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Between September 29 and October 1, 1996, the Berkeley Program in Fi-
nance held a conference called “On Finance: A Conference in Honor of
Fischer Black” at the Breakers in Santa Barbara, California. Organized by
David Modest, then a finance professor at the University of California,
Berkeley, and presently a Managing Director and Chief Risk Officer at
Azimuth Trust, the conference brought together a number of luminaries,
including a number of past and future Nobel Laureates. Past presidents of
the American Finance Association made up more than half of the paper
presenters and discussants, and virtually all of those who have not (yet)
received this honor have edited the profession’s major journals or presided
over its two other principal organizations, the Western Finance Associa-
tion and the Society for Financial Studies. The assembled multitude was
most assuredly not a collection of lightweights.

From the outset, a conference volume was planned to honor Fischer. (We
refer to Fischer Black throughout by first name, rather than by the more
usual—and less personal—last name.) Eight of the eleven talks given at
the conference are chapters in this volume, which is rounded out by my
attempted synthesis of Fischer’s many contributions to the economics of
asset pricing, Myron Scholes’s thoughtful reflections on credit and risk
management, and Darrell Duffie’s appreciation of the Nobel prize winning
research of Black, Merton, and Scholes. For a variety of reasons, the task of
editing this volume and shepherding it through the production process
eventually fell to me. Some tasks proved to be more pleasant than others,
and the preparation of this introduction ranks among the most enjoyable.

My own essay, “Fischer Black on Valuation: The CAPM in General Equi-
librium,” was not presented at the conference. Its main theme is the many
dimensions in which the two main features of capital market equilibrium
in frictionless markets—that assets in positive supply must be held in equi-
librium while buyers must balance sellers in the case of zero net supply
assets such as options, futures, and other derivative securities—constitute
the central insight of modern asset-pricing theory. Systematically viewing
Fischer’s research on capital asset pricing through this lens provides an
organizing principle for discussing his sweeping insights. However, it
provides so much more, the basis for an explication of the economics of asset
pricing itself. While my essay may well have fallen short in providing the
kind of thorough and comprehensive exposition that this perspective invites,
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vi Preface

writing it has crystallized so much of the simplicity and elegance of mod-
ern finance, at least for me.

Stewart C. Myers, Gordon Y. Billard Professor of Finance at the Sloan
School of Management at MIT, is uniquely positioned to survey Fischer’s
contributions to corporate finance. He was one of Fischer’s colleagues
during his time at MIT and is one of the leading scholars in corporate
finance, one possessed of the breadth to appreciate Fischer’s many and di-
verse contributions to the field and of a sufficiently practical bent to rec-
ognize the way in which they can and should inform corporate financial
practice. His chapter (chapter 2) is replete with illustrations of the perva-
siveness of Fischer’s influence in this field: the Capital Asset Pricing Model
(CAPM) and the measurement of the opportunity cost of capital, financial
option pricing theory and the valuation of both the liabilities of business
firms and the real options embedded in their projects, and his work on such
diverse topics as dividend policy, asset/liability management in pension
funds, and the proper interpretation and construction of earnings.

Myron S. Scholes, Frank E. Buck Professor of Finance, Emeritus, at
Stanford University, Chairman of Oak Hill Platinum Partners, and 1997
Nobel Laureate in Economic Science, worked with Fischer on several of
their most influential research projects and, in particular, on the celebrated
Black-Scholes option pricing model. His chapter is devoted to a most topi-
cal subject: the interaction among major liquidity crises and credit and risk
management considerations such as that associated with the Asian finan-
cial crisis in 1998. Myron is uniquely positioned to analyze these circum-
stances because he was a principal in Long-Term Capital Management
(LTCM), the hedge find that went under at the tail end of the crisis. Myron
traces LTCM’s problems and those of similarly situated financial services
firms to the dynamics of the market for liquidity for illiquid assets. Such
firms earned extraordinary returns prior to the Asian financial crisis by
being substantial suppliers of liquidity in such markets and by hedging their
positions for “normal” fluctuations in the underlying sources of risk in their
positions. These liquidity suppliers experienced large losses during the
crisis and their leverage discipline required them to liquidate large posi-
tions rapidly. Hence, these firms became large demanders of liquidity at a
time in which there were no natural new sources of liquidity. Moreover,
market liquidity premiums rose substantially on many illiquid assets at the
same time, resulting in extremely high correlation across their positions
that reduced or eliminated the benefits of diversification across assets and
countries and dramatically impaired the performance of their hedges.
Myron notes that one consequence of the crisis has been a dramatic increase
in liquidity premiums across many markets engendered by the reduction
in the number of liquidity suppliers such as LTCM and predicts the rise of
new institutional arrangements for the contingent supply of liquidity dur-
ing times of unusual market stress.

Robert B. Litterman is Managing Director and Director of Quantitative
Resources at Goldman Sachs & Co. He worked extensively with Fischer
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throughout his time at Goldman Sachs, culminating in the development
of the Black–Litterman Global Asset Allocation Model, a tool still widely
applied in the asset allocation process at Goldman Sachs, which is referred
to briefly in section 4 of my essay. Bob modestly describes his chapter as
“a tutorial on portfolio risk management.” It is instead a sweeping reinter-
pretation of Modern Portfolio Theory in the new language of risk budget-
ing. As such, it represents a substantial original contribution to an important
literature, one possessed of the sort of mixture of analytical rigor and prac-
tical usefulness that Fischer so often championed. Evidence for this view
may be found in its widespread citation in texts, practitioner journals, and
the concept releases of regulatory organizations.

Stephen A. Ross, Franco Modigliani Professor of Financial Economics at
the Sloan School of Management at MIT, addresses a subject of great inter-
est to Fischer: the economics of the industrial organization of the market for
portfolio management services. In his unpublished paper “The Future for
Financial Services” (October 1982), Fischer set forth his views on the role
of securities firms, mutual funds, and sophisticated individuals in a world
with costly information, management, and marketing.1 Steve explores the
role of the market for mutual fund managers in a world in which it is hard
to distinguish lucky managers from skillful ones and unlucky managers
from unskillful ones, a problem that is exacerbated by the option-like struc-
ture of management compensation. The resulting industrial organization
is one in which the skillful, the lucky, and even some of the unskillful and
unlucky survive in equilibrium due to a combination of the rewards for ex
post performance and ex ante diversification.

Mark Rubinstein, Paul Stephens Professor of Applied Investment Analy-
sis at the Haas School of Business at the University of California at Berke-
ley, and Jens Jackwerth, Professor of Finance at the University of Konstanz,
study methods for drawing inferences regarding the probability beliefs and
risk aversion of investors implicit in option prices. One can think of it as
the kind of exploration of general equilibrium of the sort favored by Fischer,
one rich in the quantitative detail that only option data can provide regard-
ing implicit state prices. While they find it relatively easy to infer implicit
state prices from option data in a robust manner, Jackwerth and Rubinstein
find modeling two aspects of the distribution of state prices more challeng-
ing. First, there are many, economically quite different implied time series
models for the S&P 500 that are roughly equally compatible with its vola-
tility smile. Second, there is no representative investor with constant rela-
tive risk aversion compatible with observed option prices. As the authors
suggest, the latter finding suggests a role for state-dependent preferences
for reasons touched on briefly in section 6 of my essay.

Michael Brennan, Emeritus Professor of Finance at the University of
California, Los Angeles, who held the Irwin and Goldyne Hearsh Chair in
Banking and Finance until his retirement in 2002, and Professor of Finance
at the London Business School, Avanidhar Subrahmanyam, Professor of
Finance at the Anderson Graduate School of Management at the University
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of California, Los Angeles, and Tarun Chordia, Associate Professor of
Finance and Caldwell Research Fellow at the Goizueta Business School at
Emory University, attempt to distinguish between two general explana-
tions of cross-sectional variation in expected returns. One such explana-
tion is risk-based, for which their baseline model is Connor and Korajczyk’s
implementation of the Arbitrage Pricing Theory (APT). Against this model,
they array a comprehensive list of security attributes that have been found
to be correlated with expected returns in prior empirical work. These char-
acteristics come in several flavors, with some thought by many financial
economists to be probable determinants of risk exposures, some to be mea-
sures of the liquidity of the market for immediacy in individual assets, and
others to be anomalies that help explain deviations from the CAPM but that
cannot be sorted easily into economically plausible categories. While some
of my more specific thoughts on their methods and results may be found
in my own commentary, prepared at David Modest’s request, in the chap-
ter that follows theirs, their general finding that liquidity measures help
account for risk-adjusted expected returns while anomaly variables do not
suggests that asset pricing theorists should think hard about the role of
liquidity in security price determination. This suggestion is compatible with
Fischer’s view of the role of market microstructure as expressed, for ex-
ample, in his 1985 American Finance Association Presidential Address
(Black 1986, 1985).

The chapter by Scott F. Richard, Managing Director of Miller, Ander-
son, and Sherrerd and Morgan Stanley Asset Management, represents the
kind of applied research that Fischer thought should be the main preoccu-
pation of students of financial economics. It indirectly provides a measure
of the pervasive influence of Fischer and others on the practice of finance;
fixed income analysts, traders, and investment professionals now routinely
use the language of stochastic differential equations to describe and ana-
lyze interest rate dynamics. On the surface, the chapter’s main contribu-
tion is the extension of the one-factor Black–Karasinski term structure
model to a two-factor model, but this pat description does not do justice to
the economic insight gained in the passage from one to two factors. The
model retains much of the simplicity of the Black–Karasinski model while
building in the second, negatively correlated factor for which empirical
term structure dynamics and those in the associated derivative asset mar-
kets scream, making it a valuable tool for pricing and hedging interest rate
contingent claims. What is noteworthy about the analysis is the way in
which it employs just the amount of technique required to incorporate
simple intuitions about the second factor, a strategy of which Fischer would
have doubtless approved.

The chapter by Douglas T. Breeden, Dean and William W. Priest Pro-
fessor of Finance at the Fuqua School of Business at Duke Univesity and
the Chairman and Co-founder of Breeden Associates, Inc., is also the kind
of applied research of which Fischer approved. The subject of the chapter
is one of the most nettlesome analytical problems in applied finance: mod-
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eling the extremely puzzling mortgage refinancing and prepayment be-
havior of households. Breeden weaves theory and an array of empirical
observations on both mortgage-backed security returns and broker fore-
casts of their prospective behavior into a compelling analytic description.
What is appealing about the analysis is the way that it characterizes the
sources of risk and return in this market in a simple and clear way unen-
cumbered by formal technique that would have added equations, but not
insight, into the behavior of the mortgage market.

Hans Stoll, Anne Marie and Thomas B. Walker Professor of Finance at
the Owen Graduate School of Management at Vanderbilt University, and
Roger Huang, Kenneth R. Meyer Professor of Global Investment Manage-
ment at the Mendoza College of Business at Notre Dame University, ana-
lyze the link between implicit measures of the revenues earned by suppliers
of immediacy such as New York Stock Exchange specialists, proprietary
traders at securities firms, and dealers and the execution costs paid by
demanders of immediacy among public investors. Data on these revenues
and costs come from entirely unrelated sources and so it is quite surpris-
ing that Hans and Roger find them to be commensurate. It is also fortu-
itous because they can use these data to make indirect inferences about the
costs and benefits of limit and market orders, a subject of great interest to
Fischer in the last half decade of his life. They find that securities firms earn
more per share than the revenue on an average trade, which implies that
public limit orders—that is, the limit orders placed by liquidity-demanding
public investors as opposed to suppliers of immediacy—earn less, the price
paid for exposing their orders to the risk of getting “picked off” by informed
investors. They also provide crude evidence that the costs paid by public
limit order traders are comparable to those of market orders, suggesting
that public investors equalize their marginal costs of trading across the two
order types.

Darrell Duffie, James I. Miller Professor of Finance at the Graduate
School of Business at Stanford University, provides the final chapter of this
collection, an appreciation of the contributions to economics made by
Fischer Black, Robert C. Merton, and Myron S. Scholes occasioned by the
receipt of the 1997 Alfred Nobel Memorial Prize in Economic Science by
Merton and Scholes. Had he not died prematurely from cancer, there is no
question that Fischer would have shared the prize with them. Treating the
research of all three simultaneously confers what amounts to a pedagogi-
cal benefit: the ability to explicate the way in which their separate and joint
contributions to our understanding of both the equilibrium and arbitrage-
free valuation of the cash flows from different assets have permeated the
rapid theoretical advances made in financial economics over the last three
decades. Darrell has been a keen student of and contributor to many of the
developments that followed from their pathbreaking work, which makes
him the perfect person to place it in its proper context.

Fischer Black was a remarkable social scientist, one whose contributions
range from the lofty perch of highbrow theory to the trenches of practical
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application. The chapters that follow span the same range, representing
the contributions of a remarkable array of financial economists who em-
body in different ways Fischer’s ideal of insight from economic theory that
both guides and is rooted in his kind of detailed observation of relevant
aspects of actual financial markets. As such, their efforts constitute a liv-
ing tribute to this ideal, a reflection of the honor that the many conference
participants sought to bestow on him. Fischer never struck me as one for
whom such tributes would have mattered much; I am not even sure how
he would have viewed the Nobel Prize he would have doubtless shared
had he not died prematurely. Nevertheless, I hope that readers find this
volume to be both a fitting tribute and a stimulus to further research. After
all, the advancement of economic science remained a constant goal through-
out Fischer’s remarkable career in the many and disparate venues in which
he plied his trade.

NOTES

1. As summarized in his abstract, Fischer predicted that “Most individuals will own
securities through internally managed funds which will play an active role in the firms
whose shares they own. Only sophisticated individuals will own or trade stocks and bonds
of firms other than mutual funds. Securities firms will sell to mutual funds and sophisti-
cated individuals.” Many pension funds are, but most mutual funds are not, active share-
holders. Through my rose-colored glasses, hedge funds today fill the niche Fischer predicted
for sophisticated individuals. Parenthetically, I recall Fischer saying that managers should
be paid in accord with the quality of their reasoning regarding the strategies they employed
and not for their ex post performance.
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1

Fischer Black on Valuation: The CAPM
in General Equilibrium

Bruce N. Lehmann

1. THE SPAN OF FISCHER BLACK’S CONTRIBUTIONS
TO FINANCIAL ECONOMICS

Sitting before me is a copy of A Bibliography of Finance by Richard Brealey
and Helen Edwards, which lists 12,037 papers on financial economics pub-
lished in approximately 120 journals sorted into 40 subject areas. It lists 26
papers written by Fischer Black, covering 14 of those categories. Several
papers could have easily been sorted into eight additional subject areas,
bringing Black’s coverage up to 22 categories. Papers by Fischer published
after 1989, those omitted from the bibliography because they were pub-
lished as book chapters, and his two books increase the coverage to 29
subject areas. Perusal of my incomplete copies of his two self-published
series of papers entitled Fischer Black on Markets and Fischer Black on Op-
tions adds three more categories for a grand total of 32. The eight uncov-
ered subject areas are (1) social responsibility, (2) new securities issues,
(3) splits and stock dividends, (4) leasing and project finance, (5) working
capital, (6) mergers and corporate restructuring, (7) regulated industries,
and (8) other speculative markets. I am sure I have overlooked work by
Fischer devoted to some of these topics as well, particularly the last three
areas.

This number—that is, 32 out of 40 subject areas—is an indicator of the
difficulty of my task here: writing a cogent and reasonably thorough syn-
thesis of Fischer Black’s research on finance as an introduction to the com-
pendium of chapters that follow. In a world in which economists in general
and financial economists in particular specialize in increasingly narrow
subfields, Fischer’s intellectual legacy stands as one of great breadth, cov-
ering virtually all of modern finance and reaching into areas such as gen-
eral equilibrium theory and macroeconomics. Couple this observation with
the fact that Fischer advanced more than the academic enterprise through
his lifelong participation in real-world financial markets—culminating in
his twelve year stint at Goldman Sachs—and this is a tall order indeed.

Stewart Myers’ insightful review of Fischer’s contributions to corpo-
rate finance (chapter 2) in this volume simplifies the problem before me
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considerably. As noted in the preface, Fischer’s many theoretical and em-
pirical contributions to research on capital markets had intended and unin-
tended effects on the theory and practice of corporate finance. Stew discusses
their full range, making it unnecessary and, indeed, probably undesirable
for me to address this body of work.

Accordingly, I shall complement Stew’s chapter by focusing on Fischer’s
main professional preoccupation: the economics of the determination of the
prices of risky assets in real-world capital markets. While exchanges with
him were sometimes opaque, as is often the case with nonlinear thinkers,
Fischer held internally consistent views about the appropriate way to use
economic reasoning in the analysis of financial markets. He thought the es-
sence of equilibrium in the market for risky assets—that all assets in posi-
tive supply must be held by someone while investors with long positions in
zero net supply assets must be balanced by investors with short positions—
provided special insight into valuation. There are a variety of settings in
which simple application of these necessary equilibrium conditions produces
alternative versions of the Capital Asset Pricing Model (CAPM).

My goal is to catalog a number of these economic environments in order
to explicate some of the insights obtained by Fischer from the various
CAPMs. The sections that follow proceed through the following list: a
simple general equilibrium version of the Sharpe–Lintner CAPM, the zero
beta CAPM, a few international CAPMs, the CAPM and option pricing,
and variations on the intertemporal CAPM (ICAPM) in general equilib-
rium. In some places, I aim at little more than concise and clear explana-
tion. At others, I stray from this perhaps more appropriate path and attempt
to provide more of a synthesis of the underlying economics and its impli-
cations for drawing inferences about the nature of financial market equi-
librium. At all times, my goal is to explicate Fischer’s views, uncorrupted
by my own. Irrespective of my success or failure in any of these dimensions,
I have used prose only, with no mathematics, at the potential cost of either
oversimplifying the relevant theory or glossing over the more troublesome
analytical challenges.

This essay is not a memoir since I was certainly not one of Fischer’s close
colleagues. Nor is it a piece of intellectual history, for I am no historian of
science. Rather, I view it as a model of Fischer’s evolving thoughts on valua-
tion, one that is empirically accurate at the outset (almost by construction)
but that becomes more speculative as it progresses. This model helped me
to organize my thinking about his research and to develop a renewed ap-
preciation for its many insights. I hope it produces at least a fraction of the
aesthetic satisfaction for readers that its preparation has given me.

2. THE SHARPE–LINTNER–MOSSIN–TREYNOR CAPM IN
GENERAL EQUILIBRIUM: BLACK (1972A)

Perhaps counterintuitively, I think the best place to begin is with a little-
known and even less cited paper by Fischer entitled “Equilibrium in the
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Creation of Investment Goods under Uncertainty” (Black 1972a) that was
published in the Jensen volume that housed the far more famous Black,
Jensen, and Scholes (1972) paper. The importance I attach to it is perhaps
supported indirectly by the following observation: it was the only self-cited
paper in Black (1995). The model in question is quite a simple one: a
stripped-down general equilibrium model in which wheat can either be
eaten now or planted now to be eaten (or planted) next period. Neverthe-
less, it is a full equilibrium model, perhaps the simplest one in which con-
sumption, production, the riskless rate of interest, and the prices of all risky
assets are determined by the interplay of supply and demand. Fischer
remained preoccupied with general equilibrium versions of the CAPM
throughout his life.

The driving force of the model is the reward for planting wheat. All
wheat seed has the same value in consumption, but yields vary randomly
across types of wheat. The expected crop yield for all types is well above a
bushel of output per bushel planted, while the standard deviation is sub-
stantially below the mean. This device makes it possible to assume that crop
yields are jointly normally distributed with otherwise arbitrary means,
variances, and covariances for valuation purposes while simultaneously
truncating actual crop production a bit above zero so that the resulting
equilibrium can respect positivity of consumption and output. Wheat yields
are taken to be independently distributed over time, removing any hedg-
ing demands that might arise if the distribution of wheat output—that is,
the investment opportunity set—were stochastic. Accordingly, the invest-
ment side of the savings decision is atemporal.

