial markets has been opened up. Intraday transaction by
transaction dynamics of asset prices, volume, and spreads are available for analysis. These
vast data sets present new and interesting challenges to econometricians.

Because transactions data are inherently irregularly spaced we view the process as a
marked point process. The arrival times form the points and the characteristics of the
trades form the marks. We first discuss models for the timing of events when the arrival
rate may be time varying. Since the introduction of theACD model of Engle and Russell
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(1998), numerous other models for the timing of event arrivals have been proposed and
applied to financial data.The models have been applicable to transaction arrival times or,
if some arrival times are thought to be more informative than others the point process
can be “thinned” to contain only those arrival times with special information. Examples
include volume-based durations that correspond to the time it takes for a specified
amount of volume to be transacted. Another example is price durations that correspond
to the time it takes for the price to move a specified amount. These models can be
thought of as models of volatility where the volatility is intuitively the inverse of our
usual measures of volatility – namely the time it takes for the price to move a specified
amount.

Models for the marks are also discussed. Often the focus is on the transaction price
dynamics or joint modeling of transaction prices and volume. If the spacing of the data is
ignored then the modeling problem can be reduced to standard econometric modeling
procedures of VARs, simple linear regression, or GARCH models. Models that address
the inherent discreteness in transaction by transaction prices are also discussed.

Alternatively, if the spacing of the data is thought to carry information then the
simple approaches may be mispecified. Choices then include conditioning the marks on
the arrival times as in Hausman Lo and Mackinlay, or, if forecasting is of interest joint
modeling of the arrival times.The latter approach is considered in Engle (2000), Russell
and Engle (2005), Rydberg and Shephard (2002), or Ghysels (1999) among others.

Finally, although artificially discretizing the time intervals at which prices (or other
marks) is a common practice in the literature, it does not come without cost. Different
discretizing schemes trade of bias associated with temporally aggregating with variance.
Averaging reduces the variability but blurs the timing of events.We also show,in a stylized
model, that causal relationships can be artificially induced by discretizing the data. Care
should be taken in interpreting results from this type of analysis.

An exciting direction of microstructure research lies at the intersection of asset pricing
and microstructure.This literature is still getting off the ground but promising directions
can be found in the summary by O’Hara (2003).This literature seeks to demonstrate that
microstructure has importance beyond market design questions.The path taken to a new
equilibrium price may have an impact on the equilibrium value. A second exciting new
area is the intersection between volatility estimators and microstructure affects. Recently
proposed volatility estimators use the sum of very high frequency squared returns to
approximate the daily variance the return. When sampled at very high frequency, the
squared returns are dominated by microstructure effects. When sampled over longer
horizons the return is dominated by changes in the efficient price. Bandi and Russell
(2008) survey this literature. Optimal execution is another area of practical and growing
interest. Empirical microstructure models of price impact are used to optimally break
up a large order into smaller pieces and trade over a time interval rather than all at
once. The implications of these strategies are a reduction in expected trade cost but an
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increase in risk as shares executed at the end of the trading period will occur at a price
potentially very different from trades completed at the beginning of the trading period,
see Engle and Ferstenberg (2007) for a theoretical discussion and Engle et al. (2008) for
applications.

APPENDIX A: EACD(3,3) PARAMETER ESTIMATES USING EVIEWS
GARCHMODULE

Coefficient Robust std. err.

ω 0.004244 0.000855
α1 0.070261 0.007157
α2 0.038710 0.012901
α3 −0.055966 0.008640
β1 0.835806 0.125428
β2 0.107894 0.118311

where ψi = ω +
3∑

j=1
αjxi−j +

2∑
j=1

βjψi−j

Model diagnostics

APPENDIX B: VAR PARAMETER ESTIMATES

Price equation Trade equation
Variable Coefficient Std. error Coefficient Std. error

c −0.006553 0.000284 0.509648 0.004785
wi 0.014230 0.000430

wi−1 0.000891 0.000493 0.298146 0.005557
wi−2 −0.000175 0.000493 0.059228 0.005797
wi−3 −0.000533 0.000493 0.036385 0.005803
wi−4 0.000176 0.000493 0.026645 0.005798
wi−5 −0.001295 0.000425 0.035205 0.005558
*mi−1 −0.262310 0.005734 0.250909 0.071635
*mi−2 −0.121951 0.005934 0.108735 0.081696
*mi−3 −0.054038 0.005968 −0.000260 0.084009
*mi−4 −0.026460 0.005934 −0.022889 0.081695
*mi−5 −0.011011 0.005734 −0.220448 0.071634
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Abstract

We describe a simulated method of moments estimator that is implemented by choosing the vector-

valued moment function to be the expectation under the structural model of the score function of
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an auxiliary model, where the parameters of the auxiliary model are eliminated by replacing them

with their quasi-maximum likelihood estimates. This leaves a moment vector depending only on the

parameters of the structural model. Structural parameter estimates are those parameter values that

put the moment vector as closely to zero as possible in a suitable generalized method of moments

(GMM) metric. This methodology can also be interpreted as a practical computational strategy for

implementing indirect inference. We argue that considerations from statistical science dictate that the

auxiliary model should approximate the true data-generating process as closely as possible and show

that using the seminonparametric (SNP) model is one means to this end. When the view of close

approximation is accepted in implementation, the methodology described here is usually referred

to as Efficient Method of Moments (EMM) in the literature because (i) the estimator is asymptotically

as efficient as maximum likelihood under correct specification and (ii) the detection of model error

is assured under incorrect specification. There are alternative views toward the desirability of close

approximation to the data, which we discuss.

Keywords: efficient method; of moments indirect; inference simulated method of moments.

1. INTRODUCTION ANDOVERVIEW
In both empirical work (Bansal et al., 1993, 1995) and theoretical work (Gallant and
Long, 1997; Gallant and Tauchen, 1996), we have developed a systematic strategy for
choosing the moments for generalized method of moments (GMM) estimation of a
structural model. The idea is relatively straightforward: use the expectation with respect
to the structural model of the score function of an auxiliary model as the vector of
moment conditions for GMM estimation.

The score function is the derivative of the logarithm of the density of the auxiliary
model with respect to the parameters of the auxiliary model. The moment conditions
obtained by taking the expectation of the score depend directly upon the parameters
of the auxiliary model and indirectly upon the parameters of the structural model through
the dependence of expectation operator on the parameters of the structural model.
The parameters of the auxiliary model are eliminated from the moment conditions by
replacing them with their quasi-maximum likelihood estimates, which are obtained by
maximizing the likelihood of the auxiliary model.This leaves a random vector of moment
conditions that depends only on the parameters of the structural model; the random-
ness is due to the random fluctuations of the quasi-maximum likelihood estimates of the
parameters of the auxiliary model. When this vector of moment conditions is evaluated
at the true values of the structural parameters, it tends to zero as sample size increases,pre-
suming that the structural model is correctly specified. The parameters of the structural
model may therefore be estimated by minimizing the magnitude of the vector of moment
conditions as measured by the appropriate GMM metric.

This estimation method,which is the main topic of this chapter, is particularly useful in
a simulation-based estimation context,where the structural model is readily simulated but
the likelihood function of the structural model is intractable.This context applies to many
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continuous-time estimation problems. In implementation, the expectation of the score
with respect to the structural model is computed by simulating the structural model and
averaging the score function over the simulations. When the structural model is strictly
stationary, one may average the scores over a single, very long simulated realization (case
2 of Gallant and Tauchen, 1996), while in the presence of exogenous covariates, one
simulates and averages the scores at each data point conditional on the covariates and
then sums across data points (case 3 of Gallant and Tauchen, 1996).

The estimator is closely related to the indirect inference estimator due to Smith (1990,
1993) and Gourieroux et al. (1993). A referee suggests that statistical methods that use
an auxiliary model as an adjunct be called indirect inference. In this chapter and else-
where, we adopt a different terminology.We refer to the score-based method as efficient
method of moments and the binding function method as indirect inference. However,
ideas matter and names do not. Readers can call these methods whatever they please.The
main difference between score-based methods and those that use a binding function is
computational. Score-based methods are computationally tractable. Methods that use a
binding function can be a computational nightmare.The innovative computational meth-
ods proposed by Chernozukov and Hong (2003) appear to have further increased this
computational advantage.We discuss the Chernozukov and Hong method in Section 7.

We illustrate this point regarding computations in Section 2.1.2 using what is some-
times called theWald variant of the indirect inference estimator. It is a minimum distance
estimator that entails minimizing, in a suitable metric, the difference between the para-
meters of the auxiliary model obtained by quasi-maximum likelihood and those predicted
by the structural model. The predicted parameter values are given by the binding func-
tion, which in practice is computed by reestimating the auxiliary model on simulations
from the structural model. The binding function computation is trivial for linear auxi-
liary models, as initially suggested by Smith (1990, 1993) but is very demanding and
possible infeasible for more complicated nonlinear auxiliary models. The score-based
approach discussed here circumvents the need to evaluate the binding function, which
is why it is more computationally tractable. Nonetheless, for any given auxiliary model,
the score-based estimator and indirect inference have the same asymptotic distribution.
Thus, as just mentioned, some interpret and view the score-based estimator as a practical
way to implement indirect inference in a simulation-based context. Either way, there are
strong parallels to the classical simultaneous equations literature,with the auxiliary model
playing the role of the reduced form and we recognize that there may be different, but
asymptotically equivalent ways to work back from the reduced-form parameter estimates
to obtain structural parameter estimates.

The practical implication of working from the score function is that the auxiliary
model only needs to be estimated once, namely on the observed data. This added flexi-
bility makes it possible to implement the score-based estimator using either very simple
or very complicated and sophisticated auxiliary models. Complicated auxiliary models
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would be appropriate if the observed data exhibit important nonlinearities, and the
researcher wants the structural model to confront these nonlinearities. Regardless of the
score generator actually used, the estimator is consistent and asymptotically normal, sub-
ject only to mild identification conditions. Thus, there is potentially great latitude for
choosing the auxiliary model.

We have consistently argued for resolving this choice by making the auxiliary model
be a good statistical description of the data.That is, it should be a bona fide reduced-form
model.As we shall see,by doing so the researcher can ensure that the estimator can achieve
the full efficiency of maximum likelihood estimation if the structural model is correct.
Furthermore, and more important, it assures the researcher of detecting misspecification
if the structural model is wrong. In view of these capabilities,we ascribe the term Efficient
Method of Moments (EMM) to the estimator.

There are three basic steps to EMM. The first, termed the projection step, entails sum-
marizing the data by projecting it onto the reduced-form auxiliary model, which we
frequently term the score generator. If one knows of a good statistical model for the data,
then it should be used in the projection step. That is rarely the case, however, and we
have proposed the SNP models of Gallant and Tauchen (1989) as a general purpose
score generator. The second step is termed the estimation step, where the parameters are
obtained by GMM (minimum chi-squared) using an appropriate weighting matrix. If,
in the projection step, care is taken to obtain a good auxiliary model, then the weight-
ing matrix takes a particularly simple form. The estimation step produces an omnibus
test of specification along with useful diagnostic t statistics. The third step is termed the
reprojection step, which entails postestimation analysis of simulations for the purposes of
prediction, filtering, and model assessment.

Section 2 discusses and contrasts simulated score methods and indirect inference.
Thereafter, the discussion is combined with a focus on the EMM estimator. As will be
seen, these estimators are so closely related that, after the preliminary discussion of the
differences, a unified discussion under the projection, estimation, reprojection paradigm
described above is warranted.

Section 3 gives general guidelines for selecting the auxiliary model for the projection
step. Section 4 gives 3 formal analysis of the efficiency theory and develops the SNP
model as a general purpose score generator. Section 5 gives an intuitive over of repro-
jection followed by a more formal description of the theory underlying it. Section 6
reviews in detail two selected applications of EMM for estimation of continuous time
models. Section 7 discusses software, practical issues, and some interesting capabilities
using parallelization.

This chapter is focused on applications to continuous-time processes. But one should
be aware that indirect inference, EMM, and simulated method of moments methods
have far greater applicability. They apply to cross sectional data, panel data, data with
fixed covariates, and spatial data. For details see Gourieroux et al. (1993), Gallant and
Tauchen (1996), Pagan (1999), and Genton and de Luna (2000).
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2. ESTIMATION ANDMODEL EVALUATION
The simulated score estimation method was proposed and applied in Bansal et al. (1993)
where it was used to estimate and evaluate a representative agent specification of a two-
country general equilibrium model. The theory was developed in Gallant and Tauchen
(1996) and extended to non-Markovian data with latent variables in Gallant and Long
(1997).

Indirect inference was proposed and developed by Smith (1990,1993) and Gourieroux
et al. (1993). These ideas overlap with the simulated method of moments estimators
proposed by Ingram and Lee (1991), Duffie and Singleton (1993), and Pakes and Pollard
(1989).

Here, we shall sketch the main ideas of simulated score estimation and indirect infer-
ence in a few paragraphs at a modest technical level and then present a more detailed
review of the EMM methodology.

2.1. Overview

2.1.1. Simulated Score Estimation

Suppose that f (yt |xt−1, θ) is a reduced-form model for the observed data, where xt−1 is
the state vector of the observable process at time t − 1 and yt is the observable process.An
example of such a reduced-form model is a GARCH(1,1). If this reduced-form model,
which we shall call a score generator, is fitted by maximum likelihood to get an estimate
θ̃n, then the average of the score over the data

{
ỹt , x̃t−1

}n
t=1 satisfies

1
n

n∑
t=1

∂

∂θ
log f (ỹt |x̃t−1, θ̃n) = 0 (2.1)

because Eq. (2.1) is the first-order condition of the optimization problem. Throughout,
as in (2.1), we shall use a tilde to denote observed values and statistics computed from
observed values.

Now suppose we have a structural model that we wish to estimate. We express the
structural model as the transition density p(yt |xt−1, ρ),where ρ is the parameter vector. In
relatively simple models,p(yt |xt−1, ρ) is available in a convenient closed-form expression,
and one can estimate ρ directly by classical maximum likelihood. However, for more
complicated nonlinear models, p(yt |xt−1, ρ) is often not available and direct maximum
likelihood is infeasible.

But at the same time, it can be relatively easy to simulate the structural model.That is,
for each candidate value ρ, one can generate a simulated trajectory on

{
ŷt
}N

t=1 and the

corresponding lagged state vector
{
x̂t−1

}N
t=1. This situation, of course, is the basic setup

of simulated method of moments (Duffie and Singleton, 1993; Ingram and Lee, 1991).
It arises naturally in continuous-time models because the implied discrete time density
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is rarely available in closed form (Lo, 1988), but-continuous time models are often quite
easy to simulate. The situation also arise in other areas of economics and finance as well
as discussed in Tauchen (1997).

If the structural model is correct and the parameters ρ are set to their true values ρo,
then there should not be much difference between the data {ỹt}nt=1 and a simulation
{ŷt}Nt=1.Therefore, if the first-order conditions (2.1) of the reduced form were computed
by averaging over a simulation instead of the sample, viz.,

m(ρ, θ) = 1
N

N∑
t=1

∂

∂θ
log f (ŷt |x̂t−1, θ),

one would expect that

m(ρo, θ̃n) = 0,

at least approximately. This condition will hold exactly in the limit as N and n tend to
infinity under the standard regularity conditions of quasi-maximum likelihood. One can
try to solve m(ρ, θ̃n) = 0 to get an estimate ρ̂n of the parameter vector of the structural
model. In most applications, this cannot be done because the dimension of θ is larger
than the dimension of ρ. To compensate for this, one estimates ρ by ρ̂n that minimizes
the GMM criterion

m′(ρ, θ̃n) (Ĩn)
−1 m(ρ, θ̃n)

with weighting matrix

Ĩn = 1
n

n∑
t=1

[
∂

∂θ
log f (ỹt |x̃t−1, θ̃n)

] [
∂

∂θ
log f (ỹt |x̃t−1, θ̃n)

]′
.

This choice of weighting matrix presupposes that the score generator fits the data well. If
not, then a more complicated weighting matrix, described below, should be considered.
The estimator ρ̂n is asymptotically normal.

If the structural model is correctly specified, then the statistic

L0 = n m′(ρ̂n, θ̃n) (Ĩn)
−1 m(ρ̂n, θ̃n)

has the chi-squared distribution on dim(θ)− dim(ρ) degrees of freedom. This is the
familiar test of overidentifying restrictions in GMM nomenclature and is used to test
model adequacy. A chi-squared is asymptotically normally distributed as degrees of free-
dom increase. Therefore, for ease of interpretation, the statistic L0 is often redundantly
reported as a z-statistic, as we do later in our tables.
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The vector m(ρ̂n, θ̃n) can be normalized by its standard error to get a vector of t-
statistics. These t-statistics can be interpreted much as normalized regression residuals.
They are often very informative but are subject to the same risk as the interpretation of
regression residuals, namely, a failure to fit one characteristic of the data can show up
not at the score of the parameters that describe that characteristic but elsewhere due
to correlation (colinearity) (Tauchen, 1985). Nonetheless, as with regression residuals,
inspecting normalized m(ρ̂n, θ̃n) is usually the most informative diagnostic available. To
protect oneself from misinterpreting these t-statistics, one should confirm all conclusions
by means of the test of model adequacy L0 above.

If the score generator is a poor fit to the data or the chi-squared test of model adequacy
L0 is not passed, then the analysis must be viewed as a calibration exercise rather than
classical statistical inference. One might,for instance,deliberately choose a score generator
that represents only some characteristics of the data to study the ability of a structural
model to represent only those characteristics. We do this below but, as Gallant and
McCulloch (2009) illustrate, it should be done with care because it is quite possible to
be seriously mislead. One might also use a rejected model to price options, arguing that
it is the best available even though it was rejected. The use of EMM for calibration is
discussed in Gallant et al. (1999).

The score generator can be viewed as a summary of the data. It is accomplished by,
in effect, projecting the data onto a reduced-form model and is therefore called the
projection step of an EMM investigation. Extraction of structural parameters from the
summary by minimizing the chi-squared criterion is called the estimation step. In a later
section, we shall describe a third step, reprojection, that often accompanies an EMM
investigation.

2.1.2. Indirect Inference Estimation

There are variants on the indirect inference scheme, some of which we discuss at the end
of this section. We first describe what is sometimes called the Wald variant. The score-
based method described in Section 2.1.1 is sometimes called the Lagrange multiplier
variant in this vernacular.

The indirect inference estimator is based on the binding function, which is defined as

b(ρ) = argmax
θ∈�

∫ ∫
log f (y|x, θ) p(y|x, ρ)dydx,

where f (y|x, θ) and p(y|x, ρ) are the transition densities of the auxiliary model and struc-
tural model, respectively, as described above.The binding function can also be defined as
the function that satisfies m[ρ, b(ρ)] = 0 (where, implicitly, N = ∞). According to the
asymptotics of quasi-maximum likelihood,

√
n[θ̃n − b(ρ)] L→ N

(
0, J −1IJ −1),
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where θ̃n is as above and

I =
∫ ∫ {

1√
n

n∑
t=1

∂

∂θ
log f [y|x, b(ρ)]

}2

p(y|x, ρ) dydx,

J =
∫ ∫ {

∂2

∂θ∂θ′
log f [y|x, b(ρ)]

}
p(y|x, ρ)dydx.

The matrix I will likely have to be estimated by a heteroskedastic autocovariance consis-
tent (HAC) variance estimator as described below because, for reasons mentioned below,
the auxiliary model is not apt to be a good approximation to the structural model in most
indirect inference applications.A plug-in estimator can be used to estimate J ; numerical
differentiation or Chernozukov–Hong method (Chernozukov and Hong, 2003) may be
required to get the second derivatives. If the auxiliary model is an accurate approxima-
tion to the true data-generating process, then I .= J and one can compute whichever
is more convenient.Without being specific as to the method used, let Ĩn and J̃n denote
estimates of I and J .

The indirect inference estimator is

ρ̂n = argmin
ρ∈R

[θ̃n − b(ρ)]′
(
J̃ −1ĨJ̃ −)−1 [θ̃n − b(ρ)],

where R is the parameter space of the structural model.
Herein lies the computational difficulty with the indirect inference estimator: one

must have an expression for b(ρ) to compute the estimator. The expression

b(ρ) = argmax
θ∈�

∫ ∫
log f (y|x, θ) p(y|x, ρ)dydx,

can be computed numerically, with the integral computed by simulation as discussed
above and b(ρ) computed by numerical optimization for given ρ. This embeds one
numerical optimization, that for b(ρ), inside another, that for ρ̂n, which poses two prob-
lems: the first is cost and the second is stability. That this computation will be costly is
obvious. The stability issue is that a numerical optimizer can only compute the inner
optimization, that for b(ρ), to within a tolerance, at best. This will cause jitter which
will cause the outer optimization problem to be nonsmooth. Nonsmooth optimization
problems are very difficult and costly to solve because good curvature information is not
available. The Chernozukov–Hong method could lessen some of the problems caused
by jitter but would, unfortunately, further increase cost. If the inner problem has local
minima, the situation becomes nearly hopeless. For this reason, most practitioners con-
vert a problem formulated as an indirect inference problem to simulated score estimation
problem prior to computation so as to eliminate b(ρ) and J from consideration; see,
for instance, Pastorello et al. (2000). A verification of the equivalence of the indirect
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inference and simulated score formulations is in Gourieroux et al. (1993). Of course,
if the auxiliary model is sufficiently simple, then analytic expressions for b(ρ) and J
become available and the computation

ρ̂n = argmin
ρ∈R

[θ̃n − b(ρ)]′
(
J̃ −1ĨJ̃ −)−1 [θ̃n − b(ρ)]

becomes feasible as posed.
As mentioned earlier, there are variants on the scheme outlined above. Other statistical

objective functions can be substituted for the likelihood. Another variant is as follows:
once the binding function has been computed from a simulation for given θ, the like-
lihood of the auxiliary model can be evaluated at the data and the value of the binding
function at that θ and used as if it were the likelihood for purposes of inference. This is
one way to implement a Bayesian variant of indirect inference as is outlined in Gallant
and McCulloch (2009).They develop numerical methods to mitigate against the effects
of the jitter in computing the binding function,which can be effective in a Bayesian con-
text. Software to implement their method is http://econ.duke.edu/webfiles/arg/gsm.
Del Negro and Schorfheide (2004) describe another Bayesian approach that makes use of
an auxiliary model. In their approach, the structural model is used to build a hierarchical
likelihood that contains both parameters from the structural and auxiliary models both
of which are estimated simultaneously.

The indirect inference formulation of the estimation problem can be useful device for
modifying the estimator to achieve semiparametric or robustness properties. Space does
not permit an exploration of those ideas here. For a discussion of seminonparametric
properties achieved through indirect inference, see Dridi and Renault (1998) and the
references therein. For a discussion of robustness properties achieved through indirect
inference, see Genton and de Luna (2002).

2.2. Details
We now discuss the ideas above in more detail. We consider nonlinear systems that have
the features of the models described in Section 1. Specifically, (i) for a parameter vector ρ
in a parameter space R, the random variables determined by the system have a stationary
density

p(y−L , . . . , y−1, y0|ρ), (2.2)

for every stretch (yt−L , . . . yt); and (ii) for ρ ∈ R, the system is easily simulated so that
expectations

Eρ(g) =
∫
· · ·

∫
g(y−L , . . . , y0)p(y−L , . . . , y0|ρ)dy−L · · · dy0 (2.3)



436 A. Ronald Gallant and George Tauchen

can be approximated as accurately as desired by averaging over a long simulation

Eρ(g) .= 1
N

N∑
t=1

g(ŷt−L , . . . , ŷt−1, ŷt). (2.4)

As conventions, we use {yt} to denote the stochastic process determined by the system,
{ŷt}Nt=1 to denote a simulation from the system, {ỹt}nt=1 to denote data presumed to have
been generated by the system, and (y−L , . . . , y−1, y0) to denote function arguments and
dummy variables of integration. The true value of the parameter vector of the system
(2.2) is denoted by ρo.

We presume that the data have been summarized in the projection step, as described
in Section 3, and that a score generator of the form

∂

∂θ
log f (y|x, θ̃n),

and a weighting matrix

Ĩn = 1
n

n∑
t=1

[
∂

∂θ
log f (ỹt |x̃t−1, θ̃n)

] [
∂

∂θ
log f (ỹt |x̃t−1, θ̃n)

]′
are available from the projection step. This formula assumes that f (y|x, θ̃n) closely
approximates p(y|x, ρo). If the SNP density fK (y|x, θ) is used as the auxiliary model
with tuning parameters selected by Bayes information criterion (BIC) (Schwarz, 1978),
Ĩn as above will be adequate (Coppejans and Gallant, 2000; Gallant and Long, 1997;
Gallant andTauchen,1999). If the approximation is not adequate, then a HAC weighting
matrix (Andrews, 1991) must be used. A common choice of HAC matrix is

Ĩn =
,n1/5-∑

τ=−,n1/5-
w
(

τ

,n1/5-
)

Ĩnτ , (2.5)

where

w(u) =
{

1− 6|u|2 + 6|u|3 if 0 < u < 1
2

2(1− |u|)3 if 1
2 ≤ u < 1,

and

Ĩnτ =

⎧⎪⎨⎪⎩
1
n

n∑
t=1+τ

[
∂
∂θ

log f (ỹt |x̃t−1, θ̃n)
] [

∂
∂θ

log f (ỹt−τ |x̃t−1−τ , θ̃n)
]′

if τ ≥ 0

Ĩn,−τ if τ < 0

(Gallant and White, 1987).
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Recall that the moment equations are

m(ρ, θ) = Eρ
∂

∂θ
log f (y|x, θ),

which can be computed by averaging over a long simulation

m(ρ, θ̃n)
.= 1

N

N∑
t=1

∂

∂θ
log f

(
ŷt |x̂t−1, θ̃n

)
.

The EMM estimator is

ρ̂n = argmin
ρ∈R

m′
(
ρ, θ̃n

)(
Ĩn

)−1m
(
ρ, θ̃n

)
.

The asymptotics of the estimator are as follows. If ρo denotes the true value of ρ and
θo is an isolated solution of the moment equations m(ρo, θ) = 0, then under regularity
conditions that include holding the parameterization of the structural and auxiliary model
fixed (Gallant and Tauchen, 1996)

lim
n→∞ ρ̂n = ρo a.s.

√
n
(
ρ̂n − ρo) L→ N

{
0,
[(

Mo)′(Io)−1(Mo)]−1
}

(2.6)

lim
n→∞ M̂n = Mo a.s.

lim
n→∞ Ĩn = Io a.s.,

where M̂n = M (ρ̂n, θ̃n), Mo = M (ρo, θo), M (ρ, θ) = (∂/∂ρ′)m(ρ, θ), and

Io = Eρo

[
∂

∂θ
log f

(
y0|x−1, θo)] [

∂

∂θ
log f

(
y0|x−1, θo)]′,

if f (y|x, θ) encompass the data-generating process, or

Io =
∞∑

τ=−∞
Eρo

[
∂

∂θ
log f

(
y0|x−1, θo)] [

∂

∂θ
log f

(
y−τ |x−1−τ , θo)]′,

if not. Under the null hypothesis that p(y−L , . . . , y0|ρ) is the correct model,

L0 = nm′
(
ρ̂n, θ̃n

)(
Ĩn

)−1m
(
ρ̂n, θ̃n

)
(2.7)
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is asymptotically chi-squared on pθ − pρ degrees of freedom. Under the null hypothesis
that h(ρo) = 0, where h maps R into .q,

Lh = n
[
m′( ˆ̂ρn, θ̃n)(Ĩn)

−1m( ˆ̂ρn, θ̃n)− m′(ρ̂n, θ̃n)(Ĩn)
−1m(ρ̂n, θ̃n)

]
(2.8)

is asymptotically chi-squared on q degrees of freedom, where

ˆ̂ρn = argmin
h(ρ)=0

m′(ρ, θ̃n) (Ĩn)
−1m(ρ, θ̃n).

AWald confidence interval on an element ρi of ρ can by constructed in the usual way
from an asymptotic standard error

√
σ̂ii. A standard error may be obtained by computing

the Jacobian Mn(ρ, θ) numerically and taking the estimated asymptotic variance σ̂ii to be
the ith diagonal element of #̂ = (1/n)

[(
M̂n

)′(Ĩn
)−1(M̂n

)]−1.These intervals,which are
symmetric, are somewhat misleading because they do not reflect the rapid increase in the
EMM objective function sn(ρ) = m′

(
ρ, θ̃n

)(
Ĩn

)−1m
(
ρ, θ̃n

)
when ρi approaches a value

for which the system under consideration is explosive. Confidence intervals obtained by
inverting the criterion difference test Lh do reflect this phenomenon and are therefore
more useful. To invert the test, one puts in the interval those ρ∗i for which Lh for the
hypothesis ρo

i = ρ∗i is less than the critical point of a chi-squared on one degree of
freedom. To avoid reoptimization, one may use the approximation

ˆ̂ρn = ρ̂n + ρ∗i − ρ̂in

σ̂ii
#̂(i)

in the formula for Lh, where #̂(i) is the ith column of #̂.
The above remarks should only be taken to imply that confidence intervals obtained

by inverting the criterion difference test have more desirable structural characteristics
than those obtained by inverting the Wald test and not that they have more accurate
coverage probabilities.

When L0 exceeds the chi-squared critical point,diagnostics that suggest improvements
to the system are desirable. Because

√
n m(ρ̂n, θ̃n)

L→ N
{
0, Io − (Mo)[(Mo)′(Io)−1(Mo)]−1(Mo)′

}
,

inspection of the t-ratios

Tn = S−1
n
√

n m(ρ̂n, θ̃n), (2.9)

where Sn =
(
diag{Ĩn − (M̂n)[(M̂n)

′(Ĩn)
−1(M̂n)]−1(M̂n)

′})1/2 can suggest reasons for
failure. Different elements of the score correspond to different characteristics of the data
and large t-ratios reveal those characteristics that are not well approximated.
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In practice,one would usually prefer to inspect
√

n m(ρ̂n, θ̃n),which are underestimates
of the t-ratios, to avoid having to determine the matrix M̂n numerically and to avoid any
potential inaccuracies that numerical differentiation can introduce. Because the statistic
L0 provides an overall test of significance, it is not necessary to have exactly correct values
of the t-ratios. That is, one is only relying on the t-ratios for suggestions as to where a
structural model fails to fit and one is not relying on them for statistical inference.

3. PROJECTION: GENERAL GUIDELINES ON THE SCORE GENERATOR
A sensible question is how to determine the reduced-form density f (yt |xt−1, θ) that
defines the score generator for EMM. Interestingly, there are two natural principles
that lead to different strategies. The first principle is data-based: choose f (yt |xt−1, θ)
to be good approximation to the dynamics of the data, i.e., to pdf(yt |xt−1), whatever
that might be. In other words, f (yt |xt−1, θ) should emerge from a carefully con-
ducted effort to model the data {ỹt}nt=1 without much regard to the structural model.
A flexible parameterization should be used if the dynamics of the data are not well under-
stood a priori. The second principle is model-based: choose f (yt |xt−1, θ) to be a close
approximation to the p(yt |xt−1, ρ) implied by the structural model so that the moment
function (∂/∂θ) log[ f (yt |xt−1, θ)] for EMM should look very much like moment func-
tion (∂/∂ρ) log[p(yt |xt−1, ρ)] of maximum likelihood estimation. Implementing this
strategy entails using detailed knowledge of the characteristics of the structural model to
build up the score generator.

We initially set forth the arguments for the data-based strategy in Bansal et al. (1993,
1995) and we have consistently argued for it over the model-based strategy ever since.
The issue is controversial. Dridi and Renault (1998) argue for a more model-based
strategy and Hansen (2002) outlines some of the issues. The gist of our argument is that
the data-based strategy will be nearly fully efficient if the structural model is correctly
specified, and it will reveal the inadequacy of the structural model if it is misspecified.
On the other hand, the model-based strategy is fine if the structural model is correct,
but it could be potentially very misleading if the structural model is wrong. See Gallant
and McCulloch (2009) for an illustration. Rarely do we know for sure that our models
are indeed correct.

We now look at some of these considerations in more detail.

3.1. An Initial Look at Efficiency
Let Vf denote the asymptotic covariance matrix of EMM if the score generator is

f (yt |xt−1, θ). In Section 2, we saw that
√

n(ρ̂ − ρ)
L→ N (0, Vf ), where from (2.2),

Vf is given by

Vf = [(Mo)′(Io)−1(Mo)]−1.
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Let VML denote the asymptotic distribution of the maximum likelihood estimator,which
is given by

VML =
[
E
(
st s′t

)]−1 = I−1,

where

st = ∂

∂ρ
log

[
p
(
yt |xt−1, ρo)]

is the score function of the underlying probability model, presumed correct here. From
basic maximum likelihood theory, we have that

VML ≤ Vf .

Tauchen (1997) considers the i.i.d. case,p(yt |ρ),and shows that Vf and VML are connected
as follows. Let

� = var
(
st − Bsft

)
,

where sft = (∂/∂θ) log[ f (yt |θo)] is the score of the reduced-form model and B is the
coefficient matrix from a linear projection of st = (∂/∂ρ) log[ f (yt |ρo)] onto sft . Then,

VML =
(
V−1

f +�
)−1 ≤ Vf (3.1)

with equality if � = 0. Hence, the better the score of f comes to spanning the score
of p, then the smaller is � and the closer is EMM to full efficiency. Tauchen (1997)
also provides some intuition as to how this result would carry over to the dynamic case.
Gallant and Long (1997) handle the dynamic case and prove that

lim
K→∞VfK = VML,

where fK represents the K th term in the SNP series expansion as described in Section 4
below.

The upshot is that the better the score generator approximates structural model, then
the closer is Vf to VML. Since the structural model is presumed to be correct, the data-
based approach has to produce a score function, that is, a close approximation to the true
score function. If one knows of a good model for the data, then that model should be used
as the auxiliary model. If not, as is often the case, then Gallant and Long’s (1997) results
provide a systematic strategy based on SNP modeling for getting a close approximation.

3.2. Misspecification

Suppose the structural model is itself is misspecified. Will this be detected by the
EMM objective function? The issue was first formally considered in Tauchen (1997)
and examined in much more detail by Aguirre-Torres (2001) and Aguirre-Torres and
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Gallant (2001). The answer is essentially yes if one uses the data-based strategy to deter-
mine the score generator but no if one follows the model-based strategy for determining
the score generator for EMM.

Define the densities

conditional joint
true model: ξ(y|x) ξ(x, y)

structural model: p(y|x, ρ) p(x, y, ρ)
auxiliary model: f (y|x, θ) f (x, y|θ)

where for simplicity, we drop the time subscripts.The pseudo-true values of θ and ρ are

θo = argmax
θ

∫∫
log[ f (y|x, θ)]ξ(x, y)dydx

ρo = argmax
ρ

m′(ρ, θo)
(
Io)−1 m

(
ρ, θo),

where

m(ρ, θ) =
∫∫

∂

∂θ
log[ f (y|x, θ)] p(x, y, ρ)dydx.

Note that Io is the limiting pseudo-information matrix computed under ξ(x, y).
Following, Geweke (1983) define the approximate slope functional

S( f , p, ξ) = m′(ρo, θo)
(
Io)−1m

(
ρo, θo).

The value of S( f , p, ξ) is the limiting normalized value of the noncentrality parameter
of the test of the overidentifying restrictions.

For fixed f and p, it is reasonably easy to come with plausible alternative models ξ
such that

S( f , p, ξ) = 0.

In other words, given f , there is no power to detect p �= ξ. It is easy to construct such
examples. The danger is fitting a misspecified p-model to the scores of a misspecified
f -model, and thinking everything is fine, when, in fact, p �= ξ.

The problem is with leaving f fixed. If one chooses f nonparametrically, say by SNP,
then the preliminary analysis of Tauchen (1997) and detailed calculations of Aguirre-
Torres (2001) indicate that whenever p �= ξ, then

lim inf
K→∞ S( fK , p, ξ) > 0,

so the misspecification is detected with probability one asymptotically. As the editor has
pointed out, these computations are not uniform in (n, K ) but rather allow n to tend to
infinity first and K to tend to infinity second.
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The message, again, is to think nonparametrically when choosing the auxiliary
model.

3.3. Nonnested Models
Another argument in favor of the data-based strategy has emerged after some years of
experience with EMM. Frequently,one considers families of nonnested structural models
and one faces a model selection problem. EMM using a data-based score generator forces
all structural models to confront the same set of moment conditions, and therefore,
meaningful comparisons of objective values across models are available. For example,
Dai and Singleton (2000) use the EMM objective function to guide model selection
within and across the nonnested branches of the affine family of term structure models,
as do Bansal and Zhou (2002) for regime-switching affine term structure models.

3.4. Dynamic Stability
The EMM objective function is

Q(ρ) = m′(ρ, θ̃)Ĩ−1m(ρ, θ̃)

and

ρ̂ = argmin
ρ∈R

Q(ρ).

Simulated trajectories {ŷt}Nt=1 are used to compute the expectation that defines m(ρ, θ).
Since the underlying structural model typically has a nonlinear dynamic autoregressive
structure, it is natural to consider potential problems if ρ lies in the explosive region of
the parameter space and |ŷt | → ∞.

Tauchen (1998) examines the issue of dynamic stability of the structural model (p)
and the score generator ( f ).The upshot is that one really need not worry about impos-
ing dynamic stability on the structural model itself. Dynamic stability is self-enforcing.
If the optimizer wanders into the region of the parameter space where the underlying
structural model is unstable, then the data simulator generates a wildly explosive sim-
ulated realization that induces a large value of the objective function. The time-series
properties of this explosive realization are very much unlike the time-series properties
of the observed data set to which the auxiliary model has been fitted, so the objective
function attains an exceedingly high value. The situation is actually a bit more subtle
because automatic stability is ensured only if the auxiliary model itself is dynamically
stable. The use of a dynamically unstable auxiliary model can be expected to define a
GMM objective function with very poor numerical properties in both the stable and
unstable regions of the parameter space.

Dynamic stability is of practical importance. Andersen and Lund (1997) carefully
examine a class of GARCH and E-GARCH auxiliary models for the short-term interest
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rate.They find the former typically unstable, and therefore unusable as auxiliary models,
while the latter are stable. Gallant andTauchen (1998) likewise use model stability as part
of the selection criterion.We now incorporate into the SNP code (Gallant andTauchen,
2001c) nonlinear transformations of the state vector xt−1 that attenuate large movements
and help enforce stability, but we still recommend checking long simulations to ensure
that the score generator is a stable model.

As the editor has pointed out,it is possible for explosive,nonlinear dynamic processes to
linger for extended periods in a strongly dependent state before they become explosive.
This sort of behavior on the part of a structural model might not be detected.

4. A GENERAL PURPOSE SCORE GENERATOR
4.1. Efficiency Comparisons
In Section 2, we defined the EMM estimator as

ρ̂n = argmin
ρ∈R

m′(ρ)
(
Ĩn

)−1m(ρ).

It is essentially a simulated method of moments estimator based on the moment function

m(ρ) = Eρψ̃,

where

ψ̃ = ∂

∂θ
log f

(
y|x, θ̃

)
,

and for now, we shall suppress the second argument of m(ρ, θ).
In Section 3.1, we noted that the closer f comes to approximating the condition

density implied by the structural model, then the closer will be the asymptotic variance
of the EMM estimator to that of maximum likelihood. In fact, a spanning argument can
be used to show that the efficiency of EMM can be made asymptotically negligible.

But the same spanning argument applies to estimation using more traditional moments
such as means, variances, etc.,which we shall call the classical method of moments.Thus,
an open question is whether the moment function of EMM, which entails the extra
effort of estimating the score generator, defines a better set of moments, other things
equal.

The question is considered and answered affirmatively by Gallant andTauchen (1999),
which we now summarize. They examine the simpler case where the random variables
defined by the system (2.2) generate univariate i.i.d. random variables {yt} with density
p(y|ρ).The ideas for the general case of a multivariate,non-Markovian, stationary system
are the same, but the algebra is far more complicated (Gallant and Long, 1997). Nothing
essential is lost by considering the simplest case.
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Consider three moment functions ψ̃c,n, ψ̃p,n, and ψ̃f ,n that correspond to classical
method of moments, maximum likelihood, and EMM, respectively, defined as follows:

ψ̃c,n(y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y− 1
n

n∑
i=1

ỹi

y2 − 1
n

n∑
i=1

(ỹi)
2

...

yK − 1
n

n∑
i=1

(ỹi)
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ψ̃p,n(y) = ∂

∂ρ
log p(y|ρ̃n),

ψ̃f ,n(y) = ∂

∂θ
log f (y|θ̃n),

where the exponent K that appears in ψ̃c,n(y) is the degree of the largest moment used in
a method of moments application, the function f (y|θ) that appears in ψ̃f ,n(y) is a density
that closely approximates the true data-generating process in a sense made precise later,
and the statistics ρ̃n and θ̃n that appear in ψ̃p,n(y) and ψ̃f ,n(y) are

ρ̃n = argmax
ρ

1
n

n∑
i=1

log p(ỹi|ρ),

θ̃n = argmax
θ

1
n

n∑
i=1

log f (ỹi|θ);

ρ is of length pρ and θ of length pθ ≥ pρ.
Note that each of the moment functions ψ̃p,n, ψ̃c,n, and ψ̃f ,n is in the null space of the

expectation operator corresponding to the empirical distribution of the data, denoted
as EF̃n

. That is, EF̃n
ψ̃p,n = EF̃n

ψ̃c,n = EF̃n
ψ̃f ,n = 0. Method of moments is basically an

attempt to do the same for the model p(y|ρ). That is, method of moments attempts to
find a ρ that puts one of these moment functions, denoted generically as ψ̃n, in the null
space of the expectation operator Eρ corresponding to p(y|ρ).

In addition to computing ψ̃n, one computes

Ĩn = EF̃n
(ψ̃n)(ψ̃n)

′.

Once ψ̃n and Ĩn have been computed, the data have been summarized, and what we
refer to as “the projection step” is finished.
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For estimation, define

mn(ρ) = Eρψ̃n.

If the dimensions of ρ and ψ̃n(y) are the same, then usually the equations mn(ρ) = 0 can
be solved to obtain an estimator ρ̂n. For ψ̃p,n, the solution is the maximum likelihood
estimator (Fisher, 1912; Gauss, 1816). For ψ̃c,n with K = pρ, it is the classical method
of moments estimator (Pearson, 1894). For ψ̃c,n with K > pρ, no solution exists and
the moment functions ψ̃c,n are those of minimum chi-squared or GMM (Hansen, 1982;
Neyman and Pearson, 1928) as customarily implemented.

As just noted, when K > pρ, then ψ̃n cannot be placed in the null space of the
operator Eρ for any ρ because the equations mn(ρ) = 0 have no solution. In this case,
the minimum chi-squared estimator relies on the fact that, under standard regularity
conditions (Gallant and Tauchen, 1996) and choices of ψ̃n similar to the above, there is
a function ψo such that

lim
n→∞ ψ̃n(y) = ψo(y) a.s.

lim
n→∞ Ĩn = Eρo(ψo)(ψo)′ a.s.

√
n mn(ρ

o)
L→ N

[
0, Eρo(ψo)(ψo)′

]
,

where Eρo denotes expectation taken with respect to p(y|ρo). For the three choices
ψ̃p,n, ψ̃c,n, and ψ̃f ,n of ψn(y) above, the functions ψo

p, ψ
o
c , and ψo

f given by this
result are

ψo
c (y) =

⎛⎜⎜⎜⎜⎜⎜⎝
y− Eρo(y)

y2 − Eρo(y2)

...

yK − Eρo(yK )

⎞⎟⎟⎟⎟⎟⎟⎠,

ψo
p(y) =

∂

∂ρ
log p(y|ρo),

and

ψo
f (y) =

∂

∂θ
log f (y|θo),

where

θo = argmax
θ

Eρo log f (·|θ).
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With these results in hand, ρ may be estimated by minimum chi-squared, viz.,

ρ̂n = argmin
ρ

m′n(ρ) (Ĩn)
−1mn(ρ)

and

√
n
(
ρ̂n − ρo) L→ N

[
0,

(
Co)−1

]
,

where

Co =
[
Eρo

(
ψo

p
)(
ψo)′][Eρo

(
ψo)(ψo)′]−1[

Eρo
(
ψo)(ψo

p
)′].

Note that for any nonzero a ∈ Rpρ ,

min
b

Eρo

[
a′ψo

p − (ψo)′b
]2 = Eρo

(
a′ψo

p

)2 − a′Coa ≥ 0. (4.1)

Expression (4.1) implies that a′Coa cannot exceed Eρo
(
a′ψo

p
)2 = a′

[
Eρo

(
ψo

p
)(
ψo

p
)′]a,

and therefore, the best achievable asymptotic variance of the estimator ρ̂n is
(
Io

p
)−1 =[

Eρo
(
ψo

p
)(
ψo

p
)′]−1

, which is the variance of the maximum likelihood estimator of

ρ. It is also apparent from (4.1) that if {ψo
i }∞i=1 spans the L2,p probability space

L2,p = {g : Eρo g2 <∞} and ψo = (ψo
1, . . . ,ψo

K ), then ρ̂n has good efficiency relative
to the maximum likelihood estimator for large K . The polynomials span L2,p if p(y|ρ)
has a moment-generating function (Gallant, 1980). Therefore, one might expect good
asymptotic efficiency from ψ̃c,n for large K .

Rather than just spanning L2,p,EMM requires, in addition, that the moment functions
actually be the score vector ψf ,n(y) of some density f (y|θ̃n) that closely approximates
p(y|ρo). Possible choices of f (y|θ̃n) are discussed in Gallant andTauchen (1996). Of them,
one commonly used in applications is the SNP density, which was proposed by Gallant
and Nychka (1987) in a form suited to cross-sectional applications and by Gallant and
Tauchen (1989) in a form suited to time-series applications.

The SNP density is obtained by expanding the square root of an innovation density
h(z) in a Hermite expansion

√
h(z) =

∞∑
i=0

θizi√φ(z),

whereφ(z) denotes the standard normal density function. Because the Hermite functions
are dense in L2 (Lebesque) and

√
h(z) is an L2 function, this expansion must exist. The
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truncated density is

hK (z) = P2
K (z)φ(z)∫

P2
K (u)φ(u)du

,

where

PK (z) =
K∑

i=0

θizi

and the renormalization is necessary so that the density hK (z) integrates to one. The
location-scale transformation y = σz + μ completes the definition of the SNP density

fK (y|θ) = 1
σ

hK

(
y− μ

σ

)
, (4.2)

with θ = (μ, σ, θ0, . . . , θK ). Gallant and Long (1997) have shown that

ψo
f (y) =

∂

∂θ
log fK (y|θo),

with

θo = argmax
θ

Eρo log fK (·|θ)

spans L2,p.
Although a spanning argument can be used to show that high efficiency obtains for

large K , it gives no indication as to what might be the best choice of moment functions
with which to span L2,p. Moreover, if ψp is in the span of ψo for some finite K , then
full efficiency obtains at once (Gallant and Tauchen, 1996). For instance, the score of
the normal density is in the span of both ψ̃c,n and ψ̃f ,n for K ≥ 2. These considerations
seem to rule out any hope of general results showing that one moment function should
be better than another.

With general results unattainable, the best one can do is compare efficiencies over a
class of densities designed to stress-test an estimator and over some densities thought to be
representative of situations likely to be encountered in practice to see if any conclusions
seem to be indicated. Comparisons using Monte Carlo methods are reported byAndersen
et al. (1999), Chumacero (1997), Ng and Michaelides (2000),Van der Sluis (1999), and
Zhou (2001). Overall, their work supports the conjecture that EMM is more efficient
than CMM in representative applications at typical sample sizes.

Analytical comparisons are possible for the i.i.d. case and are reported in Gallant and
Tauchen (1999). Their measure of efficiency is the volume of a confidence region on
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the parameters of the density p(y|ρ) computed using the asymptotic distribution of ρ̂n.
This region has the form {ρ : (ρ − ρo)′(Co)−1(ρ − ρo) ≤ X 2

d /n} with volume

2πd/2(X 2
d /n)

d

d%(d/2) det(Co)
,

where X 2
d denotes a critical value of the chi-squared distribution on d degrees of freedom.

As small volumes are to be preferred, and the region {ρ : (ρ − ρo)′Io
p(ρ − ρo) ≤ X 2

d /n}
has the smallest achievable volume,

RE = det(Co)

det(Io
p)

is a measure of relative efficiency. Over a large collection of densities thought to represent
typical applications, their computations support the conclusion that EMM dominates
CMM. Moreover, their computations indicate that once fK (·|θo) begins to approxi-
mate p(·|ρo) accurately, the efficiency of the EMM estimator begins to increase rapidly.
A representative illustration is provided by Fig. 8.1, which shows the relative efficiency
comparison for a trimodal density p(y|ρ) taken from the Marron–Wand test suite (Mar-
ron and Wand, 1992). As seen in Fig. 8.1, once fK (·|θo) has detected the third mode of
the trimodal density, EMM efficiency increases rapidly.

The second question to address is how many moments to include in the moment
function ψf . As the computations in Gallant and Tauchen (1999) and Fig. 8.1 suggest,
the answer is as many as is required for f to well approximate p. The natural conclusion
is that one should use standard statistical model selection criteria to determine f as we
discuss later. This approach has a distinct advantage over the use of ψc , in that there
seems to be no objective statistical criterion for determining the number of moments to
include in ψc .

As the editor has pointed out, the Gallant and Long (1997) results that justify extending
these ideas to non-Markovian situations rely on several high-level assumptions and it
is not clear what low-level primitives will justify them, especially in continuous-time
applications. The most serious of these high-level assumptions is their assumption 4,
which requires that the asymptotic variance of the maximum likelihood estimator can
be accurately approximated by the variance of the maximum likelihood estimator with
lags past some large value neglected. It is an important open problem to determine which
classes of models will satisfy this assumption.

4.2. SNP: A General Purpose Score Generator
As indicated in Section 4.1, the best choice of a moment function ψ to implement
simulated method of moments is the score of a auxiliary model that closely approximates
the density of the data.We have also seen that the SNP density is a useful,general purpose
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Figure 8.1 Relative Efficiency for the Trimodal Density. Panel (a) plots the relative efficiency of
the EMM and CMM estimators against degree K , for the trimodal density of the Marron–Wand test
suite. As seen, the effciency of the EMM estimator increases rapidly when the degree K of the SNP
auxiliary model is between 10 and 20. Panel (b) plots the root mean squared error and Kullback–
Leibler divergence of the SNP approximation to the trimodal density against K , labeled mse and KL,
respectively. As seen, the region 10 ≤ K ≤ 20 is the region where the error in the SNP approximation
to the trimodal density decreases rapidly. Panel (c) plots the SNP approximation at K = 10, shown
as a solid line, to the trimodal density, shown as a dotted line. As seen, at K = 10, the SNP density
approximates a trimodal density by a bimodal density. Panel (d) is the same at K = 20. As seen, at
K = 20, the SNP density has correctly determined the number of modes.

auxiliary model. In this section, we shall extend the SNP density to a general purpose
auxiliary model suited to dynamic models. Here, yt is multivariate, specifically a column
vector of length M , and we write xt−1 for the lagged state vector, which typically is
comprised of lags yt−j . For simplicity, we often suppress the time subscript and write y
and x for the contemporaneous value and lagged state vector, respectively. With these
conventions, the stationary density (2.2) of the dynamic system under consideration can
be written p(x, y|ρ) and its transition density as

p(y|x, ρ) = p(x, y|ρ)∫
p(x, y|ρ) dx

. (4.3)



450 A. Ronald Gallant and George Tauchen

If one expands
√

p(x, y|ρo) in a Hermite series and derives the transition density of
the truncated expansion, then one obtains a transition density fK (yt |xt−1) that has the
form of a location-scale transform

yt = Rzt + μxt−1

of an innovation zt (Gallant et al., 1991). The density function of this innovation is

hK (z|x) = [P(z, x)]2φ(z)∫ [P(u, x)]2φ(u)du
, (4.4)

where P(z, x) is a polynomial in (z, x) of degree K and φ(z) denotes the multivariate
normal density function with dimension M , mean vector zero, and variance–covariance
matrix equal to the identity.

It proves convenient to express the polynomial P(z, x) in a rectangular expansion

P(z, x) =
Kz∑
α=0

⎛⎝ Kx∑
β=0

aβαxβ

⎞⎠zα, (4.5)

where α and β are multiindexes of maximal degrees Kz and Kx, respectively, and K =
Kz + Kx. Because [P(z, x)]2/ ∫ [P(u, x)]2φ(u)du is a homogeneous function of the
coefficients of the polynomial P(z, x),P(z, x) can only be determined to within a scalar
multiple. To achieve a unique representation, the constant term a00 of the polynomial
P(z, x) is put to one.With this normalization, hK (z|x) has the interpretation of a series
expansion whose leading term is the normal density φ(z) and whose higher order terms
induce departures from normality.

The location function is linear,

μx = b0 + Bxt−1, (4.6)

where b0 is a vector and B is a matrix.
It proves advantageous in applications to allow the scale R of the location-scale trans-

formation y = Rz + μx to depend on x because it reduces the degree Kx required to
achieve an adequate approximation to the transition density p(y|x, ρo). With this, the
location-scale transformation becomes

y = Rxz + μx, (4.7)

where Rx is an upper triangular matrix that depends on x. The two choices of Rx that
have given good results in applications are an ARCH-like moving average specification
and a GARCH-like ARMA specification, which we describe next.
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For an ARCH specification, let Rxt−1 be a linear function of the absolute values of
the elements of the vectors yt−Lr − μxt−1−Lr through yt−1 − μxt−2 , viz.,

vech(Rxt−1) = ρ0 +
Lr∑

i=1

P(i)|yt−1−Lr+i − μxt−2−Lr+i |,

where vech(R) denotes a vector of length M (M + 1)/2 containing the elements of
the upper triangle of R, ρ0 is a vector of length M (M + 1)/2, P(1) through P(Lr) are
M (M + 1)/2 by M matrices,and |y− μ| denotes a vector containing the absolute values
of y− μ. The classical ARCH (Engle, 1982) has

#xt−1 = Rxt−1R′xt−1

depending on a linear function of squared lagged residuals. The SNP version of ARCH
is more akin to the suggestions of Nelson (1991) and Davidian and Carroll (1987).

Because the absolute value function is not differentiable, |u| is approximated in the
formula for Rx above by the twice continuously differentiable function

a(u) =
{
(|100u| − π/2+ 1)/100 |100u| ≥ π/2
(1− cos(100u))/100 |100u| < π/2.

The scale factor 100 above represents a compromise. Small values, such as 3, improve the
stability of the computations but then a(·) does not approximate | · | well.

For a GARCH specification, let

vech(Rxt−1) = ρ0 +
Lr∑

i=1

P(i)|yt−1−Lr+i − μxt−2−Lr+i |

+
Lg∑

i=1

diag(G(i))Rxt−2−Lg+i ,

where G(1) through G(Lg) are vectors of length M (M + 1)/2.
The classical GARCH (Bollerslev, 1986) has #xt−1 expressed in terms of squared

lagged residuals and lagged values of #xt−1 . As with the SNP variant of ARCH, the SNP
version of GARCH, called R-GARCH, is expressed in terms of the absolute value of
lagged residuals and standard deviations.

Note that when Lg > 0, the SNP model is not Markovian and that one must know
both xt−1 and Rxt−2−Lg

through Rxt−2 to move forward to the value for yt . Thus, xt−1

and Rxt−2−Lg
through Rxt−2 represent the state of the system at time t − 1 and must

be retained to evaluate the SNP conditional density of yt or to iterate the SNP model
forward by simulation. If one wants to compute the derivatives of the SNP density with
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respect to model parameters, one must retain the derivatives of Rxt−2−Lg
through Rxt−2

with respect to model parameters as well.
The change of variable formula applied to the location-scale transform (4.7) and

innovation density (4.4) yields the SNP density

fK (y|x, θ) = hK
[
R−1

x (y− μx)|x
]

det(Rx)
. (4.8)

Hereafter,we shall distinguish among the lag lengths appearing in the various components
of the expansion. The number of lags in μx is denoted Lu; the number of lags in Rx is
Lu + Lr and the number of lags in the x part of the polynomial, P(z, x), is Lp. We set
L = max(Lu, Lu + Lr , Lp).

Large values of M can generate a large number of interactions (cross product terms)
for even modest settings of degree Kz; similarly, for M · Lp and Kx. Accordingly, we
introduce two additional tuning parameters, Iz and Ix, to represent filtering out of
these high-order interactions. Iz = 0 means no interactions are suppressed, Iz = 1 means
the highest order interactions are suppressed, namely those of degree Kz. In general, a
positive Iz means all interactions of order larger than Kz − Iz are suppressed; similarly
for Kx − Ix.

In summary,Lu,Lg ,and Lr determine the location-scale transformation y = Rxzt + μx

and hence determine the nature of the leading term of the expansion. The number of
lags in the location function μx is Lu and the number of lags in the scale function Rx

is Lu + Lr . The number of lags that go into the x part of the polynomial P(z, x) is
Lp. The parameters Kz, Kx, Iz, and Ix determine the degree of P(z, x), and hence the
nature of the innovation process {zt}. Putting certain of the tuning parameters to zero
implies sharp restrictions on the process {yt}, the more interesting of which are displayed
in Table 8.1.

The empirical work described in this article uses the R-GARCH form of the
conditional variance matrix. In 2004, the SNP Fortran code was reimplemented in
C++ and a BEKK variance matrix (Engle and Kroner, 1995) modified to add leverage
and level effects was substituted for the R-GARCH. It is

#xt−1 = R0R′0 +
Lg∑

i=1

Qi#xt−1−i Q
′
i +

Lr∑
i=1

Pi(yt−i − μxt−1−i )(yt−i − μxt−1−i )
′P ′i

+
Lv∑
i=1

max[0, Vi(yt−i − μxt−1−i )]max[0, Vi(yt−i − μxt−1−i )]′

+
Lw∑
i=1

Wi x(1),t−ix′(1),t−iW
′
i .
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Table 8.1 Restrictions implied by settings of the tuning parameters

Parameter setting Characterization of {yt}

Lu = 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz = 0, Kx = 0 i.i.d. Gaussian
Lu > 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz = 0, Kx = 0 GaussianVAR
Lu > 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametricVAR
Lu ≥ 0, Lg = 0, Lr > 0, Lp ≥ 0, Kz = 0, Kx = 0 Gaussian ARCH
Lu ≥ 0, Lg = 0, Lr > 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametric ARCH
Lu ≥ 0, Lg > 0, Lr > 0, Lp ≥ 0, Kz = 0, Kx = 0 Gaussian GARCH
Lu ≥ 0, Lg > 0, Lr > 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametric GARCH
Lu ≥ 0, Lg ≥ 0, Lr ≥ 0, Lp > 0, Kz > 0, Kx > 0 nonlinear nonparametric

Lu is the lag length of the location function. Lg is the lag length of the GARCH (autoregressive) part of the scale
function. Lr is the lag length of the ARCH (moving average) part of the scale function. Lp is the lag length of
the polynomials in x that determine the coeffcients of the Hermite expansion of the innovation density. Kz is the
degree of the Hermite expansion of the innovation density. Kx is the degree of polynomials in x that determine the
coeffcients of the Hermite expansion of the innovation density.

Above, R0 is an upper triangular matrix. The matrices Pi, Qi, Vi, and Wi can be scalar,
diagonal, or full M by M matrices. The notation x(1),t−i indicates that only the first
column of xt−i enters the computation. The max(0, x) function is applied element-
wise. Because #xt−1 must be differentiable with respect to the parameters of μxt−2−i , the
max(0, x) function actually applied is a twice continuously differentiable cubic spline
approximation that agrees with the max(0, x) function except over the interval (0, 0.1)
over which it lies slightly above the max(0, x) function.

5. REPROJECTION: ANALYSIS OF POSTESTIMATION SIMULATIONS
5.1. Simple Illustration of Volatility Extraction
We start with an illustration that gives the main idea of reprojection. In Gallant and
Tauchen (2001a), we estimated through EMM the vector SDE with two stochastic
volatility factors:

dU1t = α10dt + exp(β10 + β12U2t + β13U3t) dW1t (5.1)

dU2t = α22U2tdt + dW2t

dU3t = α33U3tdt + dW3t ,

using daily data on Microsoft (MSFT), 1986–2001. Here, U1t is the log-price process
and

yt = 100 ∗ (U1t − U1,t−1)
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at integer t is the observation equation for the geometric daily return expressed as a
percent. U2t and U3t are stochastic volatility factors.We find that the stochastic volatility
model cleanly separate into two distinct factors: a very persistent factor, U2t , which
displays very little mean reversion, and a very strongly mean-reverting factor, U3t .

Thus, from the observed data set {ỹt}n1, we generated through EMM the parameter
estimate ρ̂ for each model under consideration. We now summarize how to proceed
backwards to infer the unobserved state vector from the observed process as implied by a
particular model.The approach follows the reprojection method proposed by Gallant and
Tauchen (1998), which is a numerically intensive, simulation-based, nonlinear Kalman
filtering technique.

The idea is relatively straightforward.As a by-product of the estimation,we have a long
simulated realization of the state vector {Ût}Nt=1 and the corresponding {ŷt}Nt=1 for ρ = ρ̂.
Working within the simulation, we can calibrate the functional form of the conditional
distribution of functions of Ût given {ŷτ}tτ=1. Given the calibrated functions determined
within the simulation, we simply evaluate them on the observed data. More generally,
we can determine within the simulation the conditional distribution of functions of Ût

given {ŷτ}tτ=1 and then evaluate the result on observed data {ỹt}nt=1.
In the application, we work with the conditional mean functions of the volatility

factors. Our targets are

E(Uit |{yτ}tτ=1), i = 2, 3 (5.2)

To begin,we generated simulations {Ût}Nt=1,{ŷt}Nt=1,at the estimated ρ̃ and N = 100, 000.
Keep in mind that, to generate predictions of U2t and U3t through filtering yt , we are
allowed to use very general functions of {yτ}tτ=1 and that we have a huge data set work
with.After some experimentation,we found the following strategy,which seems to work
quite well. We estimate an SNP-GARCH model on the ŷt because the SNP-GARCH
model provides a convenient representation of the one-step ahead conditional variance
σ̂2

t of ŷt+1 given {ŷτ}tτ=1. We then run regressions of Ûit on σ̂2
t , ŷt , and |ŷτ | and lags

of these series, with lag lengths generously long (Keep in mind the huge size of the
simulated data set; these regressions are essentially analytic projections). At this point,
we have calibrated, inside the simulations, functions that give predicted values of U2t

and U3t given {yτ}tτ=1. Finally, we evaluate these functions on the observed data series
{ỹτ}tτ=1, which gives reprojected values Ũ2t and Ũ3t for the volatility factors at the data
points.

The figures in Gallant and Tauchen (2001a) indicate that Ũ2t is slowly moving while
Ũ3t is quite choppy. Interestingly, the crash of 1987 is attributed to a large realization of
the strongly mean-reverting factor, U3t . This result suggests that the volatility increase
surround the 87 crash was rather temporary,which appears consistent with raw data plots.
Also, the reprojected volatility factor from a model with only one stochastic volatility
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factor misses much of the crash of 1987, which reflects further on the shortcomings of
single-factor stochastic volatility models.

5.2. General Theory of Reprojection
Having the EMM estimate of system parameters ρ̂n in hand, we should like to elicit the
dynamics of the implied conditional density for observables

p̂(y0|x−1) = p(y0|x−1, ρ̂n). (5.3)

Recall that x−1 represents the lagged state vector, and so in the Markov case, (5.3) is an
abbreviated notation for

p̂(y0|y−L , . . . , y−1) = p(y0|y−L , . . . , y−1, ρ̂n).

Although analytic expressions are not available, an unconditional expectation

Eρ̂n (g) =
∫
· · ·

∫
g(y−L , . . . , y0) p(y−L , . . . , y0|ρ̂n) dy−L · · · dy0

can be computed by generating a simulation {ŷt}Nt=−L from the system with parameters
set to ρ̂n and using

Eρ̂n (g) =
1
N

N∑
t=0

g(ŷt−L , . . . , ŷt).

With respect to unconditional expectation so computed, define

θ̂K = argmax
θ∈.pK

Eρ̂n log fK (y0|x−1, θ),

where fK (y0|x−1, θ) is the SNP density given by (4.8). Let

f̂K (y0|x−1) = fK (y0|x−1, θ̂K ). (5.4)

Theorem 1 of Gallant and Long (1997) states that

lim
K→∞ f̂K (y0|x−1) = p̂(y0|x−1).

Convergence is with respect to a weighted Sobolev norm that they describe. Of relevance
here is that convergence in their norm implies that f̂K as well as its partial derivatives
in (y−L , . . . , y−1, y0) converge uniformly over .�, � = M (L + 1), to those of p̂. We
propose to study the dynamics of p̂ by using f̂K as an approximation.This result provides
the justification for our approach.
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To approximate p̂ by f̂K values of (Lu, Lr , Lp, Kz, Iz, Kx, Ix) must be chosen. It seems
natural to reuse the values of the projection that determined ρ̂n because, among other
things, that choice facilitates a comparison of the constrained dynamics determined by
the estimated system with the unconstrained dynamics determined by the data. How-
ever, if the estimated nonlinear system is to be sampled at a different frequency than
was the data, then it will be necessary to redetermine (Lu, Lr , Lp, Kz, Iz, Kx, Ix) by the
methods described in Section 2.2.We anticipate that the dynamics at a different sampling
frequency will not often be of interest and we shall presume in what follows that the
sampling frequency is the same as the data. The modifications required when it differs
are mentioned as they occur.

Of immediate interest in eliciting the dynamics of observables are the first two one-
step-ahead conditional moments

E(y0|x−1) =
∫

y0fK (y0|x−1, θ̂K )dy0

Var(y0|x−1) =
∫

[y0 − E(y0|x−1)] [y0 − E(y0|x−1)]′ fK (y0|x−1, θ̂K )dy0,

where x−1 = (y−L , . . . , y−1). Owing to the form of a Hermite expansion, expressions
for these integrals as linear combinations of high-order moments of the normal distribu-
tion are available (Gallant andTauchen,1992).The moments themselves may be obtained
from standard recursions for the moments of the normal ( Johnson and Kotz, 1970).

Filtered volatility is the one-step-ahead conditional standard deviation evaluated at
data values; viz.,

√
Var(yk0|x−1)

∣∣∣
x−1=(ỹt−L ,...,ỹt−1)

t = 0, . . . , n. (5.5)

In (5.5), ỹt denotes data and yk0 denotes the kth element of the vector y0, k = 1, . . . , M .
Because filtered volatility is a data-dependent concept, the dynamic system must be
sampled at the same frequency as the data to determine f̂K . It has been claimed that
filtered volatility could not be recovered from method of moments estimates of a non-
linear dynamic system with partially observed state and that this has been a criticism
of such estimates. However, as just seen, filtered volatility is easily computed using the
reprojection notion.

We are using the term filtered volatility with a purely ARCH-type meaning as in the
nonlinear impulse-response literature. Another usage of filtering, perhaps the predomi-
nant one, involves estimating an unobserved state variable conditional upon all past and
present observables. Filtering according to this notion (for L lags rather than back to the
first observation) can be accomplished through reprojection.This may be seen by noting
that one can repeat the derivation with y taken to be a contemporaneous unobserved
variable and x taken to be contemporaneous and lagged observed variables. Denote y
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and x thus modified by y∗ and x∗, respectively. The result is a density fK (y∗|x∗, θ) of
the same form as 4.8 but with altered dimensions. One can simulate {y∗t , x∗t } from the
structural modal and perform the reprojection step to get f̂K (y∗|x∗) as described above.
The proof of Gallant and Long (1997) can be altered to justify these modifications. How
one uses f̂K (y∗|x∗) will be application-specific. For instance, one might wish obtain an
estimate of

y∗t =
t+T∫
t

exp(β10 + β12U2t + β13U3t)dt

in a system such as (5.1) for the purpose of pricing an option. In this instance, x∗t =
(U1,t−L , . . . , U1t) and ŷ∗t (x∗) =

∫
y∗ f̂K (y∗|x∗) dy∗.To avoid any confusion,we shall refer

to (5.5) as reprojected volatility hereafter. We now return to the main discussion.
One-step-ahead dynamics may be studied by means of plots of (the elements

of ) E(y0|y−L , . . . , y−1 +�),Var(y0|y−L , . . . , y−1 +�), or other conditional moments
against δ, where � is an M-vector with δ in the ith element and zeroes elsewhere. More
general perturbation strategies may be considered such as � = δỹτ , where ỹτ is a point
chosen from the data such that perturbations in the direction δỹτ take contemporaneous
correlations among the components of yt into account. Perturbations to a single element
of y−1 in a multivariate setting may represent a movement that is improbable according to
the dynamics of the system. Some thought must be given to the perturbation scheme in
multivariate applications if plots of conditional moments against δ are to be informative.
This issue is discussed in Gallant et al. (1993).

Two methods for choosing (y−L , . . . , y−1) for these plots suggest themselves.The first
is to put y−L , . . . , y−1 to the sample mean, i.e., put (y−L , . . . , y−1) = (y, . . . , y), where
y = (1/n)

∑n
t=0 ỹt , and plot, for instance,

Var(y0|y, . . . , y+�) (5.6)

against δ. The second is to average over the data and plot, for instance,

(1/n)
n∑

t=0

Var(yt |ỹt−L , . . . , ỹt−1 +�) (5.7)

against δ. If the estimated system is sampled at a different frequency than the data, then
one plots the average (1/N )

∑n
t=0Var(yt |ŷt−L , . . . , ŷt−1 +�) over a simulation {ŷt}Nt=−L

at the correct frequency instead.
In an economic system, the graphics just described are interpreted as representing the

consequences of a shock to the system that comes as a surprise to the economic agents
involved, and similar interpretations hold in other contexts. If one wants to consider the
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consequences of forcing the system to a different equilibrium, the graphic obtained by
plottingVar(y0|y−L +�, . . . , y−1 +�) against δ is relevant.They can be quite different.

Multistep-ahead dynamics may be studied by considering plots of the trajectories

E
[
g(yj−L , . . . , yj−1)|y−L , . . . , y−1 +�

]
, j = 0, 1, . . . , J , (5.8)

where g(y−L , . . . , y−1) is a time invariant function whose choice is discussed imme-
diately below. As discussed in Gallant et al. (1993), if one sets the initial condition to
(y−L , . . . , y−1 +�) = (ȳ, . . . , ȳ+�), it is helpful to net out transients by plotting either

E
[
g(yj−L , . . . , yj−1)|y, . . . , y+�

]− E
[
g(yj−L , . . . , yj−1)|y, . . . , y

]
(5.9)

or

1
n

n∑
t=0

E
[
g(yt+j−L , . . . , yt+j−1)|ỹt−L , . . . , ỹt−1 +�

]
(5.10)

against j = 0, 1, . . . , J instead of 5.8. Although 5.10 is conceptually superior, because it
recognizes the fact that a sequence exactly equal to the stationary mean for L periods
can never happen, in the examples considered by Gallant et al. (1993), plots of 5.9 had
nearly the same appearance and are much cheaper to compute.

To compute 5.8, one exploits the fact that there are efficient algorithms for sampling
the density f̂K (y0|y−L , . . . , y−1 +�) recursively to obtain R simulated futures{

ŷ0,i, . . . , ŷJ ,i
}
, i = 1, . . . , R,

each conditional upon y−L , . . . , y−1 +� (Gallant and Tauchen, 1992). Prepend
{y−L , . . . , y−1 +�} to each future to obtain the sequences{

ŷ−L,i, . . . , ŷ−1,i, ŷ0,i, . . . , ŷJ ,i
}
, i = 1, . . . , R.

E[ g(yj−L , . . . , yj−1)|y−L , . . . , y−1 +�] can then be computed as

E[ g(yj−L , . . . , yj−1)|y−L , . . . , y−1 +�] = 1
R

R∑
i=1

g(ŷj−L,i, . . . , ŷj−1,i).

A general discussion of appropriate choice of g(y−L , . . . , y−1) for nonlinear impulse-
response analysis, the analysis of turning points, etc., is in Gallant et al. (1993). Of these,
the more routinely useful are the conditional mean profiles

μj(y−L , . . . , y−1 +�)

= E
[
E(yk,j |yj−L , . . . , yj−1)|y−L , . . . , y−1 +�

]
, j = −1, . . . , J
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for the components k = 1, . . . , M of y, which extend the impulse-response profiles of
Sims (1980) to nonlinear systems, and conditional volatility profiles

σ2
j (y−L , . . . , y−1 +�)

= E
[
Var(yk,j |yj−L , . . . , yj−1)|y−L , . . . , y−1 +�

]
, j = 0, . . . , J ,

which extend the volatility impulse-response profiles of Engle et al. (1990) and Bollerslev
and Engle (1993) to nonlinear systems. Plots of the conditional mean profile reveal the
future dynamic response of system forecasts to a contemporaneous shock to the system.
These will, in general, be nonlinear and can differ markedly when the sign of δ changes.
Similarly for volatility.

Persistence can be studied by inspection of profile bundles, which are overplots for
t = 0, . . . , n of the profiles{

μj(ỹt−L , . . . , ỹt−1), j = −1, . . . , J
}
. (5.11)

That is, one overplots profiles conditional on each observed datum. If the thickness of
the profile bundle tends to collapse to zero rapidly, then the process is mean reverting. If
the thickness tends to retain its width, then the process is persistent. Similarly, the profile
bundles {{√

σ2
j (ỹt−L , . . . , ỹt−1), j = 0, . . . , J

}
, t = 0, . . . , n

}
(5.12)

can be used to examine volatility for persistence.These are extensions to nonlinear systems
of notions of persistence due to Bollerslev and Engle (1993). Rather than comparing
plots, one can instead compare half-lives. A half-life ĵ can be obtained by computing the
range Rj at each ordinate j = 0, . . . , J of either 5.11 or 5.12, regressing log Rj on jβ, and
using (−log 2)/β̂ as an estimate of half-life.

Extensive examples of the use of the methods described here for elucidating the joint
dynamics of stock prices and volume are in Gallant et al. (1993).

6. APPLICATIONS
There are now several applications of EMM to substantive problems in continuous-time
estimation and economics more broadly. For reasons of space, we can only review in
detail a few applications. At the end of this section,we give a short overview of the other
applications of which we are currently aware. Simulation methods for continuous-time
models are discussed in Kloeden and Platen (1992) in general.The papers that we discuss
contain within them the details on the way these methods were adapted to the particular
problem.
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6.1. Multifactor Stochastic Volatility Models for Stock Returns
6.1.1. Jump Diffusions

We start with the application of Andersen et al. (2002). They consider the familiar
stochastic volatility diffusion for an observed stock price St given by

dSt

St
= (μ+ cVt)dt +√VtdW1t , (6.1)

where the unobserved volatility process Vt is either log linear

Log linear: d log(Vt) = [α− β log(Vt)] + ηdW2t (6.2)

or square root (affine)

Square root: dVt = (α− βVt)+ η
√

VtdW2t . (6.3)

Here, W1t and W2t are standard Brownian motions that are correlated with
corr(dW1t , dW 2t) = ρ. The notation is self-explanatory taking note that the term cVt

reflects possible GARCH in mean effects. The version with the log-linear volatility
dynamics has attracted substantial attention in the econometrics literature,while the ver-
sion with square-root volatility dynamics has attracted attention in the finance literature
because of the availability of closed-form solutions for options prices.

Andersen, Benzoni, and Lund use EMM to estimate both versions of the stochastic
volatility model with daily S&P 500 Stock Index data, January 2, 1953–December 31,
1996. Their auxiliary model is an E-GARCH model (Nelson, 1991) with an SNP-like
Hermite series representation for the error density.They report that the EMM chi-square
test statistic (2.7) sharply rejects both versions; likewise, the EMM t-ratio diagnostics (2.9)
indicate that these models have difficulty accommodating the tail behavior of the data.

These authors also consider a more general jump diffusion stochastic volatility models

dSt

St
= (μ+ cVt − λt κ̄)dt +√VtdW1t + κtdqt (6.4)

with jump intensity given by

λt = λ0 + λ1Vt (6.5)

and jump size κt given by

log(1+ κt) ∼ N [log(1+ κ̄)− 0.5δ2, δ2).

The jump diffusion models pass the EMM chi-squared test of fit and the EMM diag-
nostic t-ratio tests, which suggests an adequate fit. Once jumps are included in the
model, the test statistics reveal no substantive difference between the log-linear and
square-root specifications for volatility. Also, their estimates suggest little evidence for
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state-dependent jumps in (6.5).They go on to compute hypothetical option prices under
various assumptions about the risk premiums on volatility and jump risks.They illustrate
the role of stochastic volatility and jumps in generating anomalies such as volatility smiles
and smirks.

6.1.2. Alternative Models

The fact that adding a jump component to a basic stochastic volatility model improves
the fit so much reflects two familiar characteristics of financial price movements: thick
non-Gaussian tails and persistent time-varying volatility. A model with a single stochastic
volatility factor can accommodate either of these characteristics separately, but not both
together. The addition of the jump factor accounts for the thick tails. Doing so compli-
cates the estimation, however, because a direct simulation of a jump diffusion entails a
discontinuous path and thereby a discontinuous objective function. Andersen, Benzoni,
and Lund need to implement a simulation strategy that smooths out the sample path
across a jump boundary.

An alternative to adding the jump component is to add another stochastic volatility
factor.This step is undertaken through EMM in Gallant et al. (1999),with some encour-
aging initial results. A more extensive investigation is undertaken in the next paper we
review.

6.1.3. Volatility Index Models

Chernov et al. (2003) consider a four-factor model of the form

dPt
Pt
= (α10 + α12U2t)dt + σ(U3t , U4t)(dW1t + ψ13dW3t + ψ14dW4t)

dU2t = (α20 + α22)dt + β20dW2t
(6.6)

In the above, Pt represents the financial price series evolving in continuous time; U2t

is a stochastic drift factor; U3t and U4t are stochastic volatility factors that affect price
evolution through the volatility index function σ(U3t , U4t).

These authors consider two broad classes of setups for the volatility index func-
tions and factor dynamics: an affine setup, where the index function and volatility
dynamics are

σ(U3t , U4t) = √β10 + β13U3t + β14U4t

dUit = (αi0 + αiiUit)dt +√βi0 + βiiUitdWit i = 3, 4.
(6.7)

and a logarithmic setup, where

σ(U3t , U4t) = exp(β10 + β13U3t + β14U4t)

dUit = (αi0 + αiiUi)dt + (βi0 + βiiUit)dWit i = 3, 4.
(6.8)
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The simpler stochastic volatility models with only one volatility factor, (6.1) above, are
subsumed in this setup by taking β14 = 0.

Chernov et al.(2003) apply EMM to estimate the above models along with affine jump
diffusion models, using daily data on the DOW Index, January 2, 1953–July 16, 1999.
They find that models with two volatility factors, U3t and U4t , do much better on the
EMM chi-squared specification test than do models with only a single volatility factor.
They also find that the logarithmic two-volatility factor models (6.8) outperform affine
jump diffusions and basically provide an acceptable fit to the data. One of the volatility
factors is extremely persistent and the other strongly mean reverting. Interestingly, the
volatility feedback parameter,βii, is positive and very important for finding an acceptable
fit. This parameter permits the local variability of the volatility factors to be high when
the factors themselves are high,a characteristic of volatility that has been noted by others.
The strongly mean-reverting factor with the volatility feedback acts much like a jump
factor in the return process itself.

At this point, it is not clear whether jump diffusions or multiple-factor models with
appropriate factor dynamics are the right models for equity prices. The former, with
jumps entered directly into the price process,are intuitively appealing models for financial
prices. But the jumps generate complications for the simulations and estimation. On the
other hand, the multifactor models are far easier to simulate and estimate and might
prove more adaptable to derivative computations since all sample paths are continuous
and standard hedging arguments and the Ito calculus apply.

6.2. Term Structure of Interest Rates
6.2.1. Affine Term Structure Models

Dai and Singleton (2000) apply EMM for estimation of an affine term structure
model. In the affine setting, the vector of underlying state variables, Yt , follows affine
dynamics

dYt = K̄[θ̄ − Yt]dt +#
√

StdW̃t , (6.9)

where St is a diagonal matrix with entries Sii,t = βi0 + β′iYt . The short rate of interest
follows

rt = δ0 + δ′yYt .

On these assumptions for the risk neutral dynamics, the pure-discount bond prices are
given by

Pt(τ) = eA(τ)−B(τ)′Yt ,

where A(τ) and B(τ) are given by the solutions to ordinary differential equations.



Simulated Score Methods and Indirect Inference for Continuous-time Models 463

Dai and Singleton use Eurodollar swap rates,and the observation equation is a bit more
complicated than in other applications due to the nature of swaps.The no-arbitrage swap
rate, rsτt , on a fixed for variable swap at times t + kτ0, k = 1, 2, . . . , K , τ = Kτ0, is

rsτt = 1− Pt(Kτ0)∑K
k=1 Pt(kτ0)

.

They estimate ATSMs using three observed variables yt = (y1t y2t y3t)
′:

y1t −0.50 log[Pt(0.50)] Six-month LIBOR
y2t rs2t Two-year swap rate
y3t rs10t Ten-year swap rate

This selection defines the observation function

yt = φ(Yt , ρ),

where ρ contains all the parameters of the affine term structure model (ATSM) to be
estimated and tested.

Dai and Singleton focus on two stochastic volatility models for the term structure.
One is due to Balduzzi et al. (1996), abbreviated (BDFS) and the other is due to Chen
(1996). Each lies in a separate branch of the family of ATSMs. Dai and Singleton find
that neither model fits the data, in sense that the overall goodness-of-fit chi-squared tests
are very large relative to degrees of freedom and the diagnostic t-ratios are well above 2.0
in magnitude. However, if each model is expanded outwards to the maximal identified
ATSM within its particular branch, then the chi-squared tests for both models become
acceptable at conventional significance. To choose an overall preferred model, Dai and
Singleton undertake additional analysis of postestimation simulations, much in the spirit
of reprojection analysis described in Section 5 above, to select the extended version of
the BDFS model as their preferred model.

6.2.2. Regime-Switching Affine Term Structure Models

Bansal and Zhou (2002) examine a class affine models with stochastic regime switching.
In their class of models,factor dynamics are constant-parameter affine within each regime,
but the economy shifts stochastically between regimes.They deduce appropriate closed-
form bond pricing functions that properly account for the regime switching. The use
of regime switching models is intuitively appealing in view of potential effects on fixed
income markets of various monetary regimes. Bansal and Zhou use monthly data, 1964–
1995,on yields of six months and five-year maturities for estimation.They use anARCH-
type model with an SNP error density as the auxiliary model.They find that a two-factor
regime-switching model passes the EMM test of specification while every model in broad
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class of two- and three-factor constant regime affine models is sharply rejected. They
also find that the estimated regime-switching model does pricing in pricing the cross
section of bond prices beyond the two basis yields used in estimation.

6.2.3. Nonaffine Models

Ahn et al. (2002a) use EMM to examine the class of quadratic term structure models
(QTSMs) for two monthly data sets, January 1952 to February 1991 and November
1971 to December 1999.They find that the QTSM models generally outperform affine
models on the EMM diagnostic test, but no QTSM is capable of explaining the data.
Ahn et al. (2002b) use EMM to estimate hybrid models where some underlying factors
follow affine dynamics and the others quadratic.They find that hybrid models do better
than either class separately but are still rejected on the EMM chi-squared test of fit.

An interesting and promising line of research would be to combine the findings Bansal
and Zhou (2001),who report favorable evidence for regime-switching models,with those
of Ahn et al. (2002a) who find encouraging evidence for QTSMs.

6.3. Exchange Rates
Chung and Tauchen (2001) use EMM to test various target zone models of exchange
rates. They consider the basic model where the fundamental kt evolves as

dkt = μdt + σdwt (6.10)

and more general models with mean reversion

dkt = −γ(kt − k0)+ σdwt . (6.11)

The central bank is assumed to follow policy actions to keep the fundamental with the
band [k, k]. Letting st denote the exchange rate, then the target zone model generates
the observation equation

st = G(kt , ρ), (6.12)

where the functional form of G is determined by the asset pricing equation that connects
the dynamics of the exchange rate to the fundamental process kt and by the boundary
and smooth pasting conditions. Above, ρ represents the parameters. See Delgado and
Dumas (1991) for details on specification and solution of target zone models. Evidently,
it is relatively simple to simulate exchange rate data from a target zone model and thereby
implement EMM.

Chung and Tauchen (2001) apply the procedure to weekly French franc-Deutsche
mark exchange rates, 1987–1993.Their findings, in brief, are as follows. Consistent with
previous empirical work, their specification tests reject all target zone models considered
when bounds,k and k,are determined directly from officially announced bands. However,
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they find that a very acceptable fit is given by a target zone model with implicit bands, i.e.,
where k and k are free parameters, and the fundamental process is with mean reversion
(6.11).Their results indicate that the central banks were operating within an implicit band
inside the announced official bands. Interestingly, their results are consistent with theo-
retical predictions for a bilateral analysis of exchange rates determined in a multilateral
system (Pedroni, 2001). Finally, Chung and Tauchen present rather dramatic graphical
evidence on the much better fit to the data provided by the preferred target zone model
over a conventional stochastic volatility model for exchange rates.

A recent exchange rate application that uses the C++ MCMC implementation of
EMM is Danielsson and Penaranda (2007).They estimate the parameters of a coordina-
tion game of market instability, which focuses on the endogenous reaction of agents to
fundamentals and liquidity. They apply the model to the potential for financial turmoil
caused by carry trades using data for various subperiods that bracket the yen-dollar mar-
ket in 1998.They find that the strategic behavior of agents is required to account for the
turmoil in that market rather than just market fundamentals and liquidity.

6.4. General EquilibriumModels

Gennotte and Marsh (1993) is an early effort to estimate a general equilibrium asset
pricing model by simulated method of moments. In Bansal et al. (1993, 1995), we
use EMM to estimate small-scale general equilibrium model of international currency
markets. More recently,Valderrama (2001) has implemented EMM for estimation of a
small-scale real business cycle model and Bansal et al. (2007) contrast the implications of
the habit and long run risk models.

Estimation of completely specified equilibrium models, i.e., starting from tastes and
technology, faces a computational bottleneck. For candidate values of the parameter,
the users need to solve for the equilibrium along the simulated trajectory. This com-
putational requirement is generally more demanding than that required to estimate an
SDE, as described in many of the preceding examples. However, recent sharp increases
in computational power, in the form of faster processors linked by parallization soft-
ware, indicate that it will soon be feasible to investigate more extensively through EMM
such fully articulated models. In an initial effort, we are exploring the feasibility of con-
fronting the models of and Bansal and Yaron (2004). These models entail complicated
state and time nonseparable specifications for the stochastic discount factor and elab-
orate multifactor model dynamics for cash flow dynamics, and thereby present serious
challenges for estimation.

6.5. Additional Applications

Below we give a short summary of additional applications of which we are currently
aware. Many of these applications preceded and motivated those described above. We
apologize in advance for omissions and would be interested in knowing of applications
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we might have inadvertently left out; send an e-mail with the citation to either
george.tauchen@duke.edu or ron.gallant@duke.edu.

Discrete time stochastic volatility models are well suited for EMM estimation. Van
der Sluis (1997, 1999) implements the method and provides C/C+ code under Ox
for discrete time univariate stochastic volatility models. Gallant et al. (1997) use it to
examine an extensive list of discrete time stochastic volatility models and document a set
of empirical shortcomings.

Applications to estimation of continuous-time stochastic volatility models include
Engle and Lee (1996),Gallant andTauchen (1997), and Gallant and Long (1997). Mixon
(1998) generalizes the log-linear Gaussian continuous-time model to include a feedback
effect in volatility. Gallant et al. (1999) also find this feedback effect to be important as well
a second volatility factor in their investigation of daily returns and range data. Chernov
et al. (1999) use the technique to explore stochastic volatility and state-dependent jump
models.

A recent application to options pricing is Chernov and Ghysels (2000), who use the
technique for joint estimation of the risk neutral and objective probability distributions
using a panel of options data. Another options pricing application is Jiang and van der
Sluis (2000). Pastorello et al. (2000) use it to deal with the estimation of continuous-time
stochastic volatility models of option pricing.

Early applications to interest rate modeling include Pagan et al. (1996),who apply the
technique for estimating a variety of factor models of the term structure, and Andersen
and Lund (1997), who use the technique to estimate a stochastic volatility model of the
short rate. Some evidence from EMM diagnostics on the shortcomings of a one factor
model is set forth in Tauchen (1997) and in McManus and Watt (1999). An extensive
analysis of multifactor models of short-rate dynamics is in Gallant and Tauchen (1998).
Other term structure applications include Martin and Pagan (2000) along with Dungey
et al. (2000), who undertake a factor analysis of bond yield spreads.

Some interesting recent applications to microeconometric problems include Nagypal
(2007), who uses the method to estimate and compare various models of learning by
doing. Her scores are not SNP scores, which, indeed, would be inappropriate in her
application. The referee argues that her auxiliary model may not approximate the true
data-generating process closely enough for a claim of efficiency. Austin and Katzman
(2001) apply the method to estimate and test new models of multistep auctions using
tobacco auction data.

7. SOFTWARE AND PRACTICAL ISSUES
7.1. Code

In this section,we first describe methods that are appropriate when a high-quality imple-
mentation of the BFGS algorithm is used. The BFGS algorithm (Fletcher, 1987) works
best when analytical first derivatives of the objective function can be supplied, which is
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the case with EMM when using an SNP auxiliary model. The BFGS algorithm uses a
rank two update scheme to compute a“Hessian”matrix,which is needed to get quadratic
convergence.Therefore,second derivatives are not required. Next,we discuss the MCMC
algorithm proposed by Chernozukov and Hong (2003). Its advantages are that it is not
as dependent on start values for success, computing sandwich variance matrices becomes
feasible, and it can cope with the jitter inherent in estimating jump diffusion models. Its
disadvantage is that it can be more computationally intensive.

A Fortran program that implements the BFGS algorithm is available at http://econ
.duke.edu/webfiles/get/emm. A C++ program implementing the Chernozukov–Hong
method is available at http://econ.duke.edu/webfiles/arg/emm.A User’s Guide (Gallant
and Tauchen, 2001b) is included with the code as well as the SNP code and an SNP
User’s Guide.The C++ code is distributed in both a serial version and a parallel version
that runs under message passing interface (MPI) (Foster, 1995). The C++ program is
actually a general purpose implementation of the Chernozukov–Hong method that can
be used with maximum likelihood estimation or other statistical objective functions. It
can also be used for Bayesian inference and we remark in passing that the EMM objective
function can be used for Bayesian inference in place of a likelihood (Gallant and Hong,
2007).

As supplied, the code presumes a CASE 2 structural model in the nomenclature of
Gallant and Tauchen (1996). That is the case that we shall describe here. The setup sub-
sumes a wide variety of situations in macroeconomics and finance.The SNP model is the
score generator.The code can easily be modified to accommodate other score generators
and to accommodate covariates, as in Case 1 or Case 3 of Gallant and Tauchen (1996).
Although we do our work in Unix (Linix or Mac OS), EMM will run under Microsoft
Windows. Running under different operating systems is discussed in the Guides.

7.2. Troubleshooting, Numerical Stability, and Convergence Problems

On the whole, the EMM package is useful and practical. An early version was used
for estimating asset pricing models (Bansal et al., 1995). Recent versions of the Fortran
package have been used in several applications including, among others, Chernov et al.
(2003) and Gallant andTauchen (2001a) for stochastic volatility,Gallant and Long (1997),
Chung and Tauchen (2001) for exchange-rate modeling, and Dai and Singleton (2000),
Ahn et al. (2002a), and Tauchen (1997) for interest rates.

Things can go awry,however. Sometimes,the program may stop prematurely,and there
are some key issues of dynamic and numerical stability that the user must be attentive to.
These issues affect the speed of the computations and relate to convergence problems in
the nonlinear optimization. The following discussion pertains to these issues.

7.2.1. Start Value Problems and Scaling

Sometimes it is hard to get decent start values. We suggest intensive use of randomly
perturbed start values. The nonlinear optimizer works best if it sees all parameters as
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roughly the same order of magnitude.We adopt a scaling so that all parameters as seen by
the optimizer lie in the interval (−1, 1). Since this scaling may not be the natural scaling
for the data generator, one might want to adapt the user-supplied portion of the code
so that the rescaling is done automatically, as in the log-linear example distributed with
the Fortran EMM code. We find that the proper scaling mitigates many problems and
accelerates convergence.