Investor preferences are defined over initial consumption and (random)
end-of-period wealth, thus converting a potential multiperiod consump-
tion–investment program into a two-period problem with a single period
of uncertainty. Each investor’s utility function is otherwise unrestricted
except for the assumption of sufficient risk aversion to ensure that no in-
vestor borrows enough to risk bankruptcy, making all borrowing and lend-
ing risk-free in the absence of moral hazard. The consumer choice problem
is closed by endowing each investor with initial quantities of some or all
of the types of wheat and with the same beliefs regarding their random
yields. Note that there is no need for rational expectations at this juncture.

The last element of the model is the structure of its financial markets.
As is commonplace in capital market theory, markets are presumed to be
frictionless. That is, there are no taxes, transaction costs, or other impedi-
ments to trade in wheat seed. The assets that trade in this market are the
wheat seed itself or shares in crop production. The latter interpretation
makes it easier to think of the model as empirically relevant.

The structure of the equilibrium devolves from some basic facts about
this economy. Set the price of consumption today and end-of-period wealth
to 1, which is just a normalization since only relative prices are determined
in equilibrium. Since all wheat is identical for consumption purposes, any
type of wheat that is planted must have a price greater than or equal to
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unity. The returns of such wheat types are (approximately) jointly normally
distributed, so investors judge wheat portfolios solely on the basis of their
means and variances. Hence, they will choose to hold mean–variance-
efficient wheat portfolios—those portfolios with returns that have mini-
mum variance for each given level of mean returns.

It is easy to see that the resulting equilibrium is the CAPM. The mean–
variance-efficient set is a hyperbola in mean–standard-deviation space. For
a given riskless rate, there is a unique mean–variance-efficient portfolio—
the so-called tangency portfolio—on the line passing through the riskless
rate that is tangent to this hyperbola at this point, the so-called Capital
Market Line. This tangency portfolio must be the market portfolio of risky
wheat seed since the riskless asset is in zero net supply and the market
portfolio must be held in equilibrium. That is, prices must adjust until the
value-weighted portfolio of wheat seed shares is this particular mean–
variance-efficient portfolio. The equilibrium interest rate that clears the
money market might be negative, but the addition of riskless storage to
the model eliminates this possibility. Note that the market portfolio will
lie on the Capital Market Line between the tangency portfolio and the
riskless rate if the riskless asset—that is, riskless storage—is in positive
supply.

Capital market theory is extraordinarily successful in this world because
the optimal portfolio of each investor is a combination of riskless borrow-
ing or lending and a position in the wheat market portfolio. The reason is
simple and beautiful: the marginal contribution of any type of wheat seed
to the expected excess return of the market portfolio exactly equals its
marginal contribution to market portfolio risk. As Fischer put it: “. . . The
optimal portfolio for any investor could depend on expected excess returns
and covariances among excess returns on all available assets. In equilib-
rium, though, the optimal portfolio for any investor is a mix of the market
portfolio with borrowing or lending. The expected returns and covariances
cancel one another, so they do not affect the investor’s optimal holdings”
(Black 1990a, p. 904).

Perhaps more importantly, all investors agree on the fundamentals of
risk and return in this world. They define, measure, and manage asset risk
as measured by systematic or nondiversifiable risk exposure—that is, by
beta. They understand that only systematic risk should be compensated in
equilibrium—no investor need bear unsystematic or diversifiable risk and,
hence, should not be rewarded for doing so. They even agree on how to
evaluate the performance of a managed portfolio. As long as the market
portfolio return is measured sufficiently well, systematic risk exposure
estimates will be reasonably precise since covariances among long-lived
asset returns have modest sampling error.

There are two insights from this simple general equilibrium model that
stayed with Fischer throughout his career. The first one was the extraordi-
nary simplicity of the CAPM equilibrium. The market portfolio must be
held in equilibrium by someone—in this case, by the investor with average
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risk aversion—while zero net supply assets must not be held by this in-
vestor. His subsequent models shared this feature, resulting either in proofs
as brief as that sketched two paragraphs earlier or in no proofs at all.

A second, more subtle feature of such equilibria became clearer to him
over time. Partial equilibrium models and general equilibrium pure ex-
change models treat the supply of assets and their stochastic payoffs as
fixed, and we often fall into the habit of treating the corresponding prop-
erties of observed assets as fixed as well. However, the assets that are sup-
plied in equilibrium presumably reflect some balance between investor
characteristics such as wealth and risk aversion and aspects of production
possibilities such as the productivity of alternative risky technologies. A
full equilibrium model must account for both existing asset returns and
the assets that exist.

3. THE ZERO BETA CAPM: BLACK (1972B, 1993A), BLACK, JENSEN, AND
SCHOLES (1972), BLACK AND SCHOLES (1974A, B)

Central to the Sharpe–Lintner CAPM was the assumption of rational ho-
mogeneous beliefs about presumed normally distributed asset returns on
the part of investors postulated to maximize the expected utility of end-
of-period wealth who could freely borrow or lend at the riskless interest
rate. Each of these assumptions was potentially problematic, with some
areas of apparently greater concern at the time than others. Fischer thought
that the results of Lintner (1969) largely eliminated any important role for
heterogeneous expectations (as opposed to asymmetric information), al-
though it is worth noting at the cost of potentially obscuring the link between
the ex ante beliefs of investors and the corresponding ex post moments with
which the theory might be tested. He also came to argue that “Differences
in beliefs must ultimately derive from differences in information” (Black
1986, p. 531), for reasons discussed below.

The assumption of multivariate normality for asset returns might have
seemed strained for returns on an annual (or other discrete interval) basis,
but Fischer found it natural to think of the CAPM as applying at each in-
stant of time. The reformulation of the model in continuous time can miti-
gate this concern. Without altering the assumption of time-consuming
roundabout production, such a model must be based on information flows
about crop yield prospects and, in conjunction with the stochastic process
generating wheat yields, must be such that the returns of wheat seed claims
are (approximately) jointly normally and independently distributed.

This circumstance will arise when information about crop prospects ar-
rives sufficiently smoothly in the market during the year so that wheat seed
values on nearby dates are approximately normally distributed. Discrete
chunks of information—say, for example, the harvest itself or periodic crop
reports by the U.S. Department of Agriculture that contain unexpected in-
formation—can be accommodated as long as they arrive predictably in
sufficiently normal increments. Finally, any discrete or smooth information
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arrival process cannot create hedging demands without disturbing the
CAPM equilibrium, so the parameters of these processes must be suffi-
ciently stable or independently distributed over time as well. The latter
circumstance will arise, for example, when the distribution of wheat out-
put at the end of year t depends on random parameters drawn indepen-
dently from some distribution at the end of year t–1.

Stochastic information flows of this sort take care of potential sources
of time variation in risk and return on the supply side but not those that
arise on the demand side if investors care about more than consumption
and wealth. One minor complication involves the objects of choice over the
crop year. It is easiest to retain the dating conventions of the original model
since the omission of intermediate consumption is mostly a detail. Inves-
tors derive utility from consumption at the beginning and wealth at the
end of the crop year and, hence, care about the implications for end-of-year
wealth of within-year changes and, specifically, of wealth fluctuations from
instant to instant.

More substantively, Fischer came to believe that state-dependent pref-
erences were economically important, but I do not think that they seemed
so at the time. In particular, Fama (1970) showed that investors acted as if
their utility was derived from current consumption and the next period’s
wealth in the presence of constant investment opportunity sets such as that
described above and in the absence of taste shocks to lifetime utility. In an
era before the widespread search for utility-based explanations for con-
sumption smoothing, taste shocks and, hence, potentially state-dependent
preferences probably seemed like second-order concerns.

This leaves the risk-free borrowing and lending assumption as the pri-
mary concern and the progenitor of Fischer’s zero beta version of the CAPM.
Like all of his theoretical work, Fischer was partially motivated by empiri-
cal evidence. The evidence in question was the Black, Jensen, and Scholes
(1972) and Black and Scholes (1974b) observation that the empirical Secu-
rity Market Line was much flatter than predicted, with the intercept sys-
tematically above the risk-free rate, the value predicted by the original
Sharpe–Lintner CAPM. The zero beta CAPM could neatly explain both
regularities without fundamentally altering the CAPM equilibrium and
pricing by the Security Market Line.

The zero beta CAPM dispenses with the assumption that investors can
borrow and lend freely at the risk-free rate but retains the remaining struc-
ture, including the presumption that investors can freely sell short unlim-
ited quantities of risky assets. The normality of wheat yields still leads
investors to choose mean–variance-efficient portfolios. Since it must be held
in equilibrium, the market portfolio must be mean–variance efficient. Since
short sales must be in zero net supply, the market portfolio must be the
tangency portfolio.

However, the intercept of the line tangent to the mean–standard-deviation
frontier is no longer the risk-free rate. Rather, it is the common expected
return of all assets with returns uncorrelated with those of the market
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portfolio, the equality arising from the market portfolio’s mean–variance
efficiency. There is a unique minimum-variance portfolio with this prop-
erty, eventually termed the beta portfolio by Fischer and the zero beta
portfolio by virtually everyone else. Since investors choose only mean–
variance-efficient portfolios, investors who wish to take more risk than that
of the market portfolio will fund greater than 100% investment in the
market portfolio by selling the zero beta portfolio short. Since short sales
are in zero net supply, the short positions of these investors will be bal-
anced in equilibrium by long positions in the zero beta portfolio taken by
investors who seek less risk exposure than that of the market portfolio.

Fischer systematically viewed empirical evidence on asset prices, espe-
cially that on cross-sectional variation in expected returns, through the lens
of the Sharpe–Lintner and zero beta CAPMs, and he had a variety of rea-
sons for doing so. As the theorist in him evolved, a constant was his belief
that capital market equilibrium should be modeled as if financial markets
were complete, as though investors could hedge against any contingency
confronting them by trading in existing financial assets. If financial mar-
kets behave like complete ones, equilibrium prices behave as if they were
set to satisfy the asset demands of a single representative investor. The
optimal portfolio of this investor must be the market portfolio of all risky
assets, and Fischer’s continued faith in the CAPM presumably reflected,
in part, a feeling that this hypothetical representative investor behaved as
though the CAPM is true.

A second reason was Black’s empirical sense that a more sophisticated
model is not needed to extract the signal in the high-volatility noise of long-
lived asset returns. He suggested that this volatility could arise from ra-
tional forecast revisions and variation in expected returns or from noisy
valuation due to irrational fluctuations in investor psychology. Irrespec-
tive of its source, this noise makes it hard to make empirically reliable
statements about the overall level of risk premiums. For example, the two
standard error confidence interval for the mean excess return of the S&P
500 remained a bit higher than 10% per year over the last seven decades,
while that of long-term U.S. Treasury bonds exceeded 4% per year, quite
large numbers compared to the corresponding mean excess returns them-
selves of 8.6% and 1.4%, respectively. Of course, cross-sectional differences
are measured somewhat, but only somewhat, better, but the CAPM does
a tolerably good, if imperfect, job of accounting for such regularities.

Black remained suspicious of the comparative empirical success of Ar-
bitrage Pricing Theory (APT) models in accounting for cross-sectional regu-
larities for these reasons. These models are based on the hypothesis that
factors that account for most of the covariation within a large asset menu
must, in a sense that can be made precise, account for cross-sectional varia-
tion in their expected returns. They predict neither the signs nor the magni-
tudes of the associated factor risk premiums, leaving them to be determined
empirically as part of the fitting of the model. Hence, its “comparative
empirical success” may simply reflect the ease of finding factor risk pre-



10 The Legacy of Fischer Black

mium estimates that generate relatively good fits in samples from econo-
mies that generate noisy equilibrium risk premiums. Black feared that the
unobservability of the market portfolio caused similar problems for the
CAPM, but he thought it likely that true market portfolio returns were
highly correlated with those of any reasonable proxy, to some extent miti-
gating concerns regarding the comparative empirical success of the CAPM.

Fischer, an early and ardent critic of apparent data mining in finance,
was even more suspicious of the so-called anomalies that have plagued
the CAPM. The variables found to help explain cross-sectional variation
in average returns were not suggested by a priori theory but rather by
empirical exploration guided at best by loose theory. In fact, the variables
found in the literature were part of Wall Street folklore, suggesting that
they were selected by data miners in the real world long before we had the
benefit of computerized databases. Moreover, the small-firm effect, the first
major anomaly not readily attributed to statistical problems, largely dis-
appeared from U.S. equity markets after its discovery, lending credence
to the data-mining interpretation of its prior significance (although the
evidence is also compatible with a market microstructure explanation).

In fact, Fischer long thought that the major empirical question regard-
ing the cross section of expected returns was whether the Sharpe–Lintner
or zero beta CAPM better described markets. Three possible explanations
were well-expressed early on in Black and Scholes (1974a, p. 405):

We really don’t know whether to believe the theory or the data. It may be that
the extra returns on low risk portfolios in the postwar period were simply due
to chance. Or it may be that the use of a more comprehensive market portfolio
would give different results. Or that the results were due to restrictions on
borrowing that were effective for a time, but have now lost their effectiveness.

He later changed this last opinion to “These restrictions have probably tight-
ened in recent decades. . . . Many countries outside the United States seem
to have similar restrictions” (Black 1993a, p. 10).

That said, Fischer favored another interpretation. He did not believe the
zero beta CAPM because many investors have access to direct or indirect
riskless borrowing opportunities. This view also jibed with his belief that
financial markets should be modeled as though they were complete, in which
case a risk-free asset could be constructed from existing assets. One possi-
bility was that both investors and business firms have an irrational aversion
to borrowing, the former unwilling to borrow to buy low-beta stocks and
the latter reluctant to take on debt to supply borrowing implicitly to investors
by creating leveraged equity. Since they are generally subject to fewer bor-
rowing restrictions than individuals and, in addition, benefit from debt tax
shields, Fischer thought corporations should use the Sharpe–Lintner model
to value projects. In the wheat seed model, this practice corresponds to form-
ing corporations that borrow to buy low-beta wheat seed for planting.

It is worth noting, in passing, that Fischer thought actual corporate divi-
dend policy difficult to interpret in rational terms for similar reasons. In
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partial-equilibrium versions of the CAPM, investors require higher ex-
pected returns to hold securities with high dividend yields as compensa-
tion for the corresponding increase in tax liabilities, an argument that has
long seemed tenuous to many researchers. For example, competition among
investors with low or zero marginal tax rates probably should eliminate
any dividend yield premiums, and pension, endowment, and insurance
company portfolios are arguably marginal investors in most listed securi-
ties in the United States.

More importantly, Black and Scholes (1974b) argued that there should
be no dividend yield effects on expected returns that corporations can
exploit to lower their cost of capital. Firms can supply a range of divi-
dend policies to satisfy any investor dividend clienteles, and competition
among firms should ensure that dividend yields should have no effect
on expected returns. To be sure, they also showed that any dividend yield
effects on expected returns that might arise from the impact of taxes on
investor portfolios were empirically ambiguous at best, a finding consis-
tent with such supply effects, and the empirical evidence remains unclear
at present. What cannot be explained is the presence of substantial tax-
able dividend payments in actual capital markets. Fischer ultimately
concluded that taxable investors simply like dividends and cannot see
the associated decline in their after-tax returns in the high-volatility noise
of long-lived asset returns.

4. INTERNATIONAL ASSET PRICING: BLACK (1974, 1978, 1990A),
BLACK AND LITTERMAN (1991, 1992)

Although it is out of sequence with respect to its development temporally,
I think it best to consider some of Fischer’s contributions to international
asset pricing at this point. His thoughts on the subject typically involved
simple CAPM reasoning. His inferences were generally based on precisely
which substantive cross-country differences in the circumstances of inves-
tors should impinge on their optimal portfolios and on how these port-
folios were priced in equilibrium when the world market portfolio must
be held and other assets were in zero net supply. Since other properties of
financial market equilibrium are needed in the discussion of derivative
asset pricing that follows, it makes sense to review this work first.

Market imperfections are central to much of international economics,
and therein lies the source of a gap, small at times and gaping at others,
between international finance as practiced by financial economists and by
international economists more broadly defined. Tariff and subsidy schemes,
capital controls, and constraints on foreign ownership constitute one class
of impediments to free trade. A more subtle barrier involves information
asymmetries—domestic investors may possess knowledge or insight into
domestic asset valuation not available to foreigners. National boundaries
can engender substantial cross-border differences in the behavior of inves-
tors in such a world.
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Black (1974) investigated equilibrium asset prices under fixed exchange
rates in the presence of such impediments and, to the best of my knowl-
edge, provided the first equilibrium analysis of such issues under uncer-
tainty. He retained the assumptions of the Sharpe–Lintner CAPM and
added one other: taxable investors were subject to a given tax rate when
investing in other countries where the tax may be thought of as a “repre-
sentative trade barrier.” The short sale assumption, in particular, had a large
impact on the resulting optimal portfolios of investors.

The issues involved can be illustrated in a variant of the wheat seed
economy. Imagine that we enrich the wheat economy sketched above with
domestic and foreign investors. Since exchange rates are fixed, we might
as well normalize them to unity. As in the original model, normalize the
price of consumption today and end-of-period wealth to 1 as well. To keep
matters simple, suppose that domestic and foreign investors are identical
in both endowments and risk aversion. Permitting greater heterogeneity
in these parameters changes both riskless rates and makes it desirable for
all investors to have a position in the world zero beta portfolio but results
in an otherwise qualitatively similar equilibrium.

Both domestic and foreign investors are endowed with different types
of wheat, and wheat seed can be freely shifted from consumption to pro-
duction. However, it cannot be shifted for production across countries, a
condition necessary to ensure positive tax revenues. Without it, investors
could avoid taxation simply by trading seed until domestic production and
consumption came only from domestic claims.

Investors differ in the taxes they pay on claims to wheat seed planted in
the two countries. Neither investor pays taxes on claims to wheat seed
planted in their own countries. Foreign investors pay a given tax rate on
claims to seed planted domestically and, for simplicity, domestic investors
pay the same tax rate on claims to seed planted in the foreign country. Short
and long positions are treated symmetrically, implying that short sales incur
negative taxes (i.e., tax subsidies). The uses of tax revenues are ignored in
the model; they can be thought of as being redistributed to investors in a
lump sum fashion so as not to disturb the equilibrium.

The tax system gives domestic (foreign) investors a comparative advan-
tage at owning domestic (foreign) assets and foreign (domestic) investors
a comparative advantage in short sales of domestic (foreign) assets. Hence,
all investors naturally want to hold more assets in their country of origin
than would otherwise be optimal and will fund this position with short
sales of securities in the other country. The world market portfolio must
be held in equilibrium, so the short positions of foreign (domestic) inves-
tors in domestic (foreign) securities must be balanced by long positions in
excess of the market portfolio weights by domestic (foreign) investors. Note
that investors will not hold only assets in their own country; they must
balance the tax benefits of domestic investment against the diversification
benefits of foreign investment.
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This symmetry implies that all investors find it optimal to form their
portfolios from a menu of three mutual funds. The first is the world market
portfolio. The two others are minimum-variance portfolios with the given
tax rate from the perspective of domestic and foreign investors, respectively.
The weights of these portfolios sum to that of the world minimum-variance
portfolio, so that both the country of origin and the covariance structure of
returns determine the weight of each asset in each portfolio. If the correla-
tions among returns are sufficiently weak, these minimum-variance port-
folios will concentrate in foreign and domestic assets, respectively. In any
event, it is a simple matter to find the equilibrium savings rates and the
allocation of wheat seed types to consumption or investment given this
collection of asset demands.

Note the simple economics of this equilibrium. The global CAPM de-
scribes the equilibrium in the absence of tax distortions, the world market
portfolio being the one that all investors would hold in the absence of im-
pediments to free trade. The tax distortions cause investors to engage in
zero net supply trading to get the best risk/return/tax tradeoff. These dis-
torted optimal portfolio choices cause wheat seed claim prices to change
from those in the zero tax equilibrium. Note also that the equilibrium could
just as easily describe that within a country or region with a common cur-
rency and different tax jurisdictions. Explicating the difference between
closed and open economy financial market equilibria requires a precise
notion of what barriers are encountered at national borders.

The capital market equilibrium in this model belies much of the intu-
ition regarding the impact of impediments to trade in international capital
markets. Instead of leading to market segmentation, the absence of short
sales restrictions in conjunction with the tax barrier leads investors in one
country to swap their deviations from the world market portfolio for those
of the other country. That is, these investors swap portfolios to reduce their
tax liabilities, a transaction reminiscent of swaps created for this purpose
in the early 1980s. It may well be that sizable short sales are not feasible
even for large institutional investors but the tax distortions are likely to be
small at modest levels of taxation, probably making the swap feasible. It is
perhaps noteworthy that actual international withholding taxes have his-
torically been on the order of 10–15%.

The presence of these short and long positions in the portfolios of do-
mestic and foreign investors provides another explanation for the tendency
of low-beta stocks to plot above the Security Market Line and for high-beta
stocks to lie below it. In this version of the model with cross-country with-
holding tax equalization, Security Market Line deviations are the product
of one-half of the tax rate and one minus the beta of each asset with re-
spect to the world market portfolio, thus generating the same regularity.
Hence, the model can be tested during fixed exchange rate regimes by see-
ing if the world zero beta rate exceeds the world risk-free rate, ignoring
the problem of measurement of the world market portfolio. The difference
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would be zero if such taxation is ineffective and the world Sharpe–Lintner
CAPM is true.

That said, Fischer did not really believe this explanation for the ap-
parently flat Security Market Line. As he noted in Black (1974, p. 350),
“The trouble with taking such restrictions at face value is that they may
not be effective. There are many ways to get around such restrictions, and
there are often types of investments not subject to the restrictions.” I, along
with many others, have listened to both Black and Scholes as they spun
portfolio strategies designed to eliminate or substantially reduce taxation
within arbitrary tax codes. For example, tax revenues fall to zero if there
is frictionless free trade in wheat seed for planting in this model. Simi-
larly, the tax-reducing properties of short sales in this model should serve
as a cautionary reminder of the many ways in which financial assets can
be used to avoid or reduce apparent barriers. That is, the nature of the
supply side is critical for understanding the general equilibrium effects
of taxation.

In fact, there is little difference between closed and open economy fi-
nance when the only real barrier at a national border is an exchange rate.
This viewpoint colors the interpretation of a variety of empirical regulari-
ties, and Black (1978) enumerated several of them. Fischer thought that
accounting flows such as the current and capital account balances obscure
the underlying economics of international investment. Ceteris paribus,
increased domestic investment by foreigners implies increased foreign
investment by domestic investors. Financial asset flows should be unre-
lated to rates of return since asset prices are forward-looking, and risk-
adjusted expected returns should be equalized across countries. In contrast,
there can be substantial cross-country differences in the productivity of
physical capital, and physical capital should flow toward high-productivity
countries without earning abnormal returns. Accordingly, there is noth-
ing surprising about a negative balance of trade associated with a positive
capital account balance arising from the returns of prior investments.

It is instructive to compare these observations on financial and physical
capital flows across countries to those within countries and regions. Inter-
national economists think it noteworthy when countries have large cur-
rent or capital account balances. Yet we are not surprised when the citizens
of exclusive, wealthy communities buy financial assets in the rest of the
world, thereby having imports grossly exceed exports. We seldom think
their purchases and sales of securities presage rising or falling “foreign”
expected returns. We are also not puzzled to find physical capital being
installed outside the wealthy community. Similarly, we do not think that
coal-mining communities with large current account surpluses and capi-
tal account deficits are somehow doing well. That is why “The balance of
payments is an even more mysterious concept. We do not even know how
to define it meaningfully, let alone measure it. For every proposed defini-
tion it is uncertain whether we would rather have a surplus, a deficit, or
neither” (Black 1978, p. 25).
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Fischer also thought it self-evident that an international version of the
CAPM must hold in the absence of effective market imperfections. The
gains from international diversification are huge, and investors should care
about the properties of returns in their currencies, not about their coun-
tries of origin. Of course, foreign investors might fear the possible infor-
mational advantages of domestic investors. However, competition among
informed domestic investors should produce (approximate) informational
efficiency in sufficiently well-developed financial markets, permitting for-
eign investors to (mostly) free ride on rather than fear the putative infor-
mational advantages of domestic investors. Consequently, Fischer, along
with a few previous authors and many subsequent ones, thought the big
puzzle is “Why don’t investors hold more assets in other countries?” (Black
1978, p. 29).

What features does an international CAPM have in the presence of flex-
ible exchange rates? Once again, a variant of the wheat seed economy helps
illuminate the relevant issues. However, instead of taxes or other market
imperfections, suppose the prices of consumption today and wealth tomor-
row are normalized to unity for the domestic investor while those of the
foreign investor are the exchange rate today and tomorrow, respectively.
The latter statement is more than a definition and represents the presump-
tion of purchasing power parity in the goods market.

What does the resulting equilibrium look like? This question really can-
not be answered without explaining the role of exchange rates in this world.
If they simply reflect different nominal prices of consumption and wealth,
real returns will be independent of exchange rate movements: any price
inflation (deflation) in the foreign country will be offset by exchange rate
depreciation (appreciation) as long as purchasing power parity holds. Of
course, purchasing power parity is violated empirically, but not to the
extent necessary to create nontrivial hedging demands. That is, the vari-
ability of rates of return on both long-lived assets and exchange rates so
exceeds inflation variability as to render long-lived foreign asset returns
in domestic currency terms roughly equal to real returns. Fischer seldom
took seriously the notion that money illusion had real consequences.

In the absence of important effects attributable to exchange rates as the
relative prices of units of account, the alternative is to assume that real
exchange rates fluctuate. Real exchange rate changes must come from cross-
country variation in relative prices. In principle, relative price variation can
arise from both supply or demand sources, but Fischer (and most of the
literature) preferred to think in terms of consumption differences across
countries. That is, he defined “a group of investors with the same price
index as a ‘country’ . . . a ‘currency’ for each country as having a known
end-of-period value using the corresponding price index. An ‘exchange
rate’ will be the relative price of two currencies” (Black 1990a, p. 900).

Hence, the model must have two or more consumption goods to permit
nontrivial cross-country differences in consumption bundles and price
indices. Accordingly, suppose we enrich the wheat economy sketched
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above by endowing investors with different types of both wheat and cows.
Cows can be consumed as beef today or as beef (and, I guess, veal, as long
as the relative price of veal and beef is fixed) tomorrow. Cow production
is also subject to (truncated) normal random shocks with the same sort of
stochastic structure specified for wheat yields above, although it may be
best to think of them as taste shocks for different types of beef. Tastes for
wheat and beef differ between countries and, hence, domestic and foreign
investors have the requisite differing price indices.

Suppose the domestic price index now and in an instant are normalized
to unity while the corresponding numbers for the foreign investor are the
exchange rate now and in the next instant. Uncertainty regarding future
exchange rates makes riskless domestic bonds risky from the perspective
of foreign investors and riskless foreign bonds risky from the perspective
of domestic investors. However, the uncertainty involves the percentage
change in exchange rates from the perspective of domestic investors and
its inverse from the perspective of foreign investors. In addition, the in-
verse of the percentage exchange rate change has a multiplicative effect
on risky domestic assets from the perspective of foreign investors, and the
level has a multiplicative effect on risky foreign assets from the perspec-
tive of domestic investors. These nonlinearities complicate the analysis of
international capital market equilibrium.

However, these instantaneous exchange rate effects are linear when ex-
change rate changes follow a diffusion process, as is the case with Brownian
motion information flows. The inverse of the instantaneous percentage
change in the exchange rate is the instantaneous volatility of the percent-
age exchange rate change minus the instantaneous percentage exchange
rate change. Hence, the instantaneous return differential between domes-
tic and foreign bonds in domestic currency terms is the nominal interest
rate differential minus the percentage change in the foreign exchange rate.
The corresponding differential in foreign currency terms is the same minus
the instant variance of the percentage change in the exchange rate. Simi-
larly, domestic asset returns in foreign currency terms are the returns in
domestic currency minus the percentage exchange rate appreciation plus
a constant, the instantaneous percentage exchange rate change variance
minus the instantaneous covariance between domestic asset returns and
the percentage change in the exchange rate. The appropriate converse is
true for foreign asset returns in domestic currency terms.

This implicit linearity simplifies the resulting international capital mar-
ket equilibrium considerably. The wealth constraints of domestic and for-
eign investors are identical up to additive constants and weighted averages
of the percentage change in the exchange rate. Accordingly, all investors
will find it optimal to hold shares in the world wheat and cattle market
portfolio combined with international borrowing and lending. International
bonds partially hedge the world market portfolio as long as their returns
are correlated, and, hence, investors will find it optimal to issue positive
quantities of both domestic and foreign bonds. The intrinsic symmetry of
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exchange rate risk—that appreciation to a domestic investor is deprecia-
tion to a foreign investor plus its volatility—implies (after some nontrivial
manipulations) that domestic and foreign investors will hold identical
domestic and foreign bond portfolios coupled with domestic lending. This
is well-known from Stulz (1981), a paper taken from the only dissertation
research supervised by Fischer, and other papers cited in the Adler and
Dumas (1983) review article.

What is less well-known is that the assumption that both foreign and
domestic riskless bonds are in zero net supply sharply constrains optimal
hedging in equilibrium. Consider the case in which all investors have the
same degree of risk aversion so that they hold the same risky asset port-
folio in proportion to their share in world wealth. Since each investor has
the same riskless bond position to hedge risky asset returns from the opti-
mal portfolio result, there is a fixed aggregate demand for the riskless bonds
of all countries to hedge risky asset returns. Gross lending by domestic
investors must be offset by the borrowing of both foreign and domestic
investors in this bond portfolio—that is, gross domestic lending exceeds
net domestic lending. Coupled with the zero net supply constraint for
domestic and foreign bonds, this condition implies that the gross lending
of all investors is the same fraction of their corresponding share of world
wealth. The same basic result obtains when investors have different risk
aversions since the gross lending in each bond in excess of the aggregate
demand for hedging purposes must sum to zero.

The resulting hedge ratio takes a remarkably simple form not anticipated
in the voluminous literature on exchange rate hedging. The fraction of for-
eign investments hedged is the ratio of two quantities: the mean excess
return of the world market portfolio less its variance and the mean excess
return of the world market portfolio minus one half of the average exchange
rate variance. Moreover, one minus the fraction hedged gives the average
risk tolerance of investors. Note the complete absence of the usual inputs
for hedging calculations: exchange rate means, variances, and correlations
with other asset returns. These variables do appear in the marginal condi-
tions of optimizing investors, but the mean and covariance terms net out
in equilibrium because of both the zero net supply constraint for all bonds
and the symmetry of all investors. In equilibrium, exchange rates will ad-
just until real exchange rate risk takes this form.

Exchange rate hedging is a free lunch, and thus all investors prefer flex-
ible exchange rates in this model. When exchange rates follow diffusion
processes, the difference between the instantaneous return differential
between domestic and foreign bonds in domestic and foreign currency
terms is not zero but rather is the instantaneous variance of the percentage
change in the exchange rate. An investor in one country whose portfolio
risk is reduced by exchange rate hedging is counterbalanced by one in
another country who experiences an increase in portfolio expected return
from this source. The Sharpe ratios of both portfolios rise because inves-
tors in the two countries implicitly divide up the Jensen’s inequality term,
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which is known as Siegel’s paradox in international finance. This gain from
trade does not arise with fixed exchange rates such as those implicitly pre-
vailing within any region with a common unit of account.

The model also has an interesting empirical implication for risk premi-
ums. One of the problems plaguing the empirical asset pricing literature is
the extraordinary imprecision with which the mean excess returns of long-
lived assets are estimated. In the Sharpe–Lintner CAPM, the risk premium
of the market portfolio can be inferred from the risk aversion of investors
and the fraction of their wealth in the riskless asset. In this model, inves-
tors’ risk aversion is implicitly embedded in the fraction of the portfolio
that is hedged, a potential observable.

The practical implications of this observation are more important still.
Quantitative portfolio management has long suffered from the noise in
expected return estimation. For example, sample mean–variance-efficient
portfolios based on simulated returns typically have extreme positions in
some assets. There is a general tendency to take large long positions in assets
with large sample, but not population, mean returns and to place large
negative weights on those with negative sampling error in average returns.
Practitioners of quantitative portfolio management have several methods
for dealing with this problem that generally fall into one of three catego-
ries: the imposition of artificial constraints to produce reasonably well-
diversified portfolios, the introduction of benchmarks from which expected
tracking error is comparatively precisely estimated, or covariance-based
estimation of risk premiums based on false models. I must confess a pref-
erence for the third approach.

Goldman Sachs Asset Management has produced a family of models for
global asset allocation based on Black and Litterman (1991,1992) that fit into
the third category. They use this model to produce estimates of the expected
excess returns of uninformed investors. This device permits the model to
support active management based on investor beliefs about expected asset
returns and exchange rates expressed as deviations from the postulated
beliefs implicit in this global CAPM. The result is a set of asset allocation
strategies with well-behaved portfolio weights based on economic theory.

From index funds to the Black–Scholes model to the Black–Litterman
model, Fischer systematically believed in theory as the basis for practical
financial products. Now the international CAPM is patently false since
actual investor portfolios differ substantially from the optimal ones, if only
because of the extraordinary home country bias in actual portfolios. Never-
theless, the question is not whether the theory is false but rather whether
the errors in the model’s expected returns are larger or more misleading
(from the perspective of portfolio formation) than those produced by other
methods. My guess is that they are not in this case.

Three aspects of Fischer’s work on universal hedging strike me as note-
worthy. First, the (international) CAPM is at its center, with market clear-
ing in asset markets describing the real equilibrium. Second, he teased yet
another unexpected and noteworthy implication from the zero net supply
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nature of financial assets in this familiar setting that had escaped the no-
tice of many scholars interested in exchange rate hedging. Finally, the re-
sulting model was both abstract theory and the basis for practical asset
allocation tools.

5. THE BLACK–SCHOLES MODEL: BLACK (1989A),
BLACK AND SCHOLES (1973)

In the wheat economy, the only assets that trade are claims to wheat seed
itself, not securities that permit hedging against different realizations from
the multivariate normal yields. If the parameters of this economy were
sufficiently similar to those in the real world, wheat seed returns would
exhibit high volatility. Investors with sufficiently diverse endowments and
risk aversions would perceive substantial gains from trade from opening
markets in derivative assets such as options on different wheat seed types.
Moral hazard poses no barrier to writing such contracts if wheat seed claim
prices and crop output are observable. In the absence of costs of writing,
enforcing, and trading such contracts, the profit motive for introducing
options and other derivative assets would lead investors to complete the
market by issuing such claims.

There are two natural questions engendered by the addition of zero net
supply financial assets such as options. First, does their introduction de-
stroy the CAPM and pricing by the Security Market Line? After all, wheat
seed returns may be normally distributed, but the distributions of payoffs
on derivative assets such as options are decidedly nonnormal. Second, what
prices would derivative securities command in equilibrium? While this
might seem like a strange way to pose these questions given the role of the
riskless hedge in the Black–Scholes model, it strikes me as the correct for-
mulation because Black and Scholes discovered the model by finding the
right way to apply the CAPM to option valuation when the underlying
assets follow diffusion processes.

In fact, the introduction of sufficiently many financial contracts to com-
plete the market changes the resulting equilibrium but in ways that make
CAPM pricing more plausible. What is lost is the most troublesome pre-
diction of the CAPM: that all investors hold the same portfolio of risky
assets and differ only in their position in either riskless bonds or the zero
beta portfolio. What remains is the pricing of types of wheat seed by the
Security Market Line.

It is worth emphasizing why the CAPM need not hold despite the fact
that risky wheat seed returns remain normally distributed. The CAPM
obtained in the original wheat economy because all investors found it op-
timal to hold mean–variance-efficient portfolios precisely for this reason.
In the present economy, investors also have access to derivative assets,
many of which have skewed returns, and, hence, investors will generally
no longer judge portfolios solely on the basis of their means and variances.
Optimal portfolios of wheat seed claims and derivatives written on them
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will typically vary across investors due to their differences in risk aver-
sion and endowments. That is, the asset menu no longer supports port-
folio separation.

CAPM pricing of wheat seed shares remains valid following the intro-
duction of derivative assets for two reasons: the completeness of the wheat
seed market and the dependence of investor utility solely on initial con-
sumption and end-of-period wealth. The former guarantees that the asset
demands of a representative investor describe financial market equilibrium,
although not aggregate market excess demand curves. The latter implies
that the only random quantity that concerns this investor is terminal wealth.
Now the market portfolio has normally distributed returns, and the repre-
sentative investor holds only this portfolio since the derivative assets are
in zero net supply. The result is CAPM pricing for risky wheat seed with
risk premiums based on the risk aversion of this investor. Note that the
risk premiums and betas in the wheat economy with and without deriva-
tive assets will generally differ.

However, CAPM pricing of derivatives such as options need not obtain.
Recall that the stochastic information flows introduced earlier came in two
flavors: frequent smooth information arrivals well-approximated by dif-
fusion processes and large but normally distributed shocks that occur at
predictable times. Derivative assets that are written and mature between
these periodic jumps have values that depend on underlying assets with
returns that follow diffusion processes, while those outstanding when such
discrete changes occur do not.

One can solve the valuation problem for options and other derivative
assets in the former setting when the parameters of the underlying diffu-
sion are constant using the riskless hedge discovered by Merton (see Darrell
Duffie’s discussion in section 5 of chapter 12) but Black and Scholes (1973)
took the CAPM route. As Fischer reported in Black (1989a), there were two
basic stages in Black and Scholes’ development of the option pricing model.
The first was Fischer’s finding that option values did not depend on the
expected return of any asset when the underlying asset price followed a
diffusion process and the CAPM held continuously. The second was their
realization that the absence of expected returns from the determinants of
option values meant that they could apply what has come to be known as
risk-neutral valuation. Since the expected return of the underlying asset
did not appear in the option valuation formula, they could simply set it to
the risk-free rate without affecting the valuation relation. Since the under-
lying asset would have a zero beta when its expected return was the riskless
rate, the beta of the option would be zero in this case, making the appro-
priate discount rate for the option the risk-free rate as well. Discount the
expected terminal payoff of a truncated lognormal random payoff at the
risk-free rate and you have the Black–Scholes formula.

Fischer often said that he believed the CAPM and not the hedging deri-
vation of the Black–Scholes model, and it is worth contemplating some of
the implications of this view. Suppose we modify the information arrival
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process in two dimensions: (1) discrete chunks of information can arrive
randomly as well as periodically, a modest generalization of the earlier
model, and (2) the price dynamics of the wheat market portfolio are a dif-
fusion process with drift and diffusion coefficients that depend only on its
market value irrespective of the jumps that arise in wheat seed claim prices.
The latter represents a restriction on both information arrival and the asset
menu: all discontinuities in this process reflect seed-type-specific informa-
tion, and the number of assets is sufficiently large to make perfect diversi-
fication of jumps across wheat seed claims possible.

The CAPM pricing of derivative assets obtains in this market even if
insufficiently many contracts have been issued to complete the market. This
result does not rely on the assumption that payoffs on derivative assets are
perfectly correlated with—that is, lie in the span of—those of existing risky
wheat seed claims. Rather, it arises because all investors view jump risk as
idiosyncratic in these circumstances, diversifiable risk that should not com-
mand a risk premium by construction. This supply-side assumption about
the idiosyncratic nature of large information arrivals yields a market port-
folio with returns that follow a diffusion process. The resulting linearity of
the marginal conditions of the representative investor in the market port-
folio implies that the expected excess returns of derivative assets are lin-
ear in their (generally time-varying) betas.