7.2.2. Enforcing Dynamic Stability

As noted in Section 3,the score generator should be dynamically stable.The SNP package
incorporates a spline and/or logistic transformation feature that directly enforces dynamic
stability on the score generator. This feature is discussed at length in the SNP User’s
Guide (Gallant and Tauchen, 2001c). The transformations only affect the conditioning
variable xt−1 in the conditional density f (yt |xt−1, θ); it has no effect on yt and it is
not a prefiltering of the data. All it does is force a very gentle sort mean reversion so
that (∂/∂θ) log[ f (ŷτ |x̂τ−1, θ)] remains well defined should the optimizer happen to pass
back a parameter vector ρ such that the simulation {ŷτ(ρ), x̂τ−1(ρ)} is explosive. For
series that are very persistent, such as interest rates, we find the spline transformation
the best while for series that are nearly i.i.d., e.g., stock returns series, we recommend
using the logistic transformation instead of the spline transformation. As explained in
the SNP User’s Manual, the logistic really serves a different purpose than the spline.The
logistic prevents large elements of xt−1 from unduly influencing the conditional variance
computation.

7.2.3. Bulletproofing the Data Generating Process

Recall the basic structure of EMM as outlined in Section 2.2. The core component of
the distributed EMM package is the user-supplied simulator that takes as input a candidate
vector ρ and generates a simulated realization. This component computes the mapping
ρ→ {ŷt}Nt=1. The EMM package evaluates the objective function

sn(ρ) = m′n(ρ, θ̃n)(Ĩn)
−1mn(ρ, θ̃n)

and optimizes it with respect to ρ.
The optimizer should see sn(ρ) as a smooth surface and care should be taken in writing

the data generating process (DGP) code to ensure that small perturbations of ρ lead to
small perturbations of sn(ρ).The most common source of a rough surfaces is the failure to
control Monte Carlo jitter. One must ensure that when ρ changes, the random numbers
used to compute {ŷt}Nt=1 do not change. Usually, taking care that the seeds passed to
random number generators do not change when ρ changes is an adequate precaution.
However, as mentioned in connection with the discussion of Andersen et al. (2002),
additional precautions may be necessary when adding jumps or other discrete elements
to simulated paths. Large values for N also contribute to smoothness.
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Our experience is that the optimizer sometimes tries outlandishly extreme values of
ρ, especially in the initial phase of the optimization when it’s acquiring information
on functional form of the objective function. These outlandish values of ρ could entail
taking the logs or square roots of negative numbers, dividing by zero, or undertaking
other operations that generate numerical exceptions, within the user’s simulator, within
SNP (which evaluates to scores), or even within the optimizer itself. Our experience is
that things proceed most smoothly when the user-supplied simulator can generate some
kind of sensible simulated realization regardless of ρ and be able to compute something
for ρ→ {ŷt}Nt=1 given arbitrary ρ. We call this “bulletproofing” the code.

However, sometimes it extremely difficult to bulletproof completely the simulator
(especially for diffusion models) and numerical exceptions occur that generate NaN’s.
On a Unix workstation,the Fortran compiler usually has produced an executable that can
appropriately propagate the NaN’s and the EMM objective function evaluates to either
Inf or NaN. Typically, the optimizer distributed with the code can recover, as it realizes
that the particular value of ρ that led to the disaster is very unpromising and it tries
another. The cost of this is that the program slows down considerably while handling
the numerical exceptions along a very long simulated realization.

7.3. The Chernozukov–HongMethod
The computational methods discussed here and implemented by the C++ implemen-
tation of the EMM package apply to any discrepancy function sn(ρ) that produces
asymptotically normal estimates; i.e., any discrepancy function for which there exist
ρo, I, and J such that

J√n(ρ̂n − ρo) = √n
∂

∂ρ
sn(ρ)+ op(1) and

√
n
∂

∂ρ
sn(ρ)

L→ N (0, I). (7.1)

The I matrix discussed in this section pertains to ρ̂n and is not the Ĩn weighting matrix
of the EMM auxiliary model.

Quasi-maximum likelihood estimation requires the computation of the estimator
itself, ρ̂n = argmin

ρ
sn(ρ), an estimate of the Hessian

J = ∂

∂ρ∂ρ ′
so(ρo),

where so(ρ) = limn→∞ sn(ρ), and an estimate of Fisher’s information

I =Var
[
∂

∂ρ ′
√

n sn(ρo)

]
= E

[
∂

∂ρ ′
√

n sn(ρo)

] [
∂

∂ρ ′
√

n sn(ρo)

]′
.

The variance of
√

n(ρ̂n − ρo) is then of the sandwich form

Vn =Var
[√

n(ρ̂n − ρo)
] = J −1IJ −1.
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Put �(ρ) = e−n sn(ρ).Apply Bayesian MCMC methods with �(ρ) as the likelihood. From
the resulting MCMC chain {ρi}Ri=1, put

ρ̂n = ρ̄R = 1
R

R∑
t=1

ρi and Ĵ −1 =
( n

R

) R∑
t=1

(ρi − ρ̄R) (ρi − ρ̄R)
′.

Alternatively, and definitely for EMM, use the mode of �(ρ) as the estimator ρ̂n. The
EMM package computes and reports both the mean and the mode.

Actually, the mode is the better choice of an estimator in most applications because
the parameter values in the mode actually have generated a simulation. The parameter
values in the mean vector may not even satisfy the support conditions of the structural
model.

The strategy used to estimate I is the following. For ρ set to the mode, simulate
the model, and generate I approximately independent of bootstrap data sets {ŷt,i}nt=1,
i = 1, . . . , I , each of exactly the same sample size n as the original data. Keeping the size
to exactly n and using model simulations makes the estimator below a HAC estimator.
Keeping the size to exactly n does not imply that the simulation size N should be set to n
when using the program.The simulation size N should be set much larger than n in most
instances. One way to get a bootstrap sample is to split this long simulation into blocks
of size n.With this approach, the estimate of I would be a parametric bootstrap estimate.
Alternatively, stationary bootstrap or some other method could be used to construct the
blocks. The bootstrap-generating mechanism is coded by the user.

Let ŝn,i(ρ) denote the criterion function corresponding to the ith bootstrap data set
{ŷt,i}nt=1 and let ρ̂n denote mode of �(ρ). Compute ∂

∂ρ ′
√

n ŝn,i(ρ̂n) numerically. An
estimate of the information matrix is the average

Î = 1

I

I∑
i=1

[
∂

∂ρ ′
√

n ŝn,i(ρ̂n)

] [
∂

∂ρ ′
√

n ŝn,i(ρ̂n)

]′
. (7.2)

Note that for the EMM estimator, one must compute the likelihood of the auxiliary
model from the ith bootstrap sample and optimize it to get the ith EMM objective func-
tion ŝn,i(ρ).This is done using the BFGS method.This is the step that makes computing
an accurate numerical derivative accurately both difficult and costly for EMM.The code
attempts to detect failure of the optimizer and failure to compute an accurate deriva-
tive and discard those instances. An objective function such as maximum likelihood or
GMM that does not rely on a preliminary optimization is not as much of a challenge
to differentiate numerically. With these, one can have more confidence that the code
provides the correct answer.

If the SNP model is a good approximation to the true data-generating process,
the computation of Î is not necessary because I = J . This issue has been discussed
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extensively above. The same is true for maximum likelihood if the model is correctly
specified.

The code provides the option of putting the parameter ρ on a grid. This increases
speed by allowing sn(ρ) and related variables to be obtained by table lookup,thus avoiding
recomputation for a value of ρ that has already been visited in the MCMC chain. This
is a useful feature when the objective function sn(ρ) is costly to compute.

Note that Sn(ρ) = τsn(ρ) is also a valid criterion according to the theory. This gives
one a temperature parameter τ to use for tuning the chain. This feature is implemented
in the package.

A random walk, single move, normal proposal is the workhorse of the C++ EMM
package. When parameters are put on a grid, a discrete proposal density is used instead
that has probabilities assigned to grid points proportionally to this normal. Group moves
are also supported. It is easy to substitute an alternative proposal density.

Another advantage of putting parameters on a grid is that it allows the statistical
objective function to be computed less accurately because the accept–reject decision is
still likely to be correct when parameter values are well separated, despite an inaccurately
computed objective function, within reason. This helps mitigate against the effects of
jitter discussed above. Also, it will allow smaller values of the simulation size N than hill
climbers require. For small values of N , one should probably multiply variance estimates
by the correction factor (1+n/N) discussed in Gourieroux et al. (1993).

Simulated method of moments is exactly the same as the foregoing but with a GMM
criterion replacing sn(ρ). As with EMM, if the correct weight function is used with
the GMM criterion function, then I = J so that I need not be computed and there
is no need for any numerical differentiation. But often, the effectiveness of the GMM
weighting function is doubtful and it can cloud the interpretation of results. One may
prefer sandwich standard errors regardless. With GMM, there is usually no numerical
optimization to compute moments as with EMM, so better accuracy can be expected.

The MCMC method described here makes the imposition of support restrictions,
inequality restrictions, and informative prior information exceptionally convenient.
These restrictions and prior information can be imposed on model parameters or on
(nonlinear) functionals of the model that can only be known through simulation. This
feature is implemented in the EMM package. As mentioned above, when the EMM
criterion function is used in connection with a prior, the results can be given a Bayesian
interpretation (Gallant and Hong, 2007).

Obviously, these ideas are not restricted to simulation estimators. The EMM pack-
age is a general purpose implementation of the Chernozhukov–Hong estimator. An
illustration of how the code may be used to implement maximum likelihood is
included with the package and described in the User’s Guide. The application used
for this illustration is a translog consumer demand system for electricity by time
of day with demand shares distributed as the logistic normal that is taken from
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Gallant (1987). It shows off the Chernozhukov–Hong estimator to good advantage
because a vexing problem with hill climbers is trying to keep model parameters in the
region where predicted shares are positive for every observed price/expenditure vector.
This is nearly impossible to achieve when using conventional derivative-based hill-
climbing algorithms but is trivially easy to achieve using the the Chernozhukov–Hong
estimator.

8. CONCLUSION
We described a simulated score method of moments estimator based on the following
idea: use the expectation with respect to the structural model of the score function of
an auxiliary model as the vector of moment conditions for GMM estimation. Making
the procedure operational requires an estimate of the parameters of the auxiliary model
and computation of the expectation through simulation. Strategies for doing this were
set forth, considerations regarding choice of the auxiliary model were discussed, and
the SNP density, which is a sieve, was described as a general purpose auxiliary model.
When the auxiliary model is chosen to closely approximate the characteristics of the
observed data, the estimation method is termed EMM. The SNP density provides a
systematic method to achieve a close approximation, though, depending on the nature
of the data, other auxiliary models might provide a more convenient way to achieve
adequate approximation for EMM.

These ideas were related to indirect inference, which is an asymptotically equivalent
methodology, and mention made of the fact that the indirect inference view of the
method can be used to facilitate the choice of an auxiliary model that confers semi-
nonparametric or robustness properties on the estimator. Also mentioned was that, as a
practical matter, indirect inference will often have to be reformulated as a simulated score
method to make it computationally feasible.

There are three steps to EMM.The first, termed the projection step, entails summarizing
the data by projecting it onto the auxiliary model. The second is termed the estimation
step, where the parameters are obtained by GMM. The estimation step produces an
omnibus test of specification along with useful diagnostic t statistics. The third step is
termed the reprojection step, which entails postestimation analysis of simulations for the
purposes of prediction, filtering, and model assessment. It was argued that the last two
steps, assessment of model adequacy and postestimation evaluation, are the real strengths
of the methodology in building scientifically valid models.

There have been many applications of the EMM methodology in the literature and
several of these were discussed in detail. Code is available, its use was broadly discussed
with attention given to various pitfalls that need to be avoided.The code is available for
both serial and parallel architectures.
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Abstract

Our survey will explore possible explanations for the divergence between the objective and the risk-

neutral distributions. Modeling of the dynamics of the underlying asset price is an important part

of the puzzle, while another essential element is the existence of time-varying risk premia. The last

issue stresses the potentially explicit role to be played by preferences in the pricing of options, a

departure from the central tenet of the preference-free paradigm. An important issue for option

pricing is whether or not the models deliver closed-form solutions. We will therefore discuss if and

when there exists a trade-off between obtaining a good empirical fit or a closed-form option pricing

formula. The price of a derivative security is determined by the risk factors affecting the dynamic

process of the underlying asset. We start the survey with discrete timemodels based on the key notion

of stochastic discount factor. The analysis in Section 2 allows us to discussmany issues, both theoretical

and empirical in a relatively simple and transparent setting. Sections 3 and 4 deal with continuous time

processes. Section 3 is devoted to the subject of modeling the so-called objective probability measure,

and Section 4 discusses how to recover risk-neutral probability densities in a parametric continuous

time setting. Nonparametric approaches to pricing, hedging and recovering state price densities are

reviewed in Section 5.

Keywords: stock price dynamics; multivariate jump-diffusion models; latent variables; stochastic

volatility; objective and risk-neutral distributions; nonparametric option pricing; discrete-time option

pricing models; risk-neutral valuation; preference-free option pricing.

1. INTRODUCTION ANDOVERVIEW
To delimit the focus of this survey, we will put emphasis on the more recent contri-
butions because there are already a number of surveys that cover the earlier literature.
For example, Bates (1996b) wrote an excellent review, discussing many issues involved
in testing option pricing models. Ghysels et al. (1996) and Shephard (1996) provide a
detailed analysis of stochastic volatility (SV) modeling, whereas Renault (1997) explores
the econometric modeling of option pricing errors. More recently, Sundaresan (2000)
surveys the performance of continuous-time methods for option valuation.The material
we cover obviously has many seminal contributions that predate the most recent work.
Needless to say that due credit will be given to the seminal contributions related to
the general topic of estimating and testing option pricing models. A last introductory
word of caution: our survey deals almost exclusively with studies that have considered
modeling the return process for equity indices and determining the price of European
options written on this index.

One of the main advances that marked the econometrics of option pricing in the last
10 years has been the use of price data on both the underlying asset and options to jointly
estimate the parameters of the process for the underlying and the risk premia associated
with the various sources of risk. Even if important progress has been made regarding
econometric procedures, the lesson that can be drawn from the numerous investigations,
both parametric and nonparametric, in continuous time or in discrete time, is that the
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empirical performance still leaves much room for improvement. The empirical option
pricing literature has revealed a considerable divergence between the risk-neutral distri-
butions estimated from option prices after the 1987 crash and conditional distributions
estimated from time series of returns on the underlying index. Three facts clearly stand
out. First, the implied volatility extracted from at-the-money options differs substantially
from the realized volatility over the lifetime of the option. Second, risk-neutral distribu-
tions feature substantial negative skewness, which is revealed by the asymmetric implied
volatility curves when plotted against moneyness. Third, the shape of these volatility
curves changes over time and maturities; in other words, the skewness and the convexity
are time-varying and maturity-dependent. Our survey will therefore explore possible
explanations for the divergence between the objective and the risk-neutral distributions.
Modeling of the dynamics of the underlying asset price is an important part of the puz-
zle, while another essential element is the existence of time-varying risk premia.The last
issue stresses the potentially explicit role to be played by preferences in the pricing of
options, a departure from the central tenet of the preference-free paradigm.

The main approach to modeling stock returns at the time prior surveys were written
was a continuous-time SV diffusion process possibly augmented with an independent
jump process in returns. Heston (1993) proposed a SV diffusion model for which one
could derive analytically an option pricing formula. Soon thereafter, see, e.g., Duffie
and Kan (1996), it was realized that Heston’s model belonged to a rich class of affine
jump-diffusion (AJD) processes for which one could obtain similar results. Duffie et al.
(2000) discuss equity and fixed income derivatives pricing for the general class of AJD.
The evidence regarding the empirical fit of the affine class of processes is mixed, see,
e.g., Dai and Singleton (2000), Chernov et al. (2003), and Ghysels and Ng (1998) for
further discussion. There is a consensus that single volatility factor models, affine (like
Heston, 1993) or nonaffine (like Hull and White, 1987 or Wiggins, 1987), do not fit the
data (see Andersen et al., 2010; Benzoni, 1998; Chernov et al., 2003; Pan, 2002, among
others). How to expand single volatility factor diffusions to mimic the data generating
process remains unsettled. Several authors augmented affine SV diffusions with jumps
(see Andersen et al., 2001; Bates, 1996a; Chernov et al., 2003; Eraker et al., 2003; Pan,
2002, among others). Bakshi et al. (1997), Bates (2000), Chernov et al. (2003), and Pan
(2002) show, however, that SV models with jumps in returns are not able to capture
all the empirical features of observed option prices and returns. Bates (2000) and Pan
(2002) argue that the specification of the volatility process should include jumps,possibly
correlated with the jumps in returns. Chernov et al. (2003) maintain that a two-factor
nonaffine logarithmic SV diffusion model without jumps yields a superior empirical fit
compared with affine one-factor or two-factor SV processes or SV diffusions with jumps.
Alternative models were also proposed: they include volatility models of the Ornstein–
Uhlenbeck type but with Lévy innovations (Barndorff-Nielsen and Shephard,2001) and
SV models with long memory in volatility (Breidt et al.,1998;Comte and Renault,1998).
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The statistical fit of the underlying process and the econometric complexities associated
with it should not be the only concern,however.An important issue for option pricing is
whether or not the models deliver closed-form solutions.We will therefore discuss if and
when there exists a trade-off between obtaining a good empirical fit or a closed-form
option pricing formula. The dynamics of the underlying fundamental asset cannot be
related to option prices without additional assumptions or information. One possibility is
to assume that the risks associated with SV or jumps are idiosyncratic and not priced by the
market.There is a long tradition of this, but more recent empirical work clearly indicates
there are prices for volatility and jump risk (see, e.g.,Andersen et al., 2010; Chernov and
Ghysels, 2000; Jones, 2003;Pan,2002, among others). One can simply set values for these
premia and use the objective parameters to derive implications for option prices as in
Andersen et al. (2001).A more informative exercise is to use option prices to calibrate the
parameters under the risk-neutral process given some version of a nonlinear least-squares
procedure as in Bakshi et al. (1997) and Bates (2000). An even more ambitious program
is to use both the time series data on stock returns and the panel data on option prices to
characterize the dynamics of returns with SV and with or without jumps as in Chernov
and Ghysels (2000), Pan (2002), Poteshman (2000), and Garcia et al. (2009).

Whether one estimates the objective probability distribution, the risk neutral, or both,
there are many challenges in estimating the parameters of diffusions. The presence of
latent volatility factors makes maximum likelihood estimation computationally infeasible.
This is the area where probably the most progress has been made in the last few years.
Several methods have been designed for the estimation of continuous-time dynamic
state-variable models with the pricing of options as a major application. Simulation-
based methods have been most successful in terms of empirical implementations, which
will be reviewed in this chapter.

Nonparametric methods have also been used extensively. Several studies aimed at
recovering the risk-neutral probabilities or state-price densities implicit in option or stock
prices. For instance, Rubinstein (1996) proposed an implied binomial tree methodology
to recover risk-neutral probabilities, which are consistent with a cross-section of option
prices. An important issue with the model-free nonparametric approaches is that the
recovered risk-neutral probabilities are not always positive and one may consider adding
constraints on the pricing function or the state-price densities.

Bates (2000), among others, shows that risk-neutral distributions recovered from
option prices before and after the crash of 1987 are fundamentally different, whereas
the objective distributions do not show such structural changes. Before the crash, both
the risk-neutral and the actual distributions look roughly lognormal. After the crash, the
risk-neutral distribution is left skewed and leptokurtic. A possible explanation for the
difference is a large change in the risk aversion of the average investor. Because risk
aversion can be recovered empirically from the risk-neutral and the actual distributions,
Aït-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002) estimate
preferences for the representative investor using simultaneously S&P500 returns and
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options prices for contracts on the index. Preferences are recovered based on distance
criteria between the model risk-neutral distribution and the risk-neutral distribution
implied by option price data.

Another approach of recovering preferences is to set up a representative agent model
and estimate the preference parameters from the first-order conditions using a generalized
method of moments (GMM) approach. Although this has been extensively done with
stock and Treasury bill return data (see Epstein and Zin, 1991; Hansen and Singleton,
1982,among others), it is only more recently that Garcia et al. (2003) estimated preference
parameters in a recursive utility framework using option prices. In this survey, we will
discuss under which statistical framework option pricing formulas are preference-free
and risk-neutral valuation relationships (RNVRs) (Brennan, 1979) hold in a general
stochastic discount factor (SDF) framework (Hansen and Richard, 1987). When these
statistical restrictions do not hold, it will be shown that preferences play a role. Bates
(2007) argues that the overall industrial organization of the stock index option markets
is not compatible with the idealized construct of a representative agent. He therefore
proposes an equilibrium analysis with investor heterogeneity.

Apart from statistical model fitting, there are a host of other issues pertaining to the
implementation of models in practice. A survey by Bates (2003) provides an overview
of the issues involved in empirical option pricing, especially the questions surrounding
data selection, estimation or calibration of the model, and presentation of results.

The price of a derivative security is determined by the risk factors affecting the dynamic
process of the underlying asset.We start the survey with discrete time models based on the
key notion of SDF.The analysis in Section 2 allows us to discuss many issues, both theo-
retical and empirical in a relatively simple and transparent setting. Sections 3 and 4 deal
with continuous-time processes. Section 3 is devoted to the subject of modeling the so-
called objective probability measure, and Section 4 discusses how to recover risk-neutral
probability densities in a parametric continuous-time setting. Nonparametric approaches
to pricing, hedging, and recovering state price densities are reviewed in Section 5.

2. PRICING KERNELS, RISK-NEUTRAL PROBABILITIES, ANDOPTION
PRICING

The widespread acceptance among academics and investment professionals of the Black–
Scholes (BS) option pricing formula as a benchmark is undoubtedly due to its usefulness
for pricing and hedging options, irrespective of the unrealistic assumptions of the initial
model.The purpose of econometrics of option pricing is not really to check the empirical
validity of this model. It has been widely documented that by contrast with maintained
assumptions of Black and Scholes geometric Brownian motion model, stock return
exhibits both stochastic volatility and jumps.Thus, the interesting issue is not the validity
of the model itself. In this section, we will rather set the focus on the assessment of the
possible errors of the BS option pricing formula and on empirically successful strategies
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to alleviate them.After all,we can get the right pricing and hedging formula with a wrong
model. This is the reason why the largest part of this section is focused on econometric
modeling and inference about empirically valid extensions of the BS option pricing
formula.

However, it is worth stressing even more generally the econometric content of arbi-
trage pricing. As first emphasized by Cox et al. (1979), there is a message of the Black
and Scholes approach which goes beyond any particular specification of the underlying
stochastic processes. Arbitrage-free pricing models generally allow to interpret deriva-
tive prices as expectations of discounted payoffs, when expectations are computed with
respect to an equivalent martingale measure. It is worth stressing in this respect a nice
correspondence between the theory of arbitrage pricing and econometrics of option
pricing. Although option contracts are useful to complete the markets and so to get an
unique equivalent martingale measure, the statistical observation of option prices is gen-
erally informative about the underlying equivalent martingale measure. Although only
the historical probability distribution can be estimated from return data on the underlying
asset, option prices data allow the econometrician to perform some statistical inference
about the relevant martingale measure. This will be the main focus of interest of this
chapter. For sake of expositional simplicity, as in Black and Scholes (1972) first empirical
tests of their option pricing approach, the option contracts considered in this chapter
will be mainly European calls written on stocks. Of course, in the same way, BS option
pricing methodology has since been generalized to pricing of many other derivative
securities, the econometric approaches sketched below can be extended accordingly.

2.1. Equivalent Martingale Measure and Volatility Smile
Assume that all stochastic processes of interest are adapted in a filtered probability space
(�, (Ft), P). Under standard regularity conditions, the absence of arbitrage is equivalent
to the existence of an equivalent martingale measure Q. Without loss of generality, we
will consider throughout that the payoffs of options of interest are attainable (see, e.g.,
Föllmer and Schied, 2004). Then, the arbitrage-free price of these options is defined
without ambiguity as expectation under the probability measure Q of the discounted
value of their payoff. Moreover, for an European call with maturity T , we will rather
characterize its arbitrage price at time t < T as the discounted value at time t of its
expectation under the time t forward measure Qt,T for time T . By Bayes rule, Qt,T
is straightforwardly defined as equivalent to the restriction of Q on Ft . The density
function dQt,T /dQ is [B(t, T )]−1(Bt/BT ), where Bt stands for the value at time t of
a bank account, whereas B(t, T ) is the time t price of a pure discount bond (with unit
face value) maturing at time T . If K and St denote, respectively, the strike price and the
price a time t of the underlying stock, the option price Ct a time t is

Ct = B(t, T )EQt,T Max[0, ST − K ]. (2.1)
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A formula such (2.1) provides a decomposition of the option price into two components:

Ct = St�1t − K�2t , (2.2)

where

�2t = B(t, T )Qt,T [ST ≥ K ] (2.3)

and

�1t = �2tEQt,T

[
ST

St
| ST ≥ K

]
(2.4)

It follows immediately (see Huang and Litzenberger, 1998, pp. 140, 169) that

�2t = −∂Ct

∂K
(2.5)

In other words, a cross-section at time t of European call option prices all maturing at
time T , but with different strike prices, K is informative about the pricing probability
measure Qt,T . In the limit, a continuous observation of the function K −→ Ct (or of
its partial derivative ∂Ct/∂K ) would completely characterize the cumulative distribution
function of the underlying asset return (ST /St) under Qt,T . Let us rather consider it
through the probability distribution of the continuously compounded net return on the
period [t, T ]:

rS(t, T ) = log
[

ST B(t, T )

St

]
With (log-forward) moneyness of the option measured by

xt = log
[

KB(t, T )

St

]
,

the probability distribution under Qt,T of the net return on the stock rS(t, T ) is
characterized by its survival function deduced from (2.3) and (2.5) as

Gt,T (xt) = −exp(−xt)
∂Ct

∂xt
, (2.6)

where

Ct(xt) = Ct

St
= EQt,T {Max[0, exp(rS(t, T ))− exp(xt)]}. (2.7)
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For the purpose of easy assessment of suitably normalized orders of magnitude, prac-
titioners often prefer to plot as a function of moneyness xt the BS-implied volatility
σ

imp
t,T (xt) rather than the option price Ct(xt) itself. The key reason that makes this sen-

sible is that in the Black and Scholes model, the pricing distribution is indexed by a
single volatility parameter σ. Under BS’ assumptions, the probability distribution of the
net return rS(t, T ) under Qt,T is the normal with mean (−1/2)(T − t)σ2 and variance
(T − t)σ2. Let us denote ℵt,T (σ) this distribution.

Then, the BS-implied volatility σ imp
T−t(xt) is defined as the value of the volatility param-

eter σ2, which would generate the observed option price C(xt) as if the distribution of
net return under Qt,T was the normal ℵt,T (σ). In other words,σ imp

T−t(xt) is characterized
as solution of the equation:

Ct(xt) = BSh[xt , σ
imp
h (xt)] (2.8)

where h = T − t and

BSh[x, σ] = N [d1(x, σ, h)] − exp(x)N [d2(x, σ, h)], (2.9)

where N is the cumulative distribution function of the standardized normal and

d1(x, σ, h) = −x

σ
√

h
+ 1

2
hσ2

d2(x, σ, h) = −x

σ
√

h
− 1

2
hσ2.

It is worth reminding that the common use of the BS-implied volatility σ imp
h (xt) by no

mean implies that people think that the BS model is well specified. By (2.8), σ imp
h (xt)

is nothing but a known strictly increasing function of the observed option price Ct(xt).
When plotting the volatility smile as a function xt −→ σ

imp
h (xt) rather than xt −→

Ct(xt), people simply consider a convenient rescaling of the characterization (2.6) of the
pricing distribution. However, this rescaling depends on xt and, by definition, produces
a flat volatility smile whenever the BS pricing formula is valid in cross-section (for all
moneynesses at a given maturity) for some specific value of the volatility parameter. Note
that the validity of the BS model itself is only a sufficient but not necessary condition
for that.

2.2. How to Graph the Smile?

When the volatility smile is not flat, its pattern obviously depends whether implied
volatility σ

imp
h (xt) is plot against strike K , moneyness (K/St), forward moneyness

(KB(t, T )/St) = exp(xt), log-forward moneyness xt , etc.The optimal variable choice of
course depends on what kind of information people expect to be revealed immediately
when plotting implied volatilities.The common terminology “volatility smile” seems to
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suggest that people had initially in mind a kind of U-shaped pattern, whereas words like
“smirk”or “frown” suggest that the focus is set on frequently observed asymmetries with
respect to a symmetric benchmark. Even more explicitly, because the volatility smile is
supposed to reveal the underlying pricing probability measure Qt,T , a common wisdom
is that asymmetries observed in the volatility smile reveal a corresponding skewness in
the distribution of (log) return under Qt,T . Note in particular that as mentioned above,
a flat volatility smile at level σ characterizes a normal distribution with mean (−σ2/2)
and variance σ2.

Beyond the flat case, the common belief of a tight connection between smile asymme-
tries and risk-neutral skewness requires further qualification. First, the choice of variable
must of course matter for discussion of smile asymmetries. We will argue below that
log-forward moneyness xt is the right choice, i.e., the smile asymmetry issue must be
understood as a violation of the identity

σ
imp
h (xt) = σ

imp
h (−xt). (2.10)

This identity is actually necessary and sufficient to deduce from (2.8) that the general
option pricing formula (2.7) fulfills the same kind of symmetry property than the Black
and Scholes one:

Ct(x) = 1− exp(x)+ exp(x)Ct(−x). (2.11)

Although (2.11) is automatically fulfilled when Ct(x) = BSh[x, σ] [by the symmetry
property of the normal distribution:N (−d) = 1−N (d)], it characterizes the symmetry
property of the forward measure that corresponds to volatility smile symmetry. It actually
mimics the symmetry property of the normal distribution with mean (−σ2/2) and
variance σ2, which would prevail in case of validity of the Black and Scholes model.
By differentiation of (2.11) and comparison with (2.6), it can be easily checked that the
volatility smile is symmetric in the sense of (2.10) if and only if,when ft,T stands for the probability
density function of the log-return rS(t, T ) under the forward measure Qt,T , exp(x/2) ft,T (x) is
an even function of x.

In conclusion, the relevant concept of symmetry amounts to consider pairs of
moneynesses that are symmetric of each other in the following sense:

x1t = log
[

K1B(t, T )

St

]
= −x2t = log

[
St

K2B(t, T )

]
.

In other words, the geometric mean of the two discounted strike prices coincides with
the current stock price: √

K1B(t, T )
√

K2B(t, T ) = St .
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To conclude, it is worth noting that graphing the smile as a function of the log-moneyness
xt is even more relevant when one maintains the natural assumption that option prices are
homogeneous functions of degree one with respect to the pair (St , K ). Merton (1973)
had advocated this homogeneity property to preclude any “perverse local concavity” of
the option price with respect to the stock price. It is obvious from (2.7) that a sufficient
condition for homogeneity is that as in the Black and Scholes case, the pricing probability
distribution Qt,T does not depend on the level St of the stock price. This is the reason
why, as discussed by Garcia and Renault (1998a), homogeneity holds with standard SV
option pricing models and does not hold for GARCH option pricing.

For our purpose, the big advantage of the homogeneity assumption is that it allows
to compare volatility smiles (for a given time to maturity) at different dates since then
the implied volatility σ

imp
h (xt) depends only on moneyness xt and not directly on the

level St of the underlying stock price. Moreover, from the Euler characterization of
homogeneity:

Ct = St
∂Ct

∂St
+ K

∂Ct

∂K

we deduce [by comparing (2.2) and (2.5)] that

�1t = ∂Ct

∂St
(2.12)

is the standard delta-hedging ratio. Note that a common practice is to compute a proxy
of �1t by plugging σ

imp
h (xt) in the BS delta ratio. Unfortunately, this approximation

suffers from a Jensen bias when the correct option price is a mixture of BS prices (see
Section 2.5) according to some probability distribution of the volatility parameter. It is
shown in Renault andTouzi (1996) and Renault (1997) that the BS delta ratio [computed
with σ imp

h (xt)] underestimates (resp. overestimates) the correct ratio�1t when the option
is in the money (resp. out of the money), i.e., when xt < 0 (resp. xt > 0).

2.3. Stochastic Discount Factors and Pricing Kernels

Since Harrison and Kreps (1979), the so-called “fundamental theorem of asset pricing”
relates the absence of arbitrage opportunity on financial markets to the existence of
equivalent martingale measures.

The market model is arbitrage-free if and only if the set of all equivalent martin-
gale measures is nonempty. It is a mild version of the old “efficient market hypothesis”
that states that discounted prices should obey the fair game rule, i.e., to behave as mar-
tingales. Although Lucas (1978) had clearly shown that efficiency should not preclude
risk-compensation, the notion of equivalent martingale measures reconciles the points
of view. The martingale property and associated “risk-neutral pricing” is recovered for
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some distortion of the historical probability measure that encapsulates risk compen-
sation. This distortion preserves “equivalence” by ensuring the existence of a strictly
positive probability density function.

For the purpose of econometric inference, the concept of risk-neutral pricing may
be less well suited because the characterization of a valid equivalent martingale mea-
sure depends in a complicated way of the time-span, the frequency of transactions, the
filtration of information, and the list of primitive assets involved in self-financing strate-
gies. Following Lucas (1978) and more generally the rational expectations literature, the
econometrician rather sets the focus on investors’ decisions at every given date, presum-
ing that they know the true probability distributions over states of the world. In general,
investors’ information will be limited so that the true state of the world is not revealed to
them at any point of time. Econometrician’s information is even more limited and will
always be viewed as a subset of investors’ information.This is the reason why Hansen and
Richard (1987) have revisited Harrison and Kreps (1979) Hilbert space methods to allow
flexible conditioning on well-suited information sets. In a way, the change of probability
measure is then introduced for a given date of investment and a given horizon, similarly
to the forward equivalent measure.

The equivalent martingale measure approach allows to show the existence at any given
date t and for any maturity date T > t of an equivalent forward measure Qt,T such that
the price πt at time t of a future payoff gT available at time T is

πt = B(t, T )EQt,T [ gT | (Ft)]. (2.13)

Similarly, Hansen and Richard (1987) directly prove the existence of a strictly positive
random variable Mt,T such that

πt = Et[Mt,T gT ], (2.14)

where the generic notation Et{.} is used to denote the historical conditional expectation,
given a market-wide information set about which we do not want to be specific. Up to
this degree of freedom, there is basically no difference between pricing equations (2.13)
and (2.14). First note that (2.14), valid for any payoff, determines in particular the price
B(t, T ) of a pure discount bond that delivers $1 at time T :

B(t, T ) = Et[Mt,T ]. (2.15)

The discount factor in (2.13), equal to B(t, T ), is also the conditional expectation at
time t of any variable Mt,T conformable to (2.14). Such a variable is called a SDF.Thus,
Mt,T

B(t,T )
is a probability density function that directly defines a forward measure from the

historical measure. By contrast, a forward measure is usually defined in mathematical
finance from its density with respect to an equivalent martingale measure. The latter
involves the specification of the locally risk free spot rate. However, it is not surprising
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to observe that the issue of market incompleteness which is detrimental in mathematical
finance due to the nonuniqueness of an equivalent martingale measure will also affect
the econometric methodology of SDF pricing.

In the rest of this section, we discuss the properties of the SDF while overlooking the
issue of its lack of uniqueness. It is first worth reminding the economic interpretation
of the SDF. With obvious notations, plugging (2.15) into (2.14) allows to rewrite the
latter as

B(t, T )Et(Rt,T ) = 1− covt
[
Rt,T , Mt,T

]
, (2.16)

where Rt,T = gT
πt

denotes the return over the period [t, T ] on the risky asset with
terminal payoff gT . In other words, the random features of the discounted risky return
B(t, T )Rt,T allow a positive risk premium (a discounted expected return larger than 1)
in proportion of its covariance with the opposite of the SDF.

In the same way, the Bayes rule leads to see risk-neutral densities as multiplicative
functionals over aggregated consecutive periods, and we must see the SDF as produced
by the relative increments of an underlying pricing kernel process. Let τ < T be an
intermediate trading date between dates t and T . The time T payoff gT could be pur-
chased at date t, or it could be purchased at date τ with a prior date t purchase of a claim
to the date τ purchase price. The “law of one price” guarantees that these two ways to
acquire the payoff gT must have the same initial cost. This recursion argument implies a
multiplicative structure on consecutive SDFs.There exists an adapted positive stochastic
process mt called the pricing kernel process such that

Mt,T = mT

mt
. (2.17)

Following Lucas (1978), a popular example of pricing kernel is based on the consump-
tion process of a representative investor. Under suitable assumptions for preferences and
endowment shocks, it is well known that market completeness allows us to introduce a
representative investor with utility function U . Assuming that he or she can consume Ct
at date t and CT at the fixed future date T and that he or she receives a given portfolio
of financial assets as endowment at date t, the representative investor adjusts the dollar
amount invested in each component of the portfolio at each intermediary date to maxi-
mize the expected utility of his or her terminal consumption at time T . In equilibrium,
the investor optimally invests all his or her wealth in the given portfolio and then con-
sumes its terminal value CT .Thus, the Euler first-order condition for optimality imposes
that the price πt at time t of any contingent claim that delivers the dollar amount gT at
time t is such that

πt = Et

[
βT−t U ′(CT )

U ′(Ct)
gT

]
, (2.18)
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where β is the subjective discount parameter of the investor. For instance,with a constant
relative risk aversion (CRRA) specification of the utility function,U ′(C) = C−a where
a ≥ 0 is the Arrow-Pratt measure of relative risk aversion, and we have the consumption-
based pricing-kernel process:

mt = βtC−a
t . (2.19)

2.4. Black–Scholes-Implied Volatility as a Calibrated Parameter
It is convenient to rewrite the call pricing equation (2.1) in terms of pricing kernel:

Ct = Et

[
mT

mt
Max[0, ST − K ]

]
. (2.20)

It is then easy to check that the call pricing formula collapses into the BS one when the
two following conditions are fulfilled:

• The conditional distribution given Ft of the log-return log
[

ST
St

]
is normal with

constant variance σ and
• The log-pricing kernel log(mT

mt
) is perfectly correlated to the log-return on the stock.

An important example of such a perfect correlation is the consumption-based pricing
kernel described above when the investor’s initial endowment is only one share of the
stock such that he or she consumes the terminal value ST = CT of the stock. Then,

log
[

mT

mt

]
= −a log

[
ST

St

]
+ (T − t) log(β). (2.21)

We will get a first interesting generalization of the BS formula by considering now that
the log-return log

[ST
St

]
and the log-pricing kernel log(mt,T ) may be jointly normally

distributed given Ft , with conditional moments possibly depending on the conditional
information at time t. Interestingly enough, it can be shown that the call price com-
puted from formula (2.20) with this joint conditional lognormal distribution will depend
explicitly on the conditional moments only through the conditional stock volatility:

(T − t)σ2
t,T = Vart

[
log

(
ST

St

)]
More precisely, we get the following option pricing formula:

Ct = StBST−t[xt , σt,T−t]. (2.22)

The formula (2.22) is actually a generalization of the RNVR put forward by Brennan
(1979) in the particular case (2.19).With joint lognormality of return and pricing kernel,
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we are back to a Black and Scholes functional form due to the Cameron–Martin formula
(a static version of Girsanov’s theorem), which tells us that when X and Y are jointly
normal:

E
{
exp(X)g(Y )

} = E[exp(X)]E{
g[Y + cov(X , Y )]}

Although the term E[exp(X)] will give B(t, T ) [with X = log(mt,T )], the term
cov(X , Y ) (with Y = log[ST /St]) will make the risk-neutralization because E

{
exp(X)

exp(Y )
}

must be one as it equals E[exp(X)]E{
exp[Y + cov(X , Y )]}.

From an econometric viewpoint, the interest of (2.22), when compared with (2.8), is
to deliver a flat volatility smile but with an implied volatility level which may be time
varying and corresponds to the conditional variance of the conditionally lognormal stock
return. In other words, the time-varying volatility of the stock becomes observable as
calibrated from option prices:

σt,T = σ
imp
T−t(xt), ∀xt

The weakness of this approach is its lack of robustness with respect to temporal aggrega-
tion. In the GARCH-type literature,stock returns may be conditionally lognormal when
they are considered on the elementary period of the discrete time setting (T = t + 1),
whereas implied time-aggregated dynamics are more complicated.This is the reason why
the GARCH-option pricing literature (Duan,1995 and Heston and Nandi,2000) main-
tains the formula (2.22) only for T = t + 1. Nonflat volatility smiles may be observed
with longer times to maturity. Kallsen and Taqqu (1998) provide a continuous-time
interpretation of such GARCH option pricing.

2.5. Black–Scholes-Implied Volatility as an Expected Average Volatility
To account for excess kurtosis and skewness in stock log-returns,a fast empirical approach
amounts to consider that the option price a time t is given by a weighted average:

αtStBSh[xt , σ1t] + (1− αt)StBSh[xt , σ2t]. (2.23)

The rationale for (2.23) is to consider that a mixture of two normal distributions with
standard errors σ1t and σ2t and weights αt and (1− αt),respectively,may account for both
skewness and excess kurtosis in stock log-return.The problem with this naive approach is
that it does not take into account any risk premium associated to the mixture component.
More precisely, if we want to accommodate a mixture of normal distributions with a
mixing variable Ut,T , we can rewrite (2.20) as

Ct = EP{EP [
Mt,T Max[0, ST − K ] | Ft , Ut,T

] ∣∣Ft
}
, (2.24)
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where, for each possible value ut,T of Ut,T , a BS formula like (2.22) is valid to compute

EP[Mt,T Max[0, ST − K ] | Ft , Ut,T = ut,T
]
.

In other words, it is true that as in (2.23), the conditional expectation operator [given
(Ft)] in (2.24) displays the option price as a weighted average of different BS prices
with the weights corresponding to the probabilities of the possible values ut,T of the
mixing variable Ut,T . However, the naive approach (2.23) is applied in a wrong way
when forgetting that the additional conditioning information Ut,T should lead to modify
some key inputs in the BS option pricing formula. Suppose that investors are told that
the mixing variable Ut,T will take the value ut,T . Then, the current stock price would
no longer be

St = EP[Mt,T ST | Ft
]

but instead

S∗t (ut,T ) = EP[Mt,T ST | Ft , Ut,T = ut,T
]
. (2.25)

For the same reason, the pure discount bond that delivers $1 at time T will no longer
be priced at time t as

B(t, T ) = EP[Mt,T | Ft
]

but rather

B∗(t, T )(ut,T ) = EP[Mt,T | Ft , Ut,T = ut,T
]
. (2.26)

Hence, various BS option prices that are averaged in a mixture approach like (2.23)
must be computed, no longer with actual values B(t, T ) and St of the current bond
and stock prices but with values B∗(t, T )(ut,T ) and S∗t (ut,T ) not directly observed but
computed from (2.26) and (2.25). In particular, the key inputs, underlying stock price
and interest rate, should be different in various applications of the BS formulas like
BSh[x, σ1] and BSh[x, σ2] in (2.23). This remark is crucial for the conditional Monte
Carlo approach, as developed for instance in Willard (1997) in the context of option
pricing with SV. Revisiting a formula initially derived by Romano and Touzi (1997),
Willard (1997) notes that the variance reduction technique,known as conditional Monte
Carlo, can be applied even when the conditioning factor (the SV process) is instanta-
neously correlated with the stock return as it is the case when leverage effect is present.
He stresses that “by conditioning on the entire path of the noise element in the volati-
lity (instead of just the average volatility), we can still write the option’s price as an
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expectation over Black-Scholes prices by appropriately adjusting the arguments to the
Black-Scholes formula”. Willard’s (1997) “appropriate adjustment” of the stock price is
actually akin to (2.25). Moreover, he does not explicitly adjust the interest rate according
to (2.26) and works with a fixed risk-neutral distribution.The Generalized Black–Scholes
(GBS) option pricing below makes the required adjustments explicit.

2.6. Generalized Black–Scholes Option Pricing Formula
Let us specify the continuous-time dynamics of a pricing kernel Mt,T as the relative
increment of a pricing kernel process mt according to (2.17).The key idea of the mixture
model is then to define a conditioning variable Ut,T such that the pricing kernel process
and the stock price process jointly follow a bivariate geometric Brownian motion under
the historical conditional probability distribution given Ut,T . The mixing variable Ut,T
will typically show up as a function of a state variable path (Xτ)t≤τ≤T . More precisely,
we specify the jump-diffusion model

d(log St) = μ(Xt)dt + α(Xt)dW1t + β(Xt)dW2t + γtdNt (2.27)

d(log mt) = h(Xt)dt + a(Xt)dW1t + b(Xt)dW2t + ctdNt , (2.28)

where (W1t , W2t) is a two-dimensional standard Brownian motion, Nt is a Poisson
process with intensity λ(Xt) depending on the state variable Xt , and the jump sizes ct
and γt are i.i.d. independent normal variables independent of the state variable process
(Xt).The Brownian motion (W1t) is assumed to be part of the state variable vector (Xt)

to capture the possible instantaneous correlation between ex-jump volatility of the stock
[as measured by Vt = α2(Xt)+ β2(Xt)] and its Brownian innovation. More precisely,
the correlation coefficient ρ(Xt) = α(Xt)√

Vt
measures the so-called leverage effect.

The jump-diffusion model [(2.27) and (2.28)] is devised such that given the state
variables path (Xτ)t≤τ≤T as well as the number (NT −Nt) of jumps between times t
and T , the joint normality of (log ST , log mT ) is maintained. This remark allows us to
derive a GBS option pricing formula by application of (2.24) and (2.22):

Ct = StEP[ξt,T BST−t(x∗t , σt,T ) | Ft
]
, (2.29)

where

σ2
t,T =

T∫
t

[
1− ρ2(Xτ)

]
Vτdτ + (NT −Nt)Var(γt) (2.30)

and

x∗t = log
[

KB∗(t, T )

Stξt,T

]
,
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where Stξt,T and B∗(t, T ) correspond, respectively, to S∗t (ut,T ) and B∗(t, T )(ut,T )

defined in (2.25) and (2.26). General computations of these quantities in the context of
a jump-diffusion model can be found inYoon (2008). Let us exemplify these formulas
when there is no jump. Then, we can define a short-term interest rate as

r(Xt) = −h(Xt)− 1
2

[
a2(Xt)+ b2(Xt)

]
and then

B∗(t, T ) = exp

⎡⎣− T∫
t

r(Xτ)dτ

⎤⎦exp

⎡⎣ T∫
t

a(Xτ)dW1τ − 1
2

T∫
t

a2(Xτ)dτ

⎤⎦ (2.31)

and

ξt,T = exp

⎡⎣ T∫
t

[a(Xτ)+ α(Xτ)]dW1τ − 1
2

T∫
t

[a(Xτ)+ α(Xτ)]2dτ

⎤⎦. (2.32)

It may be easily checked in particular that

B(t, T ) = EP[B∗(t, T ) | Ft
]

and

St = EP[Stξt,T | Ft
]
.

Let us neglect for the moment the difference between Stξt,T and B∗(t, T ) and their
respective expectations St and B(t, T ). It is then clear that the GBS formula warrants
the interpretation of the BS-implied volatility σ imp

T−t(xt) as approximatively an expected
average volatility. Up to Jensen effects (nonlinearity of the BS formula with respect to
volatility), the GBS formula would actually give[

σ
imp
T−t(xt)

]2 = EP[σ2
t,T | Ft

]
. (2.33)

The likely impact of the difference between Stξt,T and B∗(t, T ) and their respective
expectations St and B(t, T ) is twofold. First, a nonzero function a(Xτ) must be under-
stood as a risk premium on the volatility risk. In other words, the above interpretation of
σ

imp
T−t(xt) as approximatively an expected average volatility can be maintained by using

risk-neutral expectations. Considering the BS-implied volatility as a predictor of volatil-
ity over the lifetime of the option is tantamount to neglect the volatility risk premium.
Beyond this risk premium effect, the leverage effect ρ(Xt) will distort this interpreta-
tion through its joint impact on σ2

t,T and on ξt,T as well (through α(Xt) = ρ(Xt)
√

Vt).
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Although Renault and Touzi (1996) have shown that we will get a symmetric volatility
smile in case of zero-leverage, Renault (1997) explains that with nonzero leverage, the
implied distortion of the stock price by the factor ξt,T will produce asymmetric volati-
lity smirks. Yoon (2008) characterizes more precisely the cumulated impact of the two
effects of leverage and shows that they compensate each other almost exactly for at the
money options, confirming the empirical evidence documented by Chernov (2007).
Finally, Comte and Renault (1998) long-memory volatility model explains that in spite
of the time averaging in (2.30), (2.33) the volatility smile does not become flat even for
long-term options.

It is worth stressing that the fact that Stξt,T and B∗(t, T ) may not coincide with
their respective expectations St and B(t, T ) implies that, by contrast with the standard
BS option pricing, the GBS formula is not preference free. Although in preference-free
option pricing, the preference parameters are hidden within the observed value of the
bond price and the stock price, and the explicit impact of the volatility risk premium
function a(Xt) in the formulas (2.32) and (2.31) for ξt,T and B∗(t, T ) is likely to result
in an explicit occurrence of preference parameters within the option pricing formula
(see Garcia et al., 2005, and references therein for a general discussion). Although Garcia
and Renault (1988b) characterize the respective impacts of risk aversion and elasticity
of intertemporal substitution on option prices, Garcia et al. (2003) set the focus on the
converse property. Because the impact of preference parameters on option prices should
be beyond their role in bond and stock prices, option price data are likely to be even
more informative about preference parameters. This hypothesis is strikingly confirmed
by their econometric estimation of preference parameters.

Although properly taking into account the difference between historical and risk-
neutral expectations, the tight connection [(2.30) and (2.33)] between BS-implied
volatility and the underlying volatility process (

√
Vt) has inspired a strand of litera-

ture on estimating volatility dynamics from option prices data. Pastorello et al. (2000)
consider directly [σ imp

T−t(xt)]2 as a proxy for squared spot volatility Vt and correct the
resulting approximation bias in estimating volatility dynamics by indirect inference.The
“implied-states approach”described in Section 4 uses more efficiently the exact relation-
ship between σ imp

T−t(xt) and Vt , as given by (2.29), (2.30) for a given spot volatility model,
to estimate the volatility parameters by maximum likelihood or GMM.

3. MODELING ASSET PRICE DYNAMICS VIA DIFFUSIONS FOR THE
PURPOSE OF OPTION PRICING

Because the seminal papers by Black and Scholes (1973) and Merton (1973), the greater
part of option pricing models have been based on parametric continuous-time models
for the underlying asset.The overwhelming rejection of the constant variance geometric
Brownian motion lead to a new class of SV models introduced by Hull and White
(1987) and reviewed in Ghysels et al. (1996). Although the models in the SV class are by
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now well established, there are still a number of unresolved issues about their empirical
performance.

The work by Heston (1993), who proposed a SV diffusion with an analytical option
pricing formula, was generalized by Duffie and Kan (1996) and Duffie et al. (2000) to
a rich class of AJD. This class will be reviewed in a first subsection. Alternative models,
mostly nonaffine, will be covered in the second subsection. A final subsection discusses
option pricing without estimated prices of risk.

3.1. The Affine Jump-Diffusion Class of Models
The general class of AJD models examined in detail by Duffie et al. (2000) includes as
special cases many option pricing models that have been the object of much econometric
analysis in the past few years. To describe the class of processes, consider the following
return dynamics, where d log St = dU1t with U1t is the first element of a vector process
N -dimensional Ut , which represents the continuous path diffusion component of the
return process, and the second term exp�Xt − ι represents discrete jumps, where Xt is
a N -dimensional Lévy process and ι is a vector of ones. The process Ut is governed by
the following equations:

dUt = μ(Ut , t)dt + σ(Ut , t)dWt + exp�Xt − ι, (3.1)

where the process Ut is Markovian and takes values in an open subset D of RN ,μ(y) =
�+Ky with μ : D → RN and σ(y)σ(y)′ = h +∑N

j=1 yjH ( j) where σ : D → RN×N .
Moreover, the vector � is N × 1, the matrix K is N ×N , whereas h and H are all
symmetric N ×N matrices. The process Wt is a standard Brownian motion in RN .
Although the first component of the Ut process relates to returns, the other components
Uit for i = 2, . . . , N govern either the stochastic drift or volatility of returns.1 This
setup is a general affine structure that allows for jumps in returns (affecting the first
component U1t) and the less common situation of jumps in volatility factors (affecting
the components Uit that determine volatility factors). Empirical models for equity have
at most N = 4, where the U2t affects the drift of U1t and U3t and U4t affect either the
volatility or jump intensity (see, e.g., Chernov et al., 2000, 2003). We will start with
single volatility factor models, followed by a discussion of jump diffusions and models
with multiple volatility factors.

3.1.1. Models with a Single Volatility Factor

The class is defined as the following system of stochastic differential equations:

(
dYt

dVt

)
=

(
μ

κ(θ − Vt)

)
dt +√Vt

(
1 0
ρσv

√
(1− ρ2)σv

)
dWt + ξdNt , (3.2)

1All further details regarding the regularity conditions pertaining to the Ut are discussed by Duffie et al. (2000) and therefore omitted.
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where Yt is the logarithm of the asset price St , Wt = (W1t , W2t)
′ is a vector of

independent standard Brownian motions, Nt = (N y
t , N v

t )
′ is a vector of Poisson pro-

cesses with constant arrival intensities λy and λv, and ξ = (ξy, ξv)′ is a vector of jump
sizes for returns and volatility, respectively.2 We adopt the mnemonics used by Duffie
et al. and Eraker et al. (2003): SV for SV models with no jumps in returns nor volatility
(λy = λv = 0),SVJ for SV models with jumps in returns only (λy > 0, λv = 0),and SVJJ
for SV models with jumps in returns and volatility (λy > 0, λv > 0). In SVJ, the jump
size is distributed normally, ξy ∼ N (μy, σ2

y ). The SVJJ can be split into the SVIJ model
[with independent jump arrivals in returns and volatility and independent jump sizes
ξy ∼ N (μy, σ2

y ) and ξv ∼ exp(μv)] and the SVCJ model [with contemporaneous Pois-
son jump arrivals in returns and volatility, N y

t = N v
t with arrival rate λy and correlated

sizes ξv ∼ exp(μv) and ξy|ξv ∼ N (μy + ρJ ξ
v, σ2

y )].
A number of papers have investigated the Heston (1993) SV model. Most papers

(Andersen et al., 2010; Benzoni, 1998; Eraker et al., 2003) conclude that the SV model
provides a much better fit of stock return than standard one-factor diffusions. In particular,
the strong negative correlation around −0.4 found between the volatility shocks and the
underlying stock return shocks captures well the negative skewness observed in stock
returns. However, the model is rejected because it is unable to accommodate the excess
kurtosis observed in the stock returns.3 Basically, it cannot fit the large changes in stock
prices occurring during crash-like events. In the SV model, there is a strong volatility
persistence (the estimated value for the mean reversion parameter κ is in the order
of 0.02).

Adding jumps in returns appears therefore natural because the continuous path SV
accommodates the clustered random changes in the returns volatility,whereas the discrete
Poisson jump captures the large infrequent price movements. However, jump compo-
nents are difficult to estimate and complicate the extraction of the volatility process.4

Eraker et al. (2003) propose a likelihood-based methodology using Markov Chain Monte
Carlo methods (see also Jones, 2003).Their estimation results for the period 1980–1999
show that the introduction of jumps in returns in the SVJ model has an important
downward impact on the parameters of the volatility process.The parameters for average
volatility, the volatility of volatility, and the speed of mean reversion all fall dramatically.
This is somewhat consistent with the results ofAndersen et al. (2010) when they estimate
the models from 1980 till 1996 but with less magnitude. However, in the latter study,

2A specification with βVt in the drift of the returns equation was considered by Eraker et al. (2003).This additional term was found to be
insignificant, in accordance with the findings of Andersen et al. (2001) and Pan (2002).

3Both Andersen et al. (2001) and Benzoni (1998) estimate a nonaffine specification with the log variance. The model fits slightly better
than the affine SV model, but it is still strongly rejected by the data. Jones (2003) estimates a SV model with CEV volatility dynamics,
but it generates too many extreme observations.

4For a discussion of the different types of volatility filters, see Ghysels et al. (1996) and the chapter of Gallant and Tauchen (2010) in this
Handbook.
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parameters associated with volatility change much less when the models are estimated
over a longer period (1953 to 1996). The difference between the two latter studies is
to be found in the estimates of the jump process. In Eraker et al. (2003), jumps arrive
relatively infrequently, about 1.5 jumps per year, and are typically large. The jump mean
is −2.6%, and the volatility is just over 4%. The large sizes of jumps are in contrast with
the smaller estimates (μy of zero and σy less than 2%) obtained by Andersen et al. (2010)
and Chernov et al. (2003). The introduction of jumps lowers the negative correlation
between the innovations in returns and the innovations in volatility. In all studies, the
SVJ model appears to be less misspecified than the SV model.

All econometric complexities put aside,other issues remain. Adding jumps resolve the
misfit of the kurtosis on the marginal distribution of returns, but one may suspect that the
dynamic patterns of extreme events are not particularly well captured by an independent
Poisson process. The stochastic structure of a one-factor SV model augmented with a
Poisson jump process implies that the day after a stock market crash another crash is
equally likely as the day before. In addition, the occurrence of jumps is independent
of volatility. Clearly, the independent Poisson process has unappealing properties, and
therefore, some alternative models for jumps, i.e., alternative Lévy specifications, have
been suggested. Bates (2000) estimated a class of jump-diffusions with random intensity
for the jump process,more specifically where the intensity is an affine function of the SV
component. Duffie et al. (2000) generalize this class, and Chernov et al. (2000), Eraker
et al. (2003), and Pan (2002) estimate multifactor jump-diffusion models with affine
stochastic jump intensity. The models considered by Duffie et al. are

λ(Ut) = λ0(t)+ λ1(t)Ut , (3.3)

where the process Ut is of the affine class as Vt specified in (3.2). These structures may
not be entirely suitable either to accommodate some stylized facts. Suppose one ties
the intensity to the volatility factor Vt in (3.2), meaning that high volatilities imply
high probability of a jump. This feature does not take into account an asymmetry one
observes with extreme events. For instance, the day before the 1987 stock market crash
the volatility measured by the squared return on the S&P 500 index was roughly the
same as the day after the crash. Therefore, in this case making, the intensity of a crash
a linear affine function of volatility would result in the probability of a crash the day
after Black Monday being the same as the trading day before the crash. Obviously, one
could assign a factor specific to the jump intensity and governed by an affine diffu-
sion. Hence, one adds a separate factor Ut that may be correlated with the volatility
factor Vt . Pan (2002) examines such processes and provides empirical estimates. Cher-
nov et al. (2000) and Eraker et al. (2003) consider also a slightly more general class of
processes:

λ(x, U ) = λ0(x, t)+ λ1(x, t)Ut , (3.4)
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where for instance λi(x, t) = λi(t) exp(G(x)). This specification yields a class of jump
Lévy measures which combines the features of jump intensities depending on, say volatil-
ity, as well as the size of the previous jump. The virtue of the alternative more complex
specifications is that the jump process is no longer independent of the volatility process,
and extreme events are more likely during volatile market conditions.There is, however,
an obvious drawback to the introduction of more complex Lévy measures,as they involve
a much more complex parametric structure.Take, e.g., the case where the jump intensity
in (3.3) is a function of a separate stochastic factor Ut correlated with the volatility process
Vt . Such a specification may involve up to six additional parameters to determine the
jump intensity, without specifying the size distribution of jump. Chernov et al. (2000)
endeavor into the estimation of various complex jump processes using more than a 100
years of daily Dow Jones data and find that it is not possible to estimate rich parametric
specifications for jumps eve with such long data sets.5

Despite all these reservations about jump processes,one has to note that various papers
have not only examined the econometric estimation but also the derivative security
pricing with such processes. In particular, Bakshi and Madan (2000) and Duffie et al.
(2000) provide very elegant general discussions of the class of AJDs with SV, which yield
analytic solutions to derivative security pricing. One has nevertheless to bear in mind
the empirical issues that are involved. A good example is the affine diffusion with jumps.
In such a model, there is a price of jump risk and a price of risk for jump size, in addition
to the continuous path volatility factor risk price and return risk. Hence, there are many
risk prices to be specified in such models. Moreover, complex specifications of the jump
process with state-dependent jump intensity result in an even larger number of prices
of risk.

3.1.2. Multiple Volatility Factors

Affine diffusion models are characterized by drift and variance functions, which are
linear functions of the factors. Instead of considering additional factors that govern jump
intensities, one might think of adding more continuous path volatility factors. Dai and
Singleton (2000) discuss the most general specification of such models including the
identification and admissibility conditions. Let us reconsider the specification of Vt in
(3.2) and add a stochastic factor to the drift of returns, namely

dYt = (α10 + α12U1t)dt +√
β10 + β12U2t + β13U3t(dW1t + ψ12dW2t + ψ13dW3t)

dU1t = (α20 + α22U1t)dt + β20dW2t (3.5)

dUit = (αi0 + αiiUit)dt +√
βi0 + βiiUitdWit , i = 2, 3.

5Chernov et al. (2000) also examine nonaffine Lévy processes, which will be covered in the next subsection.
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The volatility factors enter additively into the diffusion component specification. Hence,
they could be interpreted as short- and long-memory components as in Engle and Lee
(1999).The long-memory (persistent) component should be responsible for the main part
of the returns distribution,whereas the short-memory component will accommodate the
extreme observations.This specification allows feedback, in the sense that the volatilities
of the volatility factors can be high via the terms βiiUit when the volatility factors
themselves are high. Adding a second volatility factor helps fitting the kurtosis, using
arguments similar to those that explain why jumps help fitting the tails.The extra freedom
to fit tails provided by an extra volatility factor has its limitations, however, as noted by
Chernov et al. (2003). In fact, their best model, which does fit the data at conventional
levels, is not an affine model (see next subsection).

Bates (2000) and Pan (2002) argue that the specification of the volatility process
should include jumps,possibly correlated with the jumps in returns.This is an alternative
to expanding the number of volatility factors. It has the advantage that one can fit the
persistence in volatility through a regular affine specification of Vt and have extreme
shocks to volatility as well through the jumps, hence capturing in a single volatility
process enough rich features that simultaneously fit the clustering of volatility and the
tails of returns.The drawback is that one has to identify jumps in volatility, a task certainly
not easier than identifying jumps in returns.

3.2. Other Continuous-Time Processes
By other continuous-time processes, we mean a large class of processes that are either
nonaffine or affine but do not involve the usual jump-diffusion processes but more
general Lévy processes or fractional Brownian motions. Three subsections describe the
various models that have been suggested.

3.2.1. Nonaffine Index Models

Another way to capture the small and large movements in returns is to specify SV models
with two factors as in Chernov et al. (2003). They propose to replace the affine setup
(3.5) by some general volatility index function σ(U2t , U3t) able to disentangle the effects
of U2t and U3t separately and therefore have a different effect of short- and long-memory
volatility components. In particular, they consider

σ(U2t , U3t) = exp(β10 + β12U2t + β13U3t) (3.6)

dUit = (αi0 + αiiUit) dt + (βi0 + βiiUit) dWit , i = 2, 3 (3.7)

Chernov et al. (2003) study two different flavors of the logarithmic models, depending
on the value of the coefficients βii. When βii = 0, the volatility factors are described
by Ornstein–Uhlenbeck processes. In this case, the drift and variance of these factors
are linear functions, and hence, the model can be described as logarithmic or log-affine.
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Whenever, βii �= 0 either for i = 2 or for i = 3, there is feedback, a feature found to
be important in Gallant et al. (1999) and Jones (2003). The exponential specification in
(3.6) is of course not the only index function one can consider.

Chernov et al. (2003) show that the exponential specification with two volatility
factors (without jumps) yields a remarkably good empirical fit, i.e., the model is not
rejected at conventional significance levels unlike the jump-diffusion and affine two-
factor models discussed in the previous section. Others have also found that such processes
fit very well, see for instance Alizadeh et al. (2002), Chacko andViceira (1999), Gallant
et al. (1999), and the two-factor GARCH model of Engle and Lee (1999).The fact that
logarithmic volatility factors are used,instead of the affine specification,adds the flexibility
of state-dependent volatility as noted by Jones (2003). In addition, an appealing feature
of the logarithmic specification is the multiplicative effect of volatility factors on returns.
One volatility factor takes care of long memory, whereas the second factor is fast mean-
reverting (but not a spike like a jump). This property of logarithmic models facilitates
mimicking the very short-lived but erratic extreme event behavior through the second
volatility factor. Neither one volatility factor models with jumps nor affine two-factor
specifications are well equipped to handle such patterns typically found during financial
crises.

It should also be noted that the two-factor logarithmic specification avoids several
econometric issues. We noted that the presence of jumps also considerably complicates
the extraction of the latent volatility and jump components because traditional filters no
longer apply. In contrast, the continuous path two-factor logarithmic SV process does not
pose any difficulties for filtering via reprojection methods as shown by Chernov et al.
(2003). There is another appealing property to the two-factor logarithmic SV model:
the model has a smaller number of risk factors compared to many of the alternative
specifications, specifically those involving complex jump process features. The major
drawback of this class of processes, however, is the lack of an explicit option pricing
formula: simulation-based option pricing is the only approach available.

3.2.2. Lévy Processes and Time Deformation

It was noted before that one could easily relax normality in discrete time models through
the introduction of mixture distributions. Likewise, in the context of continuous-time
models, it was noted that one can replace Brownian motions by so-called Lévy pro-
cesses. The typical setup is through subordination, also referred to as time deformation,
an approach suggested first in the context of asset pricing by Clark (1973) and used
subsequently in various settings. The idea to use a Lévy process to change time scales
and thus random changes in volatility can be interpreted as a clock ticking at the speed
of information arrival in the market. For further discussion, see, e.g., Barndorff-Nielsen
and Shephard (2001), Clark (1973), Ghysels et al. (1997), Madan and Seneta (1990), and
Tauchen and Pitts (1983), among many others.
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The purpose of this section is to survey the option pricing implications of assuming
the broader class of time deformed Lévy processes.Various authors have studied option
pricing with this class of processes, including Carr et al. (2003), Carr andWu (2004), and
Nicolato andVenardos (2003). The latter follow closely the setup of Barndorff-Nielsen
and Shephard, which we adopt here as well. We already introduced in Eq. (3.1) the
class of affine jump-diffusion processes. Nicolato andVenardos consider a different class,
namely

dYt = (μ+ βσ2
t )dt + σtdWt + ρdZλt (3.8)

dσt = −δσ2
t dt + dZδt (3.9)

with δ > 0 and ρ ≤ 0.The process Z = (Zδt) is subordinator, independent of the Brow-
nian motion Wt , assumed to be a Lévy process with positive increments, and called
by Barndorff-Nielsen and Shephard (2001) the background driving Lévy process. It is
assumed that Z has no deterministic drift and its Lévy measure has a density λ. Note
that the solution to (3.9) can be written as

σ2
t = exp−δtσ2

0 +
t∫

0

exp t − sdZδs. (3.10)

The resulting dynamics of the stock price process are

dSt = St−(btdt + σt + dMt)

dbt = μ+ δκ(ρ)+]
(
β + 1

2

)
σ2

t (3.11)

Mt =
∑

0<s≤t

(exp ρ�Zδs − 1)− δκ(ρ)t,

where κ(x) is the cumulant transform, i.e., κ(x) = log E[exp xZ1]. To build models of
time deformation, one exploits the property (see, e.g., Sato, 1999) that for any self-
decomposable probability distribution L there exists a Lévy process Z such that the a
OU process driven by Z has L as marginal. Examples of self-decomposable distributions
are the inverse Gaussian and Gamma distributions. Therefore, two popular models to
specify the variance process are the so-called IG −OU and %−OU processes studied,
respectively, by Barndorff-Nielsen and Shephard (2001) and Madan and Seneta (1990).

The characteristic functions for the log of price can be derived in all the aforemen-
tioned cases and can be used to obtain option prices via the Fast Fourier transform.
Equivalent martingale representations are obtained through measure changes within the
class of OU process driven by Z . One interesting case that we would like to highlight
is obtained by Nicolato andVenardos (2003), who express the call price of a European
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option as conditional expectation of the BS formula using so-called effective log-stock
prices, namely

πh
t = EQ∗[BS(Yeff , Veff )|Yt , σ2

t
]

(3.12)

similar to an expression of Hull andWhite (1987) and similar to the GSB discussed earlier,
except that here (as in Hull and White) the expectation is taken under the risk-neutral
expectation. The effective log-price process Xeff is the original process Xt modified by
the path of the future subordinator (ZδT − Zδt where T is the maturity date of the
contract) and Veff is the (re-scaled) future realized volatility between t and T . Because
of the processes involved, this formula applies to a wide variety of nonaffine diffusions
with leverage as well as jump-diffusions. To compute actual option prices, Nicolato
and Venardos (2003) suggest to simulate the pair (Yeff , Veff ) and provide the relevant
references to do so.

The observation that asset prices actually display many small jumps on a fine time scale
has led to the development of more general jump structures, which permit an infinite
number of jumps to occur within any finite time interval. Examples of infinite activity
jump models include the inverse Gaussian model of Barndorff-Nielsen (1998, 2001), the
generalized hyperbolic class of Eberlein et al. (1998), the variance gamma (VG) model of
Madan and Milne (1991), the generalization of VG in Carr et al. (2003), and the finite
moment log-stable model of Carr and Wu (2003). Empirical work by these authors is
generally supportive of the use of infinite-activity processes as a way to model returns
in a parsimonious way. The recognition that volatility is stochastic has led to further
extensions of infinite activity Lévy models by Barndorff-Nielsen and Shephard (2001)
and by Carr et al. (2003). However, these models often assume that changes in volatility
are independent of asset returns and consider the leverage effect only under special
cases. Carr andWu (2004) use time-changed Lévy processes which generalize the affine
Poisson jump-diffusions by relaxing the affine structure and by allowing more general
specifications of the jump structure. Since the pioneering work by Heston (1993), the
literature has used the characteristic function for deriving option prices. Accordingly,
Carr and Wu focus on developing analytic expressions for the characteristic function
of a time-changed Lévy process. Carr et al. (2003) construct option prices differently,
following a method developed in Carr and Madan (1998) using a generalized Fourier
transforms and parameters calibrated with cross-sections of option contracts.

To conclude, it should be noted that much has been written on testing for jumps in
the context of high-frequency financial data, see for instance Andersen et al. (2010) in
this Handbook as well as the survey by Brockwell (2009) and Eberlein (2009).

3.2.3. Long-Memory in Continuous Time

In Section 2, we noted that numerous distorted smiles in the shapes of smirks or frowns
are often inferred from market data since 1987 and provide an explanation in terms of
SV and its instantaneous correlation with the return of the underlying asset. However, as
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pointed out by Sundaresan (2000) in his survey of the performance of continuous-time
methods for option valuation, the remaining puzzle is the so-called term structure of
volatility smiles, i.e., the fact that the volatility smile effect appears to be dependent, in
a systematic way, on the maturity structure of options. Sundaresan (2000) first observes
that the volatility smile appears to be stronger in short-term options than in long-term
ones, which is consistent with the SV interpretation. When volatility is stochastic, the
option price appears to be an expectation of the BS price with respect to the probability
distribution of the so-called integrated volatility (1/h)

∫ t+h
t σ2(u)du over the lifetime of

the option (see Renault and Touzi, 1996, in the context of the Hull and White, 1987,
model) or of a fraction of it in case of leverage effect (see Romano and Touzi, 1997, in
the context of the Heston,1993,model).Then,by a simple application of the law of large
numbers to time averages of the volatility process (assumed to be stationary and ergodic),
one realizes that the effects of the randomness of the volatility should vanish when the
time to maturity of the option increases and therefore the volatility smile should be erased.

Nevertheless, as Sundaresan (2000) emphasizes, the term structure of implied volatil-
ities still appears to have short-term and long-term patterns that cannot be so easily
reconciled. Introducing long memory in the SV process appears to be useful in this
respect. To see this, it is worth revisiting the common claim that the convexity of the
volatility smile is produced by the unconditional excess kurtosis of log returns. For nota-
tional simplicity,we consider that the log price has a zero deterministic drift and that there
is no leverage effect, i.e., using the notations of Subsection 2.7; the twoWiener processes
W S and W X are independent,and the log return over the period [t, t + h] can be written:

Rt(h) = log
St+h

St
=

t+h∫
t

σudwW s
u ,

where the two stochastic processes σ and ws are independent. Hence, given the volatility
path, the log return is normal and we can write

E
[
R2

t (h) /σ
] = t+h∫

t

σ2
u du

and

E
[
R4

t (h) /σ
] = 3

⎡⎣ t+h∫
t

σ2
u du

⎤⎦2

.

The unconditional kurtosis of the return over the period [t, t + h] is therefore given by

k(h) = E
[
R4

t (h)
](

E
[
R2

t (h)
])2 = 3

⎡⎣1+
Var

[
1
h

∫ t+h
t σ2

u du
]

(
E
(
σ2

))2

⎤⎦. (3.13)
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Then, to address the issue of consistency between short-term and long-term patterns,
it is worth considering the limit cases of infinitely short time to maturity (h → 0) and
infinitely long time to maturity (h →∞). First, because 1

h

∫ t+h
t σ2

udu converges in
mean-square toward σ2

t when h tends to zero:

lim
h→0

k(h) = 3

[
1+ Var

(
σ2

)(
E
(
σ2

))2

]
. (3.14)

Equation (3.14) is a specialization to very short-term intervals of a well-known result
since Clark (1973): the excess kurtosis is equal to three times the squared coefficient
of variation of the stochastic variance. This excess kurtosis effect persists in the very
short term even though the volatility smile evaporates and the conditional variance

Vt

[
1
h

∫ t+h
t σ2

udu
]

tends to zero. This is a counterexample to the claim that convexity

of the volatility smile is simply produced by unconditional excess kurtosis. As already
previously noted, observed violations of BS pricing for very short-term options cannot
be captured within the one-factor SV framework without introducing a huge volatility
risk premium, which would become explosive in longer term options. This explains
why jumps, multiple volatility factors, or other nonlinearities have been introduced.

The focus of interest here is the remaining puzzle that SV still appears to be significant
for very long maturity options as documented by Bollerslev and Mikkelsen (1999).
The implied level of volatility persistence to account for deep volatility smiles in long-
term options is large in the framework of standard (short memory) models of volatility
dynamics, even with a model of permanent and transitory component as in Engle and
Lee (1999). Moreover, this cannot be easily reconciled with the stylized fact that the
sample autocorrelogram of squared asset returns generally decreases quite abruptly in the
short term, whereas it appears to converge slowly to zero in the long term. To address
this issue, Comte and Renault (1998) proposed a continuous-time SV model with long
memory. Long memory in volatility dynamics is a well-documented empirical fact (see,
e.g., Ding et al., 1993), which has given rise to various long-memory GARCH models
(Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Robinson, 1991) and long-memory
discrete time SV models (Breidt et al., 1998; Harvey, 1998).

To get a long-memory continuous-time SV model, the basic idea of Comte and
Renault (1998) was to extend the lognormal SV model to fractional Brownian motion.
The log-volatility process follows Ornstein–Uhlenbeck dynamics but with the standard
Brownian motion replaced by a fractional one. Because the main strand of the volatility
literature is now more oriented toward affine models,we rather present here an overview
of the affine fractional SV of Comte et al. (2001). The results are qualitatively similar to
Comte and Renault (1998), but the affine setting provides closed form formulas useful
for interpretation and option pricing applications as well. Starting from a CIR SV model
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as in Heston (1993), dσ̃2(t) = k
(
θ̃ − σ̃2(t)

)
dt + γσ̃(t)dW X (t), Comte et al. consider

the centered process X(t) = σ̃2(t)− θ̃ and a fractional integration of it:

X (d)(t) =
t∫

−∞

(t − s)d−1

%(d)
X(s)ds, 0 ≤ d ≤ 1. (3.15)

To facilitate the interpretation, it is worth noting that a formal integration by part on
(3.15) implies that under some convergence conditions, one can rewrite X (d)(t) as

X (d)(t) =
t∫

−∞

(t − s)d

%(d + 1)
dX(s). (3.16)

It can be seen from (3.16) that X (0)(t) = X(t), and X (1)(t) corresponds to standard
integration of X(t) as in (3.15). It can be shown that for 0 ≤ d < 1/2, the process
X (d)(t) is mean-square stationary centered at zero.Then,up to positivity restrictions (see
Comte et al. for a discussion), the volatility process is defined by σ2

t = X (d)(t)+ θ for
some positive parameter θ. For d = 0, σ2

t is a standard affine volatility process:

dσ2
t = k

(
θ − σ2

t
)

dt + γ

√
σ2

t + θ̃ − θdW X (t).

Although Var
(
σ2

t
) = θ̃γ2/2k and the autocorrelation function of σ2

t has an exponential
rate of decay, ρ

[
σ2

t+h, σ2
t
] = e−k|h|.

In contrast, for 0 < d < 1/2, the volatility process is still mean-reverting, yet it will
feature some long range dependence. Moreover,

Var
(
σ2

t
) = θ̃γ2

k2d+1

%(1− 2d)%(2d)
%(1− d)%(d)

, (3.17)

and the autocorrelation function of σ2
t has only an hyperbolic rate of decay for large lags:

ρ
[
σ2

t+h, σ2
t
] ∼ (kh)2d−1/%(2d) when h tends to infinity. In other words, a positive value

of d allows to introduce much more volatility persistence, not only, as usual, through
a small mean reversion parameter k, but also, even more importantly, through a rate of
decay, which is hyperbolic instead of exponential.

This long-memory model of volatility accommodates much better the volatility smile
puzzle for long-term options. Indeed, it can be shown that for 0 ≤ d < 1/2,

Vart

⎡⎣1
h

t+h∫
t

σ2
s ds

⎤⎦ ∼ γ2θ̃

k2d+1

(hk)2d−1

(d + 1)%(d + 1)2
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when h tends to infinity. Hence,we can clearly disentangle two effects in the explanation
of the volatility smile: (i) the first one, independent of the maturity is simply produced
by the stochastic feature of volatility and is proportional to its unconditional variance
through the term

(
γ2θ̃/k2d+1

)
and (ii) the second one captures the erosion of the volatil-

ity smile when the time to maturity increases. It is given by the term (hk)2d−1 where,
for a given long-memory parameter d, the time to maturity h is scaled by the mean
reversion parameter k.

The second effect is important to understand the phenomenon that long-term options
still feature deep volatility smiles. For instance, a moderate level of long memory in
the volatility process, d = 1/4 say, would imply that the conditional variance would be
divided by a factor of ten when the time to maturity h of the option contract is multiplied
by 100. In contrast, the same factor 100 would divide the variance in the short-memory
case (d = 0).

Finally, note that the kurtosis coefficient k(h) will converge toward its Gaussian limit
3 at the some speed h2d−1 as the conditional variance goes to zero. In other words
and by contrast with the short-term case, the volatility smile and the excess kurto-
sis vanish at the same speed when time to maturity increases to infinity. Of course,
long memory may produce cumbersome statistics because the past information is very
slowly forgotten. However, a convenient feature of the affine fractional SV model is that
integrated volatility

∫ t+h
t σ2

s ds over the lifetime of the option and BS-implied volatili-
ties are fractionally cointegrated. Moreover, the conditional probability distribution of∫ t+h

t σ2
s ds − Et

[∫ t+h
t σ2

s ds
]

given information available at time t only depends on the

current value of the state variable X(t).
In other words, all the long-memory features relevant for option pricing are encapsu-

lated in the expected integrated volatility and can be captured by BS-implied volatilities.
Note in particular that the fractional cointegration relationship justifies the widely used
predicting regressions of realized volatilities on BS-implied volatilities. See Bandi and
Perron (2003) for an empirical illustration of fractional cointegration in this context.
Indeed, it can even be shown that there is a deterministic relationship between expected
integrated volatility and BS-implied volatilities for very long-term options. Beyond that,
all the residual variations of BS-implied volatilities across moneyness (volatility smile)
and across maturities (volatility term structure) are well described by the short-memory
dynamics of the state variables.

3.3. Pricing Options Based on Objective Parameters

A number of papers such asAndersen et al. (2010) and Eraker et al. (2003) have derived the
option pricing implications of jump-diffusion models relying only on returns data for the
underlying asset. This exercise aims at evaluating the economic significance of statistical
differences across models. Understanding how the various factors such as SV, jumps in
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returns, or jumps in volatility determine the conditional distribution as a function of
time to maturity and level of volatility is equivalent to understanding how option prices
change with respect to these factors. Indeed, options with different strike prices and
times to maturity are affected by different attributes of the conditional distribution of
returns. However, to price options in an arbitrage-free framework, one needs to specify
a candidate state price density (SPD) or to characterize the transformation from the
objective measure to the risk-neutral measure. In the presence of jump and SV risks,
appropriate risk compensation must be incorporated in the risk-neutral dynamics. As
already noted, there are potentially risk premia associated with SV, mean jump sizes,
volatility of jump sizes, and jump timing. Separating the various risk premia is not an
easy task. Assumptions have to be made. The crudest assumption consists in setting at
zero all risk premia associated with SV and jumps. Under this assumption, the change
from the objective measure to the risk-neutral measure affects only the drift of the stock
index returns, which is equal to the interest rate minus the dividend yield. Andersen
et al. (2001) and Eraker et al. (2003) make such an assumption and study the impact of
SV and jumps on the levels of implied volatility as well as on the shapes of the implied
volatility curves.

Jumps in returns affect mainly the tails of the conditional distribution and induce
excess kurtosis. As shown by Das and Sundaram (1999) among others, this effect is
strongest for short maturity options because the degree of excess kurtosis in a jump
model decreases with maturity.With jump processes, the implied volatility smile flattens
out very quickly. Unlike jumps,SV affects the conditional distribution the most at longer
horizons. For typical parameterizations such as a slow-moving mean reverting volatility,
the term structure of kurtosis is increasing over a reasonable horizon. Eraker et al. (2003)
produce a figure of implied volatility curves for the models SV, SVJ, SVIJ, and SVCJ
for four different times to maturity (2 weeks, 2 months, 6 months, and 1 year). The
results indicate that there are differences both in the levels of implied volatility and
in the shapes of the implied volatility curves. Regarding the volatility level, the main
difference between the models comes from the estimates of the spot volatility. The spot
volatility estimates for the S&P 500 are 15.10,14.32,15.18,and 15.51% for SV,SVJ,SVCJ,
and SVIJ, respectively. This translates into a level difference of almost 2% points in the
implied volatility for at-the-money options with 1 year to maturity.There are a number
of noteworthy results for the shapes of the volatility curves. First, the implied volatility
curves produced by the SV model are flat. Second, adding jumps in returns steepens the
implied volatility curves at all maturities. With a sizable negative mean jump estimate
for all the models, the implied volatility curves are downward sloping to the right and
not U-shaped. Third, the addition of jumps in volatility fattens further the tails of the
conditional distributions and makes the implied volatility curves steeper.Therefore, even
without any risk premia, jumps and especially jumps in volatility have an important
impact on option prices, which translates into term structures and cross-sections of
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implied volatility more consistent with data. These results are in contrast with Andersen
et al. (2001) who need to add risk premia to generate steep-implied volatility curves.This
is mainly due to the fact that their estimates for the jump parameters are small compared
with Eraker et al. (2003). However, all studies concur in finding a flattening out of the
implied volatility curves as maturity increases for all the models. Indeed, the skewness
and kurtosis of the conditional distribution at longer horizons are due mainly to the
volatility process and not to the jump processes.

To assess the actual quantitative importance of risk premia for option pricing,one needs
to estimate these risk premia along with the parameters of the model.The option market
provides us with prices which can be used, along with stock returns, to estimate these
risk premia. However, to achieve this, one needs additional assumptions to characterize
the form of these risk premia as well as an econometric model of option pricing errors.

4. IMPLIED RISK-NEUTRAL PROBABILITIES
The concept of pricing kernel or SPD is central to the dynamic asset pricing theory,
in particular to the pricing of derivatives. The price at time t of a claim paying an
FT−measurable random variable V at time T is given by

πt = 1
θt

E[V θT | FT ]. (4.1)

In the context of the jump-diffusion model described in the previous section, markets
are incomplete and this SPD is not unique. For a SVJ model, Pan (2002) proposes a
candidate SPD of the following form:

θt = exp

⎛⎝− t∫
0

rτdτ

⎞⎠ exp

⎛⎝− t∫
0

ζτdWτ − 1
2

t∫
0

ζ′τζτdτ

⎞⎠exp

⎛⎝∑
i,τi≤t

ξπi

⎞⎠, (4.2)

where ζ represents a vector of the market prices of risk for the price and volatility shocks
and ξπi is the market price of jump risk. The market prices of risk are defined by

ζ
(1)
t = ηs√Vt , ζ

(2)
t = − 1√

1− ρ2

(
ρηs η

v

σv

)√
Vt . (4.3)

This specification of the market prices of risk makes the risk premia for the diffusive
price shock and the volatility shock proportional to Vt and equal to ηsVt and ηvVt ,
respectively. These forms of the risk premia have been suggested by Bates (1996a, 2000)
based on a log utility model for the representative investor.

The jump risks are priced by the jump components ξπi in the SPD,assumed to be i.i.d.
and normally distributed with mean μπ and variance σ2

π and independent of W . The
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random jump sizes ξπi and ξy
i are allowed to be correlated with a constant correlation ρπ

but are independent at different jump times.
It is more common to transform the model to write it under a risk-neutral measure Q∗,

which is defined from a density θt exp
( ∫ t

0 rτdτ
)
.The SVJ model will be then written as

( dSt
St

dVt

)
=

(
rt − ηsVt − λ∗yμ∗y
κ(α− Vt)+ ηvVt

)
dt +√Vt

(
1 0

ρσv
√
(1− ρ2)σv

)
dW

∗
t +

(
ξydN Qy∗

t

0

)
(4.4)

The risk-neutral dynamics differs from the dynamics under the objective measure by
the drift terms, which incorporate the risk premia and by replacing Wt = (W1t , W2t)

′
by W

∗
t = (W

∗
1t , W

∗
2t)
′, a vector of independent standard Brownian motions under Q∗

defined by

W
∗
t = Wt +

t∫
0

ζsds, 0 ≤ t ≤ T . (4.5)

The jump process N Q∗y has the same distribution under Q∗ than under Q except
that ξy ∼ N (μ∗y , σ2

y ), where μ∗y = μy + σyσπρπ. It means that the model allows for a
jump-size risk. It can also allow for a jump-timing risk because the λ∗y can be different
from λy : λ∗y = λy exp(μπ + σ2

π/2). In Bates (2000) and Pan (2002), the jump-size
intensity is made volatility dependent with one and two factors in volatility.

The price of a European option expiring at T with a strike price of K is given by

πt = 1
θt

Et
[
θT (ST − K )+

]
. (4.6)

A Fourier transform-based approach is adopted to calculate this expectation,as in Heston
(1993), Bates (1996, 2000), Bakshi et al. (1997), Bakshi and Madan (2000), and Duffie
et al. (2000). The explicit formula is given in these papers. For our purpose, let us
characterize the solution as a function f :

πt = St f (Vt ,ϑ, rt , T − t, K/St), (4.7)

where ϑ = (κ,α, σv, ρ, ηs, ηv, λy, λ∗y ,μy, σy,μ∗y) is the vector of model parameters. We
will detail in the next subsection the various issues raised by the estimation of such a
model.

4.1. Econometric Model of Option Pricing Errors
Typically, such a theoretical asset pricing model explains an observed stationary process Yt
of n asset “prices” as a known function of the current value Xt of K latent state variables
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and p unknown parameters θ:

Yt = {hi [Xt , θ]}1≤i≤n . (4.8)

Note that when one loosely says asset “prices”, one should rather understand “yields” in
the case of bonds or “option premium by unit of spot price” in case of options on equity
or any other transformation well suited to build a n-dimensional stationary time series
Yt from the observation of time series of asset prices, likely to be nonstationary. In the
context of options on equity, one may also replace (see, e.g., Chernov and Ghysels, 2000;
Pastorello et al., 2000; Renault and Touzi, 1996) option prices by the corresponding
BS-implied volatilities.

With respect to the most general formulation of empirical asset pricing models pre-
sented in Section 2, we focus here on a more specific approach that is more common
in the arbitrage-free asset pricing literature. First, the pricing kernel is not explicitly
included in the list of latent state variables. Instead, it is defined as a known function of a
collection Xt of relevant risk factors as instantaneous risk free rate,diffusive return shocks,
volatility shocks, and jump events as well as a collection of risk premium parameters θ2

that define the compensation for the various risk factors. Then, the dynamics of the
latent risk factors Xt only identify a set θ1 of unknown “statistical” parameters while the
risk premium parameters θ2 must be added to define the complete vector θ of structural
parameters of interest for asset pricing θ = [θ′1, θ′2]′.

For empirical option pricing on equity, the above approach is typically the one fol-
lowed by Heston (1993), Bates (2000), Chernov and Ghysels (2000), and Pan (2002)
among others. For term structure modeling, this approach is particularly well suited
to capture through K explanatory latent factors of the yield curve the relationships
between n observed yields in cross-section. A large strand of literature, initiated in par-
ticular by Chen and Scott (1993), Pearson and Sun (1994), and Duan (1995), uses this
indirect empirical modeling of bond yields through underlying latent factors. In contrast,
explicit dynamic modeling of the joint stochastic process of asset returns and pricing ker-
nel can be found in the consumption-based equilibrium asset pricing literature (see, e.g.,
Aït-Sahalia and Lo, 2000; Jackwerth, 2000; Rosenberg and Engle, 2002, for applications
to option pricing) or in an even more general way in Constantinides (1992) and Garcia
et al. (2003).

Of course, the simplest approach to estimating a K factors model is to select n = K
asset prices in the cross-section and to exploit the one-to-one relationship between prices
and factors to get either the exact likelihood (Chen and Scott, 1993; Pearson and Sun,
1994; Duan, 1995) or an expansion of it (Aït-Sahalia and Kimmel, 2002) or implied
moments (Pan, 2002, or a simulated score, Dai and Singleton, 2000).This approach leads
unmistakably to neglect the potentially useful information conveyed by a number of
observed related prices in the cross-section. For instance,Pan (2002) estimates a stochastic
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volatility model for option pricing on the S&P 500 index from the joint time series of the
index and one near-the-money short dated option on it. One option price is sufficient to
get a one-to-one relationship with the volatility factor, yet (see, e.g., Dumas et al., 1998),
by taking into account the various possible moneynesses and maturities, the number of
fairly liquid option prices on S&P 500 that can be observed at any given date may be
about 10 or even more. Similarly, although common models of the yield curve involve
K = 1, 2, or 3 factors, the number n of available maturities in the cross-section is about
30 or even more.

However, as emphasized by Renault (1997), when the number n of observed asset
prices is larger than the number K of latent state variables, this produces some stochas-
tic singularity and statistical estimation theory becomes irrelevant. If one takes the
asset pricing model seriously, some parameters can be computed exactly. For exam-
ple, in the BS case of no latent state variable, observing the price of one option will
be enough to compute exactly the volatility of the process. In the case of SV models,
one can recover the exact value of the current state of the variance process by matching
observed prices with the pricing formulas after elimination of unknown parameters.
But different option prices would imply different values for the current state of the
variance process. This fundamental inconsistency can be resolved either by increasing
ad infinitum the number of state variables and match perfectly the observed paths or
cross-sections of option prices (this nonparametric approach is in the spirit of Rubin-
stein (1994) implied binomial tree methodology described in Section 5) or by admitting
that these formulas are approximative and that the observed price is the price given by
the formula plus an error term. The presence of this error term is not difficult to justify
by simply recognizing that any model is intrinsically misspecified whether it is in its
assumptions about the stochastic process followed by the underlying or in its simplis-
tic description of market structure abstracting from microstructure effects and market
frictions.