This variant of the wheat economy combines elements of the Sharpe–
Lintner CAPM and the APT. The CAPM says that zero beta assets should
earn the risk-free rate. The premise that jumps in the prices of wheat seed
claims represent diversifiable, idiosyncratic risk is an APT-style assump-
tion; the idea that they command no risk premiums—that is, that they have
zero betas—corresponds to pricing within an equilibrium version of the
APT. Note that CAPM pricing holds irrespective of the stochastic process
of jumps in this model. For example, Merton’s (1976) option valuation
model arises when jumps follow a lognormal distribution with parameters
that are fixed over the life of the contract.

6. STATE DEPENDENCE, BUSINESS CYCLES, AND ASSET PRICING:
BLACK (1986, 1987, 1990B, 1995), BLACK AND SCHOLES (1973)

The wheat economy CAPM has gone through several changes in these
pages but remains a quite restrictive model, an observation that might
appear to gainsay my suggestion that it guided much of Fischer’s sub-
sequent thinking. Two sorts of assumptions were of particular concern to
him: (1) the omission of any sort of state dependence in household prefer-
ences, and (2) the simple stochastic constant returns to scale production
technology. The question at hand is whether the CAPM intuition survives
enriching the model in these dimensions.

On the demand side, Fischer came to believe that many sorts of state
dependencies in preferences were economically important. In particular,
he thought households were quite willing to substitute consumption over
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time in the short run but engage in consumption smoothing over inter-
mediate and long horizons, resulting in a consumption function depend-
ing on both current and lagged wealth. He also thought that any reasonable
wealth construct included human capital, making fluctuations in the value
of human capital, the volatility of which he thought comparable to that of
physical capital, another potential source of state dependence in the indi-
rect utility of wealth. Taste shocks fit into this category as well.

On the supply side, he came to believe that economically important fric-
tions in the allocation of capital were the dominant cause of business cycles.
Capital flows freely in this model since seed not allocated to consumption
can be planted with no barriers. In his later work, Fischer emphasized the
long gestation lags associated with roundabout production. In particular,
both physical and human capital investments are often made on the basis of
expectations about supply and demand conditions that will prevail far in
the future, well before their actual marginal value products are determined.
Both individual assets and the market as a whole can experience prolonged
periods of unusually high or low expected returns if capital in all its forms
can only be moved between sectors with nontrivial adjustment costs.

Suppose, for example, there are two inputs into the production process,
land and wheat seed, and that the productivity of each type of wheat seed
on different plots of land is subject to imperfectly correlated random shocks.
In addition, suppose a given seed type can only be planted in a given wheat
field if special preparations are made after the prior harvest—that is, six
months before the next planting—and that wheat seed productivity is sub-
ject to permanent and transitory shocks. Output will be high next year if
there is a good match between wheat types and field preparation after the
productivity shocks are realized, and output will be low if there is a poor
match. These random fluctuations in the quality of the match between needs
and resources are made persistent by costs associated with reallocating
resources such as costly capital or, in this model, wheat seed mobility. Mix
in longer gestation lags and shocks on the demand side when wheat types
represent differentiated products to consumers, not perfect substitutes as
in this model, and you have Fischer Black’s theory of business cycles.

Fischer meant for this sort of model to be quite different from the simple
wheat economy. The pithy reference to longer gestation lags conceals the
belief that “production takes too many years and too many distinct inputs
to be summarized by an aggregate function that depends only on the cur-
rent values of a few inputs” (Black 1995, p. 31). Roundabout production
includes roundabout production of the production process itself because
“Only a little of what we do each year is to produce final goods and services.
Most of what we do is to turn this year’s capital into next year’s capital” (Black
1995, p. 24). He thought “of the world as having billions of relevant sec-
tors” (Black 1995, p. 51) across which there are nontrivial costs of reallo-
cating resources, thus generating persistent business cycles.

Then there is the asset menu. Fischer viewed capital markets and the
macroeconomy through the rose-colored glasses of the Arrow–Debreu
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model with complete markets in state-contingent claims. As in the previ-
ous section, such claims would include derivative asset contracts written
on wheat seed claims. However, market completeness might require a
menu of contingent claims with payoffs dependent on the consumption
indices that enter investor preferences, human capital values, and any taste
shocks. This assumption would appear to require considerable suspension
of disbelief; unlike wheat seed derivatives, one cannot blithely state that
moral hazard, observability, and enforcement are not issues for such claims.

CAPM pricing of wheat seed shares does not obtain in this model be-
cause only half of the sufficient conditions are met in this version of the
model. Market completeness once again ensures the existence of a repre-
sentative investor who holds only the conditionally normally distributed
wheat market portfolio since derivative assets are in zero net supply. How-
ever, this representative investor will generally care about many state vari-
ables in addition to end-of-period wealth.

The CAPM might no longer govern pricing, but its close relative, Merton’s
ICAPM, describes the equilibrium in the economic setting of the previous
section. Parenthetically, Fischer preferred the ICAPM to the consumption
CAPM because the latter requires time- and state-separable preferences
while the ICAPM does not (Black 1995, p. 149). What is essential for the
ICAPM is that the intertemporal marginal rate of substitution of the rep-
resentative investor is linear in the innovations to both market portfolio
returns and the state variables. If the innovations to the state variables fol-
low (possibly state-dependent) diffusion processes, portfolio separation
obtains and expected returns are linear in the usual market beta plus the
covariances between asset returns and state variable innovations. In addi-
tion to the market portfolio and the riskless asset or zero beta portfolio, all
investors will select from a menu of hedge portfolios that have returns that
are maximally correlated with state variable innovations. Jumps that do
not result in dependence between asset prices and future marginal utili-
ties can be accommodated within the ICAPM as well.

At this level of generality, this version of the ICAPM seems to be of little
empirical relevance since it would appear to take an implausibly large
number of both contingent claims to complete the market and state vari-
ables to describe the random shocks to the indirect utility of the represen-
tative investor. Fischer thought not because:

Introducing tastes does not make the theory into a black box, though, since
tastes are largely observable. We can estimate them with surveys, introspec-
tion, and detailed marketing and engineering data . . . Tastes and technology
. . . are observable to roughly the same degree. Estimating supply curves is as
difficult as estimating demand curves. It’s easy to see what and how much a
person or a household or a community will buy at given prices as it is to see
how much a plant or an office or a machine will make at given prices . . . In
principle, we can use marketing and engineering data to identify supply and
demand. In practice, we will find it very costly to gather this information and
interpret it. (Black 1995, pp. 84, 126)
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Perhaps he also thought that we empirical types are unwilling to do this
much work!

Like nature, capitalism abhors a vacuum, and an unfilled or underserved
product niche is that worst of all vacuums, a missed profit opportunity.
By the same token, a flood of similar products can overfill a niche, gener-
ating economic losses for the firms involved. Firms make the physical capi-
tal investment decisions, and firms and workers make the human capital
decisions that determine how well-positioned firms are to satisfy the fu-
ture product demand. Future demand will depend on taste shocks, the time
paths of both physical and human wealth, and other sources of state de-
pendence in preferences. Hence, the market value of the firm measures the
extent to which the past planning of firms and workers matched subsequent
consumer product demand.

On this view, markets may not be as incomplete as they might appear
at first blush. The range of possible values of the common stocks of busi-
ness firms might come close to spanning the uncertainties confronting firms
and workers. If such spanning obtains, options written on equities can help
complete the market. Several tiers of debt securities with differing prior-
ity in bankruptcy can help serve this function as well. This argument might
fail for nontraded assets such as human capital or unlisted firms, but Fischer
did not think so because:

Human and physical capital take relatively stable shares . . . Thus we can use
the market prices for firms that have traded securities to suggest market values
for human capital. We assume that the return on total human capital is equal
to the return on total physical capital. We do the same for the physical capital
of firms that have no traded securities. (Black 1995, p. 34)

Home mortgages, again possibly with several tiers, and credit card debt
can be viewed as contingent claims that help span individual specific risks.

To Fischer, it simply was not plausible that an economically important
state of the world would not be reflected in a market value somewhere.
Investors can write financial contracts that ensure against any outcome for
which the configuration of returns is different. As long as each economi-
cally important state is distinctly value-relevant for some security, the usual
gains from trade argument implies that they have the incentive to do so.
If, in addition, information flows are sufficiently smooth, such contracts
would only need to span small uncertainties since diffusion processes have
continuous sample paths. The combination of value-relevant states and
smooth information flows makes for more plausibly complete markets.

If anything, obtaining the ICAPM with a small number of state variables
is easier still. Many of the risks confronting workers and firms are in zero
net supply. For example, an industry portfolio return is unaffected by which
firms prove to be winners and losers when there are several firms with
competing technologies in a market with given demand. Fischer did not
think that all sectoral demand and supply shifts were in zero net supply
since he viewed booms and busts as nothing more than the simultaneous
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occurrence of predominantly good or bad matches across numerous sec-
tors. Nevertheless, the relatively small number of factors needed to account
for covariation among asset returns suggests that a small number of state
variables are empirically relevant if the ICAPM is true.

Fischer thought that the identification of the relevant state variables is
another matter entirely. He remained suspicious of efforts to identify fac-
tors empirically by either factor analysis as in the APT or through cross-
sectional regression of returns on security characteristics that are putatively
correlated with risk exposures. He viewed direct measurement by study-
ing the details of tastes and technology as both prohibitively expensive and
potentially subject to rapid depreciation in the rich dynamics predicted by
his general equilibrium world.

If correct, this seemingly small measurement problem has nearly fatal
consequences for our ability to discover the economics of financial market
equilibrium. If financial markets are in equilibrium, they do not permit
arbitrage opportunities. If market prices are arbitrage-free, there is a set of
strictly positive state prices implicit in market prices. If the market is com-
plete, these state prices are unique and there is a representative investor
whose asset demands characterize the equilibrium. This representative
investor sets expected marginal utilities proportional to state prices state
by state.

Since the representative investor’s preferences are state-dependent, it
is trivial to construct a utility function that supports this equilibrium. Take
arbitrary concave preferences, probability beliefs across states, and a rate
of time preference. Calculate the implied expected intertemporal marginal
rate of substitution at the aggregate consumption of goods and services in
each state of nature. Compute the ratio of the state price to the expected
intertemporal marginal rate of substitution state by state. Set representa-
tive investor preferences next period equal to the product of this ratio and
the original (arbitrary) concave utility. The asset demands of this investor
will support equilibrium prices and quantities. Other constructions are
possible; for example, state-dependent risk-neutral preferences—that is,
those that are linear in wealth—will suffice as well.

In the absence of a priori identification of the relevant state variables
and how they impinge on investor preferences, the hypothesis that finan-
cial markets are in equilibrium is entirely vacuous as long as market prices
are arbitrage-free. Since beliefs are arbitrary, a rational expectations equi-
librium is both easily constructed and similarly vacuous. That is, there are
an infinite number of observationally equivalent equilibria. One cannot
speak of a complete markets model of this form as making testable predic-
tions that can be confronted with data to see if it is true or false.

This sort of reasoning is implicit in Fischer’s work, particularly Black
(1995). On this view, any positive theory of risk premiums is really a model
of specific representative investor preferences. Any rejection can be inter-
preted as simply implying that the preference specification is wrong, not
that financial markets are out of equilibrium or are incomplete. If one is
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willing, as was Fischer, to treat market completeness as the maintained
hypothesis, empirical efforts to model risk premiums should be viewed as
explorations of functional forms in applied demand analysis.

Instead, he favored a different mixture of applied theory and empirical
work:

[I]t’s better to “estimate” a model than to test it. I take “calibration” to be a form
of estimation, so I’m sympathetic with it, so long as we don’t take seriously
the structure of a model we calibrate. Best of all, though, is to “explore” a model.
This means creating many specific examples of a general model, where each
one explains a single stylized fact or perhaps a few features of the world. It
means using some of these examples to elucidate microeconomic evidence . . .
It means changing examples quickly when they don’t fit the facts. It means
avoiding formal testing, or even estimation, of heavily restricted models. (Black
1995, pp. 4, 5)

Black (1988, 1990b) presented two related explorations of general equi-
librium. These examples—explicit in Black (1990b) and implicit in Black
(1988)—were constructed to show that a standard stochastic growth model
with a representative investor, one without directly state-dependent prefer-
ences, could reproduce three empirical regularities: consumption smooth-
ing, the equity premium puzzle, and wealth volatility that is both high and
declining in the level of wealth. High wealth volatility implies that it is hard
to measure both the average level and time variation of expected returns, a
feature Fischer used in his account of the October 1987 stock market crash.

What characteristics must such a model possess? Representative inves-
tor preferences are those routinely used in applied stochastic growth theory;
they are additively separable over time with constant relative risk aver-
sion utility of (instantaneous) consumption. Consumption smoothing arises
when consumption changes less than one-for-one with wealth. The second
and third regularities obtain when wealth dynamics are those used in the
CAPM pricing of derivatives in the preceding section: a diffusion process
with drift and diffusion coefficients that depend only on wealth. The pa-
rameters of this stochastic process can be chosen to match its observed
moments. Equilibrium requires determination of two prices—the risk pre-
mium for wealth and the risk-free rate—that make the representative in-
vestor happy to hold risky wealth and to have no position in (zero net
supply) riskless bonds.

Two natural relative risk aversion measures govern the amount of con-
sumption smoothing in equilibrium. The first is direct risk aversion: the
coefficient of relative risk aversion of instantaneous utility or, equivalently,
one minus the consumption elasticity of instantaneous utility. The second
is indirect risk aversion: the product of wealth and the ratio of the second
derivative of discounted expected utility with respect to wealth to the cor-
responding first derivative or, equivalently, one minus the wealth elastic-
ity of discounted expected utility. In equilibrium, the ratio of direct to
indirect risk aversion is equal to both the wealth elasticity of consumption
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and the ratio of the standard deviation of consumption to that of wealth.
Hence, consumption smoothing arises when this ratio is less than one.

These risk aversion measures determine the equilibrium properties of
expected returns. The market price of risk—the ratio of the instantaneous
expected excess return to the instantaneous variance of wealth—is given
by indirect risk aversion. A more delicate calculation reveals that the wealth
elasticity of the instantaneous expected excess market portfolio return is
negative when direct risk aversion exceeds one—that is, more risk-averse
than log utility—and indirect risk aversion is below unity. The same result
shows that the instantaneous variance of wealth is declining in wealth.
Thus, the model qualitatively reproduces the regularities outlined above.

It also yields roughly the right orders of magnitude for reasonable pa-
rameter values. If the Sharpe ratio of stock market wealth is roughly the
same as that of overall market wealth, the average risk premium is equal
to the model value when indirect risk aversion is 5.6. Using Fischer’s esti-
mate of one-third for the ratio of the standard deviation of consumption to
that of wealth, the ratio of direct to indirect risk aversion is roughly three,
implying a direct coefficient of relative risk aversion of 16.7. Both risk aver-
sion estimates seem a bit high, but they are both very imprecisely estimated
and of the right order of magnitude, unlike those found in much of the
equity premium puzzle literature. A modest amount of the right kind of
state dependence in instantaneous utility or the introduction of an appro-
priate supply side would easily reduce these numbers.

Moreover, the model makes for a simple distorted beliefs story about
the October 1987 stock market crash. Expectations regarding volatility
should probably be treated as rational since volatility is estimated quite
precisely. However, nothing in the model required that investors possess
rational expectations about either expected returns or mean reversion.
Accordingly, suppose that beliefs about the indirect risk aversion of the
representative investor fluctuate randomly, the role of randomness being
to avoid adding hedging demands that would change the equilibrium of
the model. Such beliefs are plausible due to the imprecision with which
expected returns and mean reversion are measured.

The stock market rose considerably in the first three quarters of 1987
without an associated increase in fundamentals. This was also a period
during which many institutional investors adopted portfolio insurance
strategies, making their trading much more sensitive to changes in the
values of their portfolios. Just before the crash, I remember tactical asset
allocators saying that their models were screaming for them to get out of
equities in September and early October, a signal that prompted some to
add ‘earnings momentum’ to their models to justify staying in the stock
market.

Suppose investors systematically misjudged the extent to which the
representative investor changed in this dimension. That is, suppose in-
vestors underestimated the increased mean reversion in expected returns
that could be expected from wealth fluctuations. On this hypothesis, the
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behavior of returns during the week ending on October 16 forced inves-
tors to realize that mean reversion from this source in expected returns was
much higher than they had expected. Fischer thought that this change in
expectations explained the global decline in equity prices.

Note that such an explanation is always consistent with the hypothesis
that financial markets were in such an equilibrium that changed in this
fashion. As in the earlier construction of the representative investor, com-
pute the ratio of state price to the expected intertemporal marginal rate of
substitution state by state under rational expectations. A representative
investor with beliefs proportional to the product of rational probabilities
and this ratio will support any equilibrium prices and quantities. That is,
this distorted beliefs interpretation is vacuous, too, as it is always avail-
able when market prices are arbitrage-free.

This story of changing expectations is one in which markets are grossly
inefficient since it supposes that a revision of beliefs regarding mean re-
version in expected returns caused a 20% market correction. Said correc-
tion occurred on a day on which $40 billion of stock and stock index futures
changed hands in the U.S., and this observation raises a major concern
regarding general equilibrium models of financial market equilibrium.
Throughout this chapter, financial markets have been an abstract place in
which asset prices are determined. In contrast, the microstructure of actual
securities markets is rich, and understanding the information flows within
them was a subject of great interest to Fischer. While I will not discuss his
market microstructure research so as not to further lengthen an overly long
essay, I do want to briefly address the role of trading in general equilib-
rium models. If the most disconcerting prediction of the Sharpe–Lintner
CAPM is that all investors hold the same portfolio of risky assets, the most
counterfactual implication of general equilibrium models under rational
expectations concerns the volume of trade.

That there might be a tenuous connection between the microstructure
of financial markets and general equilibrium models is nowhere more
obvious than in the predictions of the latter for the volume of trade. In the
initial Arrow–Debreu formulation, all trading takes place at time zero, and
no investor feels a need for markets to reopen thereafter. In the sequential
markets version of the model, investors need only a modest amount of trad-
ing to rebalance their portfolios as the economy evolves stochastically.
Hence, complete market models of financial market equilibrium in the
absence of information asymmetries predict little or no trade, an observa-
tion grossly at variance with the volume of trade in the real world.

How do information flows and investor trading interact in a general
equilibrium model of the sort favored by Fischer? More precisely, how
should one refine general equilibrium models of financial markets to ac-
count for the volume of trade? As in so much of his work, Fischer discussed
the relevant economics in words as though the implicit theorems and proofs
are obvious. The discussion that follows reflects an effort to make them a
bit more explicit.
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Consider first the sources of short-run variation in indirect marginal utili-
ties. Fischer’s thoughts can be gleaned from his beliefs regarding consump-
tion smoothing: “At intervals of a quarter or longer, aggregate consumption
shows a preference for smoothing. At much shorter intervals, though, people
seem very willing to shift consumption through time. They exhibit ‘local
substitution’” (Black 1995, pp. 22–23). If consumption on nearby dates should
be treated as nearly perfect substitutes, marginal utilities should be expected
to be similar on nearby dates as well so long as state variable innovations
don’t shift marginal utilities much in the short run. I will take the ‘local
substitution’ assumption to mean that most investors have few or no
noninformation-related motives for trade most of the time.

Trading must be in zero net supply. That is, there must be a buyer for
every seller and a seller for every buyer. In this setting, prospective traders
know two things: they are trading on what they believe to be private in-
formation, and potential counterparties are (nearly all) similarly situated.
Suppose all investors know that they all have rational expectations and
common prior beliefs, but not common information, and that markets are
complete. In this case, all investors can infer the relative valuations of po-
tential counterparties from their willingness to trade. Hence, prices must
adjust until all investors agree on the price. In equilibrium, prices will re-
veal the private information of all investors with no trading.