Therefore, the retained empirical specification of the asset pricing model (4.8) will be

Zt = (Yit)1≤i≤K = h[Xt , θ] = [hi(Xt , θ)]1≤i≤K

Vt = (Yit)K+1≤i≤n = e[Xt , θ] + ut = [hi(Xt , θ)]K+1≤i≤n + [uit]K+1≤i≤n.
(4.9)

Note that we consider at this stage that the n assets prices have been relabeled to
get zero pricing errors for the K first ones, whereas the (n − K ) other ones differ from
their theoretical values by error terms uit . Hence, we do not really maintain the arbitrary
assumption that exactly K prices coincide with their theoretical values, whereas error
terms may be added to the other ones. We just say that because the structural model
already involves K latent factors, there is no reason to introduce more than (n − K ) error
terms, while at least K independent linear combinations should be observed without
error. Of course, such a specification needs to know a priori what are the K prices (or
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the K linear combinations of prices) that are observed without error. This is mainly an
empirical question.

Let us first set the stage for inference on (4.9) in the context of maximum likelihood-
based inference strategies. A maintained assumption will be that the error terms uit
have a zero unconditional mean and that the first K equations provide a one-to-one
relationship between the vector Zt of the K prices observed without error and the
vector Xt of structural state variables:

Zt = (Yit)1≤i≤K = h[Xt , θ] ⇔ Xt = h−1[Zt , θ]. (4.10)

4.2. Maximum Likelihood-Based Inference

To present a variety of likelihood-based inference strategies, we follow here the pre-
sentation of implied-state maximum likelihood as first proposed by Renault and Touzi
(1996) and Renault (1997). Pastorello et al. (2003) encompass a larger set of implied-state
methodologies under the name of implied-state backfitting.

The conditional likelihood associated to a data set {Yt , t = 1, . . . , T } (and an initial
conditioning value Y0) must be derived, through the Jacobian formula, from the latent
one associated with the “latent data” set

{
Y ∗t , t = 1, . . . , T

}
produced by the latent

realizations of a Markov process Y ∗ one-to-one function of Y :

Yt = g[Y ∗t , θ] ⇔ Y ∗t = g−1[Yt , θ]. (4.11)

Typically, (4.11) must be defined by n equations, thanks to (n − K ) equations that com-
plete the K equations (4.10). A natural idea would be to define the state vector Y ∗t by
augmenting the vector Xt of K structural factors with the vector ut of (n − K ) error
terms. However, an alternative approach is better suited for two reasons. First, the param-
eters η that would define the probability distribution of the error term ut are not the
focus of interest. Of course, their consistent estimation may be useful for improving
the accuracy of the estimation of the parameters of interest θ. We do want to ensure,
however, that even if η is not consistently estimated, we obtain a consistent estimator
of θ. Typically, in case of Gaussian errors, the vector of nuisance parameters η consists of
the unconditional covariance matrix � of the (n − K ) error terms ut and possibly the
parameters defining the conditional mean and variance dynamics. The mere fact that
these error terms are added ex post and not rationalized within a structural asset pric-
ing model with additional state variables implies that we have no structural information
about their dynamics. Because from (4.9) we note that the estimation of the dynamics of
the error terms may contaminate the estimation of the dynamics of the structural factors,
it is important to define a procedure that focuses only on the structural parameters θ and
not on the augmented vector (θ, η).
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Second, the implied-state identification condition for θ would be problematic if we
defined the latent state vector Y ∗t as Y ∗t = (Xt , ut). The empirical asset pricing model
(4.9) provides a one-to-one relationship between observed prices Yt and latent variables
(Xt , ut), but the risk premium parameters θ2 are identified only by the relationship
itself and not by the probability distribution of the latent process (Xt , ut). However,
the philosophy of the implied-state methodology is precisely to assume that the latent
model (the transition equation of the state variables) carries more information about the
unknown parameters of interest than their occurrence in the measurement equation.To
remain true to this philosophy, a better strategy is to define the latent vector Y ∗t and the
associated function g[Y ∗t , θ] in the following way:

Y ∗t = [X ′t , V ′
t ]′, Yt = [Z ′t , V ′

t ]′ (4.12)

Yt = g[Xt , Vt , θ] = [h′(Xt , θ), V ′
t ]′.

Note that (n − K ) among the n, so-called latent variables Y ∗t are actually observed,
but this is not a reason for not applying the general implied-state methodology. In this
context, the transition density function of the Markov process Y ∗t :

l
[
Y ∗t

∣∣Y ∗t−1

] = l
[
Xt

∣∣Y ∗t−1

]
l
[
Vt

∣∣Xt , Y ∗t−1

]
(4.13)

will be specified under the maintained common assumption that error terms do not cause
structural factors, neither in the Granger sense nor instantaneously. This assumption is
natural because, if one imagines its violation, one implicitly endows the error terms with
some structural interpretation. Then, by the no-Granger causality assumption,

l
[
Xt

∣∣Y ∗t−1

] = l
[
Xt

∣∣Xt−1
] = l

[
Xt

∣∣Xt−1, θ1
]
, (4.14)

where the last expression stresses the fact that this density function depends on the
value of the unknown parameters only through θ1. By the no instantaneous causality
assumption, l[Vt

∣∣Xt , Y ∗t−1] is simply obtained by a translation of size e[Xt , θ] applied to
the conditional probability distribution l[ut

∣∣Y ∗t−1, η] of the error terms given the past.
This probability density function depends on the value of the unknown parameters only
through the nuisance parameters η.

Because we maintain the assumption that all the structural content of the model is
captured by the factors Xt , we do not really want to specify the dynamics of the error
terms and we will carry out inference about structural parameters through a latent quasi-
likelihood, written as the likelihood of a latent model where the error terms would be
i.i.d. Gaussian with a covariance matrix specified as a function �(η):

l
[
ut
∣∣Y ∗t−1, η

] = l[ut |η ] = (2π)−(n−K )/2[det�(η)]−1/2 exp
[
−1

2
u′t�−1(η)ut

]
(4.15)
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Several remarks are in order about the use of this quasi-likelihood. First, it is well suited
only if the scale Yt used to measure asset prices is consistent with conditional normality
like for instance log-returns or log-implied volatilities. Second,we should not forget that
the quasi-likelihood may differ from the true likelihood and that we just want to get a
consistent estimator of the structural parameters of interest θ. The nuisance parameters
η are likely to be poorly defined and not consistently estimated. However, a general
specification of the covariance matrix �(η) should at least allow us to take into account
the obvious strong cross-sectional patterns of correlation and heteroskedasticity among
error terms (see Renault, 1997, for a general discussion).

Starting from an estimator ηT of the nuisance parameters and a corresponding estima-
tor �T = �(ηT ), we first plug it into (4.13) to define the latent criterion for extremum
estimation of the structural parameters θ:

Q∗
T (θ) = #T

t=2 log l[Xt |Xt−1, θ1 ] − 1
2
#T

t=1[Vt − e(Xt , θ)]′�−1
T [Vt − e(Xt , θ)]. (4.16)

Up to recursive refinements, the backfitting (or iterative implied-state) methodology
amounts to defining a sequence θ(p) of estimators in the following way:

• Start from an estimator θ(1) provided by a quick procedure.
• For θ(p) given, replace in (4.16) the unknown factor values Xt by Xt

(
θ(p)

) =
h−1

[
Zt , θ(p)

]
. This defines a sample-based criterion QT

(
θ, θ(p)

)
.

• Compute the estimator θ(p+1) as arg maxθ QT
(
θ, θ(p)

)
.

Because the nuisance parameters η have been introduced in a way that preserves
adaptivity, the resulting asymptotic probability distribution of the backfitting estimator
of θ will only depend on the probability limit of�T and not on its accuracy as estimator of
the (pseudo) true unknown value of�(η). However,at least in case where the conditional
distribution of the error terms would be well specified, the most accurate backfitting
estimator would be obtained when�T is a consistent estimator of the true value of�(η).
This is the reason why it is natural to think to a“quasi-generalized”version of backfitting
in the following way.

Start from an arbitrary �T (e.g., the identity matrix) and compute the corresponding
backfitting estimator θT of θ.Then, use it to compute “estimated error terms” ut(θT ) =
Vt − e[Xt(θT ), θT ] and to derive a consistent estimator η(θT ) of the pseudo true value
of η and in turn, a consistent estimator �∗T = �[η(θT )] of the pseudo true value of �.
Then, perform a second backfitting estimation of θ based on the criterion (4.16) where
�T has been replaced by W ∗

T . Of course, such a procedure is costly because it implies
several backfitting estimations. Fortunately, there exists a much faster procedure, i.e., in
terms of estimation of θ, asymptotically equivalent to quasi-generalized backfitting, but
in terms of computing time, equivalent to a simple backfitting.
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This procedure that we term “extended backfitting” amounts to using each step θ(p)

of the backfitting iteration to compute a new estimator �[η(θ(p))] of the matrix � and
to plug it into (4.16) in place of �T to derive the next step estimator θ(p+1) of θ. At first
sight, extended backfitting is similar to standard backfitting applied to the augmented
vector (θ, η) of unknown parameters. However, we do not refer to a general backfitting
theory (in terms of an augmented vector of parameters) to justify this procedure. There
is little hope to get a sequence that is contracting with respect to the nuisance parameters
η, and this is the reason why the relevant convergence criterion of the approximation
sequence for applications will only be based on the norm ||θ(p+1) − θ(p)||.

The relevant argument is the following. Irrespective of the choice of the weigh-
ting matrix �T in (4.16), the backfitting estimator is a consistent estimator of the true
unknown value of θ. Therefore, it is clear that the limit of the sequence θ(p) pro-
duced by the extended backfitting algorithm also provides a consistent estimator of
θ, and in turn, the limit of the sequence �[η(θ(p))] provides a consistent estimator
of the true unknown value of �[η]. Because the asymptotic probability distribution
of the backfitting estimator of θ only depends on the probability limit of �T , it is
then clear that we get an estimator asymptotically equivalent to the quasi-generalized
backfitting. Let us briefly sketch a comparison with the maximum likelihood based com-
petitors also well suited for inference on such empirical asset pricing models with latent
factors.

A first competitor is the Kalman filter-based quasi-maximum likelihood. The most
popular strategy is to introduce n error terms instead of (n − K ). This has been first
proposed in the context of affine models of the yield curve by Duan and Simonato
(1999) and systematically developed by De Jong (2000). Of course, severe nonlinearities
or nonnormality of the structural model are likely to alter the validity of the Kalman
filter. Generally speaking, the Kalman filter should not be used for highly nonlinear
models and the backfitting filtering strategy should be much better suited. However, in
the context of return dynamics that are not too far to be linear as in the case of affine
models of the yield curve, the two approaches may be competitors. Roughly speaking,
the Kalman filtering approach can be seen as a quick and dirty procedure to check
the validity of our possibly more accurate but also more risky approach. Typically, the
backfitting approach seeks to get more efficient estimators and filters by taking the risk
to specify exact nonlinear relationships between prices and factors with K zero error
terms.

Another quasi-maximum likelihood approach for factor models of the yield curve has
been applied by Fisher and Gilles (1996) and Duffee (2002). Their idea is quite simple.
Even though the latent model is conceived to be simpler than the observable one, the
hard part of the latent log-likelihood (4.16) is the transition density function of the
structural factors Xt . This function is in general produced by a continuous-time model
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and may be hard to compute or simply unknown. However,consistent (albeit inefficient)
estimates can still be obtained if we substitute the true theoretical transition density with
a Gaussian one, provided that the first two conditional moments of Xt are correctly
specified. Besides its potential inefficiency, this alternative QML approach also suffers
from a risk of misspecification bias in case of a nonlinear mapping g between the latent
variables and the observables. In such a case, the Jacobian formula applied to a latent
Gaussian quasi-likelihood may not yield a correct quasi-likelihood for observables. This
drawback is not detrimental in the case of affine (Fisher and Gilles, 1996) or essentially
affine (Duffee, 2002) term structure models but would be an issue in the case of option
prices on equity with SV.

Moreover,as neatly put forward by Duffee (2002),“another advantage of QML (which
it shares with maximum likelihood and related techniques) is that (· · · ) a model estimated
with QML will guarantee that the time-t state vector implied by time-t yields is in the
state vector’s admissible space (to avoid a likelihood zero). By contrast, (· · · ) techniques
such as efficient method of moments (EMM) (· · · ) do not require that the estimated
term structure model be sufficiently flexible to reproduce the term structure shapes in the
data. The parameters of the model in Dai and Singleton (2000), which were estimated
with EMM, illustrate this point.” This point is actually an important motivation to
prefer implied-state-based likelihood rather than simulation-based minimum chi-square
competitors like indirect inference or EMM.

As far as efficiency is concerned, several remarks are in order. First, contrary to
common belief, the fact that can invert any vector of n asset prices into the n state
variables and use the implied-state variables in the estimation does not mean that one
can do as if the state variables were directly observable. The crucial point is that the
one-to-one relationship (4.12) between latent variables Y ∗ and observable variables Y
does depend on the unknown parameters θ. Therefore, nobody knows whether the
Cramer-Rao bound

(
I∗
)−1 for efficient estimation associated with the hypothetical

observation of Y ∗ would be smaller or larger than the Cramer-Rao bound (I )−1

associated with the actual observation Y . The backfitting strategy described above
must not give the fallacious feeling that the Cramer-Rao bound associated with the
maximization of the log-likelihood

∑T
t=1 log L

[
Y ∗t | Y ∗t−1, θ

]
has been reached. This

maximization is actually infeasible, and the backfitting iterative scheme is based on the
sequence:

θ(p+1) = Arg max
θ

T∑
t=1

log L
[
g−1 (Yt , θ(p)

) | g−1 (Yt−1, θ(p)
)

, θ
]
.

As shown in Pastorello et al. (2003), the cost of this necessary iteration is to multiply the
Cramer-Rao bound

(
I∗
)−1 by a matrix-form factor, which is all the less detrimental

than the mapping θ(p)→ θ(p+1) is more strongly contracting.This theory is based on a
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well-defined choice of the number p (T ) of iterations (as a function of the sample size T )
to define a backfitting estimator θp(T )+1. Of course, if one wants to avoid such iterations
and directly maximize the actual log-likelihood to reach the Cramer-Rao bound I−1,
one should not maximize

T∑
t=1

log L
[
g−1 (Yt , θ) | g−1 (Yt−1, θ), θ

]
(4.17)

but rather

T∑
t=1

log L
[
g−1 (Yt , θ) | g−1 (Yt−1, θ) , θ

]+ T∑
t=1

log | Jg−1 (Yt , θ)|, (4.18)

where | Jg−1 (Yt , θ)| denote the absolute value of the Jacobian of the transformation g.
This can be done in some cases but will often be involved for several reasons. First, the
function g is provided by the asset pricing model. It is in general highly nonlinear and
even not available in a closed form formula. Computing the Jacobian matrix can then
be cumbersome.

Second, and even more importantly, the direct maximization of (4.18) will lead to
look for a maximizer θ, which should simultaneously meet two requirements. On the
one hand, it has to give a large value to the latent likelihood, as it is natural to require.
But, on the other hand, θ will tend to be chosen to select the most likely implied-state
values g−1 (Yt , θ). In many circumstances, such a selection appears to be a fairly risky
strategy. For instance, Pastorello et al. (2003) observe that in the case of application
of Aït-Sahalia (2003) likelihood expansions for affine-type diffusion processes, this will
perversely push g−1 (Yt−1, θ) toward the frontier of the domain where the likelihood (as
provided by its expansion) is infinite. This is the reason why one may prefer to perform
the backfitting strategy of likelihood maximization rather than directly maximizing the
possibly unpalatable log-likelihood (4.18).

Indirect inference and EMM are often presented as appealing alternatives to maximum
likelihood, precisely when the likelihood function becomes unpalatable due to some
unobserved state variables. Because the chapter by Gallant andTauchen in this Handbook
is devoted to these techniques, we just sketch here some specific applications for option
pricing.

Pastorello et al. (2000) propose to avoid the backfitting iteration by simply using BS-
implied volatilities as proxies of implied states in a one-factor SV model. Thanks to the
matching of estimated parameter or fitted-score vectors on simulated data, the indirect
inference principle (see Gouriéroux et al., 1993) will correct for the misspecification
bias due to the use of BS-implied volatilities as proxies of actual spot volatilities which
are unobserved. The main drawback of this approach is that although a fully parametric
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model is needed for the purpose of simulation, nobody knows the efficiency loss due to
the use of an auxiliary model (here, the model on BS-implied volatilities) to simplify the
likelihood.

By matching a seminonparametric (SNP) score generator,EMM aims at correcting for
this efficiency loss. The EMM procedure allows estimating the model parameters under
both objective and risk-neutral probability measures if one uses implied volatilities and
the underlying asset data jointly. Time series of the underlying asset provide estimators
under the objective probability measure,whereas risk-neutral parameters can be retrieved
from options. Chernov and Ghysels (2000) adopt the Heston model,which has a closed-
form option pricing formula, and compare univariate and multivariate models in terms
of pricing and hedging performance. An extension of the SNP/EMM methodology
introduced in Gallant and Tauchen (1998) allows one to filter spot volatilities via repro-
jection, i.e., to compute the expected value of the latent volatility process using a SNP
density conditioned on the observable processes such as returns and/or options data.The
results in Chernov and Ghysels (2000) show that the univariate approach only involv-
ing options by and large dominates. A by-product of this finding is that they uncover
a remarkably simple volatility extraction filter based on a polynomial lag structure of
implied volatilities. The bivariate approach appears useful when the information from
the cash market provides support via the conditional kurtosis to price options. This is
the case for some long-term options. Another solution to the efficiency problem may
be provided by Markov Chain Monte Carlo techniques as described by Johannes and
Polson (2010) in this handbook.

4.3. Implied-State GMM
Taking advantage of the explicitly known moment-generating function of return and
volatility in an affine model, Pan (2003) also advocates an implied-state methodo-
logy to focus directly on the joint dynamics of the state variables rather than the
market observables, which could be highly nonlinear functions of state variables. In
this respect, the approach still belongs to the general class of backfitting methodolo-
gies as studied by Pastorello et al. (2003), but the convenience of the GMM setting
introduces some additional simplifications. The basic idea is to start from conditional
moment restrictions which would provide a feasible GMM if the latent variable Y ∗ were
observed:

E
[
$

(
Y ∗t , θ

) | Y ∗t−1

] = 0 (4.19)

Following Hansen (1985), Pan (2003) uses the optimal instrument matrix provided by

Mt−1(θ) = E
[
∂$′

∂θ

(
Y ∗t , θ

) | Y ∗t−1

] (
Var

[
$

(
Y ∗t , θ

) | Y ∗t−1

])−1 .
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Then,one would like to work with the just identified unconditional moment restrictions:

E
[
Mt−1(θ)$

(
Y ∗t , θ

)] = 0

and to look for the estimator θ̂T solution of

1
T

T∑
t=1

Mt−1

(
θ̂T

)
$
(
Y ∗t , θ̂T

)
= 0 (4.20)

Of course, this estimator is infeasible because Y ∗t is not observed.Then, two strategies
may be imagined. The implied-state backfitting of Pastorello et al. (2003) still amounts

to replace every occurrence of Y ∗ in Mt−1(θ) and $
(
Y ∗t , θ

)
by g−1

(
Yt , θ(p)

)
where

θ(p) comes from a previous step estimation. Insofar as such iterations converge, they will
converge toward Pan’s (2003) IS-GMM estimator, which is actually the second strategy:
directly solve (4.20) when Y ∗t is replaced by g−1(Yt , θ). Then, the unknown θ appears
not only in the occurrences of θ in Mt−1(θ) and $

(
Y ∗t , θ

)
but also inside any occurrence

of Y ∗t = g−1(Yt , θ).
By contrast, Pastorello et al. (2003) define a number p(T ) of iterations (as a function

of the number T of observations) such that the backfitting estimator θp(T )+1 is asymp-
totically equivalent to the Pan (2003) IS-GMM estimator.Then, the choice between the
two strategies is just a matter of computational convenience, depending whether one
consider that the backfitting iterations simplify or not the solution of the IS-GMM fixed
point problem.

Moreover, as stressed by Pan (2003) in her discussion of Pastorello et al. (2003), there
is a case where IS-GMM may work while IS-backfitting does not work.This is the case
where θ would not be fully identified from state variables dynamics Y ∗, for instance
due to some risk premium parameters which do not appear in the factor dynamics.
Even in such a case, one may hope that IS-GMM still identifies θ. It is however worth
reminding that when as in Subsection 4.2 there are more observed prices than latent state
variables, same error terms are added and the vector Y ∗ includes same observed asset
prices which do identify the risk premium parameters. Then, implied-state backfitting
works. In any case, as in the implied-state likelihood methodology of Subsection 4.2,
efficiency is not guaranteed by this kind of implied-state approaches. In the context of
(4.19), semiparametric efficiency would involve the computation of optimal instruments
for the conditional moment restrictions:

E
[
$

(
g−1 (Yt , θ) , θ

) | Yt−1
] = 0. (4.21)

Then, the Jacobian matrix of the moment conditions needed for computing optimal
instruments involves differentiation with respect to the two occurrences of θ in (4.21) and
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not only the second one – as acknowledged by Pan (2003),we sacrifice efficiency and gain
analytical tractability by ignoring the dependence of Y ∗t on θ. As already mentioned in
the likelihood case, it may indeed be challenging to look simultaneously for the“optimal”
value of the implied states and for the best fit in the latent model. However, although
backfitting was really needed in the likelihood case because, otherwise, forgetting the
Jacobian term may imply inconsistency of the estimator, there is no such consistency
problem with GMM. The only consequence of not taking into account the complete
Jacobian term is that the efficiency of the optimal instrument scheme may be “limited”,
as acknowledged by Pan (2003). Indeed, because the two estimators IS-GMM and IS-
backfitting are asymptotically equivalent, this limit to efficiency is tightly related to the
contracting feature of the backfitting correspondence. More contracting it is, smaller is
the efficiency loss.

4.4. Joint Estimation of Risk-Neutral and Objective Distributions

The area of joint estimation of risk-neutral and objective measures is probably where most
of the progress took place over the last five years. The stage was set in the early 1990s
with the considerable advances made regarding estimation of diffusion processes. Exploi-
ting the EMM estimation procedure of Gallant andTauchen (1996) for the estimation of
diffusions, Chernov and Ghysels (2000) propose a generic procedure for estimating and
pricing options using simultaneously the fundamental price St and a set of option con-
tracts [(σI

it)i=1,m]where m ≥ 1 and σI
it is the BS-implied volatility.The procedure consists

of two steps.The first one fits a SNP density of [St , (σI
it)i=1,m] conditional on its own past

[Sτ , (σI
iτ)i=1,m] for τ < t. Second,one simulates the fundamental price and option prices

and calibrates the parameters of the diffusion and its associated option pricing model
to fit the conditional density of the market data dynamics. The EMM procedure allows
estimating the model parameters under both objective and risk-neutral probability mea-
sures if one uses implied volatilities and the underlying asset data jointly. Time series of
the underlying asset provide estimators under the objective probability measure,whereas
risk-neutral parameters can be retrieved from options. Chernov and Ghysels (2000)
adopt the Heston model, which has a closed-form option pricing formula, and compare
univariate and multivariate models in terms of pricing and hedging performance.

Computing the prices of risk involves parameters of the objective measure, the risk-
neutral measure, and the latent volatility process. The univariate specifications consist of
models only using the fundamental (i.e., the usual setup) and models using only options
data. It should be noted,however, that the knowledge of the estimated model parameters
is not sufficient to compute an option price or a hedge ratio. We have to know the
latent spot volatility as well. Because the option price is a one-to-one function of the
current value of the volatility process (Renault and Touzi, 1996), one can recover it via
an inversion of the option pricing formula. However, this procedure is computationally
cumbersome, except if one relies on approximations by series expansions (Garcia et al.,
2009; Lewis, 2000).
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Another possible strategy is to use an extension of the SNP/EMM methodology
introduced in Gallant and Tauchen (1998), which allows one to filter spot volatilities
via reprojection, i.e., compute the expected value of the latent volatility process using
a SNP density conditioned on the observable processes such as returns and/or options
data. The results in Chernov and Ghysels (2000) show that the univariate approach
only involving options by and large dominates. A by-product of this finding is that they
uncover a remarkably simple volatility extraction filter based on a polynomial lag structure
of implied volatilities.The bivariate approach appears useful when the information from
the cash market provides support via the conditional kurtosis to price options. This is
the case for some long-term options.

Pan (2002) examines also a joint time series model of the S&P 500 index and
near-the-money short-term option prices in the context of the jump-diffusion model
described at the beginning of this section. She uses an implied-state GMM approach to
estimate the model. For a given set of model parameters ϑ, she replaces the unobserved
volatility Vt by an option-implied volatility V ϑ

t inverted numerically from the spot
price St and a near-the-money short-term option price πt based on the option pricing
formula implied by the jump-diffusion model.6 The interest of such a method is to
take advantage of the analytical tractability of the state variables S and V compared
with the complicated joint dynamics of the pair S and π, given the nonlinear nature
of the option pricing function. The usual GMM procedure can be applied to the
moments of the pair of state variables St and V ϑ

t , but now one of the state variables is
parameter-dependent. The closer ϑ is to the true model parameter vector ϑ0, the more
accurate is the corresponding option-implied volatility V ϑ

t .
Garcia et al. (2009) propose an estimation procedure that uses both option prices and

high-frequency spot price feeds to estimate jointly the objective and risk-neutral param-
eters of SV models. This procedure is based on series expansions of option prices and
implied volatilities and on a method-of-moment estimation that uses analytical expres-
sions for the moments of the integrated volatility. In a SV model, with or without
correlation, the option pricing formula involves the computation of a conditional expec-
tation of a highly nonlinear integral function of the volatility process. To simplify this
computation, the authors propose to use an expansion of the option pricing formula in
the neighborhood of σV = 0,as in Lewis (2000),which corresponds to the BS determin-
istic volatility case. The coefficients of this expansion are well-defined functions of the
conditional moments of the joint distribution of the underlying asset returns and inte-
grated volatilities, which are also derived analytically. These analytical expansions allow
to compute very quickly implied volatilities, which are functions of the parameters of
the processes and of the risk premia. A two-step GMM approach using intraday returns
for computing approximate integrated volatilities (the objective part of the estimation)

6The numerical procedure to compute the model-based implied volatility is described in Appendix B of Pan (2002).



524 René Garcia et al.

and option prices for computing implied volatilities (the risk-neutral part of the estima-
tion) allows to recover the volatility risk premia λ. The main attractive feature of this
method is its simplicity once analytical expressions for the various conditional moments
of interest are available. The great advantage of the affine diffusion model is precisely
to allow an analytical treatment of the conditional moments of interest. Eraker (2004)
applies a Markov chain Monte Carlo-based approach to joint time-series data on spot
and options also for a jump-diffusion model.

5. NONPARAMETRIC APPROACHES
The financial theoretical models of the previous sections are based on parametric dynamic
processes for stock returns. Despite the great deal of complexity put into these processes
to capture the features of the data, they remain usually misspecified.Therefore, nonpara-
metric methods, which are so-called model-free and make minimal assumptions about
the underlying asset price process, appear as a promising tool to apply in the context of
derivative pricing. Moreover, these methods are well adapted to the financial problems
at hand because the quantities of interest are functions, whether it is the risk-neutral dis-
tribution or SPD, the distribution function for hedging or else the value-at-risk quantile
function of the conditional distribution of returns.

Nonparametric methods have been applied to all the above-mentioned financial prob-
lems of interest.We will discuss in this section how nonparametric methods can be used
to recover a pricing function, a hedging ratio and a risk-neutral distribution. As a way
to make the transition between the parametric and nonparametric approaches, we will
first consider a semiparametric approach proposed by Aït-Sahalia and Lo (1998) and
Gouriéroux et al. (1994). The main idea is to recover risk-neutral distribution using
a nonparametric deterministic volatility function while maintaining that the derivative
pricing function is given by the parametric BS formula. Next, we will see a maximum
entropy approach initiated by Buchen and Kelly (1996) and Stutzer (1996) to recover
a risk-neutral distribution from a set of option and stock prices, as well as the implied
binomial tree method of Derman and Kani (1994),Dupire (1994),or Rubinstein (1994).
Third, we will survey the purely nonparametric approaches such as kerned-based tech-
niques or learning networks used to estimate an option pricing function and recover the
other quantities of interest with option price data. We will underline several potential
problems associated with these purely nonparametric approaches such as negative risk-
neutral probabilities and argue following Garcia and Gençay (2000) and Aït-Sahalia and
Duarte (2003) that imposing weak constraints on the shape and properties of the pricing
function can improve the performance of the statistical model in several dimensions.7

7See alsoYatchew and Härdle (2005), Birke and Pilz (2009), and Fan and Mancini (2008).
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Last, we will describe how to recover preferences from the estimates of the SPD as pro-
posed by Jackwerth (2000),Aït-Sahalia and Lo (2000), Rosenberg and Engle (2002), and
Chabi-Yo et al. (2008).

Most empirical studies of option pricing focus on European contracts. In contrast,
American options while actively traded and very liquid in some cases (such as the S&P
100-based contracts) have been avoided to circumvent early exercise premia and bound-
aries. It is worth noting that nonparametric methods are particularly suited to handle
American-type options. Broadie et al. (2000a,b) use nonparametric techniques to estimate
pricing functions as well as early exercise boundaries for American options.

5.1. Semiparametric Approaches to Derivative Pricing
One of the reasons why option price data do not conform to the BS model is that volatility
is not constant. One can still maintain the assumption of a one-factor diffusion process but
make the diffusion coefficient a deterministic function of the available information such
as the exercise price, the underlying price, and the time to maturity. Although Shimko
(1993) proposed a polynomial function of these variables for the volatility, Aït-Sahalia
and Lo (1998) modeled the volatility function using kernel methods. The strategy is to
construct a nonparametric estimator of the expectation of volatility given the information
available on the underlying stock price St (or the futures price Ft,τi = Ste(rt,τ−δt,τ)τ , with
r and δ the interest rate and the dividend rate), the exercise price Xi, and the time to
maturity τi associated with n traded options:

σ̂(Ft,τ , X , τ) =
∑n

i=1 kF

(
Ft,τ−Ft,τi

hF

)
kX

(
X−Xi

hX

)
kτ
(
τ−τi
hτ

)
σi∑n

i=1 kF

(
Ft,τ−Ft,τi

hF

)
kX

(
X−Xi

hX

)
kτ
(
τ−τi
hτ

) , (5.1)

where the multivariate kernel is formed as a product of three univariate kernels kF ,
kX , and kτ , each with their own bandwidth value, with respect to the three variables of
interest, and where i is the BS volatility implied by the observed price of option i. A call
pricing function can then be estimated as

π̂(St , X , τ, rt,τ , δt,τ) = πBS(Ft,τ , X , τ, rt,τ , σ̂(Ft,τ , X , τ)). (5.2)

From this function, one can also obtain estimators for the option’s delta and the SPD by
taking the appropriate partial derivatives according to (2.6) and (2.12):

�̂t = ∂π̂(St , X , τ, rt,τ , δt,τ)

∂St
(5.3)

f̂ ∗t (ST ) = ert,ττ
[
∂2π̂(St , X , τ, rt,τ , δt,τ)

∂X2

]
|X=ST

. (5.4)
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Of course, in nonparametric methods, higher order derivatives are estimated at a
slower rate of convergence. This is known as the curse of differentiation. However, in
a simulation framework based on a BS model,Aït-Sahalia and Lo (1998) show that the
estimation errors for all nonparametric quantities (option price, option delta, and SPD)
remain within 1% of their theoretical counterparts.Aït-Sahalia and Lo (1998) apply their
method to the estimation of these quantities for S&P 500 European option price data.
Their sample period is January 4, 1993 to December 31, 1993. Their nonparametric
estimator of volatility σ̂(Ft,τ , X , τ) generates a strongly asymmetric volatility smile with
respect to moneyness, confirming several sources of evidence according to which out-
of-money put prices have been consistently bid up since the crash of 1987. The shape
of the smile changes as time to maturity increases. The one-month smile is the steepest:
volatility curves are flatter for longer times to maturity. Strong skewness and kurtosis
effects are present in the semiparametrically estimated SPDs. The (negative) skewness
in returns diminishes as the maturity increases, whereas the contrary is obtained for the
positive kurtosis.

A somewhat less ambitious approach has been advocated by Erikkson et al. (2009)
and Ghysels and Wang (2009). They suggest to use the normal inverse Gaussian (NIG)
family to approximate an unknown distribution risk-neutral density. The appeal of the
NIG family of distributions is that they are characterized by the first four moments:
mean, variance, skewness, and kurtosis. These are the moments we care about in many
applications – including derivative pricing. The unknown density function is approxi-
mated by matching the cumulants. The latter are obtained from the cross-section of
option prices using methods proposed by Bakshi et al. (2003). One strength of their
approach is that they link the pricing of individual derivatives to the moments of the risk-
neutral distribution,which has an intuitive appeal in terms of how volatility,skewness,and
kurtosis of the risk-neutral distribution can explain the behavior of the derivative prices.
Erikkson et al. (2009) show that the approximation errors are minor when compared to
several option pricing models that have known densities. Another approach, advocated
by Figlewski (2009), consists of estimating the central part of the distribution only with
options and extrapolating the tails via extreme value distributions.

5.2. Canonical Valuation and Implied Binomial Trees

The semiparametric approach we just described still depends on the assumptions that
there is just one state variable and that it is governed by an Itô process.8 But, as we
have extensively documented in the previous sections, there is evidence of jumps and SV
in the underlying stock index process. Therefore, we need procedures that extract the
asset probability distribution directly from observed prices either on the asset itself or on

8In fact, the semiparametric approach could also be valid for i.i.d. jump processes as in Merton (1976) or Bates (1991)
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options written on the asset. We will describe first a procedure based on the maximum
entropy principle, which has been proposed by Buchen and Kelly (1996) and by Stutzer
(1996) and contrast it with the binomial tree approach of Rubinstein (1994). Both the
former procedure, called canonical valuation by Stutzer (1996), and the latter assume that
a set of financial instruments are priced correctly and can be used to recover the asset
distribution from an expectation pricing model. As we will see, the differences between
the two approaches lie in the choice of objective function.

5.2.1. Canonical Valuation

We want to estimate the payoff distribution of the underlying asset at expiration of the
option from a set of available asset and option prices.To illustrate the method,we will take
the simplest case of one underlying asset that does not pay dividends, which will be used
to price derivative securities expiring T periods from now. Following Stutzer (1996),
we start using only returns on the underlying asset, then we will add price information
coming from options. The method involves three steps. First, starting with the current
price S and a historical time series S(t), t = −1,−2, . . . ,−H ,one can construct a rolling
historical time series of T -period gross returns:

R(−h) = S(−h)
S(−h − T )

, h = 1, 2, . . . , H − T . (5.5)

Then, the asset’s price T -periods from now is

Sh = SR(−h), h = 1, 2, . . . , H − T . (5.6)

In other words, the past realized returns are used to construct possible prices at T for
the underlying asset, each with estimated objective (actual) probability p̂(h) = 1

H−T .The
problem is to find the risk-neutral probabilities p∗,which are the closest to the empirical
probabilities p̂ in the Kullback–Leibler Information Criterion (KLIC) distance:

p̂ ∗ = arg min
p∗(h)>0

∑
h p∗(h)=1

I (p∗, p̂) =
H−T∑
h=1

p∗(h) log
p∗(h)
p̂(h)

(5.7)

and which obey the nonarbitrage economic constraint (assuming a constant interest rate):

H−T∑
h=1

R(−h)
rT

p∗(h)
p̂(h)

p̂(h) = 1. (5.8)

The solution to this problem is

p̂ ∗(h) =
exp

[
γ∗ R(−h)

rT

]
∑

h exp
[
γ∗ R(−h)

rT

] , h = 1, 2, . . . , H − T , (5.9)
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where γ∗ is found as the arg min of
∑

h exp
[
γ
(

R(−h)
rT − 1

)]
. The last step is of course

to use the p∗(h) to value say a call option with exercise price X expiring at T by

C =
∑

h

max[SR(−h)− X , 0]
rT p̂ ∗(h). (5.10)

The methodology is easily extendable to compute risk-neutral probabilities based on
more than one underlying asset. One can also ensure that a subset of derivative securities
is correctly priced at a particular date. For example, if we wanted to ensure the correct
pricing of a particular call option expiring at date T with exercise price X and market
price C, we would need to find a vector γ∗ of two elements (γ∗1 , γ∗2 ) such that

[γ∗1 , γ∗2 ] = arg min
γ

∑
h

exp
[
γ1

(
R(−h)

rT − 1
)
+ γ2

(
max[SR(−h)− X , 0]

rT − C
)]

(5.11)

These values would then be used to compute the estimated risk-neutral probabilities as

p̂ ∗(h) =
exp

[
γ∗1

(
R(−h)

rT

)
+ γ∗2

(
max[SR(−h)−X ,0]

rT

)]
∑

h exp
[
γ∗1

(
R(−h)

rT

)
+ γ∗2

(
max[SR(−h)−X ,0]

rT

)] , h = 1, 2, . . . , H − T . (5.12)

Stutzer (1996) uses this methodology to evaluate the impact of the 1987 crash on the
risk-neutral probabilities first using only S&P 500 returns. As many other papers, he
finds that the left-hand tail of the canonical distribution estimated with data including
the crash extends further than the tail of the distribution without crash data. A useful
diagnostic test is the skewness premium proposed by Bates (1991). It is the percentage
difference of the price of a call that is x percent (> 0) out-of-the-money (relative to the
current forward index value for delivery at the option’s expiration) to the price of a put
that is also x percent out-of-the-money. The canonical valuation passes this diagnostic
test for options in the 3 to 6 month range for x > 0.02 using only the historical data on
S&P 500 returns starting in 1987 and without incorporating market option prices in the
valuation process.9

5.2.2. Implied Binomial Trees

The implied binomial tree methodology proposed by Rubinstein (1994) aims also at
recovering the risk-neutral probabilities that will come closest to pricing correctly a set
of derivative securities at a given date. The idea is to start with a prior guess for the

9Gray and Norman (2005) apply canonical valuation of options in the presence of SV. Haley and Walker (2007) propose alternative tilts
(or probability distortions) based on the Cressie-Read divergence family.
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risk-neutral probabilities say p̃∗j and find the risk-neutral probabilities p∗j associated with
the binomial terminal stock price ST that are the closest to p̃∗j but price correctly an
existing set of options and the underlying stock. The risk-neutral probabilities p∗j are
solutions to the following program:

min
p∗j

∑
j

(
p∗j − p̃∗j

)2 subject to (5.13)

∑
j

p∗j = 1 and p∗j ≥ 0 for j = 0, . . . , n

Sb ≤ S ≤ Sa where S =
⎛⎝∑

j

p∗j Sj

⎞⎠/rτ

Cb
i ≤ Ci ≤ Ca

i where Ci =
⎛⎝∑

j

p∗j max[0, Sj − Ki]
⎞⎠/rτ for i = 1, . . . , m,

where j indexes the ending binomial nodes from lowest to highest, Sj is the underlying
asset prices (supposing no dividends) at the end of a standard binomial tree, Sb and Sa

are the current observed bid and ask underlying asset price, Ca
i and Cb

i are the current
observed bid and ask call option prices with striking price Ki, r is the observed annualized
riskless return, and τ is the time to expiration.

The two methods are therefore very similar, the main difference being the distance
criterion used.10 Although the maximum entropy criterion appears the best one from a
theoretical point of view,because it selects the posterior that has the highest probability of
being correct given the prior, there does not seem to be a statistical criterion behind the
quadratic distance. A goodness of fit criterion given by minp∗j

∑
j(p
∗
j − p̃∗j )2/ p̃∗j seems

more natural and is closer to the criterion used by Hansen and Jagannathan (1997) (see
Subsection 5.2.3). The goodness of fit criterion places greater weight on states with
lower probabilities. Another criterion used is to maximize smoothness by minimizing∑

j(p
∗
j−1 − 2p∗j + p∗j+1)

2, as in Jackwerth and Rubinstein (1996) to avoid the overfitting
associated with exactly pricing the options. With the smoothness criterion, there is a
trade-off between smoothing the risk-neutral distribution and explaining the option
prices. All these approaches will produce risk-neutral distributions that have much more
weight in the lower left tail than the lognormal case after the 1987 crash, but they will
distribute the probability differently in the tail.

10Cont and Tankov (2004) use a relative entropy criterion with respect to a chosen prior model to find a risk-neutral exponential Lévy
model that reproduces observed option prices.
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5.2.3. A SDF Alternative to Implied Binomial Trees

One might also measure closeness as the distance between pricing kernels and not
between risk-neutral probabilities by looking for the SDF m∗t+1 defined by

m∗i,t+1 = B(t, t + 1)
(

p∗it
pit

)
, i = 0, 1, . . . , I + 1

which is closest to a prior SDF

m̃∗i,t+1 = B(t, t + 1)
(

p̃∗it
pit

)
.

For instance, according to Hansen and Jagannathan (1997), one can choose the
L2-distance between SDFs:

Et
[
m∗t+1 − m̃∗t+1

]2 = B2(t, t + 1)
I+1∑
i=0

1
pit

(
p∗it − p̃∗it

)2. (5.14)

Therefore, the Hansen and Jagannathan (1997) measure of closeness (5.14) between SDFs
and the goodness of fit criterion between probabilities

∑I+1
i=0 (1/p̃

∗
it)

(
p∗it − p̃∗it

)2 will lead
to similar conclusions if and only if the prior risk-neutral probabilities p∗it are close to
the objective probability distribution pit . However, risk-neutral probabilities may include
agents anticipations about rare risks, which are not apparent in a historical estimation
of objective probabilities. This is the well-documented peso problem, which has been
discussed in the context of option pricing by Eraker (2004).

This discussion makes clear the potential drawback of the Euclidian distance (5.13)
between probabilities. It does not put a sufficient weight on extreme events with small
probabilities. This may lead to severe pricing errors because these small probabilities
appear at the denominator of SDFs and therefore, have a large weight in the effec-
tive computation of derivative asset prices. Almeida and Garcia (2008) generalize the
quadratic Hansen and Jagannathan (1997) measure of closeness by choosing the Cressie-
Read family of discrepancy measures. Because this family includes the KLIC and the
empirical likelihood divergence criteria, this extension makes clear the links between all
the nonparametric approaches adopted to recover risk-neutral probabilities or pricing
kernels to price options.

All of the methodologies we have described in this section are geared toward extracting
conditional risk-neutral distributions in the sense that they fit cross-sections of option
prices and in that sense have to be opposed to the unconditional approach of the previous
section. In the next section, we summarize the advantages and disadvantages of both
methods.
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5.3. Comparing the Unconditional and Conditional Methodologies for

Extracting Risk-Neutral Distributions
Because the canonical valuation or the implied tree methodologies aim at obtaining
risk-neutral probabilities that come closest to pricing correctly the existing options at a
single point in time, the risk-neutral distribution will change over time. On the contrary,
a nonparametric kernel estimator aims at estimating the risk-neutral distribution as a
fixed function of variables such as the current stock price, the exercise price, the riskless
rate, and other variables of interest. The functional form of the estimated risk-neutral
distribution should be relatively stable over time. Because we cannot really say that one
approach is better than the other, we can only sketch the advantages and disadvantages
of both methods following Aït-Sahalia and Lo (1998).

We will compare the implied binomial tree method of Rubinstein (1994) to the semi-
parametric estimate of the risk-neutral distribution of Aït-Sahalia and Lo (1998). The
first method produces a distribution that is completely consistent with all option prices
at each date, but it is not necessarily consistent across time. The second may fit poorly
for a cross-section of option prices at some date but is consistent across time. However,
being a fixed function of the relevant variables, the variation in the probabilities has to
be captured by the variation in these variables. Another consideration is the intertem-
poral dependency in the risk-neutral distributions. The first method ignores it totally,
whereas the second exploits the dependencies in the data around a given date. Implied
binomial trees are less data-intensive, whereas the kernel method requires many cross-
sections. Finally, smoothness has to be imposed for the first method, whereas the second
method delivers a smooth function by construction. The stability of the risk-neutral
distribution obtained with the kernel-based estimate should lower the out-of-sample
forecasting errors at the expense of deteriorating the in-sample fit. Aït-Sahalia and
Lo (1998) compare the out-of-sample forecasting performance of their semiparamet-
ric method with the implied tree method of Jackwerth and Rubinstein (1996) and
conclude that at short horizons (up to 5 days) the implied tree forecasting errors are
lower but that at horizons of 10 days and longer, the kernel method performance is
better.

Aït-Sahalia and Duarte (2003) proposed a nonparametric method to estimate the
risk neutral density from a cross-section of option prices. This might appear surpris-
ing given that we know that nonparametric methods require a large quantity of data.
Their nonparametric method is based on locally polynomial estimators that impose shape
restrictions on the option pricing function. From the absence of arbitrage,we know that
the price of a call option must be a decreasing and convex function of the strike price.
The method consists therefore in two steps, first a constrained least square regression
to impose monotonicity and convexity, followed by a locally polynomial kernel smoot-
hing that preserves the constraints imposed in the first step. In a Monte Carlo analysis,
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Aït-Sahalia and Duarte (2003) show these constrained nonparametric estimates are
feasible in the small samples encountered in a typical daily cross section of option
prices.

In an application to S&P 500 call option data with about 2 months to maturity on a
day in 1999, they compare several estimators (unconstrained Nadaraya–Watson, uncon-
strained locally linear, quadratic and cubic, shape-constrained locally linear) in terms of
price function, first derivative with respect to the strike price and SPD (second deriva-
tive). The comparison emphasizes that the price function is well estimated near the
money but that for high values of the strike, the locally quadratic and cubic estimators
are highly variable, whereas the unconstrained Nadaraya–Watson estimator violates the
convexity constraint on prices for low values of the strike. These poor properties show
even more in the first and the second derivatives. For the first derivative, all estima-
tors except the constrained and unconstrained locally linear violate the first derivative
constraint, whereas for the SPD (the second derivative), all the unconstrained estimators
violate the positivity constraint in the left tail of the density or are too flat at the glob-
ally optimal bandwidth. This nonparametric approach with shape restrictions appears
therefore promising, but more evidence and comparisons are needed.

In the next subsections,we will revisit these constrained and unconstrained approaches
in the SNP context. A first way to enforce the shape restrictions is to use a parametric
model for the SDF while remaining nonparametric for the historical distribution. It is
the main motivation of the Extended Method of Moments (XMM). A second strategy
is to directly fit a SNP model for the option pricing function.Then sieve estimators and
especially neural networks are well suited to take into account shape restrictions.

5.4. ExtendedMethod of Moments
The GMM was introduced by Hansen (1982) and Hansen and Singleton (1982) to
estimate a structural parameter θ identified by Euler conditions:

pi,t = Et
[
Mt,t+1(θ)pi,t+1

]
, i = 1, . . . , n, ∀t, (5.15)

where pi,t , i = 1, . . . , n, are the observed prices of n financial assets,Et denotes the expec-
tation conditional on the available information at date t, and Mt,t+1(θ) is the stochastic
discount factor. Model (5.15) is semiparametric.The GMM estimates parameter θ regard-
less of the conditional distribution of the state variables. This conditional distribution
however becomes relevant when the Euler conditions (5.15) are used for pricing deriva-
tive assets. Indeed, when the derivative payoff is written on pi,t+1 and its current price
is not observed on the market, the derivative pricing requires the joint estimation of
parameter θ and the conditional distribution of the state variables.

The XMM estimator of Gagliardini et al. (2008) extends the standard GMM to accom-
modate a more general set of moment restrictions. The standard GMM is based on
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uniform conditional moment restrictions such as (5.15), which are valid for any value of
the conditioning variables. The XMM can handle uniform moment restrictions, as well
as local moment restrictions, that are only valid for a given value of the conditioning
variables. This leads to a new field of application to derivative pricing, as the XMM can
be used for reconstructing the pricing operator on a given day, by using the information
in a cross section of observed traded derivative prices and a time series of underlying asset
returns. To illustrate the principle of XMM, consider an investor at date t0 is interested
in estimating the price ct0(h, k) of a call option with time-to-maturity h and moneyness
strike k that is currently not (actively) traded on the market. She has data on a time
series of T daily returns of the S&P 500 index, as well as on a small cross section of
current option prices ct0(hj , kj), j = 1, . . . , n, of n highly traded derivatives. The XMM
approach provides the estimated prices ĉt0(h, k) for different values of moneyness strike k
and time-to-maturity h, which interpolate the observed prices of highly traded deriva-
tives and satisfy the hypothesis of absence of arbitrage opportunities. These estimated
prices are consistent for a large number of dates T , but a fixed, even small, number of
observed derivative prices n.

We are interested in estimating the pricing operator at a given date t0, i.e., the mapping
that associates any European call option payoff ϕt0(h, k) =

(
exp Rt0,h − k

)+ with its price
ct0(h, k) at time t0, for any time-to-maturity h and any moneyness strike k.We denote by
rt the logarithmic return of the underlying asset between dates t − 1 and t.We assume that
the information available to the investors at date t is generated by the random vector Xt of
state variables with dimension d, including the return rt as the first component, and that
Xt is also observable by the econometrician.The process (Xt) on X ⊂ Rd is supposed to
be strictly stationary and Markov under the historical probability with transition density
f (xt |xt−1). Besides the cross section of option prices ct0(hj , kj), j = 1, . . . , n the available
data consist in T serial observations of the state variables Xt corresponding to the current
and previous days t = t0 − T + 1, . . . , t0. The no-arbitrage assumption implies two sets
of moment restrictions for the observed asset prices.The constraints concerning the
observed derivative prices at t0 are given by

ct0(hj , kj) = E
[
Mt,t+hj (θ)(exp Rt,hj − kj)

+|Xt = xt0
]
, j = 1, . . . , n. (5.16)

The constraints concerning the risk free asset and the underlying asset are{
E[Mt,t+1(θ)| Xt = x ] = B(t, t + 1), ∀x ∈ X ,
E[Mt,t+1(θ) exp rt+1| Xt = x ] = 1, ∀x ∈ X ,

(5.17)

respectively,where B(t, t + 1) denotes the price at time t of the short-term risk free bond.
The conditional moment restrictions (5.16) are local because they hold for a single value
of the conditioning variable only, namely the value xt0 of the state variable at time t0.
This is because we consider only observations of the derivative prices ct0(hj , kj) at date t0.
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Conversely, the prices of the underlying asset and the risk free bond are observed for
all trading days.Therefore, the conditional moment restrictions (5.17) hold for all values
of the state variables. They are called the uniform moment restrictions. The distinction
between the uniform and local moment restrictions is a consequence of the differences
between the trading activities of the underlying asset and its derivatives. Technically, it
is the essential feature of the XMM that distinguishes this method from its predecessor
GMM.

The XMM estimator presented in this section is related to the literature on the
information-based GMM (e.g., Imbens et al., 1998; Kitamura and Stutzer, 1997). It
provides estimators of both the SDF parameter θ and the historical transition density
f (y|x). By using the parameterized SDF,the information-based estimator of the historical
transition density defines the estimated SPD for pricing derivatives.

The XMM approach involves a consistent nonparametric estimator of the historical
transition density f (y|x), such as the kernel density estimator:

f̂ (y|x) = 1

hd̃
T

T∑
t=1

K̃
(

yt − y
hT

)
K
(

xt − x
hT

)/ T∑
t=1

K
(

xt − x
hT

)
, (5.18)

where K (resp. K̃ ) is the d-dimensional (resp. d̃-dimensional) kernel,hT is the bandwidth,
and (xt , yt), t = 1, . . . , T , are the historical sample data.11 Next, this kernel density
estimator is improved by selecting the conditional pdf that is the closest to f̂ (y|x) and
satisfies the moment restrictions as defined below.

The XMM estimator
(
f̂ ∗ (·|x0), f̂ ∗ (·|x1), . . . , f̂ ∗ (·|xT ), θ̂

)
consists of the functions

f0, f1, . . . , fT defined on Y ⊂ Rd̃ , and the parameter value θ that minimize the objective
function:

LT = 1
T

T∑
t=1

∫ [
f̂ (y|xt)− ft(y)

]2

f̂ (y|xt)
dy+ hd

T

∫
log

[
f0(y)

f̂ (y|x0)

]
f0(y)dy,

subject to the constraints:∫
ft(y)dy = 1, t = 1, . . . , T ,

∫
f0(y)dy = 1,∫

g
(
y; θ

)
ft(y)dy = 0, t = 1, . . . , T ,

∫
g2

(
y; θ

)
f0(y)dy = 0. (5.19)

11For expository purpose,the dates previous to t0,at which data on (X , Y ) are available,have been reindexed as t = 1, . . . , T and accordingly
the asymptotics in T correspond to a long history before t0.
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The objective function LT has two components. The first component involves the
chi-square distance between the density ft and the kernel density estimator f̂ (.|xt) at
any sample point xt , t = 1, . . . , T . The second component corresponds to the KLIC
between the density f0 and the kernel estimator f̂ (.|x0) at the given value x0. In addition
to the unit mass restrictions for the density functions, the constraints include the uniform
moment restrictions written for all sample points and the whole set of local moment
restrictions.The combination of two types of discrepancy measures is motivated by com-
putational and financial reasons. The chi-square criterion evaluated at the sample points
allows for closed form solutions f1(θ), . . . , fT (θ) for a given θ. Therefore, the objective
function can be easily concentrated with respect to functions f1, . . . , fT , which reduces
the dimension of the optimization problem.The KLIC criterion evaluated at x0 ensures
that the minimizer f0 satisfies the positivity restriction (see, e.g., Kitamura and Stutzer,
1997; Stutzer, 1996).The positivity of the associated SPD at t0 guarantees the absence of
arbitrage opportunities in the estimated derivative prices. The estimator of θ̂ minimizes
the concentrated objective function:

Lc
T (θ) =

1
T

T∑
t=1

Ê
(
g(θ)|xt

)′ V̂ (
g(θ)|xt

)−1 Ê
(
g(θ)|xt

)− hd
T log Ê

(
exp

(
λ(θ)′g2(θ)

) |x0
)
, (5.20)

where the Lagrange multiplier λ(θ) ∈ Rn+2 is such that

Ê
[
g2(θ) exp

(
λ (θ)′ g2(θ)

) |x0
] = 0, (5.21)

for all θ, and Ê
(
g(θ)|xt

)
and V̂

(
g(θ)|xt

)
denote the expectation and variance of g(Y ; θ),

respectively,w.r.t. the kernel estimator f̂ (y|xt).The first part of the concentrated objective
function (5.20) is reminiscent from the conditional version of the continuously updated
GMM (Ai and Chen, 2003;Antoine et al., 2007). The estimator of f (y|x0) is given by

f̂ ∗(y|x0) =
exp

(
λ
(
θ̂
)′

g2(y; θ̂)
)

Ê
[
exp

(
λ
(
θ̂
)′

g2(θ̂)

)
|x0

] f̂ (y|x0), y ∈ Y . (5.22)

This conditional density is used to estimate the pricing operator at time t0.
The XMM estimator of the derivative price ct0(h, k) is

ĉt0(h, k) =
∫

Mt0,t0+h(θ̂)
(
exp Rt0,h − k

)+ f̂ ∗
(
y|x0

)
dy, (5.23)
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for any time-to-maturity h ≤ h̄ and any moneyness strike k.The constraints (5.19) imply
that the estimator ĉt0(h, k) is equal to the observed option price ct0(hj , kj) when h = hj

and k = kj , j = 1, . . . , n.
The large sample properties of estimators θ̂ and ĉt0(h, k) are examined in Gagliardini

et al. (2008).These estimators are consistent and asymptotically normal for large samples
T of the time series of underlying asset returns, but a fixed number n of observed
derivative prices at t0. The linear combinations of θ that are identifiable from uniform
moment restrictions on the risk free asset and the underlying asset only are estimated at
the standard parametric rate

√
T . Any other direction η∗2 in the parameter space and the

derivative prices as well are estimated at the rate
√

Thd
T corresponding to nonparametric

estimation of conditional expectations given X = x0.The estimators of derivative prices
are (nonparametrically) asymptotically efficient.

5.5. Other SNP Estimators
In the SNP approach, the nonlinear relationship f between the price of an option π

and the various variables that affect its price, say Z , is approximated by a set of basis
functions g:

f (Z , .) =
∞∑

n=1

αngn(Z , .). (5.24)

The term SNP is explained by the fact that the basis functions are parametric, yet the
parameters are not the object of interest because we need an infinity of them to estimate
the function in the usual nonparametric sense. The methods vary according to the basis
functions chosen. Hutchinson et al. (1994) propose various types of learning networks,
Gouriéroux and Monfort (2001) consider approximations of the pricing kernel through
splines, whereas Abadir and Rockinger (1998) investigate hypergeometric functions. In
what follows,we will develop the neural network approach and see how one can choose
the basis to obtain a valid SPD function. The basis chosen for neural networks will be

gn(Z ,αn) = 1
1+ exp(−αnZ)

, (5.25)

which is a very flexible sigmoid function. Then, the function can be written as

f (Z , θ) = β0 +
d∑

i=1

βi
1

1+ exp(γi,0 − γi,1Z)
, (5.26)

where the vector of parameters θ = (β, γ) and the number d of units remains to be deter-
mined as the bandwidth in kernel methods. In neural network terminology, this is called
a single hidden-layer feedforward network. Many authors have investigated the universal
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approximation properties of neural networks (see in particular Gallant andWhite, 1988,
1992). Using a wide variety of proof strategies, all have demonstrated that under general
regularity conditions, a sufficiently complex single hidden-layer feedforward network
can approximate a large class of functions and their derivatives to any desired degree of
accuracy where the complexity of a single hidden layer feedforward network is measured
by the number of hidden units in the hidden layer. One of the requirements for this uni-
versal approximation property is that the activation function has to be a sigmoidal such
as the logistic function presented above.

One nice property of this basis function is that the derivatives can be expressed in
closed form. If we denote h(Z) = 1

1+eZ , then

h′(Z) = h(Z).(1− h(Z))

h′′(Z) = h(Z).(1− h(Z)).(1− 2h(Z)).

Therefore, once the parameters of the pricing function are estimated for a given number
of units, we can compute the hedge ratio or the risk-neutral distribution. Hutchinson
et al. (1994) show using simulations that such an approach can learn the BS formula.
To reduce the number of inputs, Hutchinson et al. (1994) divide the function and its
arguments by X and write the pricing function as a function of moneyness (S/X) and
time-to-maturity (τ):

πt

X
= f

(
St

X
, 1, τ

)
. (5.27)

Although they kept the number of units fixed, it is usually necessary as with any non-
parametric method to choose it in some optimal way. The familiar trade-off is at play.
Increasing the number of units d given a sample of data will lead to overfit the func-
tion in sample and cause a loss of predictive power out of sample. A way to choose the
number of units is to use a cross-validation type of method on a validation period as
proposed in Garcia and Gençay (2000).12 Although it is not mentioned in Hutchinson
et al. (1994), even if we estimate well the pricing function, large errors are committed
for the derivatives of the function, and most notably, negative probabilities are obtained.
This is consistent with what Aït-Sahalia and Duarte (2003) have found with local poly-
nomial estimators based on a small sample of data, except that these bad properties are
also present in large samples used for estimating the function over a long-time period.

A partial and imperfect way to better estimate the hedge ratio and the risk-neutral
distribution is to use a network that will capture the homogeneity of the pricing function
as in Garcia and Gençay (2000).The form in (5.27) assumes the homogeneity of degree

12Gençay and Qi (2001) studied the effectiveness of cross-validation, Bayesian regularization, early stopping, and bagging to mitigate
overfitting and improving generalization for pricing and hedging derivative securities.
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one in the asset price and the strike price of the pricing function f . Another technical
reason for dividing by the strike price is that the process St is nonstationary, whereas
the variable St/X is stationary as strike prices bracket the underlying asset price process.
This point is emphasized in Ghysels et al. (1996). From a theoretical point of view, the
homogeneity property is obtained under unconditional or conditional independence of
the distribution of returns from the level of the asset price (see Merton, 1973, or Garcia
and Renault, 1998b). Garcia and Gençay (2000) estimate a network of the form

Ct

X
= β0 +

d∑
i=1

β1
i h
(
γ1

i,0 + γ1
i,1

St

X
+ γ1

i,2τ

)
(5.28)

− e−ατ
d∑

i=1

β2
i h
(
γ2

i,0 + γ2
i,1

St

X
+ γ2

i,2τ

)
(5.29)

with h(Z) = (
1+ eZ

)−1. This has a similar structure than the BS formula (which is
itself homogeneous), except that the distribution function of the normal is replaced by
neural network functions.13 Garcia and Gençay (2000) show that this structure improves
the pricing performance compared to an unconstrained network, but that it does not
improve the hedging performance. In fact, this network suffers (albeit slightly less) from
the same deficiencies in terms of derivatives.To impose monotonicity and convexity on
the function and ensuring that the resulting risk-neutral distribution is a proper density
function as in Aït-Sahalia and Duarte (2003),we need to choose an appropriate structure
for the network. The following basis function proposed in Dugas et al. (2001)

ξ(Z) = log(1+ eZ ) (5.30)

is always positive and has its minimum at zero. Its first derivative

ξ′(Z) = eZ

1+ eZ = h(Z) (5.31)

is always positive and between 0 and 1 and therefore qualifies for a distribution function.
Finally, its second derivative

ξ′′(Z) = h′(Z) = h(Z).(1− h(Z)) (5.32)

is always positive, becomes 0 when h → 0 (Z →−∞) or when h → 1 (Z →+∞),
and has its maximum at h = 1/2 (Z = 0). These properties qualify for a density
function.

13This is what distinguishes this SNP approach from the semiparametric approach of Aït-Sahalia and Lo (2000), who use the BS formula
with a nonparametric estimator of volatility.
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Abadir and Rockinger (1998) with hypergeometric functions, Gottschling et al.
(2000) with neural networks, and Gouriéroux and Monfort (2001) with splines on the
log-pricing kernel are three other ways to make sure that the estimated option pricing
function always lead to a valid density, i.e., nonnegative everywhere and integrating to
one. Härdle andYatchew (2001) also use nonparametric least squares to impose a variety
of constraints on the option pricing function and its derivatives. Their estimator uses
least squares over sets of functions bounded in Sobolev norm, which offers a simple
way of imposing smoothness on derivatives. Birke and Pilz (2009) propose a completely
kernel-based estimate of the call price function,which fulfills all constraints given by the
no-arbitrage principle. Fan and Mancini (2008) propose a new nonparametric method
for pricing options based on a nonparametric correction of pricing errors induced by a
given model.

There is a need for a comparison of these methods, which impose constraints on
the estimation. Bondarenko (2003) proposes a new nonparametric method called posi-
tive convolution approximation, which chooses among a rich set of admissible (smooth
and well behaved) densities the one that provides the best fit to the option prices. He
conducts a Monte Carlo experiment to compare this method to seven other methods,
parametric and nonparametric, which recover risk-neutral densities. Daglish (2003) also
provides a comparison between parametric and nonparametric methods for American
options.

5.6. An Economic Application of Nonparametric Methods:

Extraction of Preferences
Because, in a continuum of states, the SPD or risk-neutral density corresponds to the
Arrow–Debreu prices, it contains valuable information about the preferences of the rep-
resentative investor. Indeed, the ratio of the SPD to the conditional objective probability
density is proportional to the marginal rate of substitution of the representative investor,
implying that preferences can be recovered given estimates of the SPD and the conditional
objective distribution. A measure of relative risk aversion is given by

ρt(ST ) = ST

(
f ′t (ST )

ft(ST )
− f ∗′t (ST )

f ∗t (ST )

)
, (5.33)

where ft(ST ) and f ∗t (ST ) denote, respectively, the conditional objective probability
density and the SPD. This measure assumes that ST , the value of the index at the
maturity of the option, approximates aggregate consumption, the payoff on the market
portfolio.

Several researchers have extracted risk aversion functions or preference parameters
from observed asset prices. Aït-Sahalia and Lo (2000) and Jackwerth (2000) have pro-
posed nonparametric approaches to recover risk aversion functions across wealth states
from observed stock and option prices. Rosenberg and Engle (2002),Garcia et al. (2003),
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and Bliss and Panigirtzoglou (2004) have estimated preference parameters based on
parametric asset pricing models with several specifications of the utility function.

These efforts to exploit prices of financial assets to recover fundamental economic
parameters have produced puzzling results. Aït-Sahalia and Lo (2000) find that the non-
parametrically implied function of relative risk aversion varies significantly across the
range of S&P 500 index values, from 1 to 60, and is U-shaped. Jackwerth (2000) finds
also that the implied absolute risk aversion function is U-shaped around the current
forward price but even that it can become negative. Parametric empirical estimates of
the coefficient of relative risk aversion also show considerable variation. Rosenberg and
Engle (2002) report values ranging from 2.36 to 12.55 for a power utility pricing kernel
across time, whereas Bliss and Panigirtzoglou (2004) estimate average values between
2.33 and 11.14 for the same S&P 500 index for several option maturities.14 Garcia et al.
(2003) estimate a consumption-based asset pricing model with regime-switching fun-
damentals and Epstein and Zin (1989) preferences. The estimated parameters for risk
aversion and intertemporal substitution are reasonable with average values of 0.6838 and
0.8532, respectively, over the 1991–1995 period.15

As noticed by Rosenberg and Engle (2002), the interpretation of the risk aversion
function is debatable because the estimation technique of the implied binomial tree
is based on time-aggregated data. This is the reason why Rosenberg and Engle (2002)
propose to estimate the pricing kernel as a function of contemporaneously observed asset
prices and a predicted asset payoff density based on an asymmetric GARCH model.The
price to pay for this generality is the need to refer to a parametric model for the SDF.
They propose

m∗t+1 = Et

[
mt+1

gt+1

]
= θ0t(gt+1)

−θ1t . (5.34)

The parameters of interest θ0t and θ1t are then estimated at each date t to minimize the
sum of squared pricing errors, i.e., differences between observed derivative prices (in a
cross section of derivatives all written on the same payoff gt+1) and prices computed
with the model SDF (5.34). As in the multinomial example, there is some arbitrariness
created by the choice of this particular quadratic measure of closeness. First, as discussed
in Renault (1997), one may imagine that the pricing errors are severely heteroskedastic
and mutually correlated. A GMM distance should get rid of this better than the uniform
weighting. However, as stressed by Hansen and Jagannathan (1997), the GMM distance

14Rosenberg and Engle (2002) also estimate an orthogonal polynomial pricing kernel and find that it exhibits some of the risk-aversion
characteristics noted by Jackwerth (2000), with a region of negative absolute risk aversion over the range from 4 to 2% for returns and
an increasing absolute risk aversion for returns greater than 4%.

15The authors also estimate a CCRA-expected utility model and find a similar variability of the estimates as in the related studies. The
average value is 7.2 over the 1991–1995 period with a standard deviation of 4.83.
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is probably not optimal to rank various misspecified SDFs because it gives an unfair
advantage to the most volatile SDFs.

As explained above, Hansen and Jagannathan (1997) propose to consider directly a
L2 distance between SDFs. They show that it leads to a weighting matrix for pricing
errors, which is only defined by the covariance matrix of the net returns of inter-
est and not by the product of returns with the SDF as in efficient GMM. Indeed,
Buraschi and Jackwerth (2001) observe that the δ-metric of Hansen and Jagannathan
(1997) has to be preferred to the GMM metric to select the best option pricing model
because it is model independent, whereas the optimal GMM weighting matrix is model
dependent and asymptotic chi-square, tests typically reward models that generate highly
volatile pricing errors.

Irrespective of the choice of a particular measure of closeness, the interpretation of
parameters θ0t and θ1t which have been estimated from (5.34) may be questionable,
except if a very specific model is postulated for the agent preferences. To illustrate this
point, let us consider the general family of SDFs provided by the Epstein and Zin (1989)
model of recursive utility:

mt+1 = β

[
Ct+1

Ct

]γ(ρ−1) [ Wt+1

(Wt − Ct)

]γ−1

, (5.35)

where ρ = 1− 1/σ with σ the elasticity of intertemporal substitution, γ = α/ρ, and
a = 1− α the index of comparative relative risk aversion. The variables Ct and Wt
denote, respectively, the optimal consumption and wealth paths of the representative
agent. They obey the following relationship:[

Ct

Wt

]
= [A( Jt)]1−σ,

where Vt = A( Jt) ·Wt denotes the value at time t of the maximized recursive utility
function.This value Vt is proportional to the wealth Wt available at time t for consump-
tion and investment (homothetic preferences), and the coefficient of proportionality
generally depends on the information Jt available at time t. Therefore,

mt+1 = β

[
Wt+1

Wt

]−a [A( Jt+1)

A( Jt)

]1−a [
1− A( Jt)1−σ

]γ−1. (5.36)

Let us imagine, following Rosenberg and Engle (2002), that the agent wealth is
proportional to the underlying asset payoff. Then,

m∗t+1 = Et[mt+1|gt+1] = Et[mt+1|Wt+1]
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will depend in general in a complicated way on the forecast of the value function A( Jt+1)

as a function of Wt+1. For instance, we see that

Et[log mt+1|gt+1] = B( Jt)− a log
[

Wt+1

Wt

]
+ (1− a)Et[log A( Jt+1)|Wt+1].

This illustrates that except in the particular case a = 1 (logarithmic utility) or in a case
where A( Jt+1) would not be correlated with Wt+1 given Jt , the parameter θ1t cannot
be interpreted as risk aversion parameter and is not constant insofar as conditional het-
eroskedasticity will lead to time varying regression coefficients in Et[log A( Jt+1)|Wt+1].
In other words, the intertemporal features of preferences that lead the agent to a nonmy-
opic behavior prevent one to conclude that the risk aversion parameter is time-varying
simply because one finds that the parameter θ1t is time-varying. More generally, this
analysis carries over to any missing factor in the parametric SDF model.

The general conclusion is that empirical pricing kernels that are computed without
a precise account of the state variables and enter into the value function A( Jt) cannot
provide valuable insights on intertemporal preferences. For example, Chabi-Yo et al.
(2008) show that in an economy with regime changes either in fundamentals or in
preferences, an application of the nonparametric methodology used by Jackwerth (2000)
to recover the absolute risk aversion will lead to similar negative estimates of the risk
aversion function in some states of wealth even though the risk aversion functions are
consistent with economic theory within each regime.

Of course, one can also question the representative agent framework. For example,
Bates (2007) points out that the industrial organization of the stock index options market
does not seem to be compatible with the representative agent construct and proposes
a general equilibrium model in which crash-tolerant market makers insure crash-averse
investors.

6. CONCLUSION
We have tried in this survey to offer a unifying framework to the prolific literature aimed
at extracting useful and sometimes profitable economic information from derivatives
markets.The SDF methodology is by now the central tool in finance to price assets and
provides a natural framework to integrate contributions in discrete and continuous time.
Because most models are written in continuous time in option pricing, we have estab-
lished the link between these models and the discrete time approaches trying to emphasize
the fundamental unity underlying both methodologies.To capture the empirical features
of the stock market returns, which is the main underlying empirically studied in the
option pricing literature, models have gained in complexity from the standard geomet-
ric Brownian motion of the seminal Black and Scholes (1973) model. Jump-diffusion
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models with various correlation effects have become increasingly complex to estimate.
A main difficulty is the interplay of the latent variables, which are everywhere present
in the models and the inherent complex nonlinearities of the pricing formulas. This is
the main aspect of the estimation methods on which we put some emphasis because the
estimation of continuous-time models is the object of another chapter in this Handbook.

Another major thread that underlies the survey is the interplay between preferences
and option pricing. Even though the preference-free nature of the early formulas was
often cited as a major advantage, it was not clear where this feature was coming from.We
have made a special effort to specify the statistical assumptions that are needed to obtain
this feature and to characterize the covariance or leverage effects which reintroduce
preferences. In an equilibrium framework, the role of preferences appears clearly. In
approaches based on the absence of arbitrage, these preferences are hidden in risk premia
and it is harder to account for the links they impose between the risk premia of the
numerous sources of risk. Researchers often treat these risk premia as free parameters and
manage to capture some empirical facts, but a deeper economic explanation is lacking.
The extraction of preferences from option prices using nonparametric methods is even
more problematic. The puzzles associated with this literature often come from the fact
that state variables have been omitted in the analysis.

Despite the length of the survey, there are a host of issues that we left unattended,
especially issues pertaining to the implementation of models in practice. First, it is often
difficult to obtain synchronized price data for derivatives and underlying fundamentals.
This leads researchers to use theoretical relationships such as the put-call parity theorem
to infer forward prices for the index. The same theorem is sometimes also used to infer
prices for some far in-the-money options for which the reliability of the reported price
is questionable because of staleness or illiquidity. Other types of filters such as taking out
close-to-maturity options or options with close-to-zero prices are also imposed.All these
data transformations have certainly an effect on model estimation and testing. A second
issue concerns the final objective of the modeling exercise. Is the model intended to
forecast future prices (or equivalently the moneyness and term structure of volatilities),
to compute hedge ratios (or other greeks), or to recover risk-neutral probabilities for a
certain horizon to price other derivatives on the same underlying asset?This is important
both for estimation and for testing of the model. Estimating a model according to a
statistical criterion or to a financial objective leads to different estimates and performance
in case of specification errors.Third, is the model taken at face value or do we recognize
that it is fundamentally misspecified? Often, AJD models are reestimated every day or
week, and parameters can vary considerably from one cross section to the other. Is it
better to assume some latent structure instead of letting parameters vary from one period
to the next. When agents make their financial decisions do they know the parameters
or do they have to learn them? Is parameter uncertainty important? Do they try to
make robust decisions? Finally, instead of exploiting fully specified models, are the prices



544 René Garcia et al.

or bounds obtained by imposing weak economic restrictions useful? A retrospective by
Bates (2003) addresses some of these issues.
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Abstract

We study the risk to portfolios posed by liquid assets. Next, we examine portfolios of liquid assets

to which derviatives have been added. The last subject is credit risk. Each section on a specific VaR

presents the methods of VaR computation that exist in the literature and point out their advantages

and limitations. Among the presented methods are those presented by the Basel Committee. The

methods are not necessarily the most efficient or robust, but are quite straightforward and easy

to implement. This is because the Basel Committee is also committed to enhancing the level of

technological expertise of the banking sector. Indeed, the recommendations and computational tools

to be recommended by the Basel Committee in the future are intended to become gradually more

and more sophisticated. The chapter concludes with comments on interesting directions of research

on the VaR.

Keywords: value-at-risk; market risk; credit risk; liquidity risk; model risk; estimation risk

1. INTRODUCTION
This chapter is a survey of literature on the management, supervision, and measurement
of extreme and infrequent risks in Finance. Extreme risks are the risks of very large losses
per dollar invested. As losses associated to extreme risks occur infrequently, investors tend
to become less alert to these risk over time. In the 1990s, a series of bank failures, due
to mismanaged portfolios of corporate loans, real estate, and complex derivatives, was
a painful reminder of the existence of extreme risks. It prompted new regulations and
research on new instruments of risk protection.

In 1995, the governors of Central Banks gathered in Basle (Switzerland) adopted a
mandatory risk measure called theValue at Risk (VaR) to be calculated by all banks for
each line of their balance sheets. Since then, banks have been required to report theVaR
to the regulators and update it daily and hold a sufficient amount of capital (the so-called
required capital (RC)) as a hedge against extreme risks.

In the late 1990s, a number of banks and financial institutions did not possess the ade-
quate databases, know-how and technology to satisfy those requirements. Consequently,
a permanent committee, called the Basle Committee, was established to coordinate the
technological development of the banking sector.

The implementation of the common guidelines for risk supervision was a very ambi-
tious initiative designed to address a variety of risks. These risks can be divided into the
following three categories:

(i) market risk is due to asset price uncertainty when assets are traded on competitive
markets. It is often neglected by investors when asset prices keep rising for a long
period of time. Then, investors tend to increase their investments in risky assets and
buy options to benefit from the price increase while exposing their portfolios to the
risk of a speculative bubble.
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(ii) credit risk or risk of default is specific to loans and is due to the probability of
future payment defaults.

There exist various types of loans. For example, loans can be classified with respect
to the type of borrowers or lenders.The borrower can be a consumer, a firm, a local
government,or theTreasury.The loans can be granted directly by a credit institution
[over the counter (OTC), also called retail loan] or acquired indirectly by purchasing
a bond issued by a firm, local government, or the Treasury.

The risk of default is often underestimated by lenders. More specifically, if a credit
institution increases the credit limit on a credit line of its customer, it exposes itself
to higher risk of default if the new credit limit entails higher monthly payments.
Another example is the belief held by many investors on corporate bond markets
that bond with tripleA ratings are risk-free. In fact, any company,even a highly rated
one, can be downrated at some point in time, and eventually defaulted.

(iii) liquidity risk or risk of counterparty arises if it becomes difficult to trade quickly
a large amount of assets at reasonable prices. Any company or bank that evaluates
the assets on its balance sheet at the market price per share [the so-called mark-to-
market] is exposed to this risk. The market price is usually valid for a small traded
quantity. It is much higher than a price the firm is paid when it attemps to sell
quickly a large volume of assets.This explains why, in the cases of corporate or bank
failures, assets are sold below their values listed on the balance sheets.

(iv) A number of financial strategies rely on the estimation of dynamic models of asset
returns. A typical example is the Black–Scholes model which assumes the geometric
Brownian motion of asset prices and is used for derivative/option pricing. Obvi-
ously, any theoretical model is necessarily misspecified to some extent and does
not provide an exact representation of the reality.1 Moreover, a theoretical model
involves unknown parameters that need to be estimated. The two types of errors
due to misspecification and parameter estimation determine the so-called model risk
and estimation risk, respectively. Although the Basle Committee recommended the
assessment of model risk, such a task is conceptually infeasible as the true model that
could serve as a benchmark of comparison is unknown.

The primary intention of the Basle Committee was mandatory computation of the
VaR and minimum capital reserve to cover all the aforementioned notions of risk. This
objective was supposed to be accomplished in several steps. More specifically, the Basle

1“I sometimes wonder why people still use the Black–Scholes formula since it is based on such simple assumptions, unrealistically simple
assumptions. Yet that weakness is also its greatest strength. People like the model because they can easily understand its assumptions”
(F. Black). “There are two sources of uncertainty in the prediction made by the trader or the econometrician. The first is parameter
estimation and the second is model error”( Jacquier and Jarrow). See Merton (1974) for a list of assumptions underlying the Black–Scholes
model.
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Committee has launched a long-term project of implementing the VaR measures for
various risk categories in the following order:

1.VaR for market risk on portfolios of basic liquid assets, such as stocks included in
market indexes,Treasury bonds, and foreign currencies.

2.VaR for market risk on portfolios that contain basic liquid assets and liquid derivatives
such as options on interest rates, foreign currencies, and market indexes.

3.VaR on portfolios of loans with default risk, called the CreditVaR. It concerns two
types of loans: bonds for which market prices are available, and retail loans for which
the bank has insider information about the individual credit histories of borrowers.

4. The back-testing procedures for assessing the goodness of fit of internal models and
for examining the model-based predictions under extreme scenarios of price evolution
(also called stress testing). Steps 1 and 2 (3 and 4) are outlined in Basle 1 (Basle 2) Accords,
respectively.

Our discussion proceeds in the same order. First, we study the risk on portfolios of
liquid assets. Next,we examine portfolios of liquid assets to which derivatives are added.
The last topic is credit risk. Each section on a specificVaR presents the methods of VaR
computation that exist in the literature and points out their advantages and limitations.
Among the presented methods are those recommended by the Basle Committee. These
methods are not necessarily the most efficient or robust but are quite straightforward and
easy to implement. This is becasuse the Basle Committee is also committed to enhance
the level of technological expertise of the banking sector.2 Indeed, the definitions and
computational tools to be recommended by the Basle Committee in the future are
intended to become gradually more and more sophisticated. The chapter concludes
with the comments on interesting directions of research on the VaR. This survey was
written in 2001. The updates that were added prior to publication in 2009 are given in
italics.

2. VALUE AT RISK
The aim of this section is to define and compare various notions of theVaR for portfolios
of assets traded on competitive markets. It is assumed that assets can be traded at any
time, and the price per share does not depend on the traded volume or on whether
the transaction is a buy or sell. Hence, the traded asset price is equal to the quoted ask

2In a survey conducted in Australia by Gizycki and Hereford in 1998, a number of portfolios of stocks, bonds, foreign currencies, and
derivatives of different types were sent to all Australian banks with a request to compute the daily VaR for each of these portfolios
according to each bank’s own method. Out of all Australian banks, only 22 have responded. Out of these, only two banks were able to
calculate theVaR for all portfolios.
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and bid prices since these are identical. To ensure that this condition is approximately
satisfied in practice, the Basle Committee recommended to compute theVaR from daily
data on market closure prices. Indeed, on some stock markets, such as Paris andToronto,
the market closure prices are determined by a market closing auction that yields a single
equilibrium price for each asset.

2.1. Definition
Let us consider a portfolio of n assets, with fixed allocations a = (a1, . . . , an)

′ between t
and t + h (say), which represent the quantities of assets and not their monetary values.
At date t, the investor has endowment Wt(a) = a′pt that can be used to purchase this
portfolio plus an additional amount Rt (say), called the reserve. Rt is supposed to com-
pensate for potential adverse changes in the market price (market risk); it has to be put
aside and cannot be invested on the market.The investor chooses the amount of Rt such
that the global position (that is the portfolio value plus the reserve) corresponds to a loss
with a predetermined small probability α at date t + h. Probability α measures the risk
level. This condition can be written as

Pt[Wt+h(a)+ Rt < 0] = α, (2.1)

where Pt is the conditional distribution of future prices given information It used by
the investor to predict future prices. Thus, −Rt is the α-quantile of the conditional
distribution of future portfolio value, called the profit and loss [P&L] distribution.

The required capital at time t is the sum of the initial endowment plus the reserve.
Theoretically, it is equal to theVaR denoted by

VaRt = Wt(a)+ Rt , (2.2)

and is characterized by the condition

Pt[Wt+h(a)−Wt(a)+ VaRt < 0] = α. (2.3)

It depends on (1) information It available at time t, (2) horizon h, (3) the set of assets
considered, (4) portfolio allocation, and (5) loss probability α. These arguments can be
introduced directly into theVaR formula

VaRt = VaR(It , a, h,α). (2.4)

Since condition (2.3) is equivalent to

Pt[a′(pt+h − pt) < −VaRt] = α, (2.5)
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theVaR equals the α-quantile of the conditional distribution of the change of portfolio
value.

Note that

a′(pt+h − pt) =
n∑

i=1

ai(pi,t+h − pi,t)

=
n∑

i=1

aipi,t[(pi,t+h − pi,t)/pi,t]

=
n∑

i=1

a∗i,t ri,t,t+h,

where a∗i,t , i = 1, . . . , n is the portfolio allocation measured in dollars and ri,t,t+h,
i = 1, . . . , n are the asset returns. Therefore, the VaR analysis can be based on either
asset returns or price changes.3

The VaR has two objectives (1) to measure the risk and (2) to determine the cap-
ital reserve. The VaR is a better measure of risk than the asset volatility and has the
same applications. More specifically, it can be used for portfolio management, audit, risk
hedging and so forth [see, e.g., Arzac and Bawa (1997); Foellmer and Leukert (1999);
Jansen et al. (2000); Levy and Sarnat (1972)]. To provide a comprehensive assessment of
risk, several VaR measures can be computed, for a set of different risk levels such as α
= 1%, 5%, etc., and a set of different horizons, such as h = 1, 10, 20 days. As mentioned
earlier in the text, theVaR is also used by the supervisors to fix the level of capital reserve.
Even though the theoretical value of the required capital is equal to theVaR, the Basle
Committee has fixed the regulatory required capital RCt at a different level, defined
as follows. The banks are required to report daily estimates of the Value at Risk V̂aRt
at a horizon of 10 business days (i.e., two weeks) and to compute the required capital
defined by

RCt = Max

[
V̂aRt , 3(trigger/8)

1
60

60∑
h=1

V̂aRt−h

]
. (2.6)

This complicated formula is used for the following reasons: (a) to alleviate the effect of
potential underestimation of theVaR by fixing the multiplicative factor at a value larger
than 3, (b) to create a positive incentive for a bank to perform the best possible evaluation
of risk by introducing an adjustable trigger that depends on the ex-post accuracy of the
VaR (trigger between 8 and 25), (c) to avoid erratic changes in the level of required capital

3For theVaR, returns should not be computed as log-price differences.
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by averaging its lagged values, and (d) to allow for quick updating in case of unexpected
market changes.

Formula (2.6) was criticized during the financial crisis of 2008. Indeed, the return on real estate
entailed systemic risk for all banks, and formula (2.6) became RCt = VaRt for the majority of
banks.All banks had to increase their reserves with cash or investment graded bonds.Thus, formula
(2.6) amplified the liquidity crisis.

2.2. Examples

A closed-form expression of the VaR can be found for specific distributions of price
changes (or returns). In this section, we derive theVaR for a conditional Gaussian dis-
tribution and compare the VaR formulas for distributions with different types of tails.
Next,we discuss the dependence of theVaR on the holding time, i.e., the computational
horizon h.

2.2.1. The Gaussian VaR

For convenience, we assume that the time horizon is equal to one unit of time h = 1.
We also suppose that the price changes are conditionally Gaussian with mean μt =
E[pt+1 − pt |It] and variance–covariance matrix �t = V ( pt+1 − pt |It). We get

Pt[a′(pt+1 − pt) < −VaRt] = α

⇔ Pt

[
a′(pt+1 − pt)− a′μt

[a′�t a]1/2 <
−VaRt − a′μt

[a′�t a]1/2
]
= α

⇔ −VaRt − a′μt = �−1(α)(a′�t a)1/2

⇔ VaRt = −a′μt +�−1(1− α)(a′�t a)1/2, (2.7)

where � denotes the cumulative distribution function (c.d.f.) of the standard normal
distribution. In practice, the predetermined probability of loss is small. Thus, theVaR is
an increasing function of the volatility of portfolio value and a decreasing function of the
expected change of portfolio value and loss probability α. As this approach relies on the
two first conditional moments only, it is called the method of the variance–covariance
matrix.

The required amount of reserve is nonnegative if and only if

a′(μt + pt)

[a′�t a]1/2 < �−1(1− α),

i.e., when the portfolio’s Sharpe performance measure is small. Otherwise, the reserve
is negative and the investor has a possibility of additional borrowing while satisfying the
VaR constraint.
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2.2.2. Comparison of Tails

Let us consider two portfolios of identical assets, with different allocations a and a∗
(say). We assume that their values at date t are equal a′pt = a∗′pt , and let Ft (resp. F∗t )
denote the conditional c.d.f. of the change of portfolio value yt+1 = a′(pt+1 − pt) [resp.
y∗t+1 = a∗′( pt+1 − pt)]. At risk level α, theVaRs for these portfolios are given by

VaRt(α, a) = −F−1
t (α), VaRt(α, a∗) = −(F∗t )−1(α). (2.8)

Intuitively, portfolio a∗ is more risky than portfolio a if , for any small α, portfolio a∗
requires a larger reserve than portfolio a. This condition is equivalent to

−(
F∗t

)−1
(α) > −F−1

t (α), for any small α,

⇔ F∗t (y) > Ft(y), for any small y.

Thus, the reserve for portfolio allocation a∗ is larger than that for a if and only if the left
tail of the conditional distribution of changes of portfolio value is fatter for allocation
a∗ than for allocation a. If the portfolio is invested in a single risky asset, the change
of portfolio value is a( pt+1 − pt). If a > 0, the left tail of the distribution of changes
of portfolio value corresponds to the left tail of the distribution of asset price changes.
Otherwise, it corresponds to the right tail. An investor who holds a positive amount of
that single asset is averse to the risk of a price decrease. An investor is averse to the risk of
a price increase if his/her position is short, that is when he/she holds a negative quantity
of that asset. In a multiasset framework, the situation is more complicated due to the
fact that some asset prices are positively and some are negatively correlated with one
another.

One can compare the extreme risks on two portfolios by considering the limiting left
tails of either their c.d.fs (y tends to minus infinity) or their quantile functions (α tends to
zero). For example, the left tails of univariate distributions are often classified as follows:

(i) Distribution F has a Gaussian left tail if and only if ∃m, σ > 0, a > 0 : F(y) ≈
a�

(
y−m
σ

)
, when y →−∞.

(ii) Distribution F has an exponential left tail if and only if ∃λ > 0, a > 0 : F(y) ≈
a exp λy, when y →∞. λ is called the tail index of an exponential tail.

(iii) Distribution F has a Pareto (hyperbolic) left tail if and only if ∃λ > 0, a > 0 : F(y) ≈
a(−y)−λ when y →−∞. λ is called the tail index of a Pareto tail.

Asymptotically, Pareto tails are fatter than exponential tails which, in turn, are fatter
than Gaussian tails.Alternatively,the size of the tails can be assessed in terms of the quantile
function or in terms of theVaR. For a distribution with an exponential left tail,theVaR is a
logarithmic function of risk level α: VaR(α) ≈ − 1

λ
log

(
α
a

)
for α small. For a distribution
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with a Pareto left tail, the VaR is a hyperbolic function of α: VaR(α) ≈ (α/a)−1/λ, for
small α.Thus, the rate at which the tails taper off is linked directly to the rate of theVaR
increase when α tends to zero.
Examples of distributions with exponential left tails are

the double exponential (Laplace) distribution with c.d.f.:

F(y) = 1
2

exp λ(y− m), if y ≤ m, (2.9)

1− 1
2

exp−λ(y− m), if y ≥ m;

the logistic distribution with c.d.f.:

F(y) =
[
1+ exp−

(
y− m
η

)]−1

.

Examples of distributions with Pareto tails are
the Cauchy distribution with c.d.f.:

F(y) = 1
π

arctan
(

y− m
σ

)
+ 1

2
;

the double Pareto distribution with c.d.f.:

F(y) = 1
2
(μ− y)−λ, if y ≤ μ− 1,

1− 1
2
(y− μ)−λ, if y ≥ μ− 1.

The thickness of tails and estimation of tail indexes have been widely discussed in
the statistical and probabilistic literatures [see, e.g., Embrechts et al. (1999)]. However,
any asymptotic comparison of tails has to be carried out with caution as in Finance the
interest is in small, but fixed risks levels, such as α = 1 or 5%. To illustrate this point,
let us consider a logistic distribution with c.d.f. F(y) = (1+ exp y)−1 and a normal
distribution with the same mean and variance as the logistic distribution, that are mean
0 and variance σ2 = π2/3. TheVaR computed from the N (0,π2/3) is given by

VaRN (α) = π/
√

3�−1(1− α),

while theVaR computed from the logistic distribution is

VaRL(α) = ln
(

1− α

α

)
.

The normal and logisticVaRs are ploted in Fig. 10.1 as functions of α.
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Figure 10.1 Comparison of normal and logistic VaR.

Once the mean and variance effects are eliminated, we observe that the VaR curves
are very close except for very small risk levels. Moreover, the two curves intercept at
α = 4%. At α = 5%, the GaussianVaR is 2.98 and is larger than the logisticVaR equal to
2.94. At α = 1%, the GaussianVaR is 4.22 and is less than the logisticVaR equal to 4.59,
although they are quite close. In brief,we find that (1) a thicker (asymptotic) tail does not
necessarily imply a largerVaR for some small fixed values of α; (2) the tail comparison
is conclusive after eliminating the differences in mean and variance in a preliminary
step.

2.2.3. Term Structure of the VaR

After examining the dependence of theVaR on risk level α,we focus on the dependence of
theVaR on horizon h. More precisely,we investigate whether theVaR can be considered
as a simple function of α and h, and written as VaR(α, h). Some results are easy to derive
for i.i.d. variables yt , t = 1, . . . , T . For instance, it is easy to show that

VaR(α, h) = h1/ab(α), ∀α, (2.10)

where a is a scalar and b is a function if and only if the characteristic function of yt is of
the type

$(u) = E(exp−iuyt) = exp(−c|u|a).
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This restriction on the characteristic function is satisfied by a zero mean normal dis-
tribution with a = 2. In this special case, the term structure of the VaR is such that
VaRN (α, h) = √hb(α). The restriction is also satisfied for Cauchy-distributed yts with
a = 1.Then, the term structure of theVaR is such that VaRC(α, h) = hb∗(α). According
to thisVaR formula for Cauchy-distributed yts, the larger the tails, the greater the impact
of the holding time on the value of theVaR.

Note that the Basle Committee (1995, p. 8) suggested to calculate the 10-day VaR
from the one-day VaR by multiplying it by the square root

√
h = √10 = 3.16. This

suggestion assumes implicitly the independence and normality of price changes.