This very general no-trade theorem leaves only three potential reasons
for trade. One is that the presumption of solely information-related trad-
ing motives is wrong but it is unlikely that the volume of observed trade
can be explained solely in life cycle or risk-sharing terms. The common
priors assumption is a bit more delicate. Fischer thought that “differences
of opinion will not exist” (Black 1986, p. 531) in complete markets, perhaps
on the hypothesis that heterogeneous priors are much like private infor-
mation in equilibrium or because Bayesian updating can yield common
posterior beliefs in large samples. This leaves the rational expectations
assumption as the likely source of trade in a complete market model.

Enter noise trading:

Noise trading provides the essential missing ingredient. Noise trading is trad-
ing on noise as if it were information. Perhaps they think the noise they are
trading on is information. Or perhaps they just like to trade . . . the informa-
tion traders can never be sure that they are trading on information rather than
noise. What if the information they have has already been reflected in prices?
Trading on that kind of information would be just like trading on noise. (Black
1986, pp. 531–532)

Prospective traders still know that all investors are trading on what they
believe to be private information but can balance the fear that the expecta-
tions of potential counterparties are rational against the hope that they are
not. Risk aversion and fear of their own fallibility will restrict the willing-
ness of putatively informed investors to trade, permitting prices to persis-
tently deviate from fundamental value.



30 The Legacy of Fischer Black

Hence, we must add descriptors of the beliefs of the representative in-
vestor to account for the volume of trade in a full-blown general equilib-
rium model. In the absence of theoretical restrictions on beliefs, we can
always construct a representative investor with rational or irrational be-
liefs that support any equilibrium. However, as in the case of preferences
and technology, Fischer thought of “expectations as observable, at least in
principle. We can see expectations in the career choices people make and
in the investments firms make. We can even find out about expectations
by asking people what they think will happen in the future” (Black 1995,
p. 99). If we are willing to condition on a theoretical model, we can use
observed investor risk exposures to infer expectations. That is, we can
measure expectations from the choices made by investors if we are willing
to take seriously the notion that they solve the maximum problems that
underlie our models. Fischer always believed in conditioning measurement
on theory.

7. CONCLUSION

Throughout this essay, I have tried to sketch a picture of a mind that viewed
financial markets from a general equilibrium perch. The view was not static,
involving a progression from the simple CAPM to an ICAPM with state
dependencies arising from the potentially rich dynamics of a business cycle
model driven by sectoral demand and supply dynamics arising from costly
resource reallocation. The common theme was the simplicity of equilibria
in which all investors or a representative stand-in held the market port-
folio and not derivative assets. Fischer was a master at fleshing out the im-
plications of the hypothesis that the latter are in zero net supply.

I have also stressed the sense in which this model does not produce fal-
sifiable, testable hypotheses that can be compared with evidence. It is dis-
tressing to discover that it is a theorem that economics is vacuous but, viewed
in isolation, the hypothesis that asset markets are in equilibrium is just so
much empty rhetoric. But we do not view markets in isolation; we implic-
itly and explicitly bring a mixture of intuition, conjecture, and knowledge
to our research. As Fischer put it:

I think more about a group of stylized facts that summarize the world as I see
it. These are my observations, derived from everyday experience, from read-
ing newspapers and magazines, and from studying technical publications . . .
I think we can explain all of these puzzles using sample models derived from
the full general equilibrium model with general von Neumann–Morgenstern
utility. What’s important, I think, is to explain the stylized facts in a deeper
sense. We want to understand the underlying economics. (Black 1995, p. 7)

On this view, our enterprise involves the exploration of a region of model
space centered around the stylized facts and economic intuitions that we
find compelling. Students of financial markets differ in precisely what eco-
nomics and evidence they find compelling. These differences arise largely
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because we do not have direct and credible measurements of the determi-
nants of preferences, technology, beliefs, and the extent to which investors
make choices and interact in markets according to our models. In the ab-
sence of such knowledge, the model constitutes a language for describing
and organizing our thinking about financial market equilibrium, not for
making predictions about it. This view is reflected in Fischer’s notions of
the appropriate standards of evidence in economic discourse:

My approach to evidence is similar to McCloskey’s . . . and Summers’. . . . My
job, I believe, is to persuade others that my conclusions are sound. I will use an
array of devices to do this: theory, stylized facts, time-series data, surveys,
appeals to introspection and so on. (Black 1995, p. 83)

In my view, Fischer was a sophist, a label I do not mean to be a slander.
In the dialogue Gorgias, the sophist Gorgias described rhetoric as the art of
persuasion or the manufacturer of conviction. As evidenced by the previ-
ous quotation, Fischer thought that economic reasoning was sophistry of
just this sort. Irrespective of whether one agreed with his reasoning, he
assembled an impressive collection of “devices,” as can be seen by perus-
ing Black (1995), especially his thorough and critical reading of so much of
the literature.

In this respect, he made it part of the way down the path he set out on,
fleshing out the theoretical and empirical details of a general equilibrium
model of the sort he thought described the world. However, he only made
it part of the way, to some extent because of his untimely passing but also
because he did not “think we are ready to create a model with intermedi-
ate scope that explains in numerical detail many kinds of evidence at once”
(Black 1995, p. 4). He remained an optimist about the eventual success of
this endeavor to the end:

No doubt the reader’s glasses differ from mine. But we are all looking at the
same world, and the technology for making glasses is constantly improving.
Someday it will all be clear. (Black 1995, p. xi)

I can think of no more fitting conclusion.

REFERENCES

Adler, Michael and Bernard Dumas, 1983, “International Portfolio Choice and
Corporation Finance: A Synthesis,” Journal of Finance 38 (June), pp. 925–984.

Black, Fischer, 1972a, “Capital Market Equilibrium with Restricted Borrowing,”
Journal of Business 45, pp. 444–454.

Black, Fischer, 1972b, “Equilibrium in the Creation of Investment Goods under
Uncertainty,” in Michael C. Jensen (ed.), Studies in the Theory of Capital Markets
(New York: Praeger).

Black, Fischer, 1974, “International Capital Market Equilibrium with Investment
Barriers,” Journal of Financial Economics 1 (December), pp. 337–352.

Black, Fischer, 1978, “The Ins and Outs of Foreign Investment,” Financial Analysts
Journal 34 (May/June), pp. 25–32.



32 The Legacy of Fischer Black

Black, Fischer, 1986, “Noise,” Journal of Finance 41 (July), pp. 529–543.
Black, Fischer, 1988, “An Equilibrium Model of the Crash,” in Stanley Fischer (ed.),

NBER Macroeconomics Annual 1988 (Cambridge, Mass.: MIT Press).
Black, Fischer, 1989a, “How We Came Up with the Option Formula,” Journal of

Portfolio Management 15 (Winter), pp. 4–8.
Black, Fischer, 1989b, “Universal Hedging: Optimizing Currency Risk and Reward

in International Equity Portfolios,” Financial Analysts Journal 45 (July/August),
pp. 16–22.

Black, Fischer, 1990b, “Mean Reversion and Consumption Smoothing,” Review of
Financial Studies 3, pp. 107–114.

Black, Fischer, 1990a, “Equilibrium Exchange Rate Hedging,” Journal of Finance
45 (July), pp. 899–907.

Black, Fischer, 1993a, “Beta and Return,” Journal of Portfolio Management 20 (Fall),
pp. 8–18.

Black, Fischer, 1993b, “Estimating Expected Return,” Financial Analysts Journal 49
(September/October), pp. 36–38.

Black, Fischer, 1995, Exploring General Equilibrium (Cambridge, Mass.: MIT Press).
Black, Fischer, Jensen, and Myron Scholes, 1972, “The Capital Asset Pricing Model:

Some Empirical Tests” in Michael C. Jensen (ed.), Studies in the Theory of Capi-
tal Markets (New York: Praeger).

Black, Fischer and Robert Litterman, 1991, “Asset Allocation: Combining Investor
Views with Market Equilibrium,” Journal of Fixed Income 1 (September), pp. 7–18.

Black, Fischer and Robert Litterman, 1992, “Global Portfolio Optimization,” Fi-
nancial Analysts Journal 48 (September/October), pp. 28–43.

Black, Fischer and Myron S. Scholes, 1973, “The Pricing of Options and Corpo-
rate Liabilities,” Journal of Political Economy 81, pp. 637–654.

Black, Fischer and Myron Scholes, 1974a, “From Theory to a New Financial Prod-
uct,” Journal of Finance 29 (May), pp. 399–412.

Black, Fischer and Myron S. Scholes, 1974b, “The Effects of Dividend Yield and
Dividend Policy on Common Stock Prices and Returns,” Journal of Financial
Economics 1 (May), pp. 1–22.

Brealey, Richard and Helen Edwards, (eds.), 1991, A Bibliography of Finance (Cam-
bridge, Mass.: MIT Press).

Fama, Eugene F., 1970, “Multiperiod Consumption–Investment Decisions,” Ameri-
can Economic Review 60 (March), pp. 163–174.

Jensen, Michael. C., (ed.), 1972, Studies in the Theory of Capital Markets (New York:
Praeger).

Lintner, John, 1969, “The Aggregation of Investors’ Diverse Judgements and Pref-
erences in Perfectly Competitive Security Markets,” Journal of Financial and
Quantitative Analysis 4 (December), pp. 347–400.

McCloskey, D. N., 1985, The Rhetoric of Economics (Madison: University of Wis-
consin Press).

McCloskey, D. N., 1990, If You’re So Smart: The Narrative of Economic Expertise (Chi-
cago: University of Chicago Press).

Merton, Robert C., 1976, “Option Pricing when the Underlying Stock Returns are
Discontinuous,” Journal of Financial Economics 5, pp. 125–144.

Stulz, René, 1981, “A Model of International Asset Pricing,” Journal of Financial
Economics 9, pp. 383–406.

Summers, Lawrence H., 1991, “The Scientific Illusion in Empirical Macroeconomics,”
Scandinavian Journal of Economics 93, pp. 129–148.



33

2

Fischer Black’s Contributions
to Corporate Finance

Stewart C. Myers

Fischer Black’s impact on corporate finance is insufficiently noticed. He did
not specialize in that subject, and the fame of “Black–Scholes” has drawn
attention from his broader contributions.

But Fischer was co-author of the most influential early test of the Capi-
tal Asset Pricing Model (CAPM), now probably the most widely used tool
for estimating the opportunity cost of capital and valuing risky real assets.
The CAPM is not essential to the now-accepted framework of corporate
finance—any linear asset pricing model works—but it made that frame-
work accessible and, at least in principle, implementable.

The Black–Scholes option pricing model provided the tools to value the
real options embedded in almost all corporate investments. It also revealed
the true structure of corporate liabilities. And there are great Black papers
on dividend policy, the normative theory of corporate investment, the
meaning of accounting income, and on taxes and pension management.

Fischer had a gift for finding interesting ideas in unexplored or neglected
territory. He rarely added twigs to existing branches of the literature. There-
fore, it pays to take an interest in what interested him. I think some of his
more provocative statements:

[D]ividends that remain taxable will gradually vanish. (Black 1990, p. 5)

The objective of accounting is to use a set of rules that makes the price-earnings
ratio as constant as possible. (Black 1980, p. 6)

[W]e might define an efficient market as one in which price . . . is more than
half of value and less than twice value. (Black 1986, p. 533)

In the real world of research, conventional tests of [statistical] significance seem
almost worthless. (Black 1993, p. 9)

were intended in part to jolt researchers to question conventional meth-
odology or to work on something new. So in this review I will empha-
size some things we don’t know about corporate finance and also known
problems that are often conveniently forgotten. The review is not a com-
plete survey of Fischer’s work or of those parts of his work that may touch
on corporate finance.
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This review starts with the CAPM and its role in the standard frame-
work of corporate finance. Used normatively, this framework requires a
way of valuing real assets, and for that task, the CAPM, combined with
discounted cash flow (DCF), seems ideal. But of course there are problems,
and Fischer’s work on real investment decisions suggests an alternative
approach, which I describe in section 2.

Section 3 considers real options and the applicability of valuation
methods developed for traded options. The last section covers financing, divi-
dend policy, accounting, and tax issues.

1. THE CAPM AND THE STANDARD FRAMEWORK
FOR CORPORATE FINANCE

The standard framework for corporate finance starts with a market-value
balance sheet.

PV = ΣPVi D = ΣDi

PVGO E

______ ______

V V

where PV = ΣPVi is the sum of the values of the firm’s projects—“projects”
referring to its real assets and existing operations; PVGO is the present value
of future investment opportunities; D = ΣDi is the market value of outstand-
ing securities, excepting equity; E is the market value of outstanding com-
mon stock; and V is the value of the firm. Note that all entries are current
market values. For example, PVi is the market value of project i if it were
separately traded. The assumed objective is maximization of E, the current
value of shareholders’ wealth.

This balance sheet model of corporate finance is more than definitions or
an accounting identity. It implicitly assumes that capital markets are tol-
erably perfect, efficient, and complete. This assumption supports the ob-
jective of market-value maximization. It also supports value additivity, the
assertion that project values add up. The balance sheet says that the value
of the firm can be calculated by breaking its assets and operations into
discrete projects, valuing each one separately, and summing.

This framework is used normatively as well as positively. It governs how
much of corporate finance is taught. But finance teachers and textbook
writers can’t just describe the firm as a value-maximizing bundle of projects.
Their audiences expect analytical methods and advice.

Think of teaching finance in 1970. By then it was clear that market-value
maximization made sense. The value additivity principle had been dem-
onstrated for perfect and (sufficiently) complete markets.1 Modigliani and
Miller’s (MM’s) papers had shown that financing and dividend policies
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ought to have only second-order effects: value added should come mostly
from the left side of the balance sheet.2

Thus, we had the $64,000 question, “How is project value calculated?”
The presumptive answer was discounted cash flow:
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∑

11

(1)

where Cit is the expected after-tax cash flow for project i in period t, ex-
tending to a horizon date H; and ri is the opportunity cost of capital (that
is, the expected rate of return offered by securities or portfolios with risks
matching project i.3

But this DCF formula immediately raises three further questions:

1. What assumptions about the expected cash flows Cit are necessary
for the formula to work?

2. How can the expected cash flows be estimated?
3. What determines ri, the opportunity cost of capital? Is it really likely

to be independent of the timing of cash flows?

The CAPM offered a possible answer to question 3:

ri = rf + βi (rm – rf) (2)

where rf is the risk-free interest rate, rm – rf the expected market risk pre-
mium, and βi project i’s beta. The formula as written assumes these param-
eters are constant.

The CAPM was potentially an enormous advance in valuing real assets.
Beta could, in principle, be estimated from returns on stocks with risks simi-
lar to the project under consideration. Estimating the expected return on
the market was harder, but not as tough as estimating expected returns on
individual securities. Moreover, betas “added up.” The CAPM made it easy
to see why present values add and why “portfolio effects” have no place
in corporate investment decisions if shareholders have access to perfect and
complete capital markets.4

But could the CAPM be trusted? By 1970, its theoretical importance was
well-understood but its empirical relevance unknown. Thus, the stage was
set for Black, Jensen, and Scholes (1972). That paper’s econometric setup,
carefully designed to avoid bias and reduce measurement errors, inspired
confidence. The paper also showed that betas mattered. There was a sig-
nificant positive relationship between average returns and beta from 1931
to 1965, though returns on low-beta portfolios were too high—higher than
predicted by the CAPM—and returns on high-beta portfolios were too low.5

In other words, the relationship between return and beta was too flat—
but that could be accommodated in generalized versions of the CAPM in
which beta plays its customary role. For example, Black (1972) showed how
the CAPM changes when there is no truly risk-free asset or when inves-
tors face restrictions on, or extra costs of, borrowing. He offered this



36 The Legacy of Fischer Black

generalized model as a possible explanation of the too flat slope of the
empirical Security Market Line. By the 1990s, he regarded this model as
the most likely explanation.6

The Black–Jensen–Scholes paper, with contemporaneous work by Miller
and Scholes (1972) and others,7 gave researchers, teachers, and ultimately
financial managers confidence in the CAPM and therefore a relatively easy
way of thinking about risk and the cost of capital.8 The CAPM fit easily
into the balance sheet model of corporate finance and eventually made that
model seem no more than common sense.

Today, that early confidence in the CAPM may seem misplaced. The
positive relationship between beta and average return seems to have dis-
appeared since 1965, and other factors, such as size and market-to-book
ratios, seem much more powerful in explaining differences in average
returns.

Black (1993a) gives a critical review of much of this work and a strong
defense of beta and the CAPM.

With Fischer Black on its side, the CAPM can’t be completely dead. The
CAPM won’t disappear until a replacement is found—a replacement with
support from theory as well as empirical tests. In the meantime, those in-
volved in applied corporate finance will often end up using the CAPM
because it is consistent with the balance sheet model and most of the time
seems to give sensible answers. When better asset-pricing models are fi-
nally fit for use, the CAPM will depart, but the balance sheet model will
stay. That model seems second nature today because the CAPM helped us
understand it.

But Fischer would give a final, contrarian twist to this story. The bal-
ance sheet model may seem second nature to most, but he didn’t fully trust
it. For example, he offers “irrational pricing” as a partial explanation for
the CAPM’s empirical shortcomings (1993a, p. 10). The balance sheet model
assumes rational investors. Fischer also disagrees with MM’s leverage ir-
relevance proposition, arguing that corporations should borrow to take
advantage of the too flat Security Market Line, thereby substituting cor-
porate for personal leverage. I wish he were here to debate this.9

2. FISCHER BLACK ON CORPORATE INVESTMENT DECISIONS

Financial managers, consultants, and textbook writers now seem comfort-
able with DCF, but a devil’s advocate can easily paint Eq. (2) as simple-
minded. Here are three common problems:

1. Estimates of expected cash flows several years away are vapor-
ous, biased, or maybe both.

2. Even if the CAPM is OK, some betas can’t be estimated with ac-
ceptable accuracy, and there is no assurance that future betas ap-
proximate past betas. Estimates of the market risk premium are
frequently controversial.
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3. In order to use a constant (not time-varying) discount rate, de-
trended cash flows must follow a geometric random walk with
constant proportional variance.10 This implies lognormally distrib-
uted cash flows and rules out negative future cash flows if the ex-
pected cash flow is positive.11 (Managers would love to find projects
with guaranteed positive cash returns. Unfortunately. . . .12) Mean
reversion, as might be predicted from competitive responses to un-
expectedly high or low cash flow realizations, is likewise ruled
out.13

Black (1988) presents “a simple discounting rule” that may alleviate some
of these problems. His idea can be put as follows. Suppose that a cash flow
to be received one period hence is linearly related to the return on the
market portfolio:

Ci1 = a + b(1 + rm1) + e1 (3)

where a is a constant and e1 is independent noise with a mean of zero. The
present value of b(1 + rm1), which corresponds to b dollars invested in the
market, is just b. The present value of the diversifiable error term e1 is zero.
The present value of the constant a is found by discounting at the risk-free
rate.14 Therefore, the value of a cash flow to be received at date 1 is
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In other words, the certainty equivalent of Ci1 is a + b(1 + rf), the expecta-
tion of the cash flow conditional on rm1 = rf . Black’s discounting rule re-
places the unconditional expected cash flow with a “conservative” forecast
that assumes that investors in the market end up earning no risk premium.
This seems natural: in practice, one rarely observes financial managers
varying discount rates project by project, but they do dial in different de-
grees of conservatism in forecasting projects’ cash flows.

The discounting rule is easily extended to two or more periods. Sup-
pose the cash flow is to be received at date 2:

Ci1 = a + b(1 + rm1)(1 + rm2) + e2

where e2 captures the noise between dates 0 and 2. The present value of
b(1 + rm1)(1 + rm2), which corresponds to b dollars invested in the market
for two periods, is again b, and
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The extension to a long-lived stream of cash flows, as in the DCF formula
given as Eq. (1), is straightforward.

Could this rule help the financial manager? It depends on whether the
manager can come up with a conditional forecast of future cash flows. Once
such a forecast is in hand, the manager does not need to know the expected
market risk premium rm – rf . The manager does not need to know beta or
the opportunity cost of capital. Time-varying or uncertain betas or risk
premiums cause no problems. The manager does not even have to worry
whether the Security Market Line is too flat. The discount rate for the con-
ditional (certainty equivalent) cash flow forecast is just the spot Treasury
rate for the date at which the cash flow is to be received.

But if the manager starts with an unconditional forecast, Black’s discount-
ing rule is much less help. Such a forecast could, of course, be written down
from the unconditional expectation a + b(1 + rm1) to its certainty equivalent
a + b(1 + rf), but this writedown would require knowledge of b (equivalent
to knowing beta) and of the difference between rm and rf (the expected
market risk premium). In this case, why not use the conventional DCF for-
mula directly? The only disadvantage of doing so is relying explicitly on
the CAPM. (Once the conditional, certainty equivalent cash flow is ob-
tained, the CAPM is discarded. However, the choice of the market port-
folio as the traded valuation benchmark may implicitly assume that model.
More on this below.)

Fischer claimed that conditional forecasts are, for most people, easier
than unconditional ones. I think he’s right if the right questions are posed
to the forecaster.

Suppose the question is put this way: “Assume that next year’s return
to investors in the stock market is only the one-year Treasury rate. Then
what is next year’s expected cash flow for the proposed expansion of our
refinery?” This question is almost impossible to respond to directly because
the manager is given no way of translating the assumed market return into
assumptions about the business conditions relevant to refining.

Thus, Fischer’s discounting rule seems to call for a two-step forecast. First
construct scenarios for the business variables corresponding to the macro-
economic conditions implied by a market return equal to the risk-free rate.
Then ask the manager to forecast cash flow for these scenarios.15 If every-
thing is done consistently, the result should be the conditional forecast
Fischer calls for.

Better still, replace the market with a stock or portfolio that’s closer to the
project under consideration. For example, the refinery expansion project’s
cash flows could be forecasted on the assumption that an oil industry port-
folio will earn only the risk-free rate. Black’s reasoning works for any bench-
mark security or portfolio that’s priced in an efficient and competitive market.

Fischer’s discounting rule does not require the CAPM, only that the cash
flow can be linked to the traded benchmark by an equation such as (3).
Suppose that asset prices conform to a two-factor arbitrage pricing model;
for the benchmark portfolio B,
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rB = rf + bB1(rfactor 1 – rf) + bB2(rfactor 2 – rf) (5)

where the b’s are the benchmark’s “betas” on the factor returns and rfactor 1
– rf and rfactor 2 – rf the expected factor risk premiums. Fischer’s discounting
rule requires that the project cash flow depend linearly on the benchmark’s
return and that no factor shows up in the noise variable e. For the first cash
flow at date 1,

Ci1 = a + b(1 + rB1) + e1 (3a)

This works only if the project cash flows also depend on factors 1 and 2
and have the same relative factor weights as the benchmark portfolio. Other-
wise, the “surprises” in rB will show up in the noise term e, and we can no
longer assert that the present value of e is zero, even if it has a zero mean.
If the present value of e is not zero, then Fischer’s rule does not follow.

In short, you can’t apply Fischer’s discounting rule without choosing
an asset-pricing model. You need to specify a model to know what factors
determine expected returns and to choose a benchmark. But if a benchmark
can be found, and if cash flow forecasts can be made conditional on the
benchmark return equal to the risk-free rate, then knowing the parameters
of the asset-pricing model is no longer necessary.

Could Fischer’s valuation procedure substantially improve capital in-
vestment practice? I think it’s worth trying. At least the attempt might wake
up casual users of DCF plus CAPM to the assumptions they have been
making.

3. REAL OPTIONS

Fischer’s discounting rule works only for project cash flows that can be
expressed as linear functions of security or portfolio returns. In other words,
it does not work for real options or for assets with option-like characteris-
tics. In this respect, it is no better than conventional DCF. To keep things
simple, I will set the rule aside and concentrate on the deficiencies of DCF
when options are important.

How important are real options in corporate investment decisions? Judging
from practice, where explicit real options analyses are very rare, one might
conclude that DCF solves, say, 95% of the investment valuation problem,
leaving option-pricing methods as a possible 5% refinement. In fact, options
are at the heart of the valuation problem in all but the most pedestrian cor-
porate investments. If I am right in this, the option-pricing methods first
developed by Black and Scholes (1973) are a first-order contribution to cor-
porate finance.

It’s hard to think of an investment project that does not include impor-
tant real options:

1. When a new project is undertaken, no one knows how long it will
last. There is no predetermined economic life. Successful projects
are extended, failures cut short. If one views each project as
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potentially long-lived, then there is a put option to abandon. The
exercise price is the value of the project’s assets in their next-best
use.16 This abandonment value put is encountered in all projects,
except for a few with contractually determined lives. Myers and
Majd (1990) have shown the put’s importance numerically.

2. Some investment decisions are “go or no go,” now or never. But
when delay is possible, the firm holds a call option to invest. The
call is not exercised unless the project’s net present value (NPV) is
sufficiently far in the money to justify cutting the call’s life short.
The decision rule, “Invest if NPV is positive,” is no longer right.17

3. The design of production facilities has to trade off specialization
versus flexibility. Flexibility generally costs more, either in invest-
ment or production costs, but keeps the facilities useful if the in-
tended product doesn’t sell.18

4. Most “strategic” investments involve outlays today undertaken to
open up further investment opportunities (i.e., options to invest)
tomorrow. Thus, a company may enter a new market not to earn
immediate high returns but to acquire technology or an established
base of customers, or to “get down the learning curve” to lower
costs more than later-entering competitors. These advantages then
give the option for follow-on investment. There need be no cer-
tainty of positive NPV for these investments, only the possibility.
In fact, the more uncertainty the better, other things equal, because
options on volatile assets are always worth more than options on
safe ones.19

5. Investments in R&D, though neglected in the finance literature,
are similar to strategic investments—made not in expectation of
immediate profit but in hopes of generating follow-on investments
with positive NPV.

My point is that real options are nearly ubiquitous. They account for
PVGO, the present value of growth opportunities in the balance sheet
model, and they are embodied in, or attached to, virtually every real asset
or investment project. Thanks to Black and Scholes (1973), and the finan-
cial engineering techniques built on the Black–Scholes theory, these real
options can be valued. I think this is Fischer’s biggest single contribution
to corporate finance.

But why are practical valuations of real options so scarce? The most
common types of real options have been identified (and listed above) and
solution techniques laid out. Two comprehensive books on the analysis of
real options have been published.20

The problem is not that option-pricing methods are untested or that they
require unusual or arbitrary assumptions. The methods are routinely used
in financial markets worldwide. The assumptions required to apply the
methods to real options are no more stringent than the assumptions re-
quired to apply DCF.21
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I attribute the lag in applications to two things. First is simply lack of
understanding. Most financial managers are not comfortable with option-
pricing methods. They do not fully trust the valuation methods or grasp
the meaning of assumptions and inputs. Thus, the numerical packages
usually required look like black boxes. Moreover, the language of options
is not widely understood. Remember, DCF is not just a tool for valuing
projects but a way of talking about projects; that is, a framework for assem-
bling information and debating projects’ prospects. Unless real options can
be talked about, calculations of real option values will not be trusted.

The second, deeper problem is the fuzziness of many real options. Their
terms are not contractual but part and parcel of the business, so they have
to be identified and modeled before inputs can be estimated and valua-
tions calculated. In some cases, this is not a big hurdle. The abandonment
put, for example, is easily recognized, and its exercise price is the “salvage”
or terminal value used in conventional DCF. But in other cases—for ex-
ample, strategic investments or outlays for R&D—the real option may be
easy to see intuitively but very hard to write down. The option may be too
complex, or its boundaries may not be crisply defined.

That may be discouraging for quantitative, normative finance. If the
object is positive—that is, to explain corporate investment behavior—
option-pricing theory clearly helps. Managers who have never heard of
Black and Scholes respond to real options by judgment and common sense.
For example, they make strategic investments and commit to R&D even
when conventional DCF would advise otherwise, so financial economists
may be able to understand financial managers’ actions even though we can’t
tell them what to do.

4. FINANCING, DIVIDEND POLICY, PENSIONS, AND ACCOUNTING

So far, I have concentrated on the biggest general issue in corporate finance,
the valuation of real assets and options. But Fischer Black had important
things to say on many other topics. I will briefly cover four of them, begin-
ning with financing and the structure of corporate liabilities.22

A. Financing

Black and Scholes (1973) is doubly famous. The paper showed how to price
options and explained the structure of corporate liabilities.

Common shares are call options, options to take (or retain) the firm’s
assets by paying off its debt. By put–call parity, we can also say that the
value of debt is marked down by the value of a default put: stockholders
can put the assets of the firm to its creditors and walk away without fur-
ther liability. The exercise price of the put is the face value of the debt.

From this insight, it was clear how the relative prices23 of the firm’s lia-
bilities are determined. Effects that might have seemed odd (for example,
equity value goes up when the volatility of asset returns increases) were
obvious. The conflicts of interest between stockholders and creditors were
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easy to see.24 Thus, the Black–Scholes paper accelerated the development
of agency theories of capital structure.

The value of a debt guarantee equals the value of shareholders’ default
put. An extensive literature on debt guarantees, especially deposit insur-
ance, therefore started up shortly after Black–Scholes. The moral hazard
problems created by deposit insurance were worked out in theory in the
1970s.25 They were worked out in practice in the savings and loan industry’s
subsequent debacle.

Of course, we now use Black–Scholes methods routinely to price all sorts
of corporate securities—convertibles, warrants, stock options, debt issues
subject to call, and so on. Black and Cox’s paper (1976) investigating how
bond indenture provisions affected default puts and bond values was es-
pecially influential.

B. Dividend Policy

Fischer’s main contribution to dividend policy was to remind us that we
don’t understand it. In “The Dividend Puzzle,” he concluded (1976b, p. 8):

What should the individual investor do about dividends in his portfolio? We
don’t know.

What should the corporation do about dividend policy? We don’t know.

By 1990 (Black 1990, p. 5), he had much more definite opinions:

Why do firms pay dividends? I think investors simply like dividends. They
believe that dividends enhance stock value . . . , and they regard dividends as
a more ready source of wealth because they feel uncomfortable spending out
of capital.

In the same work, the information content of dividends now is dismissed
and the tax disadvantages of dividends emphasized:

Changing dividends seems a poor way to tell about a firm’s prospects.

I think dividends that remain taxable will gradually vanish.

There is no model or analysis to back up these statements, but Fischer’s
line of thought can be seen pretty clearly. First is the admissability of irra-
tional investors or managers. It’s not that people are generally stupid. Noise
makes it hard to know when our behavior is rational and when it is not;
see Black (1986). Second is the recognition of taxes as a first-order effect.
The tax burden on cash distributed as dividends (vs. share repurchases)
couldn’t be clearer. What offsetting benefits do cash dividends provide?
Black says investors “like” dividends. He may be right. But I think divi-
dends won’t be fully understood until we have a formal, general agency
theory of corporate finance.

C. Pensions

Speaking of tax effects, how about tax arbitrage? Black (1980b) and Black
and Dewhurst (1981) identify an arbitrage opportunity in corporate pension
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funding. Suppose a corporation has a defined benefit pension obligation
that it can fund. That is, the Internal Revenue Service will allow the firm to
contribute, say, $100 million more to its pension fund. So the firm borrows
$100 million, puts this amount in the pension, and invests in corporate
bonds similar to the corporation’s own debt. The new debt liability and
pension asset exactly offset, except that interest paid on the corporation’s
new debt is tax-deductible and the interest earned in the pension fund is
tax-free. For long-lived pension liabilities and assets, the present value
gained is roughly equal to the marginal corporate tax rate times the amount
invested, at today’s tax rate about $35 million in this example.26

So the rule for blue chip, tax-paying corporations ought to be, “Borrow
and fund the maximum the IRS will allow. Put the pension assets in cor-
porate debt.” That’s Fischer’s advice. He’s right: you can’t argue with ar-
bitrage. I don’t understand why his advice isn’t more widely followed.27

D. Accounting

I close with one of Fischer’s most important and interesting insights, namely
the correct definition of accounting earnings.

Economists are trained to think of earnings as economic income, that is,
cash flow plus change in value. For stocks, income is obviously dividends
plus capital gains or losses. Thus, we tend to assume that accounting in-
come equals economic income. Accountants may say they are shooting for
economic income, and in some special cases they may even try to measure
it. But as Black (1980a, 1993b) shows, economic income can’t be the true,
general objective of accounting rules. If it were, the rules would attempt to
measure changes in the value of the firm or its assets, and they clearly do
not.

What then is accounting income supposed to measure? As far as I know,
the accounting literature does not say. Fischer’s answer is the only one that
makes sense:

all the users of accounting reports “. . . want the same kind of earnings figure.
They all want earnings to be a measure of value, not a measure of the change
in value.” (Black 1980a, p. 3)

Therefore,

“The objective of accounting is to use a set of rules that makes the price–earnings
ratio as constant as possible.” (Black 1980a, p. 6)

This is a testable statement. It implies that price–earnings ratios vary less
cross-sectionally than, say, market-to-book ratios, and that price–earnings
ratios are more stable over time than price, earnings, or other common
measures such as free cash flow. Fischer’s results (in Black 1993b) seem to
confirm this hypothesis.

Accounting is the language of practical finance, and accounting num-
bers are one of the most important sources of information about firms. Yet
financial economists have not paid much attention to the “should” and
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“why” of accounting. Academic accountants research the “why” but rarely
the “should.”

As Fischer said (1993b, p. 1):

I am fascinated by the “should” of accounting rules. We must pick some rules.
How should we go about it?

5. NO CONCLUSIONS

What were Fischer’s contributions to corporate finance? We don’t know
yet. He left us with too many open questions and unabsorbed ideas. It’s
wrong to presume to wrap up Fischer’s research. So I offer no conclusions.

NOTES

This paper was prepared for the Berkeley Program in Finance conference “On Finance: In
Honor of Fischer Black” and was also published as Myers (1996). I thank John Cox and Milton
Harris for helpful comments.

1. Myers (1968).
2. Modigliani and Miller (1958) and Miller and Modigliani (1961). The latter paper also

distinguished PVGO from assets in place.
3. In practice, the opportunity cost of capital would be adjusted (decreased) to reflect

the value of interest tax shields on debt supported by the project. The simplest device for
this adjustment is the weighted average cost of capital. See Brealey and Myers (2003,
ch. 19). Fischer Black did not consider tax-adjusted discount rates, so I bypass this issue in
this chapter.

4. The irrelevance of portfolio effects was not obvious pre-CAPM. The analogy between
portfolio selection for investors in securities and a firm’s choice of investment projects led
John Lintner, the CAPM’s co-inventor, to comment that “the problem of determining the best
capital budget of any given size is formally identical to the solution of a security portfolio
analysis” (1965, p. 65). Several adaptations of portfolio selection techniques to corporate in-
vestment decisions were published, including Van Horne (1966) and Weingartner (1966).

5. A companion paper, Black and Scholes (1974), showed that the too flat slope was not
attributable to the higher dividend yields of low-beta stocks.

6. Black (1993a).
7. Much of this work appeared in Jensen (1972).
8. The CAPM also made it easy to see the risk–return tradeoffs implied by MM’s propo-

sition II relating the expected rate of return on equity to financial leverage. See Hamada
(1969).

9. If the Security Market Line has been too flat, then corporations have had a strong
incentive to borrow more, and the supply of corporate debt should have expanded to the
point where the effects of any restrictions on investors’ borrowing are eliminated and le-
verage irrelevance holds at the margin. Why has this not happened? Black (1993a, p. 17)
suggests that corporate managers may be irrationally averse to leverage, perhaps “carry[ing]
over the investor psychology that makes individuals reluctant to borrow.”

10. In order for ri to be constant (independent of t), beta must be constant from periods
1 to t. Thus, the covariance of the unexpected change in PV(Ct) with the market return must
be constant, and PV(Ct) must follow a geometric random walk. Thus, PVt(Ct) is lognormal.
Since PVt(Ct) = Ct, the cash flow Ct must be lognormal, too. See Myers and Turnbull (1977),
Fama (1977, 1996) and Treynor and Black (1976).

11. See Fama (1996).
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12. DCF can accommodate negative cash flows if fixed costs are split out and valued
separately, so that PV = PV(revenues less variable costs) – PV(fixed costs). Revenues net of
variable costs are more likely to be lognormal and strictly positive. However, this approach
requires two discount rates. Fixed costs are relatively safe and deserve a low discount rate.
Net revenues are also safer than overall project cash flows because discounting fixed costs
separately eliminates operating leverage.

13. The geometric random walk is a natural first description of asset values in an infor-
mation-efficient market. But there is no economic reason why a time series of (detrended)
cash flows should behave in the same way.

14. Actually, the after-tax risk-free rate (i.e., rf (1 – Tc), where Tc is the marginal corpo-
rate rate. See Myers and Ruback (1992). Here I have left out taxes for simplicity.

15. Construction of the scenarios would start with values for macroeconomic variables
consistent with a stock market rate of return equal to the risk-free rate. The macroeconomic
variables would in turn imply conditional forecasts for the relevant industry and company
variables. Of course, there would be a large number of possible scenarios consistent with rf

= rm because various combinations of macro economic variables could yield that market
performance. A small number of easy-to-interpret scenarios would have to be chosen. For
consistency, each would have to fit in equations such as (3) without bias; that is, with the
expectation of the noise term e equal to zero.

16. The same project could be modeled as short-lived, but including a call option to
reinvest. The exercise price is the same.

17. See McDonald and Siegel (1986), Ingersoll and Ross (1992), and Ross (1995).
18. See Triantis and Hodder (1990).
19. See Myers (1984) and Brealey and Myers (2003, ch. 22).
20. Dixit and Pindyck (1996) and Trigeorgis (1996).
21. Real option applications require identification of an underlying asset, usually val-

ued by DCF. For example, the present value of a project with uncertain life is the sum of (1)
the DCF value of the project assuming it will last a very long time and (2) the abandon-
ment put. If financial markets are sufficiently complete to justify value maximization as the
firm’s objective and DCF valuation of the underlying asset, then they are also complete with
respect to options contingent on that asset’s future value. In other words, if investment in
the project does not expand investors’ opportunity set, acquisition of an option on the project
will not expand it either. See also Mason and Merton (1985, pp. 38–39).

22. This subsection was not included in the original version of the paper at the confer-
ence honoring Fischer Black. Milton Harris noted my oversight in his comments at the con-
ference. I added the subsection to fill an obvious hole in the paper.

23. Nothing in option-pricing theory upsets the Modigliani–Miller theorem that the total
value of the firm does not depend on the nature of securities issued against its assets.

24. Jensen and Meckling (1976) stressed the temptation to increase asset risk once debt was
issued. Myers (1977) relied on option valuation theory to show the underinvestment problem,
that is, shareholders’ reluctance to invest when the firm has risky debt outstanding.

25. Merton (1978) is an early example.
26. The pension contribution is tax-deductible regardless of whether the pension is funded

now or later. This tax shield has nothing to do with pension funding policy. However, the
tax arbitrage argument does ignore the possibility of default on pension obligations.

27. Putting the pension assets in corporate debt guarantees arbitrage but may not be
necessary for it. Suppose, for example, that the CAPM is strictly right. Then pension assets
put in the stock market would generate the same present value of tax savings. However, in
this case the pension assets and liabilities would not be well-hedged.
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3

Crisis and Risk Management

Myron S. Scholes

From theory, alternative investments require a premium return because
they are less liquid than market investments. This liquidity premium var-
ies considerably over time as a function of preferences, leverage technol-
ogy, the developments in financial technology, and changes in institutional
arrangements. The dynamics of the liquidity premium depend on institu-
tional reactions to financial crises.

During 1997–1998, we saw the movement of a financial crisis around
the world. It started in Southeast Asia, moved through Latin and South
America, and then visited Russia and returned again to South America.
The financial crisis also infected Europe and the United States, especially
during August through October of 1998.