2.3. Conditional and Marginal VaR
We know that the VaR depends on the information set used for forecasting the future
values of a portfolio. The content of that information set may differ, depending on the
approach. For the calculation of the conditionalVaR, the information set can consist of
either the lagged values of prices of all assets in the portfolio

(
I 1
t
)

or the lagged values
of the entire portfolio

(
I 2
t
)
. The outcomes of computations conditioned on either

(
I 1
t
)

or
(
I 2
t
)

are generally not identical. It is also possible to disregard all information on the
past asset prices and portfolio values, i.e., use an empty information set and compute the
marginalVaR defined by

P[Wt+h(a)−Wt(a)+ VaRt < 0] = α, (2.11)

where P denotes the marginal probability distribution. When the price changes
(pt − pt−1), ∀t, are stationary, the marginalVaR is time independent and its time index
can be suppressed. On the contrary, the conditional VaR varies in time due to the
changes in market conditions. For example, if the price changes follow a Gaussian vec-
tor autoregressive (VAR) process of order 1: �pt = pt − pt−1 = A�pt−1 + εt

4, where
εt ∼ IIN (0,�), A is the n × n matrix of autoregressive coefficients, and � the n × n
variance–covariance matrix of the error term, then the conditional distribution of �pt
given �pt−1,�pt−2 . . . is Gaussian N (A�pt−1,�). Therefore, the conditional VaR is
given by:VaRt(a,α) = a′A�pt−1 +�−1(1− α)(a′�a)1/2. Moreover,we know that the
marginal distribution of �pt is also Gaussian N (0,#), where # = V (�pt) satisfies the
equation # = A#A′ +� =

∑∞
h=0 Ah�A′h. Therefore, the marginalVaR is

VaR(a,α) = �−1(1− α)(a′#a)1/2.

Since the marginal mean and variance are such that E�pt = 0 and # = V (�pt) 0 �,
the marginalVaR is larger than the conditionalVaR, on average.

4The terminology is confusing. Note the difference between theVaR andVAR.
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2.4. Sensitivity of the VaR
Let us consider theVaR at horizon 1 defined by

Pt[a′�pt+1 < −VaRt(a,α)] = α.

TheVaR depends on the vector of portfolio allocations. In practice,a portfolio manager
has to update the portfolio frequently, and his/her major concern is the impact of the
updating on risk (or on the capital reserve). Hence, the manager is concerned more
about the effect of portfolio allocation on theVaR than about the value of theVaR.

The analytical expressions of the first- and second-order derivatives of theVaR with
respect to portfolio allocation were derived in Gourieroux et al. (2000):

i)
∂VaRt(a,α)

∂a
= −Et[�pt+1|a′�pt+1 = −VaRt(a,α)]. (2.12)

ii)
∂2VaRt(a,α)

∂a∂a′
= ∂ log ga,t

∂z
[−VaRt(a,α)]Vt[�pt+1|a′�pt+1 = −VaRt(a,α)] (2.13)

+
{
∂

∂z
Vt[�pt+1|a′�pt+1 = z]

}
z=−VaRt(a,α),

(2.14)

where ga,t denotes the conditional probability distribution function (p.d.f.) of
a′�pt+1.

The first- and second-order derivatives of the VaR can be written in terms of the
first- and second-order conditional moments of price changes in a neighbourhood of
the condition a′�pt+1 = −VaRt(a,α).

The sensitivity of the VaR can be examined directly for normally distributed price
changes [see, e.g., Garman (1996, 1997)]. Let us denote by μt ,�t the conditional mean
and variance of �pt+1, respectively. TheVaR is given by

VaRt(a,α) = −a′μt +�−1(1− α)(a′�t a)1/2.

For example, we get

∂VaRt(a,α)
∂a

= −μt + �t a
(a′�t a)1/2

�−1(1− α)

= −μt + �t a
a′�t a

[VaRt(a,α)+ a′μt]

= −Et[�pt+1|a′�pt+1 = −VaRt(a,α)].

The closed-form formulas ofVaR sensitivities are used for granularity adjustments of large portfolios
of credits [see, e.g., section 7.4 andWilde (2001)].
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3. ESTIMATIONOF THEMARGINAL VaR
In this section, we discuss the estimation of the marginal VaR from historical data on
the changes of portfolio value.We denote by yt = a′( pt − pt−1) the change of portfolio
value and consider the marginal VaR at risk level α. For notational convenience,we drop
the arguments a and α from theVaR function, and fix the horizon h equal to one.

The marginalVaR is given by

P[yt < −VaR] = α. (3.1)

It means that the opposite of the marginal VaR is equal to the α-quantile of the
marginal distribution of yt and can be characterized in the two following ways:

First, the VaR can be defined from the marginal cumulative distribution function
(c.d.f.) of yt , denoted by F :

F(−VaR) = α⇔ VaR = −F−1(α). (3.2)

Second, the VaR can be defined as a solution to the minimization of the following
objective function

−VaR = Argmin
θ

E[α(yt − θ)+ + (1− α)(yt − θ)−], (3.3)

where (yt − θ)+ = Max(y− θ, 0), (yt − θ)− = Max(θ − y, 0). It is easy to show that
the first-order condition to the above minimization leads to equation (3.1).

In the sequel, these two characterizations are used to define the parametric, semi-
parametric, and nonparametric VaR estimators. The properties of estimators are first
described for i.i.d. changes of portfolio values yt , t = 1, . . . , T , for which the marginal
VaR and the conditional VaR are equal (see Section 2.2). The properties of estimators
when the i.i.d. assumption is relaxed are given in Section 4.

3.1. Historical Simulation
VaR estimators that do not rely on any assumptions about the marginal distribution of
yt are obtained from the empirical counterparts of expressions (3.3) and (3.2):

V̂aR = Argmin
θ

1
T

T∑
t=1

[α(yt − θ)+ + (1− α)(yt − θ)−], (3.4)

and

V̂aR = Argmin
θ

[F̂(−θ)− α]2, (3.5)

where F̂(y) = 1
T

∑T
t=1 1yt<y denotes the sample c.d.f., and 1yt<y = 1, when yt < y and

0, otherwise, is the indicator function.
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Under this approach, the theoretical α-quantile is approximated by a sample
α-quantile. The minimizations in (3.4) and (3.5) are equivalent. However, their solu-
tions are generally not unique. Since the sample distribution is discrete, and the sample
c.d.f. is not continuous,we obtain an interval of solutions,called the empirical α-quantile
interval.

In practice, the solution is easily obtained as follows. Let us assume that T = 200
and α = 1%. The observations yt , t = 1, . . . , 200 can be ranked in an ascending order
y(1) = Mintyt < y(2) · · · < y(T ) = Maxtyt .Then, the 1%-quantile interval is [y(2), y(3)].
Its lower bound is equal to the second smallest observation since 2/200 = 1/100, and
the upper bound is equal to the next smallest observation.

The asymptotic properties of the sample quantiles were derived by Basset and Koenker
(1978) [see also Gourieroux and Monfort (1998), section 8.5] for i.i.d. data.

When T tends to infinity and the risk level α is fixed

(i) the length of the empirical α-quantile interval tends to zero;
(ii) any value in the empirical α-quantile interval is a consistent and asymptotically

normal estimator:

√
T (V̂aR − VaR) ∼ N

[
VaR,

F(−VaR)[1− F(−VaR)]
f 2(−VaR)

]
, (3.6)

where f denotes the marginal p.d.f. of yt .
For small α, the asymptotic variance of the VaR estimator depends on the risk level

and the size of the left tail of the marginal distribution of yt .The estimator is less accurate
when either α diminishes or the left tail increases. To illustrate this point, let us consider
a distribution with hyperbolic tails [called the Pareto tails]. If F(y) ∼ c(−y)−β, for small
α, the asymptotic variance,

Vas[
√

T (V̂aR − VaR)] ≈ F(−VaR)

f 2(−VaR)
≈ 1

β2c
(−VaR)β+2,

is an increasing function of tail parameter β.
The asymptotic results given above are intended to clarify the accuracy of the sample

quantile estimator. They do not hold when T tends to infinity and α tends to zero,
which is a situation encountered in Finance where, in many applications, T is large and
α is small. To give more insights on this problem, let us consider a sample of T = 100
for which the sample 1%-quantile is Z = y(1) = Mintyt . The finite-sample distribution
of y(1) is easy to find. Indeed, we have P[Z > z] = P[Mintyt > z] = P[yt > z, t =
1, . . . 100] = [1− F(z)]100. Then the median z0.5 of the 1%-quantile Z is given by

[1− F(z0.5)]100 ⇔ z0.5 = F−1[1− (0.5)1/100] (3.7)

⇔ 1− F(z0.5) = (0.5)1/100 ⇔ z0.5 ≈ F−1
[
− ln0.5

100

]
= F−1

[
0.7
100

]
. (3.8)
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For example, when the marginal distribution is a Cauchy distribution with c.d.f.
F(y) = 1

π
Arctan y+ 1

2 , the theoretical 1%-quantile is equal to −31.8. The median of
the distribution of sample quantile Z is −45.5 and the 90% confidence interval is
[−636.6,−10.5]. It is clear that the finite-sample distribution of the sample quantile
is skewed and its median is very different from the true value. This evidence indicates
that the sample quantile is not asymptotically normally distributed.

The finite-sample properties of sample quantile estimators can be revealed by Monte
Carlo experiments. Let us consider T = 200 observations and risk levels α = 1 and 5%.
Figure 10.2 shows the finite-sample distribution of y(1), y(2), y(3) associated with α = 1%
when the true distribution F is N(0,1), two-sided exponential, and Cauchy, respectively.
The true values of the 1%-quantile are −2.33,−3.91,−31.82, respectively.

We observe that the sample quantile y(3) of the Gaussian and of the two-sided expo-
nential distribution is less biased than the sample quantile y(2). Moreover, for the Cauchy,
the left tail of the distribution of the sample quantile is very heavy and the accuracy of
that estimator is poor.

Figure 10.3 shows similar results for y(9), y(10), y(11), and the level α = 5%. The true
values of the 5%-quantile are −1.64,−2.30,−6.31, respectively.
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Figure 10.2 Finite-sample distributions of the 1%-empirical quantile.
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Figure 10.3 Finite-sample distributions of the 5%-empirical quantile.

In conclusion, the estimation of the theoretical α-quantile from its empirical counter-
part is an appealing method of VaR estimation. However, it may lead to very inaccurate
and unstable estimates, especially for small risk levels. In some sense, the estimated VaR is
risky itself.

Finally, let us point out another limitation of the sample quantile approach. In practice,
it is common to compute this estimate for different risk levels and different portfolio
allocations, from the same set of asset price changes. Although the true underlyingVaR
is a continuously differentiable function of arguments α and a, its estimator V̂aR is not.
Due to the discreteness, a small change in a portfolio allocation can trigger a jump in
the value of the estimated VaR while the true underlying VaR changes continuously.
This drawback can be partly eliminated by smoothing the estimator. This can be done
by using a kernel K and bandwidth h; aVaR estimator smoothed with respect to α and
a is the solution of

1
T

T∑
t=1

K
[−a′(pt − pt−1)− V̂aR(a,α)

h

]
= α, (3.9)
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and depends on α and a. The asymptotic properties of this estimator are identical to the
asymptotic properties of the sample α-quantile, when α is fixed, T tends to infinity, and
the bandwidth h tends to zero at an appropriate rate [Falk (1985); Horowitz (1992)].

In fact, one should be interested in estimating the functional parameter (a,α)→
VaR(a,α) rather than in finding a specific value of that function. Then, it would be
possible to impose on the functional estimator (a,α)→ V̂aR(a,α) the same regularity
conditions as those satisfied by the theoretical VaR function.

3.2. Parametric Methods
Let us assume that the price changes �pt = pt − pt−1 have a common distribution from
a parametric family with p.d.f. gθ that depends on parameter θ. Parameter θ can be
estimated by the maximum likelihood

θ̂T = Argmax
θ

T∑
t=1

ln gθ(�pt).

TheVaR can be approximated by

V̂aR = −F−1
a,θ̂T

(α),

where Fa,θ is the c.d.f. of �Wt(a) = a′�pt , when �pt has density gθ.
For Gaussian price changes �pt ∼ N (μ,�), theVaR is simply estimated by

V̂aR = −a′μ̂+�−1(1− α)(a′�̂a)1/2, (3.10)

where μ̂ and �̂ are the sample mean and variance–covariance matrix computed from the
observations on �p1, . . . ,�pT . Since under the normality, the finite-sample distribution
of (a′μ̂, a′�̂a) is known, we can also find the distribution of theVaR estimator and build
the confidence interval.The practitioners should be aware that the estimated measure of
risk is random, and therefore is risky (the so-called estimation risk).

3.3. Semiparametric Analysis
The nonparametric and parametric estimation methods discussed in the previous sections
have some drawbacks. Under the nonparametric approach, the sample quantile at a small
risk level α may be inaccurate, as it is estimated from a limited number of extreme
observations. Under the parametric approach, there is a possibility that the model is
misspecified and theVaR estimator biased. To circumvent both difficulties, one can find
the sample quantiles at some relatively large αs (say) and derive theVaR of interest using
a parametric model of the tail. In practice, the parametric tail model can be Pareto,
exponential, or a mixture of two normals [Longerstay (1996); Venkataraman (1997)].
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This approach is called the model building method. Let us assume, for instance, a
Pareto-type model for the left tail where we have approximately

F(y) ∼ c(−y)−β,

where c and β are positive tail parameters. The following paragraphs describe two alter-
native methods of estimation of parameters c and β and the derivation of the VaR
estimator.

3.3.1. Estimation from Sample Quantiles

Let us consider two relatively low risk levels, such as α0 = 10%,α1 = 5%. For such
risk levels, the sample quantiles, denoted V̂aRe(α0) and V̂aRe(α1) are quite accurate
estimators of the true quantiles and we get the approximate moment conditions:{

α0 ∼ c[V̂aRe(α0)]−β
α1 ∼ c[V̂aRe(α1)]−β.

By solving the system of equations with respect to c and β,we obtain consistent estimators
of the tail parameters: ⎧⎨⎩α0 ∼ ĉ[V̂aRe(α0)]−β̂

α1 ∼ ĉ[V̂aRe(α1)]−β̂.

Then theVaR at any high risk level α ( α = 1%, say) can be estimated by

α = ĉ[V̂aRe(α1)]−β̂. (3.11)

The logarithms of the last two systems of equations are linear in β̂ and log ĉ.⎧⎪⎪⎨⎪⎪⎩
log α0 = log ĉ − β̂ log V̂aRe(α0),

log α1 = log ĉ − β̂ log V̂aRe(α1)

log α = log ĉ − β̂ log V̂aR(α).

Therefore, the estimated V̂aR(α) is related to the sample quantiles V̂aRe(α0) and
V̂aRe(α1):

det

⎛⎜⎝ log α0 1 log V̂aRe(α0)

log α1 1 log V̂aRe(α1)

log α 1 log V̂aR(α)

⎞⎟⎠ = 0,
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or equivalently

V̂aR(α) = [V̂aRe(α1)]A[V̂aRe(α0)]B , (3.12)

where A = log α−log α0
log α1−log α0

and B = log α1−log α
log α1−log α0

.

This formula allows extrapolation of the values V̂aR(α), for any small α, from two
sample quantiles at larger αs. We find that the Pareto-type tail model considered above
implies geometric extrapolation.

3.3.2. The Use of the Hill Estimator

When the left tail of a distribution is exactly Pareto, then

F(y) = c(−y)−β, for y < y, (3.13)

where y is a given tail cutoff point. Then, the right-truncated observations yt such that

yt < y 5 can be used to estimate the tail parameter β by the maximum likelihood. The
c.d.f. of the truncated Pareto distribution is

Fy(y) = F(y)
F(y)

=
(

y
y

)−β
,

and depends only on parameter β. The truncated ML estimator of β is

β̂ = Argmax
β

T∑
t=1

1yt<y[log β − (β + 1)(log yt − log y)].

The first-order condition yields

1/β̂ =
T∑

t=1

1yt<y(log yt − log y). (3.14)

This estimator was first proposed by Hill (1975), and is therefore called the Hill
estimator.

The Hill estimator can be used jointly with an empirical quantile estimator
to recover the VaR along the following lines [see, e.g., Danielsson and de Vries
(1997, 1998)]. Let risk level α0 be relatively large (α0 = 10%, say). We consider the
sample quantile V̂aRe(α0) and the Hill estimator associated with y = −V̂aRe(α0).

5The use of the maximum likelihood approach restricted to tails has been recommended by Embrecht et al. (1998) to estimate theVaR.
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The relation

α0 ≈ c[−V̂aRe(α0)]−β̂

is used to obtain a consistent estimator of c,

ĉ = α0[−V̂aRe(α0)]β̂.

Then theVaR at any small risk level α is approximated by V̂aR(α) such that

α = ĉ[−V̂aR(α)]−β̂

⇔ V̂aR(α) = V̂aRe(α0)
(α0

α

)1/β̂
.

The sample quantile V̂aRe(α0) is multiplied by a scale factor, which is a power function
of α0/α. When β increases, the tail of the Pareto distribution decreases and so does
theVaR.

3.4. The i.i.d. Assumption
Since the marginal and conditional VaRs are equal for i.i.d. price changes, it seems
natural to present the statistical properties of theVaR estimators in the i.i.d. framework.
In practice, however the i.i.d. assumption is not satisfied.This is known from the empir-
ical evidence on serial correlation of price changes, conditional heteroskedasticity, and
volatility persistence. Moreover, for theoretical reasons, the i.i.d. assumption cannot be
satisfied by both price changes �pt and returns rt = �pt/pt−1. But, even if the price
changes (or returns) were i.i.d. at horizon 1, they could not remain i.i.d. at higher
horizons h: �hpt = pt − pt−h. This is because intervals {t − h, t} and {t − 1− h, t − 1}
overlap, which implies correlation between �hpt−1 and �hpt .

In practice, the i.i.d. assumption does not hold, e.g., when (i) the returns are serially
independent and nonstationary. Then, the conditional and marginal distributions are
identical, but are both time varying. If their time variation is smooth, at close dates, these
distribution may be hard to distinguish. (ii) the price change process is serially correlated
and stationary. In that case, the marginal and conditional distributions are different. The
conditional distributions at different dates can resemble one another if the price histories
prior to those dates are similar.

The marginal VaR in application to data that violate the i.i.d. condition is misspecified.
In the case of a nonstationary process without serial dependence, misspecification arises
because the true time-varying marginal VaR is approximated by a constant time invariant
VaR.Then, a constant,VaR estimator is not consistent. In the case of a stationary process
with serial dependence, a marginal VaR estimator is consistent, but its estimated variance
is different from the variance evaluated under the i.i.d. assumption.
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The guidelines of the Basle Committee are set out as if the marginal distributions
of price changes (returns) were varying smoothly over time. Therefore, to diminish the
bias inVaR estimation, the Committee recommended rolling estimation of the marginal
VaR. More precisely, it is proposed to select a window of T0 observations (equivalent
to at least one year, i.e., T0 > 200). At date t, the estimation is performed from the
T0 most recent observations: yt , yt−1, . . . , yt−T0+1. At time t + 1, the newly arrived
observation yt+1, is added to the sample, while the oldest one yt−T0+1 is deleted. The
rolling procedure provides time-varying estimates of the VaR. It can be improved by
introducing exponentially weighted moving averages [Phelan (1995)].

To illustrate the use of rolling estimators, we perform a Monte Carlo experiment, in
which the changes of portfolio value are i.i.d. and the marginal VaR is estimated by rolling
from a window of 200 observations.Two estimators were considered: the rolling sample
quantile and the rolling Gaussian VaR at 1%. Moreover, we consider three sets of i.i.d.
simulated price changes with Gaussian, double exponential and Cauchy distributions,
respectively. The simulation results are displayed in Figs. 10.4–10.6.

We observe that the evolution of the rolling sample quantile in time is a stepwise func-
tion.This is easy to explain by considering for example the 1% sample quantile.The value

Time
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2.2

2.4

2.6

Figure 10.4 i.i.d. Gaussian price changes.
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Figure 10.5 i.i.d. double exponential price changes.

of the sample quantile between dates t and t + 1 changes only if the new and the deleted
observations are neither greater nor smaller than the value of the quantile estimated at t.
This occurs with probability 1− (1%)2 − (99%)2 = 0.0198.Therefore, the value of the
sample quantile remains constant for a random time, which has a geometric distribution
with parameter equal to (1%)2 + (99%)2 = 0.980.The corresponding average duration
is approximately 50.6

The outcomes of the rolling sample quantile and Gaussian VaR estimations are
close for Gaussian price changes, whereas the Gaussian VaR is smaller than the sample
quantile for exponentially distributed price changes. This is because the Gaussian VaR
estimation formula underestimates the exponential tail. A converse effect is observed
when the VaR estimators from Gaussian data are compared to those from Cauchy dis-
tributed data. The first- and second-order moments of the Cauchy distribution do not
exist. Moreover, the sample mean and variance of Cauchy variables do not converge

6To avoid the stepwise effect, it has been proposed by Hull to compute a weighted empirical quantile, solution of V̂aRt =
Argminθ

∑t
τ=t−T0+1 ρ

t−τ [α(yτ − θ)+ + (1− α)(yτ − θ)−].
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Figure 10.6 i.i.d. Cauchy price changes.

and have fat-tailed asymptotic distributions.7 We also observe that rolling can induce a
spurious trend effect in the estimatedVaRs.

4. ESTIMATIONOF THE CONDITIONAL VaR
As mentioned in Section 2.3, two types of conditional VaR can be considered depending
on the selected information set, which may contain either the lagged price changes of
each asset in the portfolio

(
I 1
t
)

or the lagged portfolio values
(
I 2
t
)
.The estimation methods

can be parametric, semiparametric, and nonparametric.

4.1. Conditionally Heteroskedastic Autoregressive Models

A widely used dynamic model of price change dynamics (or returns) is the conditionally
heteroskedastic autoregressive model.

7For example, the empirical average of independent Cauchy variables also admits a Cauchy distribution.
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When the conditioning information set is
(
I 1
t
)
, the model is multivariate:

�pt = μ(�pt−1)+ B(�pt−1)ut , (4.1)

where (�pt−1) = (�pt−1,�pt−2, . . .) denotes the set of lagged values of price changes,
μ is a n-dimensional vector of conditional location parameters, B is a n × n matrix of
conditional scale parameters, and ut , t = 1, . . . , T is a sequence of i.i.d. random vectors,
with common distribution with p.d.f. g.

When the information set is
(
I2
t
)
, the model is univariate:

yt = m(yt−1)+ σ(yt−1)vt , (4.2)

where m and σ are scalar functions and vt , t = 1, . . . , T , is a sequence of i.i.d. variables.
The basic models, in the family of ARCH (GARCH) models are the ARCH(1) [see
Engle (1982)],

yt = (θ0 + θ1yt−1)
2vt ,

and IGARCH models,

yt =
⎡⎣(1− θ)

∞∑
j=1

θ j−1y2
t−j

⎤⎦1/2

vt .

The link between specifications (4.1) and (4.2) needs to be examined with caution.
For illustration, let us consider the linear VAR of order one of asset price changes:

�pt = A�pt−1 +�1/2ut ,

where ut is IIN (0, Id), and Id denotes the identity matrix.We know that the conditional
distribution of yt = �Wt(a) = a′�pt , given I 1

t , is Gaussian N [a′A�pt−1, a′�a], and the
conditional distribution of �Wt(a) given the lagged portfolio values

(
I 2
t
)

is of the type

N
[∑∞

j=1 αja′�pt−j , σ2
]
.Thus,the use of information set

(
I 2
t
)

leads to a univariate model

yt = m(yt−1)+ σvt ,vt ∼ IIN (0, 1) of an infinite autoregressive order,which differs from
the univariate specification of yt conditional on the full information set

(
I 1
t
)
.The situation

is even more complex in nonlinear and nongaussian frameworks. Indeed, if the location
and scale parameters in (4.1) are nonlinear and if ut is nongaussian, it is always possible
to compute numerically the univariate conditional distribution of yt = �Wt(a) given
its own past. However, that conditional distribution may not be compatible with any
univariate nonlinear models such as (4.2).

So far, we assumed that the allocation vector a is fixed. It can also be shown that a set
of nonlinear autoregressive models (4.2) specified for a set of portfolios with different
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allocations may be incompatible.8 For example, let us consider a Gaussian ARCH(1)
model

�Wt(a) =
[
θ0(a)+ θ1(a)�Wt−1(a)2

]1/2
vt(a), ∀a,

where vt(a) is IIN (0, 1).The models for�Wt(a), ∀a,are compatible only if θ1(a) = 0, ∀a,
that is in the absence of conditional heteroskedasticity. This lack of coherency needs to
be emphasized because of the following method introduced by J.P. Morgan (1995) and
endorsed by the Basle Committee. The Committee recommended to use systematically
(that is for any set of assets and any portfolio allocation) the Gaussian IGARCH model
defined by

�Wt(a) = σt vt ,

where

σ2
t = θσ2

t−1 + (1− θ)�Wt−1(a)2

= (1− θ)

∞∑
j=1

θ j−1�Wt−j(a)2

= (1− θ)

∞∑
j=1

θ j−1y2
t−j ,

with θ = 0.95. This model can be valid for some allocations, but it cannot fit equally
well the data for all possible allocations as.

4.1.1. Estimation Given the Information on Portfolio Value

The estimation of theVaR conditional on I 2
t is quite straightforward when the location

and scale functions m and σ are parametric:

yt = m(yt−1; θ)+ σ(yt−1; θ)vt . (4.3)

Parameter θ can be consistently estimated by the quasi(pseudo)-maximum likelihood
and its estimator θ̂T is given by

θ̂T = Argmax
θ

−1
2

T∑
t=1

log σ2(yt−1; θ)− 1
2

T∑
t=1

(yt − m(yt−1; θ))2

σ2(yt−1; θ)
. (4.4)

8It cannot be derived from the same dynamic specification (4.1) of the vector of asset returns.
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Given this estimator, we can find the approximations of the conditional drift and
volatility, m̂t = m(yt−1; θ̂T ), σ̂t = σ((yt−1; θ̂T ), and the standardized residuals,

v̂t =
T∑

t=1

yt − m(yt−1; θ̂T )

σ(yt−1; θ̂T )
, (4.5)

that are approximations of the true errors vt . Then , the computation of the conditional
VaR at horizon 1 can be accomplished by calculating a marginal VaR at horizon 1 from
the i.i.d. errors. Indeed, at horizon 1, we get

Pt[yt+1 < VaRt(a,α, 1)] = α

⇔Pt

[
m(yt−1; θ)+ σ(yt−1; θ)vt < −VaRt(a,α, 1)

]
= α

⇔Pt

[
vt < −

VaRt(a,α, 1)− m(yt−1; θ)

σ(yt−1; θ)

]
= α.

Therefore −[VaRt(a,α, 1)− m(yt−1; θ)]/σ(yt−1; θ) is the α-quantile of the distribution
of the standardized errors vt . Since errors vt , t = 1, . . . , T , (resp. the residuals) are i.i.d.
(resp. approximately i.i.d.),we can estimate the α-quantile of the v distribution,using, for
example, a parametric method. When the distribution of the error is assumed Gaussian,
the conditional VaR estimator is

V̂aRt(a,α, 1) = −m̂t + σ̂t�
−1(1− α).

However, empirical evidence indicates that the distributions of residuals are often fat-
tailed.Therefore, parametric models with t-student or α-stable distributions of the error
term were proposed in the literature.

Alternatively, a semiparametric approach can be followed, which relies on the empir-
ical distribution of residuals v̂1, . . . , v̂T . Given the α-quantile Q̂(α) evaluated from the
residuals, the VaR estimate is

V̂aRt(a,α, 1) = −m(yt−1; θ̂T )− σ(yt−1; θ̂)Q̂(α). (4.6)

An analytical formula of the VaR estimator exists only for holding horizon 1.Typically,
under a parametric approach where (yt) follow a conditionally Gaussian ARCH model,
the conditional distribution at horizon 2 is no longer Gaussian and is very complicated.
Hence, the VaR estimator for holding horizons greater than one has to be derived
by Monte Carlo methods. The simulation can be based on a nonlinear conditional
autoregressive model. For ease of exposition, let us assume the autoregressive order
equal to one:

yt+1 = m(yt ; θ)+ σ(yt ; θ)vt+1
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and

yt+2 = m(yt+1; θ)+ σ(yt+1; θ)vt+2.

yt+2 can be approximately simulated from the conditional distribution of yt+2 given
yt along the following lines.9 For two independent drawings vs

t+1, vs
t+2 in the sample

distribution of residuals, a simulated value of yt+2 given the currently observed yt = y is

ys
t+2 = m

(
ys

t+1; θ̂T

)
+ σ

(
ys

t+1; θ̂T

)
vs
t+2,

where

ys
t+1 = m

(
ys

t ; θ̂T

)
+ σ

(
ys

t ; θ̂T

)
vs
t+1.

By replicating this procedure S times, we obtain a set of values ys
t+2, s = 1, . . . , S,

approximately independently drawn in the conditional distribution of yt+2 given the
currently observed yt = y. An estimator of VaR(a,α, 2) is the empirical quantile of the
simulated sample ys

t+2, s = 1, . . . , S. Note that the number of replications S should be
large.

4.1.2. Estimation Given the Full Information

A similar approach is available when the information set I1
t contains asset price changes,

and the location and scale functions are parametric, i.e., μ(�pt−1; θ) and �(�pt−1; θ),
respectively. Parameter θ is estimated by the quasi(pseudo)-maximum likelihood:

θ̂T = Argmax
θ

−1
2

log det�(�pt−1; θ)

− 1
2
[�pt − μ(�pt−1; θ)]′�(�pt−1; θ)−1[�pt − μ(�pt−1; θ)].

The residuals are

ût = �(�pt−1; θ̂T )
−1/2[�pt − μ(�pt−1; θ̂T )].

Next, the multivariate distribution of ut is approximated by the sample distribution of
residuals.

In the multivariate framework, the VaR has to be approximated by simulation even at
horizon 1. In general, the conditional distribution of a′�pt given �pt−1 is complicated,

9This simulation is approximate because the true parameter θ is replaced by θ̂T and the true distribution of errors by the sample distribution
of residuals.



580 Christian Gourieroux and Joann Jasiak

even if the multivariate distribution of ut is as simple as a multivariate Student, for
example.

4.2. Nonparametric Methods

Let us now consider the conditional distribution of price changes (or changes in portfolio
values) as completely unspecified. Due to the curse of dimensionality, a nonparametric
approach can be applied only if the price changes have short memory, that is when the
autoregressive order is small. For this reason, we assume that process (yt) is stationary
and Markov of order 1, and describes the estimation of the conditional distribution of
yt given yt−1, or equivalently the joint distribution of (yt−1, yt).

It is known that the joint c.d.f. of (yt−1, yt) can be written as a product of the marginal
distribution and a term that represents serial dependence. More precisely, we have [Sklar
(1959)]

F2(yt , yt−1) = P[Yt < yt , Yt−1 < yt−1]
= P[F(Yt) < F(yt), F(Yt−1) < F(yt−1)],

where F denotes the marginal c.d.f. of yt . Since F(Yt) follows a uniform distribution
on [0,1], we find that

F2(yt , yt−1) = C[F(yt), F(yt−1)], (4.7)

where C is the joint c.d.f. of theoretical ranks Ut = F(Yt), Ut−1 = F(Yt−1). Function
C is called a copula c.d.f.

The VaR at horizon 1 can be expressed in terms of marginal distribution F and copula
C. Indeed, we have

P[Yt < VaRt |Yt−1 = yt−1]
= P[F(Yt) < F(−VaRt)|F(Yt−1) = F(yt−1)]
= P[Ut < F(−VaRt)|Ut−1 = F(yt−1)]

= ∂C
∂ut−1

[F(−VaRt), F(yt−1)].

Thus, the VaR is the solution of

∂C
∂ut−1

[F(−VaRt), F(yt−1)] = α. (4.8)

It seems natural to estimate nonparametrically functions F and C from their (kernel
smoothed) empirical counterparts and solve Eq. (4.8) after replacing functions F and



Value at Risk 581

C by these counterparts. However, the difficulty encountered in estimating the sample
quantile described in Section (3.1) arises also in the bidimensional framework and results
in inaccurate VaR estimates. Indeed, the rate of convergence of these estimators depends
on the dimension of the distribution.

To circumvent this problem,nonparametric constraints on the copula can be imposed.
For example, we can consider an Archimedean copula defined by

C(u, v) = $−1[$(u)+$(v)], (4.9)

where$ is a real function.10 In anArchimedean copula, the serial dependence is captured
by univariate function $ (instead of the bidimensional function C in the unconstrained
case and of the scalar autoregressive parameter ρ in the Gaussian case). It is easy to check
that

P[C(Ut , Ut−1) < s] = s −$(s)/
d$
ds

(s), ∀s. (4.10)

This equality can be used to obtain a consistent functional estimator of function $. The
estimation method consists of the following three steps.

(i) First step: The data on yt , t = 1, . . . , T are used to find approximations of ranks
Ut = F(Yt) as follows. First, the observations are ranked in an ascending order
y(1) < · · · < y(T ). Next, we assign to each yt , t = 1, . . . , T its rank divided by T .
The rank divided by T is called ût . It is equal to the value of F̂(yt), where F̂ is the
sample c.d.f. A similar approach is applied to the lagged values yt , t = 0, . . . , T − 1
to derive approximations ũt−1 of ut−1.

(ii) Second step: The copula cumulative function evaluated at ût , ũt−1 can now be
approximated from its empirical counterpart

Ĉ(ût , ũt−1) = 1
T

T∑
τ=1

1ûτ<ût ,ũτ−1<ũt−1 .

(iii) Third step: By applying formula (4.23), we find a smoothed estimator of function
A(s) = $(s)/∂$ds (s) by

Â(s) = 1
T

T∑
t=1

�

[
Ĉ(ût , ũt−1)− s

h

]
,

10$ has to be the Laplace transform (moment generating function) of a positive random variable [see Joe (1997)].



582 Christian Gourieroux and Joann Jasiak

where � is the c.d.f. of the standard normal used for smoothing and h is the
bandwidth. Next, the estimator of function $ is derived by integration

$̂(u) = exp
[∫ u 1

s − Â(s)
ds
]

.

4.3. Miscellaneous

In this section, we review other methods of VaR computation that exist in the litera-
ture. They are based on dynamic models other than those considered so far, or arise as
extensions of methods described in Section 3.

4.3.1. Switching Regimes

The idea is to extend the basic Gaussian model by allowing for endogeneous regime
switching. Conditional on a given regime, the distribution of price changes is multivari-
ate normal. However, when the endogeneous regimes are integrated out, it becomes a
mixture of Gaussian distributions. This approach accommodates heavy tails, persistence,
and nonlinear dynamics. More precisely, let k = 1, . . . , K denote the admissible regimes
and Zt with values in {1, . . . , K } denote the market regime at date t. It is assumed that

(a) (Zt) is a Markov chain with transition matrix Q.
(b) The distribution of price changes �pt conditional on Zt = k,�pt , Zt is multivariate

normal N [μk,�k].
Then the conditional distribution of price changes is

l(�pt |�pt−1) =
K∑

k=1

pk(�pt−1)N (μk,�k), (4.11)

where pk(�pt−1) = P[Zt = k|�pt−1].
Probabilities pk can be computed numerically and parameters μk,�k, ∀k, and Q

can be estimated by means of the Kitagawa’s algorithm [see, e.g., Hamilton (1989)].
Then, the conditional VaR is estimated from drawings in the mixture distribution
(4.11), after replacing pk,μk,�k by their estimates [see Billio and Pelizzon (2000) for
an application]. This approach is different from the mixture of normal distributions
proposed by J.P. Morgan as a new methodology of VaR computation [Longerstay
(1996)]. Under the J.P. Morgan approach, the regime indicators (Zt) are assumed time
independent.

4.3.2. Conditional Autoregressive VaR

The conditionalAutoregressive VaR (CaViaR) model proposed by Engle and Manganelli
(2004) is a univariate model that represents the dynamics of the VaR for a single portfolio
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with a given vector of allocations:

VaRt = β0 + β1VaRt−1 + β2|yt−1|

= γ0(β)+
∞∑
j=1

γj(β)|yt−j |, say,

where γ0(β), γj(β), j varying are functions of β0,β1,β2. Parameter β is estimated by the
quantile regression [Basset and Koenker (1978)], that is,

β̂ = Argmin
β0,β1,β2

T∑
t=1

{
α
[
yt − γ0(β)−

∑
j

γj(β)|yt−j |
]+

+ (1− α)
[
yt − γ0(β)−

∑
j

γj(β)|yt−j |
]−}.

The VaR estimator is

V̂aR = γ0(β̂)+
∞∑
j=1

γj(β̂)|yt−j |.

This approach is easy to implement but has two limitations. First, the CAViaR models
for portfolios with different allocations can be incompatible [see remark in Section 4.1].
Second, the CAViaR models have to be specified separately for each different risk level
α. This leads to VaR estimates

V̂aR(α0) = γ0(β̂α0)+
∞∑
j=1

γj(β̂α0)|yt−j | and

V̂aR(α1) = γ0(β̂α1)+
∞∑
j=1

γj(β̂α1)|yt−j |,

that do not necessarily satisfy the monotonicity property

V̂aR(α0) > V̂aR(α1), if αo < α1.

4.3.3. Dynamic Quantile Models

This family of VaR models, introduced by Gourieroux and Jasiak (2009), satisfies the condition
of monotonicity with respect to the risk level.The conditional quantile function of yt given yt−1 is
written as a sum of baseline quantile functions with path-dependent coefficients.The basic model is

VaRt(α) = a0(yt−1, θ)+ a1(yt−1, θ)Q1(α,β)+ a2(yt−1, θ)Q2(α,β),
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where β is the parameter of baseline quantile functions Q1 and Q2, and θ parametrize the
path-dependent positive coefficients a0, a1, a2.

4.3.4. Local Maximum Likelihood

Let us assume that the process (yt) of changes in portfolio values is a Markov process of
order 1. Gourieroux and Jasiak (2000) approximate locally the tail of the true conditional
density l(yt+1|yt = y), say, by a parametric distribution such as a Gaussian distribution.
The procedure consists of the following steps:

First step:Compute the 1%-empirical quantile from the sample y1, . . . , yT and denote
it by q̂.

Second step: Compute the mean and variance in a neighborhood of yt+1 = q̂ and
yt = y. For a kernel K and bandwidth h, the approximate mean and variance are

m̂(q̂, y) =
T∑
τ=1

K
(

yτ − q̂
h

)
K
(

yτ−1 − y
h

)
yτ

/ T∑
τ=1

K
(

yτ − q̂
h

)
K
(

yτ−1 − y
h

)
and

σ̂2(q̂, y) =
T∑
τ=1

K
(

yτ − q̂
h

)
K
(

yτ−1 − y
h

)
y2
τ

/ T∑
τ=1

K
(

yτ − q̂
h

)
K
(

yτ−1 − y
h

)
− m̂2(q̂, y).

Third step: Apply the Gaussian VaR formula with mean and variance m̂(q̂, yT ),
σ̂2(q̂, yT ) to get

V̂aRT = −m̂(q̂, yT )+�−1(1− α)σ̂(q̂, yT ).

5. VaR FOR PORTFOLIOSWITH DERIVATIVES
In the financial theory,a considerable attention is given to derivative pricing and hedging,
especially for derivatives such as European call options. Let us recall that a European call
with maturity T and strike K pays (ST − K )+ = Max(ST − K , 0) at date T , where
ST is the price at T of the underlying asset. Since the payoffs of derivatives with any
strike, written on the same asset, depend on the same benchmark ST and are defined
by nonlinear payoff functions, people tend to believe that prices of such derivatives are
strongly and nonlinearly dependent.11Various theories supporting this belief lead to two
types of derivative pricing formulas. Under the complete market hypothesis, the price
at t of a European call with strike K and maturity T can be written as

Ct(K , T ) = C(St , rt , K , T − t), (5.1)

11In reality, they also depend on other factors that influence the demand and supply of derivative assets, especially since they are illiquid.
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where rt is the interest rate and C is a deterministic function that depends on the (risk-
neutral) dynamics of the underlying asset price. An example of this approach is the
Black–Scholes model [Black and Scholes (1973)].

Under the incomplete market hypothesis, the price depends also on other factors Zt :

Ct(K , T ) = C(St , Zt , rt , K , T − t). (5.2)

An example of this approach is the Hull–White model [Hull andWhite (1987)], in which
the additional factor is stochastic volatility.

The option pricing under the complete- and incomplete-market hypotheses relies on
restrictive assumptions. In particular,both approaches assume12 that a) all assets, including
the derivatives are liquid, b) all assets including the derivatives can be traded at any time,
c) the derivative prices are functions of state variables (St , rt) or (St , Zt , rt) only, d) the
state variables are Markov processes. In practice, however, these assumptions are not
satisfied. For example, index derivatives are written on market indexes, which are not
traded directly on the markets.13 The derivative securities are generally not liquid and
their prices may depend on the demand and supply effects.

Since the derivative trading can potentially cause financial losses, it is natural to intro-
duce a VaR measure for portfolios that include derivatives. Because of the lack of liquidity
of such complex assets, it is difficult to come up with a VaR measure based on the lagged
observed derivative prices, like historical simulation. In this section, we use the theo-
retical pricing formulas derived under the liquidity assumption to derive model-based
approximations of the VaR for portfolios with derivatives.The accuracy of such approx-
imations depends on the model used by a bank for derivative pricing (called the internal
model, henceforth).Therefore, it is necessary to examine the sensitivity of the VaR with
respect to potential misspecification of the internal model.

5.1. Parametric Monte Carlo Method
For ease of exposition, let us consider a portfolio of European calls, all written on the
same asset. This portfolio is defined by the set of associated strikes and maturities:
(Ki, Ti), i = 1, . . . , n. If one of the strikes is zero, then the portfolio contains the
underlying asset too. On a complete market, the change of portfolio value is

yt+1 = �Wt+1(a) =
n∑

i=1

ai[C(St+1, rt+1; Ki, Ti − t − 1)− C(St , rt ; Ki, Ti − t)]. (5.3)

12See Merton (1974) for a complete list of assumptions for the Black–Scholes model.
13Some index mimicking portfolios can actually be traded, such as the Standard and Poor Depository Receipts (SPDR) that mimicks the

S&P 500. However, the nonlinear dynamic properties of the S&P 500 and of the SPDR are significantly different, especially for extreme
values.
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It is a known function of the current and future interest rates and asset prices. Moreover,
it depends on the unknown parameter θ that characterizes the (risk-neutral) dynamics
of price St . Let us denote the function in (5.3) by

yt+1 = wt(St , St+1, rt , rt+1; θ). (5.4)

The conditional distribution of yt+1 has generally no closed-form expression and has to
be approximated by Monte Carlo experiments. Under the assumption of a deterministic
interest rate, the procedure is implemented as follows14:

(i) First step: Estimation of parameter θ
The dynamics of (St) are summarized by the conditional historical distribution

of St given St−1: l(St |St−1; θ), (say).15 Parameter θ can be estimated from the histor-
ical data on (St) by the maximum likelihood, for example (the so-called historical
approach). The estimator is denoted by θ̂T .

(ii) Second step: Simulation of future values of S
For a given value of St , simulated values Ss

t+1, s = 1, . . . , S are drawn in the
conditional distribution l(St+1|St ; θ̂T ).

(iii) Third step: Simulation of yt+1
We simulate the values16 of yt+1 as

ys
t+1 = wt

(
St , Ss

t+1, rt , rt+1; θ̂T

)
, s = 1, . . . , S.

(iv) Fourth step: Estimation of the VaR
Finally, the conditional VaR estimate can be obtained directly from the empirical

quantile of the simulated sample ys
t+1, s = 1, . . . , S.

It is interesting to discuss this approach in the context of the Black–Scholes model,
in which the asset price follows a geometric Brownian motion

dSt = μStdt + σStdWt ,

where (Wt) is a standard Brownian motion. The asset price dynamics depends on
two parameters θ = (μ, σ), whereas the option price depends on volatility σ only.
Both parameters μ and σ have to be estimated prior to the VaR estimation. Indeed,
while the derivative price depends on σ only, its conditional distribution depends
on both volatility σ and drift μ.This explains why it is necessary to use the historical

14If the interest rate is stochastic, it is also necessary to estimate the dynamics of the rate and to simulate the future interest rates.
15We assume that the risk-neutral parameter is a component of the historical parameter as in the Black–Scholes.
16In the formula below, we assume analytical expressions of the derivative prices. Otherwise, they have also to be approximated by Monte

Carlo [see Gourieroux and Jasiak (2001a), chapter 11].
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data St , t = 1, . . . , T to recover μ, instead of using only the data on derivative prices
(cross sectional or implied volatility approach) since the derivative prices allow only
for estimation of volatility σ.

The method outlined above can be extended to incomplete markets by consid-
ering the distribution of all state variables, including factor Z for estimation and
simulation.

5.2. Taylor Expansion of Nonlinear Portfolios

As the simulation of the VaR is computationally demanding, the financial sector has
proposed some approximate closed-form expressions of the VaR.These VaR estimation
methods are straightforward but can produce misleading outcomes.

5.2.1. The Delta Method

Under the complete market hypothesis, it is possible to build an instantaneously riskless
portfolio that contains a European call and the underlying asset. The allocation of the
riskless portfolio is −1 unit of the European call and δt(K , T ) = ∂C

∂S (St , rt , K , T − t)
units of the underlying asset. δt is called the delta of the derivative security. In this
framework, the European call is equivalent to a portfolio that contains the underlying
asset and a risk-free asset with allocations δt(K , T ) and αt(K , T ), say, respectively.

This result can be used for the computation of the VaR as follows. Let us consider a
portfolio of European calls.This portfolio is equivalent to a portfolio of

∑n
i=1 aiδt(Ki, Ti)

units of the underlying asset and
∑n

i=1 aiαt(Ki, Ti) units of the riskless asset. The con-
ditional VaR is computed as outlined in Section 4 for a portfolio linear in S. This
simple method of VaR computation differs from the suggestion of the Basle Committee.
According to the Basle Committee, the VaR has to be computed for a portfolio with
fixed allocations (called a crystallized portfolio) and should disregard any portfolio updat-
ing during the holding period. In contrast, the δ-method assumes continuous updating
of the allocations performed in an optimal way (provided that the internal model is well
specified).As a consequence, the δ-based VaR is smaller than the VaR with constant allo-
cations and underestimates the true VaR. In an extreme case, the internal model views as
risk-free a portfolio with −1 units of the derivative and δt units of the underlying asset.
Thus, this method is not robust. A slight misspecification of the internal model suffices
to perceive an extremely risky portfolio as risk-free.

5.2.2. The Delta–GammaMethod

The approach described above can be extended by considering a second-order Taylor
expansion of the derivative price with respect to the price of the underlying asset

�C(St , rt , K , T − t) ≈ αt + δt�St+1 + 1
2
γt(�St+1)

2, (5.5)
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where the second-order derivative γt is the so-called gamma of the option.This expansion
includes a nonlinear quadratic function of �S. Several authors [see, e.g., Jorion (1997)
p. 144] proposed to apply the method of the variance–covariance matrix (see 2.2 i) under
the conditional normality of �St+1. The derivative portfolio is such that

�Wt(a) ≈
n∑

i=1

aiα
i
t +

(
n∑

i=1

aiδ
i
t

)
�St+1 + 1

2

(
n∑

i=1

aiγ
i
t

)
�S2

t+1. (5.6)

We get

Et[�Wt+1(a)] ≈
n∑

i=1

aiα
i
t +

(
n∑

i=1

aiδ
i
t

)
Et(�St+1)

+ 1
2

(
n∑

i=1

aiγ
i
t

)
[Vt(�St+1)+ (Et�St+1)

2];

Vt[�Wt+1(a)] ≈
(

n∑
i=1

aiδ
i
t

)2

Vt(�St+1)+
(

1
2

n∑
i=1

aiγ
i
t

)2

Vt
[
(�St+1)

2]

+
(

n∑
i=1

aiδ
i
t

)(
n∑

i=1

aiγ
i
t

)
Covt

(
�St+1,�S2

t+1

)

≈
(

n∑
i=1

aiδ
i
t

)2

Vt(�St+1)+ 1
2

(
n∑

i=1

aiγ
i
t

)2

[Vt(�St+1)]2,

since Cov[�S, (�S)2] = 0 and V [(�S)2] = 2[V (�S)]2 for a Gaussian variable.There-
fore the first- and second-order conditional moments of �Wt+1(a) are easily computed
from the first- and second-order conditional moments of �St+1. The drawbacks of this
common approach are as follows. First, the expansions are valid when the derivative
price is differentiable with respect to S and are not valid at dates close to the maturity
of the option. Second, the mean–variance approach assumes implicitly the approximate
normality of the change in portfolio value. Even if �St+1 is conditionally normal, the
normality of the change of portfolio value is no longer satisfied due to the presence of
a quadratic term. Finally, the second-order Taylor expansion given above disregards the
time-varying features of a European call, as explained below.

5.2.3. Linearization of Nonlinear Portfolios

The characteristics of a European call change in time. In particular, the residual maturity
decreases while the interest rate varies. Therefore, a correct first-order expansion of the
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derivative price is

C(St+1, rt+1, K , T − t − 1)− C(St , rt , K , T − t)

= ∂C
∂S

(St , rt , K , T − t)�St+1 + ∂C
∂r

(St , rt , K , T − t)�rt+1 − ∂C
∂T

(St , rt , K , T − t).

It differs from the expansion considered in the previous section by the presence of
the first-order derivatives with respect to the interest rate and the residual maturity.The
same remark is true for the second-order Taylor expansion as well.

The expansion can be extended to include time-varying parameters. For example,
it is common to use the Black–Scholes model with time–varying volatility σt , say. In
that case, the expansion could also be written with respect to the volatility (or the
log-volatility) and would involve the associated derivative of the price, i.e., the vega of
the option. That expansion is easy to use under the assumption of joint normality of
the conditional distribution of �St+1,�rt+1,� log σt+1. This approach was suggested
by the RiskMetrics Group [see, e.g., Malz (2000)], who report the variance–covariance
matrices,as well as the returns on implied volatilities. However, the normality assumption
is very unrealistic and the observed implied volatility returns are generally leptokurtic
and skewed.

5.2.4. The Normality Assumption in the Case of Option Prices

The motivation for using the first-order expansion is to extend the normality assumption
on the price change of the underlying asset to the change in derivative prices. The
argument is that the normality is satisfied by“sufficiently large portfolios of independent
options,”to which the central limit theorem can be applied [Finger (1997)]. However,this
argument is not valid since the prices of derivatives on the same asset are highly correlated
and the fit of the normal approximation to the tails of an empirical distribution is poor.
In general, the conditional distributions of derivative prices are nongaussian.They often
have several modes, and feature skewness and fat tails [see, e.g., Gourieroux and Jasiak
(2001a) chapter 12].

Despite the aforementioned limitations, the use of delta or delta–gamma methods is
recommended by the CapitalAdequacy Directive (1993) and by the Banking Supervision
Proposal (1995) of the Basle Committee.A survey of the Group of Thirty (1993) showed
that 98% of 125 respondents were using delta or delta-gamma methods.

6. CREDIT RISK
As mentioned earlier in the text, the most common losses incurred by banks are losses
on corporate loans and mortgages. The credit risk is essentially the risk of a default of
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payment,17 which depends on the evolution in time of the solvency of a borrower. Factors
that influence the credit risk are (1) the heterogeneity of borrowers and loans, and (2)
the lack of liquidity as only a fraction of loans can be traded on secondary markets. More
specifically,market prices are generally available only for corporate bonds and mortgage-
backed securities.Among risky credits with no market prices are mortgages,consumption
loans, revolving credit (credit cards), OTC corporate loans, and cash advances, known as
retail credits.

This section is organized as follows. The first part clarifies the link between the dis-
tribution of default and the actuarial value (resp. market price) of an OTC loan (resp.
bond).The second part shows the assessment of default rates from the data on (i) individ-
ual borrowers, (ii) bonds, (iii) equity prices.The third part describes the credit migration
approach,and the last part presents the profit and loss distributions for portfolios of bonds
and retail loans.

6.1. Spread of Interest Rates
Let us consider a consumer loan of initial amount B0 with fixed contractual interest rate r
to be repaid in H units of time by equal monthly payments of amount m. If the borrower
has zero probability of default, then the following actuarial relationship is satisfied,

B0 = m
1+ r

+ m
(1+ r)2

+ · · · + m
(1+ r)H

, (6.1)

which equates the initial balance to the sum of discounted cash-flows. This relation can
be used to find initial balance B0 for given m, r , H , or to find interest rate r for given
B0, m, H .

The actuarial formula (6.1) needs to be modified when the probability of default is
different from zero. Let Y denote the time to default (with time origin Y = 0 assigned
to the date when credit is granted). Suppose that after time Y , the borrower will not
repay,even a fraction of the outstanding balance (i.e., the recovery rate is equal to zero).18

Then, the actuarial formula implies

B∗0 =
m∗

1+ r∗
P[Y ≥ 1] + · · · + m∗

(1+ r∗)H
P[Y ≥ H ]

= m∗
[

S(1)
1+ r∗

+ · · · + S(H)

(1+ r∗)H

]
, (6.2)

17And of the risk of prepayment, which is not discussed in this section.
18The size and timing of the recovery should also be taken into account. For ease of exposition, we assume a zero recovery rate. Even

though this assumption is unrealistic, it is important to note that it is used to recover the implied probability of default from bond prices.
Moreover, when the recovery is assumed independent of default, the actuarial prices are simply inferred from the proposed ones by
multiplying them by the expected recovery rate. This approach is recommended by the Basle Committee.
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where S denotes the survivor function for time to default. Formulas (6.1) and (6.2) can
be compared in two different ways.

(i) If interest rates r∗ = r and monthly payment m∗ = m are given, we get different
actuarial values of the loan depending on the possibility of default. The loan value
computed without default risk, that is B0 =∑H

h=1
m

(1+r)h
, is strictly larger than the

value B∗0 =
∑H

h=1
mS(h)
(1+r)h

.The omission of default risk leads to overvaluation of credit.
(ii) If loan value B∗0 = B0 and monthly payment m∗ = m are given,we find that different

interest rates satisfy the actuarial formulae (6.1) and (6.2). It is easy to check that
interest rate r is strictly higher than interest rate r∗ to compensate for default risk.
The difference s = r − r∗ is called the spread of interest rate.

As an illustration, let us assume an exponentially distributed time to default Y with
default intensity λ. We get S(h) = exp(−λh) and,

B0 = m
[

S(1)
1+ r∗

+ · · · + S(H)

(1+ r∗)H

]

= m
[

exp−λ
1+ r∗

+ · · · + exp−λH
(1+ r∗)H

]

= m

[
exp−λ
1+ r∗

+ · · · +
[

exp−λ
1+ r∗

]H
]

.

We find that

1+ r = (1+ r∗) exp λ

⇔ s = r − r∗ = (1+ r∗)[exp λ− 1].

The spread is an increasing function of default intensity λ.
So far, we assumed a constant rate of interest and a flat term structure. The approach

can be easily extended to any type of fixed income bonds (or retail loans without indexed
payments) and to a varying term structure of interest rates. Let us consider a bond with
known future payments Fτ (say) at dates τ, and let B(t, t + h) denote the price at t of
the zero coupon bond that pays 1 $ at date t + h. Without default risk, the price of this
bond at date t is

Pt(F) =
∞∑

h=1

Ft+hB(t, t + h). (6.3)

The bond price is derived by treating a fixed income bond as a portfolio of zero
coupon bonds and by applying the arbitrage free condition. In the presence of default
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risk, the bond price will decrease. If default probability is independent of the evolution
of the risk-free interest rate, the price of a bond with default possibility that a risk neutral
investor is willing to pay is

Pt(F , S) =
∞∑

h=1

Ft+hB(t, t + h)St(t, t + h), (6.4)

where St(t, t + h) = Pt[Y ≥ t + h|Y ≥ t] and the time to default is the time elapsed after
the bond was issued.The conditioning on the time to default Y is necessary because the
bond can only be priced while it is still alive, and the information set used to predict Y
increases with t.

Formulas (6.3) and (6.4) involve two term structures of interest rates: the term struc-
ture without default risk is characterized by the set B(t, t + h), h = 1, . . . , H ; the term
structure with default risk is characterized by B∗(t, t + h) = B(t, t + h)St(t, t + h), h =
1, . . . , H , and depends on the distribution of time to default. St(t, t + h), h = 1, . . . , H ,
defines the term structure of spread that is the mapping h → st,t+h = rt,t+h − r∗t,t+1 =
1
h log B(t,t+h)

B∗(t,t+h) = −1
h log St(t, t + h).19

6.2. Assessment of Default Rates
There are two sources of randomness in the future price of a bond or retail loan, which
need to be predicted: the future risk-free term structure of interest rates and the future
probability of default. Since these are generally considered independent, we first focus
on the estimation of default probability St(t, t + h). The existing methods differ with
respect to the assumption on the existence of a secondary market for loans.

There is an important difference between the corporate bonds and consumer loans.
On the bond markets, bonds are offered for sale by a large number of issuers. The
bond issuings are organized and the lenders possess information on the credit ratings
of borrowers. In contrast, retail loans such as consumer loans and mortgages may be
provided to several thousands borrowers by a single bank. In general, these loans are
small and very heterogeneous with respect to the initial balance, maturity, interest rate,
monthly payments, and characteristics of individual borrowers.

6.2.1. Recovering Default Rates fromMarket Prices of Bonds

Let us consider firm j that issues bonds l = 1, . . . , Ljt , which are traded on the market

at date t. At date t, these bonds differ with respect to their cash-flows Fjl
t+h and prices

19Similarly, when the recovery rates are taken into account, there exists a term structure of recovery rates.
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Pjl
t (F , S), which are related as follows:

Pjl
t (F , S) =

∞∑
h=1

Fjl
t+hB(t, t + h)Sj

t (t, t + h), l = 1, . . . , Ljt , (6.5)

where the conditional survivor function depends only on borrower j and not on the
bond.

Let us assume that number Ljt of traded bonds is large and their cash-flows are very
diversified.To recover the term structure of yields on these corporate bonds,we can apply
the regression method or a smoothing method by local polynomials or splines, where
the last two methods are used for recovering the term structure ofTreasury bonds.These
procedures yield the approximated term structure of yields on bond j:

B̂∗j(t, t + h) ≈ B(t, t + h)Sj
t (t, t + h), for any t, h.

Next, by using the T-bond prices, one can estimate the term structure of interest
on a risk-free asset B̂(t, t + h), ∀t, h, and find the estimators of individual default
probabilities20:

Ŝ∗jt (t, t + h) = B̂∗j(t, t + h)/B̂(t, t + h). (6.6)

This approach requires only the knowledge of prices of bonds traded on the market.
Therefore, it can be used by banks that do not possess the data on individual credit
histories of corporate borrowers. In practice, however, the market information is rather
poor and leads to biased estimators of default rates. This is because for a given issuer
j, the number of corporate bonds issued by that firm that are actively traded on the
market at a given date is rather limited. For this reason, the quoted prices can be quite
different from their theoretical values and methods such as regression or smoothing are
not reliable. To circumvent this difficulty, bond issuers can be divided into homogenous
categories k = 1, . . . , K ,with respect to their actual Standard and Poor’s (resp. Moody’s)
credit ratings with the top rating AAA (resp. Aaa), and the lowest rating CCC (resp.
Caa).21 Then, the term structure of bond yield spread is assumed identical for all issuers
in the same rating category. This allows for the use of a larger number of traded bonds
for recovering the rates of default. This pragmatic approach is discussed in detail in
Section 6.3.

20Called the implied survivor probability.
21The complete list of ratings assigns one of the following 10 symbols:

Moody’s (Aaa,Aa,A, Baa, Ba, B, Caa, Ca, C, D) and Standard and Poor (AAA,AA,A, BBB, BB, B, CCC, CC, C, D).
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6.2.2. Recovering Default Rates from Equity Prices

The Merton’s model [Crosbie (1998); Janosi et al. (2003); Merton (1974)] can be used
to recover default probabilities from data on equity value. More precisely, let us consider
firm j with the equity value, asset value, and liabilities denoted by VE,t , VA,t and Lt ,
respectively. The equity can be considered as a call option on future value VA,t+1 with
strike Lt+1. If the liabilities are predetermined and the asset values follow a Black–Scholes
model, then value VE,t can be derived from the Black–Scholes option pricing formula as
a function of VA,t and volatility σA of the asset value. Moreover,under the Black–Scholes
model, the equity and asset volatilities are related by

σEVE,t = VA,tσAδt ,

where δt is the delta of the call option.Therefore,given the data on equity value and equity
volatility,we can find σA and VA,t by using the last equality and the Black–Scholes option
pricing formula.The results allow for further computation of the conditional probability
of default at t + h:

St(t, t + h) = P[VA,t+h < Lt+h, VA,t+h−1 > Lt+h−1, . . . , VA,t+1 > Lt+1|VA,t].

This approach was recommended to the practitioners by the KMV corporation. It can be
criticized for disregarding the information contained in bond prices and for assuming that
future liabilities are known, which is equivalent to disregarding the possibility of future
borrowing and debt renegotiation. The method is valid, provided that the assumptions
of the continuous-time model of asset value are satisfied.

6.2.3. Recovering Default Rates from Individual Credit Histories

Let us now consider the retail loans. To reduce market incompleteness due to the het-
erogeneity of individual loans(contracts),we can aggregate the data as follows. In the first
step, we define homogenous categories of loan contracts (with identical initial balance,
term, interest rate, and monthly payments) granted to similar borrowers.These categories
of loans, indexed by k, k = 1, . . . , K, are next partitioned with respect to the generation
of loans, leading to a set of cohorts doubly indexed by k, τ, where k is the category
index and τ is the beginning of a loan agreement. If the number of contracts in each
cohort is sufficiently large (greater than 200–300), the market incompleteness is reduced
by computing the averages of homogenous loans. Under this approach, the individual
data is replaced by the aggregate data on default rates (prepayment rates, recovery rates)
cohort by cohort.22

22As mentioned earlier, we focus on default and do not consider potential prepayments or partial recoveries.
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For illustration, let us show an example of data aggregation.The time unit is set equal
to one semester. In each cohort, we observe default rates over all semesters from the
beginning of a loan agreement until the current date. Let Dk(τ; h) denote the default
rate in cohort k, τ in semester τ + h; h denotes the age of a loan, i.e., the time elapsed
since the loan agreement was signed. For each category k, we get a double entry table,
which may contain various pairs of entries, such as the generation and current date, the
generation and age, or the current date and age.Tables 10.1–10.3 below display the data
on two-year loans (i.e., that need to be repaid in four semesters). The dates are given
in a “year.semester” format. Cohort category indexes are suppressed for clarity. The last

Table 10.1 Default rate by generation and current date

Current date
generation 97.1 97.2 98.1 98.2 99.1 99.2

97.1 D(97.1; 1) D(97.1; 2) D(97.1; 3) D(97.1; 4)
97.2 D(97.2; 1) D(97.2; 2) D(97.2; 3) D(97.2; 4)
98.1 D(98.1; 1) D(98.1; 2) D(98.1; 3) D(98.1; 4)
98.2 D(98.2; 1) D(98.2; 2) D(98.2; 3)
99.1 D(99.1; 1) D(97.1; 2)
99.2 D(99.2; 1)

Table 10.2 Default rate by generation and age

Age generation 1 2 3 4

97.1 D(97.1; 1) D(97.1; 2) D(97.1; 3) D(97.1; 4)
97.2 D(97.2; 1) D(97.2; 2) D(97.2; 3) D(97.2; 4)
98.1 D(98.1; 1) D(98.1; 2) D(98.1; 3) D(98.1; 4)
98.2 D(98.2; 1) D(98.2; 2) D(98.2; 3)
99.1 D(99.1; 1) D(99.1; 2)
99.2 D(99.2; 1)

Table 10.3 Default rate by age and current date

Current
date age 97.1 97.2 98.1 98.2 99.1 99.2

1 D(97.1; 1) D(97.2; 1) D(98.1; 1) D(98.2; 1) D(99.1; 1) D(99.2; 1)
2 D(97.1; 2) D(97.2; 2) D(98.1; 2) D(98.2; 2) D(99.1; 2)
3 D(97.1; 3) D(97.2; 3) D(98.1; 3) D(98.2; 3)
4 D(97.1; 4) D(97.2; 4) D(98.1; 4)
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semester observed is (the end of ) 99.2. Note that,Tables 10.2 and 10.3 are easier to read
and require less memory for computer storage.23

6.3. The Credit Migration Approach

Let us consider again the corporate loans. Because of the heterogeneity of bond issuers,
discussed in Section 6.2.1, we distinguish the conditional distributions of time to default
for each credit rating category. The objective of the credit migration approach is to
analyze the joint dynamics of credit rating and default.

6.3.1. The Model

The model was initially conceived as a continuous-time model by Jarrow (1997). Below,
we present an extended and time-discretized version of that model.The key assumption
is the existence of a finite number of states k = 1, . . . , K that represent credit quality. At
each date, a borrower occupies one state, in which it can stay or migrate to another state
at a future date. Let (Zt) denote the qualitative process formed by the sequence of states
occupied by a borrower. It is assumed that this process is a Markov chain with transition
matrix Q = (qkl), with elements qkl = P[Zt = k|Zt−1 = l].

The knowledge of recent state history is assumed to be sufficient information to define
the term structure of credit spread. More precisely, if a borrower has spent h periods of
time in state k, after moving into state k from state l, the credit spread is determined
by the value of survivor function Skl(h). Thus, the model is parametrized by transition
matrix Q and the set of survivor functions Skl ,∀ k, l.To illustrate the zero coupon price
dynamics, let consider a credit-rating history. The term structures of zero coupon price
with and without default risk are given in Table 10.4.

Table 10.4 The term structures of zero coupon price

date t Zt B(0, t) B∗(0, t)

1 1 B(0, 1) .
2 3 B(0, 2) B(0, 2)S31(1)
3 3 B(0, 3) B(0, 3)S31(2)
4 3 B(0, 4) B(0, 4)S31(3)
5 1 B(0, 5) B(0, 5)S13(1)
6 2 B(0, 6) B(0, 6)S21(1)
7 2 B(0, 7) B(0, 7)S21(2)
8 3 B(0, 8) B(0, 8)S32(1)
9 3 B(0, 9) B(0, 9)S32(2)
10 3 B(0, 10) B(0, 10)S32(3)

23 Similar tables can be designed for the recovery rates.
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Several versions of the model under simplified assumptions can be found in the
financial literature. For example, Jarrow (1997) assumed that the credit spread is a con-
stant function of the current state only: Skl(h) = exp(−λkh). Longstaff and Schwartz
(1995), Duffie and Kan (1996), and Lando (1998) allowed for more complicated term
structure patterns but maintained the dependence on the current state. Intuitively, it is
clear that the past state contains information about future default. Loosely speaking, we
do not expect to observe the same term structure of spread for a borrower with credit
rating AA who was AAA before as for a borrower with the same current rating AA, who
was rated A before.

6.3.2. Statistical Inference when the State is Observable

Let us assume independent risk dynamics of different borrowers.When the state histories
are observed,the transition matrix is easily estimated from its empirical counterpart.Then,
one can consider all the observed histories that end in state k after a transition from l,
and estimate the survivor function Skl from the observed bond prices of firms in state k.

This approach is followed by market practitioners with admissible states defined as
credit ratings AAA, AA, A, BBB, BB, B, CCC by the Standard and Poor.24 For this
purpose, the rating agencies report regularly the estimated transition matrix and the
term structures of bond yield spread at horizon one year that depend on the current
state k only (see Tables 10.5 and 10.6).

We observe that the spread is not constant. In this example, it increases with the term,
except for low ratings. Indeed, the long-term spread takes into account the fact that a
bond is still alive, which is a very positive signal about an a priori risky borrower.

6.3.3. Unobservable States

The approach outlined in the previous section is easy to implement and accommodates
the joint dynamics of rating and default. However, it identifies the credit quality with a

Table 10.5 Estimated transition matrix

Rating AAA AA A BBB B BB CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.21 0 0.22 1.30 2.38 11.24 64.86 19.79

24Note that the Standard and Poor rating and the Moody’s rating are not completely compatible, especially for dates close to a change of
rating, that is to a sudden change of risk level [see, e.g., the discussion in Kliger and Sarig (2000)].
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Table 10.6 The spread curve

Category Year 1 Year 2 Year 3 Year 4

AAA 3.60 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63
BB 5.55 6.02 6.78 7.27
B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

rating assigned by a private rating agency, whose rating strategy may vary over time. For
example, the transition matrices reported by Moody’s are clearly time varying and seem
to reflect a tendency for toughening the rules over time.

Moreover, even though the details on the Moody’s rating system are not publicly
known for confidentiality reason, one can expect that the ratings depend not only on
the structure of the balance sheet of a firm and its dynamics but also on the market price
history. This dependence is not compatible with the assumption that Zt is as a Markov
chain, and that the current rating depends on the last rating only.

When the state is considered unobservable, the model becomes a complicated Hidden
Markov model, which requires simulation-based methods for parameter estimation and
for recovering the unobserved state histories.

6.4. VaR for Credit Portfolio

The analysis of profit and loss distributions for VaR computation can be carried out in
various ways. Below, we describe two methods. The first method is based on the credit
migration approach and is suitable for corporate bonds.The second method assumes that
the heterogeneity of loans is exogenous, and is suitable for retail consumer loans. Later
in the text, we address the correlation of default.

6.4.1. The Future Portfolio Value

To determine the VaR,we need to define precisely the future value of a portfolio of bonds.
Each bond is characterized by a time-varying cash-flow pattern and coupon payments
that occur during the holding period. To simplify the discussion, let us consider a single
bond with a cash-flow sequence Fτ , τ = t + 1, t + 2, . . ..Without the risk of default, its
price at t is

Wt = Pt(F) =
∞∑

h=1

Ft+hB(t, t + h). (6.7)
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With the risk of default, its price becomes

Wt = Pt(F , S) =
∞∑

h=1

Ft+hB(t, t + h)St(t, t + h). (6.8)

Its future value at t + 2, say, depends on the coupons, which will be paid at dates t +
1 and t + 2, and on the value at t + 2 of the residual bond with cash-flows Fτ , τ ≥
t + 3. Before aggregating these components, we need to explain how the cashed-in
coupons are reinvested. For ease of exposition, we assume that they are invested in the
risk-free asset.
Without the risk of default, the future bond price is

Wt+2 = Ft+1[B(t + 1, t + 2)]−1 + Ft+2 +
∞∑

h=1

Ft+2+hB(t + 2, t + 2+ h).

With the risk of default, the future bond price can be

Wt+2 = 0, if there is default at t + 1;

Wt+2 = Ft+1[B(t + 1, t + 2)]−1, if there is default at t + 2;

Wt+2 = Ft+1[B(t + 1, t + 2)]−1 + Ft+2 +∑∞
h=1 Ft+2+hB(t + 2, t + 2+ h)St+2

(t + 2, t + 2+ h), otherwise.

At date t, the future bond price is stochastic since (i) we don’t know if the bond will
still be alive at dates t + 1 and t + 2. (ii) the future term structure is unknown, (iii) the
conditional survivor probabilities have to be updated.

6.4.2. The Credit Migration Approach

The credit migration model is suitable for approximating the profit and loss distribution
by simulations. Suppose that the portfolio contains bonds of n issuers i = 1, . . . , n,where
each issuer i is characterized by its state history Zi,t = (Zi,t , Zi,t−1, . . . , ). Different bonds
of the same issuer i in the portfolio can be aggregated leading to a sequence of aggregated
cash-flows Fi,τ , τ = t + 1, t + 2, . . .. Let Pi,t(Zi,t) denote the price at t of this sequence of
cash-flows and Pi,t+h(Zi,t+h) denote the price at t + h of the residual sequence Fi,τ , τ ≥
t + h + 1. These prices include the cost of the risk of default and depend on individual
state histories, which influence the default probabilities.

The current value of the portfolio of bonds is

Wt =
n∑

i=1

Wi,t =
n∑

i=1

Pi,t(Zi,t),
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where Wi,t denotes the total value of all bonds of issuer i in the portfolio. The future
value is

Wt+h =
n∑

i=1

Wi,t+h.

The conditional distribution of this future value can be approximated by the sample
distribution of

W s
t+h =

n∑
i=1

W s
i,t+h, s = 1, . . . , S, (6.9)

where the simulated values for each issuer W s
i,t+h, ∀i, are drawn independently. Let us

now describe the drawing of the issuer-specific value at horizon 2. At date t, after a
transition from state lt , the issuer i stays in state Zt = kt for time Ht .

First step: Drawing of the future state Zt+1

The future state Zs
t+1 is drawn in the conditional distribution of Zt+1 given Zt = kt

by using the estimated transition matrix.
Second step: Simulation of survival at date t + 1
Two cases have to be distinguished depending on whether Zs

t+1 = Zt .
If Zs

t+1 = Zt = kt , there is default at t + 1 with probability 1− Skt ,lt (Ht + 1)/
Skt ,lt (Ht) and no default otherwise.
If Zs

t+1 = kt+1 �= kt , there is default at t + 1 with probability 1− Skt+1,kt (1) and no
default otherwise.
These distributions are used to simulate the potential default at date t + 1.
Third step: Drawing of the future state Zt+2

This step is reached,provided that the contract is not terminated.The state is drawn in
the conditional distribution of Zt+2 given Zs

t+1 = kt+1,where kt+1 is the state drawn
in step 1.
Fourth step: Simulation of time to default at t + 2
Three cases have to be distinguished. They are described below along with the
associated conditional probabilities of default.
case 1: Zs

t+2 = Zs
t+1 = Zt = kt

probability of default: 1− Skt ,lt (Ht + 2)/Skt ,lt (Ht + 1);
case 2: Zs

t+2 = Zs
t+1 = kt+1 �= Zt = kt

probability of default: 1− Skt+1,kt (2)/Skt+1,kt (1);
case 3: Zs

t+2 = kt+2 �= Zs
t+1 = kt+1

probability of default: 1− Skt+2,kt+1(1).
The simulated time to default is denoted by Y s.



Value at Risk 601

Fifth step: The simulated issuer-specific portfolio value is computed from

W s
i,t+2 = Fi,t+1[B(t, t + 1, t + 2)]−11Y s

i >t+1 + Fi,t+21Y s
i >t+2 + 1Y s

i >t+2Pi,t+2(Zs
i,t+2),

where Zs
i,t+2 = (Zs

i,t+2, Zs
i,t+1, Zi,t) and 1Y s

i >t+1 = 1 if Y s
i > t + 1, 0 otherwise,

denotes the indicator function.

This approach assumes that the future term structure of interest on the risk-free asset
is known and so is the price Pi,t(Zi,t) for a given price history. Let us focus on the risk
of default and disregard the risk on the T-bond interest rate. The prices Pi,t(Zi,t) [or
Pi,t+2(Zs

i,t+2)] are functions of default probabilities. These probabilities are unknown
and can be approximated by simulations that take into account the future credit rating
migration.25 Let us replace the prices in the last expression by their approximations P̂ ,
say. The change in portfolio value becomes

�W s
t+2 =

n∑
i=1

{Fi,t+1[B(t + 1, t + 2)]−11Y s
i >t+2

+ 1Y s
i >t+2P̂i,t+2(Zs

i,t+2)− P̂i,t(Zi,t)} s = 1, . . . , S. (6.10)

The VaR is the empirical α-quantile of the distribution of �W s
t+2, s = 1, . . . , S.

The estimated diagonal elements of transition matrices are generally close to 90%
(see Table 10.5). The CreditMetrics, among others, suggested to eliminate the Monte
Carlo computation of prices Pi,t(Zi,t) [resp. Pi,t+2(Zs

i,t+2)] by assuming that after t [resp.
after t + 2], no migration between credit rating categories will take place. This rough
approximation simplifies the determination of the VaR but can induce a significant bias.
To see that, consider the most risky category CCC.The computation of the bond price,
as if the CCC issuer were to stay in the same rating category CCC, disregards the high
probability of default and the possibility of a zero future price of its bond.

6.4.3. The Cohort Approach

Let us now consider the retail loans and introduce a dynamic model for data on default
rates aggregated by cohorts, which is easy to estimate and simulate. This model includes
some autoregressive effects of lagged default and macroeconomic factors and accounts
for unobserved time heterogeneity. Because of the autoregressive component, the spec-
ification for the first semester of a loan agreement of any term is different from the
specification for the next semester and the following ones. In the first semester of the
loan, there is no information on past default history of the cohort. The initial credit

25It is natural to approximate these prices by simulations because they can be viewed as prices of American options.
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quality of that cohort can be approximated by using the basic credit score of the credit
granting institution. Let Sk,τ and σ2

S,k,τ denote the average initial score and its dispersion
in cohort k, τ. In semester h = 1, we use the following logistic model:

l[Dk(τ; 1)] = a1 + b1l(Sk,τ)+ c1σ2
S,k,τ + d′1Xτ+1 + α1l[Dk(τ − 1; 1)] + εk(τ; 1), (6.11)

where the components of X are macroeconomic variables, εk(τ; 1) is an error term, and
l(x) = log[x/(1− x)] denotes the logit transformation. For the following semesters of
the loan, we introduce an additional autoregressive effect of the same cohort (τ, k) and
a lagged effect of the previous cohort (τ − 1, k):

l[Dk(τ; h)] = ah + bhl(Sk,τ)+ chσ2
S,k,τ + d′hXτ+h + αhl[Dk(τ − 1; h)]

+ βhl[Dk(τ, h − 1)] + εk(τ, h), h ≥ 2. (6.12)

The joint model [(6.11) and (6.12)] is a spatial regression model. It is completed by
specifying the distribution of error term εk(τ, h), for any k, τ, h. Let us assume the inde-
pendence between cohorts and allow for correlation between semesters. More precisely,
we assume
[εk(τ, h), h = 1, . . . , H ], τ, k varying, are independent, normally distributed, with

mean zero and variance–covariance matrix #.
Parameters ah, bh, . . . ,βh, h = 1, . . . , H and # can be estimated by the ordinary least

squares. Even though the number of parameters is large, in each semester h, the number of
available observations is too large and equal to the number of cohorts times the number
of loans with different terms.

The estimated models can be used for prediction making. In particular, the following
columns of Table 10.3 can be found by simulations. For example, for the future date
00.1 (first calendar semester of year 2000), error εs(00.1; 1) is drawn and the simulated
default rate Ds(00.1; 1) is determined by model (6.11) from D(99.2; 1) and the simu-
lated error. For the second row of that column, we simulate error εs(99.2; 2) and use
Ds(99.2; 2) determined by model (6.12), D(99.2; 1), D(99.1; 1) and εs(99.2; 2), and so
forth. Note the difficulty in predicting the future values of macroeconomic variables X .
A solution consists in considering several scenarios of their future evolution to assess the
default rate.

6.4.4. Default Correlation

The procedures outlined in the previous sections assumed the independence of risks of
various borrowers and disregarded the possibility of simultaneous bankruptcies. Under
the migration approach,simultaneous bankruptcies can be examined by considering more
complicated transition matrices that represent, e.g., the probabilities of joint migration
of two issuers, rated BB and A, say. Simultaneous bankruptcies can be incorporated into
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the cohort-based approach by introducing the correlation between error terms of two
different cohorts or credit ratings. These extensions to the model are difficult to imple-
ment, as they involve complicated multivariate distributions. The challenge consists of
finding a constrained multivariate distribution that would provide good fit to the data and
be relatively easy for prediction making. Recently,various factor models have been intro-
duced in the literature to capture systemic risks, such as the so-called stochastic migration
models [see, e.g., Feng et al. (2008); Gourieroux and Gagliardini (2002); Schonbucher
(2000)].

7. FUTURE DIRECTIONS FOR RESEARCH ANDDEVELOPMENT
In the previous sections, we described various methods that exist in the academic and
professional literatures for determining the VaR. They can be applied to portfolios of
liquid financial assets, portfolios of derivatives, and can take into account the risk of
default. However, the work in this field is far from completion. The aim of this chapter
is to provide some insights on various promising directions for future research.

7.1. Coherent Risk Measures

The VaR defined as a conditional quantile differs from risk measures used in the insurance
sector. The reason is that the VaR disregards the size of a loss. To improve the risk
measurement in this respect,Artzner et al. (1997) proposed a method of computing the
required capital in a two-period framework. They introduced four axioms given below.

Let Rt(W ) denote the required capital for the future portfolio of value W .The axioms
concern the properties of monotonicity, invariance with respect to drift, homogeneity,
and subadditivity.

(i) Monotonicity
If W ∗ is prefered to W ∗ in terms of stochastic dominance at order 1 (that is if

the c.d.f. of W ∗ is larger than the c.d.f. of W ), then

Rt(W ) ≥ Rt(W ∗).

(ii) Invariance with respect to drift

Rt(W + c) = Rt(W )− c,

for any W and any deterministic amount c.
(iii) Homogeneity

Rt(λW ) = λRt(W ), ∀λ ≥ 0, ∀W .
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(iv) Subadditivity

Rt(W +W ∗) ≤ Rt(W )+ Rt(W ∗), ∀W , W ∗.

The homogeneity and subadditivity properties imply the convexity of function Rt . It
is easy to check that the conditional quantile does not satisfy the convexity condition.
Artzner et al. (1997) described all functions Rt that satisy the four axioms and called them
coherent risk measures. They also provided their interpretations in terms of expected
utility. In particular, they showed that the expected shortfall or Tail VaR,

TVaR(a,α) = Et[Wt+1(a)|Wt+1(a)−Wt(a)+ VaRt(a,α) < 0], (7.1)

is a coherent risk measure.TVaR measures the expected value of a portfolio conditional
on loss probability α. It can be considered as the (historical) price of a reinsurance contract
and the required capital can be viewed as a self-reinsurance.

The axiomatic approach is useful for risk measurement as it emphasizes the importance
of the size of a loss, in addition to the occurrence. However, it can be criticized for the
following reasons.

(i) Even if the (conditional) quantile function does not satisfy the convexity property for
any portfolio value, in practice, the convexity holds for the conditional distribution
of returns and portfolio allocations [see, e.g., Gourieroux et al. (2000)].

(ii) The homogeneity and subadditivity axioms are clearly not satisfied in practice. The
price per share depends on the traded quantity of shares. For example, when the
shares are sold, their individual prices decrease with the quantity.This stylized fact is
not compatible with axioms (iii) and (iv), which assume that risk can be diminished
by increasing the size of a portfolio.

If the VaR was replaced by a coherent risk measure by the regulators, banks would be
motivated to merge to diminish the amount of required capital [axioms (iii) and (iv)].
Clearly, such an incentive to merge may create noncompetitive effects and increase the
risk.

Another axiomatic approach was introduced by Wang and Young (1998) for derivative assets.
Wang considered a distortion risk measure, which is a weighted average of the VaR,

DRM =
1∫

0

VaR(u)dH(u),

where the distortion probability measure is such that c.d.f.H is increasing and convex. It includes as
a special case theTail VaR, which corresponds to a distortion measure that is uniformly distributed
on [0,α].
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It is insightful to examine the conditions that a risk measure should satisfy. For example,
any risk measure should help reduce the risk. This condition is not satisfied by the VaR
defined as a conditional quantile. A portfolio manager has an incentive to change the
standard mean–variance strategy and select a portfolio allocation that minimizes the
VaR under the constraint on the expected value of the portfolio [see, e.g., Foellmer and
Leukert (1998); Gourieroux et al. (2000)]. If that portfolio contains derivatives, such a
strategy implies much riskier positions in derivatives than the standard mean–variance
strategy. This is because to diminish the loss probability, which is the only constraint,
the portfolio manager increases the size of a loss. Such a strategy is prevented under the
variance-based measures of risk. In general, such risky strategies can be eliminated by
imposing multiple constraints, such as joint constraints on the VaR and the Tail VaR.
However, the definition of the required capital as a function of the VaR and Tail VaR
does not exist in the literature.

7.2. Infrequent Extreme Risks and Utility Functions
To define coherent risk measures, it is necessary to specify the risks to be covered and
describe the aversions of investors to these risks. Intuitively,we wish to study extreme risks
that induce large losses, but are infrequent. Gourieroux and Monfort (1998) proposed
the following model of infrequent risks. A sample of excess returns Y features infrequent
extreme risks if the distribution of Y is a mixture of Gaussian distributions:

Y ∼ αN
[
m,

1
α
�1

]
+ (1− α)N

[
m,

1
1− α

�2

]
.

The mean and variance of Y are EY = m and V Y = �1 +�2, respectively. When α

tends to zero, the effect of the first distribution in the mixture diminishes while the
variance–covariance matrix 1

α
�1 tends to infinity, creating extreme risk.The commonly

used utility functions such as the exponential [ConstantAbsolute RiskAversion (CARA)]
utility function can not be used in the presence of infrequent extreme risks because
investors who maximize an expected CARA utility function, e.g., have zero demand for
risky assets. As a consequence, these assets are not traded at the equilibrium.

Gourieroux and Monfort (2000) characterized the class of utility functions for which
the demand for risky assets is different from zero. These utility functions may be
written as

U (w) = −
∫
(w − x)−dG(x)+ cw, (7.2)

where G is a c.d.f. and c a nonnegative scalar. They are called Left Integrable (absolute)
Risk Aversion (LIRA).
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The associated expected utility has a simple expression. Indeed, we get for c = 0,

EwU (w) = −EwEx(w − x)−,

where Ew and Ex denote the expectations with respect to the distribution of the portfolio
value and to distribution G, respectively. By commuting the expectations, we get

EwU (w) = −ExEw(w − x)− = −ExP[x], (7.3)

where P[x] is the price of a European put written on W with strike X (computed
under the historical probability). The expected utility is equal to the average price of
puts, (the strike average) with the minus sign. This is an interesting interpretation of
expected utility since it links the extreme risk to the price of puts with some specific
strikes.

7.3. The Dynamics of Infrequent Extreme Risks

Infrequent extreme risks can be analyzed in a dynamic framework. Loosely speaking,
extreme risks arise from infrequent jumps in the return trajectory of a single asset that
are caused by large negative returns (or large positive returns if the quantity of assets in
the portfolio is negative). The following questions concerning the dynamic models of
returns were addressed in the literature.

(i) How to construct a dynamic model of returns with infrequent extreme risks,which
is compatible with the stylized facts, such as extreme risks clustering and differences
between standard and extreme risks dynamics?

Gourieroux and Jasiak (2001a,c) assumed that the conditional distribution of
returns are in the family of Levy distributions that involve four parameters of loca-
tion, scale, skewness, and tail. These four parameters were modeled as dynamic
stochastic factors. Distinct dynamics of standard and extreme risks were generated by
specifying different serial dependence of the scale and tail parameters.The clustering
of extreme risks was observed when the stochastic tail parameter followed a unit root
process.

(ii) Another important question concerns the misspecification (also called model risk
in the VaR literature). What are the consequences of omitting infrequent extreme
risks in the model? It has been shown that such a misspecification induces spurious
long memory effects [see, e.g., Diebold and Inoue (2001); Gourieroux and Jasiak
(2001b); Gourieroux and Robert (2006); Lobato and Savin (1997)]. In some sense,
it is good news that the omission of extreme risks induces serial smoothing of the
VaR, which was proposed by the regulators and implemented in the definition of
the required capital.
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7.4. Large Portfolio

Risks on large portfolios of assets are difficult to examine.To see that,consider the standard
mean–variance approach and assume that the conditional distribution of returns is mul-
tivariate normal Y ∼ N [m,#]. The allocation of a mean–variance efficient portfolio
is proportional to a = #−1(m − rf e), where rf is the risk-free rate and e = (1, . . . , 1)′
[see, e.g., Gourieroux and Jasiak (2001a), Section 3.4]. The joint dependence between
the n assets is summarized by volatility matrix # and its spectral decomposition. Let
us consider the eigenvalues of # ranked in a descending order λ1 > . . . > λn and the
corresponding eigenvectors a1, . . . , an, say. a1 [resp. an] represents the portfolio alloca-
tion with the largest [resp. smallest] return volatility. Moreover, if m = 0 (the efficient
market hypothesis), we see from Eq. (2.7) that a1 [resp. an] maximizes [resp. minimizes]
the gaussian VaR; this result is valid for any risk level α.

When n is large, the smallest eigenvalue λn is close to zero. This gives a spurious
impression of perfect arbitrage opportunity. Moreover, the estimates of #−1 and of
the optimal allocation are not accurate. A number of methods in the mean–variance
framework were proposed to improve the robustness of these estimators.

Analogous methods for improving the robustness of estimators in the presence of fat
tails of conditional return distributions have not yet been developed. Below are some
questions that concern the modeling of fat-tailed distributions and need to be answered:

(i) How to model the tails that depend on portfolio allocations, that is, are Gaussian for
some allocations and Pareto for other?

(ii) Are the VaR minimizing (resp. maximizing) allocations independent of risk level α?
Otherwise, what is the α dependence?

(iii) In the mean–variance framework, can the structure of dependence be simplified by
imposing, for instance, an equicorrelation constraint? How to define the notion of
equidependence in a nongaussian framework?

This question has recently been addressed in a number of scientific articles that distinguish the
systemic risk, which creates joint dependence from the residual effects of the asset specific risks. It is
related to the theory of granularity introduced by Gordy (2004) [see also Gordy et al. (2007)].

7.5. Extreme Value Theory

The analysis of stochastic properties of extremes is an important field of the probabilistic
and statistical literatures [see, e.g., Embrecht et al. (1998) for a survey oriented toward
applications to insurance and finance]. The extreme value theory (EVT) was initially
concentrated on applications other than Finance. Recently, EVT has been used to study
extreme risks on large portfolios of individual contracts and to predict the occurrence
and size of extreme losses.

The results that exist in the EVT literature concern the following issues in the
univariate framework:
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(i) the definition end estimation of tail magnitude;
(ii) the asymptotic behavior of the sample mean 1

T

∑T
t=1 yt , with respect to the law of

large numbers and large deviations;
(iii) the asymptotic behavior of sample maximum: MT = maxt∈{1,...,T } yt ;
(iv) the distributional properties of the count process of dates when process (yt) exceeds

a given threshold γT , function of T .

The EVT concerns mainly i.i.d. observations or processes with simple forms of tempo-
ral dependence. Only a limited number of results are available for complicated nonlinear
dynamic processes encountered in Finance [see, e.g., Hsing (1991); Resnick and Starica
(1995) for estimation of a tail index, Robert (2000) for determination of the tail param-
eter in an α-ARCH model or Gourieroux and Robert (2006) for complete analysis of
stochastic unit root models].

Let us briefly comment on how the results from research on (i)–(iv) can be applied
to Finance and used for computing the VaR.

(i) Magnitude of tail
EVT provides a classification of tails, which was exploited in Section 2.2.2.

Moreover, the EVT literature offers various estimators of the tail index and their
asymptotic properties. A tail index estimator, called the Hill estimator, appeared in
the model building approach is discussed in Section 3.3.

The accuracy of the Hill estimator and its extensions is rather poor, as it is dif-
ficult to estimate the probability of infrequent events. Another problem is that the
Hill-type estimators depend on the number of observations in a very erratic way.
Their properties have been established in the i.i.d. framework (i.e., without serial
dependence that characterizes Financial data) and under the assumption that risk
level α tends to zero when the number of observations tends to infinity (while α is
small, but fixed, according to the regulators).

(ii) Asymptotic behavior of the sample mean
The results on sample mean 1

h (yt + yt+1 + · · · + yt+h) can be used to study the
dependence of the term structure of the VaR on serial dependence and the tails of
the conditional distribution. An illustration is given in Section 2.2.3 for a simple
case of i.i.d. α-stable distributed returns to show that the term structure depends on
h1/a, where a is the stability coefficient.

(iii) Asymptotic behavior of the maximum
These results seem not very useful for the determination of the VaR as the maxi-

mum operator is not involved in the computation of the portfolio value (except for
derivatives written on the maximum of returns over a contractual period). These
theoretical results are rather applicable to insurance against catastrophic events. As
such they can be interesting for defining the required capital for operational risk due
to events such as fire or earth quakes that could bring the trading markets to a halt.
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(iv) The count process of large events
This stream of research is applicable to Finance, as it can explain how the distribu-

tion of a count process of large events depends on the nonlinear serial dependence of
returns and the tail of their conditional distribution [see,e.g.,Gourieroux and Robert
(2001) for a detailed illustration of this relation]. The count process of exceedances
can be used for (a) predicting the date (and size) of future losses, and (b) the internal
VaR monitoring by the banks.

Recent literature points out that the count of exceedances may be misleading as an instrument of
VaR control.Alternative methods were proposed by Giacomini andWhite (2005) and Gourieroux
and Jasiak (2009).These authors explain how a coherent supervision criterion has to be used for
fixing the optimal level of capital reserve and controlling the quality of the method ex-post.

8. CONCLUDING REMARKS
The review of literature on the VaR given in this chapter emphasizes the variety of risks
on financial assets that need to be measured and controlled. Among risky assets are the
assets and derivatives traded on organized financial markets and OTC.There exist several
methods for computing the VaR for portfolios of those assets. Their common feature is
that they rely on some internal models of asset return dynamics, derivative pricing, and
default probabilities.

The Basle Committee has acknowledged that the internal models require strict moni-
toring. In this respect, it has explored two types of regulation, that are common standards
for the internal models used by banks and mandatory VaR sensitivity analysis with respect
to various departures from the assumptions of the internal models.
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Abstract

This chapter reviewswhat is known about the time-series evolution of the risk-return trade-off for stock

market investment and presents some new empirical evidence. We emphasize several aspects of U.S.

stock market data.

1. It is difficult to reconcile the historical behavior of the U.S. stock market without admitting some

degree of predictability in excess returns. We conclude that the conditional expected excess return

on the U.S. stock market is an important contributor to volatility in the Sharpe ratio.

2. The evidence for changing stock market risk is not confined to high-frequency data; stock market

volatility is forecastable over horizons ranging from one quarter to six years.

3. The empirical risk-return relation cannot be understood without distinguishing the conditional

from unconditional correlation between the expected excess stock return and its expected volatil-

ity. We find a positive conditional correlation that is strongly statistically significant, whereas the

unconditional correlation is weakly negative and statistically insignificant.
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4. The Sharpe ratio for the U.S. aggregate stock market is countercyclical and highly volatile, and its

dynamic behavior is not well captured by leading consumption-based asset pricing models that

can rationalize a time-varying price of risk. Thus, the data imply is a “Sharpe ratio variability puzzle”

that remains to be explained.

Keywords: Sharpe ratio; risk-return; predictability; stock market volatility; expected returns

1. INTRODUCTION
Financial markets are often hard to understand. Stock prices are highly volatile and
difficult to predict, requiring that market participants and researchers devote significant
resources to understanding the behavior of expected returns relative to the risk of stock
market investment. Does the expected return to stock market investment change over
time and, if so, at what horizons and with which economic indicators? Can predictable
movements in the excess return be explained by changes in stock market volatility?
How does the mean return per unit risk change over time? For academic researchers,
the progression of empirical evidence on these questions has presented a continuing
challenge to asset pricing theory and an important road map for future inquiry. For
investment professionals, finding practical answers to these questions is the fundamental
purpose of financial economics, as well as its principal reward.

Despite both the theoretical and practical importance of these questions, relatively
little is known about how the risk-return trade-off varies over the business cycle or
with key macroeconomic indicators. This chapter reviews the state of knowledge on
such variation for stock market investment and discusses some new empirical evidences
based on information contained in macroeconomic indicators.We define the risk-return
trade-off as the conditional expected excess return on a broad stock market index divided
by its conditional standard deviation, a quantity we refer to hereafter as the Sharpe ratio.
The focus of this chapter is not on the unconditional value of this ratio but rather on its
evolution through time.

Understanding the time-series properties of the Sharpe ratio is crucial to the devel-
opment of theoretical models capable of explaining observed patterns of stock market
predictability and volatility. For example, Hansen and Jagannathan (1991) showed that
the maximum value of the Sharpe ratio places restrictions on the volatility of the set of
discount factors that can be used to price returns. The same reasoning implies that the
pattern of time-series variation in the Sharpe ratio places restrictions on the dynamic
behavior of discount factors capable of pricing equity returns. In addition, the behavior
of the Sharpe ratio over time is fundamental for assessing whether stocks are safer in the
long run than they are in the short run, as increasingly advocated by popular guides to
investment strategy (e.g., Siegel, 1998). Only if the Sharpe ratio grows more quickly than
the square root of the horizon – so that the standard deviation of the return grows more
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slowly than its mean – stocks are safer investments in the long run than they are in the
short run. Such a dynamic pattern is not possible if stock returns are unpredictable, i.i.d.
random variables. Thus, understanding the time-series behavior of the Sharpe ratio not
only provides a benchmark for theoretical progress but also it has profound implications
for investment professionals concerned with strategic asset allocation.

In this chapter, we are concerned with the risk-return trade-off for a broad stock
market return, Rst , as measured by the asset’s conditional Sharpe ratio, denoted SRt and
defined

SRt ≡ Et(Rst+1)− Rft

EtVt+1
, (1.1)

where Et(Rst+1) is the mean net return from period t to period t + 1, conditional on
information available at time t; Rft is a short-term interest rate paying a return from t to
t + 1, known as of time t. EtVt+1 is a measure of the standard deviation of the excess
return, conditional on information available at time t. The Sharpe ratio is an intuitively
appealing characterization of the price of stock market risk: it measures how much return
an investor can get per unit of volatility in the asset.

The two components of the risk-return relation are the conditional mean excess stock
return, in the numerator of the Sharpe ratio, and the conditional standard deviation of
the excess return, in the denominator. We focus here on empirically measuring and
statistically modeling each of these components separately, a process that can be unified
to reveal an estimate of the conditional Sharpe ratio or price of stock market risk. We
argue below that the preponderance of evidence implies that excess returns on broad
stock market indexes are predictable over long horizons, implying that the reward for
bearing risk varies over time.

One possible explanation for time variation in the equity risk premium is time vari-
ation in stock market volatility. In classic asset pricing models such as the capital asset
pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the equity risk premium
varies proportionally with stock market volatility. These models require that periods of
high excess stock returns coincide with periods of high stock market volatility, implying
a constant price of risk. It follows that variation in the equity risk premium must be
perfectly positively correlated with variation in stock market volatility.

An important empirical question is whether a positive correlation between the mean
and volatility of returns exists, implying a Sharpe ratio that is less variable than the
mean or even constant. The body of empirical evidence on the risk-return relation is
mixed and inconclusive. Some evidence supports the theoretical prediction of a positive
risk-return trade-off, but other evidence suggests a strong negative relation. Yet a third
strand of the literature finds that the relation is unstable and varies substantially through
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time. Bollerslev et al. (1988), Harvey (1989), Harrison and Zhang (1999), Ghysels et al.
(2005), and Ludvigson and Ng (2007) find a positive relation, while Campbell (1987),
Breen et al. (1989), Pagan and Hong (1991), Glosten et al. (1993),Whitelaw (1994), and
Brandt and Kang (2004) find a negative relation. French et al. (1987) and Campbell and
Hentschel (1992) find a negative relation between ex-post returns and the unpredictable
component of volatility, a phenomenon often referred to as the “volatility feedback
effect.” This could be indirect evidence of a positive relation between volatility and
ex-ante (expected) returns if ex-post and ex-ante returns are negatively related, or it
could indicate a negative correlation between shocks to stock prices and shocks to
volatility because negative shocks to stock prices raise financial or operating leverage
(e.g., Black, 1976).

We argue that the disagreement in the empirical literature on the risk-return relation
is likely to be attributable, in large part, to the relatively small amount of conditioning
information that is typically used to model the conditional mean and conditional volatility
of excess stock market returns. To the extent that financial market participants have
information not reflected in the chosen conditioning variables, measures of conditional
mean and conditional volatility – and ultimately the risk-return relation itself – will
be misspecified and possibly misleading. Moreover, the estimated risk-return relation is
likely to be highly dependent on the particular conditioning variables analyzed in any
given empirical study.

Following the application in Ludvigson and Ng (2007), we discuss one potential
remedy to this problem based on the methodology of dynamic factor analysis for large
data sets, whereby a large amount of economic information can be summarized by a
few estimated factors. The estimated factors can be used to augment empirical spec-
ifications for estimating conditional mean and conditional volatility. This procedure
eliminates the arbitrary reliance on a small number of exogenous predictors to model
conditional moments and allows the researcher to condition on far richer information
sets than what is possible using conventional econometric procedures. In practice, esti-
mated common factors appear to contain important information about the conditional
moments of stock market returns that is not already contained in commonly used pre-
dictor variables. For example, factor-augmented specifications for the conditional mean
return are found to predict an unusual 16–20% of the one-quarter ahead variation in
excess stock market returns,with much of this predictability attributable to the estimated
factors.

In addition to reviewing existing evidence, this chapter presents some updated evi-
dence on the risk-return relationship, building off insights from earlier studies. As a
summary assessment of this evidence, we emphasize four aspects of U.S. stock market
behavior.

First, despite complexities with statistical inference in return predictability regres-
sions, it is difficult to reconcile the historical behavior of the U.S. stock market without
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admitting some degree of predictability in excess returns. Even after accounting for
various potential statistical biases, there is evidence of stock return predictability both
in-sample and out-of-sample, albeit accompanied by some evidence of instability in the
predictive relations.We conclude that the conditional expected excess return on the U.S.
stock market varies over long horizons and is an important contributor to volatility in
the Sharpe ratio.

Second, the evidence for changing stock market risk is not confined to high fre-
quency data; instead, stock market volatility is forecastable over horizons ranging from
one quarter to six years. In addition, we find that a proxy for the log consumption-
aggregate wealth ratio, cayt , a variable shown elsewhere to predict excess returns and
constructed using information on aggregate consumption and aggregate labor income
(Lettau and Ludvigson, 2001a), is also a strong predictor of stock market volatility.These
findings differ from some existing evidence because they reveal the presence of at least
one observable conditioning variable that strongly forecasts both the mean and volatility
of returns.

Third, the empirical risk-return relation is characterized by important lead-lag inter-
actions. In particular, evidence suggests that distinguishing between the conditional
correlation (conditional on lagged mean and lagged volatility) and unconditional cor-
relation between the expected excess stock return and its expected volatility is crucial
for understanding the empirical risk-return relation.We find a positive conditional cor-
relation that is strongly statistically significant, whereas the unconditional correlation is
weakly negative and statistically insignificant.

Fourth, the Sharpe ratio for the U.S. aggregate stock market is countercyclical and
highly volatile. Thus, predictability of excess stock returns cannot be fully explained by
changes in stock market volatility.This evidence weighs against many time-honored asset
pricing models that specify a constant price of risk (e.g., the static CAPM of Sharpe,1964
and Lintner, 1965) and toward more recent paradigms capable of rationalizing a time-
varying price of risk.Yet despite evidence that the Sharpe ratio varies countercyclically,
we find that its dynamic behavior for the U.S. stock market is not well captured by leading
consumption-based asset pricing models capable of rationalizing a countercyclical price
of risk. As an illustration, we compare our empirically estimated Sharpe ratio over time
with that implied by the habit-based asset pricing model of Campbell and Cochrane
(1999), in which the price of risk varies with time-varying risk aversion. Under the
benchmark calibration of this model, the magnitude of volatility in the Sharpe ratio is
almost one-fifth the size of that for the U.S. stock market.

Even if stock market volatility were constant, predictable variation in excess stock
returns might be explained by time variation in consumption volatility. In a wide range of
equilibrium asset pricing models, more risky consumption streams require asset markets
that, in equilibrium, deliver a higher mean return per unit risk. Thus, we consider two
models with time-varying consumption risk: a standard power utility model, as well as
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the the generalization of this model based on recursive utility and stochastic consumption
volatility considered in Bansal andYaron (2004). Some variation in aggregate consump-
tion volatility is evident in the data, as we document here. However, this variation is
small and its dynamic behavior is such that models with time-varying consumption risk
have Sharpe ratios that are negatively correlated with the Sharpe ratio for the U.S. stock
market.This evidence suggests that changes in consumption risk are insufficiently impor-
tant empirically to explain the dynamic behavior of the Sharpe ratio observed in U.S.
aggregate stock market data. Thus, the data imply is a “Sharpe ratio variability puzzle”
that remains to be explained.

The rest of this chapter is organized as follows. Section 2 discusses empirical evidence
on time variation in the conditional mean excess return for the U.S. stock market. In this
section, we evaluate the statistical evidence for stock return predictability and review the
range of indicators with which such predictability has been associated. Section 3 discusses
empirical evidence on time variation in conditional volatility of the U.S. stock market
and its dynamic relation with estimates of the conditional mean. Section 4 ties together
the evidence on the conditional mean of excess returns with that on the conditional
variance to derive implications for the time-series behavior of the conditional Sharpe
ratio. Section 5 provides a summary and concluding remarks.

2. THE CONDITIONALMEANOF STOCK RETURNS
If excess stock market returns are predictable, the conditional mean of excess returns
moves over time. The early empirical literature on predictability generally concluded
that stock returns were unforecastable, but research in the last 20 years has found evi-
dence of predictability in stock returns. In addition, an active area of recent theoretical
research has shown that such predictability is not necessarily inconsistent with market
efficiency: forecastability of equity returns can be generated by time variation in the rate
at which rational, utility maximizing investors discount expected future income from
risky assets. Prominent theoretical examples in this tradition include models with time-
varying risk aversion (e.g.,Campbell and Cochrane,1999) and models with idiosyncratic
labor income risk (e.g., Constantinides and Duffie, 1996).

2.1. Origins of Predictability Evidence

The evidence for predictability of stock returns and time-varying risk premia has its ori-
gins in two empirical literatures: the literature on permanent and transitory components
of stock prices, and the literature on stock market volatility.

In the literature on permanent and transitory components of stock prices, Fama and
French (1988b) examined autocorrelations of stock returns for several holding periods.
In a univariate setting,negative autocorrelations in stock prices signify mean reversion in
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stock returns,implying that stock returns have a transitory component and are predictable.
Fama and French (1988b) found large negative autocorrelations in stock market prices for
return horizons beyond a year, consistent with the hypothesis that mean-reverting price
components are important in the variation of returns. They report that such predictable
variation accounts for about 40% of three- to five-year return variance for small-firm
portfolios, and about 25% for portfolios of large firms.

In the literature on stock market volatility,LeRoy and Porter (1981) and Shiller (1981)
argued that stock returns were too volatile to be accounted for by variation in expected
future dividend growth, discounted at a constant rate. Such an empirical finding, often
referred to as “excess volatility,” is indirect evidence of stock return forecastability. This
point may be understood by examining an approximate present-value relation for stock
market returns.

Let dt and pt be the log dividend and log price, respectively, of the stock market
portfolio, and let the log return be denoted rs,t ≡ log(1+ Rs,t), where Rs,t is the simple
net return on stock market investment. Similarly, denote the log return on a one-period
riskless bond rt,t ≡ log(1+ Rf ,t), where Rf ,t is the simple net return on a risk-free
investment whose return is know with certainty at time t − 1. Let the sample size be
denoted T and let variables xt with “bars” over them denote sample means.Throughout
this chapter we use lowercase letters to denote log variables, e.g., log Dt ≡ dt .

Campbell and Shiller (1989) show that an approximate expression for the log dividend-
price ratio may be written as

pt − dt ≈ κ + Et

∞∑
j=1

ρ j
s�dt+j − Et

∞∑
j=1

ρ j
s rs,t+j , (2.1)

where Et is the expectation operator conditional on information at time t, ρs ≡
1/(1+ exp(dt − pt)), and κ is a constant that plays no role in our analysis. This equa-
tion is often referred to as the “dynamic dividend growth model” and is derived by
taking a first-order Taylor approximation of the equation defining the log stock return,
rst = log(Pt +Dt)− log(Pt), applying a transversality condition (that rules out rational
bubbles), and taking expectations.

Equation (2.1) states that,when the price-dividend ratio is high,agents must be expect-
ing either low returns on assets in the future or high-dividend growth rates. Thus, stock
prices are high relative to dividends when dividends are expected to grow rapidly or
when they are discounted at a lower rate. If discount rates are constant, the last term on
the right-hand side of (2.1) is absorbed in κ, and variation in the price-dividend ratio can
only be generated by variation in expected future dividend growth. Note that this result
does not require one to accurately measure expectations since (2.1) is derived from an
identity and therefore holds ex-post as well as ex-ante. Multiplying both sides of (2.1) by
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(pt − dt)− E(pt − dt) and taking unconditional expectations, a formula for the variance
of the log price-dividend ratio is obtained:

Var
(
pt − dt

) = Cov

⎛⎝(pt − dt),
∞∑
j=0

ρ j�dt+1+j

⎞⎠
− Cov

⎛⎝(pt − dt),
∞∑
j=0

ρ j rs,t+1+j

⎞⎠.

(2.2)

The variance of the price-dividend ratio can be decomposed into two covariance terms:
one for the covariance of pt − dt with future dividend growth and one for the covariance
of pt − dt with future returns. An implicit assumption in (2.2) is that expectations are
rational.

Campbell (1991) and Cochrane (1991a) use (2.2) to quantify the relative importance
of dividend and return predictability in the variability of the price-dividend ratio. For
example, Cochrane (1991a) truncates the infinite sums above at 15 years to compute the
covariances on the right-hand side. Cochrane (2005) updates these computations using
annual data for the value-weighted NYSE stocks and finds

100× Cov
(
pt − dt ,

∑15
j=0 ρ

j�dt+1+j

)
Var

(
pt − dt

) = −34

−100× Cov
(
pt − dt ,

∑15
j=0 ρ

j rs,t+1+j

)
Var

(
pt − dt

) = 138

Notice that nothing in the computation of these numbers constrains them to sum to
unity, to be less than 100, or to be positive. As it turns out, the data imply that numbers
above approximately sum to 100 and that a high price-dividend ratio forecasts lower
dividend growth. Thus, the first term is negative and return forecastability, therefore,
accounts for more than 100% of the variability in the price-dividend ratio. Results of
this form lead Campbell (1991) and Cochrane (1991a) to conclude that nearly all the
variation in pt − dt is attributable to changing forecasts of excess returns rather than to
variation in expected future dividend growth.

Equation (2.1) also demonstrates an important statistical property that is useful for
understanding the possibility of predictability in asset returns. Under the maintained
hypothesis that dividend growth and returns follow covariance stationary processes,
Eq. (2.1) says that the price-dividend ratio on the left-hand side must also be covari-
ance stationary, implying that dividends and prices are cointegrated. Thus, prices and
dividends cannot wonder arbitrarily far from one another so that deviations of pt − dt
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from its unconditional mean must eventually be eliminated by a subsequent movement
in dividend growth, a subsequent movement in returns, or some combination of the
two.The hypothesis of cointegration implies that, if the price-dividend ratio varies at all,
it must forecast either future returns to equity or future dividend growth, or both. We
discuss this property of cointegrated variables further below.

Note that the equity return rs,t+1 in (2.2) can trivially be expressed as the sum of
the excess return over a risk-free rate plus the risk-free rate rs,t+1 =

(
rs,t+1 − rf ,t+1

)+
rf ,t+1. In principle, variation in the price-dividend ratio could be entirely attributable to
variability in the expected risk-free rate, even if expected dividend growth rates and risk
premia are constant. Such a scenario does not appear to be consistent with empirical
evidence. Campbell et al. (1997),Chapter 8, show that variation in expected real interest
rates is too small to account for the volatility of price-dividend ratios on aggregate stock
market indexes. Instead, variation in price-dividend ratios is dominated by forecastable
movements in the excess stock market return,

(
rs,t+1 − rf ,t+1

)
, that is by variation in the

reward for bearing risk.

2.2. Linking the Macroeconomy to Conditional Mean Excess Returns

There is evidence that expected excess returns on common stocks vary countercyclically,
implying that risk premia are higher in recessions than they are in expansions. Fama
and French (1989) and Ferson and Harvey (1991) plot fitted values of the expected
risk premium on the aggregate stock market and find that it increases during economic
contractions and peaks near business cycle troughs. Harrison and Zhang (1999) form
nonparametric estimates of the conditional mean excess return and correlate these esti-
mates with proxies for the business cycle, in each case finding that the expected return is
countercyclical. More recently,Campbell and Diebold (2009) use the Livingston business
conditions survey data to directly explore the linkages between expected business condi-
tions and expected excess stock returns. They find that expected business conditions, as
measured by this survey, are predictors of excess stock market returns. In addition, their
findings reinforce the conclusion that risk premia are countercyclical:depressed expected
business conditions are associated with high-expected excess returns.

If such cyclical variation in the market risk premium is present,we would expect to find
evidence of it from forecasting regressions of excess returns on macroeconomic variables
over business cycle horizons.Yet the most widely investigated predictive variables have not
been macroeconomic variables but instead financial indicators such as equity-valuation
ratios that have forecasting power concentrated over horizons longer than the typical
business cycle. Over horizons spanning the length of a typical business cycle,stock returns
are commonly found to be only weakly forecastable by these variables. Exceptions are
the term spread and short-term interest rates, both of which have been found to have
predictive power for stock returns at business cycle frequencies. But even this evidence
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is based on purely financial indicators and begs the question of why predictable variation
in excess returns cannot be linked to macroeconomic fundamentals.

One approach to investigating the linkages between the macroeconomy and financial
markets is considered in Lettau and Ludvigson (2001a),who study the forecasting power
for stock returns not of financial valuation ratios such as the dividend-price ratio, but of
a proxy for the log consumption-aggregate wealth ratio, denoted cayt . This variable is
an estimated cointegrating residual for log consumption, ct , log asset wealth, at , and log
labor income, yt , and has been found to have strong forecasting power for excess stock
market returns. We describe the motivation behind this variable next.

2.2.1. Consumption, Aggregate Wealth, and Expected Stock Market Returns

Consider a representative agent economy in which all wealth, including human capital,
is tradable. Let Wt be beginning of period t aggregate wealth (defined as the sum of
human capital, Ht , and nonhuman, or asset wealth, At) and let Rw,t+1 be the net return
on aggregate wealth. For expositional convenience, we consider a simple accumulation
equation for aggregate wealth, written

Wt+1 = (1+ Rw,t+1)(Wt − Ct), (2.3)

where Ct is per capita aggregate consumption. Labor income Yt does not appear explicitly
in this equation because of the assumption that the market value of tradable human capital
is included in aggregate wealth.1

Defining r ≡ log(1+ R), Campbell and Mankiw (1989) derive an expression for the
log consumption-aggregate wealth ratio by taking a first-orderTaylor expansion of (2.3),
solving the resulting difference equation for log wealth forward, imposing a transversality
condition, and taking expectations. The resulting expression is

ct − wt = Et

∞∑
i=1

ρi
w(rw,t+i −�ct+i), (2.4)

where ρw ≡ 1− exp(ct − wt).The consumption-wealth ratio embodies rational forecasts
of returns and consumption growth. The Eq. (2.4) generally contains a constant, which
has been suppressed since it plays no role in the analysis below. We omit unimportant
linearization constants in the equations throughout the chapter. Under the maintained
assumption that returns to aggregate wealth and consumption growth are covariance
stationary random variables, (2.4) implies that log consumption and log aggregate wealth
are cointegrated.

1None of the derivations below are dependent on this assumption. In particular, Eq. (2.12), below, can be derived from the analogous

budget constraint in which human capital is nontradable: At+1 = (1+ Ra,t+1)(At + Yt − Ct ), where Ht = Et
∑∞

j=0
∏ j

i=0(1+
Ra,t+i)

−iYt+j .
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Equation (2.4) states that the log consumption-wealth ratio will be high when returns
are expected to be higher in the future or when consumption is expected to grow less
quickly. Although this expression is intuitively appealing, it is of little use in empirical
work because aggregate wealth wt includes human capital,which is not observable. Lettau
and Ludvigson (2001a) address this problem by reformulating the bivariate cointegrating
relation between ct and wt as a trivariate cointegrating relation involving three observable
variables, namely ct , at , and labor income yt .

To understand this reformulation, denote the net return to nonhuman capital Ra,t
and the net return to human capital Rh,t , and assume that human capital takes the
form,Ht = Et

∑∞
j=0

∏ j
i=0(1+ Rh,t+i)

−iYt+j . Following Campbell and Shiller (1989), a
log-linear approximation of Ht yields

ht ≈ κ + yt + vt , (2.5)

where κ is a constant, vt is a mean zero, stationary random variable given by

vt = Et

∞∑
j=1

ρ
j
h(�yt+j − rh,t+j)

and ρh ≡ 1/(1+ exp(y− h). Under these assumptions, labor income yt defines the trend
in human wealth, ht .

Assume that ρh = ρw (the equations below can easily be extended to relax this assump-
tion with the cost of considerably more cumbersome notation). Following Campbell
(1996), we assume that the return on aggregate wealth is a portfolio weighted average of
the return on asset wealth and the return on human capital, and has log approximation
given by

rw,t ≈ (1− ν)ra,t + νry,t , (2.6)

where (1− ν) is the mean asset wealth share A/W . Similarly, the log of aggregate wealth
is approximated as a function of its component elements,

wt ≈ (1− ν)at + νht . (2.7)

This requires an assumption that the wealth shares are stationary and have well-defined
means given by (1− ν) and ν. Lettau and Ludvigson (2001a) plug (2.5)–(2.7) into (2.4)
to obtain an approximate expression linking log consumption, log asset wealth, and log
labor income to expected future returns to asset wealth, consumption growth, and labor
income:

ct − (1− ν) at − νyt ≈ Et

∞∑
i=1

ρi
w
(
(1− ν)ra,t+i −�ct+i + ν�yt+1+i

)
. (2.8)
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Several points about Eq. (2.8) deserve emphasis. First, if log labor income follows a
random walk and the expected return to human capital is constant, ct − (1− ν) at − νyt
is proportional to the log consumption-wealth ratio, ct − wt . To see this, note that, in
this case, terms in (2.8) involving expected future income growth drop out and (2.8)
becomes

ct − (1− ν) at − νyt ≈ Et

∞∑
i=1

ρi
w
(
(1− ν)ra,t+i −�ct+i

)
. (2.9)

A constant expected return for human capital implies Etrw,t+1 ≈ (1− ν)Etra,t+1 so that
the log consumption-wealth ratio (2.4) becomes

ct − wt = Et

∞∑
i=1

ρi
w((1− ν) ra,t+i −�ct+i). (2.10)

Thus, under these assumptions, (2.9) and the log consumption-wealth ratio are propor-
tional to one another. We therefore refer loosely to ct − (1− ν) at − νyt as a proxy for
the log consumption-wealth ratio.

Second, under the maintained hypothesis that rw,t , �ct , and �yt are stationary, the
budget constraint identity implies that log consumption, ct , log labor income, yt , and log
nonhuman (asset) wealth, at , share a common long-run trend (they are cointegrated) and
ct − (1− ν) at − νyt is a cointegrating residual.

Third, the expression (2.8) implies that the cointegrating coefficients (1− ν) and ν

should sum to unity. In practice, we find that estimates of these coefficients sum to
a number around 0.9. To understand why the estimated coefficients could sum to a
number less than one, observe that the theoretical consumption measure, ct , in (2.8)
refers to total consumption. In empirical practice, nondurables and services expenditures
are used to proxy for ct (Blinder and Deaton, 1985). Total consumption is unobservable
since it includes the service flow from the stock of all consumer durables, a quantity that is
not measured even though durables expenditures are measured. Denote nondurables and
services expenditures as cNDS

t . Measured nondurables and services expenditures are one
piece of unobservable total consumption, ct .

Now suppose that the ratio of total consumption to nondurables and services expen-
ditures has a very pronounced low-frequency component that – over our sample –
appears as a secular decline in the share of nondurables and services consumption in
total consumption (or a secular increase in the ratio of total consumption to non-
durable and services consumption). Such a secular change can be captured empirically
by assuming that the log of unobservable real total consumption is a multiple, λ > 1,
of the log nondurables and services expenditures, cNDS

t , possibly plus a stationary, mean
zero-independent component, ut :

ct = λcNDS
t + ut . (2.11)



Measuring and Modeling Variation in the Risk-Return Trade-off 629

In this case, the average growth in the ratio of total consumption Ct to nondurables and
services consumption CNDS

t is given by

ET

[
� log

(
Ct

CNDS
t

)]
= (λ− 1)ET

[
� log

(
CNDS

t
)]

,

where ET denotes the sample mean. A secular increase in the ratio of total consump-
tion to nondurable and services consumption over the sample means that the average
growth rate on the left-hand side is positive, which will be true as long as λ > 1
and E

[
� log

(
CNDS

t
)]
> 0. Plugging (2.11) into (2.8), we now obtain an approximate

expression linking the log of nondurables and services expenditures, log asset wealth, and
log labor income to expected future returns to asset wealth, consumption growth, and
labor income:

cayt ≡ cNDS
t − αaat − αyyt ≈ Et

∞∑
i=1

ρi
w
(
(1− ν)ra,t+i −�ct+i + ν�yt+1+i

)− ut , (2.12)

where αa = −(1/λ)(1− ν) and αy = −(1/λ)ν.Again,under the maintained hypothesis
that rwt ,�ct , and �yt are stationary, (2.12) implies that the log of nondurables and services
consumption, cNDS

t , the log labor income, yt , and the log nonhuman (asset) wealth, at ,
are cointegrated) and cNDS

t − αaat − αyyt is a cointegrating residual, denoted cayt for
short. Notice that the estimated cointegrating vector for cNDS

t , at , and yt is given by
[1,−(1/λ)(1− ν),−(1/λ)ν], with

(1/λ)(1− ν)+ (1/λ)ν = 1/λ < 1,

as long as λ > 1.Thus, the cointegrating parameters in (2.12) sum to a number less than
one, and αa + αy identifies 1/λ.

Given the unobservability of total consumption, ct , it is impossible to know whether
the ratio nondurables and services consumption to total consumption has declined over
our sample. There is, however, a pronounced secular decline in the share of expenditures
on nondurables and services over the postwar period, which is suggestive (see Yogo,
2006). Many models assume that expenditures on durable goods are proportional to
the service flow from those goods, in which case we would expect a secular decline in
the ratio of nondurables and services consumption to total consumption based on the
observed behavior of the expenditure shares. Whether these ratios are actually nonsta-
tionary is another matter. Many bivariate ratios of macroeconomic time series, including
the“great ratios”presumed to be stationary in virtually all general equilibrium macroeco-
nomic models, display a pronounced low-frequency component in the samples currently
available so that a unit root cannot be rejected in formal tests of stationarity. This could
mean that these ratios are in fact nonstationary, at odds with balanced growth, or more



630 Martin Lettau and Sydney C. Ludvigson

likely that the ratios are stationary and we need many more decades of data to statistically
reject the hypothesis that they contain a stochastic trend.

Note that stock returns, rs,t , are but one component of the return to asset wealth,
ra,t . Stock returns, in turn, are the sum of excess stock returns and the real interest rate.
Therefore, Eq. (2.12) says that cayt embodies rational forecasts of either excess stock
returns, interest rates, consumption growth, labor income growth, or some combination
of all four. Below we discuss evidence on the forecastability of excess stock market returns
using cayt as a predictor variable.

The cointegrating residual cayt contains cointegrating parameters αa and αy that must
be estimated,a task that is straightforward using procedures developed by Johansen (1988)
or Stock and Watson (1993).2 Lettau and Ludvigson (2001a) describe these procedures
in more detail and apply them to data on aggregate consumption, labor income, and asset
wealth to obtain an estimate of cayt . We denote the estimate of cayt as ĉayt .

Lettau and Ludvigson (2001a) find evidence of a single cointegrating vector among ct ,
at and yt . Note,however,that the budget-constraint model discussed above has two wealth
components, at and ht . If these wealth components were themselves cointegrated, and if
labor income yt defines the trend in human wealth, as argued above, we would expect
to find evidence of a second linearly independent cointegrating relationship between at

and yt . It is difficult to find evidence of a second cointegrating relation,however,because
there is a pronounced low-frequency component in the log ratio of asset wealth to labor
income.This should not be interpreted as evidence that at and yt are not cointegrated –
finding no evidence in favor of cointegration is not the same as finding evidence against
cointegration. An equally valid interpretation of the data is that the log ratio of asset
wealth to labor income, while stationary, is sufficiently persistent that it is not possible to
reject a unit root null in our sample.

Regardless of whether there are one or two linearly independent cointegrating rela-
tions among the variables ct , at , and yt , Eq. (2.12) is a valid description of a trivariate
cointegrating relation among ct , at , and yt .The number of cointegrating relations matters
only for how the cointegrating vector(s) is (are) estimated and only for the interpretation
of the cointegrating coefficients. If there is a single cointegrating relation, the cointe-
grating coefficients can be consistently estimated from a single-equation dynamic least
squares regression. If there are two cointegrating relations, they must be estimated jointly

2Notice that theory implies an additional restriction, namely that the consumption-wealth ratio should be covariance stationary (not
merely trend stationary) so that it contains no deterministic trends in a long-run equilibrium or steady state. If this restriction was not
satisfied, the theory would imply that either per capita consumption or per capita wealth must eventually become a negligible fraction
of the other. The requirement that the consumption-wealth ratio be covariance stationary corresponds to the concept of deterministic
cointegration emphasized by Ogaki and Park (1997). When theory suggests the presence of deterministic cointegration, it is important
to impose the restrictions implied by deterministic cointegration and exclude a time trend in the static or dynamic ordinary least squares
(OLS) regression used to estimate the cointegrating vector. Simulation evidence (available from the authors upon request) shows that, in
finite samples, the distribution of the coefficient on the time trend in such a regression is highly nonstandard and its inclusion in the static
or dynamic regression is likely to bias estimates of the cointegrating coefficient away from their true values under the null of deterministic
cointegration.
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from a system of equations. If there are two cointegrating relations and the researcher
erroneously uses a single equation to estimate the cointegrating parameters, the resulting
parameter estimates will typically be a linear combination of the cointegrating coeffi-
cients in the two relations, but the budget constraint analysis above still implies that the
trivariate relation so estimated should be related to expectations of future asset returns,
consumption growth, or labor income growth, or to some combination of all three.

Since the data provide no evidence of a second bivariate cointegrating relation among
ct , at , and yt ,we follow the advice of Campbell and Perron (1991) and empirically model
only the single, trivariate cointegrating relation for which we find direct statistical evi-
dence in our sample.This means that we use a single-equation methodology to estimate
the cointegrating coefficients in cayt . Suppose that a series is stationary, but is sufficiently
persistent that one cannot reject the hypothesis of nonstationarity in a finite sample. Sim-
ulation evidence in Campbell and Perron suggests that treating the data in accordance
with the stationarity properties inferred from unit root/cointegration tests can result in
better finite-sample approximations of test statistics than treating the data according to
its stationary asymptotic distribution that is true in population. Thus, a near-integrated
stationary data-generating process may be better modeled in a finite sample as a unit
root variable, even though the asymptotically correct distribution is the standard one
appropriate for stationary variables. Accordingly, we treat the bivariate relation between
at and yt as a unit root variable, even though it could be stationary in population.

In the more recent data available at the time of this writing, we find evidence of a
single cointegrating relation between ct , at , and yt . Here, we update our estimate of cayt .
The log of asset wealth, at , is a measure of real, per capita household net worth, which
includes all financial wealth, housing wealth, and consumer durables.The variable yt is a
measure of the log of after-tax labor income. Observe that durable goods expenditures
are included in nonhuman wealth, At , a component of aggregate wealth, Wt , and so
should not be included in consumption or treated purely as an expenditure.3 The budget
constraint applies to the flow of consumption, Ct ; durables expenditures are excluded
in this definition because they represent replacements and additions to a capital stock
(investment) rather than a service flow from the existing stock. All variables are measured
in real, per capita terms. Appendix contains a detailed description of the data used in
to obtain these values. Using a sample spanning the fourth quarter of 1952 to the first
quarter of 2001, we estimate ĉayt = cNDS

t − 0.61− 0.30at − 0.60yt using dynamic least
squares, as described in Lettau and Ludvigson (2001a).

The principal of cointegration is as important for understanding (2.12) as it is for
understanding (2.1). In direct analogy to (2.1), (2.12) implies that if cayt varies at all, it

3Treating durables purchases purely as an expenditure (by, e.g., removing them from At and including them in Ct ) is also improper because
it ignores the evolution of the asset over time, which must be accounted for by multiplying the stock by a gross return. In the case of
many durable goods, this gross return would be less than one and consist primarily of depreciation.
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must forecast future returns, future consumption growth, future labor income growth,or
some combination of these.Thus, cayt is a possible forecasting variable for stock returns,
consumption growth, and labor income growth for the same reasons the price-dividend
ratio is a possible forecasting variable for stock returns and dividend growth. In the next
section, we review empirical evidence on how well these variables and other popular
predictors actually forecast U.S. stock returns.

2.3. Popular Predictor Variables for Excess Stock Returns

The early literature on stock market volatility concluded that price-dividend ratios were
too volatile to be accounted for by variation in future dividend growth or interest rates
alone. Such a finding provides indirect evidence that expected excess stock returns must
vary. A more direct way of testing whether expected returns are time-varying is to
explicitly forecast excess returns with predetermined conditioning variables.The empir-
ical asset pricing literature has produced many such variables that have been shown, in
one subsample of the data or another, to contain statistically significant predictive power
for excess stock returns. A summary of the most commonly used of these predictor
variables is as follows.

• Price-dividend and price-earnings ratios. Fama and French (1988a), Campbell and Shiller
(1989), Campbell (1991), and Hodrick (1992) find that the ratios of price to dividends
or earnings have predictive power for excess returns. In more recent data, Ang and
Bekaert (2007) find that the dividend-price ratio for the aggregate stock market predicts
returns over short horizons when a short-term interest rate is included in the predictive
regression. Harvey (1991) finds that similar financial ratios predict stock returns in many
different countries.4

• The dividend-payout ratio. Lamont (1998) argues that the ratio of dividends to earnings
should be a predictor of excess returns because high dividends typically forecast high
returns, whereas high earnings typically forecast low returns.

• Short-term interest rates. Fama and Schwert (1977), Campbell (1991), Hodrick (1992),
and Ang and Bekaert (2007) find that short-term interest rates, often measured as a
“relative T-bill rate” (e.g., the 30-day Treasury-bill rate minus its 12-month moving
average) predicts returns. In what follows, we denote the relative T-bill rate RRELt .

• Term spreads and default spreads. Fama and French (1988a) study the forecasting power of
the 10-yearTreasury bond yield minus the one-yearTreasury bond yield (a measure of
the term spread) and the BAA corporate bond yield minus the AAA corporate bond
yield (a measure of the default spread). We denote the term spread, TRMt , and the
default spread DEFt .

4Boudoukh et al. (2004) construct an adjustment to the dividend-price ratio where the numerator includes repurchases, as well as cash
dividends. They refer to this variable as the payout yield. Below, we find that this variable has little forecasting power for future returns
in our sample.
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• Book-market ratios. Lewellen (1999) and Vuolteenaho (2000) forecast returns with an
aggregate book-market ratio.

• Proxies for the consumption-wealth ratio, cayt . As discussed above, Lettau and Ludvigson
(2001a,b) use a log-linear approximation of a representative investor’s consumption-
wealth ratio to show that deviations from a cointegrating relation for log consumption,
ct , log asset wealth, at , and log labor income, yt (abbreviated as cayt), is a potential
predictor of excess stock market returns. Lettau and Ludvigson (2001a,b) find evidence
that this variable predicts quarterly stock returns both at the stock market level and at
the portfolio level.

• Latent common factors from large data sets of financial indicators.As additional predictors, we
include the “volatility” and “risk-premium” common factors estimated by Ludvigson
and Ng (2007) from a quarterly data set of 172 financial indictors, denoted F̂1t and
F̂2t , respectively. We discuss the economic interpretation of these factors in Section 3.

2.4. The Forecastability of Stock Market Returns: Empirical Evidence
We now have a number of variables, based on both financial and macroeconomic indi-
cators, that have been documented, in one study or another, to predict excess stock
market returns.To summarize the empirical findings of this literature, Table 11.1 presents
the results of in-sample predictive regressions of quarterly excess returns on the value-
weighted stock market index from the Center for Research in Securities Prices (CRSP),
in excess of the return on a three-month Treasury bill rate. Let rs,t denote the log real
return of the CRSP value-weighted index and rf ,t the log real return on the three-month
Treasury bill (the risk-free rate). Log price, pt , is the natural logarithm of the CRSP-VW
index. Log dividends, d, are the natural logarithm of the sum of the past four quarters
of dividends per share. We call dt − pt the dividend yield. Denote the log excess return
and level excess return as

r e
t+1 ≡ rs,t+1 − rf ,t+1 and Re

s,t+1 ≡ Rs,t+1 − Rf ,t+1,

respectively.Table 11.1 reports the results of forecasting regressions of the level of excess
returns

Re
s,t+1 = γ ′Zt + εt+1,

and of the log of excess returns

r e
s,t+1 = β′Zt + εt+1,

where Zt is a vector of predictor variables.
Here, we compare the forecasting power of ĉayt , dt − pt , RRELt , TRMt , and DEFt .

As additional predictors, we include the “volatility” and “risk-premium” common fac-
tors estimated by Ludvigson and Ng (2007) from a quarterly data set of 172 financial
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Table 11.1 Forecasting quarterly stock returns, 1952:4–2000:4

Constant lag ĉayt dt − pt RRELt TRMt DEFt F̂1t F̂2t R
2

No (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

Panel A: excess returns; 1952:4–2000:4

1 0.02 0.07 0.00
(3.66) (1.07)

2 −1.18 2.00 0.10
(−3.66) (4.37)

3 −1.18 0.09 2.05 0.10
(−4.28) (1.45) (4.47)

4 0.12 0.03 0.01
(1.89) (1.60)

5 −1.23 2.06 −0.00 0.09
(−4.20) (4.69) (−0.24)

6 −1.17 0.03 1.95 −0.00 −2.35 −0.32 0.00 0.13
(−3.69) (0.47) (4.41) (−0.12) (−2.83) (−0.43) (0.05)

7 −1.43 0.03 2.21 −0.03 −1.70 −0.08 0.01 0.01 0.02 0.20
(−3.89) (0.41) (4.35) (−1.17) (−1.81) (−0.10) (0.26) (3.16) (2.90)

Panel B: log excess returns; 1952:4–2000:4

8 0.02 0.06 −0.00
(2.93) (0.93)

9 −1.18 1.99 0.09
(−4.35) (4.43)

10 −1.21 0.09 2.03 0.10
(−4.43) (1.36) (4.51)

11 0.11 0.03 0.01
(1.85) (1.61)

12 −1.24 2.05 −0.01 0.09
(−4.25) (4.69) (−0.29)

13 −1.14 0.03 1.92 −0.01 −2.24 −0.19 −0.00 0.13
(−3.69) (0.45) (1.37) (−0.08) (−2.67) (−0.25) (−0.25)

14 −1.41 0.04 2.18 −0.03 −1.57 0.02 0.00 0.01 0.02 0.19
(−3.81) (0.57) (4.18) (−1.14) (−1.56) (0.03) (0.17) (3.25) (2.61)

The table reports estimates from OLS regressions of stock returns on lagged variables named at the head of a column. The dependent
variable is the excess level or log of the return on the CRSP value-weighted stock market index. The regressors are as follows:
lag denotes a one-period lag of the dependent variable, ĉayt ≡ ct − β̂aat − β̂yyt , where ct is consumption, at is asset wealth, yt is
labor income, and dt − pt is the log dividend-price ratio; RRELt is the relative bill rate; TRMt is the term spread, the difference
between the 10-year Treasury bond yield and the three-month Treasury bond yield, DEFt is the BAA Corporate Bond rate minus the
AAA Corporate Bond rate, and F̂1 and F̂2 are the principle component factor constructed in Ludvigson and Ng (2007). Newey–West
corrected t-statistics appear in parentheses below the coefficient estimate. Significant coefficients at the 5% level are highlighted in bold
face. Regressions use data from the fourth quarter of 1952 to the fourth quarter of 2000.
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indicators, denoted F̂1t and F̂2t , respectively. Ludvigson and Ng (2007) find that F̂1t

and F̂2t have strong forecasting power for quarterly excess stock market returns, above
and beyond that contained in other popular forecasting variables such as the dividend-
yield, ĉayt and short-term interest rates (we discuss the motivation behind these factors
in Section 3). Table 11.1 reports the regression coefficient, heteroskedasticity-and-
autocorrelation-consistent t statistic, and adjusted R2 statistic for each regression. Notice
that although the error term in these regressions is serially uncorrelated under the null of
no predictability, it may be serially correlated under plausible alternatives. It is therefore
important to correct the standard errors of the estimated coefficients for potential serial
correlation in the residuals.The top panel reports results for excess stock market returns
in levels; the bottom panel reports results for log excess returns.

At a one-quarter horizon, the ĉayt , the relative-bill rate,RRELt , and the two common
factors F̂1t and F̂2t have statistically significant marginal predictive power for excess
returns. The first row of each panel of Table 11.1 shows that a regression of returns on
one lag of the dependent variable displays no forecastability. Adding last quarter’s value
of ĉayt to the model allows the regression to predict 9% of the variation in next quarter’s
excess return. The relative bill rate, while statistically significant, adds less than 2% to
the adjusted R2.The dividend-price ratio, the term spread and default spreads have little
forecasting power for quarterly excess returns in this sample.

Ludvigson and Ng (2007) find that the volatility and risk-premium factors F̂1t and F̂2t

alone explain 9% of next quarter’s excess return, and they retain their marginal predictive
power no matter what other commonly used predictor variables are included in the
regression. In particular, the information in these two factors is largely independent of
that in the consumption-wealth variable cayt .The last row of Table 11.1 shows that when
F̂1t and F̂2t are included as predictors along with cayt , the result is largely cumulative: the
regression model now explains 19% of one-quarter ahead excess stock market returns.

The theory behind (2.1) and (2.12) makes clear that both the dividend-price ratio
and the consumption-wealth ratio should track longer term tendencies in asset markets
rather than provide accurate short-term forecasts of booms or crashes.To assess whether
these predetermined variables forecast returns over longer horizons, Table 11.2, Panel
A, presents the results of long-horizon forecasting regressions of excess returns on the
CRSP-VW index, on some combination of ĉayt , dt − pt , and RRELt . (Results using
TRMt , and DEFt as predictive variables indicated that these variables displayed no fore-
casting power at any horizon in our sample. Those regressions are therefore omitted
from the table to conserve space.)The dependent variable is the H-quarter continuously
compounded log excess return on the CRSP-VW index, equal to

r e
s,t+H ,H = rs,t+1 − rf ,t+1 + · · · + rs,t+H − rf ,t+H .

Table 11.2 reports regressions of the form

r e
t+H ,H = b′Zt + εt+H ,H , (2.13)
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where, as above, Zt is a set of predictor variables. For each regression, the table reports
the estimated coefficient on the included explanatory variables, the adjusted R2 statis-
tic, and the Newey–West corrected t-statistic for the hypothesis that the coefficient
is zero.

Table 11.2 Forecasting stock market returns

Row Regressors Forecast horizon H in quarters

1 2 4 6 8 12 16 24

1 ĉayt 1.95 3.79 6.23 8.45 9.82 12.28 12.91 17.31
(4.58) (3.99) (3.05) (3.42) (3.98) (5.37) (5.47) (4.58)
[0.08] [0.14] [0.20] [0.26] [0.28] [0.34] [0.33] [0.33]

2 dt − pt 0.02 0.04 0.07 0.11 0.12 0.13 0.15 0.59
(1.24) (1.26) (0.94) (0.84) (0.68) (0.54) (0.55) (1.59)
[0.00] [0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.15]

3 RRELt −2.58 −4.15 −6.83 −6.28 −3.16 −1.97 −2.81 −4.80
(−3.89) (−3.22) (−2.79) (−2.56) (−1.38) (−0.79) (−0.84) (−1.23)
[0.05] [0.06] [0.10] [0.06] [0.01] [0.00] [0.00] [0.01]

4 ĉayt 1.91 3.73 5.94 8.05 9.60 12.12 12.66 14.92
(4.50) (4.17) (3.87) (4.34) (4.65) (4.83) (4.32) (3.07)

dt − pt −0.01 −0.01 −0.01 0.01 0.01 0.05 0.06 0.37
(−0.49) (−0.36) (−0.08) (0.09) (0.10) (0.28) (0.32) (1.22)
−2.21 −3.47 −5.92 −5.19 −1.70 0.04 −0.70 −2.23

RRELt (−3.49) (−3.52) (−3.48) (−3.68) (−1.42) (0.01) (−0.24) (−0.70)
[0.11] [0.19] [0.27] [0.29] [0.28] [0.34] [0.33] [0.37]

5 ĉayt 2.16 4.06 6.21 8.49 10.45 14.05 14.60 18.11
(4.53) (4.63) (3.84) (4.28) (4.86) (6.50) (5.97) (3.70)

dt − pt −0.03 −0.06 −0.08 −0.11 −0.15 −0.16 −0.13 0.05
(−1.62) (−1.50) (−1.21) (−1.09) (−1.23) (−1.14) (−0.70) (0.18)

RRELt −1.77 −2.66 −4.98 −4.27 −0.96 0.59 −1.48 −2.61
(−3.02) (−2.26) (−2.48) (−2.48) (−0.71) (0.23) (−0.48) (−0.80)

F̂1t 0.01 0.02 0.01 0.02 0.02 0.01 −0.01 0.01
(3.37) (4.45) (2.08) (2.16) (3.00) (1.19) (−0.57) (0.37)

F̂2t 0.02 0.02 0.02 0.02 0.02 0.01 0.00 0.03
(3.06) (1.91) (1.64) (1.40) (0.98) (0.94) (0.29) (0.97)
[0.16] [0.23] [0.28] [0.31] [0.34] [0.46] [0.42] [0.40]

The table reports results from long-horizon regressions of excess returns on lagged variables. H denotes the return horizon in
quarters.The regressors are as follows: lag,which denotes a one-period lag of the dependent variables, one-period lagged values of
the deviations from trend ĉayt = ct − β̂aat − β̂yyt , the log dividend yield dt − pt , the dividend earnings ratio dt − et , the detrended
short-term interest rate RRELt , and Ludvigson and Ng (2007)’s factors F̂1 and F̂2. For each regression, the table reports OLS
estimates of the regressors,Newey–West corrected t-statistics in parentheses,and adjusted R2 statistics in square brackets. Significant
coefficients at the 5% level are highlighted in bold. The sample period is fourth quarter of 1952 to fourth quarter of 2000.
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The first row of Table 11.2 shows that ĉayt has significant forecasting power for future
excess returns at horizons ranging from 1 to 24 quarters.The t-statistics are above 3 for all
horizons. The predictive power of ĉayt is hump-shaped and peaks around three years in
this sample; using this single variable alone the regression model is capable of predicting
34% of the variability in the three-year excess return. Similar findings are reported
using U.K. data to construct a measure of ĉay (Fernandez-Corugedo et al., 2002), using
Australian data (Fisher andVoss, 2004;Tan andVoss, 2004), and using German data (Xu,
2005).These results suggest that the conditional mean of excess stock returns varies over
horizons of several years.

The remaining rows of Panel A give an indication of the predictive power of other
variables for long-horizon excess returns. Row 2 reports long-horizon regressions using
the dividend-yield as the sole forecasting variable. Because we use more recent data,
these results are quite different than those obtained elsewhere (e.g., Fama and French,
1988a; Lamont, 1998; Campbell et al., 1997). The dividend-price ratio has no ability to
forecast excess stock returns at horizons ranging from 1 to 24 quarters when data after
1995 are included. The last half of the 1990s saw an extraordinary surge in stock prices
relative to dividends, weakening the tight link between the dividend-yield and future
returns that has been documented in previous samples. The forecasting power of ĉayt
seems to have been less affected by this episode. Lettau et al. (2008) provide a partial
explanation for this finding based on a fall in macroeconomic risk or the volatility of the
aggregate economy. Because of the existence of leverage, their explanation also implies
that the consumption-wealth ratio should be less affected by changes in macroeconomic
risk than the dividend-price ratio. This may explain why the predictive power of the
consumption-wealth variable is less affected by the 1990s than the financial variables
investigated here.

Consistent with the findings of Ang and Bekaert (2007), row 3 of Panel A shows
that RRELt has forecasting power that is concentrated at short horizons, displaying
its highest long-horizon R2 for forecasting three-quarter returns. Also consistent with
their findings, the dividend yield does not univariately predict excess returns at any
horizon in this sample. Ang and Bekaert (2007) find instead that the predictive abil-
ity of the dividend yield is enhanced at short horizons in a bivariate regression with a
short-term interest rate. Row 4 of Table 11.2 suggests that the dividend-yield is driven
out of the predictive regression by ĉayt even when included with a short-term inter-
est rate. The coefficient estimates are strongly statistically significant, with t-statistics in
excess of 3 at one and two quarter horizons, but the variable explains a smaller fraction
of the variability in future returns than does ĉayt . Row 4 of Table 11.2 presents the
results of forecasting excess returns using a multivariate regression with ĉayt , RRELt ,
dt − pt , and the estimated factors F̂1t and F̂2t as predictive variables. The results suggest
that excess returns are predictable by several variables for return horizons from 1 to
24 quarters.
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2.5. Statistical Issues with Forecasting Returns

The results presented above indicate that excess equity returns are forecastable, suggesting
that the equity risk-premium varies with time and that fluctuations in the conditional
mean excess return are an important contributor to the fluctuations in the Sharpe ratio.
There are,however, a number of potential statistical pitfalls that arise in interpreting these
forecasting tests. We discuss these next.

2.5.1. Problems with Overlapping Data

One potential difficulty for statistical inference with return predictability arises as a result
of using overlapping data in direct long-horizon regressions, as in (2.13). Recall that, in
the long-horizon regressions discussed above, the dependent variable is the H-quarter
log excess return,equal to rs,t+1 − rf ,t+1 + rs,t+2 − rf ,t+2 + · · · + rs,t+H − rf ,t+H . Notice
that at time t + 2, this return is equal to rs,t+2 − rf ,t+2 + · · · + rs,t+H − rf ,t+H +
rs,t+H+1 − rf ,t+H+1. Thus, by construction, the continuously compounded H-period
return contains data that overlaps with H − 1 lags of itself. It follows that, even if one-
period returns are i.i.d., the fitted residuals in a regression of long-horizon returns on
a constant are serially correlated and a rolling summation of such series will behave
asymptotically as a stochastically trending variable.This creates statistical problems when
the return horizon H is large relative to the sample size T .Valkanov (2003) shows that
the finite-sample distributions of R2 statistics from direct long-horizon regressions do
not converge to their population values, and also that t-statistics do not converge to
well-defined distributions whenever long-horizon returns are formed by summing over
a nontrivial fraction of the sample.

One way to avoid problems with the use of overlapping data in long-horizon regres-
sions is to use vector autoregressions (VARs) to impute the long-horizon R2 statistics
rather than estimating them directly from long-horizon returns. The approach assumes
that the dynamics of the data may be well described by aVAR of a particular lag order,
implying that conditional forecasts over long horizons follow directly from the VAR
model. The insight here is that long-horizon linear predictions can be obtained by iter-
ating one-step ahead linear projections from a VAR, without requiring the use of any
long-horizon return data.

Consider the vector

Qt ≡
[
r e
s,t − E

(
r e
s,t
)

, x1t − E(x1t) , x2t − E(x2t)
]′ ,

where r e
t are excess returns,x1t is a predictor variable for returns, and x2t another variable

about whose dynamics the researcher may be concerned. (In general, x2t could be a
vector of variables.) We assume the variables in Qt are demeaned. Suppose we describe
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the vector time series as a VAR(1)5:

Qt+1 = AQt + ut+1,

where A is a (q+ 2)× (q+ 2) matrix. In general, enough lags should be included in
theVAR so that the error process is unpredictable, implying that

EtQt+j = AjQt . (2.14)

It is straightforward to use (2.14) to impute the statistics for regressions of long-horizon
returns on predictor variables x1t . For example, consider the slope coefficient βH ,1 from
a univariate regression of H-period continuously compounded returns on x1t :

r e
s,t+1 + · · · + r e

s,t+H = αH + βH ,1x1t + ut+H ,H . (2.15)

Let e1 = (1, 0, 0)′, e2 = (0, 1, 0)′, C( j) = Cov(Zt , Zt−j), and VH = Var
(∑H

j=1 Qt+j

)
.

Then the estimator of βH ,1 implied by theVAR is

Cov
(
r e
s,t+1 + · · · + r e

s,t+H , x1t
)

Var(x1t)
≡ βH ,1 = e1′ [C(1)+ · · · + C(H)] e2

e2′C(0)e2
,

and the implied long-horizon R2 statistic for the regression (2.15) is

R2
H =

⎛⎜⎜⎜⎜⎝
explained var. of sum of H returns︷ ︸︸ ︷

β2
H ,1e2′C(0)e2

e1′VH e1︸ ︷︷ ︸
var. of sum of H returns

⎞⎟⎟⎟⎟⎠.

This methodology for measuring long-horizon statistics by estimating a VAR has been
covered by Campbell and Shiller (1989), Campbell (1991), Hodrick (1992), and Kandel
and Stambaugh (1989), and we refer the reader to those articles for further details.

Notice that the approach requires no use of overlapping data (since the long-horizon
returns are imputed from the VAR); hence it is immune to statistical problems that
arise from the use of overlapping data. In a simulation study, Hodrick (1992) finds the
VAR methodology for imputing long-horizon statistics has good finite-sample properties

5Higher-order systems can be handled in the same way as the first-order system that is described, by stacking the VAR(p) into the
companion form.
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Table 11.3 VAR long-horizon R2

Row zt Implied R2 for forecast horizon H in quarters

1 2 4 6 8 12 16 24

1 cayt 0.09 0.16 0.23 0.26 0.26 0.24 0.21 0.16
2 RRELt 0.06 0.07 0.07 0.05 0.04 0.03 0.02 0.01
3 cayt , RRELt 0.13 0.20 0.27 0.28 0.27 0.24 0.21 0.15
4 cayt , RRELt , F̂1t , F̂2t 0.18 0.23 0.27 0.28 0.27 0.23 0.20 0.15

The table reports implied R2 statistics for H-period stock market returns from VARs for rt − rf ,t and forecasting vari-
ables zt .The implied R2 statistics for stock market returns for horizon H are calculated from the estimated parameters of
theVAR and the estimated covariance matrix of VAR residuals. The sample period is fourth quarter of 1952 to fourth
quarter of 2000.

that produce unbiased measurements of the long-horizon R2 statistics and regressor
coefficients, conditional on theVAR being correctly specified.

We present the results of using this methodology inTable 11.3, which investigates the
long-horizon predictive power of the multiple predictors in Table 11.2. All results use a
first-order VAR.We calculate an implied R2 statistic using the coefficient estimates of the
VAR and the estimated covariance matrix of the VAR residuals. The first row presents
results for predicting returns with ĉayt , the second row present result for predicting
returns with RRELt , the third row with both ĉayt and RRELt , and the final row reports
the results of using these variables along with F̂1t and F̂2t to predict returns. We do not
include the dividend-price ratio in these calculations because the point estimate of the
autoregressive root for dt − pt in this sample is explosive, invalidating theVAR procedures
described above.

The results in Table 11.3 show that the pattern of the implied R2 statistics obtained
from theVAR methodology is very similar to that obtained from the direct long-horizon
regressions in Table 11.2. For example, for predicting returns over the next six quarters
using ĉayt as the single predictor variable, the implied R2 statistic from theVAR is 0.26,
the same as the actual R2 from the direct long-horizon regression. Similarly,for predicting
returns over the next six quarters using ĉayt ,RRELt ,F̂1t ,and F̂2t as predictors,the implied
R2 statistic from the VAR is 0.28, whereas the actual R2 from the direct long-horizon
regression is 0.29.This suggests that evidence favoring predictability inTable 11.2 cannot
be attributed to spurious inference arising from problems with the use of overlapping
data.

Valkanov (2003) proposes an alternative approach to addressing the problem that
t-statistics do not converge to well-defined distributions when long-horizon returns
are formed by summing over a nontrivial fraction of the sample. Instead of using the
standard t-statistic, he proposes a renormalized t-statistic, t/

√
T , for testing long-horizon

predictability. The limiting distribution of this statistic is nonstandard and depends on
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two nuisance parameters. Once those nuisance parameters have been estimated,Valka-
nov provides a look-up table for comparing the rescaled t-statistic with the appropriate
distribution. Lettau and Ludvigson (2005) use this rescaled t-statistic andValkanov’s crit-
ical values to determine statistical significance and find that the predictive power of ĉayt
for future returns remains statistically significant at better than the 5% level. At most
horizons, the variables are statistically significant predictors at the 1% level. As for the
VAR analysis, these findings imply that the predictive power of ĉayt is unlikely to be
an artifact of biases associated with the use of overlapping data in direct long-horizon
regressions.

2.5.2. Problems with Persistent, Predetermined Regressors

A second and distinct possible statistical pitfall with return forecasting regressions arises
when returns are regressed on a persistent, predetermined regressor. Stambaugh (1999)
considered a common return forecasting environment taking the form

rs,t+1 = α+ βxt + ηt+1 (2.16)

xt+1 = θ + φxt + ξt+1, (2.17)

where xt is the persistent regressor, assumed to follow the first-order autoregressive
process given in (2.17).6 Recall the result from classical OLS that the coefficient β
will not be unbiased unless ηt+1 is uncorrelated with xt at all leads and lags. For most
forecasting applications in finance, xt is a variable like the dividend-price ratio, which is
positively serially correlated and whose innovation ξt+1 is correlated with the innovation
ηt+1 in returns.

Observe that if xt is the dividend-price ratio,ξt+1 is mechanically negatively correlated
with the innovation ηt+1 in returns. This occurs because dividends are smoother than
stock prices. Thus, an increase in stock prices is typically accompanied by a less than
proportional increase in dividends so that an increase in stock prices drives down the
dividend-price ratio while at the same time driving up the current-period stock return,
thereby generating a negative correlation between ξt+1 and ηt+1. A negative correlation
between ξt+1 and ηt+1, when it is accompanied by positive serial correlation in xt (i.e.,
φ > 0), implies that xt is correlated with past values of ηt , even though it is uncorrelated
with contemporaneous or future values. It follows that forecasting variables such as the
dividend-price ratio are merely predetermined and not exogenous.

Stambaugh (1999) points out that,under these circumstances, the predictor coefficient
β will be biased upward in finite samples, with the degree of bias increasing in the
persistence,φ,of the forecasting variable.To derive the exact finite-sample distribution of

6Mankiw and Shapiro (1986) studied the econometric problems posed by (2.16) and (2.17) for general xt in a simulation study. Elliott and
Stock (1994) studied statistical inference for such a system when the autoregressive root of xt is close to unity.
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β,Stambaugh assumes that the vector (ηt+1, ξt+1)
′ is normally distributed, independently

across t, with mean zero and constant covariance matrix.
These results suggest that regression coefficients of the type reported in Table 11.2

maybe biased up in finite samples as long as the return innovation covaries with the
innovation in the forecasting variable. Indeed, using the dividend-price ratio as a predic-
tive variable, Stambaugh finds that the exact finite-sample distribution of the estimates
implies a one-sided p-value of 0.15 for β when NYSE returns are regressed on the lagged
dividend-price ratio from 1952–1996. Other researchers have also conducted explicit
finite sample tests and concluded that evidence of predictability using the dividend-price
ratio may be weaker than previously thought. Nelson and Kim (1993) use bootstrap and
randomization simulations for finite-sample inference. Ferson et al. (2003) show that,
when expected returns are very persistent, a particular regressor can spuriously forecast
returns if that regressor is also very persistent.

Nevertheless, other researchers have directly addressed these problems and find that
evidence of long-horizon predictability remains. For example, Lewellen (2004) shows
that the evidence favoring predictability by the dividend-yield (and other financial ratios)
increases dramatically if one explicitly accounts for the persistence of the dividend yield.
In particular, Lewellen finds evidence of return predictability by financial ratios if one
is willing to rule out an explosive root in the ratios. Campbell andYogo (2002) use the
results from near-unit root econometrics to develop a test of return predictability that is
asymptotically valid under general assumptions on the dynamics of the predictor variable
(i.e., a finite-order autoregression with the largest root less than, equal to, or greater than
one) and on the distribution of the innovations (i.e.,homo or heteroskedastic). Using this
test that is robust to the persistence problem,they find that the earnings-price ratio reliably
predicts returns at all frequencies in the sample period 1926–2002 and the dividend-price
ratio predicts returns at annual frequency.

The forecasting power of variables other than the dividend-earnings ratio and the
dividend-price ratio also appears robust to alternative procedures designed to address
the difficulties with using persistent, predetermined regressors. Lettau and Ludvigson
(2001a, 2005) test return forecastability by ĉayt using a bootstrap procedure to assess the
sampling variability of key forecasting statistics in samples of the size currently available.
The methodology is based on bootstrap simulations carried out under the null of no
predictability of excess returns. Artificial sequences of excess returns are generated by
drawing randomly (with replacement) from the sample residual pairs. The results of
these tests show that the estimated regression coefficient and R2 statistics lie outside of
the 95% confidence interval based on the empirical distribution. In most cases, they
lie outside of the 99% confidence interval. Ludvigson and Ng (2007) conduct a similar
small-sample bootstrap excercise for F̂1t and F̂2t .The statistical relation of these factors to
future returns is strong,even accounting for the small-sample distribution of standard test
statistics.
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A potential concern with such bootstrap procedures arises when the predictor variable
is so highly persistent that local-to-unity asymptotics must be applied to assess the sam-
pling variability of estimated regression coefficients and R2 statistics. Stock and Watson
(1996) show that, in this case, the standard bootstrap is asymptotically invalid. This will
occur when the predictor variable exhibits sufficiently “small” deviations from an exact
unit root. For practical applications, these results raise the question of how small is small?7

There are several reasons to think that at least some predictor variables commonly used
deviate sufficiently from a unit root to avoid these complications. For example, ĉayt (with
an AR coefficient around 0.85) and the relative t-bill rate are less persistent and less cor-
related with innovations to returns than valuation ratios such as the price-dividend ratio.
Ferson et al. (2003) find that regressors with autocorrelation coefficients on the order
of 0.85 generally have well-behaved t-statistics and R2 statistics. Moreover, other sim-
ulation studies suggest that even financial variables far more persistent than these may
be stationary enough to validate standard bootstrap procedures. Clark and West (2006,
2007) conduct Monte Carlo simulations of simple bivariate data-generating processes to
evaluate the finite-sample size and power of out-of-sample forecasting procedures that
compare prediction mean square error (PMSE) across models. One data-generating pro-
cess they study is designed to reflect asset pricing applications and is calibrated to monthly
excess returns on the S&P 500 and the dividend-price ratio.The dividend-price ratio is
modeled as having a first-order autoregressive coefficient of 0.95, and its correlation with
return innovations is calibrated to match the data. These studies find that tests of equal
forecast accuracy based on a comparison of PMSEs are roughly correctly sized,suggesting
that the bootstrap is quite reliable in samples of the size currently encountered, even for
regressions involving very persistent (but stationary) financial predictor variables.

2.5.3. Problems with Interpreting Long-Horizon Forecasts

The evidence on long-horizon return predictability in Table 11.2 above suggests that
returns become more forecastable as the horizon extends. In response to such evidence,
Boudoukh et al. (2008) point out that, even under the null of no return predictabil-
ity, long-horizon R2 statistics and coefficients from direct long-horizon regressions will
rise monotonically with the horizon, as long as the predictor variable has some persis-
tence. These findings imply that long-horizon returns could, in principle, appear more
forecastable than short-horizon returns even if they are no more forecastable.

In principle, this phenomenon is attributable both to the small sample bias emphasized
by Stambaugh (1999), as well as to the use of overlapping return data emphasized by

7Campbell and Yogo (2002) address this question by developing a pretest based on the confidence interval for the largest autoregressive
root of the predictor variable. If the confidence interval indicates that the predictor variable is sufficiently stationary, then for a given level
of correlation between the innovations to returns and the predictor variable, they show that one can proceed with inference based on the
conventional t-test with conventional critical values rather than basing inference on local-to-unity asymptotics.
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Valkanov (2003). In practice, however, Boudoukh et al. (2008) find that, for plausible
data-generating processes,most of the observed monotonicity is attributable not to small
sample biases but rather to the use of overlapping return data interacting with persistence
of regressor. As noted above, problems with overlapping return data can be avoided by
usingVARs to impute long-horizon statistics rather than using overlapping return data
directly. Recalling the results reported in Table 11.3, we observe that the implied long-
horizon R2 statistics and regression coefficients from the VAR methodology rise with
the return forecast horizon in a manner similar to that found when overlapping return
data is directly utilized. Thus, the VAR evidence lends support to the hypothesis that
long-horizon returns really are more predictable than short-horizon returns despite the
ambiguity on this question that arises in direct long-horizon regressions.

2.6. Conceptual Issues with Forecasting Returns

This section discusses several conceptual issues that arise when evaluating the evidence
for time variation in expected excess stock returns.

2.6.1. Expected Returns versus Average Realized Returns

The literature discussed above measures movements in ex-ante expected returns as fore-
castable variation in excess returns, with variables such as the dividend-price ratio,
short-term interest rates, term spreads, and cayt as forecasting variables. For example,
the dynamic Gordon growth model (2.1) motivates the use of the dividend-price ratio
as a forecasting variable for future returns, and therefore as a measure of ex-ante expected
returns. Although we have emphasized this approach as a motivation for estimating time
variation in conditional expected returns over horizons ranging from quarterly to several
years, other researchers have used the framework to estimate the very long-run-expected
market return, which converges to an unconditional expected market return (e.g., Fama
and French, 2002). To estimate the unconditional expected market return, it is com-
monplace to use the sample average ex-post return on a broad portfolio of stocks. But
as Fama and French (2002) point out, this procedure can be misleading when expected
returns (as measured, e.g., by the dividend-price ratio) are declining for an extended
period of time. In this scenario, declining expected returns lead to persistently lower
dividend-price ratios, but the sample average ex-post returns over the same period are
necessarily high as a result of rising stock prices. In this case, the sample average return can
be higher than usual even though expected future return is declining. Fama and French
use the Gordon growth model to argue that the period since 1950 is one such episode.
Campello et al. (2005) make a similar point for firm-specific measures of expected
equity returns.These papers underscore the need to distinguish between average realized
returns and ex-ante expected returns when estimating very long-run-expected market
returns.



Measuring and Modeling Variation in the Risk-Return Trade-off 645

2.6.2. Cointegration and Return Forecasting

Consider using the log dividend-price ratio as a predictor of excess returns. Studies
that conduct such an analysis typically assume, either explicitly or implicitly, that the
ratio of prices to dividends, Pt/Dt , is covariance stationary. This assumption implies that
the log price-dividend ratio, pt − dt , is also covariance stationary and that pt and dt are
cointegrated with cointegrating vector (1,−1)′.

Some researchers object to the description of the price-dividend ratio as covariance
stationary because the statistical behavior of the variable over our sample appears subject
to structural change. Indeed, there is evidence of a structural break in the mean price-
dividend ratio (e.g., Lettau et al., 2008; Lettau andVan Nieuwerburgh, 2007). Whether
statistical evidence of structural change implies that a series is nonstationary is unclear.
The issue of identifying structural breaks in cointegrated relationships with finite samples
is a subtle and tricky one. Long data spans are often required to obtain consistent estimates
of cointegrating coefficients, yet instability tests require those parameters to be estimated
by splitting an already finite sample into even smaller subsamples. This requirement
has led to a well-known criticism of the entire structural break approach, namely that
the data-driven specification searches inherent in the methodology can bias inferences
dramatically toward finding breaks where none exist (Leamer, 1978; Lo and MacKinlay,
1990). Thus, a very persistent covariance-stationary series can appear, in a finite sample,
as one subject to multiple structural breaks. We discuss structural change further below.

Whether or not structural breaks are evidence of nonstationarity, it seems reasonable
to rule out at least one form of nonstationarity, namely the nonstationarity exhibited by
prices that wander arbitrarily far from measures of fundamental value. Valuation ratios
should not be explosive. For the purposes of this subsection,we discuss conceptual issues
that arise when dividends and prices are cointegrated, and the price-dividend ratio is
nonexplosive and covariance stationary.

Cointegration implies that movements in pt − dt must forecast future dividend growth,
future returns, or some combination of the two. Notice that this statement is not con-
ditional on the accuracy of the approximation in (2.1). Instead, it follows on purely
statistical grounds from the presumption of cointegration. An important cointegration
theorem is the Granger representation theorem (GRT). This theorem states that if a system
of variables is cointegrated in a given sample, the growth rates in at least one of the
variables involved in the cointegrated system must be forecastable by the cointegrating
residual, in this case pt − dt . That is, an error-correction representation exists. It follows
that the Granger representation theorem states that variation in pt − dt must be related
to variation in future dividend growth, future returns, or both.8

8If dividends and prices are cointegrated with cointegrating vector (1,−1), the GRT states that dt − pt must forecast either �pt , or �dt ,
the log difference of dividend growth. Using the approximation, rst ≈ �pt , it follows that dt − pt must forecast either �dt or rst up to a
first-order approximation.



646 Martin Lettau and Sydney C. Ludvigson

These considerations imply that expected returns cannot be constant if the price-
dividend ratio varies unless expected dividend growth rates vary. In the data, the
dividend-price ratio is volatile, having a quarterly standard deviation of 0.34. Thus, evi-
dence that expected returns are constant requires not merely that returns be unforecastable
by dt − pt but also that dividend growth be strongly forecastable by dt − pt , forecastable
enough to account for the observed variability in dt − pt . Although some statistical tests
suggest that dt − pt is a weak and/or unstable predictor of returns, the evidence that
dt − pt predicts dividend growth in postwar U.S. data is even weaker (Campbell, 1991;
Campbell and Shiller, 2001; Cochrane, 1991b, 1994, 1997). Cochrane (2008) formalizes
this intuition and shows that the absence of dividend growth predictability in the data
provides much stronger evidence of return predictability than do the results from an
unrestricted regression of returns on lagged values of the dividend-price ratio. These
findings suggest that returns are forecastable by the dividend-price ratio, even though
some statistical tests fail to confirm that forecastability.

It is possible that expected dividend growth and expected returns are both time-
varying, and that a positive correlation between the two makes it difficult to identify
variation in either using the dividend-price ratio. Equation (2.1) shows that movements
in expected dividend growth that are positively correlated with movements in expected
returns should have offsetting affects on the dividend-price ratio. Such movements will
not necessarily have offsetting affects on cayt because it is not a function of both expected
returns and expected dividend growth. Lettau and Ludvigson (2005) investigate this
possibility using data on aggregate consumption and dividend payments from aggregate
(human and nonhuman) wealth. Using either cayt or a proxy for the log consumption-
dividend ratio, denoted cdyt , they find that stock market dividend growth is strongly
predictable and that the dividend forecasts are positively related to changing forecasts of
excess stock returns. An implication of these findings is that both expected returns and
expected dividend growth vary more than what can be revealed using the dividend-price
ratio alone.

The reasoning on cointegration applied above to the dividend-price ratio also applies
to the consumption-wealth variable, cayt . Since c, a, and y are cointegrated, it follows
that the cointegrating residual must forecast future consumption growth, future returns
to asset wealth (wealth growth), or future labor income growth. Lettau and Ludvigson
(2001a, 2004) find no evidence that ĉayt has any forecasting power for consumption
growth or labor income growth, at any future horizon. Since there is no evidence that
consumption or labor income growth are forecastable by ĉayt , ĉayt must forecast some
component of the growth in at , and indeed the empirical evidence is strongly supportive
of this hypothesis. The forecastable component is found to be the excess return on the
aggregate stock market; ĉayt has no forecasting power for the growth in nonstock wealth
(Lettau and Ludvigson, 2004). Since the growth in total asset wealth, �at , is highly
correlated with the return on the aggregate stock market (displaying a correlation with
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the return on the CRSP value-weighted index of over 88% in quarterly data), it is not
hard to understand why ĉayt forecasts stock returns.

When parameters of a common long-run trend must be estimated, as for ĉayt , long
samples of data may be required to estimate them consistently. How long such samples
must be will depend on the data-generating process, something that can be assessed in a
particular application with Monte Carlo analysis. However, once a sufficiently large span
of data is available, the cointegrating parameters may be treated as known in subsequent
estimation because they converge at a rate proportional to the sample size T rather
than the usual

√
T rate. Moreover, cointegration theory implies that once we know the

cointegrating parameters, the resulting cointegrating residual must forecast at least one
of the growth rates of the variables in the cointegrated system.

2.6.3. Use of Macroeconomic Data in Empirical Asset Pricing

A separate set of conceptual issues arises in using macroeconomic variables, such as ĉayt ,
to forecast returns. Unlike financial data, macroeconomic data are not available in real
time. When thinking about this issue, it is essential to distinguish two questions about
return forecastability. The first question – the question of concern in this paper – is “are
expected excess returns time-varying?” The second question, of interest to practitioners,
is “can the predictability of returns be statistically detected in real time?”

All macroeconomic data undergo revisions. For example, data from the national
income and product accounts (NIPA) are released three times, first as an initial esti-
mate, then as a preliminary estimate, and last as a “final” estimate. We put quotes around
the word final because even this last estimate is subsequently revised. Every year in July
or August, there are revisions made to the entire NIPA account, and there are periodic
benchmark revisions that occur on an irregular schedule.These subsequent revisions are
likely to be far less significant that the initial two, however.

Delays in data release and data revision are not a reason to ignore macroeconomic
data but instead are a reason to apply macroeconomic data to research questions for
which historical data are relevant. Data revisions can be a concern if the goal is to
assess predictability in real time but are not a concern for explaining and interpreting
the historical data.9 For example, in the theoretical framework of Lettau and Ludvigson
(2001a) discussed above, if expected returns vary over time (for any reason), the logic
of a budget constraint implies that ĉayt should forecast returns, consumption growth, or
labor income growth, or some combination of all three. In a full insurance equilibrium
where individual consumptions are proportional, agents not only know their own con-
sumption, wealth and income (and their wealth shares), they also know their aggregate

9Issues of data release and data revision are obviously less of a issue for forecasting long-horizon returns than they are for forecasting
short-horizon returns.
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counterparts, even though the econometrician does not. In this case, evaluation of the
model implications should use the fully revised, historical data series, since those series
come closest to matching what the representative agent observes.

2.6.4. When Is “Look-Ahead Bias” a Concern?

One question that arises in assessing the predictive power of macroeconomic variables
such as ĉayt is whether estimating the cointegrating coefficients over the full sample
in a first-stage regression induces a “look ahead bias” into the forecasting regressions.
In thinking about this question, it is important to keep in mind that when samples
are sufficiently long, cointegrating coefficients can be estimated superconsistently and
treated as known in subsequent estimation.Thus, there can be no look-ahead bias when
a sufficiently long sample of data is available to estimate the parameters of a cointegrating
relation.

A Monte Carlo study can be used to assess the rate at which cointegrating parameter
estimates converge to their true values. Our own Monte Carlo analyses suggest that
samples of the size currently available are large enough to obtain consistent estimates of
the cointegrating parameters in ĉayt . In a cointegrated setting,the question of look-ahead
bias is therefore one of data availability.

Look-ahead bias could be a concern if the primary research goal is to ask whether
a practitioner, operating in early part of our sample without access to the data sample
currently available, could have exploited the forecasting power of an estimated cointe-
grating residual such as ĉayt . Out-of-sample or subsample analysis is often used to assess
questions of this nature.A difficulty with these procedures,however, is that the subsample
analysis inherent in out-of-sample forecasting tests entails a loss of information, making
out-of-sample tests substantially less powerful than in-sample forecasting tests (Inoue and
Kilian, 2004).This loss of power means that out-of-sample (and subsample) analyses can
fail to reveal true forecasting power that even a practitioner could have had in real time.

With these considerations in mind,Lettau and Ludvigson (2005) provide an alternative
approach to assessing the forecasting power of ĉayt . The approach eliminates the need
to estimate cointegration parameters using the full sample in a first-stage regression but
at the same time avoids the power problems inherent in out-of-sample and subsample
analyses.

Consider single-equation, multivariate regressions taking the form

zt+H ,H = a + b1ct + b2at + b3yt + ut+H ,H , (2.18)

where a, b1, b2, and b3 are regression coefficients to be estimated.The dependent variable
zt+h,h is either the H period excess return on the CRSP value-weighted index or, in
Lettau and Ludvigson (2005), the H period dividend growth rate on the CRSP value-
weighted index. Rather than estimating the cointegration relation among ct , at , and yt in
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a first-stage regression and then using the cointegration residual as the single right-hand
side variable,the regression (2.18) uses the multiple variables involved in the cointegration
relation as regressors directly. If there is a relation between the left-hand side variable
to be forecast and some stationary linear combination of the regressors ct , at , and yt , the
regression can freely estimate the nonzero coefficients b1,b2, and b3,which generate such
a relation. If we maintain the hypothesis that the left-side variable is stationary while the
right-hand side variables are I (1), then under the null hypothesis that

(
ct , at , yt

)′ has a
single cointegration relation, it is straightforward to show that the limiting distributions
for b1, b2, and b3 will be standard, implying that the forecasting regression (2.18) will
produce valid R2 and t-statistics.10 Because this procedure does not require any first-stage
estimation of cointegration parameters, it is clear that the forecasting regression (2.18), in
particular its coefficients and R2 statistics, cannot be influenced by any look-ahead bias.

Lettau and Ludvigson (2005) report regression results for excess returns and dividend
growth from an estimation of (2.18).The results are similar to those obtained using ĉayt as
forecasting variables.The individual coefficients on each regressor are strongly statistically
significant as predictive variables for excess returns and dividend growth, and the R2

statistics indicate that the regressors jointly explain about the same fraction of variation
in future returns and future dividend growth explained by the individual regressor ĉayt .
For example, in the data of Lettau and Ludvigson (2005), the multivariate regression with
ct , at , and yt explains about 26% of one year ahead excess returns, whereas ĉayt explains
25%.These results do not support the conclusion that ĉayt has forecasting power merely
because the cointegrating coefficients have been obtained in a preestimation using data
from the whole sample period.

Another approach to the issue of look-ahead bias is to mimic the estimation strategy
of the real-time practitioner by performing an out-of-sample investigation. In such an
investigation, the parameters in ĉayt are reestimated every period using only information
that would have been available at the time of the forecast, as in section V of Lettau
and Ludvigson (2001a). We should expect to find the statistical predictive power of
ĉayt to be weakened by such a recursive procedure since a large number of observations
required to obtain consistent estimates of the cointegrating parameters must be discarded

10Inference on b1, b2, and b3 can be accomplished by rewriting (2.18) so that the hypotheses to be tested are written as a restrictions on
I (0) variables (Sims et al., 1990). For example, the hypothesis b1 = 0 can be tested by rewriting (2.18) as

zt+H ,H = a + b1 [ct − ωat − (1− ω) yt ]+ [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut+H ,H

= a + b1
[
cayt

]+ [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut+H ,H .

It follows that the OLS estimate of b1 has a limiting distribution given by

√
T

(
b̂1 − b1

) −→ N

(
0,

σ2
u

T
∑T

t=1
(
cayt − cay

)2
)

,

where σ2
u denotes the variance of ut+H ,H , and cay is the sample mean of cayt .These may be evaluated by using the full sample estimates,

ĉayt . A similar rearrangement can be used to test hypotheses about b2 and b3. Note that the full sample estimates of the cointegration
coefficients are only required to do inference about the forecasting excercise, they do not affect the forecasting excercise itself.
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in the process. Nevertheless, the results of such an excercise will take into account the
noisiness in these estimates over short subsamples, and, we hope, tell us something about
whether a practitioner operating over our sample could have detected predictability in real
time. Both Lettau and Ludvigson (2001a) and Guo (2006) find evidence of stock return
predictability in out-of-sample tests, using cay and/or cay and stock market volatility as
predictive variables. We discuss out-of-sample forecasts further below.

2.6.5. Structural Change

A related issue is that there may be long-run “permanent” shifts in the mean of the
dividend-price ratio, or in the cointegrating coefficients or in the mean of ĉayt . Lettau
et al. (2008) and Lettau and Van Nieuwerburgh (2007) document evidence of a struc-
tural break in the mean of the dividend-price ratio for the aggregate stock market,
which exhibits a marked shift to a lower value in the mid-1990s. Note, however, that
any hypothesis about structural change in the parameters of the common trend among
c, a, and y must be reconciled with the evidence that these variables appear cointegrated
over the full postwar sample.

Even if there were little evidence of structural change in current data, it is possible
that future data will exhibit structural change. Structural change could be caused by
persistent shifts in tastes or technology that coincide with forward looking behavior. If
infrequent regime shifts are present, agents in the model may be required to learn about
underlying parameters, a phenomenon that can, by itself, have an important impact on
the equilibrium risk-return relation (Hansen, 2007; Lettau et al., 2008). If there are
such breaks in the data, altering the framework discussed above to explicitly model
the underlying probability structure governing any changing parameters may allow the
researcher to do even better at predicting returns since estimates of the cointegrating
residual could then be made conditional on the regime.

An important challenge in developing ideas about structural change, however, will be
to derive an economic model of changes in regime that are caused by factors other than
the raw data we are currently trying to understand. Such a model is necessary to both
explain any past regime shifts and to predict potential future regime shifts. Unfortunately,
such an endeavor is far from trivial since we are likely to observe, at most, only a handful
of regimes in a given sample. Moreover, it is not interesting merely to document breaks
ex-post using change-point methods since such methods assume these shifts are deter-
ministic and provide no guidance about when they might occur in the future. Finally,one
also has to grapple with the well-known criticism of the entire structural break approach,
namely that the data-driven specification searches inherent in these methodologies can
bias inferences dramatically toward finding breaks where none exist (see Leamer, 1978;
Lo and MacKinlay, 1990).

This last critique may be particularly relevant today, only a short time after the most
extraordinary bull market in U.S. stock market history. This period might represent a
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regime shift, or it could simply be a very unusual period, perhaps the most unusual
ever.The most recent data available suggests that at least a part of this period was simply
unusual: the market eventually retreated,and the correction in asset values largely restored
ĉayt returned to its long-run mean subsequent to the market declines in 2000 (see Lettau
and Ludvigson, 2004).

But note that questions about the stability of cointegrating coefficients cannot be
addressed by performing rolling regressions, recursive regressions, subsample analysis, or
any other methodology in which the cointegrating parameters are estimated over short
samples of data. Again, this follows because a large span of data may be required to
estimate the parameters of a common trend consistently. Without consistent estimates,
the estimated cointegrating residual cannot be expected to forecast returns or the growth
rates of any of the other variables in the system since such forecastability is predicated
on identification of the true cointegrating parameters. This observation shows both a
blessing and a curse of econometric forecasts based on estimates of common stochastic
trends. On the one hand, these methodologies offer a blessing by providing predictor
variables that can be treated as known in subsequent forecasting analysis when samples
are sufficiently long. On the other hand, longer samples of data may be more prone
to regime changes, which, if present, may add considerably to the sampling uncertainty
in the predictive relationship between the estimated cointegrating residual and future
financial indicators. Such a trade-off must be weighed on a case-by-case basis, pending
a careful examination of the data-generating process.

2.7. In-Sample versus Out-of-Sample Prediction

So far,we have been discussing evidence on time-varying expected returns in the context
of in-sample predictability. A common perception in applied work is that out-of-sample
prediction is more reliable than in-sample prediction, and that in-sample tests are more
prone to uncovering spurious predictability than are out-of-sample tests. Goyal and
Welch (2007), e.g., investigate a large number of predictor variables for stock market
returns and conclude that many of them perform poorly in out-of sample tests. They
recommend that practitioners abandon attempts to forecast returns and instead use the
historical mean as a benchmark.

These conclusions raise several important questions. First, is there any evidence that
popular indicators that have displayed in-sample predictive power have statistically sig-
nificant out-of-sample predictive power? Second, why might an in-sample test show
evidence of predictability while an out-of-sample test does not?Third, what is the moti-
vation for undertaking out-of-sample tests, given evidence for in-sample predictability?
We address each question in turn.

Are stock returns predictable out-of-sample? The results in Goyal and Welch (2007) sug-
gest that many popular forecasting variables have little ability to predict stock returns
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out-of-sample.They show that the out-of-sample mean-square prediction error is higher
when using many predictor variables than when using the historical mean to forecast
excess returns.Yet even the results in Goyal and Welch (2007) show that these conclu-
sions do not apply to all forecasting variables, return horizons,or forecast subsamples. On
the contrary, many economic indicators have displayed out-of-sample forecasting power
for excess stock market returns across a range of studies. For example, Goyal and Welch
(2007) find that, relative to forecasts based on the historical mean, reductions in root-
mean-square forecast error are obtained in out-of-sample forecasts of stock returns by a
measure of ĉayt , a measure of the investment-capital ratio, and a measure of corporate
issuance activity. Campbell and Thompson (2005) find similar results in out-of-sample
forecasts by these variables as well as for the earnings-price ratio, a Treasury bill rate, a
term-spread, and a measure of inflation. Lettau and Ludvigson (2001a) and Guo (2006)
find that ĉayt predicts stock returns out-of-sample even when the parameters in ĉayt are
reestimated every period using only information that would have been available at the
time of the forecast. Similar findings are reported in Rapach and Wohar (2002). Eliasz
(2005) uses the best median unbiased estimator in the presence of nearly-integrated
regressors and finds that the dividend-price ratio forecasts excess stock returns out-of-
sample even in recent data. Finally,Ludvigson and Ng (2007) show that the risk premium
and volatility factors F̂1t and F̂2t , examined above, exhibit remarkably stable and strongly
statistically significant out-of-sample forecasting power for quarterly excess stock market
returns.

Thus, in answer to the first question raised above, stock returns do appear to be
predictable out-of-sample. But the evidence for out-of-sample predictive power depends
on the choice of predictor variable, the sample period, the forecast subsample, and the
return horizon.The sensitivity of the results to these factors naturally leads to the second
question posed above,namely why in-sample results can differ from out-of-sample results.

Why do in-sample results sometimes differ from out-of-sample results? One possible reason
for this discrepancy is the bias-variance trade-off emphasized by Inoue and Kilian (2004),
Campbell and Thompson (2005), and Cochrane (2008). To fix ideas, consider the case
where returns are predictable in a linear regression by some variable xt so that the
predictive regression,

rs,t+1 = μ+ βxt + ut+1, (2.19)

holds with β �= 0. In this case, the historical mean μ is a biased predictor of returns.This
bias contributes to a higher mean-square prediction error for forecasts based solely on the
historical mean relative to a forecast that exploits information on xt . But estimation error
in β tends to increase the variance of the return forecast, which contributes to a greater
mean-square forecast error for predictive regressions that use xt relative to predictions
based solely on the historical mean. Thus, the historical mean forecast is biased but
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has lower variance, while forecasts based on xt are unbiased but have greater variance.
Whether the overall forecast error from estimating (2.19) is higher or lower than that
generated by the historical mean forecast depends on how large the reduction in bias is
relative to the increase in variance.

Note that whatever the level of bias in the historical mean forecast, the variance of the
forecast error is greater for an out-of-sample forecast than for an in-sample forecast. Since
an in-sample forecast uses all available information in the given sample, it should produce
lower estimation error in β and less variance in the return forecast relative to an out-
of-sample procedure where β is estimated over subsamples of the data, and information
is discarded. It follows that a powerful in-sample test could correctly detect β �= 0,
even though an out-of-sample test indicates the historical mean forecast is superior.
This reasoning shows that poor out-of-sample results per se cannot be taken as evidence
against predictability. But they do imply that there may be too little information in
small samples to accurately estimate β and improve the return forecast. Examples of
this form can be found in simulation studies by Campbell and Thompson (2005) and
Cochrane (2008).

A formalization of this intuition is provided in recent theoretical work by Inoue and
Kilian (2004), where both environments subject to data mining and environments free
of data mining are considered.They demonstrate that in-sample and out-of-sample tests
of predictability are asymptotically equally reliable under the null of no predictability.11

Given that in-sample tests display no greater size distortions than do out-of-sample tests,
the choice between in-sample and out-of-sample prediction is reduced to the question of
which test is more powerful.Any out-of-sample analysis based on sample splitting involves
a loss of information and hence lower power in small samples. Inoue and Kilian find that
for most out-of-sample design choices, in-sample tests are more powerful than out-of-
sample tests even asymptotically. They conclude that, in many cases, an out-of-sample
test may fail to detect predictability that exists in population, whereas the in-sample test
correctly will detect it.

One way of addressing the power problems of out-of-sample tests is to develop more
powerful statistics for assessing out-of-sample predictability. McCracken (1999) and Clark
and McCracken (2001) develop several out-of-sample test statistics that are almost as
powerful as in-sample test statistics.