The increase in volatility (particularly in the equity markets) and the
flight to liquidity around the world led the firm with which I was associ-
ated, Long-Term Capital Management (LTCM), to experience an extra-
ordinary reduction in its capital base. This reduction in capital culminated
in a form of negotiated bankruptcy. A consortium of 14 institutions with
outstanding claims against LTCM infused new equity capital into LTCM
and took over the firm and the management of its assets. They hired
LTCM’s former employees to manage the portfolio under their direct super-
vision and with sufficient incentives to undertake the task efficiently.

Although the Federal Reserve Bank (FRB) facilitated the takeover, it did
not bail out LTCM. Many debtor entities found it in their self-interest not
to post the collateral that was owed to LTCM, and other creditor entities
claimed to be ahead of others to secure earlier payoffs. Without the FRB
acting quickly to mitigate these holdup activities, LTCM would have had
to file for bankruptcy, for some a more efficient outcome but for others a
far more costly outcome for society. If there was a bailout, it failed: LTCM
has been effectively liquidated.

Because of LTCM, the press and others have taken the opportunity to
criticize financial modeling and, in particular, the value of option pricing
models. In truth, mathematical models and option pricing models played
only a minor role, if any, in LTCM’s failure. At LTCM, models were used
to hedge local risks. LTCM was in the business of supplying liquidity at
levels that were determined by its traders. In 1998, LTCM had large posi-
tions, concentrated in less-liquid assets. As a result of the financial crisis,
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LTCM, too, was forced to switch from being a large supplier to a large
demander of liquidity at a cost that eliminated its capital.

Although the Russian default, the LTCM bankruptcy, and the financial
difficulties of other financial service firms are the most visible manifesta-
tions of the crisis of the late summer and fall of 1998, to this day we ob-
serve much greater volatility and lack of liquidity in many debt-related and
equity-related financial markets. For example, during the summer of 1999,
three- to five-year long-dated volatility on the Standard and Poor’s (S&P)
500 index was quoted in the 25–30% range, average volatility levels on the
S&P index that have not been seen before. To be consistent with market
expectations, the realized quarterly volatility on an annualized basis of the
S&P 500 would have to average 30% over the next five years, and even
higher levels starting one year from now, since the current quoted one-year
volatility is far less than 30%. In my view, this is extremely unlikely even
given the evolving nature of the stocks that make up the index. To put this
in perspective, the quarterly realized volatility of the S&P 500 has aver-
aged well below 15% over the last ten years and has never averaged more
than 25% in any five-year period.

In addition, credit spreads and mortgage spreads have widened dra-
matically. Although early in 1999 spreads narrowed somewhat, during the
summer of 1999 they widened to even higher levels than those of August–
September of 1998. For these spreads to be default premiums, the market
must expect large numbers of defaults and defaults with little chance of
recovery.

Moreover, during August 1999, the ten-year on-the-run swap spread was
as high as 112 basis points over Treasuries, more than 15 basis points greater
than at the height of the September 1998 crisis. These spread levels are
extraordinary in that swap spreads (in basis points) were generally in the
high 20s to the low 30s from 1992 to mid-1998 and never reached this level
even in 1990 when banks, including Citicorp and Bank of America, were
experiencing extreme difficulties.

It is hard to believe that these spread levels are attributable only to ex-
pectations of defaults in the credit market. Take the off-the-run swap spread
as an example. The London Interbank Offered Rate (LIBOR) is set for a time
frame, say 3 months, by averaging the quoted borrowing rates on a trun-
cated set of the then 16 top-rated banks in the world and does not depend
on the survivorship of any particular bank. That is, if a bank were to be-
come risky because its own prospects had diminished, it would be excluded
from the computation of the next LIBOR index. Thus, for swap spreads to
be entirely credit spreads, the market must perceive that the entire world-
wide banking sector is to experience difficult times. What is even more
amazing is that this perception would have to be true not for this coming
year but for nine years starting one year from now. Currently, 1-year LIBOR
is quoted at only 25–35 basis points over a general-collateral-reverse re-
purchase agreement (reverse REPO). That is, to borrow Treasury bonds to
sell to someone else in the market and to return similar bonds to the lender,
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the bond borrower would receive about 30 basis points below LIBOR. Thus,
for the swap spread to be a credit spread, LIBOR must increase dramati-
cally relative to REPO, on average, during the nine years starting one year
from now.

If these spreads are not entirely credit-related, they must be liquidity
spreads. At different times, the market demands more liquidity and will
pay for it. During the last couple of years, the number of liquidity provid-
ers diminished. Many financial institutions that previously devoted part
of their capital to earning returns by supplying liquidity to the market
withdrew from doing so or would only commit capital at much higher
expected premiums. To provide liquidity, an investor must have a longer
horizon than the average market participant. Interestingly, because the li-
quidity premium is generally small relative to the expected return on alter-
native investments, liquidity providers are generally leveraged investors
that must hedge other factor exposures. For them, risk management, par-
ticularly during a crisis, when both credit risk and liquidity risk premiums
balloon, is of crucial importance.

1. RISK MANAGEMENT

Understanding risk management technology provides insights into the
dynamics of liquidity premiums in asset returns. The risk management
practice at large financial institutions such as Citicorp or Merrill Lynch
affects the supply of liquidity and therefore the required liquidity premium.
As liquidity premiums change, credit spreads and other spreads increase
in the debt and equity markets around the world.

For a financial institution, a conventional balance sheet does not pro-
vide adequate information to insiders or to outsiders such as investors or
creditors as to the risk of the entity. Balance sheet leverage is a reduced-
form static measure of risk; it provides no forecast of the firm’s profit and
loss as economic factors unfold in the economy.

A risk management system is an exposure-accounting system and a
control system. An exposure-accounting system is a dynamic system that
gives managers an opportunity to assess the effects of changes in economic
factors such as interest rate movements, yield curve shifts and reshaping,
currency and commodity price moves, stock price movements, etc., on the
economic profit and loss of the entity. It determines the firm’s need for
capital to support its positions.

During the last five or so years, value-at-risk (VAR) has become an ac-
cepted standard in the financial industry, and it forms the basis for deter-
mining a bank’s regulatory capital for market risk. Many financial entities
use VAR as a dynamic risk measure. VAR is often disclosed to investors.
This approach to exposure accounting assumes that the future movements
in risk factors are similar to past movements. That is, the variances and
correlation matrix among factor exposures affecting profit and loss do not
change over time. They are assumed to be stationary and normally distrib-
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uted. The VAR measure is a probabilistic measure of loss potential, mea-
sured over a specified holding period and to a specified level of statistical
confidence. For example, the VAR might be computed to be $100 million
for a two-week period with 99% probability. Loosely put, there is about a
1% chance that a loss greater than $100 million would be sustained in the
next two weeks.

Correlation patterns and variances, however, are not stationary, espe-
cially when market prices move dramatically. Factors that might exhibit
low levels of correlation or association most of the time appear to be highly
correlated in volatile times. When the values of nearly all asset classes are
moving in lockstep, diversification is not helpful in reducing risk. The ac-
tual realized correlation patterns appear to be close to one. In these times,
the volatility of profits and losses will be far greater than VAR would pre-
dict. Liquidity and risk premiums change dramatically as well, resulting
in far greater measured asset volatility.

In periods of extreme market stress, such as globally in 1987, 1990 in
Japan, 1991 in Europe, 1992 in Sweden, 1994 in the United States, 1995 in
Mexico, and 1997–1999 in Asia, the Americas, Europe, and the United
States, many statistically uncorrelated activities using historical data ex-
hibited high degrees of association. For example, in 1998 the spreads over
Treasuries widened on U.S. AAA bonds, AAA commercial mortgage pools,
credit instruments, country risks, and swap contracts. Moreover, volatili-
ties on stocks and bonds increased to levels that had not been observed in
decades.

For example, on August 21, 1998, one week after Russia defaulted on
its debt, swap spreads, the difference between AA bank risk and U.S. Gov-
ernment bonds in the 10-year sector, shot up from 60 basis points to 80 basis
points in one day. This 20 basis point change was a 10 standard deviation
move in the swap spread. After this date, the volatility of the swap spread
increased from 8/10 of a basis point a day to 8 basis points a day and re-
mained high throughout 1999.

To protect against extreme shocks such as these, many financial entities
impose stress-loss limits on their portfolios. These stress limits attempt to
protect against extreme shocks in individual risk factors as well as groups
of risk factors. Their intent is to capture more extreme moves, the so-called
“tail exposures.” These stress limits might preclude the entity from con-
centrating in any one strategy or project, or from maintaining a position
even though additional or continued investment had expected positive
present value when using conventional present-value analysis to decide
its worth.

Before the financial crisis in August 1998, most financial institutions were
well within the guidelines for capital adequacy specified by the Bank for
International Settlements (BIS) on standard measures such as VAR, lever-
age, or Tier I or Tier II capital. Then, in August, investors rushed to more
liquid securities, increasing the demand and price of liquidity around the
world. Investors liquidated large portfolios of assets in Asia and Latin and
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South America by selling into a market with high transaction costs. Many
leveraged investors were forced to liquidate holdings to cover margin
requirements.

Maybe part of the blame for the flight to liquidity lies with the Interna-
tional Monetary Fund (IMF). Investors believed that the IMF had given
implicit guarantees to protect their investments against country-specific
risks in the underdeveloped and less-developed regions of the world. But
when Russia defaulted on its debt obligations, market participants real-
ized that the implicit guarantees were no longer in place.

In an unfolding crisis, most market participants respond by liquidating
their most liquid investments first to reduce exposures and to reduce
leverage. Transaction costs, including spreads, tend to be smaller in these
markets. Since it is not possible to know the extent of the unfolding crisis,
holding and not selling the less liquid instruments is similar to buying an
option to hold a position. More liquid markets tend to be large and can
handle large trading volumes relatively quickly. But, after the liquidation,
the remaining portfolio is most likely unhedged and more illiquid. With-
out new inflows of liquidity, the portfolio becomes even more costly to
unwind and manage.

There has been little modeling of the stress-loss liquidity component of
risk management and its implication for the price of liquidity. Financial
institutions use stress-loss limits and capital cushions to mitigate crisis risk.
They have moved from a static risk measure (leverage) to a dynamic risk
measure (VAR) with a static overlay (a stress-loss cushion) to provide an
extra capital reserve in the event of a stress loss. A static risk measure,
however, is not time-consistent. In a dynamic world, a dynamic policy is
required that describes what actions to take as the cushion deteriorates or
after it has been breached.

As is commonly known, as the adjustment gap between the stop-loss
(demanding liquidity) and the price at which you reacquire the position
(providing liquidity) becomes small enough, the strategy is equivalent to
replicating an option in the Black–Scholes world. Thus, a dynamic stop-
loss policy values an option.

A put option provides the equivalent of a dynamic liquidity cushion. A
put-protected position self-liquidates as money is lost and markets become
more illiquid. The cost of this protection is the value of liquidity. In reality,
put options replace the role of the static stress cushion.

Conceptually, to value risk or to price reserves for its position, an entity
must value the options it is not buying to protect itself in the event that it
has an increased demand for liquidity. Since the stress limit is not priced,
this tends to create the wrong capital allocation incentives within finan-
cial entities.

If an entity buys options, it protects itself in a crisis and against nega-
tive jumps in asset values. If, however, it establishes its own reserves, they
must increase as position values fall, thereby forcing a dynamic adjustment
to reserves. The cushion, so to speak, must be dynamic. The entity, how-
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ever, by dynamically hedging on its own account, cannot protect itself
entirely. Gaps or jumps (unless of specific forms) cannot be hedged by
employing internal dynamic adjustments. But this dynamic cushion is
superior to the static risk cushions. Many financial products have two-way
markets. Financial entities enter into contracts with customers and with
other institutions. They tend to be long and short contracts with customers
and other dealers. Because its exposures tend to net, the net risk position
is quite low. This activity is called a matched book or agency business. The
gross number of positions, however, becomes quite large. In addition, to
reduce credit risk, many dealers and sophisticated entities post collateral
to each other on price moves in the amount of the payment that would have
to be made to a counterpart on a forced liquidation.

For many of its proprietary products, however, financial entities need
to hedge risks by using the bond or equity markets. In a market crisis, the
greatest losses most likely occur in this hedged-book business. In August
of 1998, those who were receiving in swaps and hedging by shorting gov-
ernment issues or selling long-dated options and hedging by buying equity
forward contracts suffered the greatest loss as spreads widened dramati-
cally. The hedged books suffered loss because of changes in the economic
fundamentals and because of an unanticipated jump in the demand for
liquidity. Again in the summer of 1999, as corporations and other entities
were issuing bonds or hedging an anticipated increase in interest rates, the
demand for liquidity increased with a decrease in institutional supply as
these institutions also demanded liquidity. Stress-loss cushions were vio-
lated, and many financial entities reduced the size of their hedged-book
positions at significant liquidation costs. Because the stress-loss cushions
are static, entities have an ill-defined policy on when to supply liquidity
and in what amounts. As a result, banks and financial entities are not the
natural suppliers of liquidity and add to the volatility in financial crises.

2. CONCLUSION

In recent years, regulators have encouraged financial entities to use port-
folio theory to produce dynamic measures of risk. VAR, the product of
portfolio theory, is used for short-run day-to-day profit and loss risk ex-
posures. Now is the time to encourage the BIS and other regulatory bodies
to support studies on stress test and concentration methodologies. Plan-
ning for crises is more important than VAR analysis, and such new meth-
odologies are the correct response to recent crises in the financial industry.

The financial industry will become more creative in supplying or find-
ing a source of supply of “liquidity” options and contingent capital to sup-
ply liquidity in times of stress. As the reinsurance market for excess loss
has developed, similar markets could develop and add value in financial
markets. This becomes an important role for alternative investments. The
financial industry’s use of the stop-loss technology produces volatility in
liquidity premiums in many financial instruments. It takes time, however,
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to develop new products and to educate potential new entrants into the
market to replace them. More dynamic cushions will reduce the fluctua-
tions in the price of liquidity, and markets will become less prone to a finan-
cial crisis. The marketplace will find alternative providers and ways to
supply liquidity.

From time to time, it is argued that financial quantitative modeling has
failed because, even with the increasing number of measurement tech-
niques, their use has not prevented financial crises or financial failures.
Financial crises are prevalent throughout time and across countries. Al-
though this might seem somewhat discouraging and a slam against finan-
cial modeling, it is not. This is so because better risk measurement models
reduce costs and, as a result, financial firms develop new products and
activities that make their constituents better off. Most likely, these new
developments increase risk levels once again. As costs fall, economics pre-
dicts that agents move to the envelope once again.
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Hot Spots and Hedges

Robert Litterman

1.

This chapter is a tutorial on portfolio risk management. It describes how
to identify the primary sources of risk in complex portfolios—the “hot
spots”—and how to identify the trades that will reduce those risks—the
“hedges.” While this topic, identifying and reducing risk, would seem to
be at the heart of risk management, many of the ideas presented here are
not well-understood. Unfortunately, too much of the recent focus in risk
management has been directed elsewhere—for example, toward under-
standing and incorporating the risks of derivative securities. While deriva-
tives can create complex and highly nonlinear payoffs, they are often not
the primary source of risk in a portfolio. Also, while risk managers have
focused much attention recently on developing firmwide systems to ag-
gregate information from many traders or portfolio managers, they have
generally not yet concentrated on how to use that information to obtain a
comprehensive understanding of enterprise risk. More generally, while risk
managers have also recently developed a greater appreciation of the sta-
tistical nature of risk and the need to use statistical measures such as value-
at-risk (VaR)1 to quantify, monitor, and set limits on risk-taking activities,
the tools required to understand and incorporate these statistical measures
in portfolio risk management have lagged behind.2 This most important
area of risk management—the development of portfolio analytics based
on the statistical understanding of risk—has not received as much atten-
tion as it deserves. We hope this chapter helps to address this concern by
describing a number of portfolio analysis tools that we have developed at
Goldman Sachs in recent years to better understand, manage, and moni-
tor the risks in our clients’ investment portfolios as well as our own trad-
ing positions. We focus on the concepts of risk management and how they
apply in realistic trading and portfolio management contexts rather than
on details of implementation.

The plan of the chapter is as follows. In section 2, we discuss volatility
and VAR, the two main statistical measures of portfolio risk. In section 3,
we contrast them with the accounting measures that currently are com-
monly used for understanding portfolio risk—measures such as position
reports, duration analysis, and stress tests. In section 4, we consider what
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additional information is needed for managing, as opposed to monitoring,
risk. The key idea here is the need for a decomposition of risk. In introduc-
ing this decomposition, we make extensive use of a simple triangle anal-
ogy to illustrate how the risks of assets add up to create the risk of the
portfolio and the role played by the correlations of their returns. We also
describe the Trade Risk Profile, a graph of portfolio risk as a function of
trade or position size. In section 5, we explain a number of additional port-
folio analysis tools that we have found useful in managing risk at Goldman
Sachs. These include the Best Hedges report, which helps locate potential
portfolio hedges; the Market Exposure report, which characterizes the
exposure to certain predefined risk factors; the Best Replicating Portfolio
report, which provides a simplified representation of complex portfolios;
and the Implied Views Analysis, which helps make clear whether the views
that a portfolio actually represents are the same as those it is intended to
represent. Section 5 ends with a discussion of how these analyses are re-
lated to one another and to the construction of optimal portfolios. Sec-
tion 6 provides a brief summary.

Portfolio Risk Analysis

This chapter builds on a framework for risk analysis that should be famil-
iar to most investment managers. The framework is generally referred to
as “Modern Portfolio Theory” and was first described mathematically by
Harry Markowitz in the early 1950s (Markowitz 1952) as “mean–variance”
analysis and later extended by William Sharpe in the mid 1960s (Sharpe
1964) as the basis for the Capital Asset Pricing Model. Professors Markowitz
and Sharpe were awarded Nobel Prizes in 1990 for their work. This is also
the framework adopted by Black in his 1989 extension of the Sharpe model
(Black 1989) and by Black and Litterman (1991) in our application to asset
allocation.

Much of what is described in this chapter is implicit, if not explicit, in
the original work of Markowitz. The basic approach is to recognize that
an investor faces a trade-off between risk and return and to develop the
implications of that trade-off. Markowitz suggested the use of volatility as
a measure of risk. The volatility of a portfolio is most often obtained by
combining measures of exposures in a set of asset classes with a covari-
ance matrix that provides numerical estimates of the volatilities and cor-
relations of the returns of those asset classes.3

Even in his original paper, Markowitz recognized that volatility is an
oversimplification of the concept of risk. Moreover, the use of exposures
and a covariance matrix is itself just a “linear approximation” to measur-
ing the volatility of the portfolio. The approximation itself may be poor
when the exposures change with market moves—that is, when the port-
folio has embedded nonlinearities such as those that arise in options and
other derivative securities. Such nonlinearities are much more commonly
found in portfolios now than they were when the theory was developed.
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Thus, the traditional portfolio theory has important limitations that have
to be recognized and that have limited its use in risk management today.

This lack of common application is unfortunate, however. Many risk
managers today seem to have lost sight of the fact that the key benefit of a
simple approach, such as the linear approximation implicit in traditional
portfolio analysis, is the powerful insight it can provide in contexts where
it is valid. With very few exceptions, portfolios will have locally linear
exposures about which the application of portfolio risk analysis tools can
provide useful information. Moreover, tools such as stress tests, developed
for understanding nonlinearities in specific securities, are generally not
well-suited for understanding portfolio effects—for example, the impacts
of the volatilities of different assets and their correlations on portfolio risk.

Thus, while we emphasize that it would be extremely dangerous to
suggest that you can manage risk using only linear approximations, we also
feel that the insights afforded by the types of portfolio analytics originally
developed by Markowitz, and extended here, do apply broadly and should
be a part of each risk manager’s information set. Moreover, as shown in
this chapter, when nonlinear risks are important, extensions of the linear
portfolio analytics can be developed.