Campbell andThompson (2005) show that poor out-of-sample performance can also
come from bad luck in a particular sample. Suppose that β �= 0 is known so that there is
no estimation error contributing to the forecast variance. Returns are forecastable and
the forecasting relation is known with certainty. Campbell and Thompson show that, in
a large number of such cases, the historical mean can display lower mean forecast error

11A test is defined to be unreliable if its effective size exceeds its nominal size.
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in out-of-sample tests than a model that exploits information on xt (with known β),
simply because of sampling uncertainty. Even if stock returns are genuinely predictable
by some variable xt , it can be associated with poor out-of-sample forecasts in a finite
sample.

What is the motivation for undertaking out-of-sample tests? These findings bring us to the
third question posed above,namely what is the motivation for undertaking out-of-sample
tests, given evidence for in-sample predictability? As we have seen, poor out-of-sample
performance is not necessarily evidence against predictability. This suggests that if one
is interested only in whether β �= 0, the researcher should use the most powerful test
available, typically an in-sample regression. In this chapter, we are concerned with the
historical behavior of the risk-return relation. For this purpose,there is no reason to throw
away information when constructing estimates of the conditional mean and conditional
variance of stock returns, as required by out-of-sample forecasts.

So why are researchers motivated to conduct out-of-sample tests? Several possible
reasons appear in the extant literature, given either implicitly or explicitly.

1. To mimic the behavior of a real-world investor. It is often argued that recursive or rolling
out-of-sample forecasts mimic the behavior of a practitioner in real time.Although this
argument may at first appear axiomatic, upon closer inspection, it is clear that much
hinges on the researcher’s view of how practitioners actually behave. For example,
Campbell and Thompson (2005) argue that real-world investors would not naively
run the unrestricted forecasting regressions that form the basis of out-of-sample tests
conducted in the literature. Instead, they would impose restrictions on the regression
coefficient β to require nonnegative estimates of the risk premium. They show that
when such restrictions are imposed, the evidence for out-of-sample predictability is
significantly stronger than when they are not imposed.These findings underscore the
important role of behavioral assumptions in the outcome of out-of-sample forecast
tests.

2. As protection against overfitting/data mining. Researchers often use the terms“overfitting”
and “data mining” synonymously. Moreover, it is commonly presumed that out-of-
sample tests can provide better protection against data mining than in-sample tests.
Whether this presumption is valid, however, depends on how the tests are imple-
mented. In much current practice, out-of-sample tests are routinely implemented
upon the completion of a statistically significant in-sample finding. In this case, out-
of-sample procedures offer no more protection from data mining than do in-sample
procedures. The problem is that once the out-of-sample exercise is completed, the
researcher knows exactly the out-of-sample performance of the forecasting variable
and is free to experiment with alternative predictors until she finds one that reduces the
mean-square forecast error. The irony here is that the stated motivation for routinely
implementing out-of-sample tests along-side in-sample tests is the desire to guard
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against data mining.Yet these observations suggest that if data mining is a concern,we
should be equally skeptical of in-sample and out-of-sample tests.

3. To detect structural change or model instability. It is sometimes argued that out-of-sample
tests provide one way of assessing whether there has been structural change in a
forecasting relation. For example, this argument motivates the investigation of Goyal
and Welch (2007), who write that out-of-sample tests “help determine whether a
model is stable and well specified,or changing over time,either suddenly or gradually.”
Indeed, Clark and McCracken (2005) study the effects of structural breaks on the
power of predictability tests and find that if predictability holds in part of the sample,
but is subject to structural change, out-of-sample tests may suggest no predictability,
while in-sample tests reject the null of no predictability. Similarly, Lettau and Van
Nieuwerburgh (2007) study the behavior of financial ratios such as the price-dividend
ratio and conclude that structural breaks in the mean of these ratios can account
for the discrepancy between in-sample and out-of-sample forecasting results where
these ratios are used as predictor variables. If model stability is the primary concern,
however, a simple subsample analysis using in-sample techniques can often address
these concerns. Moreover, in the presence of structural change, there are often more
powerful ways to do inference than the use of out-of-sample forecasting procedures.
Rossi (2005) develops a test of the joint null of no predictability and no parameter
instability and shows that it is locally asymptotically more powerful than rolling or
recursive out-of-sample tests.

We conclude this section on return predictability with the following summary.There
are many statistical issues that make inference about predictability of stock returns chal-
lenging. Among these, variables that predict stock returns tend to be highly persistent,
only predetermined rather than exogenous, and in some cases subject to structural breaks
in their mean values. Moreover, given the persistence of these variables, samples of the
size currently available are short, making asymptotic approximations less useful.

Despite these statistical concerns, the preponderance of evidence suggests that stock
returns are modestly predictable over longer horizons. Not only is the evidence for
predictability in excess stock returns much stronger than that of dividend growth, the
volatility of equity market valuation ratios cannot be explained by variation in expected
cash-flow measures alone, requiring forecastable variation in returns. Moreover, even the
most rigorous statistical tests suggest that stock returns are predictable both in-sample
and out-of-sample by some variables over some forecast horizons. At the same time,
there is some evidence of instability in the predictive relations. An important question
for future research is determining whether and how such forecastability changes over
time, and why. For now, we conclude that the numerator in the Sharpe ratio varies
and is likely to continue to be an important contributor to volatility in the risk-return
trade-off.
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3. THE CONDITIONAL VOLATILITY OF STOCK RETURNS AND
ITS RELATION TO THE CONDITIONALMEAN

The denominator of the Sharpe ratio is the conditional standard deviation of excess
returns. Although several papers have investigated the empirical determinants of stock
market volatility, few have found real macroeconomic conditions to have a quantitatively
important impact on conditional volatility. In a classic paper, Schwert (1989) finds that
stock market volatility is higher during recessions than at other times,but he also finds that
this recession factor plays a small role in explaining the behavior of stock market volatility
over time. Thus, existing evidence that stock market risk is related to the real economy
is at best mixed.There is even more disagreement among studies that seek to determine
the empirical relation between the conditional mean and conditional volatility of stock
market returns.We argue below that this disagreement is likely to be attributable, in part,
to the relatively small amount of conditioning information typically used in empirical
studies.

Empirical studies of the relation between the conditional mean and volatility of stock
returns have been based on a variety of estimation methodologies. A popular empirical
specification relates conditional means to conditional volatility in regressions taking the
form

E[Rs,t+1 − Rf ,t+1 | Zt] = α+ βVar(Rs,t+1 − Rf ,t+1 | Zt), (3.1)

where Zt denotes the information set of investors.Withα = 0,this empirical specification
is a valid representation of the risk-return trade-off in the CAPM.

A common empirical approach for modeling the conditional expectations underlying
the conditional mean on the left-hand side of (3.1) is to use projections of excess stock
market returns on to predetermined conditioning variables.12 Empirical studies differ
according to what conditioning information is used in projections of excess returns.We
discuss this further below.

Conditional volatility may also be measured by a projection onto predetermined con-
ditioning variables, taking the fitted value from this projection as a measure of conditional
variance or conditional standard deviation. The dynamic relation between conditional
volatility and conditional mean may then be assessed by evaluating the correlation
between fitted mean and fitted volatility obtained from these separate projections.

Within the set of papers that measure conditional volatility by a projection onto prede-
termined conditioning variables, two approaches are common. One is to take the squared
residuals from a regression of excess returns onto a predetermined set of conditioning

12A less common approach is to infer the conditional expected return from a model. Pastor et al. (2008) use a measure of the implied cost
of capital to infer the conditional expected stock return, an approach that delivers a positive risk-return relation in seven countries.
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variables and regress them on to the same set of conditioning variables, using the fitted
values from this regression as a measure of conditional variance. Notice that while the
residuals themselves are uncorrelated by construction with these conditioning variables,
the squared residuals need not be.This approach is taken by Campbell (1987) and Breen
et al. (1989). These authors find that when short-term nominal interest rates are high,
the conditional volatility of stock returns is high while the conditional mean of stock
returns is low, implying a negative risk-return trade-off.

Alternatively, volatility can be estimated using high-frequency (e.g., daily) return data
to compute the sample standard deviation of returns for longer holding periods.We call
such sample standard deviations constructed from high-frequency data a measure realized
volatility. The realized (ex-post) volatility computed from daily returns is then projected
onto time t information variables to obtain a consistent estimate of the conditional
variance (or conditional standard deviation) of returns.This approach is taken in French
et al. (1987),Schwert (1989),Whitelaw (1994),Ludvigson and Ng (2007).A variation on
this procedure is used by Ghysels et al. (2005) who forecast monthly variance computed
from daily returns with past daily squared returns.

Yet a third set of papers estimates conditional volatility of excess stock market returns
by specifying a parametric conditional volatility model, such as generalized autore-
gressive conditional heteroskedasticity (GARCH), GARCH-M, exponential GARCH
(EGARCH), or stochastic volatility. Examples include French et al. (1987), Bollerslev
et al. (1988), Glosten et al. (1993). A variation on this approach is taken by Brandt and
Kang (2004), who use a latent vector autoregressive for log mean and log volatility to
estimating the relation between the conditional mean and conditional volatility.

The methodologies described above estimate the conditional mean and conditional
volatility by presuming particular functional forms for fitted mean and fitted volatility.
Instead, the entire conditional distribution of asset returns could be estimated nonpara-
metrically, using a flexible parametric form for the conditional joint density of a vector
of asset returns.This approach is taken in Gallant et al. (1990),who use the seminonpara-
metric (SNP) methodology developed in Gallant and Tauchen (1989) to estimate the
conditional distribution of a vector of asset payoffs.The conditional mean and conditional
volatility can then be inferred from the estimated conditional distributions.The authors
use this methodology to compute conditional volatility bounds for stochastic discount
factor models. Harrison and Zhang (1999) use the SNP methodology to estimate how
the risk-return relation varies over different holding periods.

The advantage of the SNP methodology relative to the reduced-form approach taken
here is that it is potentially more efficient because it uses information on the entire
conditional distribution of asset returns. A potential disadvantage is that it requires non-
parametric estimation of the entire likelihood function, the dimensionality of which
can become large, especially as the desired number of return or conditioning series
increases. As an alternative, one could estimate the conditional moments themselves
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using a nonparametric sieve estimator (e.g.,Chen and Ludvigson,2004,2007).A rigorous
comparison of these methodologies and their implications for the dynamic risk-return
relation is beyond the scope of this chapter, but is a promising area for future research.

3.1. Updated Evidence on Risk and Return

Following much of the literature above, in this section, we provide summary evidence
on the dynamic relationship between the conditional mean excess return and condi-
tional volatility, using fitted values for mean and volatility from reduced-form forecasting
regressions. The fitted values provide one way of forming an empirical proxy for the
conditional mean and conditional volatility of stock returns and thereby investigating
the time-series behavior of their ratio over time. Most applications of this procedure,
however, are subject to a number of important criticisms that relate to the relatively
small amount of conditioning information that is typically used to model the condi-
tional mean and conditional volatility of excess stock market returns. Indeed, we argue
that the disagreement in the empirical literature on the risk-return relation is likely to
be attributable, in large part, to the relatively small amount of conditioning information
typically used. We make this argument for several reasons.

First, the conditional expectations underlying the conditional mean and conditional
volatility are typically measured as projections onto predetermined conditioning vari-
ables. But as Harvey (2001) points out, the decision of which predetermined conditioning
variables to be used in the econometric analysis can influence the estimated risk-return
relation. In practice, researchers are forced to choose among a few conditioning variables
because conventional statistical analyses are quickly overwhelmed by degrees-of-freedom
problems as the number rises. Such practical constraints introduce an element of arbitrari-
ness into the econometric modeling of expectations and may lead to omitted-information
estimation bias since a small number of conditioning variables is unlikely to span the infor-
mation sets of financial market participants. If investors have information not reflected
in the chosen conditioning variables used to model market expectations, measures of
conditional mean and conditional volatility will be misspecified and possibly highly
misleading.

Second, the estimated relation between the conditional mean and conditional volatil-
ity of excess returns often depends on the parametric model of volatility, e.g., GARCH,
GARCH-M, EGARCH, stochastic volatility, or kernel density estimation (Harvey,
2001). Many of these approaches implicitly use a relatively small amount of information
to model conditional volatility.

Third, the reliance on a small number of conditioning variables exposes existing anal-
yses to problems of temporal instability in the underlying forecasting relations being
modeled. For example, it is commonplace to model market expectations of future stock
returns using the fitted values from a forecasting regression of returns on to a mea-
sure of the market-wide dividend-price ratio. A difficulty with this approach is that the
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predictive power of the dividend-price ratio for excess stock market returns is unstable
and exhibits statistical evidence of a structural break in the mid-1990s (Lettau et al.,2008;
Lettau andVan Nieuwerburgh, 2007).

In this chapter, we discuss one potential remedy to these problems using the method-
ology of dynamic factor analysis for large data sets.The discussion follows the application
found in Ludvigson and Ng (2007).

Recent research on dynamic factor models finds that the information in a large number
of economic time series can be effectively summarized by a relatively small number of
estimated factors, affording the opportunity to exploit a much richer information base
than what has been possible in prior empirical study of the risk-return relation. In this
methodology, “a large number” can mean hundreds or, perhaps, even more than one
thousand economic time series. By summarizing the information from a large number
of series in a few estimated factors, the researcher can eliminate the arbitrary reliance on a
small number of exogenous predictors to estimate the conditional mean and conditional
volatility of stock returns,and make feasible the use of a vast set of economic variables that
are more likely to span the unobservable information sets of financial market participants.
An added benefit of this approach is that the use of common factors can provide robustness
against the structural instability that plagues low-dimensional forecasting regressions since
such instabilities in individual series often “average out” in the construction of common
factors (Stock andWatson,2002). In the analysis of this chapter,we include two estimated
factors in the construction of fitted mean found by Ludvigson and Ng (2007) to be
particularly important for forecasting quarterly excess returns on the aggregate stock
market.

One study that does not rely on predetermined conditioning variables in the construc-
tion of fitted moments is Brandt and Kang (2004) who model the conditional mean and
conditional volatility as latent state variables identified only from the history of return
data. An important advantage of this approach is that it eliminates the reliance on a few
arbitrary conditioning variables in forming estimates of conditional moments. A corre-
sponding disadvantage is that potentially useful information is discarded. Moreover, in
practice,latent variables must be modeled as following low-order,linear time-series repre-
sentations of known probability distribution. For example, Brandt and Kang assume that
the conditional mean and conditional volatility evolve according to first-order Gaussian
vector autoregressive processes. If the true representation is of higher order, nonlinear,
or non-Gaussian, we again face an omitted information problem.

In this chapter,we use realized volatility to model return volatility,motivated by recent
findings in the volatility modeling literature. Andersen et al. (2002) and Andersen et al.
(2003) argue that nonparametric volatility measures such as realized volatility benefit from
being free of tightly parametric functional form assumptions and provide a consistent
estimate of ex-post return variability. Realized volatility, in turn, permits the use of
traditional time-series methods for modeling and forecasting, making possible the use
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of estimated common factors from large data sets to measure conditional, or expected,
volatility.

To obtain a measure of realized volatility for the excess return on the CRSP-VW
index, we use the time-series variation of daily returns:

Vt =
√∑

k∈t

(Rsk − Rs)2, (3.2)

where Vt is the sample volatility of the market return in period t,Rsk is the daily CRSP-
VW return minus the implied daily yield on the three-monthTreasury bill rate,Rs is the
mean of Rsk over the whole sample, k represents a day, and t is a quarter.

3.1.1. Econometric Framework

As above, for t = 1, . . .T , let r e
s,t+1denote log excess returns in period t + 1 and let Vt+1

be an estimate of their volatility. In what follows, we will model returns and volatility
both in levels and logs.The objective is to estimate Etre

s,t+1, the conditional mean of r e
s,t+1,

and conditional volatility EtVt+1, using information up to time t. We confine ourselves
to estimation of Etre

s,t+1 and EtVt+1 using linear parametric models.
First, consider estimation of the conditional mean Etre

s,t+1. A standard approach is to
select a set of K predetermined conditioning variables at time t, given by the K × 1
vector Zt , and then estimate

r e
s,t+1 = β′Zt + εt+1 (3.3)

by least squares.The estimated conditional mean is then the fitted value from this regres-
sion, r̂s,t+1|t = β̂′Zt . An important question is whether we can go beyond (3.3) to make
use of the substantially more information that is available to market participants.That is,
suppose we observe a T ×N panel of data with elements xit , i = 1, . . .N , t = 1, . . . , T ,
where the cross-sectional dimension, N , is large, and possibly larger than the number of
time periods,T . Observe that there are potentially 2N possible combinations of predictor
variables to consider; letting xt denote the N × 1 vector of panel observations at time t,
estimates from the regression

r e
s,t+1 = γ ′xt + β′Zt + εt+1

quickly run into degrees-of-freedom problems as the dimension of xt increases, and
estimation is not even feasible when N + K > T .

To address this problem, Ludvigson and Ng (2007) posit that xit has a factor structure
taking the form

xit = λ′i ft + eit , (3.4)
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where ft is a r × 1 vector of latent common factors, λi is a corresponding r × 1 vector
of latent factor loadings, and eit is a vector of idiosyncratic errors.The crucial point here
is that r << N so that substantial dimension reduction can be achieved by considering
the regression

r e
s,t+1 = α′F̂t + β′Zt + εt+1, (3.5)

where F̂t ⊂ f̂t ,and“hats”denote estimated values. In practice, ft are estimated by principal
components analysis (PCA).13,14

Here we estimate regressions of the form (3.5), where the vector F̂t contains the
“volatility” and “risk-premium” factors formed by Ludvigson and Ng (2007) from a
quarterly data set of 172 financial indictors, and the vector Zt contains a range of predictor
variables used in other studies to forecast excess stock returns.

What economic interpretation can be given to these factors? The “volatility factor,”
denoted F̂1t , is the square of the first common factor of the data set comprised of financial
indicators.This factor explains almost 80% of the contemporaneous variation in squared
stock market returns; therefore, we consider it a volatility factor. The “risk-premium”
factor, denoted F̂2t , is the third common factor from this data set and is highly correlated
with a linear combination of three state variables widely used in the empirical asset
pricing literature to explain cross-sectional variation in risk premia: the Fama-French
factors SMBt , HMLt , and the market return (Fama and French, 1993).We include these
factors here because F̂1t and F̂2t have strong forecasting power for quarterly excess stock
market returns, above and beyond that contained in other popular forecasting variables
such as the dividend-yield, ĉayt and short-term interest rates, consistent with findings in
Ludvigson and Ng (2007) (see Tables 11.1 and 11.2).

In what follows, we denote the fitted conditional mean

μt ≡ r̂ e
s,t+1|t = α̂′F̂t + β̂′Zt , (3.6)

where μt is an estimate of either the conditional mean of log excess returns, Et(r e
s,t+1),

or the conditional mean of level excess returns Et(Re
s,t+1). In the tables below, we report

results for both cases.

13To be precise, the T × r matrix f̂ is
√

T times the r eigenvectors corresponding to the r largest eigenvalues of the T × T matrix
xx′/(TN ) in decreasing order. Let + be the N × r matrix of factor loadings (λ′1, . . . , λ′N )′. + and f are not separately identifiable, so
the normalization f ′ f /T = Ir is imposed, where Ir is the r-dimensional identity matrix. With this normalization, we can additionally
obtain +̂ = x′ f̂ /T , and χ̂it = λ̂ ′i f̂t denotes the estimated common component in series i at time t. The number of common factors, r ,
is determined by the panel information criteria developed in Bai and Ng (2002).

14Under the assumption that N , T →∞with
√

T/N → 0,Bai and Ng (2006) showed that (i) (̂α, β̂) obtained from least squares estimation
of (3.5) are

√
T consistent and asymptotically normal, and the asymptotic variance is such that inference can proceed as though ft is

observed, (ii) the estimated conditional mean,μt = F̂ ′t α̂+ Z ′t β̂ is min[√N ,
√

T ] consistent and asymptotically normal, and (iii) the h
period forecast error mt+h − mt+h|t from (3.5) is dominated in large samples by the variance of the error term, just as if ft is observed.
The importance of a large N must be stressed, however, as without it, the factor space cannot be consistently estimated however large T
becomes.



662 Martin Lettau and Sydney C. Ludvigson

Given a measure of the volatility of excess returns at time t, estimation of conditional
volatility is carried out in the same way as estimation of the conditional mean, and the
same asymptotic results for conducting inference apply.That is,we estimate a final model
for volatility based on

Vt+1 = b′Zt + ut+1. (3.7)

In principal, factors could be included as additional regressors in (3.7); we omit them
here because Ludvigson and Ng (2007) found that much of the information in estimated
factors for future volatility was subsumed by conventional predictor variables. In what
follows, we denote the fitted conditional volatility

σt ≡ V̂t+1|t = b̂ ′Zt , (3.8)

and use it as a measure of the conditional volatility of excess returns, EtVt+1. For the
CRSP-VW index, the quarterly mean excess return is 0.019; the quarterly standard
deviation is 0.0817.

A related estimator of the conditional variance is explored in a recent paper by
Ghysels et al. (2005).They use a mixed data sampling approach, which they call MIDAS,
that forecasts the monthly variance with a weighted average of lagged daily squared
returns. The MIDAS estimator explains about 40% of the variation of realized variance
in the subsequent month because the estimated weights on the lagged daily squared
returns decay slowly, thereby capturing the persistence in the conditional variance.
The lagged daily squared returns can be thought of as elements of Zt in (3.7). They
find that the MIDAS estimator of conditional variance is positively related to and
explains about 2% of the variation of next month’s stock market returns (and 5% in the
period since 1964). Since expected returns are modeled as a function of time-t volatil-
ity, they find a positive relation between conditional expected returns and conditional
volatility.

The final aspect of our econometric framework is a reduced-form linear equation for
the conditional mean as a function of the contemporaneous conditional volatility and
lags of the two:

μt = δ+ β1σt + β2σt−1 + αμt−1 + εt . (3.9)

This is a generalization of the more common volatility-in-mean model that relates the
conditional mean to the conditional volatility of returns. Here, we follow Whitelaw
(1994), Brandt and Kang (2004), and Ludvigson and Ng (2007) and include lags of
μt and σt in modeling the risk-return relation. These studies all find important lead-lag
interactions between conditional mean and conditional volatility.The coefficient β1 mea-
sures the volatility-in-mean effect; the coefficient β2 measures the lag-volatility-in-mean
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effect.15 We refer to the estimated relation between μt and σt when lags of μt and σt are
included in the risk-return regression as the conditional risk-return relation.

In what follows, we also consider specifications in which lagged values of mean and
volatility are omitted as regressors in estimating the risk-return relation:

μt = δ+ βσt + εt . (3.10)

We refer to the estimated relation between μt and σt from the empirical specification
(3.10) as the unconditional risk-return relation.

3.1.2. Forecasts of Volatility

When constructing volatility forecasts, a question arises as to whether the volatility of
returns should be forecast in logs or in levels. One reason to take logs is that variances
cannot be negative. Another is that the realized volatility measures using daily returns
give a lot of weight to relatively rare, high-volatility periods (Engle and Patton, 2000).
However, the risk-return relation and the conditional Sharpe ratio are a function of the
level of volatility rather than its log value. We discuss this issue further below. Here, we
present forecasts for volatility both in levels and in logs.

Table 11.4 presents long-horizon regressions of volatility, Vt+h, for several horizons,
t + 1, . . h, on a variety of predictive variables. Table 11.4A presents results for the level
of volatility; Table 11.4B presents results for the log of volatility. Each table reports
the regression coefficient, heteroskedasticity and autocorrelation consistent t statistic,
and adjusted R2 statistic. There is substantial autocorrelation in measured volatility, thus
we include two lags of volatility in our forecasting equations for Vt . The results of
estimating a purely autoregressive specification are reported in row 1 of each table. Past
volatility is a statistically significant predictor of future volatility up to four quarters
ahead, with adjusted R2 statistics monotonically declining from 22% at a one-quarter
horizon.At a horizon of six quarters,past volatility has little explanatory power for future
volatility.

The second and third rows of Table 11.4A display the forecasting power of the
consumption-wealth ratio proxy, ĉayt , for future volatility using quarterly data. Two
aspects of these findings stand out. First, the signs of the significant coefficients in these
regressions are all negative. Recalling that high values of ĉayt predict high excess returns
(Table 11.1), this result implies that conditional expected excess returns are negatively

15Ludvigson and Ng (2007) have also studied an analogous mean-in-volatility equation taking the form

σt = δ+ α1μt + α2μt−1 + βσt−1 + ξt+1.

The empirical results lead to the same conclusions about the risk-return relation as the volatility-in-mean equation (3.9). We therefore
omit those results to conserve space.



664 Martin Lettau and Sydney C. Ludvigson

Table 11.4A Levels: Forecasting stock market volatility

Row Regressors Forecast horizon H in quarters

1 2 4 6 8 12 16 24

1 Vt 0.35 0.43 0.34 0.21 0.04 −0.08 −0.08 −0.03
(5.45) (4.48) (2.31) (1.48) (0.41) (−0.69) (−0.51) (−0.15)

Vt−1 0.22 0.07 −0.06 −0.12 −0.07 −0.08 0.04 0.26
(3.18) (0.89) (−0.63) (−0.88) (−0.61) (−0.41) (0.23) (1.10)
[0.22] [0.20] [0.10] [0.04] [0.00] [0.00] [0.00] [0.03]

2 ĉayt −0.71 −1.09 −1.60 −1.87 −1.97 −1.41 −0.59 −0.41
(−2.88) (−3.25) (−3.72) (−3.78) (−3.67) (−2.55) (−0.83) (−0.59)
[0.10] [0.14] [0.19] [0.20] [0.19] [0.08] [0.01] [0.00]

3 Vt 0.34 0.38 0.32 0.15 0.04 −0.03 −0.04 0.05
(4.88) (4.26) (2.25) (1.56) (0.38) (−0.20) (−0.21) (0.21)

Vt−1 0.17 0.05 −0.09 −0.04 0.10 0.11 0.11 0.31
(2.84) (0.78) (−0.94) (−0.28) (0.76) (0.41) (0.55) (1.28)

ĉayt −0.55 −0.91 −1.48 −1.79 −2.11 −1.57 −0.75 −1.07
(−3.69) (−4.26) (−4.15) (−3.98) (−3.97) (−2.44) (−0.92) (−1.39)
[0.27] [0.29] [0.27] [0.21] [0.19] [0.07] [0.01] [0.05]

4 Vt 0.35 0.40 0.37 0.22 0.09 −0.02 −0.06 −0.09
(4.72) (4.49) (2.40) (1.76) (0.84) (−0.16) (−0.43) (−0.44)

Vt−1 0.19 0.09 −0.07 −0.08 0.00 0.00 0.05 0.25
(2.53) (1.14) (−0.69) (−0.58) (−0.03) (0.00) (0.24) (1.07)

dt − pt −0.01 −0.02 −0.03 −0.04 −0.04 −0.03 −0.01 0.05
(−2.39) (−2.52) (−2.12) (−1.58) (−1.25) (−0.70) (−0.17) (1.20)
[0.24] [0.23] [0.16] [0.09] [0.04] [0.01] [−0.01] [0.05]

5 Vt 0.34 0.38 0.32 0.17 0.06 0.01 −0.03 0.00
(4.74) (4.23) (2.29) (1.68) (0.64) (0.11) (−0.16) (0.00)

Vt−1 0.17 0.06 −0.09 −0.02 0.13 0.12 0.11 0.32
(2.68) (0.78) (−0.89) (−0.19) (1.04) (0.42) (0.55) (1.34)

ĉayt −0.49 −0.81 −1.33 −1.64 −1.96 −1.51 −0.74 −1.30
(−3.80) (−4.59) (−3.90) (−3.72) (−3.76) (−2.44) (−0.93) (−1.46)

dt − pt −0.01 −0.01 −0.01 −0.02 −0.02 −0.02 −0.01 0.06
(−1.29) (−1.27) (−1.06) (−0.76) (−0.74) (−0.52) (−0.15) (1.34)
[0.27] [0.29] [0.27] [0.22] [0.20] [0.08] [0.00] [0.09]

6‡ Vt 0.21 0.23 0.15 −0.03 −0.15 −0.16 −0.25 −0.21
(3.14) (2.59) (1.07) (−0.30) (−1.15) (−1.23) (−1.66) (−1.23)

Vt−1 0.12 0.01 −0.14 −0.01 0.17 0.11 0.02 0.10
(2.08) (0.07) (−1.38) (−0.07) (1.61) (0.47) (0.12) (0.66)
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Table 11.4A Levels: Forecasting stock market volatility

Row Regressors Panel A: Forecast horizon H in quarters

1 2 4 6 8 12 16 24

6‡ ĉayt −0.44 −0.75 −1.26 −1.57 −1.88 −1.27 −0.22 0.22
(−3.30) (−3.47) (−3.93) (−4.14) (−4.46) (−2.63) (−0.31) (0.34)

dt − pt −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.05 −0.09
(−2.49) (−2.30) (−2.15) (−1.74) (−1.60) (−1.31) (−1.12) (−1.65)

DEFt 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.05
(0.47) (0.34) (0.54) (0.52) (0.75) (0.63) (0.81) (2.28)

CPt 1.68 2.30 2.52 3.01 3.87 2.19 1.25 1.03
(3.29) (3.04) (3.23) (3.33) (3.75) (2.04) (0.95) (0.68)

TB1Yt 0.13 0.20 0.31 0.37 0.39 0.65 0.75 0.93
(2.06) (1.84) (1.66) (1.64) (1.47) (2.59) (2.11) (2.64)
[0.33] [0.37] [0.37] [0.35] [0.37] [0.28] [0.24] [0.38]

Table 11.4B Logs: Forecasting stock market volatility

Row Regressors Forecast horizon H in quarters

1 2 4 6 8 12 16 24

1 log(Vt) 0.44 0.51 0.44 0.25 0.06 −0.06 −0.05 0.01
(8.88) (6.90) (3.28) (2.05) (0.57) (−0.46) (−0.34) (0.04)

log(Vt−1) 0.23 0.08 −0.11 −0.12 −0.05 −0.08 0.03 0.18
(3.45) (0.97) (−1.05) (−0.90) (−0.34) (−0.39) (0.15) (0.80)
[0.34] [0.29] [0.16] [0.05] [−0.01] [0.00] [−0.01] [0.01]

2 ĉayt −9.43 −10.49 −11.15 −10.57 −9.75 −6.10 −2.38 −1.54
(−2.62) (−3.21) (−3.70) (−3.74) (−3.70) (−2.53) (−0.85) (−0.67)
[0.08] [0.13] [0.17] [0.17] [0.15] [0.07] [0.01] [0.00]

3 log(Vt) 0.43 0.45 0.42 0.19 0.04 −0.01 −0.02 0.10
(7.51) (7.08) (3.10) (1.97) (0.40) (−0.09) (−0.09) (0.40)

log(Vt−1) 0.19 0.07 −0.16 −0.06 0.13 0.12 0.10 0.23
(2.78) (0.88) (−1.42) (−0.40) (0.81) (0.47) (0.48) (1.00)

ĉayt −6.60 −8.12 −9.93 −9.81 −10.73 −7.01 −2.99 −3.72
(−4.11) (−4.26) (−4.18) (−3.89) (−4.09) (−2.49) (−0.97) (−1.41)
[0.37] [0.35] [0.30] [0.19] [0.16] [0.07] [0.00] [0.04]

4 log(Vt) 0.44 0.47 0.47 0.27 0.10 −0.01 −0.06 −0.06
(8.28) (6.90) (3.37) (2.29) (0.92) (−0.08) (−0.38) (−0.29)

log(Vt−1) 0.21 0.11 −0.13 −0.09 0.01 0.00 0.03 0.18
(3.07) (1.25) (−1.14) (−0.67) (0.09) (0.00) (0.14) (0.79)

(Continued)



666 Martin Lettau and Sydney C. Ludvigson

Table 11.4B (Continued)

Row Regressors Panel B: Forecast horizon H in quarters

1 2 4 6 8 12 16 24

4 dt − pt −0.13 −0.17 −0.20 −0.18 −0.18 −0.08 0.01 0.17
(−2.28) (−2.30) (−1.76) (−1.18) (−0.90) (−0.40) (0.08) (1.20)
[0.34] [0.30] [0.21] [0.08] [0.02] [−0.01] [−0.01] [0.03]

5 log(Vt) 0.43 0.45 0.43 0.20 0.06 0.01 −0.02 0.04
(7.49) (6.74) (3.14) (2.02) (0.54) (0.06) (−0.14) (0.17)

log(Vt−1) 0.18 0.07 −0.15 −0.05 0.14 0.13 0.09 0.24
(2.78) (0.87) (−1.38) (−0.35) (1.01) (0.47) (0.45) (1.08)

ĉayt −6.12 −7.55 −9.35 −9.35 −10.29 −6.89 −2.99 −4.45
(−3.89) (−4.06) (−3.82) (−3.51) (−3.69) (−2.46) (−0.96) (−1.42)

dt − pt −0.04 −0.05 −0.05 −0.05 −0.08 −0.06 0.02 0.21
(−0.68) (−0.70) (−0.54) (−0.36) (−0.40) (−0.25) (0.08) (1.31)
[0.37] [0.35] [0.30] [0.19] [0.16] [0.07] [0.00] [0.08]

6‡ log(Vt) 0.33 0.33 0.26 −0.01 −0.17 −0.16 −0.23 −0.17
(6.54) (4.59) (2.07) (−0.08) (−1.22) (−1.08) (−1.47) (−1.03)

log(Vt−1) 0.14 0.04 −0.20 −0.03 0.19 0.13 0.02 0.05
(2.12) (0.46) (−1.78) (−0.18) (1.59) (0.59) (0.10) (0.34)

ĉayt −5.57 −7.03 −8.95 −9.07 −10.02 −5.98 −1.09 0.44
(−3.39) (−3.57) (−3.94) (−3.90) (−4.49) (−2.79) (−0.41) (0.19)

dt − pt −0.13 −0.14 −0.17 −0.18 −0.21 −0.20 −0.14 −0.29
(−2.01) (−1.77) (−1.63) (−1.21) (−1.16) (−1.00) (−0.82) (−1.50)

DEFt 0.02 0.00 0.06 0.06 0.09 0.05 0.08 0.15
(0.30) (0.02) (0.47) (0.44) (0.72) (0.56) (0.76) (2.17)

CPt 17.61 17.47 15.40 18.73 22.95 11.53 6.24 3.48
(3.09) (2.96) (2.85) (3.50) (3.68) (2.38) (1.21) (0.70)

TB1Yt 2.06 2.49 2.81 2.73 2.38 3.11 3.01 3.13
(2.35) (2.25) (2.03) (1.91) (1.66) (2.71) (2.22) (2.82)
[0.41] [0.41] [0.40] [0.33] [0.37] [0.29] [0.25] [0.36]

The table presents results from long-horizon regressions of stock market volatility on lagged variables using quarterly data from
1952:4–2000:4, OLS estimation. The dependent variable at each forecast horizon H is the H-step ahead volatility, equal to

vt+1,t+H = [#s∈t+1,...,t+h(rs − r̄)2]1/2,

where v denotes the standard deviation of the CRSP value-weighted index estimated from daily returns.The H-period volatilities
are regressed on one-period lagged values of the log dividend yield, dt − pt , the consumption-wealth ratio proxy ĉayt = ct −
β̂aat − β̂yyt , the BAA Corporate Bond rate minus the AAA Corporate Bond rate, DEFt , the difference between the yield on
six-month commercial paper and the three-monthTreasury bill yield,CPt , the one-yearTreasury yield,TB1Yt , and their own first
and second lagged values,denoted Vt and Vt−1. For each regression, the table reports OLS estimates of the regressors,Newey–West
corrected t-statistics in parentheses, and adjusted R2 statistics in square brackets. The sample period is the fourth quarter of 1952
to the fourth quarter of 2000 for quarterly forecasts, except for regression 6 (marked with a ‡), which uses a sample running from
the second quarter of 1953 to the fourth quarter of 2000, the largest common sample for which all the data are available.
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related to conditional volatility forecasts based on prediction by ĉayt . The finding sug-
gests that stock market volatility by itself is a poor proxy for variation in the equity risk
premium since high risk-premia cannot be explained by high stock market volatility and
vice versa. Second, the regression results indicate that ĉayt is both a statistically significant
and economically important determinant of future stock market volatility. When ĉayt is
the sole predictive variable (row 2), it is statistically significant at the 5% level, over hori-
zons ranging from 1 to 12 quarters, with R2 statistics starting at 12% for a one-quarter
horizon and rising to a peak of 19% six quarters ahead.The marginal predictive power of
ĉayt survives when past volatility is controlled for (row 3).These results demonstrate that
volatility is predictable by at least some of the same variables that predict excess returns,
contrary to perception that this is not the case (e.g., Cochrane, 2005, p. 396.).

The fourth row of Table 11.4A uses the dividend-price ratio to forecast volatility.The
coefficient on this variable, like that on ĉayt , is negative, and it is statistically significant
up to three quarters ahead, although the predictive power of the dividend-yield is driven
out by ĉayt (row 5).

The sixth row adds three additional regressors to the set of forecasting variables for
volatility: DEFt , a commercial paper-Treasury spread, CPt , and the one-year Treasury
yield, TB1Yt . The last three predictive variables are those used by Whitelaw (1994) to
forecast volatility at monthly and quarterly horizons. In this multivariate regression, all
variables have marginal predictive power at one horizon or another, with ĉayt , dt − pt ,
and CPt displaying forecasting power at horizons less than six quarters, and TB1Yt

displaying forecasting power at horizons in excess of three years; the default spread only
has forecasting power at a 24-quarter horizon.

The same results are presented in Table 11.4B for log volatility. The results are very
similar to those obtained when the level of Vt is forecast. The log specification is found
to explain a larger fraction of future log volatility than the level specification explains of
the future level of volatility.

A noteworthy aspect of the results in Tables 11.4A and 11.4B is the finding that
quarterly conditional volatility varies: although there is a vast literature documenting
time variation in stock market volatility at high frequencies, it is often thought that
volatility is not strongly forecastable at frequencies as low as a quarter (e.g., Campbell,
2003; Christoffersen and Diebold, 2000).The evidence presented here, along with more
recent evidence in Brandt and Jones (2005), shows that conditional volatility varies over
horizons ranging from a quarter to several years.

Figure 11.1 plots an estimate over time of the conditional volatility of the excess return
on the CRSP-VW index.The figure plots the fitted values from the regression specifica-
tion given in row 3 of Table 11.4A, which includes ĉayt and two lags of volatility as pre-
dictors of quarterly volatility. NBER dated recessions are indicated with shaded bars.The
figure suggests that conditional volatility is high in recessions but falls through the course
of the recession when expected returns are rising. By contrast, conditional volatility
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Figure 11.1 Conditional volatility for the CRSP-VW Index.
Note: Shading denotes quarters designated recession by the NBER.
Source: Authors’ calculations.

tends to rise over the course of an expansion when conditional expected returns are
falling.

The estimates above rely on realized volatility as a measure of the variance of stock
returns. There are many other possible measures of volatility available to the researcher.
Among these are variants of the standard GARCH and EGARCH models developed
by Bollerslev (1986) and Nelson (1991). Harvey (2001) considers a range of possibilities
for modeling volatility including modeling conditional volatility using nonparametric
density estimation, GARCH or EGARCH estimation, or forming a variance estimator
based on the squared residuals from a regression of returns on conditioning variables.
Engle (2001) explores a wide range of potential estimators based on GARCH type
models that can be used for any type of nonnegative time-series such as volatility. He
proposes a multiplicative error model that specifies the forecast error of the nonnegative
series to be multiplied by its conditional mean. Engle shows that this model can be
estimated with GARCH software by taking the square root of the realized variance as
the dependent variable, specifying it to have zero mean, and an error process assumed
normal GARCH(p, q) with possible exogenous variables.

3.1.3. Empirical Results on Risk and Return

We now turn to estimates of (3.9), the generalized volatility-in-mean model that relates
the conditional mean to the conditional volatility of returns. Table 11.5 reports results
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Table 11.5 Risk-return Trade-off

Row Constant σt σt−1 μt−1 R2

Levels

zr
t = (cayt−1), zv

t = (Vt−1, Vt−2, cayt−1)

1 0.08 −1.02 0.36
(6.03) (−4.46)

2 0.02 −1.02 0.76 0.03 0.71
(2.26) (−0.96) (13.45) (0.13)

zr
t = (cayt−1, F̂1t−1, F̂2t−1, RRELt−1), zv

t = (Vt−1, Vt−2, cayt−1)

3 0.04 −0.33 0.02
(1.90) (−1.00)

4 0.02 0.75 0.55 −1.03 0.35
(2.52) (2.24) (8.36) (−3.69)

Logs

zr
t = (cayt−1), zv

t = (Vt−1, Vt−2, cayt−1)

5 −0.13 −0.05 0.23
(2.84) (−3.18)

6 −0.02 −0.00 0.80 −0.01 0.70
(−1.34) (−0.05) (17.92) (−0.89)

zr
t = (cayt−1, F̂1−1, F̂2t−1, RRELt−1), zv

t = (Vt−1, Vt−2, cayt−1)

7 0.00 −0.00 0.00
(0.04) (−0.16)

8 −0.02 0.05 0.59 −0.06 0.34
(−0.52) (2.78) (9.42) (−3.65)

This table reports results from the regressions of conditional expected excess returns on conditional volatility:

μ̂t = α0 + α1̂vt + α2̂vt−1 + α3μ̂t−1 + et ,

where fitted conditional moments are constructed from linear regressions

μ̂t = β̂r z
r
t and v̂t = β̂vz

v
t

rt − r f
t = βr z

r
t−1 + ert and vt = βvz

v
t−1 + ert .

The top panel reports results for conditional excess return and conditional standard deviations while the bottom
panel reports results for conditional log excess returns and conditional log standard deviations.The sample runs from
the first quarter of 1953 to the first quarter of 2001.

from estimating (3.9).The top panel displays results relating the conditional excess return
to the conditional standard deviation (in levels) of returns; the bottom panel presents the
results using the conditional log excess return and the conditional log standard deviation
of returns. In each case, fitted volatility (3.8) is constructed using Zt =

(
ĉayt , Vt , Vt−1

)′.
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Fitted mean,(3.6), is constructed using one of two sets of conditioning information:Zt =
ĉayt alone, or Zt =

(
ĉayt , RRELt

)′, and F̂ = (
F̂1t , F̂2t

)′. Based on the evidence presen-
ted inTables 11.1 and 11.2, each of ĉayt , F̂1t , F̂2t , and RRELt are found to have marginal
predictive power for excess returns, and so are included in the information set used to
construct fitted mean (3.6).

Several results inTable 11.5 deserve emphasis. First,when lags of μt and σt are omitted
from the risk-return regression, as when estimating specification (3.10), the estimated
relation between fitted mean and fitted volatility is negative, although it is not statis-
tically significant when F̂ = (

F̂1t , F̂2t
)′ are included as conditioning variables in the

construction of fitted mean. Thus, the unconditional risk-return relation is negative but
not statistically different from zero. Graham and Harvey (2008) use multiyear surveys
of Chief Financial Officers of U.S. corporations and find that the conditional expected
excess return at a one-year horizon is negatively correlated with ex-ante measures of
volatility. Such a negative correlation between conditional mean and conditional volatility
is inconsistent with leading equilibrium asset pricing models that are capable of gener-
ating a countercyclical price of risk (e.g., Barberis et al., 2001; Campbell and Cochrane,
1999). These models predict a positive correlation between the conditional mean and
conditional volatility, and generate a countercyclical Sharpe ratio only because there is
more variation in the mean than in conditional volatility.16

Second, in all cases, the lagged values of mean and volatility are a statistically important
feature of the empirical risk-return relation; these variables are strongly statistically signif-
icant and add considerably to overall fit of the regression, consistent with the findings of
Whitelaw (1994) and Brandt and Kang (2004). Thus, the conditional risk-return relation
(3.9) fits the data far better than the unconditional risk-return relation (3.10).

Third, the results inTable 11.5 show that distinguishing between the conditional risk-
return relation (conditional on lagged mean and lagged volatility) and unconditional
relation is important for understanding the empirical risk-return relation, but depends
on the conditioning information used to construct fitted mean, μt . The conditional
correlation between the fitted mean and fitted volatility is positive whenever information
on the volatility and risk-premium factors F̂ = (

F̂1t , F̂2t
)′ are used in the construction of

fitted mean. In this case, the volatility-in-mean effect β1 in (3.9) is positive and strongly
statistically significant (rows 2 and 4). In this case, the sign of the conditional risk-return
relation is opposite of the sign of the unconditional relation. On the other hand, when
information on F̂ = (

F̂1t , F̂2t
)′ is omitted in the construction of μt , as, e.g.,when ĉayt is

16One theoretical framework that can generate a negative correlation between the conditional first and second moments of returns
is the model considered in Whitelaw (2000). Whitelaw, building off work by Abel (1988) and Backus and Gregory (1993), assumes
that consumption growth follows a Markov regime-switching process with time-varying transitory probabilities and shows that such
a structure can generate a negative correlation between stock market volatility and expected returns. An important difficulty with
this Markov regime-switching framework, however, is that it does not deliver persistent price-dividend ratios nor does it generate
long-horizon forecastability of excess returns by the consumption-wealth ratio.
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the only conditioning information, the conditional risk-return relationship has the same
sign as the unconditional relationship, which is negative (rows 1 and 3).

Initially, these results might seem to suggest that the estimated risk-return relation can
depend on the conditioning variables used in the construction of fitted moments. It is
important to bear in mind,however, that the fitted moments constructed here use factors
F̂ = (

F̂1t , F̂2t
)′,which already summarize a large amount of economic information upon

which expectations may be based,and are included because statistical criteria for choosing
parsimonious models of relevant factors and conditioning variables found these variables
to be important for forecasting excess returns.17 Thus, the inclusion of F̂1t and F̂2t makes
our analysis less dependent than previous applications on only a handful of predetermined
conditioning variables. In addition, results in Ludvigson and Ng (2007) indicate that the
conclusions reached here about the estimated risk-return relation are robust to using
a variety of statistically relevant factors and conditioning variables in the modeling of
fitted moments, as long as the two financial factors (volatility and risk-premium) F̂1t

and F̂2t are included when estimating the conditional mean. This is important because
statistical criteria considered in Ludvigson and Ng (2007) indicate that these factors have
marginal forecasting power for future returns that should not be omitted when modeling
the conditional mean.

The finding that the sign of the estimated risk-return relation depends on whether
lagged mean and lagged volatility are included in the risk-return regression (3.9) is con-
sistent with that of Brandt and Kang (2004) who argue that the distinction may explain
the disagreement in the literature about the contemporaneous correlation between risk
and return. In contrast to Brandt and Kang (2004), however, the results here and in
Ludvigson and Ng (2007) imply a positive conditional correlation between risk and
return (conditional on lagged mean and lagged volatility) that is strongly statistically
significant, whereas the unconditional correlation is weakly negative and statistically
insignificant whenever the information in F̂1t and F̂2t is used in the construction of
fitted mean. Brandt and Kang (2004) report a negative conditional correlation and a
positive unconditional correlation.

There are a number of possible reasons why the results here differ from those of
Brandt and Kang. First, the econometric methodologies differ. Brandt and Kang use a
latent VAR approach to model the conditional mean and conditional volatility, assuming
that these variables follow first-order, linear Gaussian processes. This approach relies on
the history of returns to infer μt and σt and does not condition upon the vast set of
exogenous information variables used to construct the latent factors F̂1t and F̂2t . Second,

17See Ludvigson and Ng (2007). Ludvigson and Ng also considered factors constructed from a large data set of macroeconomic indicators.
The information in these factors for future mean returns was subsumed by information in the financial factors used here. They did find
one factor estimated from a large data set of macroeconomic indicators to have predictive power for realized stock return volatility.
We omit this variable here in our construction of fitted volatility because doing so does not change the main results of the risk-return
regression (3.9).
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Brandt and Kang model the log moments, whereas we follow the bulk of the literature
and model the relation between the mean and volatility in levels.18 Third, our sample
size and data frequency differ:Brandt and Kang studied monthly data from January 1946
through December 1998, while the construction of factors follows Ludvigson and Ng
(2007) and uses quarterly data from the first quarter of 1960 to the second quarter of
2003. Several variables that are important for predicting returns and volatility (e.g., cayt)
are only available at quarterly frequency and the predictable dynamics may vary from
monthly to quarterly horizons.

4. THE CONDITIONAL SHARPE RATIO
In this section, we investigate the time-series behavior of the conditional Sharpe ratio
using our estimates of fitted mean and fitted volatility from the previous sections.

Above, we computed estimates of conditional volatility by forecasting both the level
and the log of the volatility of returns. The conditional Sharpe ratio, however, is a
function of the level of volatility rather than its log value. In practice, we find that our
estimate of fitted volatility in levels is never negative in our sample (see Fig. 11.1). At
the same time, some of the estimated coefficients in the fitted volatility regressions are
negative (Table 11.4A), suggesting that the positive forecasts of volatility could break
down out of sample.

If we assume that the log of volatility is normally distributed,then a Jensen’s adjustment
to the conditional forecast of the log of the variance delivers an estimate of the conditional
forecast of the level.Thus, estimates of the conditional expectation of the log of volatility
could be used to obtain estimates of the conditional expectation of the level of volatility
that are identically positive.Without a detailed investigation into whether this normality
assumption is plausible for our quarterly data set or how best to model the Jensen’s
adjustment,19 for the purposes of this chapter,we adopt the approach of simply computing
the conditional Sharpe ratio using the fitted values from our regressions in levels. Thus,
we report estimates of

SRVW
t = Et(Rs,t+1 − Rf ,t)

σt
(
Rs,t+1 − Rf ,t

) = μt

σt
,

where SRVW
t denotes the quarterly Sharpe ratio on the CRSP-VW stock market index,

and the numerator and denominators are computed as fitted values for mean and volatility,
as discussed above.With these fitted values in hand,an estimated value of SRVW

t is plotted

18Brandt and Kang use their assumption that the log moments are bivariate normally distributed to infer the relation between the level
moments.

19The Jensen’s adjustment requires an estimate of the conditional volatility of volatility, or the conditional fourth moment of returns.
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Figure 11.2 Conditional Sharpe ratio.
Note: Shading denotes quarters designated recession by the NBER.
Source: Authors’ calculations, Campbell and Cochrane (1999).

over time in Fig. 11.2. For this plot,we forecast Rst+1 − Rft+1 using the log consumption-
wealth ratio proxy, ĉayt ; and we forecast Vt using cayt and two lags of Vt . The figure is
similar if we include other conditioning variables discussed above.

Figure 11.2 shows that the Sharpe ratio,plotted on a quarterly basis,is strongly counter-
cyclical, falling over the course of an expansion and rising at the beginning of recessions,
consistent with the evidence in Harvey (2001). There are a few periods during which
the conditional Sharpe ratio is estimated to be negative.This occurs because our estimate
of conditional expected returns – the fitted values from a regression of excess returns on
lagged variables – are occasionally negative, a result attributable to the linear regression
specification underlying our identification of expected returns. The result is not unique
to the use of any particular forecasting variable. Nevertheless, its worth noting that an
occasional negative risk premium on stock market wealth is not necessarily inconsistent
with equilibrium asset pricing models in which the covariance of consumption growth
with the stochastic discount factor varies over time (Boudoukh et al., 1997;Whitelaw,
2000).

How well do economic models explain the time-series behavior of the Sharpe ratio
displayed in Fig. 11.2? To address this question, it is instructive to first derive the formula
for the conditional Sharpe ratio in any economic model with stochastic discount factor
(pricing kernel) Mt+1. In the models considered here,Mt+1 is the intertemporal marginal
rate of substitution in consumption, or pricing kernel. The asset pricing model comes
from the first-order conditions for optimal consumption choice, which imply that, for
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any traded asset indexed by i, the following equation holds:

Et
[
Mt+1

(
1+ Ri,t+1

)] = 1. (4.1)

Equation (4.1) shows that the intertemporal marginal rate of substitution in consump-
tion, 't , is the stochastic discount factor, or pricing kernel. Applying a covariance
decomposition to (4.1), and using Rft = 1/Et(Mt+1), the risk premium on stocks is
given by

Et(Rs,t+1)− Rf ,t+1 = −Rf ,t+1covt(Mt+1, Rs,t+1)

= −Rf ,t+1σt
(
Mt+1

)
σt
(
Rs,t+1

)
ρt
(
Mt+1,Rst+1

)
,

where σt(x) denotes the standard deviation of x conditional on time t information, and
ρt(x, y) denotes the correlation between x and y conditional on time t information.
Thus, the conditional Sharpe ratio for any model with pricing kernel Mt+1 is given by

Et(Rs,t+1)− Rf ,t+1

σt
(
Rs,t+1

) = −Rf ,t+1σt
(
Mt+1

)
ρt
(
Mt+1,Rs,t+1

)
.

The conditional Sharpe ratio can vary if either the risk-free rate Rf ,t+1 varies if the pricing
kernel is conditionally heteroskedastic so that σt(Mt+1) varies, or if the conditional
correlation ρt(Mt+1,Rs,t+1) varies.

We argue here that many consumption-based asset pricing models are unlikely to
explain the dynamic behavior of the empirically estimated Sharpe ratio displayed in
Fig. 11.2. As an illustration of the existing theoretical gap, we consider the implied
conditional Sharpe ratios from three models and compare their behavior to that of the
empirical Sharpe ratio plotted in Fig. 11.2. These models are

• The habit model explored in Campbell and Cochrane (1999). This model has been
uniquely successful at rationalizing a range of asset pricing phenomena in a single
framework, including the predictability of excess stock returns, the average value of
the equity risk premium, the low mean and volatility of interest rates, and variability
in the conditional Sharpe ratio.

• The standard time-separable, constant relative risk aversion model with power utility

u(Ct) = (Ct)
1−γ

1−γ and time-varying consumption volatility referred to hereafter as the
consumption-volatility model. In this model, the Sharpe ratio moves over time because of
time-varying consumption volatility,which generates conditional heteroskedasticity in
the pricing kernel, or movements in σt(Mt+1).

• The generalization of the standard power utility model based on Epstein and Zin (1989,
1991) and Weil (1989) (EZW) considered in Bansal andYaron (2004), with stochas-
tic consumption volatility. This model also generates conditional heteroskedasticity
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in the pricing kernel, or movements in σt(Mt+1) as a result of time-varying con-
sumption volatility. We refer to this as the BY-EZW model with stochastic consump-
tion volatility.

The Campbell–Cochrane model is a habit persistence framework in which utility

takes the form u(Ct , Xt) = (Ct−Xt)
1−γ

1−γ , where Xt is the external consumption habit.The

Sharpe ratio predicted by the Campbell–Cochrane model, which we denote SRCC
t , is a

nonlinear function of consumption growth and takes the form

SRCC
t = {eγ2σ2[1+λ(st)]2 − 1}1/2 ≈ γσ[1+ λ(st)], (4.2)

where st is the log of the surplus consumption ratio, defined St ≡ Ct−Xt
Ct

, and λ(st) is the
sensitivity function specified in Campbell and Cochrane. The log surplus consumption
ratio evolves as a heteroskedastic, first-order autoregressive process:

st+1 = (1− φ)s + φst + λ(st)(�ct+1 − g), (4.3)

where g is the mean rate of consumption growth andφ is the persistence of the habit stock.
It is straightforward to compute the implied Sharpe ratio of the Campbell–Cochrane
model by combining (4.2) and (4.3) with data on aggregate consumption.20

In the consumption-volatility model, investors have constant relative risk aversion

utility taking the form u(Ct) = (Ct)
1−γ

1−γ , with u(ct) = log(ct) in the limit as γ → 1. In
this case, the investor’s first-order condition for optimal consumption choice is an Euler
equation relating excess stock returns to the marginal rate of substitution in consumption:

1 = βEt

(
Rst+1

c−γt+1

c−γt

)
, (4.4)

where β is the subjective rate of time preference, Rst+1 is the net return on stocks, and

't+1 ≡ β
c−γt+1

c−γt
is the marginal rate of substitution in consumption. If we assume that

consumption growth is lognormally distributed, we obtain the following approximate
expression for the conditional Sharpe ratio in this model:

EtRst+1 − Rft

σt(Rst+1)
≈ γσt(�ct+1)ρt(�ct+1, Rst+1). (4.5)

This expression says that the conditional Sharpe ratio is proportional to γ , the coefficient
of relative risk aversion. Movements in the Sharpe ratio can be generated by movements
in consumption volatility, σt(�ct+1), or movements in ρt(�ct+1, Rst+1).

20We use the value of s calibrated in Campbell and Cochrane (1999).
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In the BY-EZW model, variation in the Sharpe ratio is also driven by time-varying
stochastic consumption volatility. Bansal andYaron (2004) show that an approximate
relation for the maximum Sharpe ratio (where ρt('t+1, Rst+1) = −1) is

(
EtRst+1 − Rft

σt(Rst+1)

)MAX

≈ a + bσt(�ct+1), (4.6)

where
(

EtRst+1−Rft
σt(Rst+1)

)MAX
denotes the maximum Sharpe ratio, and where the constants

a and b depend on model parameters. Notice that the maximum Sharpe ratio in (4.6)
is therefore closely related to the maximum Sharpe ratio for the consumption-volatility
model, which takes the form

(
EtRst+1 − Rft

σt(Rst+1)

)MAX

≈ bσt(�ct+1),

where b = γ . The constant term a in (4.6) appears as a result of the stochastic volatility
specification in Bansal andYaron (2004). Stochastic volatility allows for shocks to volatility
that are uncorrelated with the consumption innovations.

The Sharpe ratio for the Campbell–Cochrane model is plotted in Fig. 11.3 along with
our estimate of the Sharpe ratio over time. Although Campbell and Cochrane (1999)
show that the model they study does a reasonable job of matching variation in the first
moment of excess returns, Fig. 11.3 suggests that the model produces an unrealistically
small amount of countercyclical variation in the Sharpe ratio. The estimated Sharpe
ratio for excess returns on the CRSP-VW index, SRVW

t , ranges from −0.45–1.76 on a
quarterly basis. By contrast, SRCC

t ranges from 0–0.4.
For the consumption-volatility model, we assume that the conditional correlation,

ρt(�ct+1, Rs,t+1), is −1, and choose risk aversion, γ , to match the mean Sharpe ratio.
We discuss the possible role of time-varying correlations below.Any portfolio that is suffi-
ciently diversified (a mean–variance efficient portfolio) will have ρt(Mt+1, Rs,t+1) = −1,
which in this model implies ρt(�ct+1, Rst+1) = −1. Although a broad stock market
return may not be an efficient portfolio, setting this correlation to one provides a reason-
able benchmark because many asset pricing studies implicitly assume that such an asset is
highly correlated with an efficient portfolio and set this correlation to 1 in undertaking
calibration exercises.21 In addition, this approach allows us to isolate the contribution
of consumption risk in explaining the pattern of variability in the risk-return trade-
off. Thus, the Sharpe ratio we measure for the consumption model in (4.5) is simply γ

21Campbell (2003) and Cochrane (2005) emphasize that this correlation is hard to measure accurately because estimates are sensitive to
data definition, measurement error, the length of the horizon, and data aggregation.
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Figure 11.3 Estimates of the Sharpe ratio from the consumption-volatility model and from the
CRSP-VW Index.
Note: Shading denotes quarters designated recession by the NBER. Gamma refers to the risk aversion scale factor
in the consumption volatility model. Gamma= 92 is the constant coefficient of risk aversion.
Source: Authors’ calculations.

σ̂t(�ct+1), where σ̂t(�ct+1) denotes an estimate of consumption volatility. We denote
the Sharpe ratio implied by this model as

SRCV
t ≡ γσ̂t(�ct+1).

Within the confines of this chapter, it is not possible to investigate the range of possible
econometric techniques for modeling changing volatility in consumption growth. Here,
we make a first-pass at addressing this question by modeling the volatility of consumption
growth as a GARCH process (Bollerslev, 1987). With these estimates of σt(�ct+1) in
hand, we then move on to ask whether the framework in (4.5) is helpful in explaining
the pattern of variability in the Sharpe ratio that we document here.

To ensure that estimates of the conditional variance of consumption growth are non-
negative,we estimate an EGARCH model through maximum likelihood for the volatility
of the innovation of quarterly consumption growth. The EGARCH model takes
the form

�ct = α0 +
3∑

i=1

αi�ct−1 + εt

log
(
σ2

t
) = δ0 + δ1 log

(
σ2

t−1

)+ δ2

∣∣∣∣ εt−1

σt−1

∣∣∣∣+ δ3

(
εt−1

σt−1

)
+ δ′4Xt−1,
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where σ2
t is the conditional variance of εt , and Xt−1 is a vector of predetermined con-

ditioning variables that may influence the volatility of consumption growth. Table 11.6
reports estimates of the parameters αi and δi for four specifications: one with no con-
ditioning variables (column 1); one in which Xt−1 = ĉayt−1 (column 2); one in which
Xt−1 = rs,t−1 − rf ,t−1 (column 3); and one in which Xt−1 = (ĉayt−1, rs,t−1 − rf ,t−1)

′
(column 4).The results suggests that the volatility of consumption growth is not constant
over time; e.g., the coefficient on the GARCH term, δ2, is much larger than its standard
deviation. This result is the same as that found by Piazzesi (2002). We take the expo-
nential of fitted values of log

(
σ2

t
)

from the fourth column as our estimate σ̂2
t (�ct+1).

The square root of these fitted values,
√
σ̂2

t , is our estimate of the conditional standard
deviation, σ̂t(�ct+1), used to compute SRCV

t .
The value of relative risk aversion,γ , that matches the mean Sharpe ratio in our sample

is 92, a large number that illustrates the equity premium puzzle emphasized by Mehra
and Prescott (1985) and Hansen and Jagannathan (1991).22 The focus of this chapter
is not on this unconditional puzzle but on the pattern of variability in the conditional
Sharpe ratio. Nevertheless, the high value for risk aversion required to match the mean
Sharpe ratio underscores an important point, namely that modeling the variance of
consumption growth as time-varying does not by itself help resolve the equity premium
puzzle. Although the results in Table 11.6 imply that there may be some variation in
the volatility of consumption growth, it is quantitatively minuscule when compared to
the variability of SRVW

t . This is evident in Fig. 11.3, which plots the volatility of SRCV
t

along with that of SRVW
t .

For the BY-EZW model, the constants a and b can be chosen freely to match
the mean and volatility of the Sharpe ratio estimated in the data. Given the estimate
σ̂t(�ct+1), an estimate of an unrestricted version of this model’s implied Sharpe ratio is
obtained as

SRBY-EZW
t = a + b̂σt(�ct+1).

In the BY-EZW model, the parameters are restricted by the calibration in their model.
By choosing a and b freely,we ensure that the BY-EZW model fits the first two moments
of the Sharpe ratio and ask how well it then fits the dynamics of the empirical Sharpe
ratio. This model, like the consumption-volatility model, does not match the dynamic
behavior of the empirical Sharpe ratio for the CRSP stock market return.

22The mean Sharpe ratio in our sample is 0.78 on an annual basis, somewhat larger than that typically reported (e.g.,Campbell and Cochrane
(1999) report a Sharpe ratio for log returns of 0.43 in postwar data). As a result, the value for γ needed to match this Sharpe ratio is also
somewhat larger than that typically required of the consumption-based model considered above.The reason is that we compute volatility,
in the denominator, from daily returns and then convert to a quarterly rate. Because daily returns are positively serially correlated, this
number is smaller than the volatility of quarterly or monthly returns. Computing volatility from either of the latter delivers a value for
γ that is closer to 50 rather than the 92 we report above.
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Table 11.6 Maximum likelihood estimates of EGARCH(1,1) model for consumption growth

1 2 3 4

Mean equation

Constant 0.002 0.002 0.003 0.003
(SE) (0.001) (0.001) (0.001) (0.001)

�ct−1 0.319 0.252 0.292 0.295
(SE) (0.076) (0.070) (0.070) (0.071)

�ct−2 0.029 0.064 0.042 0.040
(SE) (0.082) (0.065) (0.078) (0.078)

�ct−3 0.201 0.172 0.181 0.190
(SE) (0.069) (0.068) (0.071) (0.071)

Variance equation

Constant −1.007 −1.487 −1.562 −0.828
(SE) (0.098) (1.153) (0.984) (2.534)∣∣ εt−1
σt−1

∣∣ 0.173 −0.036 0.167 0.168
(SE) (0.079) (0.057) (0.092) (0.112)
εt−1
σt−1

−0.057 0.021 −0.035 −0.043
(SE) (0.089) (0.064) (0.086) (0.086)

σ2
t−1 0.920 1.007 0.866 0.881

(SE) (0.087) (0.026) (0.088) (0.098)

ĉayt−1 −2.301 −0.948
(SE) (2.1364) (2.751)

rt−1 − rf ,t−1 −1.85 −1.675
(SE) (1.269) (1.527)

This table reports estimates from the EGARCH(1,1) model:

�ct = α0 + α1�ct−1 + α2�ct−2 + α3�ct−3 + εt

log(σ2
t ) = δ0 + δ1 log(σ2

t−1)+ δ2

∣∣∣ εt−1
σt−1

∣∣∣+ δ3
εt−1
σt−1

+ δ4Xt−1,

where σ2
t is the conditional variance of εt . The regressors in Xt−1 are as follows: �ct is consumption growth, ĉayt−1 ≡

ct−1 − β̂aat−1 − β̂yyt−1, and rt−1 − rf ,t−1 is lagged excess returns for the CRSP-VW index. Bollerslev–Wooldridge robust
standard errors appear in parentheses beneath the coefficient estimates.The sample runs from the first quarter of 1953 to
the first quarter of 2001.

This can be seen in Table 11.7, which presents summary statistics for the empirical
Sharpe ratio estimated from the data, SRVW

t , the Campbell–Cochrane Sharpe ratio,
SRCC

t , the consumption-volatility Sharpe ratio, SRCV
t , and the BY-EZW model,

SRBY-EZW
t . The table illustrates several aspects of the Sharpe ratio on the U.S. stock

market that these models have difficulty explaining. First,the standard deviation of SRVW
t
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Table 11.7 Summary statistics for sharpe ratios

SRVW
t SRCC

t SRCV
t SRBY-EZW

t

Correlation matrix

SRVW
t 1.00 0.39 0.03 0.03

SRCC
t 0.39 1.00 −0.03 −0.03

SRCV
t 0.03 −0.03 1.00 1.00

SRBY-EZW
t 0.03 −0.03 1.00 1.00

Univariate summary statistics

Mean 0.39 0.23 0.39 0.39
Standard deviation 0.47 0.09 0.08 0.47
Autocorrelation 0.85 0.97 0.86 0.86

SRVW
t is the Sharpe ratio estimated from the CRSP-VW index using conditional mean of the level

of the standard deviation of returns. SRCC
t is the Sharpe ratio implied by Campbell and Cochrane

(1999); SRCV
t is the Sharpe ratio implied by the consumption volatility model where the conditional

correlation of consumption growth and stock returns is set to unity:

SRCV
t = Et(Rt+1)− Rf

t

σt(Rt+1)
= γ σt(�ct+1),

where γ is the constant coefficient of risk aversion and is set equal to 92. SRBY-EZW
t is calculated as

SRBY-EZW
t = Et(Rt+1)− Rf

t

σt(Rt+1)
= a + b σt(�ct+1),

where a and b are chosen to match the mean and volatility of SRBY-EZW
t to the estimated Sharpe ratio

SRVW
t . The statistics are computed for the largest common set of available data for all the variables,

which spans the fourth quarter of 1953 to the fourth quarter of 2000.

is over five times as large as that of either SRCC
t or SRCV

t , reinforcing the notion that
consumption-based models fail to replicate the magnitude of volatility in the risk-return
trade-off. Second, the Campbell–Cochrane Sharpe ratio is too autocorrelated, whereas
the consumption-volatility model produces about the right autocorrelation.Third,SRCC

t
is positively correlated with SRVW

t with this correlation equal to about 0.4. By contrast,
the consumption-volatility model fails miserably along this dimension, displaying a
negative correlation, equal to −0.3 with SRVW

t . By construction, SRBY-EZW
t matches

the mean and volatility of SRVW
t but has the same negative correlation with SRVW

t that
the consumption-volatility model has.That’s because both models are linear functions of
consumption volatility, which itself is negatively correlated with the Sharpe ratio for the
U.S. stock market. This negative correlation is evident in Fig. 11.3, which plots SRVW

t
and SRCV

t over time. These results suggest that time variation in consumption volatility
is unhelpful in explaining observed variability in the risk-return trade-off on broad stock
returns. Consistent with this conclusion, Kandel and Stambaugh (1990) report that
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fitted mean and fitted volatility for five-year returns are both higher in recessions than in
booms, a finding at odds with their estimates of the dynamic behavior of consumption
volatility.

The conclusions so far have been based on calculations in which the conditional
correlation,ρt(�ct+1, Rst+1), is fixed at unity. It is reasonable to ask whether this approach
may be overly restrictive, in that allowing for time variation in the conditional correlation
might help explain the pattern of variability in the Sharpe ratio we observe. InWhitelaw
(2000), e.g., time variation in the Sharpe ratio is generated by time variation in the
conditional correlation,ρt(�ct+1, Rst+1). But a recent empirical study by Duffee (2002)
suggests that times of higher expected excess returns and higher Sharpe ratios on the
U.S. stock market coincide with times of lower correlations of consumption with returns,
not higher as required by (4.5).

Other models of the pricing kernel could produce different results. Barberis et al.
(2001) study an economy in which investors derive utility from consumption and wealth,
and show that this model can replicate persistent time variation in conditional excess
returns. Like the Campbell–Cochrane model, however, the Sharpe ratio they report
ranges from about 0.20 to 0.40 on a quarterly basis, far less than that documented
in Fig. 11.2.23 Alternatively, the pricing kernel could be a function of durable goods
consumption if households have nonseparable utility across durable and nondurable
consumption. Yogo (2006) finds some evidence for conditional heteroskedasticity in
the consumption of durable goods, which could impart empirically relevant conditional
heteroskedasticity into the pricing kernel. An important question for future research is
whether the dynamic behavior of durable goods volatility can help explain the dynamic
behavior of the Sharpe ratio on the U.S. stock market.

The shortcomings of existing equilibrium models documented here are distinct from
those underlying the“equity premium puzzle”of Mehra and Prescott (1985) and Hansen
and Jagannathan (1991). These studies show that standard asset pricing theory fails to
account for the high mean value of the Sharpe ratio. Although those papers focused on
the average value of the Sharpe ratio, we concentrate here on its variation through time.
The evidence presented in this chapter suggests that even our best fitting asset pricing
models have difficulty replicating the observed pattern of variation in the price of stock
market risk and leave a “Sharpe ratio variability puzzle” that remains to be explained.

5. CONCLUSION
There is now a large and growing body of empirical evidence that finds forecastability of
excess equity returns and measures of their volatility. Recent theoretical work in financial

23These statements are based on the numbers reported in Figure 6 of Barberis et al. (2001).
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economics has demonstrated that such forecastability is not necessarily inconsistent with
market efficiency. In particular, stock market predictability can be generated by time
variation in the rate at which rational, utility maximizing investors discount expected
future cash-flows from risky assets.These theoretical advances hold out hope that a unified
framework for rationalizing variation in the risk-return trade-off can be developed.

This chapter reviews what is known about the risk-return relation in the U.S. stock
market. We examine the empirical procedures and results of a large number of studies
that canvass the subject of predictability in stock returns and stock return volatility,
and we assess whether the current state of theoretical knowledge can account for such
predictability.We also present updated empirical evidence on the risk-return relation by
forecasting both the mean and volatility of excess stock market returns.

We draw several conclusions. First, after an extensive review of the statistical issues in
return predictability regressions,we conclude that the historical behavior of the U.S. stock
market cannot be understood without admitting some degree of predictability in excess
returns. The conditional expected excess return on the U.S. stock market varies over
long horizons and is an important contributor to volatility in the Sharpe ratio. Second,
the evidence for changing stock market risk is not confined to high-frequency data;
instead, stock market volatility is forecastable over horizons ranging from one quarter
to six years. Third, distinguishing between the conditional correlation (conditional on
lagged mean and lagged volatility) and unconditional correlation between the conditional
expected excess stock return and its conditional volatility is crucial for understanding
the empirical risk-return relation. In our most general empirical specification, we find
a positive conditional correlation that is strongly statistically significant, whereas the
unconditional correlation is weakly negative and statistically insignificant. Fourth, the
Sharpe ratio for the U.S. aggregate stock market is both countercyclical and highly
volatile, and its dynamic behavior is not well captured by leading consumption-based
asset pricing models, including habit-based models and models based on time-varying or
stochastic consumption volatility. More theoretical work is needed to explain the sheer
magnitude of volatility in the Sharpe ratio, as well as its pattern of dynamic behavior
with the macroeconomy.

APPENDIX: DATA DESCRIPTION
Consumption, Ct
Consumption is measured as expenditure on nondurables and services, excluding shoes
and clothing. The quarterly data are seasonally adjusted at annual rates, in billions of
chain-weighted 1996 dollars. The components are chain-weighted together, and this
series is scaled up so that the sample mean matches the sample mean of total personal
consumption expenditures. Our source is the U.S. Department of Commerce, Bureau
of Economic Analysis.
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After-Tax Labor Income, Yt
Labor income is defined as wages and salaries+ transfer payments+ other labor
income− personal contributions for social insurance− taxes.Taxes are defined as [wages
and salaries/(wages and salaries+ proprietors’ income with IVA and Ccadj+ rental
income+ personal dividends+ personal interest income)] times personal tax and nontax
payments, where IVA is inventory valuation and Ccadj is capital consumption adjust-
ments. The quarterly data are in current dollars. A real per capita series is created by
dividing by a measure of the population and the price deflator listed below. Our source
is the Bureau of Economic Analysis.

Population

A measure of population is created by dividing real total disposable income by real per
capita disposable income. Our source is the Bureau of Economic Analysis.

Wealth, At
Total wealth is household net worth in billions of current dollars, measured at the
end of the period. Stock market wealth includes direct household holdings, mutual
fund holdings, holdings of private and public pension plans, personal trusts, and
insurance companies. Nonstock wealth includes tangible/real estate wealth, nonstock
financial assets (all deposits, open-market paper, U.S. Treasuries and Agency securities,
municipal securities, corporate and foreign bonds, and mortgages), and also includes
ownership of privately traded companies in noncorporate equity and other. Sub-
tracted off are liabilities, including mortgage loans and loans made under home equity
lines of credit and secured by junior liens, installment consumer debt, and other.
Our source is the Board of Governors of the Federal Reserve System. A complete
description of these data may be found at http://www.federalreserve.gov/releases/Z1/
Current/.

Price Deflator

The nominal after-tax labor income and wealth data are deflated by the personal con-
sumption expenditure chain-type deflator (1996 = 100),seasonally adjusted. In principle,
one would like a measure of the price deflator for total flow consumption here. Since
this variable is unobservable,we use the total expenditure deflator as a proxy. Our source
is the Bureau of Economic Analysis.

Excess Returns, rt+1 − rft
Excess returns are returns to the CRSP value-weighted stock index, less than the
3-month treasury bill yield. Our sources are the Center for Research in Securities Prices
and the Board of Governors of the Federal Reserve System.
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CRSP Dividend-Price Ratio, dt − pt
The CRSP dividend-ratio is calculated as the log ratio of CRSP dividends to the price
level of the CRSP value-weighted stock index (imputed from CRSP-VW returns,
including dividends). Our source is the CRSP.

Default Spread,DEFt
The default spread is the difference between the BAA corporate bond rate and the AAA
corporate bond rate. Our source is the Moody’s Corporate Bond Indices.

Relative Bill Rate,RRELt
The relative bill rate is the three-month treasury bill yield less its four-quarter moving
average. Our source is the Board of Governors of the Federal Reserve System.

Term Spread,TRMt
The term spread is the difference between the 10-year treasury bond yield and the three-
month treasury bill yield. Our source is the Board of Governors of the Federal Reserve
System.

Commercial Paper Spread,CPt
The commercial paper spread is the difference between the yield on six-month commer-
cial paper and the three-month treasury bill yield. Our source is the Board of Governors
of the Federal Reserve System.

One-Year Treasury Bill Yield,TB1Yt
Our source for the one-year treasury bill yield is the Board of Governors of the Federal
Reserve System.
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Abstract

This chapter reports some recent successes in the studyof affine term structuremodels. After explaining

the importance of understanding bond yields and the need for cross-equation restrictions, the paper

describes the general technique of pricing bonds in continuous time. Section 3 explains how to

specify the short rate, the dynamics of the state vector, and the risk premia in an affinemodel. Section 4

links them to the fundamentals of an economy, and Section 5 examines some famous affine models.

Section 6 explains how to estimate affine models, and Section 7 discusses the empirical performance

of affine models.

Keywords: bond yields; affine term structure models; term structure models

1. INTRODUCTION
1.1. Overview

The quest for understanding what moves bond yields has produced an enormous literature
with its own journals and graduate courses. Those who want to join the quest are faced
with considerable obstacles.The literature has evolved mostly in continuous time,where
stochastic calculus reigns and partial differential equations (PDEs) spit fire.The knights in
this literature are fighting for different goals,which makes it often difficult to comprehend
why the quest is moving in certain directions. But the quest is moving fast, and dragons
are being defeated. This chapter wants to report some of these victories made by those
working on affine term structure models.

Bond yield movements over time can be captured by simple vector autoregressions
(VARs) in yields and maybe other macroeconomic variables. Several aspects of bond
yields, however, set them apart from other variables typically used inVAR studies. One
aspect is that bonds are assets, and that bonds with many different maturities are traded at
the same time. Bonds with long maturities are risky when held over short horizons, and
risk-averse investors demand compensation for bearing such risk.Arbitrage opportunities
in these markets exist unless long yields are risk-adjusted expectations of average future
short rates. Movements in the cross section of yields are therefore closely tied together.
These ties show up as cross-equation restrictions in a yield-VAR. Another aspect of yields is
that they are not normally distributed, at least not until recently. This makes it difficult
to compute the risk-adjusted expected value of future short rates.
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Term structure models capture exactly these aspects of bond yields. They impose the
cross-equation restrictions implied by no-arbitrage and allow yields to be nonnormal.
The word “affine term structure model” is often used in different ways. I will use the
word to describe any arbitrage-free model in which bond yields are affine (constant-
plus-linear) functions of some state vector x.1 Affine models are thus a special class of
term structure models, which write the yield y(τ) of a τ-period bond as

y(τ) = A(τ)+ B(τ)�x

for coefficients A(τ) and B(τ) that depend on maturity τ. The functions A(τ) and B(τ)
make these yield equations consistent with each other for different values of τ. The
functions also make the yield equations consistent with the state dynamics.

The main advantage of affine models is tractability. Having tractable solutions for
bond yields is useful because otherwise yields need to be computed with Monte Carlo
methods or solution methods for PDEs. Both approaches are computationally costly,
especially when model parameters are estimated using panel data on bond yields. The
literature on bond pricing starting withVasicek (1977) and Cox et al. (1985), therefore
has focused on closed-form solutions.The riskless rate in these early setups was the only
state variable in the economy so that all bond yields were perfectly correlated. A number
of extensions of these setups followed both in terms of the number of state variables and
the data-generating processes for these variables. Duffie and Kan (1996) finally provided
a more complete characterization of models with affine bond yields.2

Tractability has to be paid with restrictive assumptions. The functional form of bond
yields is obtained from computing risk-adjusted expectations of future short rates.There-
fore, restrictive assumptions have to be made on the risk-adjusted dynamics of the state
vector. More concretely, the risk-adjusted process for the state vector needs to be an affine
diffusion,a process with affine instantaneous mean and variance. (There are no functional
form assumptions on the data-generating process for the state vector.) The question is
whether this assumption leads to counterfactual data-generating processes for yields.The
answer seems to be“yes”when risk premia are specified in ways that imply either constant
or time-varying but strictly positive expected excess returns. Recent research, however,
has made more flexible assumptions on risk premia.The answer now seems to be“maybe
not.”A lot more research is needed before the answer is clear–exciting times lie ahead!

The rest of this chapter is organized as follows. The remainder of this introduction
argues the importance of understanding bond yields in Subsection 1.2 and the need for
cross-equation restrictions in Subsection 1.3. Section 2 explains the general technique
of how to price bonds in continuous time. Section 3 explains how to specify the short

1New terms such as completely affine, essentially affine, semiaffine, and generalized affine have appeared in the literature. The use of
“affine” in this chapter refers to the way yields depend on the state variables, not on the data-generating process of the state variables
themselves.

2Recently, Gourieroux and Sufana (2004) and Cheridito et al. (2004) have presented affine diffusion models that do not fit into the
Duffie–Kan framework.



694 Monika Piazzesi

rate, the dynamics of the state vector, and the risk premia in an affine model. Section 4
links them to the fundamentals of an economy. Section 6 explains how to estimate affine
models. Section 7 discusses the empirical performance of affine models.

1.2. Why Care About Bond Yields?

Understanding what moves bond yields is important for at least four reasons. One of
these reasons is forecasting.Yields on long-maturity bonds are expected values of average
future short yields, at least after an adjustment for risk.This means that the current yield
curve contains information about the future path of the economy. Yield spreads have
indeed been useful for forecasting not only future short yields (Campbell and Shiller,
1991; Cochrane and Piazzesi, 2005; Fama and Bliss, 1987) but also real activity (Ang
et al., 2006; Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002; Harvey, 1988)
and inflation (Fama, 1990; Mishkin, 1990), even though these forecasting relationships
may be unstable (Stock andWatson, 2003).These forecasts provide a basis for investment
decisions of firms, savings decisions of consumers, and policy decisions.

Monetary policy is a second reason for studying the yield curve. In most industrialized
countries, the central bank seems to be able to move the short end of the yield curve.
What matters for “aggregate demand,” however, are long-term yields. For example, U.S.
households base their decision on whether to buy or rent a house on long-term mortgage
rates and not on the rate in the federal funds market which seems to be controlled by
the Federal Reserve Bank. For a given state of the economy, a model of the yield curve
helps to understand how movements at the short end translate into longer-term yields.
This involves understanding both how the central bank conducts policy and how the
transmission mechanism works. The expectations hypothesis (EH) is at work in most
papers in this area (e.g., Balduzzi et al., 1996). Little work has been done with more
flexible risk premia (Evans and Marshall, 1998, 2001; Piazzesi, 2001).

Debt policy constitutes a third reason. When issuing new debt, governments need to
decide about the maturity of the new bonds. For example, the Kennedy administration
actively managed the maturity structure of public debt in the early 1960s in what is known
as“operation twist.” The treasury at the time was trying to flatten or invert the yield curve
by selling short maturity debt and buying long maturity notes. The outcome of such
operations depends crucially on how bond yields depend on the supply of bonds with
different maturities. Real yields in models with nondistortionary taxation and perfect
markets are independent of the maturity structure of public debt. The reason is that
Modigliani–Miller in these models applies to how the government finances its budget
deficit. Cochrane (2001) characterizes the dependence of the nominal term structure
on debt policy in a frictionless economy. Missale (1997) considers distortionary taxation,
whereas Angeletos (2002) assumes that markets are incomplete.

Derivative pricing and hedging provide a fourth reason. For example, coupon bonds
are priced as baskets of coupon payments weighted by the price of a zero-coupon bond
that matures on the coupon date. Even the price of more complicated securities, such
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as swaps, caps and floors, futures, and options on interest rates, is computed from a given
model of the yield curve (see the references in Duffie et al.,2000). Banks need to manage
the risk of paying short-term interest rates on deposits while receiving long-term interest
rates on loans. Hedging strategies involve contracts that are contingent on future short
rates, such as swap contracts. To compute these strategies, banks need to know how the
price of these derivative securities depends on the state of the economy.

1.3. Why Care About Cross-Equation Restrictions?
Some of the issues just mentioned,such as forecasting and the impact of Fed interventions
on long-term yields, may be addressed without imposing the cross-equation restrictions
implied by no-arbitrage. I can add measurement error ε(τ) to each yield equation

y(τ)t = A(τ)+ B(τ)�xt + ε
(τ)
t ,

select specific variables for x, and then run an unrestricted regression of yields y(τ) on x for
each maturity τ separately. Least squares is easy, is fast, and delivers consistent estimates
of parameters, at least conditional on the linear structure. For example, Fama and Bliss
(1987) forecast changes in short rates without imposing the cross-equation restrictions
implied by the absence of arbitrage. Evans and Marshall (1998) estimate the impact of
policy shocks on long-term bonds outside of a yield-curve model.

More patience is required to estimate a system of yield equations in a way that ensures
no-arbitrage. The cross-equation restrictions have to be derived from parameters that
describe the state dynamics and risk premia. Although the model is affine in the state
vector x, the functions A(τ) and B(τ) are nonlinear functions of the underlying parame-
ters. Using ordinary least squares (OLS) is thus no longer possible. Maximum likelihood
is not feasible either because the density of yields is not available in closed form. There
are a few exceptions for which the density is known, such as normal densities for yields,
but they are easily rejected by the data. New econometric methods have been produced
to solve these estimation problems, and this Handbook shows some of these exciting
developments.The implementation of these methods, however, requires substantial cod-
ing and computation time. Before rolling up the sleeves and getting into the work of
implementing cross-equation restrictions when distributions are nonnormal, I would
therefore like to spend some time explaining why we actually need them.

Cross-equation restrictions have many advantages. First, these restrictions ensure that
the yield dynamics are consistent. A(τ) and B(τ) make yield equations consistent with
each other in the cross section and the time series. Most bond markets are extremely
liquid, and arbitrage opportunities are traded away immediately by large investment
banks. The assumption of no-arbitrage thus seems natural for bond yields.

Second, term structure models allow us to separate risk premia from expectations
about future short rates.These models are therefore key to understanding to what extent
investors think of long bonds as safe investments. Sargent (1979) and Hansen and Sargent
(1991) are early papers that explore the EH under which expected excess bond returns
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are zero. Modified versions of the EH have been tested under which expected excess
returns are constant. These tests compare, e.g., the ratio of the likelihood function with
and without restrictions implied by the EH (for references, see Bekaert and Hodrick,
2001).The evidence suggests that expected returns on long bonds are on average higher
than on short bonds and that they are time-varying. Cross-equation restrictions are then
needed to model these risk premia.

Third, unrestricted regressions imply that the number of variables needed to describe
the yield curve equals the number of yields in the regression. Lower-dimensional systems
have been shown to work well in approximating true yield dynamics. Factor decom-
positions of the variance-covariance matrix of yield changes show that over 97% of the
variance is attributable to just three principal components. Litterman and Scheinkman
(1991) named these three principal components level, slope, and curvature according
to how shocks to these factors affect the yield curve. This interpretation of the driving
forces of yields seems to be stable across model specifications, estimation samples, and
types of interest rates. Measurement errors arising from the data construction methods,
data entry errors, and asynchronous data sampling [of London Interbank offered rate
(LIBOR) and swap yields, for example] are responsible for at least some of the remaining
variance of yields.

Fourth, the number of estimated parameters in unrestricted regressions is usually large.
Imposing the cross-equation restrictions from no-arbitrage improves the efficiency of
these estimates. Ang and Piazzesi (2003) show that this helps out-of-sample forecasting
of yields.

Finally, “missing bond yields” can be recovered from a small set of other yields in a
way that is consistent with no-arbitrage. Certain multifactor models predict yields that
were not included in the estimation within a couple of basis points. This property of
yield-curve models is important for studies of emerging markets where bonds with only
few maturities are traded at any given point in time. Alvarez and Neumeyer (1999), e.g.,
apply interpolation methods to construct yields forArgentina.The same issue arises in the
context of the construction of zero-coupon bond yields. Nelson and Siegel (1987),Fama
and Bliss (1987), and McCulloch and Kwon (1993) propose interpolation methods to
infer these yields from observed prices of traded coupon bonds or interest-rate derivatives.
These interpolation methods ignore that bond yields need to be consistent with risk-
adjusted expectations of interpolated future short rates. These methods thereby admit
arbitrage opportunities, which can be avoided with a term structure model.

2. BASICS
2.1. Bond Pricing in Continuous Time
Term structure modeling determines the price of zero-coupon bonds.These bonds pay a
terminal payoff, usually normalized to 1 unit,without risk of default and without paying
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any intermediate coupons. A zero-coupon bond that matures τ periods from now trades
at price P(τ). Buying this bond at time t and reselling it at that time t + n generates a
log holding period return of

hpr(τ)t→t+n = log P(τ−n)
t+n − log P(τ)

t . (2.1)

The holding period n cannot exceed time to maturity τ, so we have n ≤ τ.The holding
period return is usually random because it depends on the resale value of the bond P(τ−n)

t+n ,
which is generally not known at time t. The resale value is equal to its payoff when the
bond matures so that holding the bond until maturity (n = τ) generates a return which is
known at time t.The per-period holding period return in this case is the yield-to-maturity:

y(τ)t = hpr(τ)t→t+τ
τ

= − log P(τ)
t

τ
.

The short rate is the limit of yields as maturity approaches, rt = limτ↓0 y(τ)t . Excess holding
period returns hprx(τ)t→t+n = hpr(τ)t→t+n − hpr(n)t→t+n are returns made in excess of the
riskless return over the holding period.

Bonds are usually priced with the help of a so-called “risk-neutral probability mea-
sure”Q∗. Just like the name of this artificial measure suggests, risk-neutral pricing applies
under Q∗. In other words, asset prices are the expected values of their future payoffs
discounted at the riskless rate, where the expectation is computed using the proba-
bility measure Q∗. When agents are risk-neutral, this pricing result applies under the
data-generating measure Q. In general, the risk-neutral probability measure Q∗ will be
different from Q.The payoff of zero-coupon bonds is 1 unit at maturity, so their price is

P(τ)
t = E∗t

⎡⎣exp

⎛⎝− t+τ∫
t

ru du

⎞⎠⎤⎦ . (2.2)

where E∗ denotes expectation under Q∗. Standard results show that if there exists a risk-
neutral probability measure Q∗, a system of asset prices is arbitrage free. The converse
is also true under reasonable restrictions on trading strategies. Moreover, the uniqueness
of Q∗ is equivalent to markets being complete. Details and references for these powerful
results can be found, e.g., in Duffie (2001).

Under the risk-neutral measure, expected excess returns on bonds are zero. Put dif-
ferently, the expected rate of return on a long bond equals the riskfree rate. I think the
gain in intuition justifies the following abuse in notation:

E∗t

[
dP(τ)

t

P(τ)
t

]
= rtdt. (2.3)

This is abuse because dP(τ)
t is not even a random variable.
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The pricing relation (2.2) shows that any yield-curve model consists of two ingredients:

(i) the change of measure from Q to Q∗ and
(ii) the dynamics of the short rate r under Q∗.

In so-called factor models of the yield curve,(ii) is replaced by the following assumption:

(ii)′ the short rate r is a function R(x) of x and
x ∈ R

N is a time-homogeneous Markov process under Q∗.
This means that x is the relevant state vector, a vector of factors. This modified (ii)′
assumption implies that the conditional expectation in (2.2) is some function F of time-
to-maturity τ and the state xt at time t, or

P(τ)
t = F(xt , τ).

To capture certain features of yield data (e.g., seasonalities around macroeconomic
news releases), I will later consider functions R that also depend on time t and time-
inhomogeneous Markov processes x, in which case P(τ)

t = F(xt , t, τ) separately depends
on t and τ (in addition to xt).

The big advantage of pricing bonds (or any other assets) in continuous time is Ito’s
Lemma. The lemma says that smooth functions F of some Ito process x and time t are
again Ito processes (see Duffie, 2001, Chapter 5 for details). The lemma thus preserves
the Ito property even if F is nonlinear. Ito’s Lemma allows me to turn the problem
of solving the conditional expectation in (2.2) into the problem of solving a PDE for
the bond price F (x, τ). The trick of computing (2.2) by solving a PDE is called the
Feynman–Kac approach. I will first explain the local expectations hypothesis (LEH) in
Section 2.2 and then use it to derive the PDE for bond prices in Section 2.3. Section
2.4 derives the PDE without LEH.

2.2. Local Expectations Hypothesis
The LEH states that the pricing relation (2.2) holds under the data-generating measure
Q. Bond yields are thus given by

LEH : y(τ)t = −log Et [exp(−S)] /τ, (2.4)

where S = ∫ t+τ
t rudu. The LEH therefore amounts to risk-neutral pricing: the data-

generating measure Q and the risk-neutral measure Q∗ coincide. This means that
expected excess returns on long bonds are zero.

The LEH is not the same as the more prominent EH, which states that bond yields
y(τ)t are expected values of average future short rates, or

EH : y(τ)t = Et [S] /τ. (2.5)

The difference between the two hypotheses (2.4) and (2.5) is due to Jensen’s inequality.
For example, suppose that the short rate is Gaussian under Q = Q∗, which implies that
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S is also Gaussian (as the sum of Gaussians). With this normality assumption, Eq. (2.4)
becomes

y(τ)t = Et [S] /τ − 1
2

vart [S] /τ,

which differs from (2.5) because of the variance term.
For example, suppose that the short rate is a random walk with normally distributed

shocks. More concretely, the short rate r solves the stochastic differential equation (SDE)

drt = σrdzt ,

where z is a standard Brownian motion (under the data-generating measure) and σr is
some constant.The shocks dzt are, loosely speaking, independently normally distributed
with mean 0 and variance dt. I can solve for the short rate explicitly as

rt = r0 +
t∫

0

σrdzu = r0 + σr zt

because the Brownian motion z0 starts at 0 with probability 1. The EH predicts a flat
yield curve in this case,

y(τ)t = Et [S] /τ = Et

⎡⎣ t+τ∫
t

rt + σr (zu − zt) du

⎤⎦ /τ = rt

because Et (zu − zt) = 0 for all u ≥ t.The LEH predicts a downward-sloping yield curve
because3

y(τ)t = rt − vart [S]

2τ
= rt − σ2

r τ
2

6
.

Cox et al. (1981) argue that the EH is not consistent with no-arbitrage. Counterexamples
to this argument exist for some special economies (e.g.,Fisher and Gilles,1998). Longstaff
(2000a) argues that market incompleteness may make it impossible to actually exploit
such arbitrage opportunities. Campbell (1986) finds that the Jensen’s inequality terms
tend to be small in the data, except in periods of high volatility such as the end of the
1970s and for bonds with long maturities.

3The variance can be computed as

vart

⎡⎣ t+τ∫
t

zu − zt du

⎤⎦ = var

⎡⎣ τ∫
0

zu du

⎤⎦ = τ∫
0

τ∫
0

cov (zu , zs) du ds

=
τ∫

0

τ∫
0

min{s, u} du ds = τ3

3
.
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2.3. Partial Differential Equation for Bond Prices with LEH

For now, I assume that the LEH holds. An advantage of the LEH is that there is no need
to know how to change the probability measure in step (i). Another advantage is that
we have some intuition about the parameters that determine the dynamics of the short
rate under the data-generating measure, whereas we do not have such intuition about
the parameters under the risk-neutral measure. The LEH is therefore a useful starting
point. I will discuss the change of measure in the next subsection.

In continuous time, a Markov process x lives in some state space D ⊂ R
N and solves

the SDE

dxt = μx(xt) dt + σx(xt) dzt , (2.6)

where z is an N -dimensional standard Brownian motion under Q,μx : D → R
N is the

drift of x, and σx : D → R
N×N is its volatility. Gaussian processes have an affine drift

μx(x), and their volatility σx(x) is constant. Fat tails in the distribution of the state vector
can be modeled by specifying an appropriate state-dependence for the volatility σx(x).
Another way to depart from Gaussianity is to model“large moves”in the process x,which
I will add in Section 3.5.The Markov process solving (2.6) is time-homogenous because
the functions μx and σx do not depend on time.The extension to time-inhomogeneous
Markov processes is straightforward.

Bond prices can now be solved using the Feynman–Kac approach. The idea is to
view the conditional expected value (2.2) as the solution of the PDE for the bond price
F(x, τ). The PDE can be obtained in four steps. First, the pricing Eq. (2.2) implies that
the price of the bond at maturity is equal to its payoff (here the bond price is taken to be
cum-dividend). This means that F(x, 0) = 1 for all x ∈ D. Second, the pricing equation
also shows that the bond price is the expected value of an exponential function,so F(x, τ)
is strictly positive (which makes it possible to divide by F ). Third, Ito’s Lemma implies
that F(x, τ) itself is an Ito process

dF(xt , τ)

F(xt , τ)
= μF (xt , τ) dt + σF (xt , τ) dzt (2.7)

with instantaneous expected bond return

μF (x, τ) = −Fτ(x, τ)
F(x, τ)

+ Fx(x, τ)�

F(x, τ)
μx(x)+ 1

2
tr
[
σx(x)σx(x)�

Fxx(x, τ)
F(x, τ)

]
, (2.8)

where Fτ , Fx, and Fxx are partial derivatives of F and tr denotes trace. Finally, the
LEH implies that the expected return μF (x, τ) is equal to the short rate r = R(x).
The following Cauchy problem summarizes these steps:

μF (x, τ) = R(x) (2.9)

F(x, 0) = 1
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for all x ∈ D and τ > 0. A number of regularity conditions are needed for the
Feynman–Kac approach to work. For example, F (x, τ) needs to be smooth enough
for Ito’s Lemma. These conditions are stated in Duffie (2001,Appendix E).

Bond prices can now be computed in different ways.The conditional expected value
in (2.2) can be computed using Monte–Carlo methods.The PDE in (2.9) can be solved
numerically. For small dimensional systems (N ≤ 3), solving the PDE is precise and
relatively fast. For larger dimensional systems (N ≥ 3), Monte–Carlo methods tend to
be more attractive.The alternative is to make strong functional form assumptions on the
coefficients μ(x) and σ(x) and the short-rate function R(x) so that the PDE has a closed
form solution. The broad class of exponential-affine solutions for F(x, τ) is called affine
term structure models.The requirements on the coefficients and the short-rate function
are laid out next.

2.4. Without LEH
The last step in the derivation of the PDE (2.9) for the bond price invoked the LEH to
conclude that the expected return on long-term bonds μF (x, τ) is equal to the riskless
rate R(x). I will now derive the PDE for the (empirically relevant) case where the LEH
does not hold.The key is to realize that expected returns are always equal to the riskless
rate under the risk-neutral measure Q∗, or

μ∗F (x, τ) = R(x).

Instead of the state-dynamics (2.6) under the data-generating measure, the state vector
x solves

dxt = μ∗x(xt) dt + σ∗x (xt) dz∗t (2.10)

for a Brownian motion z∗ under the risk-neutral measure Q∗. To get some intuition
about risk-neutral coefficients, consider the case of a single state variable equal to the
riskless rate, x = r . Risk-neutral pricing then applies after appropriately adjusting the
distribution of the short rate. For example, the conditional density of the short rate may
need to be shifted right, toward higher values of r . This would make the risk-neutral
mean of the short rate higher than its actual mean. In this case, yields are roughly equal
to the expected values of average future short rates r , but the expectation is computed
using a twisted distribution, a distribution with a higher mean. A unique feature of
the continuous-time setting is that the volatility turns out to stay the same under both
probability measures: σ∗x = σx. In other words, changes of probability measure do not
affect the variance of innovations to x, unless we allow for jumps.

Now I can derive the PDE for bond prices by relying on risk-neutral coefficients and
then later link the risk-neutral dynamics of the state vector to its data-generating process.
The SDE for the bond price is the “starred” version of Eq. (2.7)

dF(xt , τ)

F(xt , τ)
= μ∗F (xt , τ) dt + σ∗F (xt , τ) dz∗t ,
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where z∗ is a Brownian motion under Q∗ and the formula for the expected rate of
return μ∗F (x, τ) is analogous to (2.8)

μ∗F (x, τ) = −Fτ(x, τ)

F(x, τ)
+ Fx(x, τ)�

F(x, τ)
μ∗x(x)+

1
2

tr
[
σ∗x (x)σ∗x (x)�

Fxx(x, τ)
F(x, τ)

]
,

with the difference of being based on the drift μ∗x(x) and the volatility σ∗x (x) of x
under Q∗.

The easiest way to write down a pricing model is to start with a process x under Q∗
and to then link Q∗ to the data-generating measure Q. These two ingredients imply a
data-generating process for x, which can be estimated. The change of measure captures
risk adjustment.The change involves the density ξ, which is a strictly positive martingale
(so that Q and Q∗ agree on probability zero events) and starts at ξ0 = 1 (so that Q∗ is a
probability measure). The SDE is

dξt

ξt
= −σξ(xt) dzt , (2.11)

where σξ : D → R
1×N . Novikov’s condition makes ξ a martingale.4 Now consider the

process z∗ defined by

dz∗t = dzt + σξ(xt)
� dt.

Girsanov’s theorem (Duffie, 2001, Appendix D) implies that z∗ is a Brownian motion
under Q∗.

By inserting the definition of z∗ into the SDE (2.10)

dxt =
(
μ∗x(xt)− σ∗x (xt) σξ(xt)

�) dt + σ∗x (xt) dzt ,

it becomes clear that the volatility of the state vector is the same under both measures

σx(x) = σ∗x (x).

This is often called diffusion invariance principle. Only the drift changes:

μx(x) = μ∗x(x)− σx(x) σξ(x)�. (2.12)

4The solution to (2.11) is ξt = exp
(∫ t

0 σξ(xu) dzu − 1
2
∫ t
0 σξ(xu) σξ(xu)

� du
)
. The process ξ is a martingale if Novikov’s condition is

satisfied:

E

⎡⎢⎣exp

⎛⎜⎝ 1
2

T∫
0

σξ (xu) σξ(xu)
� du

⎞⎟⎠
⎤⎥⎦ <∞.

For more details, see Appendix D in Duffie (2001).
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3. AFFINEMODELS
Affine term structure models make functional-form assumptions in step (ii)′ of yield-
curve modeling, which lead to tractable pricing formulas.The functional-form assump-
tions are on the short-rate function R(x) and the process x for the state vector under the
risk-neutral measure. The functional form is affine in both cases:

• R(x) is affine
• x is an affine diffusion under Q∗:

• the drift μ∗x(x) is affine
• the variance matrix σ∗x (x)σ∗x (x)� is affine.

These functional forms are for coefficients under the risk-neutral measure. In particular,
the drift μx(x) is affine under the data-generating measure only when σx(x) σξ(x)� is
affine, which can be seen from (2.12). The next sections make these assumptions more
precise and show that bond prices F(x, τ) are exponential-affine in x. In this setting,
yields are thus affine in x which explains the name of this class of models.5

3.1. Affine Short Rate
The functional form of the short rate is made precise in the following assumption.

Assumption 1 The short rate is given by

r = R(x) = δ0 + δ�1 x

for δ0 ∈ R and δ1 ∈ R
N .

The choice of short-rate parameters δ0 and δ1 depends on the number of factors in
the model.The short rate usually is the factor in one-factor models,which means δ0 = 0
and δ1 = 1. The short rate in one-factor models is Markov. In N -factor models, the
short rate alone is not Markov, but the short rate together with N − 1 yields is typically
Markov.The short rate often serves as one of the factors in multidimensional models. In
this case,we still have δ0 = 0 and δ1 = (1, 0N−1)

�. Long yields still depend on the other
factors because the expected future path of the short rate depends on the current state
x in (2.2), when the short rate covaries with these other factors under the risk-neutral
measure.

3.2. Affine Diffusions

Again, I will start by imposing the LEH, which means that risk-neutral pricing applies
under the data-generating probability measure. I will therefore assume that the state

5Discrete-time analogous to affine diffusions is defined in Darolles et al. (2001) and applied to term structure modeling in Gouriéroux
et al. (2002). For an introduction into discrete-time affine models, see Backus et al. (1998).
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vector is an affine diffusion under Q, which is more restrictive than necessary to get
affine solutions for yields. The more general case of an affine diffusion under Q∗ with
flexible risk premia will appear in the next subsection. These risk premia may intro-
duce nonlinearities in the data-generating process for x. I start with the following two
assumptions:

Assumption 2 The process x is an affine diffusion.This means that x solves

dxt = μx(xt) dt + σx(xt)dzt ,

with coefficients

μx(x) = κ(x− x)

σx(x) = #s(x),

where s(x) is a diagonal N ×N matrix with ith diagonal element si(x) =
√

s0i + s�1i x, and

where s0i ∈ R, x, s1i ∈ R
N, and #, κ ∈ R

N×N are constants.

Some intuition about affine diffusions is easy to get in the univariate case. The affine
drift μ(xt) makes sure that if the current state xt is above its mean x, the change dxt is
likely to be negative as long as κ > 0. If the current state xt is instead below its mean
x, the change is likely to be positive. In both cases, the process xt is likely to be pulled
back to its mean. The speed of this adjustment is determined by κ. If the speed is zero,
κ = 0, the process is nonstationary. The autoregressive coefficient of discretely sampled
observations is exp(−κh),where h is the interval length between two observations.Time
is usually measured in years so that h = 1 is 1 year. Monthly and weekly observation
intervals then simply mean that h = 1

12 and h = 1
52 ,respectively. For daily data, the choice

of h is less obvious. Most papers shorten the year to an average number of 250 business
days so that h = 1

250 . Few papers take weekends and holidays seriously and set h = 1
365 .

Shocks dzt disturb xt from moving back to its mean. These shocks are normally dis-
tributed with mean zero and variance dt.The effect of these shocks on xt is determined by
the volatility σx(xt) . With constant volatility, the normally distributed shocks dzt trans-
late into a conditional normal distribution for changes dxt . More generally, shocks dzt

may translate more into dxt during times of high volatility σx(xt) and less in times of low
volatility.This state-dependent amplification effect introduces conditional heteroskedas-
ticity. In bond-yield data, the pattern of this heteroskedasticity seems to positively depend
on the level of yields. The half-life H of shocks solves exp(−Hκ) = 0.5. For example,
with κ = 5, the half-life is H = − log 0.5/κ = 0.1386 years, about 7 weeks.

Gaussian processes and square-root processes are the best known examples of affine
diffusions. The two classes differ with respect to their assumptions about the variance
matrix σx(x)σx(x)� . Gaussian processes have a constant variance matrix, which requires
that s1i = 0 for i = 1, . . . , N . Without loss of generality, I can set s(x) equal to the
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identity matrix (s0i = 1) because the variance parameters # are free.The SDE (2.6) then
becomes a so-called linear SDE (Karatzas and Shreve, 1988, Chapter 5.6)

dxt = κ(x− xt)dt +#dzt .

Existence and uniqueness of solutions to linear SDEs are not problematic. The solution
x is Gaussian and thus can take on negative values with positive probability.

Square-root processes introduce conditional heteroskedasticity by allowing σx(x) to
depend on the state. Now additional restrictions are needed to ensure that the variance
matrix σx(x)σx(x)� is positive definite. A univariate square-root process solves

dxt = κ(x− xt) dt +#
√

xtdzt ,

where κ, x,# are now all scalars. For arbitrary parameter values (κ, x,#), the condi-
tional variance #2xt may not be positive.The Feller condition κx > 1

2#
2 makes zero an

entrance boundary. In other words, this condition makes sure that zero is never reached.
This is important because once the process hits zero, its conditional variance #2xt col-
lapses to zero as well. Intuitively, the parameter restriction ensures that the drift term is
strong enough to always pull the process x away from the zero boundary. Note that the
parameter restrictions rule out unit roots (κ = 0).The solution of the last SDE only takes
on positive values (which makes it possible to compute

√
x). The conditional variance

of square-root processes is thus proportional to the level of the process. The larger x,
the higher its variance. For multidimensional but independent square-root processes, the
Feller condition can be imposed equation-by-equation.

More generally,the coefficientsμx(x) and σx(x) need to satisfy regularity requirements
to guarantee the existence of a unique solution to the SDE (2.6). These solutions x
are called strong solutions, which means that any other Ito process that solves (2.6) is
equal to x almost everywhere. The regularity requirements make sure that the solution
does not explode (growth conditions) and is unique (Lipschitz conditions).6 Although these
conditions may sound like technical details, they severely restrict the correlation structure
of affine diffusions. Moreover, they are not satisfied in even simple cases like square-root
diffusions. (The volatility #

√
x does not satisfy the Lipschitz condition, which is why

we need the Feller condition.) The following two standard examples are not affine, but
they illustrate that these conditions are natural in the context of deterministic differential
equations (σx(x) ≡ 0) . The first example is μx(x) = x2 and x0 = 1, which does not
satisfy the growth condition.The unique solution is xt = 1

1−t ,0 ≤ t ≤ 1,which explodes

6A measurable function f satisfies Lipschitz and growth conditions in x if there exist constants c and k such that

|| f (x)− f (y)|| ≤ c||x− y||
|| f (x)||2 ≤ k

(
1+ ||x||2)

for all x, y ∈ R
N . The norm on matrices used here is |A| = tr

(
AA�

)1/2 where tr denotes trace.
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for t → 1.The second example is μx(x) = 3x2/3
t and x0 = 0, which does not satisfy the

Lipschitz condition at x = 0. The equation has many solutions, which are indexed by a
scalar a > 0 : xt = 0 for t ≤ a and xt = (t − a)3 for t > a.

Duffie and Kan (1996) provide a multidimensional extension of the Feller condition.
Their condition handles general correlated affine diffusions. The condition ensures that
only positive factors enter the volatility σx(x). This involves restrictions on the correla-
tions between state variables, which prevent a potentially negative variable from pulling
a variable that enters s(x) into the negative orthant. The condition is sufficient for the
existence of a unique solution to the SDE (2.6). For necessary and sufficient conditions,
see Theorem 2.7 in Duffie et al. (2003).

Condition A (sufficient for the existence of a solution to the SDE):

1. For all x such that si(x) = 0, s�1iκ(x− x) > 1
2 s�1i##

�s1i.
2. For all j, if

(
s�1i#

)
j �= 0, then si(x) and sj(x) are proportional.

The following examples illustrate how Condition A restricts the admissible cross-
correlations between state variables.7

Example 1 x = (x1, x2) with s01 = 1, s11 =
(

0 0
)�

for x1, and s02 = 0, s12 =(
0 1

)�
for x2. Suppose first that # is diagonal and κ is unrestricted. In particular, κ21 �= 0

where κ21 is the (2, 1)-th element in κ, which means that the drift of x2 (which enters the volatility)
depends on x1.For ConditionA.1. to be satisfied,we need that κ21 (x1 − x1)+ κ22x2 >

1
2#

2
22.

This inequality cannot hold for all x1 ∈ R (which is a direction in which s2(x) = 0) so that the
drift of x1 is not allowed to depend on x2 or κ21 = 0. Suppose now that κ is diagonal and #

is unrestricted. In particular, #21 �= 0. For the process to satisfy A.2., we need that s1(x) and
s2(x) are proportional, which is not true.This implies that it must be that #21 = 0. Analogous
considerations for x2 show that it is possible to have κ12 �= 0 and #12 �= 0.

Example 2 x = (x1, x2) with s01 = 0, s11 =
(

1 0
)�

for x1, and s02, s12 as in Exam-
ple 1, # is diagonal. Suppose κ is unrestricted with κ21 �= 0. Again, Condition A.1. requires
κ21(x1 − x1)+ κ12x2 >

1
2#

2
22 for all directions in which s2(x) = 0.The difference to Example

1 is that x1 can only take on positive values. If κ21 < 0, it is now possible to choose parameters
such that A.1. is satisfied for all x1 ∈ R+. Condition A.2. rules out any off-diagonal terms in #.

The examples show that the main restriction coming from Condition A is on the
dependence of variables entering the volatility s(x) on other variables. These volatility-
determining variables may not be correlated through κ with other variables that do
not enter s(x) (as shown in Example 1). Volatility-determining variables may, however,

7Alternatively, we can replace the strong inequality in the first part of the condition with a weak inequality and work with weak solutions.
Longstaff (1992) discusses this issue in the context of CIR.
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be correlated with each other through κ, provided this correlation is positive (κ12 < 0
and κ21 < 0 in Example 2).Variables in s(x) cannot be conditionally correlated through
# with any variable (Examples 1 and 2). Other variables (that do not determine the
volatility) are free to be correlated with variables in s(x).

3.2.1. Mean

For the univariate case, we can rewrite the SDE (2.6) for affine diffusions as

xt = x+ exp{−κ(t − s)} [xs − x]+
t∫

s

exp{−κ(t − u)}#s(xu) dzu (3.1)

for any value xu, 0 ≤ s ≤ t. The same formula applies to the multivariate case, where
e−κ(t−s) is a matrix exponential. These are coded in MATLAB as “expm”. The
conditional expected value can be computed immediately

Es[xt ] = x+ exp{−κ(t − s)} (xs − x) . (3.2)

The unconditional expected value E [xt] solves

E[xt ] = x+ exp{−κ(t − s)} (E [xt ]− x)

for stationary processes, which implies that E [xt] = x. Again, these are matrix
exponentials.

3.2.2. Variance

The conditional variance of affine diffusions is

vars(xt) =
t∫

s

exp{−κ(t − u)}#s(Es [xu]) s(Es [xu])�#� exp
{
−κ� (t − u)

}
du. (3.3)

For Gaussian processes, the conditional variance is

vars(xt) =
t∫

s

exp{−κ(t − u)}##� exp
{
−κ�(t − u)

}
du.

For univariate Gaussians, this reduces to

vars(xt) = #2

(
1− exp{−2κ(t − s)})

2κ
. (3.4)

For univariate square root processes, the conditional variance boils down to

vars(xt) = x#2

(
1− exp{−κ(t − s)})2

2κ
+ xt#

2

(
exp{−κ(t − s)} − exp{−2κ(t − s)})

κ
. (3.5)
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3.3. Affine Bond Pricing with LEH

To compute bond prices, I now add the assumption of risk-neutral pricing under Q.

Assumption 3 The LEH holds.

Under the Assumptions 1, 2, and 3 (and additional integrability conditions on the
SDE coefficients for the Feynman–Kac approach to work stated in Duffie et al., 2003,
Section 11), Duffie and Kan (1996) guess a solution F(x, τ) for the PDE (2.9) of the
form

F(x, τ) = exp
(
a(τ)+ b(τ)�x

)
, (3.6)

where the coefficients a(τ) ∈ R and b(τ) ∈ R
N solve the ODEs

a′(τ) = −δ0 + b(τ)�κx+ 1
2

N∑
i=1

[
b(τ)�#

]2

i
s0i (3.7)

b′(τ) = −δ1 − κ�b(τ)+ 1
2

N∑
i=1

[
b(τ)�#

]2

i
s1i

starting at a(0) = 0 and b(0) = 0. This guess can be verified as follows. Given the
exponential affine form (3.6), the instantaneous bond return for Eq. (2.8) is

μF (x, τ) = −a′(τ)− b′(τ)�x+ b(τ)�μx (x)+ 1
2

b(τ)�σx(x)σx(x)�b(τ). (3.8)

The PDEs in (2.9) and therefore Eq. (3.8) hold for all x in an open set D so that the
method of undetermined coefficients leads to the system of ODEs above.

The coefficients a(τ) and b(τ) can be computed in closed form only for a few cases.
For example, the coefficients for a one-factor model based on a square-root process are
in Cox et al. (1985), p. 393. The coefficients for the two-factor case with independent
square-root processes are in Chen and Scott (1992), p. 616. The coefficients for a one-
factor model based on a Gaussian process are inVasicek (1977), p. 186. More generally,
the system of ODEs (3.7) can be solved fast and efficiently numerically using Runge–
Kutta methods. The MATLAB command “ode45” performs the computation.

The bond-price equation (3.6) shows that the LEH together with a short rate which
is affine in an affine diffusion (Assumptions 1–3) implies that yields are given by

y(τ)t = − log F(xt , τ)

τ
= A(τ)+ B(τ)�xt (3.9)

for coefficients A(τ) = −a(τ)/τ and B(τ) = −b(τ)/τ.
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3.4. Without LEH

I will now drop Assumption 3 and modify Assumption 2 in the following way.

Assumption 2′ The process x solves

dxt = μ∗x(xt) dt + σ∗x (xt) dz∗t

for a Brownian motion z∗ under Q∗ and coefficients

μ∗x(x) = κ∗
(
x∗ − x

)
σ∗x (x) = #∗s∗(x),

where s∗(x) is a diagonal N ×N matrix with ith diagonal element s∗i (x) =
√

s∗0i + s∗�1i x, and

where s∗0i ∈ R, x∗, s∗1i ∈ R
N , and #∗, κ∗ ∈ R

N×N are constants.

To obtain exponential-affine bond-price solutions, the risk-neutral drift μ∗x(x)
and variance-covariance matrix σ∗x (x)σ∗x (x)� need to be affine. Because of diffusion
invariance, the variance-covariance matrix σx(x)σx(x)� under the data-generating
measure needs to be affine as well. But the data-generating drift

μx(x) = μ∗x(x)− σx (x) σξ(x)�

may be nonlinear, depending on the functional form of σξ(x) .The data-generating drift
is only affine if the product σx(x)σξ(x)� is affine. Many examples of affine yield-curve
models in the literature described in Section 5 take the drift to be affine under both
measures.

Assumptions 1 and 2′ (and again integrability conditions from Duffie et al., 2003,
Section 11) then imply that the ODEs for the bond-price coefficients become

a′(τ) = −δ0 + b(τ)�κ∗x∗ + 1
2

N∑
i=1

[
b(τ)�#

]2

i
s0i (3.10)

b′(τ) = −δ1 − κ∗�b(τ)+ 1
2

N∑
i=1

[
b(τ)�#

]2

i
s1i,

where the risk-neutral parameters κ∗ and x∗ replace κ and x in (3.7). Finally, the drift-
equation (3.8) has to be starred as well to hold under Q∗.

3.5. Jumps

Up to now, the state vector has been an affine diffusion under the risk-neutral probabil-
ity measure. Diffusions evolve continuously through time. Large movements in yields,
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however, happen around macroeconomic news releases, and Federal Reserve policy
moves at discrete points in time. These large movements can be modeled as discon-
tinuous moves, or jumps, in the state vector.These jumps occur at arrival times t1, . . . , tn
as in Fig. 12.1. These arrival times are either stochastic or deterministic. Counting pro-
cesses start at 0 and then record the number of jumps as illustrated in the lower graph in
Fig. 12.1. The value of the state vector x “right before” a jump at time t is the left limit
xt− = lims↑t xs.The jump in x at t is �xt = xt − xt−. The process x is right-continuous
as in the upper graph in Fig. 12.1.

In principle, the conditional probability λtdt of a jump during the interval [t, t + dt]
and the distribution of the jump size �xt conditional on a jump at time t may both
depend on the state xt−. In affine models, however, it turns out that there is a dichotomy
under the risk-neutral measure between specifying the jump timing to be state dependent
and specifying the jump size distribution to be state dependent.The two cannot be mixed
together without giving up on tractability, so one of them has to be state independent.
Either the conditional jump distribution depends on the state, but then the jump timing

t1 t2
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Figure 12.1 The upper graph illustrates jumps in the state variable x at jump arrival times t1 and t2.
The lower graph illustrates the corresponding counting process N .
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has to be deterministic, or the conditional probability of a jump depends on the state,
but then the size distribution needs to be state independent. Taken together, these two
types of jumps can be used to accommodate release calendars, central bank meetings,
and surprising events such as the Gulf war. Jumps at stochastic jump times have been
introduced by Duffie and Kan (1996, Section 11), whereas jumps at deterministic jump
times have been introduced by Piazzesi (2001).

Formally, jump-diffusions x solve

dxt = μx(xt−)dt + σx(xt−)dzt + dJt ,

where J is a pure jump process and the other terms are as before in (2.6). The jump
process J can be activated in two possible ways. First, jumps may be caused by a Pois-
son process N P with stochastic intensity λ (see Brémaud, 1981). Heuristically, λtdt is
the conditional probability of a jump in the interval [t, t + dt]. For tiny intervals, we
can therefore intuitively think of a Poisson process as a 0-1 coin flip with conditional
probability λtdt of observing 1 and probability 1− λtdt of observing 0.We may observe
more than one jump during longer intervals. Second, jumps may happen at deterministic
points in time. These jump times are recorded by a deterministic counting process N D.
The processes N P and N D each start at 0 and count up in increments of 1. I use one
jump process of each type to save on notation.The extension to multiple jump processes
is immediate (it only involves summing up different jump processes in the formulas
below).

Affine jump-diffusions make the same functional form assumptions on the coefficient
μx(x) and the volatility σx(x) as in the case without jumps. In addition, functional-
form assumptions are needed for the jump intensities and the distribution of jump sizes
conditional on information “right before” the jump. These assumptions are stated next.

Assumption 4

1. (Stochastic intensity). The stochastic intensity λ of the Poisson process is affine

λ(x) = λ0 + λ�1 x

for λ0 ∈ R and λ1 ∈ R
N .

2. (Conditional jump distribution). Given a Poisson jump at a stopping time t, the distribution
of the jump size �xt is independent of xt−. Given a deterministic jump at t counted by the
deterministic counting process, the distribution of the jump size �xt conditional on xt− has an
exponential-affine Laplace transform. More precisely, for any given α ∈ R and β ∈ R

N , there
exist coefficients a(α) ∈ R and b(β) ∈ R

N such that

Et− [exp(α+ β�xt)] = exp
(
a(α)+ b(β)� xt−

)
.
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3.5.1. Calendar Time Does Not Matter

Consider first the case without deterministic jump counter N D. Let M be the
compensated Poisson process dMt = dN P

t − λtdt. Intuitively, the compensated Pois-
son process is a demeaned version of the Poisson process because we are taking out the
conditional mean change λtdt. This leaves us with a mean 0 shock process dM , similar
to Brownian shocks dz. Then we can rewrite

dxt = μx(xt−)dt + σx(xt−)dzt +�xt dMt ,

where the drift of x is now

μx(x) = μx(x)+ λ(x)E[�x]

= κ(x− x)+
(
λ0 + λ�1 x

)
E [�x] .

The new term in the drift is the expected jump in x, which is simply the probability λ(x)dt
of a jump in the interval [t, t + dt] times the expected jump size E [�x] conditional on
a jump.The expectation has no subscript because the distribution of the jump size �x is
state-independent by Assumption 4.2. Because E [�x] is a constant and μx(x) and λ(x)
are both affine in x, the drift μx in the case of Poisson jumps is again affine.

Now suppose again that the LEH holds. Ito’s Lemma for the case with Poisson jumps
(Duffie, 2001,Appendix F) implies that the bond price is itself an Ito process

dF(xt , τ)
F(xt−, τ)

= μF (xt−, τ)dt + σF (xt−, τ)dz + J P
F (�xt , τ)dMt , (3.11)

and the size of the jump in bond returns is

J P
F (�xt , τ) = F(xt , τ)− F(xt−, τ)

F(xt−, τ)
.

The jump size J P
F is a function of the jump�x in the state vector and the time-to-maturity

τ of the bond. The instantaneous expected bond return now is

μF (x, τ) = μF (x, τ)+ λ(x)E[ J P
F (�x, τ)],

where μF (x, τ) is the return in the case without jumps given by (2.8). The additional
term reflects that bond returns now also compensate for jumps in the state vector. The
compensation is equal to the probability λ(x)dt of a jump in the interval [t, t + dt]
times the expected return E[ J P

F (�x, τ)] conditional on a jump. Again, the expectation
has no subscript because the distribution of the jump size �x is state-independent by
Assumption 4.2.
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The guess for the bond price is again of the exponential-affine form (3.6).This means
that the jump in returns is

J P
F (�x, τ) = exp

(
b(τ)��x

)
− 1.

The bond-price coefficients solve the ODEs:

a′(τ) = −δ0 + b(τ)�κx+ 1
2

N∑
i=1

[
b(τ)�#

]2

i
s0i + λ0E

[
J P
F (�x, τ)

]
(3.12)

b′(τ) = −δ1 − κ�b(τ)+ 1
2

N∑
i=1

[
b(τ)�#

]2

i
s1i + λ1E

[
J P
F (�x, τ)

]
starting at a(τ) = 0 and b(τ) = 0. When λ0 = 0 and λ1 = 0N , these equations collapse
to the ODEs for the case without jumps (3.7). For some special cases, the ODEs can be
computed by pencil and paper. Das and Foresi (1996) compute coefficients for two such
cases.The first case has jumps in a mean-reverting short rate with constant volatility.The
sign of the jump size is chosen by a coin flip, and the absolute value of the jump size is
exponentially distributed. In the second case, the short rate reverts to a stochastic mean,
which is a random walk with i.i.d. jumps.

3.5.2. Calendar TimeMatters

Bond yields are nonstationary when there are deterministic jump arrival times counted
by N D. Thus, calendar time now matters. I therefore change the notation for the bond
price in this subsection: P(T )

t now denotes the price of a bond at time t for a bond that
matures at time T .The price will be given by P(T )

t = F(x, t, T ).The guess for the bond
price is now

F(x, t, τ) = exp
(
a(t, T )+ b(t, T )�x

)
.

The computation of a(t, T ) and b(t, T ) proceeds recursively, starting at the time of matu-
rity with boundary condition a(T , T ) = 0 and b(T , T ) = 0. The recursive procedure
applies two main results from Piazzesi (2001,Appendix B). Result 1 computes the coef-
ficients at a deterministic jump time, whereas result 2 computes the coefficients for the
interim period between two deterministic jump times. More concretely, result 1 says
that if the bond price at the next deterministic jump date t is exponential-affine in the
state vector exp

(
α+ β�xt

)
for coefficients α ∈ R and β ∈ R

N , then the price P(T )
t− of

a bond just before the jump date is of the same form. The proof of this result relies on
Assumption 4.2. Result 2 states that if the bond price just before the next deterministic
jump date ti+1 is exponential-affine exp

(
α+ β�xt

)
for some coefficients α ∈ R,β ∈ R

N ,
and t = ti+1−, then the price during the entire interim period [ti, ti+1) between two
deterministic jump dates is given by exp

(
a(s, t)+ b(s, t)�xs

)
with coefficients a(s, t) and

b(s, t) for which â(t − s) := a(s, t) and b̂(t − s) := b(s, t) solve the ODEs (3.12) with
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terminal conditions â(0) = α and b̂(0) = β. Together, the two results guarantee that for
every t, the price P(τ) is exponential affine.

3.5.3. Risk Adjustment with Jumps

Changes of measure with jumps have generally effects on the jump intensity and jump
size distribution. Intuitively, risk-neutral pricing applies under a probability measure
under which jumps counted by NP tend to occur more often and are on average larger
in size once they occur. Jumps at deterministic times counted by N D have the same
timing under both measures, only their size distribution changes. Technically, the risk-
adjustment involves a density ξ as in the case with diffusions, but now the density may
jump as well. The density solves

dξt

ξt−
= σξ(xt−)dzt + JD

ξ (�xt)dN D
t + J P

ξ (�xt)dMt ,

starting at ξ0 = 1. For notational simplicity, the jump sizes JD
ξ and J P

ξ only depend on
the jump size �xt .The extension to dependence JD

ξ (�xt , xt−) and J P
ξ (�xt , xt−) on the

current state xt− is immediate. Assumptions on the coefficients (in addition to Novikov)
are needed for ξ to be a strictly positive martingale. First, both jump sizes JD

ξ and J P
ξ need

to be greater than−1 for ξ to stay positive because the jump size �ξt at the deterministic
jump time t is given by ξt−JD

ξ (�xt). The same argument holds for Poisson jump times.
Second, the conditional expected value of the jump size at deterministic jump times
must be zero for ξ to be a martingale. For a deterministic jump time t, the following
equalities show why

Et− [ξt ] = Et−
[
ξt−

(
1+ JD

ξ (�xt)
)]

= ξt−
(
1+ Et−

[
JD
ξ (�xt)

])
= ξt−.

Example 3 Suppose there is only one deterministic jump time t. The jump in the state is
�xt = μ+ σε where ε ∼ N (0, 1) is a random variable known at time t, and JD

ξ (�xt) =
exp

(−σε− 1
2σ

2)− 1 for some constant σ.This jump size assumption for ξ satisfies JD
ξ > −1.

Also, Et−
[

JD
ξ (�xt)

] = 0. Under the risk-neutral measure Q∗, the random variable ε is
distributed N (−σ, 1), which implies that �xt ∼ N

(
μ− σσ, σ2

)
under Q∗.

The jump intensity λ∗ under the risk-neutral measure is given by

λ∗t = λtEt−
(
1+ J P

ξ (�xt)
)
,

which is well defined because J P
ξ > −1. Unlike at deterministic jump times,the expected

jump size in ξ does not have to be zero at Poisson jump times.
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Example 4 Suppose that the intensity λ is affine under the data-generating measure, λ(x) =
λ0 + λ�1 x. Also, suppose that Et−

(
J P
ξ (�xt)

) = v for some constant v > 0. Then the jump
intensity λ∗ under the risk-neutral measure is again affine but with coefficients λ∗0 = λ0(1+ v)
and λ∗1 = λ1(1+ v).

To see where the form of this intensity comes from, consider M∗ that solves

dM∗
t = dN P

t − λ∗t dt

= dMt +
(
λt − λ∗t

)
dt.

I want to choose λ∗ to make M∗ the compensated Poisson process under Q∗ and thus
a martingale under Q∗. For M∗ to be a Q∗-martingale, the product ξM∗ needs to be a
Q-martingale. This can be seen from the following sequence of equations:

E∗t
[
M∗

s
] = Et

[
ξsM∗

s
]

ξt
= ξtM∗

t

ξt
= M∗

t .

Using Ito’s lemma (see Duffie, 2001, Appendix E), the product can be written as

d
(
ξM∗) = M∗

t−dξt + ξt−dM∗
t +�ξt�M∗

t

= M∗
t−dξt + ξt−dMt + ξt−

(
λt − λ∗t

)
dt + ξt−J P

ξ (�xt)dN P
t .

Both ξ and M are Q-martingales, so
∫

M∗dξ and
∫
ξdM are Q-martingales. Now if

λ∗ = λE
(
1+ J P

ξ

)
, then the last two terms are

ξt−
(
λt − λ∗t

)
dt + ξt− J P

ξ (�xt) dN P
t = ξt− J P

ξ (�xt)dMt ,

which gives another Q-martingale.
At deterministic jump times, the risk-neutral jump-size distributions satisfy

E∗t− [�xt ] = Et−
[
�xtξt

ξt−

]
= Et−

[
�xt(ξt− +�ξt)

ξt−

]
= Et−

[
�xt

(
1+ JD

ξ (�xt)
)]

.

At Poisson jump times, the risk-neutral distributions satisfy

E∗t− [�xt ] = Et−

⎡⎣�xt

(
1+ J P

ξ (�xt)
)

Et−
[
1+ J P

ξ (�xt)
]
⎤⎦

Because the expected jump in ξ at deterministic jump times is zero, Et−
[
JD
ξ

] = 0, we
can see that the last two equations are very similar.
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Example 5 Suppose that the jump size �x at Poisson jumps, the Poisson intensity λ, and JP
ξ

are all constant.Then the risk-neutral jump size is unchanged �x, only the jump intensity under
the risk-neutral measure is different: λ∗ = λ

(
1+ J P

ξ

)
.

3.6. Negative Short Rates and Jump Intensities

Affine models do not constrain the short rate and jump intensities to be positive in
general. Assumption 1 specifies the short rate to be affine in the state x, which itself
may take on negative values. Assumption 4.1 specifies jump intensities to be affine in x.
Negative nominal short rates are undesirable because they lead to arbitrage opportu-
nities in economies with money. Negative intensities ( just like negative probabilities)
do not make sense by definition. Within affine models, there are only two ways out of
this problem. The first way is to only include square-root processes in the state vec-
tor. Condition A allows these square-root processes to be positively correlated but not
negatively (see Section 3.1). Thus, the correlation structure in the model is severely
restricted. For example, jump intensities of different Poisson processes can then only be
positively correlated. But negative correlation in Poisson arrival rates is useful in various
contexts. For example, up and down moves in a central bank’s policy rate come with
conditional probabilities that depend on the business cycle and are therefore negatively
correlated.

The second way is to view the affine term structure model as a tool to approximate
true bond prices. The true short rate and the true intensity are nonlinear,

r true
t = max{rt , 0} = max

{
δ0 + δ�1 x, 0

}
λtrue

t = max{λt , 0} = max
{
λ0 + λ�1 x, 0

}
,

whereas r and λ are affine in the state x and enter the (now approximate) pricing Eq. (2.2).
The approximating model for bond prices ignores the truncation induced by the max-
operators and is therefore affine. To be clear, the approximating affine model may still
allow arbitrage opportunities. For example, in states of the word where r takes on negative
values, long-term bond yields from the approximating model may be negative as well,
again giving rise to arbitrage strategies involving money. The approximation is good
provided that the probability Pr {r < 0} that r takes on negative values is small. Similarly,
Pr {λ < 0} needs to be small for the approximating model to work well. The accuracy
of this approximation at a given parameter vector can be checked, e.g., by computing
true bond yields based on r true and λtrue.This computation involves either Monte–Carlo
methods applied to (2.2) or numerically solving the PDE (2.8). I am not aware of any
study of nominal bond yields that performs such a check regarding short rates. Some
estimated affine models imply negative short rates on average, which suggests that such
a check would be useful. Piazzesi (2001) performs this check for negative intensities.
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Leaving the affine setup is another alternative. This does not necessarily mean
giving up on closed-form solutions for yields. For example, the short rate is quadratic in
Constantinides (1992), El Karoui et al. (1993), and Ahn et al. (2002). Both the short rate
and jump arrival intensities are quadratic in Piazzesi (2001).

3.7. Expected Returns
Expected returns in excess of the riskfree rate in affine models can be computed as
follows. Ito’s lemma implies that the volatility of bond returns is

σF (xt , τ) = b(τ)�σx(xt).

I insert the definition of the Brownian motion dz∗t = dzt − σ�ξ (xt)dt and compensated
Poisson process

dM∗
t = dMt − λtEt−

(
J P
ξ

)
dt

under Q∗ into the SDE for the bond price (3.11). This leads to a capital asset pricing
model (CAPM)-type equation linking expected bond returns under the two measures,
μF (x, τ) and μ∗F (x, τ) = R(x), between any two deterministic jump dates:

μF (x, τ)− R(x) = −b(τ)�σx(x)σξ(x)� − λ(x)E
[
J P
ξ (�x) J P

F (�x, τ)
]
. (3.13)

Without Poisson jumps (λ(x) ≡ 0), expected excess returns are determined by their
covariance with the density ξ, which in continuous time is just the product of the
volatilities.The volatility of bond returns is the factor loading b(τ) times the volatility of
the factor σx(x). The volatility σξ(x) of the density contains the market prices of risk for
each Brownian motion. These risk prices have the usual mean-variance trade-off interpre-
tation: the ith market price of risk measures the percentage change in expected return
that compensates an investor for a 1% increase in return volatility attributable to the
ith Brownian motion. Typically, b(τ) contains negative numbers (at least in one-factor
models) so that b(τ)�σx(x) is negative. Investors thus want more expected excess returns
in compensation for holding extra risk,measured as−b(τ)� σx(x).The next section will
show that Lucas models with a representative agent imply that ξ is high in recessions
(when aggregate consumption growth is low). A high covariance between bond returns
and the density means that bonds pay out in recessions, which makes bonds valuable.
Low excess returns are therefore required to compensate the agent to hold the bond.

With Poisson jumps, expected excess returns also compensate for jump risk. The
compensation is the probability of a jump times the expected jump in returns JP

F weighted
with the market price of Poisson jump risk JP

ξ . Again, because b(τ) usually contains negative
numbers, J P

F is negative.
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At deterministic jump times, expected returns under the risk-neutral measure are zero

E∗t−
[

JD
F (�xt , τ)

] = 0.

To understand why, remember that expected excess returns under the risk-neutral mea-
sure are equal to the short rate. In the instant of a jump,the short rate is zero,and expected
excess returns under Q∗ must be therefore zero. Intuitively, the instant of a jump is too
short for there to be a positive short rate. This implies that expected returns under Q
satisfy an analogous condition to the one for Poisson jumps:

Et−
[
JD
F (�xt , τ)

] = −Et−
[
JD
ξ (�xt , x) JD

F (�xt , τ)
]
.

Intuitively, expected returns are again the probability of a jump, which is equal to 1 for
deterministic jump times, multiplied with the expected return weighted with the market
price of jump risk for deterministic jump arrival times.

4. AFFINE GENERAL EQUILIBRIUMMODELS
The pricing equations derived so far did not link fundamentals to the yield curve. More-
over, the transition from the data-generating measure Q to the risk-neutral measure Q∗
was specified exogenously and was not tied to preference parameters. For real bonds, this
link to fundamentals can be achieved within a representative agent endowment economy
along the lines of Exercise 10.3 in Duffie (2001). Suppose the representative agent has a
time-separable utility function

U (c) =
∞∫

0

e−δtu(ct , ηt)dt with u(ct , ηt) = (ct − ηt)
1−α

1− α
,

where δ is the rate of time preference,α is some power, and η is an exogenous preference
shock process.The agent eats an endowment process and receives preference shocks such
that

ct − ηt = exp
(
γ�xt

)
,

where the state vector x is a diffusion. The coefficient of relative risk aversion

− ctucc(ct , ηt)

uc(ct , ηt)
= αct

ct − ηt

is time-varying. In the absence of preference shocks (η ≡ 0), the coefficient of relative
risk aversion is the constant α, the aggregate endowment is ct = exp

(
γ�xt

)
, the instanta-

neous expected endowment growth rate equals γ�μx(x)+ 1
2γ
�σx(x)σx(x)�γ , and the

volatility of endowment growth is γ�σx(x).
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The time-t price of a bond paying 1 unit of consumption at time t + τ is the
conditional expected value of the marginal rate of substitution between t and t + τ,

P(τ)
t = Et

[
mt+τ
mt

]
,

where marginal utility is given by

mt = exp(−δt)uc(ct , ηt) = exp
(− δt − αγ�xt

)
.

Ito’s Lemma now implies that m is given by

dmt

mt
= μm(x)dt + σm(x)dzt

with drift and volatility

μm(x) = −δ− αγ�μx(x)+ 1
2
α2γ�σx(x)σx(x)�γ , (4.1)

σm(x) = −αγ�σx(x).

No-arbitrage is a necessary condition for an equilibrium to exist,and from Section 2.1,
no-arbitrage is also equivalent to risk-neutral pricing. The marginal utility process m
thus provides the link between the data-generating probability Q and the risk-neutral
probability Q∗. The following equations hold:

P(τ)
t = Et

[
mt+τ
mt

]
= Et

⎡⎣ξt+τ
ξt

exp

⎛⎝− t+τ∫
t

r(u)du

⎞⎠⎤⎦ = E∗t

⎡⎣exp

⎛⎝− t+τ∫
t

r(u)du

⎞⎠⎤⎦,

where

ξt = mt

m0
exp

⎛⎝ t∫
0

r(u)du

⎞⎠ (4.2)

is the density of Q∗ with respect to Q (a concept defined in Section 2.4).
Because the process ξ is a martingale, an application of Ito’s Lemma to Eq. (4.2)

implies that

μm(x) = −r = −R(x).

Equation (4.1) therefore describes minus the short rate. The usual comparative statics
arguments apply to this short-rate equation,at least in the case without preference shocks.
A higher rate of time preference δ makes the agent want to save less so that the real rate
must be higher to compensate the agent for saving as much as before. Higher future
expected endowment growth makes the agent want to consume more today.The real rate
must therefore be higher to prevent him from borrowing. Higher endowment volatility
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activates a precautionary savings motive so that the real rate must be lower to prevent
the agent from saving.

The short-rate map R(x) is affine if the drift μx(x) and variance-covariance matrix
σx(x)σx(x)� are affine. In other words, the data-generating process for x has to be an
affine diffusion for Assumption 1 to be satisfied. Equations (4.1) and (4.2) imply that
market prices of risk are given by σm(x) = −αγ�σx(x). In the absence of preference
shocks, market prices of risk are thus given by minus the coefficient of relative risk
aversion times the volatility of consumption growth γ�σx(x). A higher volatility of
consumption growth makes recessions worse and therefore makes bonds, which pay out
in these bad times even more attractive. The drift of x under Q∗ satisfies

μ∗x(x) = μx(x)− ασx(x)σx(x)�γ ,

which is automatically affine.
To summarize,the real yield curve is affine if the state x is an affine diffusion under Q in

this model.8 Campbell (1996) computes bond and stock prices in a discrete-time version
of this economy in which consumption growth is a univariate ARMA process of any
order. Cox et al. (1981) discuss the specification of higher-order autoregressive processes
in continuous time. Bekaert and Grenadier (2000) relax the homoskedasticity assumption
on the state vector in a discrete-time setting. Campbell (1996) and Bekaert and Grenadier
(2000) allow for preference shocks to increase risk premia.9 Campbell et al. (1997) specify
consumption growth as an AR(1) plus noise, which amounts to an ARMA(1,1). This
specification differs from the one in Campbell because the number of shocks matters,e.g.,
for determining the spanning number of assets.Wachter (2006) combines anARMA(1,1)
for consumption growth with a“surplus ratio”(c − η)/c = exp(x1),where x1 is a square-
root process in discrete time as in Campbell and Cochrane (1999).The continuous-time
analog of the aggregate endowment in her economy is c = exp(x2), where x2(t) =
x2(0)+

∫ t
0 x3(s)ds + z2(t), and x3 is a Gaussian autoregressive process. The expected

instantaneous endowment growth rate is x3 plus a constant. In terms of the general
specification outlined above, this amounts to choosing γ�x = x1 + x2.

Even though there is no role for money in this economy, nominal bonds can still
be priced by specifying an exogenous price process pt . Cox et al. (1985) do this in their
Section 7. To be concrete, the dollar-price PN (τ)

t of a bond that pays out one dollar at
τ periods from now is

PN (τ)
t = Et

[
mt+τ
mt

pt

pt+τ

]
.

8For stock pricing in affine economies, see Bakshi and Chen (1997), Bekaert and Grenadier (2001), Mamaysky (2002), and Longstaff and
Piazzesi (2004).

9Alternatively,Telmer and Zin (1996) investigate the real term structure in an incomplete (nonaffine) setting, which also implies higher
premia for long-term bonds.



Affine Term Structure Models 721

Cox et al. (1985),Gibbons and Ramaswamy (1993),Pearson and Sun (1994), and Heston
(1991) assume that mt+τ and 1/pt+τ are independent. This assumption leads to

PN (τ)
t = P(τ)

t Et

[
pt

pt+τ

]
,

which is the nominal price P(τ)
t pt of a bond that pays one consumption good at time

t + τ multiplied with how much one dollar at t + τ is expected to be worth in terms of
the consumption good Et[1/pt+τ ] . In this setting, the nominal yield is equal to the real
yield plus expected inflation (plus a Jensen’s inequality term). This is not true in general

PN (τ)
t = P(τ)

t Et

[
pt

pt+τ

]
+ covt

(
mt+τ
mt

,
pt

pt+τ

)
due to the covariance of the pricing kernel and the inverted inflation rate. Pennacchi
(1991) and Sun (1992) allow their exogenous inflation process to be correlated with real
variables.

The real value of a dollar at t + τ can be computed conveniently if the price level p
and expected inflation π are specified as in (Cox et al., 1985, Section 7):

dpt

pt
= πtdt + σp

√
πtdzp

t ,

dπt = κπ (π − πt) dt + σπ
√
πtdzπt

for constants σp, κπ,π,σπ and independent Brownian motions zp, zπ. Here, expected
inflation is always positive. This specification boils down to evaluating

Et

[
pt

pt+τ

]
= Et

⎡⎣exp

⎛⎝− t+τ∫
t

(
1− 1

2
σ2

p

)
πudu −

t+τ∫
t

σp
√
πudzp

u

⎞⎠⎤⎦.

Because the conditional expected value of the second integral is zero, this expression has
a closed form solution. More generally, any price process pt = exp

(
ρ�xt

)
would work.

An endogenous price process can be derived, e.g., in models with a cash-in-advance
constraint. The motive for holding money in these models is that good purchases need
to be made with money so that the agent maximizes utility subject to a budget constraint
and the cash-in-advance constraint

pt ct ≤ Md .

This constraint binds as long as the nominal interest rate is positive. This is a serious
restriction within the class of affine yield-curve models because many affine specifications
allow nominal rates to become negative (Section 3.6 discusses how to maybe deal with
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this problem). The model also specifies an exogenous money-supply process Ms, and
equilibrium requires the money market to clear so that Md = Ms.Together with good-
market clearing, the price process in this economy is implied by the quantity equation
ptct = Ms. Rebelo and Xie (1999) and Bakshi and Chen (1996) include money in the
utility function.Taxation of nominal capital makes money nonneutral in the money-in-
the-utility setup of Buraschi and Jiltsov (2005).Wu (2006) computes an affine model by
linearizing a model with sticky prices.

5. SOME FAMOUS AFFINEMODELS
First-generation affine models were based on one of the two basic diffusions.

1. Vasicek-type models: x is Gaussian.
2. Cox–Ingersoll–Ross (CIR)-type models: x consists of independent square-root

processes.
3. Mixture models: x consists of possibly correlated affine processes.

These early models were one-factor models. The factor was called “short rate.”The key
features of theVasicek model are

R(x) = x

σx(x) = # (5.1)

σξ(x) = q

for constants # and q. Inserting these coefficients into Eq. (2.12) shows that the speed
of mean reversion κ = κ∗ in x (and therefore the short rate) is the same under both
probability measures, only the long run mean differs, because x∗ = x− κ−1#q. The
market price of risk q is usually estimated to be negative. Intuitively, this means that
yields are expected values of average future short rates (apart from a Jensen’s inequality
term), which are on average higher r∗ > r than their historical average.This is therefore
an implicit form of risk adjustment.

The CIR model sets

R(x) = x

σx(x) = #
√

x (5.2)

σξ(x) = q
√

x

for constants # and q. Here, the change of measure affects not only the long-run mean
but also the speed of mean reversion. A negative q implies that under the risk-neutral
measure x mean reverts more slowly (κ > κ∗) to a higher mean (x > x∗). The Vasicek
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and CIR model share the feature that the state is an affine diffusion under both the
risk-neutral and the data-generating probability measure. Vasicek (1977) only contains
the one-factor version of the model,which was later extended to the multifactor case by
Langetieg (1980). Cox et al. (1985) already contains the multifactor case in Section 6.

Duffie and Kan (1996) paved the way for a second generation of mixture models.
Mixture models are built from the two basic building blocks. Duffie and Kan completely
characterize the general class of multifactor affine models.To classify these mixture mod-
els, Dai and Singleton (2000) count the number m of processes that enter the volatility
s(x). More precisely, m = rank(s1) where s1 = [s11 · · · s1N ]. In their notation, Am(N )

denotes a model with a total of N state variables, of which m enter the volatility. For
example, the one-factor Vasicek model is A0(1), the N -factor Vasicek model is A0(N ),
and the multifactor CIR model is AN (N ).The classification of models does not depend
on how the risk adjustment is specified (because of diffusion invariance).

Factor models need to specify what their factors stand for. Duffie and Kan (1996)
propose to explain yields with latent factors. This means that the econometrician does
not get to observe x directly but may be able to infer x from yields. In other words,
the state x can in this case be thought of as consisting of yields. Most papers with latent
factors still try to give their variables intuitive labels.There are two broad types of labels.
The first type refers to statistical properties of the short rate, whereas the second type
refers to fundamentals of an underlying general equilibrium model.

5.1. Labels Based onMoments of the Short Rate

To be able to identify latent variables as moments of the short rate, these models feature
one state variable which is called the short rate r . The linear map R(x) in these models
thus picks just one component of the state vector, say the first, by setting δ0 = 0 and
δ1 = [1, 0, . . .]�.The one-factor Vasicek and CIR models are special cases with δ1 = 1.
Multifactor models with this feature have a short rate which is not Markov under the risk-
neutral probability measure so that other variables (in addition to rt) help in forecasting
the short rate and thus to compute bond yields.

Stochastic mean models take x = (r , θ), where the short rate r reverts quickly to a time-
varying mean θ, which reverts slowly to its long-run (unconditional) mean θ.The relevant
SDEs are

drt = κr (θt − rt)dt + σrdzr
t (5.3)

dθt = κθ
(
θ − θt

)
dt + σθ(θt) dzθt ,

where κr ,κθ, σr , and θ are scalars,with κr > κθ for θ to be interpreted as stochastic mean.
The Brownian motions zr and zθ are independent. Balduzzi et al. (1998) assume that
σθ(θt) does not depend on θt , which makes the stochastic mean normally distributed.
This model is a A0(2)-model. Market prices of risk σξ are constant in these models.
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Chen (1996) assumes that θ is a square-root process so that σθ(θt) = v
√
θt for some

constant v. This leads to z = (zr , zθ)�, and

σx(x) = s(x) =
(
σr 0
0 v

√
θ

)
,

σξ(x) = q�s(x),

which constitutes an A1(2)-model for some q ∈ R
2. Here, the matrix # in the volatility

σx(x) = #s(x) is a 2×2 identity matrix I .
Stochastic volatility models take x = (r , v)�, where v is interpreted as the volatility v of

the short rate. To keep volatility positive, it is specified to be a square-root process:

drt = κr (r − rt)dt +√vtdzr
t (5.4)

dvt = κv(v − vt)dt + σv
√

vtdzv
t

for constants κr , r , κv, v, σv and independent Brownian motions zr , zv. This leads to
z = (zr , zv)� and

σx(x) = s(x) =
(√

v 0
0 σv

√
v

)
,

σξ(x) = q�s(x).

Again, q ∈ R
2 and # = I . Longstaff and Schwartz (1992) interpret their A1(2)-model

in this way.
Combinations of these labels can be found in many three-factor models where the

state x = (r , θ, v) consists of the short rate, a stochastic mean, and stochastic volatility.
Examples are the A1(3) model of Balduzzi et al. (1996) and the A2(3) model of Chen
(1996). Dai and Singleton (2000) write down the most flexible A1(3) and A2(3) models
in which all parameters are just identified. Their model has the general form:

σx(x) = #s(x) (5.5)

σξ(x) = q�s(x)

for a constant vector q ∈ R
N . Under this assumption, the state is an affine diffusion under

both measures.The drift parameters κ and x under Q are related to those under Q∗ in the
following way:

κ = κ∗ −#� (5.6)

x = κ−1(κ∗x∗ +#ψ
)
,
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where the ith row of � ∈ R
N×N is given by qis�1i and the ith row of ψ ∈ R

N is given
by qis0i. This shows that both the speed of mean reversion κ and the long-run mean x
may be different under the data-generating measure than under the risk-neutral measure,
where κ∗ and x∗ are responsible for determining the drift of the process x.

5.2. Labels Based on Fundamentals

Yield curves in general equilibrium models depend on state variables that have natural
interpretations in terms of fundamentals. In principle, the model can then be estimated
using observations on both macro variables and yields. This is, however, not what is
usually done. The reason is that for “reasonable” coefficients of relative risk aversion,
representative agent models can match neither average excess returns on long bonds nor
their time series properties when calibrated to aggregate quantities such as consumption.
This “bond premium puzzle” is documented for real bonds in Backus et al. (1989) and
Chapman (1997). Den Haan (1995) documents the puzzle for nominal bonds.

When the same models are estimated using asset prices alone, the model implies
dynamics for the macro variables that have little to do with their historical behavior. In
this sense, labels from fundamentals are often empty labels. For example,Pearson and Sun
(1994) use the model mentioned by Cox et al. (1985) in Section 7 with exogenously
specified“expected inflation.” Their estimation does not use any data on inflation, how-
ever, only data on yields. Similarly,“consumption growth” in Buraschi and Jilsov (2005),
“expected aggregate consumption growth” in Wachter (2006), and “labor income” in
Dai (2001) are labels for latent variables. Sometimes data from outside the bond mar-
ket is combined with many, often more than 5, yields. The key in these applications is
that yields far outnumber the macro series, and Kalman filtering tends to match only
moments of yields. In this case, again, the filtered variables usually have little to do with
their names.

6. ESTIMATIONMETHODS FOR AFFINEMODELS
To estimate affine models,various choices have to be made regarding measurement errors
and estimation methods. This section is long because these choices are not obvious. In
thinking about these choices, it is useful to view affine models as state space systems with
an observation equation which links observable yields to the state vector and a state
equation which describes the dynamics of the state:

y(τ)t = A(τ)+ B(τ)�xt + ε
(τ)
t (6.1)

dxt = μ(xt)dt + σ(xt)dzt .

The system (3.7) of ODEs provides the cross-equation restrictions for this system. Empir-
ical applications start with a choice of how to add “measurement errors” ε(τ), which
I discuss in Section 6.1. I explain moment-based estimation methods in Section 6.3



726 Monika Piazzesi

and likelihood-based methods in Section 6.2. Identification of parameters is tricky as in
any state space model and is discussed in Section 6.4.

6.1. Stochastic Singularity

Affine models rely on a low-dimensional state vector to describe what drives the yield
curve. Data on N different yields can therefore be used to back out N state variables.
The N yields y(τ1), . . . , y(τN ) can be used to invert equations (3.9) for τ = τ1, . . . , τN to
obtain the model-implied state vector x. Any additional yield is predicted by the model
with an R2 of 1. The model can therefore be rejected with a single observation on
y(τN+1). Put differently, the variance-covariance matrix of N + 1 yields in the model is
singular, a feature called stochastic singularity.

Stochastic singularity is a problem because we have lots of cross-sectional yield data
(many different τs) and want to use models with few state variables.Adding measurement
error ε(τ) to the yield equation, as done in (6.1), breaks this singularity. Now different
assumptions can be made on the properties of these measurement errors. Either all the
yields are observed with error or only a subset of yields is observed with error.The vari-
ance of the measurement error ε(τ) is nonzero for all τ according to the first assumption,
whereas some of the var

(
ε(τ)

)
may be zero according to the second assumption.

The assumption that all yields are observed with error seems plausible. Data entry
mistakes and interpolation methods for constructing zero-coupon yields are among the
obvious sources for such errors. When all yields have errors, we cannot invert the yield
coefficients in (6.1) to compute the state vector. Kalman filtering is useful here,especially
when the state vector is normally distributed (Campbell and Viceira, 2001; Gong and
Remolona, 1996; Pennacchi, 1991), but also in more general setups (Collin–Dufresne
et al., 2009).

The alternative assumption is that data on N yields is flawless where N also happens
to be the number of factors in the model. This assumption is clearly arbitrary. The
econometrician is even supposed to know which N yields in his dataset are flawless. All
other yields are observed with error so that the model cannot be easily rejected. Some
estimations include the yields with error in the estimation to exploit all available data
(Chen and Scott,1993). Other applications leave the contaminated yields out and then use
them for an out-of-sample check of the model.To be clear, the check is “out-of-sample”
only in the cross section,because these are yields not included in the estimation,not in the
time-series sense (e.g., Dai and Singleton, 2000; Pearson and Sun, 1994; Piazzesi, 2005).

The measurement errors recovered using any of these approaches are typically highly
autocorrelated. This autocorrelation may be due to the interpolation method used to
construct zero-coupon yields. This does not seem very plausible, however, because one
would expect data construction methods to generate measurement errors that are corre-
lated with each other in the cross section and not necessarily over time. Moreover, swap
yields are not interpolated and their measurement errors are still highly autocorrelated
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(Duffie and Singleton, 1997). Autocorrelation in measurement errors is worrisome
because it suggests that these errors might have in fact nothing to do with measurement
issues but with omitted state variables or functional form assumptions. For example,
Table IV in Dai and Singleton (2000) computes average measurement errors for their
three-factor affine model over periods with upward or downward sloping swap curve.
Their preferred A1(3) model makes larger errors when the yield curve is upward sloping.
Nonlinearities may account for such a pattern. Model misspecification is not handled by
the estimation methods and the computation of standard errors. Much more research is
needed in this direction.

6.2. Likelihood-Based Methods
Maximizing the likelihood function relies on being able to compute the density
f (xt+1|xt) of the state vector xt+1 given xt .The conditional density of an N -dimensional
vector of observed yields Y can be obtained by a change of variable.The density of Y is
the product of the conditional density of x and the determinant of the Jacobian

fy(Yt+1|Yt) = f (xt+1|xt)

∣∣∣∣ dxt+1

dYt+1

∣∣∣∣ .

The log-likelihood function of observed yields {Yt}Tt=1 is then constructed as the usual
sum of log densities log fy(Yt+1|Yt) over the sample.To maximize the log-likelihood, the
state xt+1 is backed out from Yt+1 for any given parameter vector. This method works
both with linear zero-coupon yields or invertible nonlinear functions of the state x, such
as coupon-bond prices, because the nonlinearity is absorbed by the Jacobian term.

6.2.1. Closed Form Densities

The density f (xt+1|xt) is known in closed form for only a few affine processes. For
Gaussian processes, f is multivariate normal. Zero-coupon yields are affine in x and
therefore also Gaussian. Their likelihood function is therefore particularly easy to com-
pute. To implement the procedure, we only need the conditional expected value (3.2)
and variance (3.3). For independent Gaussians, the conditional variance is (3.4).

For independent square-root processes, f is the product of noncentral chi-square
densities. The formula for the densities is based on the modified Bessel function of the
first kind of order q (see Cox et al., 1985, pp. 391–2).The command “besseli” computes
the function in MATLAB. The conditional mean is given again by (3.2), but now the
conditional variance is (3.5).

6.2.2. Quasi-Maximum Likelihood

For general affine diffusions, f cannot be computed in closed form. The temptation is
then to discretize the SDE and apply maximum likelihood to the density of the discretized
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process.The discretization assumes that the data is generated from the stochastic difference
equation

�xt+h = μ(xt)h + σ(xt)εt+h
√

h, (6.2)

where εt+h has an N -dimensional standard normal distribution and h is the length of
the observation interval. The density of the discretized process xt+h conditional on xt

is normal with mean μ(xt)h and conditional variance σ(xt)σ(xt)
�h. The conditional

distribution of the discretization (6.2) converges to the one of the SDE (2.6) when h
tends to 0. The estimator that maximizes the likelihood function of the discretization
is, however, not consistent for any given h. Lo (1988) shows this for explicit examples.
The reason for this inconsistency is that the discretized process has conditional moments
μ(xt)h and σ(xt)σ(xt)

�h, whereas the true process has discrete-time first and second
moments given by Eqs. (3.2) and (3.3). However, quasi-maximum likelihood estimation
based on the correct discrete-time first and second moments in (3.2) and (3.3) and a
normal density, however, is consistent (Fisher and Gilles, 1996). This works only if the
process is linear under the data-generating measure Q.

6.2.3. Fourier Inversion of the Characteristic Function

The density f of affine diffusions can be computed by Fourier inversion of the charac-
teristic function.The characteristic function φt(u) is defined as the Fourier transform of
the density of xt+1 ∈ D conditional on xt ,

φt(u) = Et

[
exp

(
iu�xt+1

)]
=

∫
D

f (xt+1|xt) exp
(
iu�xt+1

)
dxt+1

for some u ∈ R
N and the imaginary number i = √−1. Duffie et al. (2000) show that

the characteristic function φt(u) can be computed in closed form for affine diffusions.
The idea is to apply the Feynman–Kac approach to the conditional expected value

φt(u) = exp
(
α(1)+ β(1)�xt

)
(6.3)

with coefficients α(τ) and β(τ) that start at α(0) = 0 and β(0) = i u and solve the
complex-valued ODEs

α′(τ) = β(τ)�κx+ 1
2

N∑
i=1

[
β(τ)�#

]2

i
s0i

b′(τ) = κ�β(τ)+ 1
2

N∑
i=1

[
β(τ)�#

]2

i
s1i

For more details, see Duffie (2001),Appendix H.
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Knowing the characteristic function φt(u) of an affine diffusion means that its
conditional density f can be computed by Fourier inversion

f (xt+1|xt) = 1
πN

∫
RN

Re
{
exp

(
−iu�xt+1

)
φt(u)

}
du, (6.4)

where Re denotes the real part of complex numbers. Maximum likelihood by Fourier
inversion has been implemented in the univariate case. Singleton (2001) estimates a one-
factor CIR model by maximizing the likelihood function obtained with this method.
The conditional density (6.4) is computed using Gauss–Legendre quadrature. For higher-
dimensional state spaces, this computation becomes costly. The number of grid points
used for the quadrature grows from d for N = 1 to dN for general N . The MATLAB
command “quad” performs these computations.

For general diffusions, not necessarily affine, the density can be computed by numer-
ically solving a PDE, simulation, or Hermite expansions. Of these three methods, only
simulation has been applied to the case of many factors so far.

6.2.4. Solving the PDE for the Density

The PDE for the conditional density f is given by the usual forward Kolmogorov equation
(see, e.g., Lo, 1988). The PDE can be solved numerically. The curse of dimensionality
applies here as well, see Lo (1988) and Jensen and Poulsen (1999).

6.2.5. Simulated Maximum Likelihood

Pedersen (1995) and Santa–Clara (1995) propose to simulate the likelihood function.
Simulations of general diffusions cannot be based on their true density f , which is
unknown. Instead, the simulations use the Euler scheme (6.2). Starting with the observed
value xt at time t, the sth simulated path of the state vector x̂xt [s] is taken from (6.2)
using independent draws ε̂ [s] from an N -dimensional standard normal distribution.The
MATLAB command “randn” takes these draws. The idea is to write the density of xt+1
conditional on the last observation xt ,using Bayes’Rule and the Markov property of x, as

f (xt+1|xt) =
∫
D

f (xt+1|xt+1−h)f (xt+1−h|xt)dxt+1−h (6.5)

for any time interval h. The density f (xt+1|xt+1−h) is now approximated with the
density f̂ of the discretized process (6.2) for small h. This density is normal with mean
xt+1−h + μ(xt+1−h)h and standard deviation σ(xt+1−h)

√
h. The integral in (6.5) can

then be computed using Monte Carlo

f (xt+1|xt) ≈
1
S

S∑
s=1

f̂
(
xt+1 |̂xxt

t+1−h [s]
)
,



730 Monika Piazzesi

where the summation is over a total of S simulated paths of the state that start at the last
observation xt at time t.The computer only needs to store the terminal simulated value
x̂xt

t+1−h [s] for each simulation s, not the entire simulated path. Standard variance reduc-
tion techniques, such as antithetic sampling, can be used to improve the efficiency of
Monte Carlo integration (for a survey, see Geweke,1996). Brandt and Santa-Clara (2002)
use this simulated maximum likelihood (SML) method to estimate a multifactor diffusion
model. Piazzesi (2005) extends SML to the case of jumps with time-varying jump
intensities. Honoré (1998) conducts a Monte Carlo to compare the accuracy of the SML
estimator for different discretization intervals h and numbers of simulations S. His findings
suggest that even coarse discretizations and small simulated samples improve consider-
ably over quasi-maximum likelihood (which amounts to h = 1). Durham and Gallant
(2002) investigate importance-sampling techniques to improve the accuracy of this
method.

6.2.6. Hermite Expansions

Aït-Sahalia (2001) approximates f (xt+1|xt) for univariate diffusions x by constructing
a standardized version x̃ of the process x and then approximating the density of x̃
by Hermite expansions. The reason for the standardization is that convergence results
for Hermite expansions only apply to densities that are “close to normal,” not for den-
sities of general diffusions. The standardized version is a diffusion with unity volatility:
x̃ = ∫ x 1/σ(w) dw. For every x ∈ R

N , Hermite polynomials are given by

Hj(x) = exp
(
0.5x2) ∂j

∂xj exp
(−0.5x2) , j = 0, 1, . . . , J

For large J , the conditional density f of x can be written in terms of the density f x̃ of x̃
which can be approximated with Hermite expansions

f (xt+1|xt) ≈ 1
σ(̃xt+1)

f x̃(̃xt+1 |̃xt)

≈ 1
σ(̃xt+1)

exp
(−0.5(̃xt+1 − x̃t)

2) J∑
j=0

η(j)( x̃t)Hj (̃xt+1 − x̃t)

with coefficients

η( j) ( x̃t) = 1
j!E

[
Hj (̃xt+1 − x̃t) | x̃t

]
which are conditional moments of functions of x̃. Aït-Sahalia (2008) computes closed-
form expressions for these coefficients using Taylor approximations. Jensen and Poulsen
(1999) compare the accuracy of Hermite expansions with other methods for the case of
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a univariate square-root process. Aït-Sahalia (2008) extends the method to multivariate
diffusions.

6.3. Matching Moments

The computation of moments for Hansen’s (1982) generalized method of moments
(GMM) depends on whether the yield equation is affine and on whether the data-
generating process of the state vector is an affine diffusion. Moments of affine diffusions
can be computed in closed form using the characteristic function. But this result is only
useful for matching moments of zero-coupon yields, not for nonlinear yield formulas
(e.g.,which arise with coupon bonds and swaps)To avoid nonlinear yield formulas, zero-
coupon yields can be constructed by interpolating swap data or be other “nonlinear”
yield data. For nonaffine dynamics under the data-generating measure and nonlin-
ear yield formulas, moments can either be simulated using the methods explained in
Gallant and Tauchen (2010) or be computed using operator-methods explained in
Aït-Sahalia et al. (2010).

Higher-order moments of affine diffusions can be conveniently computed from the
characteristic function. First and second moments were already computed in Section 3.2.
Conditional cross-moments of the ith and jth component of x are given by

Et

(
xm

i,t+1xn
j,t+1

)
= im+n ∂m

∂um
i

∂n

∂un
j
φt(u) |u=0

= im+n ∂m

∂um
i

∂n

∂un
j

exp
(
α(1)+ β(1)� xt

)
|u=0

for 1 ≤ i, j ≤ N .This computation is particularly convenient if the coefficients α(1) and
β(1) can be computed with paper and pencil. For an early estimation of a CIR model
with GMM, see Gibbons and Ramaswamy (1993).

Another set of moments is computed in Singleton (2001) and Chacko and Viceira
(2003). In these papers, the characteristic function is used to set up moment conditions

Et

[
exp

(
iu�xt+s

)
− φt(u)

]
= 0.

Each such complex-valued moment condition implies two real-valued moment condi-
tions based on the real and the imaginary part of the expression. Singleton (2001) shows
that GMM is efficient in this case when the number of grid points u goes to infinity.
Carrasco et al. (2001) demonstrate how to actually implement this efficiency result.

6.4. Identification

Just like in a state-space system with latent state dynamics, the conditions ensuring identi-
fication of parameters are tricky. Ideally,we would not have to care about these conditions
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because identification should be an invertibility condition on the information matrix.
In practice, this invertibility condition is not useful for checking whether parameters
are identified. The likelihood function would have to be maximized for many different
trial-parametrization to find out which of the parameters are not identified. More-
over, numerical gradient-methods for computing the information matrix are imprecise,
especially when the likelihood function is computed numerically or simulated.The infor-
mation matrix may turn out to be numerically invertible, even in cases where parameters
are not identified. Theoretical results are therefore important. Dai and Singleton (2000)
provide such results.

7. EMPIRICAL EVIDENCE ON AFFINEMODELS
Empirical studies of term structure models usually pick a set of stylized facts about
yields and tailor their model to match these. There is no benchmark for evaluating the
performance of different models because different sets of facts are being matched, and
there is no consensus about the relative importance of these facts. I therefore organize
the discussion of the empirical findings of affine models around these stylized facts and,
in particular, around the moments of yields that are being matched. After discussing data
issues in Section 7.1, I focus on factor interpretation in Section 7.2, cross-sectional fitting
errors in Section 7.3, unconditional and conditional first moments in Sections 7.4 and
7.5,unconditional and conditional second moments in Section 7.6 and 7.7,higher-order
moments in Section 7.8, seasonalities in Section 7.9, and zoom back in on fitting the
short end in Section 7.10. Then, I discuss joint systems of yields with macroeconomic
variables in Section 8.

7.1. Data Issues

The choice of suitable data to estimate yield-curve models needs to balance concerns
about measurement errors,sample length,observation frequency,nonlinearities in pricing
formulas, and even the documentation quality of different data sets. In this chapter, I use
monthly Fama CRSP zero-coupon bond tapes from 1964:1 to 2003:12. CRSP provides
detailed documentation for this data set.The data set is problematic because these yields
are interpolated from tradedTreasuries,which introduces measurement error. Moreover,
the 1-month T-bill from the dataset looks strange when compared with the other short
rates in the same dataset. For example, the persistence of the 1-month rate decreases after
1985,whereas the persistence of all other short rates increases.Watson (1999) documents
an increase in persistence in the (overnight) Fed funds rate after 1985, which means that
the behavior of the 1-month rate does not seem to be a special feature of very short
rates. I also omit data from 1952:1 to 1963:12 like Fama and Bliss (1987).The data over
this early period behaves much different from the rest in terms of, e.g., predictability
regressions. Then, there are data entry errors: September 1987 shows a 0% yield for the
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Figure 12.2 Monthly Fama–Bliss data for 3 month, 2-year, and 5 year yields, 1964:1–2003:12.

6-month T-bill in the CRSP file for short maturity T-bills. I therefore interpolate that
datapoint. Like ants, errors usually come in company, and this company may be less
obvious.10 Figure 12.2 plots some of the Fama–Bliss yields used in this chapter.

7.1.1. Short Yields

Short-maturity yields are often used as proxies for the short rate. Seasonality in mea-
surement error is a worry in this context. For example, overnight rates (like fed funds in
Hamilton, 1996; repo in Piazzesi, 2005), other short-term rates (like term fed funds in
Balduzzi et al., 1996;7-day Eurodollar in Durham,2001), and even yields with maturities
of a few months (like the 3-monthT-bill in Durham,2001, 6-month LIBOR in Piazzesi,
2001) have been shown to be affected by the 2-week reserve maintenance period of

10An example for a less obvious data entry error is the Federal Reserve target-rate change that happened on February 4, 1994. Datastream
assigns this Fed move to February 3.
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banks.These 2-week periods start on aThursday and ending on the so-called“settlement
Wednesday.” During this period, banks must hold required reserves in accounts at the
Federal Reserve. These reserves are associated with opportunity costs for banks because
the Fed does not pay any interest on these accounts. Until July 30, 1998, the Fed used a
contemporaneous reserve maintenance system. In this system, the reserve computation
period, the period over which required reserves are actually computed, overlapped with
the reserve maintenance period. This overlap implied that the exact amount of reserves
that banks were required to hold was not known until the very end of the maintenance
period.To avoid the opportunity costs of excess reserve holdings, banks used to hold few
reserves until they knew the required amount and then started borrowing on the day
before the settlement Wednesday. The increased demands for funds at the end of reserve
maintenance periods lead to huge seasonal spikes in interest rates in this contemporane-
ous reserve system. This seasonality has weakened since 1998, when the Fed adopted a
lagged reserve maintenance system. According to the new rules, the reserve computation
period ends 30 days before the maintenance period so that banks know the required
amount before they start holding reserves. SettlementWednesdays and other day-of-the-
week effects, such as FOMC meetings, introduce seasonalities in interest rates which
may bias, e.g., estimates of mean-reversion parameters (more on this in Section 7.9).
Piazzesi (2005) and He (2001) therefore argue to use the target rate set by the Federal
Reserve as “cleaner” measure of the short rate. Chapman et al. (1999) argue that short
T-bill rates are good short-rate proxies, at least when used in one-factor affine models.
Duffee (1996), however, points out that very short T-bill rates behave differently from
other short rates. More concretely, T-bills with maturities less than 3 months do not
share much variation with other short-term yields such as Eurodollar rates or Fed funds
rates.

7.1.2. Long Yields of Zero-Coupon Bonds

Zero-coupon bonds have the advantage that the yield equation is easy to invert for x.True
zero-coupon bonds are, however, not easy to come by. These bonds are supposed to be
default-free,which may apply to government securities in the United States but certainly
not to those in many other countries such as Italy and Spain (Favero et al.,1997) or Russia
(Duffie et al., 2003). U.S. Treasury bills are zero-coupon bonds with maturities up to
1 year. Duffee (1996) documents that T-bills with maturities less than 3 months seem
to be disconnected from longer term Treasuries. Treasury notes have longer maturities
(from 2 to 30 years), but they do pay semiannual coupons.The principal and coupons of
these notes can be stripped and traded as separate securities since 1985. This means that
data on prices of some long zero-coupon bonds exists (Grinblatt and Longstaff, 2000;
Jordan et al., 2000).Various authors have developed interpolation methods to construct
long-time series of zero-coupon bond yields. Of course,these data-construction methods
introduce measurement error. The “McCulloch–Kwon” data until 1991 is available on
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the Website of J. Huston McCulloch at Ohio. Bliss (1999) updates this data set until the
end of 1998.The “Fama–Bliss” data set is updated each year and available from the Fama
CRSP zero-coupon bond tapes. Both data sets consist of monthly observations over the
whole postwar period. Estimations of affine models with zero-coupon bonds include
Balduzzi et al. (1996), Duffee (2002),Ang and Piazzesi (2003),Wu (2006), and Buraschi
and Jilsov (2005).

7.1.3. Long Yields of Treasuries

The U.S.Treasury interpolates the yields of traded securities when computing constant-
maturity Treasury yield data which is released by the Federal Reserve Board in its H.15
release. Daily data since 1962 on these yields is posted on the Federal Reserve’sWeb site
(which also has the short-term Treasury bill data). Treasuries pay semiannual coupons.
Their yields can be computed as par bond rates yc(τ) from

1 =
2τ∑

j=1

P(
0.5j)

t
yc(τ)t

2
+ P(τ)

t .

Solving this equation for yc(τ)t gives

yc(τ)t =
2
(
1− P(τ)

t

)
∑2τ

j=1 P(
0.5j)

t

. (7.1)

The inversion of observed yields for the unobserved state x can no longer be accomplished
by hand with coupon-yields because the pricing map (7.1) is nonlinear. Instead, the map
needs to be inverted numerically for each observation t in the sample. The speed of
this loop can be increased considerably by supplying the analytical gradient ∂yc(τ)t /∂xt to
the gradient-based method that inverts the pricing map. For example, Pearson and Sun
(1994) use prices of traded Treasuries in their estimation.

7.1.4. Long Yields for Swaps

Swap rates are truly constant maturity yields which makes interpolation unnecessary.
Swaps are agreements to exchange fixed and floating rates semiannually for a time of τ
years.The τ-year swap rate is the fixed coupon rate in this contract, whereas the floating
side is usually specified to be the 3-month or 6-month London Interbank offered rate
(LIBOR). Under the assumption that swap rates can be valued as par bond rates, the
Formula (7.1) also applies to swap rates. Without default risk, the formula follows from
the absence of arbitrage. With default risk, the formula applies if the credit quality in
LIBOR and swap markets is the same.The assumption is somewhat problematic because
of the institutional features of swap markets. For example, netting features imply that
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swap rates are minimally affected by credit risk apart from being tied to LIBOR rates
(Collin-Dufresne and Solink, 2001; Duffie and Huang, 1996). Swaps have only started
trading at the end of the 1980s,which means that swap data is silent about periods of high
volatility such as the monetary experiment in the early 1980s in Fig. 12.2. Daily data
on both swap rates and LIBOR can be obtained from Datastream, which only supplies
poor documentation of this data. Moreover, the data is asynchronous because LIBOR
data is recorded at 11 a.m. London time, whereas swap data is recorded at the end of
the business day in London. Estimations of affine models usually ignore this issue. See,
e.g., Duffie and Singleton (1997), Dai and Singleton (2000), Piazzesi (2001), He (2001),
Collin–Dufresne et al. (2009), and Liu et al. (2002).

7.1.5. Other Data

Term structure models can, of course, also be estimated with data on futures, caps,
floors, and other derivative securities. For example, Jegadeesh and Pennacchi (1996)
use Eurodollar futures. Jagannathan et al. (2001) include data on caps and swaptions.
Data on all these contracts can be found in Datastream.

7.2. Level, Slope, and Curvature
Traditional factor analysis already delivers much of the intuition for what drives yields.
Principal components can be computed from levels and changes in yields, I will do both.
Suppose the econometrician has data on K different yields that are contained in the
vector Yt at time t. The variance-covariance matrix of Yt can be written as

var(Yt) = �+��,

where + is a diagonal matrix of eigenvalues of the matrix var(Yt) and � is an orthog-
onal matrix (which means it satisfies �� = �−1) whose columns are standardized
eigenvectors. Principal components pc are then defined by

pct = ��
(
Yt − Y

)
, (7.2)

where Y ∈ R
K is the sample mean of the yields. The variance of the kth principal

component is just equal to +k, the kth eigenvalue of var(Yt) . It is also true that the
total variation in yields tr(var(Yt)) is equal to the total variation of principal components
tr(+), where tr denotes trace. Details can be found, e,g., in Mardia et al. (1979). The
same procedure can be repeated for yield changes by replacing Yt with �Yt and Y with
0 in the above formulas.

Looking at principal components of yield changes reveals that much of the variance in
yield changes is explained by the first few principal components. I use K=11 Fama and
Bliss yields from Center for Research in Security Prices (CRSP) with maturities 1, 2, 3,
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Table 12.1 % variation in yield changes and levels explained by the first k
principal components

k 1 2 3 4 5

% explained in �Yt 79.2 91.4 96.4 97.5 98.3
% explained in Yt 96.6 99.6 99.8 99.9 100

The total variation in yields is given by tr(+) , where + is the diagonal matrix of eigenval-
ues of var(�Yt) = �+�� in the first row and var(Yt) = �+�� in the second row. The
numbers in the table are the percentage variation in yield changes (yield levels) explained
by the first k principal components computed as

100×
∑k

i=1 +i

tr(+)

The yields are from the Fama tapes of CRSP. The maturities are 1, 2, 3, 4, 5, and 6 months
and 1, 2, 3, 4, and 5 years. The sample is 1964:1-2003:12.

4, 5, and 6 months and 1, 2, 3, 4, and 5 years for the months 1964:1–2003:12.Table 12.1
computes the cumulative percentage in the variation of yield changes and levels explained
by the first k principal components. The table shows that for the postwar period, the
first k = 3 principal components already explain over 96% of the total variation in yield
changes.This number is similar for weekly (Chapman and Pearson, 2001; Litterman and
Scheinkman,1991) and even daily yields (Hull, 2000,Chapter 14.10). In the case of yield
levels, the numbers are higher.

To use only k ≤ K principal components, I define the K × k matrix �̃ by

�̃i,j =
{

�i,j for j ≤ k
0 otherwise

and compute the k principal components of yield levels as

pct = �̃�(Yt − Y ).

The k principal components are linear combinations of K = 11 yields. Figure 12.3
plots the coefficients of these linear combinations (or loadings), which are the k = 3
columns of �̃, as function of the maturity of the yields in months. Figure 12.3 looks very
similar for the loadings of principal components of yield changes,so I do not include them
here.The loadings of the first principal component are horizontal.This pattern means that
changes in the first principal component correspond to parallel shifts in the yield curve.
This principal component is therefore called the level factor.The loading of the second
principal component is downward sloping. Changes in the second principal component
thus rotate the yield curve.This means the second component is a slope factor.The loading
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Figure 12.3 Principal components are linear combinations of yields in the data set. The coefficients
of these linear combinations are the columns of �̃. The coefficients of each of the three principal
components are plotted as a function of the maturity of the yields.

of the third principal component is hump shaped. The hump occurs at intermediate
maturities. The third principal component therefore affects the curvature of the yield
curve, which is why it is called the curvature factor. These three principal components
can be ordered according to their persistence. The level factor is very persistent with a
monthly autocorrelation of 0.98.The slope factor is less persistent with an autocorrelation
of 0.92. The curvature factor is the least persistent with an autocorrelation of 0.50.

The interpretation of these principal components in terms of level, slope, and cur-
vature goes back to Litterman and Scheinkman (1991). These labels have turned out
to be extremely useful in thinking about the driving forces of the yield curve until
today.The latent factors implied by estimated affine models typically behave like principal
components. This empirical finding applies to different sample periods, data sets, and
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model specifications. More concretely, the coefficients from estimated yield equations
(3.9) show the same general patterns as in Fig. 12.3 for the case of N = 3 state variables.
This applies to models with only square-root processes as in Chen and Scott (1993),
only Gaussian processes as in Gong and Remolona (1996) and Ang and Piazzesi (2003),
or mixture models as in Balduzzi et al. (1996) and Dai and Singleton (2000). There is
no one-to-one mapping between labels such as stochastic mean and stochastic volatility
and the Litterman–Scheinkman labels. For example, stochastic volatility behaves like a
curvature factor in some estimated models, but it turns out to be so persistent that it
becomes the level factor in others. Lower dimensional models with N < 3 feature state
variables with yield coefficients that correspond to the first N principal components. In
other words, models with only two state variables find a level and a slope factor. Again,
this empirical finding is robust across specifications. In particular, it holds for stochastic
mean models (5.3) and stochastic volatility models (5.4) alike. The square-root case for
N = 2 is in Chen and Scott (1993), and the Gaussian case is in Balduzzi et al. (1998).
Models with only one state variable (namely the short rate r) have one persistent level
factor.

7.3. Cross-Sectional Performance
Affine models predict yields of any maturity τ with an R2 of 1. Once we fix a time
series of factors, the yields are just linear functions of these factors. Traditional factor
models provide a natural benchmark for the cross-sectional fit. Factor models based on
k principal components predict all K yields in the cross section as

Ŷt = Y + �̃pct , (7.3)

where pct is given by (7.2). The yield coefficients in this prediction do not impose the
cross-equation restrictions from no-arbitrage. Unlike in a term structure model, there is
no link between the data-generating process of the factors pc and the way yields depend
on pc. The model implies fitting errors for yields, which are defined as the difference
between actual yields Yt and model-predicted yields Ŷt . Table 12.2 computes the mean,
standard deviation, and maximum of the absolute value of these fitting errors for k = 3
principal components. The mean absolute fitting errors are less than 11 basis points for
all yields in the data set. This suggests that this low-dimensional factor model not only
explains much of the variance in yields by construction but also performs extremely well
according to this additional metric.

The fitting errors in Table 12.2 turn out to be hard to beat in practice with an affine
model. In other words, the difference between the yields predicted by an affine model at
the estimated parameter values and the actual yield data can be substantial. Affine models
do not deal with measurement errors explicitly. Such errors are usually tagged onto
yields by the econometrician. But they are usually larger in absolute value than those in
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Table 12.2 Absolute value of fitting errors for yields

Maturity 1 month 3 months 6 months 1 year 2 years 3 years 4 years 5 years

Mean 0.10 0.08 0.06 0.11 0.09 0.05 0.05 0.08
Standard
deviation 0.09 0.09 0.06 0.11 0.07 0.05 0.05 0.06
Maximum 0.68 0.78 0.73 1.11 0.52 0.48 0.41 0.52

The table shows the mean, standard deviation, and maximum of absolute fitting errors |Yt − Ŷt |, where Ŷt is computed
as in Eq. (7.3) with k = 3 principal components of yield levels. The yield data is from the Fama tapes of CRSP for
1964:1–2003:12.

Table 12.2. Moreover, these errors are usually highly autocorrelated. Affine models with
many Gaussian factors tend to do relatively better in the cross section than models with
many square-root factors. For example, the fitting errors from the A2(3) model inTable
IV of Dai and Singleton (2000) are larger than the errors from the A1(3) model. The
fitting errors from the three-factor jump model without the Gaussian ‘inertia factor’ in
Table 2 of Piazzesi (2001) are larger than the errors from the three-factor jump model
with stochastic volatility.

7.4. Unconditional First Moments (Positive Slope)

Yields of bonds with longer maturities are on average higher than those of bonds
with shorter maturities. This means that the yield curve is on average upward sloping.
Figure 12.4 shows this stylized fact by plotting the sample average of the Fama and Bliss
yields as a function of maturity. The solid line of point estimates is shown together with
dotted approximate 95% confidence bounds (two times Newey–West standard errors
using six lags). The plot suggests that the shortest yield is significantly lower than the
longest yield on average.

An upward sloping yield curve is easy to generate with an affine model. To do this,
the risk-neutral long-run mean of the short rate must be higher than its true long-run
mean

r∗ > r .

From the short-rate equation inAssumption 1,these parameters are linked to the long-run
mean of the state vector x under Q∗ and Q as follows:

δ0 + δ�1 x∗ > δ0 + δ�1 x.

The parameters x∗ and x differ only when market prices of risk differ from zero. For
example, constant market prices of risk together with constant factor volatility do the
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Figure 12.4 The average yield curve is computed using the Fama and Bliss yields with maturities 1,
2, 3, 4, 5, and 6 months and 1, 2, 3, 4, and 5 years. The sample period is 1964:1–2003:12. The dotted
lines are two times Newey–West standard error bounds computed using six lags.

job. From Eq. (2.12), this assumption gives

σξ(x) = q�

σx(x) = #

x∗ = x− κ−1#q.

When R(x) = x, the risk-neutral mean x∗ is larger than x as long as the market price
of risk q < 0. The CAPM-type equation (3.13) shows that expected excess returns on
bonds are constant and positive in this example.TheVasicek model makes these assumptions
[see Eq. (5.1)].
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7.5. Conditional First Moments (Persistence, Predictability,

Nonlinearity)
7.5.1. Persistence

Yields are highly autocorrelated. Table 12.3 shows the autocorrelations of Fama–Bliss
yields together with standard errors around the autocorrelation estimates (which are
not corrected for small-sample bias). The monthly autocorrelation coefficient of the
5-year yield implies that shocks to this yield have a half-life of log(0.5)/ log(0.987) ≈ 53
months, over 4 years. This persistence in yield levels is behind the large standard errors
around the mean estimates in Fig. 12.4. Longer yields tend to be more persistent than
short yields, at least judging from the point estimates.

There is some evidence that persistence in short rates has increased over time, again
according to the point estimates. For example, the autocorrelation of the 3-month yield
in the Fama–Bliss file goes from 0.969 before 1985 to 0.993 after 1985. The evidence
is not strong, through. Watson (1999) is unable to detect a change in persistence using
a Chow test for structural break based on distributions that take into account small
sample bias. There is strong evidence that persistence in short rates has increased since
the creation of the Federal Reserve in 1914. Mankiw and Miron (1986) document
higher predictability of short-rate changes for quarterly data from 1880 to 1914 than
after 1914.

Affine models describe yields as affine in the factors. This implies that persistence of
yields must come from persistent factors. In fact, all estimations of affine models find a
level factor, which is very persistent. This fact was already mentioned in the context of
principal component models (Section 7.2).

Persistence contributes to the practical problems associated with the estimation of
affine models. Consider the simple example of estimating the parameters of an AR(1),
xt = μ+ ρxt−1 + εt , with Gaussian errors εt using maximum likelihood. When the
autoregressive coefficient ρ is close to one,gradient-based optimization methods typically
converge very slowly.They take tiny steps around reasonable values of ρ while still being
far from reasonable values ofμ.The reason is that the likelihood function is essentially flat
in μ but very steep in ρ.There is a simple solution to this problem in the univariate case.
Fixing a value for ρ close to one while optimizing overμ typically delivers a great starting

Table 12.3 Autocorrelations of yields

Maturity 1 3 6 12 24 36 48 60

Autocorrelation 0.962 0.983 0.984 0.983 0.986 0.987 0.986 0.987
Standard errors 0.017 0.013 0.013 0.012 0.011 0.011 0.011 0.010

The maturity of yields is in months. Standard errors (in brackets) are computed with six Newey–West lags. The yield
data is from the Fama tapes of CRSP for 1964:1–2003:12.
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value for μ that can be used in the optimization over both parameters.With multidimen-
sional AR(1) systems, the same strategy can be applied but often becomes more tricky.

7.5.2. Predictability of Excess Returns

Fama and Bliss (1987) investigate whether excess holding period returns on bonds are
predictable using the forward-spot spread. The regressions involve holding periods of
1 year. For this horizon, the 1-year rate y(1) is the riskless rate. Holding period returns
are the difference in log prices hpr(τ)t→t+1 = p(τ−1)

t+1 − p(τ)t , where t ≤ t + 1 ≤ t + τ. Fama

and Bliss regress excess holding period returns on the forward-spot spread f (n−1→n)
t −

y(1)t , where the forward rate is f (n−1→n)
t = p(n−1)

t − p(n)t .Table 12.4 reports the R2 from
these predictability regressions. R2s are substantial, 14% for bonds with maturities from
2 to 4 years. Excess returns on 5-year bonds are less predictable, with an R2 of 6%.
Expected excess returns are thus not constant over time.

Cochrane and Piazzesi (2005) show that this R2 more than doubles when all forward
rates f (1→2)

t , f (2→3)
t , f (3→4)

t , and f (4→5)
t are included on the right-hand side of this

regression. Moreover, they find that the predictability is mostly due to a single factor.
This “return-predicting” factor turns out to be only weakly related to level, slope, and
curvature. Also, monthlyVARs with one lag in the yields with maturities 1–5 years do
not find the return-predicting factor.

This evidence against the EH is of course based on a rather small sample. Bekaert et al.
(1997) and Bekaert and Hodrick (2001) stress the importance of taking into account the
small sample distributions of these R2s and other standard tests of the EH. Tests based
on small sample distributions tend to make a weaker case against the EH. Cochrane
and Piazzesi (2005) construct 95% confidence intervals for R2 for the predictability
regressions. Confidence intervals for R2 in the Fama–Bliss regressions indeed include 0.
Confidence intervals for R2 from the regression on all forward rates are far away from
0, however, even if the EH is imposed on the bootstrap. The cross-country evidence
about the EH is more mixed. In some countries like Germany, the EH seems to hold

Table 12.4 R2 from predictability regressions

n 2 3 4 5

FB (1987) 0.14 0.14 0.15 0.06
CP (2001) 0.34 0.34 0.37 0.34

The table reports R2 from two predictability regressions.
Fama–Bliss (1987) regress hpr(n)t→t+1 − y(1)t on a constant and

f (n−1→n)
t − y(1)t . Cochrane–Piazzesi (2004) regress the same
variable on a constant and y(1)t , f (1→2)

t , f (2→3)
t , f (3→4)

t , and
f (4→5)
t . The sample is 1964:1–2001:12.
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up better than in the United States (Bekaert et al., 1997, 2007; Gerlach and Smets, 1997;
Hardouvelis,1994). Finally, the very short end of the yield curve seems to conform better
with the EH (Longstaff, 2000b).

Figure 12.5 shows the fitted values from the predictability regressions in Table 12.4
for n = 3. Excess returns on long-term bonds are small and on average positive. For
Fama–Bliss yields, average excess returns are 0.42, 0.65, 0.79, and 0.72% for n = 2, 3, 4,
and 5. This stylized fact can be generated even in the simple one-factorVasicek model.
Inserting coefficients (5.1) into the CAPM equation (3.13) gives expected excess returns
−b(τ)�#q, where b(τ) > 0 because the short-rate coefficient δ1 is equal to 1. Expected
excess returns are positive provided that q < 0.
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Figure 12.5 Realized excess returns are hpr(3)t − y(1)t . FB-expected excess returns are the fitted values
of the Fama and Bliss (1987) regression in Table 12.3 for n = 3. CP-expected excess returns are the
fitted values of the Cochrane and Piazzesi (2001) regression for n = 3. Returns expected for t are
plotted together with returns at t.
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However, expected excess returns in the Vasicek model are constant. According to
Fig. 12.5 expected excess returns seem to vary through time. In particular, they switch
signs over time. In other words, expected excess returns are not always positive but also
sometimes negative.They tend to be positive when the term structure is upward sloping
and negative when the term structure is downward sloping. Time-variation alone is
easy to generate within an affine model, but many popular affine models are unable
to generate the switching signs. The modeling key to this stylized fact is either in the
market prices of risk σξ(x) or in the factors loadings b(τ). I will discuss this in detail
next.

7.5.3. Affine Diffusions Under Both Measures

Examples of models with time-varying expected excess returns that are not able to
switch signs are the CIR and Dai and Singleton (2000) models. From the CAPM equa-
tion (3.13), expected excess returns in the CIR model are −b(τ)�#rtq, where b(τ) > 0
because δ1 = 1. The time variation in expected excess returns thus comes through the
short rate rt , which is a square-root process and therefore always positive. This implies
that expected excess returns are either always positive or always negative–they cannot
switch signs. The same mechanism is at work in Dai and Singleton (2000). The coef-
ficients (5.5) imply expected excess returns −b(τ)�#s(x)s(x)�q. Condition A allows
only square-root processes to enter the volatility s(x). Together with the assumption
that δ1 = (1, 0, . . . , 0), the model cannot generate expected excess returns that switch
signs.

Recent affine models have attacked this problem in different ways. Backus et al. (2001)
make the following assumptions:

R(x) = x1 − x2

σx(x) =
(√

x1 0
0

√
x2

)
σξ(x) = q�σx(x).

Both factors x1 and x2 are square-root processes, and the short rate is the difference
between the two. The CAPM-equation (3.13) shows that the coefficients b(τ) gene-
rate the switch in expected excess returns in this “negative CIR model.”This can be
seen from the fact that yield coefficients B(τ) = −b(τ)/τ go to

[
1 −1

]
as maturity τ

goes to 0.
Market prices of risk had so far always the form σξ(x) = q�σx(x).A number of papers

obtain switching signs in expected excess returns with other functional forms for σξ(x).
El Karoui et al. (1992) and Ahn et al. (2002) propose a setting with Gaussian x, an
affine market prices of risk, and a linear-quadratic short rate r . When the short rate is
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constrained to be affine in x (no quadratic terms), this framework collapses to the affine
model11

R(x) = δ0 + δ�1 x

σx(x) = #

σξ(x) = q�0 + x�q1,

where q0 ∈ R
N and q1 ∈ R

N×N .This is the model considered in Fisher (1998) and Dai
and Singleton (2002). Ang and Piazzesi (2003) specify a discrete-time version of the
model. In this setup, again, the process x is Gaussian under both measures as inVasicek
(1977), but now both the long-run mean and the speed of mean reversion differ under
the two measures (unlike in the Vasicek model before, where only the long-run mean
was different). In particular, expected excess returns switch signs because of q1.The setup
is a special case of Duffee (2002) who considers

σx(x) = #s(x)

σξ(x) = q�1 s(x)+ x�q2s(x)−

with q1 ∈ R
N , q2 ∈ R

N×N , and

sii(xt)
− =

{(
s0i + s�1i xt

)−1/2

0
if inf

(
s0i + s�1i xt

)
> 0;

otherwise.

This definition ensures that s(x)− does not explode, as diagonal elements in s(x) go to
zero. Suppose x is Gaussian so that s0i = 1 and s1i = 0, then σξ(x) is affine in x.

7.5.4. Risk-Neutral Affine Diffusions with Nonlinear Data-Generating Process

In all setups considered so far, x is an affine diffusion under both probability measures Q
and Q∗. As noted before, there is no reason for x to be an affine diffusion under Q, at
least not for pricing bonds. Duarte (2004) considers this case by specifying

σξ(x) = q0 + q�1 s(x)

σx(x) = s(x) = diag
(√

x
)

q0 ∈ R and q1 ∈ R
N , and a vector x of square-root processes under Q∗. The data-

generating process for x is no longer affine because the drift under Q depends on
√

x
and x. Again, switching signs in expected returns are generated through the matrix q1.

11Constantinides (1992) is an early solution to the problem of switching signs within a quadratic term structure model. In his model, the
short rate is quadratic in Gaussian state variables x. The model does not collapse to an affine model because the drift of r = x2 depends
on both

√
r and r .
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7.5.5. More on Nonlinearities

The statistical discussion about nonlinearities in the term structure literature has much
to do with the macroeconomic discussion about the policy rule of the Federal Reserve.
I postpone policy rules to Section 8.1 and regime switching models to Section 7.8 and
discuss the purely statistical evidence here.Aït-Sahalia (1996),Stanton (1997),and Conley
et al. (1997) present considerable evidence against affine conditional first moments of
short-term interest rates for univariate settings. Ghysels and Ng (1998) and Boudoukh
et al. (1999) also find such evidence for two-factor models. The main empirical pattern
found in these papers is that the speed of mean reversion seems to be higher when the
short rate is far away from its mean. The pattern may, however, be due to small sample
biases. Chapman and Pearson (2000) argue that empirical evidence about what happens
in the tails of the distribution, far away from the mean, is necessarily based on few data
points. Moreover, they simulate short-rate data under the null of an affine conditional
mean and find nonlinearities in the mean using the nonparametric estimators of Aït-
Sahalia (1996) and Stanton (1997). Some of these observations may also be due to seasonal
measurement error. Large spikes in short rates occur on certain calendar days, such as
at the end of calendar years. The verdict is still out on whether there are nonlinearities
in conditional means and, more importantly, whether they matter for long-term bond
yields.

7.6. Unconditional SecondMoments (Vol Curve)

The volatility curve or “vol curve” is the standard deviation of yield changes �Yt .
Figure 12.6 plots the volatility curve for the Fama–Bliss data during the Greenspan
era (1987:8–now). During this time period, the curve is “snake-shaped”: high for short
maturities (< 6 months), low at 6 months, then increasing with a peak at intermediate
maturities around 2–4 years, and then again decreasing.The“back”of the snake,or hump,
in volatility for intermediate maturities can also be found in swap data or Treasury yield
data over this period. The “head” of the snake in Fig. 12.6 comes from the 1- and 2-
month yields from the Fama tapes which may not be reliable. Data on the federal funds
rate, short-term repo, and LIBOR rates, however, confirms the overall picture.The snake
is documented in Piazzesi (2001). Over different time periods, the volatility curve looks
different. Although the volatility of short-term interest rates is always high, the hump at
2–4 years disappears, e.g., during the monetary experiment of the early 1980s.

The modeling key to the back of the snake, the hump in volatility, is correlation
between factors. For example, the multifactor CIR model based on independent square-
root processes is unable to generate the hump in volatility. A stochastic mean model can
generate the hump. Intuitively, the shocks to the stochastic mean do not affect the short
rate directly and therefore only affect the volatility of longer-term yields. To match the
hump quantitatively,negative correlation between the Brownian motion of the short-rate
and the stochastic mean seems to be needed. Dai and Singleton (2000) document this
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Figure 12.6 The volatility curve is the standard deviation of yield changes. Yields are from the Fama
tapes, 1987:8–2003:12.

finding within their three-factor setup. More evidence on the importance of negative
correlation between factors is given in Duffie and Singleton (1997). In their two-factor
CIR model, the two model-implied factors turn out to be negatively correlated. The
correlation coefficient of the factors is −0.5 when they are inverted from yield data.The
correlation is thus far from zero, which is what the theoretical model assumes.

The back of the snake can be linked to policy inertia by the Federal Reserve, defined as
positive autocorrelation in target-rate changes. This positive autocorrelation is induced
by the Fed’s tendency to moves its policy rate, the Fed funds target rate, in a series of
small steps. Piazzesi (2001) builds an affine model with interest-rate targeting by the Fed
in which policy inertia generates the back of the snake for the period after 1994. The
different look of the snake over different subperiods may be explained by the varying
degree of policy inertia under different Fed chairmen. The head of the snake is money
market noise: short-lived deviations of the short rate from the target rate.
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7.7. Conditional SecondMoments (Stochastic Vol)

To gather some evidence about conditional second moments of yields, I estimate aVAR
of all 11 Fama–Bliss yields (with maturities of 1–6 months and 1–5 years) and compute
the squared residuals from this VAR. Figure 12.7 plots the time series of these squared
VAR-residuals for the 1-year yield (together with the 1-year yield itself). Several stylized
facts about volatility become clear from this figure. First, volatility varies over time. In
particular, time-varying volatility is really about two episodes: the oil price shock in
1974 and the monetary experiment in 1979–1982. Any volatility study therefore has
to decide first on how to treat these two episodes. The choice already starts with the
data set. For example, studies with swap yields are completely silent about these episodes
because swaps only started trading at the end of the 1980s. Stationary A0(N )-models
of theVasicek-type are obviously unable to match the volatility experience of the entire
sample, but Fig. 12.7 suggests that a model with two regimes–high volatility and low
volatility–may be enough.Another possibility is that the world is not stationary, and these
“regimes” are really structural breaks. To just describe the experience of the most recent
years, constant volatility models may then be enough. More evidence on this “return to
normality” is given in the next section in terms of higher-order moments.

Volatility over time: Squared VAR–residuals and yield level
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Figure 12.7 The figure plots the 1-year Fama–Bliss yield together with the squared residuals for the
1 year yield estimated from a VAR with all 11 Fama–Bliss yields (with maturities 1–6 months and 1–5
years). The squared residuals are on the bottom of the graph.
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Table 12.5 Properties of squared VAR-residuals

Maturity 1 3 6 12 24 36 48 60

Regression of squared residuals on yield level

Slope 0.17 0.15 0.15 0.13 0.09 0.07 0.05 0.05
Standard errors 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01
R2 0.10 0.12 0.15 0.14 0.12 0.11 0.11 0.11

Autocorrelations of squared residuals

Autocorrelation 0.27 0.37 0.40 0.27 0.25 0.15 0.16 0.12
Standard errors 0.05 0.10 0.12 0.10 0.10 0.07 0.07 0.07

Squared residuals come form a VAR with one lag using all 11 Fama–Bliss yields (1–6 months, 1–5 years).
Slope is the slope coefficient from the regression of squared VAR-residuals for yield i on a constant and
the level of yield i. Standard errors for the slope coefficients are standard OLS standard errors. R2 is the R2

from this regression.Autocorrelation is the first-order autocorrelation of squaredVAR-residuals together with
Newey–West standard errors computed with six lags. All these standard errors ignore sampling noise from
theVAR. The yield data is from the Fama tapes of CRSP for 1964:1–2001:12.

Second, volatility is positively correlated with the level of interest rates.This becomes
clear from eyeballing the years 1974 and 1979–1982 in Fig. 12.7. More precise evidence is
given in the“slope”-row of Table 12.5,which computes the slope coefficient of regressing
theVAR-squared residuals of any given yield on the level of the same yield. The slope
coefficient is positive for all squared residuals and significant for most (at least judging
from OLS-standard errors which are not adjusted for the two-step estimation procedure).
The positive correlation between volatility and yield levels motivated the square-root
specification for the short rate in the CIR model and later multifactor models such as
the model by Longstaff and Schwartz (1992) or Chen (1996), which feature volatility as
one of their factors.The residuals from the regression of the squared residuals in Fig. 12.7
on all Fama–Bliss yields still show spikes in 1974 and 1979–1982. In other words, yield
levels only explain some of the time-variation in volatility. This can also be seen from
the R2 in Table 12.5, which range from 10 to 15%.

Third, volatility is autocorrelated. Table 12.5 computes the autocorrelation of the
squaredVAR-residuals for all maturities. The autocorrelation is positive and significant
for all maturities but the 5-year yield (again, standard errors ignore theVAR-step of the
estimation).

Stochastic volatility is a feature of the data that standard affine models may have
problems to match.The problem arises because volatility plays two roles in affine models.
One role is to match the time-series properties of the short rate.Volatility can in fact be
computed from the second moment of some short-rate proxy. For example, Chan et al.
(1992) do this. Another role of volatility is to match the cross section of yields.Volatility
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can be inverted from affine yield equations. Brown and Dybvig (1986) and Brown and
Schaefer (1994) take this route.There is a natural tension between these two roles in any
affine model, and panel data studies of affine models need to deal with this tension.

In practice, the tension arises when the inversion of affine yield-equations leads to
negative values for volatility. These negative values make some estimation procedures
choke, such as maximum-likelihood, and tricks have to be used to avoid them. For
example, Duffie and Singleton (1997) find that it helps to add a constant to the short
rate equation in a two-factor CIR model. Other estimation methods are more robust
to negative volatility. Efficient method of moments is an example because volatility is
only simulated to evaluate the EMM objective function, not inverted from yields. The
problem remains, however, of how to interpret parameter estimates that lead to negative
model-implied volatility in-sample.

More evidence on this tension is documented by Collin–Dufresne et al. (2009) who
estimate A1(3) models with swap data. Ideally, the stochastic volatility factor in these
models should be highly correlated with conditional second moments of the short rate
implied by the model. Collin-Dufresne et al. proxy the conditional second moment
with a Garch model estimated with the time series of the model-implied short rate.
Garch-volatility turns out to be negatively correlated with the volatility factor from the
affine model.

A way out of this tension is to construct models in which bond markets are incomplete
in a way that volatility cannot be inverted from the cross section of bond yields.This is the
idea behind the “string models” proposed by Santa-Clara and Sornette (2001),“random
field models”by Goldstein (2000) and Kimmel (2001),and“unspanned volatility models”
by Collin-Dufresne and Goldstein (2002). Useful results on how affine models are related
to such more flexible models of volatility are in De Jong and Santa-Clara (1999) and
Collin-Dufresne and Goldstein (2002). Empirical support for these models is given in
Longstaff et al. (2001) who compare option prices computed from standard affine models
with those from string models and find that affine models underprice options. Also,
Collin-Dufresne and Goldstein (2002) regress returns on straddles on swap yield changes
for different countries and find low R2s, whereas affine models would predict R2s of 1.
Straddles are portfolios of caps and floors, which are particularly sensitive to volatility.

When volatility is not invertible from the cross section of bond yields, it is truly latent
when only information about bond yields is used in the estimation. Collin–Dufresne et al.
(2009) therefore use Bayesian methods to estimate their model. Brandt and Sasta-clara
(1999) make volatility an observable factor by using data on at-the-money options.

7.8. Higher-Order Moments (Jumps and Regimes)

Yields are not normally distributed over the sample 1964:1–2001:12. If they were, then
yield changes would have to be normally distributed as well. Table 12.6 computes the
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Table 12.6 Higher-order moments of yield changes

Maturity 1 3 6 12 24 36 48 60

Skewness

Full sample −1.00 −1.35 −1.51 −1.01 −0.68 −0.11 −0.16 −0.26
Standard error (0.80) (0.61) (0.80) (0.69) (0.57) (0.39) (0.31) (0.30)
1990s −0.18 −0.88 −0.60 −0.05 0.05 0.19 0.19 0.13
Standard error (0.39) (0.32) (0.29) (0.26) (0.18) (0.16) (0.16) (0.17)

Kurtosis

Full sample 14.34 13.92 16.93 15.38 11.90 9.16 7.07 6.84
Standard error (4.48) (3.10) (5.24) (4.78) (3.15) (2.71) (1.22) (1.25)
1990s 5.31 5.47 4.56 3.59 2.73 2.64 2.68 2.72
Standard error (0.72) (1.08) (0.74) (0.37) (0.24) (0.23) (0.26) (0.26)

Skewness is m3/m
3/2
2 and kurtosis is m4/m2

2, where mi is the ith central moment of yield changes. Full sample computes
the statistic over the entire sample 1964:1–2001:12, whereas 1990s uses the subsample 1990:1–2001:12. Standard errors
(in brackets) are computed using GMM with six Newey–West lags. The yield data is from the Fama tapes of CRSP for
1964:1–2001:12. Maturities are in months.

skewness and kurtosis of yield changes. Benchmark normal distributions are symmetric
around the mean so that their skewness is 0. Their kurtosis is 3, anything beyond that is
called excess kurtosis. The distribution of yield changes shows negative skewness. This
means that the distribution of yield changes is skewed to the left. (The distribution has a
long thin left tail, whereas most of the probability mass is around and above the mean.)
The evidence for skewness is weak, however, because GMM-standard errors around the
estimates are large.The distribution of yield changes shows clear excess kurtosis,however,
which means that its tails are heavier compared to the normal distribution.

Recently, yields seem to have become“more Gaussian.” Table 12.6 also computes the
skewness and kurtosis of yield changes for the subsample 1990:1–2001:12.The difference
is striking. There seems to be only weak evidence against normality during the last 10
years. The squared residuals in Fig. 12.7 during this period are, in fact, barely visible to
the eye. Have yields “returned to normal”?

Affine models offer two ways to capture fat tails: stochastic volatility and jumps. Das
(2002) and Johannes (2004) estimate short-rate models with jumps. The nonparametric
method by Johannes implies jump arrival rates in-sample that place high probability on
jumps occurring at scheduled macroeconomic news releases (which are discussed in the
next subsection).

Regime switching models also generate nonnormal distributions and are consis-
tent with evidence on nonlinearities in conditional first moments. In general, these
models are outside the affine class (Ang and Bekaert, 2002; Bansal and Zhou, 2002;
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Gray, 1996; Hamilton, 1994, Chapter 22;Veronesi and Yared, 2000). For some special
cases, affine solutions can be still be obtained (Ang and Bekaert, 2008; Landen, 2000).
Estimated regime switching models tend to find two regimes: a high-persistence low-
volatility regime and a low-persistence high-volatility regime. This finding is intuitive
from Fig. 12.7, which suggests that we are in the high-persistence low-volatility regime
most of the time, with the exception of the oil price shock and the monetary policy
experiment.

7.9. Seasonalities (Settlement Wednesdays andMacro Releases)

Fleming and Remolona (1997), Furfine (2001), and Johannes (2004) go back to see
whether the largest yield-movements over a given time period coincide with certain
events. Fleming and Remolona (1999) and Furfine (2001) use 5-minute price changes
in the 5-year Treasury note, whereas Johannes (2004) uses daily data on the 3-month
T-Bill rate.Table 12.7 summarizes the findings of these three studies.The results show that
most large yield-movements happen around employment releases and Federal Reserve
policy rate moves. The bulk of these events is scheduled announcements. Only few
happen at random times, such as the outbreak of the Gulf war which coincides with one
of the 10 largest yield movements in the Johannes sample. More evidence on seasonalities
around macroeconomic news releases is documented in Jones et al. (1996), Fleming and
Remolona (1997), Balduzzi et al. (2001), and Li and Engle (2000).

When large yield movements at macroeconomic news releases are modeled as jumps,
the timing of these jumps is deterministic. Piazzesi (2001) builds an affine model with
deterministic jump times and state-dependent jump size distributions to be able to impose
the release calendar on the estimation.

Another type of seasonality is documented in Hamilton (1996). Large spikes in the
federal funds rate occur on so-called “settlement Wednesdays,” which mark the end of
the biweekly reserve maintenance period. Less pronounced spikes on these days can also
be found in other short-term interest rates, such as overnight LIBOR or repos (Piazzesi,
2001). An estimation with data on these very short rates therefore needs to carefully take
into account these seasonalities. High-frequency studies of the effects of monetary policy
are especially affected by these seasonalities because most target moves happen around
settlement Wednesdays.

7.10. Fitting Errors at the Short End

When affine models are estimated with panel data, the fit at the very short end of the
yield curve often turns out to bad. One of the reasons is that estimations typically do not
use any data on extremely short yields. Indeed, seasonalities and other microstructure
noise would make such an estimation difficult, as mentioned in the previous section.
Piazzesi (2001) and He (2001) argue that the Federal Reserve target rate can serve as
a “clean” short rate that helps in fitting the short end. These papers use the target rate
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Table 12.7 Largest moves in bond yields

Daily data on 3-month T-Bill, January 1991–December 1993

1. January 2, 1992 Fed policy rate
2. December 20, 1991 Fed policy rate
3. September 4, 1992 Employment
4. April 9, 1992 Large Japanese market decline
5. February 1, 1991 Employment, Fed policy rate

5-minute data on 5-year T-note, August 1993–August 1994

1. August 5, 1994 Employment
2. May 6, 1994 Employment
3. July 8, 1994 Employment
4. April 1, 1994 Employment
5. July 29, 1994 GDP

5-minute data on 5-year T-note, January 1999–December 1999

1. June 30, 1999 Fed policy rate
2. May 5, 1999 Employment
3. September 3, 1999 Employment
4. May 14, 1999 Consumer price index
5. August 6, 1999 Employment

The three panels show the five largest bond-yield moves in their subsample. The first
column indicates the rank of the move, the second column gives the date of the move, and
the third column indicates what happened during the move.The amount of the move is not
available for the top panel, so it is not included here. The top panel combines information
fromTable 4 and Figure 5 in Johannes (2004).The middle panel is fromTable 3 in Fleming
and Remolona (1999). The lower panel is from Table 1 in Furfine (2001).

to pin down the short end of the swap curve. Another reason for the poor fit is that it
seems like more than three factors are needed to capture the short end of the yield curve.
Evidence of the need of a fourth factor is in Knez et al. (1994), Longstaff et al. (2001),
and Piazzesi (2001).

8. JOINT SYSTEMWITH OTHERMACROECONOMIC VARIABLES
Macroeconomics often views the Federal Reserve as setting the short end of the nominal
yield curve. Many issues that are being debated in the term structure literature–such as
persistence,predictability,nonlinearities,and structural breaks in short yields–are therefore
also being debated in monetary economics. Section 8.1 links some of these discussion
points.Yields have much to do with other macroeconomic variables. Inflation in Section
8.2 and the other macro variables in Section 8.3 may teach us something about yields.
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8.1. Monetary Policy

Most central banks in industrialized countries target some overnight interbank lending
rate. The Federal Reserve does so by fixing a target rate for the funds rate, which is
implemented by the NewYork Fed using open market operations.The way the Fed sets
the target is usually described with policy rules, which are maps from macro variables
to the target. According to the Taylor rule, e.g., the Fed sets the target in response
to inflation and the output gap. Policy rules are structural equations, which can be
identified in several ways (for a survey, see Christiano et al., 1999). The identification
scheme proposed by Christiano et al. boils down to taking conditional expectations.The
literature on structural breaks in policy rules and interest-rate smoothing by the Fed is
thus intimately related to the statistical discussion about short-rate dynamics. Monetary
policy regimes are usually associated with Fed chairmen. An example is the 1979–1982
monetary experiment under Paul Volcker. During this time period, the Fed stopped
targeting short-term interest rates and started targeting nonborrowed reserves instead.
The economy underwent two recessions during this 3-year experiment, but eventually
inflation was under control. When policy rules are estimated over different regimes,
coefficient estimates are very different. Cogley and Sargent (2001, 2002) address this
issue with a random-coefficients model. Sims (1999) and Sims and Zha (2002) argue
that what looks like nonlinearities and structural breaks in policy rules may be due to
time-varying second moments.

Knowledge about the operations procedures of the Fed can be used for yield-curve
modeling.The model proposed by Piazzesi (2001) explicitly uses the meeting calendar of
the Fed to determine the short end of the yield curve.The Fed meets eight times per year
and changes its target-short rate mostly at meetings since 1994. The market short rate
fluctuates around the target. Between meetings, the short rate is thus likely to stay close to
the old target level.The target is constant for long periods of time,which can be captured
with counting processes for up and down moves. The yield-curve model predicts, e.g.,
the reaction of yields to monetary policy surprises, defined as the difference between the
actual target and the Fed’s policy rule.The reaction of yields to these surprises turns out
to be large. Cochrane and Piazzesi (2005) confirm this finding in a setting that does not
impose no-arbitrage.Traditional studies in which the Fed only reacts to macroeconomic
variables tend to find small reactions of yields to policy shocks (Evans and Marshall,
1998, 2001). In fact, the policy rule estimated with the yield-curve model captures Fed
behavior better compared to traditional rules based exclusively on macro variables. The
estimated rule features both interest rate smoothing (autocorrelation in levels) and policy
inertia (autocorrelation in changes).

Mankiw and Miron (1986) find that short-rate movements have become much less
predictable since the creation of the Fed in 1914. The reason is that the Fed smoothes
short rates (increases their autocorrelation in levels), which makes changes in the short
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rate unpredictable. Mankiw and Miron conclude that rejections of the EH may be due
to the Fed-induced random walk character of interest rates. This idea can be used to
construct a term structure model by estimating the short rate and then computing long
yields with the EH (Balduzzi et al., 1996). This explanation may be consistent with the
fact that the persistence of short rates seems to have increased in the 1990s (Watson,
1999), a decade during which the EH has failed spectacularly.

Yield-curve models that incorporate interest-rate targeting by the Fed can be used to
learn about policy rules. For example, the reaction of yields to macroeconomic surprises,
such as nonfarm payroll numbers, seems to be hump-shaped with peaks around 2–3
years. This evidence is not consistent with a yield-curve model in which the Federal
Reserve reacts to current macro variables (Piazzesi, 2001). The reason is that macroe-
conomic release surprises, measured as the difference between actual released number
and analyst forecasts, do not seem to forecast future macroeconomic variables. Because
future employment numbers are unaffected by the surprise, the Fed is likely not move
the short rate in the future.This implies that long yields should not be reacting to release
surprises–but they do.The Fed thus seems to react to some moving average of past release
surprises instead of current macro variables.

Central banks in other countries use different operational procedures. For example,the
Bundesbank used to make its policy decisions at bi-weekly meetings without announcing
an official target. Yield-curve models can then be used to learn about the latent target
(Piazzesi, 2002).

8.2. Inflation

Central banks need to decompose nominal yields into expected inflation, risk premia,
and real yields (which are yields on real bonds, see Section 4 for definitions).The policy
response to high expected inflation is much different from the response to high real yields,
while both situations are characterized by high nominal yields. Holders of nominal bonds
worry about future inflation because that is what determines the real value of the principal
payment at the maturity date. This implies that expected inflation should matter for at
least the determination of nominal yields. Expected inflation may also matter for real
yields in a world in which money is not neutral.

Fama (1990) documents that the correlation between expected inflation and state
variables that drive the real yield curve is negative, at least for horizons up to 1 year.
More precisely,he defines the real rate as the difference between the nominal 1-year yield
and actual inflation over 1 year. The negative correlation is between the expected real
short rate and the expected inflation. Expected values are measured by the fitted values
from regressions of actual inflation and the real short rate on a particular yield spread,
the difference between the 5-year and the 1-year yield. The finding is that regression
coefficients have opposite signs so that high yield spreads forecast higher inflation and
lower real rates. For horizons up to 1 year, the signs of these forecasts cancel each other
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such that the yield spread does not forecast changes in the nominal rate. The R2 from
these forecasts are around 20% for inflation and about half that for the real rate. For
horizons beyond 1 year, the yield spread only predicts inflation and not the real short
rate.The R2 from the real-rate forecasts decrease fast with horizon,whereas the R2 from
the inflation forecasts stay high for several years.This means that yield spreads are able to
predict changes in the nominal short rate for longer horizons.

Barr and Campbell (1997) and Campbell and Viceira (2001) also find negative cor-
relation using affine two-factor models. Expected inflation and the actual real short rate
are Gaussian, and market prices of risk are constant. Expected excess returns on all bonds,
real and nominal,are therefore constant.The model for the real yield curve is a one-factor
Vasicek model, whereas the nominal yield-curve is a two-factorVasicek model. Nominal
yields in this model can thus become negative with positive probability. Expected infla-
tion and the real rate are inherently latent variables, which are estimated using Kalman
filtering with McCulloch–Kwon zero-coupon yield data and CPI inflation. All yields
are assumed to be observed with error. Buraschi and Jilsov (2005) also find negative
correlation with a three-factor model. Finally, Barr and Campbell (1997) and Campbell
and Shiller (1991) find the same result with U.K. data on indexed bonds.

During the monetary experiment, inflation was high and the Fed under Volcker
increased nominal short rates dramatically. This fight against inflation was successful
in the sense that the estimated yield-curve model by Campbell and Viceira (2001) shows
that expected inflation has been much less variable since 1983. Real rates, however, have
become more variable. This is also reflected in the persistence of these variables since
1983. Although expected inflation appears to have a unit root over the whole postwar
period and shocks to the real short rate have a half-life of five quarters, these results are
almost reversed for the subperiod after 1983. Expected inflation has become much less
persistent,with shocks to expected inflation having half-life of only five quarters. Shocks
to the real short rate now have a half-life of 12 years!

8.3. Other Macroeconomic Variables

Ang and Piazzesi (2003) address whether macro variables add to our understanding
of yields by looking at out-of-sample forecasts of yields. The forecasts are computed
using a discrete-time Gaussian yield-curve model with macro variables as observable
factors. Discrete time makes it easy to incorporate higher-order autoregressive lags that
are often needed to capture the dynamics of macroeconomic variables. Longer lags can be
incoporated simply by expanding the state space. Hansen and Sargent (1991) discuss how
to do this in continuous time. Market prices of risk in the model are affine in the Gaussian
state variables. The estimation uses data on various inflation measures and real activity
measures.The authors find that yield-curve models with macro variables turn out to do
better in out-of-sample forecasting.Ang et al. (2006) estimate a three-factor model based
on a short rate, term spread, and GDP growth. Their model completely characterizes
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the predictive regressions of GDP growth over different horizons and different term
spreads on the right-hand side.Their model recommends the use of the short rate instead
of any term spread for forecasting growth. This finding is in contrast to unrestricted
OLS regressions and is confirmed in out-of-sample forecasts. Intuitively, arbitrage-free
pricing imposes restrictions that improve the efficiency of parameter estimates.This gain
in efficiency leads to vastly different point estimates in the case of forecasting GDP
growth, even though the yield-curve parameters are well within confidence bounds of
the corresponding OLS regression. A lot more research is needed in this area.

ACKNOWLEDGMENTS
I am indebted to Pedro Santa-Clara and Martin Schneider for many helpful discussions.
I would also like to thank participants at the“Handbook of Financial Econometrics Con-
ference” in November 2001 at Princeton and David Chapman, Pierre Collin-Dufresne,
Mike Johannes,Bob Kimmel,Luis-Fernando Mejia,Antonio Mele,Bruno Miranda, Juha
Seppala, Selale Tuzel, and two anonymous referees for helpful comments.

REFERENCES
Ahn, Dong-Hyun, Robert Dittmar, and Gallant A. Ronald (2002) “Quadratic term structure

models:Theory and evidence.” Review of Financial Studies 15, 243–288.
Aït-Sahalia,Yacine (1996) “Testing continuous-time models of the spot interest rate.” Review of

Financial Studies 9, 385–426.
Aït-Sahalia, Yacine (2001) “Maximum likelihood estimation of discretely sampled diffusions:

A closed form approximation approach.” Econometrica 70, 223–262.
Aït-Sahalia,Yacine (2008)“Closed-form likelihood expansions for multivariate diffusions.”Annals

of Statistics 36, 906–937.
Aït-Sahalia, Yacine, Lars Peter Hansen, and Jose A. Scheinkman (2010) “Discretely sam-

pled diffusions.” In: Yacine Aït Sahalia and Lars Peter Hansen, eds. Handbook of Financial
Econometrics, Amsterdam: North-Holland (forthcoming).

Alvarez,Fernando and PabloAndres Neumeyer (1999)“Constructing historical time and maturity
dependent yield spreads for emerging country sovereign debt.” Working Paper, University
of Chicago.

Ang, Andrew and Geert Bekaert (2002) “Regime switches in interest rates.” Journal of Business
and Economic Statistics 20, 163–182.

Ang,Andrew, Geert Bekaert, and Min Wei (2008) “The term structure of real rates and expected
inflation.” Journal of Finance 63, 797–849.

Ang,Andrew and Monika Piazzesi (2003)“A no-arbitrage vector autoregression of term structure
dynamics with macroeconomic and latent variables.” Journal of Monetary Economics 50,745–787.

Ang, Andrew, Monika Piazzesi, and Min Wei (2006) “What does the yield curve tell us about
GDP growth?” Journal of Econometrics 131, 359–403.

Angeletos, George-Marios (2002) “Fiscal policy with non-contingent debt and the optimal
maturity structure.” Quarterly Journal of Economics 117, 1105–1131.



Affine Term Structure Models 759

Backus, David, Silverio Foresi,Abon Mozumdar, and Liuren Wu (2001) “Predictable changes in
yields and forward rates.” Journal of Financial Economics 59, 281–311.

Backus, David, Silverio Foresi, and Chris Telmer (2000) “Discrete-time models of bond pric-
ing.” In: Narasimhan Jegadeesh and Bruce Tuckman, eds. Advanced Fixed IncomeValuationTools,
NewYork:Wiley.

Backus, David,Allan W. Gregory, and Stan E. Zin (1989) “Risk premiums in the term structure:
Evidence from artificial economies.” Journal of Monetary Economics 24, 371–399.

Balduzzi, Pierluigi, Giuseppe Bertola and Silverio Foresi (1996) “A model of target changes and
the term structure of interest rates.” Journal of Monetary Economics 39, 223–249.

Balduzzi, Pierluigi, Sanjiv R. Das, and Silverio Foresi (1998) “The central tendency: A second
factor in bond yields.” Review of Economics and Statistics 80, 62–72.

Balduzzi, Pierluigi, Sanjiv R. Das, Silverio Foresi, and Rangarajan K. Sundaram (1996) “A simple
approach to three factor affine term structure models.” Journal of Fixed Income 6, 43–53.

Balduzzi, Pierluigi, Edwin J. Elton, and Green T. Clifton (2001) “Economic news and the yield
curve: Evidence from the U.S. Treasury market.” Journal of Financial and Quantitative Analysis
36, 523–543.

Bakshi, Gurdip S. and Zhiwu Chen (1996) “Inflation, asset prices, and the term structure of
interest rates in monetary economies.” Review of Financial Studies 9, 241–275.

Bakshi, Gurdip S. and Zhiwu Chen (1997) “An alternative valuation model for contingent
claims.” Journal of Financial Economics 44, 123–165.

Bansal, Ravi and Hui Zhou (2002) “Term structure of interest rates with regime shifts.” Journal
of Finance 57, 1997–2043.

Barr, David G. and JohnY. Campbell (1997) “Inflation, real interest rates, and the bond market:
A study of UK nominal and index-linked government bond prices.” Journal of Monetary
Economics 39, 361–383.

Bekaert, Geert and Steven R. Grenadier (2000) “Stock and bond pricing in an affine economy.”
Working Paper, Columbia Business School.

Bekaert, Geert and Robert Hodrick (2001) “Expectations hypothesis tests.” Journal of Finance 56,
115–138.

Bekaert, Geert, Robert Hodrick, and David Marshall (1997) “On biases in tests of the expec-
tations hypothesis of the term structure of interest rates.” Journal of Financial Economics 44,
309–348.

Bekaert, Geert, Min Wei, andYuhang Xing (2007) “Uncovered interest rate parity and the term
structure.” Journal of International Money and Finance, 26, 1038–1069.

Bliss, Robert (1999) “Fitting term structures to bond prices.” Working Paper, Chicago Fed.
Boudoukh, Jacob, Matthew Richardson, Richard Stanton, and Robert Whitelaw (1999) “The

stochastic behavior of interest rates: Implications from a nonlinear continuous-time model.”
Working Paper, NYU Stern and UC Berkeley.

Brandt, Michael W. and Pedro Santa-Clara (2002) “Simulated likelihood estimation of diffusions
with an application to exchange rates dynamics in incomplete markets.” Journal of Financial
Economics 63, 161–210.

Brown,Stephen J. and Philip H. Dybvig (1986)“The empirical implications of the Cox, Ingersoll,
and Ross theory of the term structure of interest rates.” Journal of Finance 41, 617–632.

Brown, Roger H. and Stephen Schaefer (1994) “The term structure of real interest rates and the
Cox, Ingersoll, and Ross Model.” Journal of Financial Economics 35, 3–42.



760 Monika Piazzesi

Buraschi,Andrea and Alexei Jiltsov (2005) “Inflation risk premia and the expectations hypothesis:
Taylor monetary policy rules and the Treasury yield curve.” Journal of Financial Economics 75,
429–490.

Brémaud, Pierre (1981) “Point processes and queues: Martingale dynamics.” NewYork: Springer.
Campbell, John Y. (1986) “A defense of the traditional hypotheses about the term structure of

interest rates.” Journal of Finance 41, 183–193.
Campbell, John Y. and John H. Cochrane (1999) “By force of habit: A consumption-based

explanation of aggregate stock market behavior.” Journal of Political Economy 107, 205–251.
Campbell, John Y.,Andrew W. Lo, and MacKinlay A. Craig (1997) “The Econometrics of Financial

Markets.” Princeton: Princeton University Press.
Campbell, JohnY. and Robert Shiller (1991) “Yield spreads and interest rates:A bird’s eye view.”

Review of Economic Studies 58, 495–514.
Campbell, JohnY. and LuisViceira (2001)“Who should buy long term bonds?”American Economic

Review 91, 99–127.
Carrasco, Marine, Mikhail Chernov, Jean-Pierre Florens, and Eric Ghysels (2001) “Estimation

of jump-diffusions with a continuum of moment conditions.” Working Paper, University of
Rochester.

Chacko, George and Luis Viceira (2003) “Spectral GMM estimation of continuous-time
processes.” Journal of Econometrics 116, 259–292.

Chan, K,Andrew Karolyi, Francis Longstaff, and Anthony Sanders (1992) “The volatility of the
short-term interest rates:An empirical comparison of alternative models of the term structure
of interest rates.” Journal of Finance 68, 1209–1227.

Chapman, David, John Long, and Neil D. Pearson (1999) “Using proxies for the short rate:
When are three months like an instant?” Review of Financial Studies 12, 763–806.

Chapman, David (1997) “The cyclical properties of consumption growth and the real term
structure.” Journal of Monetary Economics 39, 145–172.

Chapman, David and Neil D. Pearson (2000) “Is the short rate drift actually nonlinear?” Journal
of Finance 55, 355–388.

Chapman, David and Neil D. Pearson (2001) “Recent advances in estimating term-structure
models.” Financial Analysts Journal, July/August, 77–95.

Chen, Lin (1996) “Stochastic Mean and StochasticVolatility - AThree-factor Model of theTerm Structure
of Interest Rates and itsApplication to the Pricing of Interest Rate Derivatives.”Oxford,UK:Blackwell
Publishers.

Chen, Ren-Raw and Louis Scott (1992) “Pricing interest-rate options in a two-factor Cox-
Ingersoll-Ross model of the term structure.” Review of Financial Studies 5, 613–636.

Chen, Ren-Raw and Louis Scott (1993) “Maximum likelihood estimation for a multifactor
equilibrium model of the term structure of interest rates.” Journal of Fixed Income 3, 14–31.

Cheridito, Patrick, Damir Filipovic, and Robert Kimmel (2004) “A note on the canonical
representation of affine diffusion processes.” Working Paper, Princeton University.

Christiano, Lawrence, Martin Eichenbaum, and Charles Evans (1999) “Monetary policy shocks:
What have we learned and to what end?” In: Michael Woodford and John B. Taylor, eds.
Handbook of Macroeconomics. Amsterdam: North Holland.

Cochrane, John H. (2001) “Long term debt and optimal policy in the fiscal theory of the price
level.” Econometrica 69, 69–116.



Affine Term Structure Models 761

Cochrane, John H. and Monika Piazzesi (2002) “The fed and interest rates: A high-frequency
identification.”American Economic Review 92, 90–95.

Cochrane, John H. and Monika Piazzesi (2005) “Bond risk premia.” American Economic Review
95, 138–160.

Cogley, Timothy and Thomas J. Sargent (2001) “Evolving post-world war II U.S. inflation
dynamics.” NBER Macroannual 2001 (forthcoming).

Cogley, Timothy and Thomas J. Sargent (2002) “Drifts and volatilities: Monetary policies and
outcomes in the post WWII U.S.” Working Paper, Stanford University.

Collin-Dufresne, Pierre and Robert Goldstein (2002) “Do bonds span the fixed-income mar-
kets? Theory and evidence for unspanned stochastic volatility.” The Journal of Finance 57,
1685–1730.

Collin-Dufresne, Pierre, Robert Goldstein, and Christopher Jones (2009) “Can interest rate
volatility be extracted from the cross section of bond yields? An investigation of unspanned
stochastic volatility.” Journal of Financial Economics (forthcoming).

Collin-Dufresne, Pierre and Bruno Solnik (2001) “On the term structure of default premia in
the swap and LIBOR markets.” Journal of Finance 56, 1095–1015.

Conley,Tim G., Lars Peter Hansen, Erzo G.J. Luttmer, and Jose A. Scheinkman (1997) “Short-
term interest rates as subordinated diffusions.” Review of Financial Studies 10, 525–577.

Constantinides, George (1992) “A theory of the nominal term structure of interest rates.” Review
of Financial Studies 5, 531–552.

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross (1981) “A reexamination of traditional
hypotheses about the term structure of interest rates.” Journal of Finance 36, 321–346.

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross (1985) “A theory of the term structure
of interest rates.” Econometrica 53, 385–407.

Dai,Qiang and Kenneth Singleton (2000)“Specification analysis of affine term structure models.”
Journal of Finance 55, 1943–1978.

Dai, Qiang and Kenneth Singleton (2002) “Expectation puzzles, time-varying risk premia, and
affine models of the term structure.” Journal of Financial Economics 63, 415–441.

Darolles, Serge, Christian Gouriéroux, and Joann Jasiak (2001) “Compound autoregressive
models.” Working Paper, CREST, Paris.

Das, Sanjiv (2002) “The surprise element: Jumps in interest rates.” Journal of Econometrics 106,
27–65.

Das,Sanjiv and Silverio Foresi (1996)“Exact solutions for bond and option prices with systematic
jump risk.” Review of Derivatives Research 1, 7–24.

De Jong, Frank and Pedro Santa-Clara (1999) “The dynamics of the forward interest rate: A
formulation with state variables.” Journal of Financial and Quantitative Analysis 34, 131–157.

Den Haan,Wouter (1995) “The term structure of interest rates in real and monetary economies.”
Journal of Economic Dynamics and Control 19, 909–940.

Duarte, Jefferson (2004) “Evaluating an alternative risk preference in affine term structure
models.” Review of Financial Studies 17, 370–404.

Duffee, Gregory (1996) “Idiosyncratic variation of Treasury bill yields.” Journal of Finance 51,
527–552.

Duffee, Gregory (2002) “Term premia and interest rate forecasts in affine models.” Journal of
Finance 57, 405–443.



762 Monika Piazzesi

Duffie, Darrell (2001) “Dynamic asset pricing theory.”Third ed. Princeton: Princeton University
Press.

Duffie, Darrell, Damir Filipovic, and Walter Schachermayer (2003) “Affine processes and
applications in finance.”Annals of Applied Probability 13, 984–1053.

Duffie, Darrell and Ming Huang (1996) “Swap rates and credit quality.” Journal of Finance 51,
921–949.

Duffie, Darrell and Rui Kan (1996) “A yield-factor model of interest rates.” Mathematical Finance
6, 379–406.

Duffie, Darrell, Jun Pan, and Kenneth Singleton (2000) “Transform analysis and asset pricing for
affine jump-diffusions.” Econometrica 68, 1343–1376.

Duffie, Darrell, Lasse Pedersen, and Kenneth Singleton (2003) “Modeling sovereign yield spreads:
A case study of Russian debt.” Journal of Finance 58, 119–159.

Duffie, Darrell and Kenneth Singleton (1997) “An econometric model of the term structure of
interest rate swap yields.” Journal of Finance 52, 1287–1323.

Durham, Garland B. and A. Ronald Gallant (2002) “Numerical techniques for maximum like-
lihood estimation of continuous time diffusion processes.” Journal of Business and Economic
Statistics (forthcoming).

El Karoui, Nicole, R. Myneni, and R. Viswanathan (1993) “Arbitrage pricing and hedging of
interest rate claims with state variables.” Working Paper, Université de ParisVI, Laboratoire de
Probabilité.

Estrella, Arturo and Gikas A. Hardouvelis (1991) “The term structure as a predictor of real
economic activity.” Journal of Finance 46, 555–576.

Evans, Chales L. and David Marshall (1998) “Monetary policy and the term structure of nominal
interest rates: Evidence and theory.” Carnegie-Rochester Conference Series on Public Policy 49,
53–111.

Evans, Charles L. and David Marshall (2001) “Economic determinants of the term structure of
nominal interest rates.” Working Paper, Chicago Fed.

Fama, Eugene F. (1990) “Term-structure forecasts of interest rates, inflation, and real returns.”
Journal of Monetary Economics 25, 59–76.

Fama, Eugene F. and Robert R. Bliss (1987) “The information in long-maturity forward rates.”
American Economic Review 77, 680–692.

Farnsworth,Heber and Richard Bass (2001) “The term structure with credible and semi-credible
targeting.” Working Paper,Washington University in St. Louis.

Favero,Carlo,Francesco Giavazzi, and Luigi Spaventa (1997)“High yields:The spread on German
interest rates.” Economic Journal 107, 663.

Fisher, Mark (1998) “A simple model of the failure of the expectations hypothesis.” Working
Paper, Federal Reserve Atlanta.

Fisher, Mark and Christian Gilles (1996) “Estimating exponential-affine models of the term
structure.” Working Paper, Federal Reserve Atlanta.

Fisher, Mark and Christian Gilles (1998) “Around and around: The expectations hypothesis.”
Journal of Finance 53, 365–383.

Fleming, J. Michael and Eli M. Remolona (1997) “What moves the bond market?” FRBNY
Economic Policy Review December, 31–50.

Fleming, J. Michael and Eli M. Remolona (1999) “The term structure of announcement effects.”
Working Paper, Federal Reserve Bank of NewYork.



Affine Term Structure Models 763

Furfine, Craig (2001) “Do macroeconomic announcements still drive the Treasury market?” BIS
Quarterly Review, 49–57.

Gallant,A. Ronald and GeorgeTauchen (2010) “Simulated score methods and indirect inference
for continuous-time models.” In:Yacine Aït-Sahalia and Lars Peter Hansen, eds. Handbook
of Financial Econometrics. Amsterdam: North-Holland (forthcoming).

Gerlach, Stefan and Frank Smets (1997) “The term structure of euro-rates: some evidence
in support of the expectations hypothesis.” Journal of International Money and Finance 16,
305–321.

Geweke, John (1996) “Monte Carlo simulation and numerical integration.” In: H.M. Amman,
D.A. Kendrick and J. Rust, eds. Handbook of Computational Economics 13. North-Holland,
Amsterdam: Elsevier Science.

Ghysels, Eric and Serena Ng (1998) “A semi-parametric factor model of interest rates and tests
of the affine term structure.” Review of Economics and Statistics 80, 535–548.

Gibbons, Michael R. and Krishna Ramaswamy (1993) “A test of the Cox, Ingersoll and Ross
model of the term structure.” Review of Financial Studies 6, 619–658.

Goldstein, Robert (2000) “The term structure of interest rates as a random field.” Review of
Financial Studies 13, 365–384.

Gong, Frank F. and Eli M. Remolona (1996) “A three-factor econometric model of the U.S.
term structure.” Working Paper, Federal Reserve Bank of NewYork.

Gouriéroux, Christian, Alain Monfort, and Vassilis Polimenis (2002) “Affine term structure
models.” Working Paper, CREST, Paris.

Gouriéroux, Christian and R. Sufana (2004) “A classification of two factor affine diffusion term
structure models.” Technical report, University of Toronto.

Grinblatt, Mark and Francis Longstaff (2000) “Financial innovation and the role of derivative
securities: An empirical analysis of the treasury STRIPS program.” Journal of Finance 55,
1415–1436.

Hamilton, James D. (1996) “The daily market for federal funds.” Journal of Political Economy 104,
26–56.

Hamilton, James D. (1994) “Time Series Analysis.” Princeton, New Jersey: Princeton University
Press.

Hamilton, James D. and Dong Kim (2002) “A re-examination of the predictability of the yield
spread for real economic activity.” Journal of Money, Credit, and Banking 34, 340–360.

Hansen, Lars Peter (1982) “Large sample properties of generalized method of moments
estimators.” Econometrica 50, 1029–1054.

Hansen, Lars Peter and Thomas J. Sargent (1991) “Exact linear rational expectations mod-
els: Specification and estimation.” Rational Expectations Econometrics. Oxford: Westview
Press.

Hardouvelis, Gikas (1994) “The term structure spread and future changes in long and short rates
in the G7 countries: Is there a puzzle?” Journal of Monetary Economics 33, 255–283.

Harvey, Campbell R. (1988) “The real term structure and consumption growth.” Journal of
Financial Economics 22, 305–333.

He, Hua (2001) “Modeling term structures of swap spreads.” Working Paper, Yale School of
Management.

Heston,Steven L. (1991)“Testing continuous time models of the term structure of interest rates.”
Working Paper, Yale University.



764 Monika Piazzesi

Honoré, Peter (1998) “Maximum likelihood estimation of non-linear continuous-time term-
structure models.” Working Paper,Aarhus School of Business, Denmark.

Hull,John (2000)“Options,Futures,and Other Derivatives,”fourth ed. Englewood Cliffs,NJ:Prentice
Hall.

Jagannathan, Ravi, Andrew Kaplin, and Steve Guoqiang Sun (2001) “An evaluation of multi-
factor CIR models using LIBOR, swap rates, and cap and swaption prices.” NBER Working
Paper 8682.

Jegadeesh, Narasimhan and George G. Pennacchi (1996) “The behavior of interest rates implied
by the term structure of Eurodollar futures.” Journal of Money, Credit and Banking 28, 420–446.

Jensen,Bjarke and Rolf Poulsen (1999)“A comparison of approximation techniques for transition
densities of diffusion processes.” Working Paper,Aarhus University.

Johannes, Michael (2004) “The economic and statistical role of jumps to interest rates” Journal of
Finance 59, 227–260.

Jones,Charles M.,Owen Lamont,and Robin Lumsdaine (1996)“Macroeconomic news and bond
market volatility.” Journal of Financial Economics 47, 315–337.

Jordan, Bradford D., Randy. D. Jorgensen, and David R. Kuipers (2000) “The relative pricing of
U.S. Treasury STRIPS: Empirical evidence.” Journal of Financial Economics 56, 89–123.

Karatzas, Ioannis and Steven E. Shreve (1988) “Brownian Motion and Stochastic Calculus.”
Heidelberg: SpringerVerlag.

Kimmel,Robert (2001)“Modeling the term structure of interest rates: A new approach.”Working
Paper, Princeton University.

Knez,Peter,Robert Litterman, and José Scheinkman (1994)“Explorations into factors explaining
money market returns.” Journal of Finance 49, 1861–1882.

Landen, Camilla (2000) “Bond pricing in a hidden Markov model of the short rate.” Finance and
Stochastics 4, 371–389.

Langetieg,Terence C. (1980) “A multivariate model of the term structure.” Journal of Finance 25,
71–97.

Li, Li and Robert F. Engle (1998) “Macroeconomic announcements and volatility of treasury
futures.” Working Paper No. 98-27, UC San Diego.

Litterman,Robert and José Scheinkman (1991)“Common factors affecting bond returns.” Journal
of Fixed Income 1, 54–61.

Liu, Jun, Francis Longstaff, and Ravit Mandell (2002) “The market price of credit risk: An
empirical analysis of interest rate swap spreads.” Working Paper, UCLA.

Lo, Andrew W. (1988) “Maximum likelihood estimation of generalized Ito processes with
discretely-sampled data.” EconometricTheory 4, 231–247.

Longstaff, Francis (1992) “Multiple equilibria and term structure models.” Journal of Financial
Economics 32, 333–344.

Longstaff, Francis (2000a). “Arbitrage and the expectations hypothesis.” Journal of Finance 55,
989–994.

Longstaff, Francis (2000b). “The term stucture of very short term rates: New evidence for the
expectations hypothesis.” Journal of Financial Economics 58, 397–396.

Longstaff, Francis, Pedro Santa-Clara, and Eduardo Schwartz (2001) “The relative valuation of
caps and swaptions:Theory and empirical evidence.” Journal of Finance 56, 2067–2109.



Affine Term Structure Models 765

Longstaff, Francis and Eduardo Schwartz (1992) “Interest rate volatility and the term structure:
A two-factor general equilibrium model.” Journal of Finance 47, 1259–1282.

Longstaff, Francis and Monika Piazzesi (2004) “Corporate earnings and the equity premium.”
Journal of Financial Economics 74, 401–421.

Mamaysky,Harry (2002) “A model for pricing stock and bonds.” Working Paper,Yale University.
Mankiw, Gregory N. and Jeffrey A. Miron (1986) “The changing behavior of the term structure

of interest rates.” Quarterly Journal of Economics CI(2), 211–228.
Mardia, Kani V., John T. Kent, and John M. Bibby (1979) “Multivariate Analysis.” San Diego:

Academic Press.
McCulloch, J. Huston and Heon-Chul Kwon (1993) “U.S. Term structure data, 1947–1991.”

Working Paper, Ohio State University.
Mishkin, Frederik S. (1990) “What does the term structure tell us about future inflation?” Journal

of Monetary Economics 25, 77–95.
Missale,Alessandro (1997) “Managing the public debt:The optimal taxation approach.” Journal of

Economic Surveys 11, 235–265.
Naik, Vasant and Moon Hoe Lee (1997) “Yield curve dynamics with discrete shifts in eco-

nomic regimes: Theory and Estimation.” Working Paper, University of British Columbia,
Canada.

Nelson,Charles R. andAndrew F. Siegel (1987)“Parsimonious modelling of yield curves.” Journal
of Business 60, 473–489.

Pearson, Neil D. and Tong-Sheng Sun (1994) “Exploiting the conditional density in estimating
the term structure: An application to the Cox, Ingersoll and Ross model.” Journal of Finance
49, 1279–1304.

Pedersen,Asger Roer (1995) “A new approach to maximum likelihood estimation for stochastic
differential equations based on discrete observations.”Scandinavian Journal of Statistics 22,55–71.

Pennacchi,George G. (1991)“Identifying the dynamics of real interest rates and inflation:Evidence
using survey data.” Review of Financial Studies 4, 53–86.

Piazzesi, Monika (2005) “Bond yields and the Federal Reserve.” Journal of Political Economy 113,
311–344.

Piazzesi, Monika (2001) “An econometric model of the yield curve with macroeconomic jump
effects.” NBERWorking Paper 8246.

Rebelo, Sergio and Danyang Xie (1999) “On the optimality of interest-rate smoothing.” Journal
of Monetary Economics 43, 263–282.

Santa-Clara, Pedro (1995) “Simulated likelihood estimation of diffusions with an application to
the short term interest rate.” Ph.D. Dissertation, Insead, France.

Santa-Clara, Pedro and Didier Sornette (2001) “The dynamics of the forward interest rate curve
with stochastic string shocks.” Review of Financial Studies 14, 149–185.

Sargent,Thomas J. (1979)“A note on maximum likelihood estimation of the rational expectations
model of the term structure.” Journal of Monetary Economics 5, 133–143.

Sims, Christopher (1999) “Drifts and breaks in monetary policy.” Working Paper, Princeton
University.

Sims, Christopher and Tao Zha (2002) “Macroeconomic switching.” Working Paper, Princeton
University.



766 Monika Piazzesi

Stanton, Richard (1997) “A nonparametric model of term structure dynamics and the market
price of interest rate risk.” Journal of Finance 52, 1973–2002.

Singleton, Kenneth (2001) “Estimation of affine asset pricing models using the empirical
characteristic function.” Journal of Econometrics 102, 111–141.

Stock, James and MarkWatson (2003) “Forecasting output and inflation:The role of asset prices.”
Journal of Economic Literature 16, 788–829.

Sun, Tong-Sheng (1992) “Real and nominal interest rates: A discrete-time model and its
continuous time limit.” Review of Financial Studies 5, 581–611.

Telmer Chris and Stan E. Zin (1996) “The yield curve:The terms of endearment or terms of
endowment.” Working Paper, Carnegie-Mellon University.

Wachter, Jessica (2006) “A consumption-based model of the term structure of interest rates.”
Journal of Financial Economics 79, 365–399.

Watson, Mark (1999) “Explaining the increased variability in long term interest rates.” Working
Paper, Princeton University.

Wu,Tao (2006) “Macro factors and the affine term structure of interest rates.” Journal of Money,
Credit, and Banking 38(7), 1847–1875.

Vasicek, Oldrich A. (1977) “An equilibrium characterization of the term structure.” Journal of
Financial Economics 5, 177–188.

Veronesi, Pietro and FrancisYared (2000) “Short and long horizon term and inflation risk premia
in the U.S. term structure: Evidence from an integrated model for nominal and real bond
prices under regime shifts.” Working Paper, Chicago GSB.



INDEX

Note: The “(1)” or “(2)” indicates volume number.

A

Absolute risk aversion, 540 (1), 542 (1)
ACDmodel. See Autoregressive

conditional duration model
ACMmodel. See Autoregressive

conditional multinomial model
Additive errors, 215 (2), 228–229 (2)

neglecting the errors, 229–230 (2)
taking care of errors, 230–232 (2)

Affine bond pricing
with LEH, 708 (1)
without LEH, 709 (1)

Affine diffusions, 703–707 (1),
745–746 (1)

mean, 707 (1)
with nonlinear data-generating

process, 746 (1)
variance, 707 (1)

Affine general equilibriummodels,
718–722 (1)

Affine jump-diffusion (AJD) models,
497 (1), 709–716 (1)

calendar time, 712–714 (1)
risk adjustment with, 714–716 (1)

Affine models, 150–151 (1),
703–718 (1), 722–725 (1)

advantage of, 693 (1)
empirical evidence on
conditional first moments,
742–747 (1)

conditional second moments,
749–751 (1)

cross-sectional performance,
739–740 (1)

data issues, 732–736 (1)
fitting errors at short end,
753–754 (1)

higher-order moments,
751–753 (1)

level, slope, and curvature,
736–739 (1)

seasonalities, 753 (1)
unconditional first moments,
740–741 (1)

unconditional second moments,
747–748 (1)

estimation methods, 725–732 (1)
identification, 731–732 (1)

likelihood-based methods,
727–731 (1)

matching moments, 731 (1)
stochastic singularity,726–727(1)

expected returns, 717–718 (1)
labels based on
fundamentals, 725 (1)
moments of short rate,
723–725 (1)

negative short rates and jump
intensities, 716–717 (1)

tractability of, 693 (1)
Affine short rate, 703 (1)
Affine term structure models (ATSM),

462–463 (1)
regime-switching, 463–464 (1)

Aggregate demand, 694 (1)
Aggregate income statistics,

367–368 (1)
Aggregate wealth, 626–632 (1)
AJD models. See Affine jump-diffusion

models
Aliasing problem, 140 (1)
American option, 172 (2), 183 (2)
Arbitrage-free pricing models, 484 (1)
ARCH. See Autoregressive conditional

heteroscedasticity
ARMAmodel. See Autoregressive

moving average model
Asset markets, volume and

equilibriummodels of, 248 (2)
Asset price dynamics

modeling via diffusion
AJD models, 497 (1)
Lévy processes, 502–504 (1)
long-memory continuous-time
model, 504–508 (1)

multiple volatility factors,
500–501 (1)

nonaffine index models,
501–502 (1)

single volatility factor,
497–500 (1)

time deformation, 502–504 (1)
Asset pricing models, 242 (2), 318 (1),

673 (1)
applications, 31 (2)
Black–Scholes formula, 33–36 (2)

equity, 32–53 (2)
geometric Brownian motion,
32–33 (2)

Merton’s model, 36–40 (2)
time-varying equity premium,
40–45 (2)

Bayesian inference and, 24–31 (2)
empirical, 513 (1), 515 (1)
regime switching models, 63–65

(2)
term structure models, 54–62 (2)

Asymmetric information
microstructure theory, 414 (1)

Asymptotic distribution theory,
108 (1)

Asymptotic mixed normality of
realized power variation,
121–122 (1)

Asymptotic probability distribution,
517 (1)

Asymptotic statistical theory, 214 (2)
ATSM. See Affine term structure

models
Autocorrelation function

for durations, 389 (1)
for log of volume, 390 (1)
for mid quote and transaction

price changes, 388 (1)
for squared midquote price

changes, 389 (1)
Autoregressive conditional duration

(ACD) model, 398–405 (1)
application of, 400 (1)
baseline intensity, 399 (1)
diagnostics, 402–403 (1)
for duration residuals, 404 (1)
example, 404–405 (1)
intensity function, 399 (1)
nonlinear, 399 (1)
semiparametric, 402 (1)

Autoregressive conditional
heteroscedasticity (ARCH)
models, 96–99 (1), 451 (1),
463 (1)

filters, 84 (1), 103–109 (1)
consistency of, 105 (1), 106 (1),
106n (1)

smoothers, 84 (1), 108–109 (1)
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Autoregressive conditional
multinomial (ACM) model,
416 (1)

Autoregressive moving average
(ARMA) model, 97 (1)

B

Backfitting estimator, 516 (1), 517 (1)
Background risk, 365 (1)

calibrated models with,
360–365 (1)

evidence on, 368–374 (1)
business ownership, 369 (1)
employer stock, 369–372 (1)
housing, 373–374 (1)
labor income, 368 (1)
pension investments,
372–373 (1)

uninsurable, 352–354 (1)
Back-testing procedures, 556 (1)
Basle Committee, 554 (1), 573 (1)
Bayesian estimation, 295 (1)
Bayesian inference, 1 (2)

advantage of, 6 (2)
and asset pricingmodels, 24–31 (2)
and MCMC, 5–8 (2)

Bayesian probability, 143 (2)
Bayes information criterion (BIC),

436 (1)
Bayes rule, 490 (1)
Bayes’ theorem, 309 (1)
Bellman equation, 276 (1)

continuous time, 281 (1)
for CRRA utility, 277 (1)

Berkeley options data, 391 (1)
Bessel process, 150 (1)
β-mixing coefficients, 29 (1)
Beta pricing model, 111 (2)

evaluating
using beta representation,
114–117 (2)

using SDF representation,
117–121 (2)

BFGS algorithm, 466 (1), 467 (1)
Black–Litterman model, 315–317 (1)
Black–Scholes

model, 229 (1), 555 (1), 555n (1)
option pricing formula, 33–36 (2),

86 (1)
Black–Scholes–Barenblatt equation,

147 (2)

Black–Scholes-implied volatility,
83n (1)

as calibrated parameter,
491–492 (1)

as expected average volatility,
492–494 (1)

Bond markets, 695 (1), 725 (1)
Bond pricing

advantage of, 698 (1)
in continuous time, 696–698 (1)

Bond yields, 694–695 (1), 698 (1),
713 (1), 754 (1)

aspects of, 692 (1)
functional form of, 693 (1)

Book-market ratios, 633 (1)
Book-to-price ratios, 80 (2)
Borrowing rates, 110–111 (2)
Brownian motion, 8 (1), 12 (1), 88 (1),

147 (1), 154 (1), 155 (1), 187 (1),
188 (1)

with drift, 150 (1)
geometric, 150 (1)

Burr distribution, 399 (1)
Business income, 361 (1)
Business ownership, 369 (1)

C

Càdlàg semimartingales, 177 (1),
178 (1)

Calendar price, 418 (1)
Calendar time conversion, 417–421 (1)

bivariate relationships, 419–421 (1)
Calibrated models with background

risk, 360–365 (1)
Call pricing function, 525 (1), 539 (1)
Canonical valuation, 527–528 (1)
Capital asset pricing model (CAPM),

248 (2), 285 (2), 321 (2), 717 (1)
CAPM. See Capital asset pricing

model
Cauchy problem, 700 (1)
Center for Research in Security Prices

(CRSP), 243 (2), 321 (2)
dividend-price ratio, 684 (1)
value-weighted index, 633 (1),

635 (1), 648 (1), 662 (1), 672 (1)
conditional volatility for, 667 (1),
668 (1)

correlation matrix for weekly
returns, 322–323 (2), 329 (2)

and equal-weighted portfolios,
lagged returns on, 328 (2)

Sharpe ratio on, 672 (1), 676 (1)
Central limit theorem (CLT), 38 (1),

83 (2), 85 (2), 100 (2)
CEV model. See Constant elasticity of

variance model
Chapman–Kolmogorov equation, 4

(1), 52 (1)
Chernozukov–Hong method, 434 (1),

469–472 (1)
Chi-square criterion, 535 (1)
CIR models. See Cox–Ingersoll–Ross

models
CKLS model, 252 (1)

parameter estimates in, 252 (1),
253 (1)

Classical method of moments (CMM),
447 (1), 448 (1)

Clifford–Hammersley theorem, 5 (2),
9–10 (2), 32 (2), 46 (2)

Coherent risk measures, 140 (2),
603–605 (1)

Commercial paper spread, 684 (1)
Complete markets, portfolio choice

problems in, 288–289 (1)
Conditional expectation operator,

4–5 (1)
Conditional intensity function, 397 (1),

398 (1)
Conditional linear beta pricing model,

122–128 (2)
Conditionally heteroskedastic

autoregressive models,
575–577 (1)

Conditional mean excess stock
returns, 622–655 (1)

and conditional volatility,
relationship between, 656 (1)

linking macroeconomy to,
625–626 (1)

Conditional Monte Carlo technique,
493 (1)

Conditional portfolio choice,
322–325 (1)

Conditional Sharpe ratio,
672–681 (1)

Conditional VaR, 563 (1), 575–584 (1)
autoregressive, 582–583 (1)
estimation, 575–584 (1)
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conditionally heteroskedastic
autoregressive models,
575–577 (1)

full information, 579 (1)
information on portfolio value,
577–579 (1)

miscellaneous, 582–584 (1)
nonparametric methods,
580–582 (1)

Conditional variance, 415 (1)
Confidence/credible approach,

186 (2), 187 (2)
Conservative ask price, 144 (2), 164 (2)
Conservative bid price, 144 (2)
Consistent prediction approach,

186 (2)
Constant absolute risk aversion

(CARA), 285 (1), 605 (1)
Constant elasticity of variance (CEV)

model, 86 (1)
Constant relative risk aversion (CRRA),

276 (1), 283 (1), 285 (1), 350 (1)
Bellman equation for, 277 (1)

Consumption, 626–632 (1), 682 (1)
Consumption-based asset pricing

models, 540 (1), 674 (1)
Consumption-volatility model, Sharpe

ratio for, 674 (1), 675 (1),
676 (1), 677 (1)

Consumption-wealth ratio, 630n (1),
633 (1), 635 (1)

Continuous-time
asset pricing models, 2 (2), 4 (2),

9 (2), 54 (2)
formulation, 280–284 (1)
advantage of, 280 (1)
objective function in, 281 (1)
portfolio policies in discrete time,
283 (1)

Markov chain, 24 (2)
Markov processes, 3–11 (1),

141 (1), 142 (1)
infinitesimal conditional
moment, estimating, 144 (1)

intuition and conditions,
143–147 (1)

models, 78 (1), 79 (1), 85 (1)
GARCH, 80–82 (1), 111–112 (1)
randomwalk, 104 (1)
sample path diffusions, 85–90 (1)
volatility, 83 (1)

Convergence theory, 14 (2)
Markov chain, 15 (2)
MCMC algorithms, 15–19 (2)

Cost of exposure, 413 (1)
dynamics of, 414 (1)

Coupon bonds, 694 (1)
Covariance matrix

of asymptotic distribution, 254 (1)
conditional, 230 (1)
of factor excess returns, 97 (2)

Cox–Ingersoll–Ross (CIR) models,
61–62 (2), 722 (1), 747 (1),
748 (1)

generalized, 252 (1)
Credit migration approach, 596 (1)
Credit risk, 555 (1), 589–603 (1)
Cross-equation restrictions,

695–696 (1)
advantages of, 695 (1)

Cross-sectional differences, in
turnover, 267–283 (2)

regression, 272–275 (2)
results, 280–283 (2)
summary statistics for,
275–280 (2)

Cross-sectional portfolio choice,
318–319 (1)

Cross-sectional regression (CSR)
estimator
asymptotic distribution of,
100 (2)

consistency and asymptotic
normality of, 83–85 (2),
92–93 (2)

method, 80–82 (2)
N-consistency of, 101–108 (2)
probability limit of, 96 (2)

tests, 324–326 (2)
for linear factor models, 324–326
(2), 330–334 (2)

CRRA. See Constant relative risk
aversion

CRSP. See Center for Research in
Security Prices

CSR. See Cross-sectional regression
Curseof dimensionality, 192 (1), 193 (1)

D

Data characteristics
discreteness, 385–386 (1)
diurnal patterns, 386–387 (1)

irregular temporal spacing,
384–385 (1)

temporal dependence,
387–390 (1)

Data generating process, 277n (1),
278 (1)

Data mining, 653 (1), 654 (1)
Debt policy, 694 (1)
Decision theory, 307–321 (1)

incorporating economic views and
models, 313–319 (1)

model uncertainty, 319–321 (1)
parameter uncertainty,

308–312 (1)
informative priors, 311–312 (1)
uninformative priors, 309–311 (1)

Decoupled prediction approach,
164 (2), 186 (2)

advantages of, 187 (2)
Default rates

assessment, 592 (1)
recovering
from equity prices, 594 (1)
from individual credit histories,
594–595 (1)

frommarket prices of bonds,
592–593 (1)

Default spreads, 632 (1), 684 (1)
Defined benefit (DB) plans, 341 (1)
Defined contribution (DC), 341 (1)
Delta–Gammamethod, 587–588 (1)
Delta method, 587 (1)
Derivative pricing, semiparametric

approaches to, 525–526 (1)
Diffusion, 141 (1)

jump. See Jump diffusions
models
for interest rates, 251–254 (1)
martingale estimating functions
for, 217–220 (1)

one-dimensional, 213 (1)
optimal estimating functions for,
239–262 (1)

process, 199–206 (2)
basic setting, 200–202 (2)
on domain, examples,
202–204 (2)

estimating functions for,
212–239 (1)

infinitesimal generator, 202 (2)
jump, 90–92 (1)
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Diffusion (continued)
likelihood ratio, 204–206 (2)
Markov property, 202 (2)

of SDP, 156 (1), 163 (1)
for stochastic volatility, 174 (1)

of SJDP for stochastic volatility,
183 (1)

statistics of, 210–216 (2)
discrete observations,
214–215 (2)

observation over a whole
interval, 211–214 (2)

observations with errors,
215–216 (2)

stochastic volatility, 89 (1)
Diffusion coefficients, 18–20 (1)

estimating, 57–58 (1)
nonparametric methods for,

18–20 (1)
Diffusion invariance principle, 702 (1)
Discrete data, 385–386 (1)
Discrete observations, 214–215 (2)

approximating the likelihood,
224–225 (2)

with constant stepsize, 214 (2),
223–227 (2)

contrast functions, 225–227 (2)
with decreasing stepsize, 214 (2),

216–223 (2)
estimating functions, 225–227 (2)
on fixed interval, 216–219 (2)
on increasing interval, 219–223 (2)

Discrete price models, 412–417 (1)
Discrete time formulation, 274–280 (1)
Discrete-time Markov processes,

17 (1), 56 (1)
Discrete-time nonstationary time

series, hazard function for,
155 (1)

Discrete-time parametric models,
83 (1), 92–103 (1)

Discretization error, 220 (1), 221 (1)
Diurnal patterns, 386–387 (1)
Dividend-payout ratio, 632 (1)
Dividend-price ratio, 632 (1), 635 (1),

637 (1), 641 (1), 642 (1), 652 (1)
CRSP, 684 (1)

Dollar turnover, 247n (2)
Dominated convergence theorem,

37 (1)

Doob–Meyer decomposition, 157 (2),
158 (2)

Drift, 141 (1)
Brownian motion with, 150 (1)
of SDP, 156 (1), 161 (1)
for stochastic volatility, 174 (1)

of SJDP for stochastic volatility,
183 (1)

Drift coefficients, nonparametric
methods for inferring, 18–20 (1)

Dynamic asset pricing theory, 2 (2)
Dynamic dividend growth model,

623 (1)
Dynamic portfolio choice problem,

275–276 (1)
Dynamic quantile models, 583 (1)

E

Economic data, types of, 392 (1)
Economic loss, 296–297 (1)
Effective log-stock prices, 504 (1)
Efficient method of moments (EMM),

437 (1), 519 (1), 520 (1)
applications of, 459–466 (1)
efficiency comparisons,

443–448 (1)
estimation step of, 430 (1), 433 (1)
general theory of reprojection,

455–459 (1)
projection step of, 430 (1), 433 (1),

439–443 (1)
reprojection step of, 430 (1),

433 (1), 453–459 (1)
score generator for, 439 (1), 441 (1)
software and practical issues
bulletproofing the data
generating process,
468–469 (1)

Chernozukov–Hong method,
469–472 (1)

code, 466–467 (1)
enforcing dynamic stability,
468 (1)

start value problems and scaling,
467–468 (1)

Efficient price, defined, 412 (1)
EGARCHmodel. See Exponential

GARCHmodel
EH. See Expectations hypothesis
Eigenfunctions, 223 (1), 244 (1), 245 (1)

for generator of diffusion, 224 (1)

EIV problem. See Errors-in-variables
problem

EMM. See Efficient method of
moments

Empirical α-quantile interval, 566 (1)
Empirical asset pricing, 3 (2)

model, 515 (1)
using macroeconomic data,

647–648 (1)
Empirical mean of parameter

estimates, 231 (1)
Empirical pricing kernels, 542 (1)
Employee Benefit Research Institute

(EBRI), 371 (1)
Employee stock ownership plan

(ESOP), 350 (1), 355 (1),
355n (1)

Employer stock, 369–372 (1)
Equal-weighted turnover, 251 (2),

253 (2)
Equity asset pricing models,

32–53 (2)
Equity risk premium, 619 (1)
Equivalent martingale measure,

484–486 (1), 489 (1)
Errors-in-variables (EIV) problem,

75 (2), 76 (2)
Estimating functions

advantage of, 203 (1), 205 (1)
constructing by simulation,

220–222 (1)
for diffusion process, 212–239 (1)
limit, 213–215 (1)
maximum likelihood estimation,
215–217 (1)

non-Markovian models,
231–239 (1)

stochastic volatility model,
231–239 (1)

unbiased, 207 (1)
disadvantage of, 206 (1)
examples of, 205–206 (1)
explicit, 222–229 (1)
Heyde-optimal, 209 (1), 210 (1)
jump diffusion, 229–231 (1)
martingale, 208–212 (1)
simulations using, 262 (1)

Estimation risk, 555 (1), 560 (1)
European options, 147 (2), 169 (2),

171–172 (2)
call option, 170 (2), 485 (1)
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Black–Scholes–Merton price for,
177 (2)

interpolating, 177–182 (2)
case of two intervals and

zero-coupon bond,
172–174 (2)

comparative prediction sets for,
150 (2)

interpolating, 176–177 (2)
EVT. See Extreme value theory
Excess returns, 683 (1)

conditional mean of, 622–655 (1)
forecasting power for quarterly,

635 (1)
predictability of, 743–745 (1)
evidence on, 622–625 (1)

predictor variables for,
632–633 (1)

Excess volatility, 623 (1)
Exchange rates, 464–465 (1)
Exit strategies, 136–140 (2),

145–146 (2)
Expectations hypothesis (EH), 694 (1),

743 (1)
Expected average volatility,

Black–Scholes-implied
volatility as, 492–494 (1)

Expected notional volatility, 76–77 (1),
91 (1)

ex-ante, 77 (1)
ex-post, 77 (1)
unbiasedness condition in, 226 (1)

Expected returns, 625 (1), 626–632 (1),
673 (1), 717 (1), 717–718 (1),
745 (1), 757 (1)

versus average realized returns,
644 (1)

Expected volatility, 77–79 (1), 87 (1),
91 (1)

decomposition of, 94 (1)
Explicit estimating functions,

222–229 (1)
Exponential expansion, 36–37 (1)
Exponential GARCH (EGARCH) model,

97 (1), 442 (1), 460 (1), 668 (1),
677 (1)

for consumption growth, 679 (1)
sequence of, 107 (1), 108 (1)

Extended method of moments (XMM)
estimator, 532–536 (1)

of derivative price, 535 (1)

Extreme risks, 605 (1), 606 (1)
Extreme value theory (EVT),

607–609 (1)

F

Factor pricing models, security
characteristics to test, 90–91 (2)

Factor risk premia, 117 (2)
conditional linear models with,

122–128 (2)
Fama–MacBeth regression, 79 (2)
Fama–MacBeth variance estimator,

82 (2), 85–87 (2)
construction of, 86 (2)
probability limit of, 89 (2)

Feedforward network, single
hidden-layer, 536 (1)

Feller semigroup, 5 (1)
Feynman–Kac approach, 698 (1),

700 (1)
Filtered volatility, 456 (1)
Financial assets, shares of, 346 (1),

348 (1)
Finite sample approximation, 116 (1)
Firm characteristics, 90 (2)
First-order conditions (FOCs), 271 (1)
First-order Markov process with

transition density, 275 (1)
First-order serial correlation, 413 (1)
Forecasting stock market returns

conceptual issues with,
644–651 (1)

cointegration, 645–647 (1)
expected versus average realized
returns, 644 (1)

“look ahead bias,” 648–650 (1)
structural change, 650–651 (1)
using macroeconomic variables,
647–648 (1)

empirical evidence on, 633–637 (1)
long-horizon regressions of,

635 (1), 636 (1)
quarterly, 634 (1), 635 (1)
statistical issues with, 638–644 (1)
interpreting long-horizon
forecasts, 643–644 (1)

overlapping data, 638–641 (1)
persistent, predetermined
regressors, 641–643 (1)

Forecasting stock market volatility,
663–668 (1)

levels, 664 (1), 665 (1)
logs, 665 (1), 666 (1)

Forward-filtering backward sampling
(FFBS) algorithm, 42 (2)

Frictionless markets, 358 (1)
Frictions and background risks,

290–291 (1)
Full information maximum likelihood

(FIML), 59 (1)
Fundamental theorem of asset

pricing, 488 (1)
(K + 1)-fund separation, 288–290 (2)

empirical tests of, 290–294 (2)

G

Gallant, Rossi, and Tauchen (GRT)
detrending, 261 (2)

GARCH. See Generalized
autoregressive conditional
heteroskedasticity

Gaussian processes, 704 (1)
Gaussian time series model, 117 (1)
Gaussian VaR, 559 (1)
GCIR model. See Generalized

Cox-Ingersoll-Ross model
General equilibriummodels, 465 (1)
Generalized autoregressive

conditional heteroskedasticity
(GARCH) model, 99 (1), 411 (1),
431 (1), 442 (1), 451 (1), 668 (1),
677 (1)

continuous-time, 80–82 (1)
drawback to, 99 (1)
filter, 107 (1)
weak, 99 (1), 412 (1)

Generalized Black–Scholes option
pricing formula, 494–496 (1)

Generalized Cox-Ingersoll-Ross (GCIR)
model, 252 (1), 261 (1)

parameter estimates in, 252 (1),
253 (1)

Generalized method of moments
(GMM) estimation, 16 (1), 95
(1), 111–128 (2), 207 (1), 428 (1),
432 (1), 471 (1)

asymptotic distribution of, 113 (2)
comparison of testable

hypotheses, 128 (2)
disadvantage of, 112 (2)
implied-state, 520–522 (1), 523 (1)
overview of, 112–113 (2)
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Generalized method of moments
(GMM) estimation (continued)

pricing error, 115 (2)
risk premium, 115 (2), 117 (2)

General k-factor model, 90 (1)
Geometric Brownian motion,

32–33 (2)
Gibbs sampling, 10 (2)
GJR–GARCHmodel, 97 (1)
Global optimality criterion, 255 (1)
GMM. See Generalized method of

moments
Goodness of fit criterion, 529 (1)
Granger representation theorem

(GRT), 645 (1)
Griddy Gibbs sampler, 11 (2)
Guaranteed investment contracts

(GICs), 372 (1)

H

Harris recurrence, null and positive,
146–147 (1)

Hazard function, 397 (1)
Hedging demands, 277 (1), 280 (1)
Hedging-portfolios, 282 (1)

cross-sectional implications for,
300–302 (2)

empirical construction of,
302–312 (2)

returns, 314 (2), 328 (2)
dollar, 313 (2), 314 (2), 328 (2)
forecast of, 318–320 (2)
as predictor of market returns,
317–320 (2)

as risk factor, 320–327 (2)
SMB factor, 321 (2)

time-series implications for, 300 (2)
Hedging strategy, 174–175 (2)

approaches for, 186 (2)
Hermite expansions, 36–45 (1)

coefficients of, 39–40 (1)
likelihood-based methods,

730–731 (1)
of transition function, 37–40 (1)

Heston’s square-root volatility model,
50–52 (2)

Heteroskedasticity and
autocorrelation consistent
(HAC) estimators, 86 (2), 119n
(1), 434 (1), 436 (1), 470 (1)

Heyde-optimal estimating functions,
209 (1), 210 (1)

High-frequency data
Berkeley options data, 391 (1)
characteristics
discreteness, 385–386 (1)
diurnal patterns, 386–387 (1)
irregular temporal spacing,
384–385 (1)

temporal dependence,
387–390 (1)

defined, 390 (1)
discrete data, 385–386 (1)
economic data, types of, 392 (1)
Paris Bourse data, 391–392 (1)
TAQ data set, 391 (1)
TORQ data set, 392 (1)

Hill estimator, 571–572 (1)
Hille-Yosida theorem, 5 (1)
Homogeneous Poisson process, 397 (1)
Homoskedastic residuals, conditional,

87–90 (2)
Households, 343 (1)

business ownership for, 369 (1)
Housing, 362 (1), 373–374 (1)
Hyperbolic absolute risk aversion

(HARA), 285 (1)

I

ICAPM. See Intertemporal CAPM
IGARCHmodel. See Integrated GARCH

model
i.i.d. stock returns, 79 (2), 89 (2)
Implied binomial trees, 528–529 (1),

531 (1)
Implied generators, quadratic forms

and, 21–24 (1)
Implied risk-neutral probabilities,

510–524 (1)
GMM, 520–522 (1), 523 (1)
maximum likelihood-based

inference, 514–520 (1)
option pricing errors model,

511–514 (1)
Implied-state backfitting

methodology, 516 (1), 521 (1)
Implied volatilities, 83 (1)

Black-Scholes, 83n (1)
curves, 509 (1)

Impulse response functions, 408 (1)
cumulative, 408 (1), 409 (1)

Independence Metropolis–Hastings
algorithm, 13 (2), 18 (2)

Indexes, turnover, 243 (2)
Indicator kernel, 144 (1)

discontinuous, 194 (1)
multivariate, 189 (1)

Indirect inference estimation, 429 (1),
431 (1), 433–435 (1)

Bayesian variant of, 435 (1)
Wald variant of, 433 (1)

Inference problem, 2 (2)
Infinite activity jumpmodels,

examples of, 504 (1)
Infinite horizon problem, 289–290 (1)
Infinitesimal generator, 2 (1), 5–7 (1),

202 (2)
Infinitesimal moments, NW kernel

estimation of
MDP, 190–194 (1)
SDP, 156–162 (1)
SJDP, 179–182 (1)

Inflation, 756–757 (1)
Informative priors, 311–312 (1)
Infrequent extreme risks

dynamics, 606 (1)
and utility functions, 605 (1)

Instantaneous volatility, 79 (1)
Instruments weights, 217 (1)
Integral bounds, 148–150 (2)

trading with, 151–152 (2)
Integrated GARCH (IGARCH) model,

98 (1)
Integrated volatility, 80 (1), 505 (1)
Interest rates, 590 (1)

and market structure, 168–170 (2)
Ornstein-Uhlenbeck model,

170–171 (2)
simple diffusion models for,

251–254 (1)
Intertemporal CAPM (ICAPM), 248 (2),

285 (2)
behavior of returns and volume,

298–302 (2)
cross-section of volume,

299–300 (2)
economy, 295–296 (2)
equilibrium, 296–298 (2)
for factor selection, 78 (2)
volume implications of, 294 (2)

Intertemporal expected utility
maximization, 274 (1)
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continuous-time formulation,
280–284 (1)

discrete time formulation,
274–280 (1)

Investment Company Institute (ICI),
341 (1)

J

Jobson–Korkie experiment,
297–301 (1)

Jump components, 46 (1)
Jump diffusions, 24 (2), 39 (2), 60 (2),

229–231 (1), 460–461 (1)
model, 36–40 (2), 494 (1)
parameter estimates for, 39 (2)

process, 90–92 (1), 229–231 (1)

K

Kalman filter, 43 (2), 101 (1)
based quasi-maximum likelihood,

517 (1)
Kernel estimation, 119n (1)

NW. See Nadaraya–Watson (NW)
kernel estimation

for SDPs
double-smoothing, 164–166 (1)
finite sample refinements,
168–170 (1)

local linear and polynomial
estimation, 166–168 (1)

Kernel function, 147 (1), 157 (1),
328 (1)

Kernel regression, 328 (1), 329 (1)
Kullback–Leibler information criterion

(KLIC), 535 (1)
Kurtosis coefficient, 508 (1)
Kurtosis effects, 526 (1)

L

Labor income, 360–361 (1), 368 (1),
626–632 (1), 683 (1)

Lagrange multiplier variant, 433 (1)
LAMN. See Local asymptotic mixed

normality
LAN. See Local asymptotic normality
Large-scale portfolio choice,

325–327 (1)
Law of large numbers, 81 (2), 83 (2),

85 (2), 86 (2), 94 (2)
Lebesgue measure, 8 (1), 152 (1),

178 (1), 213 (1)

Left integrable risk aversion (LIRA),
605 (1)

LEH. See Local expectations
hypothesis

Lending rates, single risk-free,
110–111 (2)

Leverage effect, 47–48 (2), 95 (1),
97 (1), 494 (1), 496 (1)

Lévy-Driven processes, 90–92 (1)
Lévy processes, 502–504 (1)
LIBOR. See London Interbank offered

rate
Life-cycle effects, 356 (1)
Life-cycle models, 361 (1)
Likelihood-based methods,

727–731 (1)
closed form densities, 727 (1)
Fourier inversion of characteristic

function, 728–729 (1)
Hermite expansions, 730–731 (1)
matching moments, 731 (1)
quasi-maximum likelihood,

727–728 (1)
simulated maximum likelihood,

729–730 (1)
Likelihood functions, 7 (2)
Limit order book, 390 (1)
Linear beta pricing models, 77–78 (2),

109 (2)
conditional, 122–128 (2)

Linear estimating function, 218 (1)
Linear factor models, 108 (2)
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