2. MEASURES OF PORTFOLIO RISK

Risk is inherently a statistical concept. In the context of investments, risk refers
to the degree of uncertainty in the distribution of gains and losses. A com-
plete picture of risk requires a complete description of this distribution. In
practice, however, investors focus on summary measures of the degree of
dispersion in this distribution. Two of the most common measures of risk,
which we focus on in this chapter, are volatility and value-at-risk.

Volatility and VaR have different strengths when used to characterize
the risk in a portfolio. Volatility is the usual measure of the uncertainty of
investment portfolios. Volatility—that is, a measure of one standard de-
viation in the return distribution—provides an estimate of the size of a
“typical” return over some period, usually a year. VaR, on the other hand,
which has become quite popular for characterizing the risk of trading po-
sitions, focuses on a point in the distribution of gains and losses. The VAR
is the size of a loss that occurs with a specified probability over a particu-
lar period of time. If certain conditions are met—for example, the time
period is the same, the return distribution is normal, and the specified
probability is approximately one-sixth—then the VaR is the same as the
volatility. More commonly, however, the VaR applies over a shorter pe-
riod of time, such as a day; the probability is much smaller—for example,
one in a hundred—and the return distribution is nonnormal. In such cases,
the VaR is generally many multiples of the volatility and, rather than rep-
resenting a typical return, is intended to represent a loss that, while very
unlikely, will occur every so often.
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At Goldman Sachs, we use many approaches to measure and charac-
terize risk. We rely heavily on both the daily volatility of positions and a
daily once-per-year VaR. Given the nonnormality4 of daily returns that we
find in most financial markets, we use as a rule of thumb the assumption
that four-standard-deviation events in financial markets happen approxi-
mately once per year.5 Given this assumption, the daily once-per-year VaR
for portfolios whose payoffs are linear is approximately four standard
deviations. Of course, when positions include nonlinear responses, this rule
of thumb breaks down. Depending on the nature of the nonlinearity of the
instruments being held, the once-per-year VaR of the distribution of returns
can be virtually any multiple of its volatility, smaller or larger than four
standard deviations.

As a measure of risk, volatility has the advantage that, because it repre-
sents a typical event, it is easy for the trader or the risk manager to vali-
date through observations of a small number of events. For example, if we
observe three or four days in a row with returns greater than a measured
one standard deviation, we quickly start to question our measure. A few
months of daily observations would generally be adequate to validate or
raise suspicion about a volatility measure. On the other hand, volatility has
the disadvantage that the risk manager is not particularly concerned with
determining the typical gain or loss; his main concern is what to be pre-
pared for in a rare event. VaR has the advantage that it tries to quantify
this concern precisely. Although it has the disadvantage that it may ap-
pear to be more difficult to validate, such is the nature of any estimate of a
low-probability event; this limitation can’t really be avoided. The impor-
tant point to remember is that the VaR differs from a simple multiple of
volatility only when there are nonlinearities, and when this is the case, VaR
is the more relevant measure.

To illustrate this difference between VaR and volatility measures of risk,
consider what happens when you buy an out-of-the-money call option. This
security is like a lottery ticket; most likely it will expire worthless, but there
is a chance that it will become highly valuable. The volatility of the payoff
of this security is relatively high, but as with a lottery ticket, you might
consider this volatility as “upside potential” rather than risk. Thus, at least
at the time of purchase, the risk is not well-represented by this volatility.
The most that can be lost is the premium, which for an out-of-the-money
option will be small relative to the volatility. VaR, on the other hand, cap-
tures the fact that the largest possible loss is the premium, and the VaR
accurately reflects the true risk. If the market rallies and the call option goes
in the money, then the risk increases and the VaR, which now may be sev-
eral multiples of the volatility, will accurately reflect this fact.

In figures 4.1 and 4.2, we show two histograms that illustrate the differ-
ence between the type of distribution generated by a security with a linear
payoff and the distribution generated by a nonlinear payoff. In the former
case, the daily once-per-year VaR is approximately four daily standard
deviations. In the latter case, the VaR can be a much smaller or larger
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multiple; in the example shown here—the distribution of outcomes from
being long an out-of-the-money option—the VaR is just over one standard
deviation.

3. UNDERSTANDING RISK

There are many contexts in which the sources of risk in a portfolio are not
obvious. A simple example is a portfolio of individual stocks being man-
aged against a market index. A more complicated example would be a
global portfolio of long and short positions in bonds, futures, and options
being managed by a fixed income trader. Another example is the assets of
a pension fund relative to its strategic benchmark. A final example is the
“enterprise” portfolio of assets and liabilities of a bank, insurance company,
or other financial institution. These are all examples of contexts where the
types of analysis that we describe here may usefully be applied.

To clarify the ideas in this chapter, we will pursue three examples in
detail. The first is a global equity portfolio managed relative to a market-
weighted equity benchmark. This is an example in which the basic risks are
locally linear, but understanding the risk is complicated by the interactions
of different volatilities and correlations. The second example will be a set of
Eurodollar futures and options positions representative of a proprietary
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trader. In this case, there are fewer risk factors, but nonlinearities are signifi-
cant. The third example is an actual set of positions held by Goldman Sachs
in its European fixed income businesses one day in the summer of 1996. This
example illustrates how we put the ideas in this chapter to use in the risk
management of our own trading positions. The latter two examples were
generated prior to the conversion to the Euro, making the formerly indepen-
dent currencies separate sources of risk.

In trying to understand the sources of risk embedded in portfolios such
as these, it is often not very helpful to simply look at the positions. Gener-
ally, there will be too many individual securities, and the volatilities and
correlations that create portfolio risk will not be easily discerned. Consider
our first example, the global equity portfolio. Even when the number of
positions is reduced—for example, by aggregating the individual positions
into total exposures in asset class buckets—the relationships among the
asset classes may not be clear.6 The asset class positions are shown as de-
viations from the benchmark in table 4.1.7

Such a table is often used to summarize the risks in a portfolio. Unfor-
tunately, simply viewing the positions—in this case deviations from a
benchmark—is insufficient to reveal the important sources of risk, as there
are still too many different volatilities and correlations that need to be taken
into account. In the second example, that of a proprietary trading portfolio,
the problem is not the number of positions—just the four positions as shown
in table 4.2—but rather the nonlinearities that play a prominent role, mak-
ing the risk analysis more complex.

Historically, risk managers have often tried to treat risk as if it were an
“accounting” problem. Positions were somehow converted into risk equiva-
lents and added together. For example, in fixed income markets, partici-
pants have for many years scaled their positions into units of a common
duration. In this way, each position is converted into a basis—for example,
a number of “10-year duration equivalents”—which should have approxi-
mately equal sensitivity to the main source of fixed income risk, a parallel
movement in interest rates. Whether the unit is 10-year equivalents, posi-
tion size itself, or some other fraction or “haircut” applied to a position,
the validity of any such accounting approach is questionable and thus has

Table 4.1. Global equity portfolio deviations from
benchmark weights.a

United States –7.0 Italy 2.0

United Kingdom –6.0 Germany 2.0

Japan 4.5 Brazil 2.0

Canada 4.0 Thailand 2.0

France –3.5 Australia –1.5

Switzerland 2.5 South Africa –1.0

aAnnualized tracking error 1.82%.
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very limited value. Nonetheless, at Goldman Sachs we continue to create
“risk” reports for fixed income positions based on such an accounting ap-
proach. Table 4.3 is an example of a report for the aggregate of our Euro-
pean fixed income positions.8 When you try to understand the sources of
risk in such a report, however, the need for something better becomes clear.

An example of an accounting approach to managing the risk of the pro-
prietary derivative portfolio appears in table 4.4, where we show what are
often called the “Greek letter” exposures—the sensitivities to various mar-
ket risk factors. In this case, the delta is the net interest rate sensitivity mea-
sured in thousands of dollars per basis point; the vega is the net volatility
sensitivity in thousands of dollars per basis point change in volatility; and
the gamma is the change in delta with respect to a 1 bp change in interest
rates—that is, the degree of nonlinearity in the position. While these bits of
information are important to understanding and managing the position, they
do not provide an adequate basis for risk management.9 In this case, the
directions of the various risks are revealed: There is a small short interest
rate bias, which arises from the September contract delta; a flattening bias
because the September contract delta is short while the December contract
delta is long; a net short volatility position arising from the short position in
December calls; a volatility spread position; and a net long gamma position
because of the much larger gamma arising from the September contract.
However, it is certainly not clear from this table alone what is the magni-
tude of the risks or even which are the major risks of the positions.

Over the past several years, the accounting approach to risk manage-
ment has been largely supplanted by the use of “stress” tests. Stress tests
are the output of an exercise in which positions are revalued in scenarios
where the market risk factors sustain large moves. There is no doubt that
the use of stress tests is an improvement over a situation of not knowing
what might happen in such circumstances. However, as we discuss, there
are important limitations in stress testing that need to be recognized. In
figures 4.3 through 4.6, we show examples of stress tests for the propri-
etary portfolio of Eurodollar futures and options. In this example, the
nonlinearities of the payoffs from the options figure prominently and are
revealed in the stress tests.

Table 4.2. Proprietary trading portfolio Eurodollar positions.a

Position
Contract Type Strike (# of Contracts)

September ’96 Future –4,500

Call Option 94.00 8,000

December ’96 Future 2,200

Call Option 94.00 –6,600

aValuation date June 14, 1996.
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Table 4.3. Europe Fixed Income U.S. 10-year equivalent summary.a

Asset Total Ger Ndl Fra Bgm UK US Ita Spn Dnk Sw Fin Nor Swz Ecu Jap Hkg SAf

Currency –14.5 14.3 0 4.0 –35.5 0 –27 –2.5 0 0 0.3 13.3 –4.0 35.8 0 –12.5 0

< 1 year 95.5 23.0 0 6.3 0 6.3 0.5 38.3 2.5 0 0 18.8 0 0 0 0 0 0

1 to 5 year 116.3 –4.3 3.8 40.5 –2.5 49.8 16.8 44.8 4.3 –47.5 11.0 1.3 0 0 –1.8 0 0 0

5 to 12 year –329.3 –224.3 2.0 –100.5 2.3 –11.0 6.3 100.3 –117.3 32.8 –12.8 –16.0 0 0 10.5 –2.5 0 1.0

12 to 30 year 318.0 226.8 0.5 11.5 0 84.0 –12.0 7.8 0 0 0 0 0 0 0 0 0 0

Swaps –18.3 –18.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total FI 182.5 3.0 6.3 –42.3 –0.3 129.3 11.3 191.0 –110.5 –14.8 –1.8 4.0 0 0 8.8 –2.5 0 1.0

aCurrency positions are shown in U.S. dollars, while other positions are shown in the dollar market value of the position. However, we have also scaled all the numbers by
an arbitrary constant so as not to reveal the actual absolute sizes of the positions that were taken.
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We begin by showing three different stress tests that highlight different
dimensions of risk. In each case, the two horizontal axes represent sepa-
rate risk factors, while the vertical axis shows the profit or loss, in millions
of dollars, in that scenario. Figure 4.3 shows the profits and losses of the
portfolio as a function of a parallel shift in interest rates on one axis and a
parallel shift in the volatilities of the option positions on the other. In this
chart, which focuses on the two basic risk factors affecting these securities,
the outcomes look quite good. There is considerable upside and very little
potential for loss. However, as shown in figures 4.4 and 4.5, there are other
risks. Figure 4.4 shows the profits and losses as a function of separate inter-
est rate shifts in each of the Eurodollar contracts, the September contract
on one horizontal axis and the December contract on the other. Figure 4.5

Table 4.4. Proprietary trading portfolio Eurodollar positions Greek letter exposures.a

Contract Type Strike # of Contracts Delta Vega Gamma

September ’96 Future –4,500 112.50 0.00 0.00

Call Option 94.00 8,000 –131.25 2.15 1.45

December ’96 Future 2,200 –55.00 0.00 0.00

Call Option 94.00 –6,600 70.38 –2.80 –0.75

Portfolio Total –3.38 –0.625 0.70

aThousands of dollars per basis point.

-150 -125 -100 -75 -50 -25 0 25 50 75 100 125 150

-5

-4

-3

-2

-1

0
1

2
3

4
5

Yield Curve Changes (bp)

Volatility Changes (%)

7.50

6.25

5.00

3.75

2.50

1.25

0

-1.25

Profit & Loss

Figure 4.3. Proprietary Portfolio Stress Test Results: Parallel Yield and Volatility Changes



64 The Legacy of Fischer Black

shows the dimension of risk that these positions are designed to highlight—
namely, profits and losses as a function of separate volatility shifts for the
September and December contracts.

Stress tests clearly provide useful information about the profile of gains
and losses. What are their important limitations? First, it is not always clear
which dimensions of risk need to be considered. This problem is obvious
in comparing figures 4.3–4.5. Also, stress tests do not reveal the relative
probabilities of different events. A position with negative gamma—one that
loses money in large moves in either direction—will look very bad in ex-
treme scenarios but will generally look very attractive when only local
moves are considered. The positions shown here, which have positive
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gamma, have the opposite property. In any case, the shrewd trader or sales-
person can tailor his positions to look attractive relative to any particular
set of scenarios or, given the opportunity, can find a set of scenarios for
which a particular set of positions looks attractive. For example, the only
differences between figure 4.3 and figure 4.6 are the scale of the axes and
the direction of the view. Figure 4.6, which covers the most likely outcomes
for a given day, does not look nearly as attractive as figure 4.3, which covers
a much wider region and focuses attention on the positive outcomes.

Moreover, in complex portfolios, there are many sets of scenarios to look
at; in fact, it may be virtually impossible to know which among many risk
factors need to be considered. Furthermore, even if an exhaustive set of
scenarios is considered, how does the trader or risk manager know how to
take into account the risk reduction resulting from diversification of the
risk factors? Thus, while stress testing is a useful tool, it often leaves large
gaps in the understanding of risk.

Today, such approaches are quickly being supplemented by measures
such as volatility and VAR, which explicitly recognize that risk is a statis-
tical concept.10 These statistical approaches make assumptions about the
distribution of the outcomes of risk factors, map the points in that distri-
bution into different valuations for the portfolio, and then measure the
uncertainty in the distribution of portfolio gains and losses. There are a
number of different approaches to computing these measures; they differ
primarily in the nature of the assumptions about the distribution of out-
comes. For example, one approach is to use the historical distribution;
another is to use a parameterized distribution estimated from historical or
market data. In addition, approaches may differ in the degree of accuracy
achieved through different degrees of aggregation or—especially with
respect to derivatives—in the degree of accuracy achieved through repric-
ing versus forming linear or nonlinear approximations to the payoff func-
tions of the derivatives.
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Different statistical approaches have different strengths that may make
them more or less appropriate in different contexts. We will illustrate two
approaches in our examples—historical simulations and the use of a cova-
riance matrix—but it is not the purpose of this chapter to try to defend one
or another statistical approach. Much research is continuing in this area,
and, while we hope and expect that practitioners and researchers will even-
tually develop a common understanding of what constitutes best practice,
we anticipate that one component of that understanding will be the recog-
nition that no one approach is adequate for all purposes and that it is best
to monitor risk using several different approaches. In addition to the two
approaches illustrated in this chapter, we also use Monte Carlo simulations
extensively in risk management exercises at Goldman Sachs.

In the context of the global equity portfolio that we are using as an ex-
ample, we will construct a covariance matrix of returns of the asset classes
from which we can form an estimate of the tracking error—the volatility
of the portfolio of deviations from benchmark weights.11 As applied to the
positions in the equity portfolio shown in table 4.1, the volatility of the
portfolio has an annualized tracking error of 1.82% relative to the bench-
mark.12 Since the risks in this portfolio are linear, the use of a VaR does not
add much, except to allow comparability with other VaR analyses. In order
to do such a comparison, we divide the annualized volatility by the square
root of 252 (business days in a year) to get a daily volatility of 11.5 basis
points, and then we appeal to our four-standard-deviation rule of thumb
to come up with a once-per-year daily VaR of 0.46%. As we shall see later,
the positions themselves (which are ordered in table 4.1 according to the
absolute size of the deviation) reveal little about the actual sources of risk
in the portfolio.

In the context of the proprietary trading portfolio, we use historical price
and volatility changes rather than a covariance matrix to calculate the vola-
tility and VaR of the positions.13 In this case, the daily volatility is $58,000
and the once-per-year daily VaR is $127,000. The fact that the VaR is a
smaller multiple of the volatility (only 2.2 rather than our rule of thumb of
4) reflects the nonlinearity, in particular the positive gamma, of the posi-
tions. The use of historical data has two distinct advantages in this con-
text. First, it does not require any assumptions about the distribution that
might smooth out the large jumps or other unusual moves that could cre-
ate the biggest risks. Second, a very practical benefit is that the historical
analysis provides a list of the “worst days” losses of this portfolio. That is,
rather than simply claiming that a portfolio of positions is risky, the analy-
sis provides a list of examples of days on which the portfolio would have
lost such and such amounts. In table 4.5, we show the five best and five
worst days for the proprietary portfolio.14

The results in table 4.5 show clearly that the portfolio gains from large
moves in rates in either direction—the benefit of positive gamma—and that
the risk is dominated by the short volatility contributed by the December
option and the volatility spread contributed by the September option.
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Table 4.5. Best five and worst five days: analysis of historical simulation of the proprietary trading portfolio.a

Basis Basis
Sept. Points Sept. Dec. Points Dec. Change

5 Best Profits & Future Change in Option % Change in Future Change in Option in Implied
Days Losses Profit Yield Profit Implied Vol. Profit Yield Profit Vol.

09/04/92 0.43 –3.36 –28 4.65 9.6 1.57 –30 –2.43 3.8

12/20/91 0.43 –2.94 –27 3.92 –8.0 1.22 –26 –1.77 –1.2

07/02/92 0.42 –3.51 –27 4.73 –1.7 1.78 –31 –2.58 –4.6

07/06/95 0.34 –2.85 –18 3.71 –8.5 1.40 –25 –1.92 –4.9

03/08/96 0.30 4.92 29 –3.60 11.5 –2.86 44 1.84 20.4

5 Worst
Days

04/28/94 –0.15 1.67 9 –1.72 2.9 –1.02 15 0.92 2.9

02/09/93 –0.14 0.64 3 –0.74 –0.5 –0.44 6 0.39 0.5

12/07/92 –0.13 –0.56 –3 0.71 1.5 0.54 –6 –0.82 1.3

05/31/95 –0.13 0.09 1 –0.14 –2.9 –0.00 1 –0.07 –0.6

03/02/94 –0.12 0.06 1 –0.01 0.5 –0.08 1 –0.08 2.2

aProfits and losses in millions of U.S. dollars.
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Nonetheless, the downside is significantly limited relative to the upside.
A histogram of the profits and losses, shown in figure 4.7, reflects this as
well, although the distribution of outcomes is perhaps surprisingly sym-
metric, given the appearance of the stress test in figure 4.3. The symmetry
reflects the fact that even for this highly nonlinear portfolio, the payoffs
are close to linear for most daily moves.

4. RISK MANAGEMENT VERSUS RISK MONITORING

Volatility and VaR characterize, in slightly different ways, the degree of
dispersion in the distribution of gains and losses, and therefore they are
useful for monitoring risk. They do not, however, provide much guidance
for risk management. To manage risk, you have to understand what the
sources of risk are in the portfolio and what trades will provide effective
ways to reduce risk. Thus, risk management requires additional analysis—
in particular, a decomposition of risk, an ability to find potential hedges,
and an ability to find simple representations for complex portfolios.

The risk of positions is not additive. This is fortunate for investors be-
cause it reduces overall risk. However, it is unfortunate for risk managers
because it complicates their job. Since the returns of different assets are more
or less correlated, the risk of a portfolio of positions in different assets is
always less than the sum of the individual risks. This reduction in risk is
the benefit of diversification, and, in a well-balanced portfolio, the risk
reduction can be significant. Because of this nonadditivity of risk, it is not
easy to create a simple decomposition of risk. However, as we show below,
although the total risks of the portfolio is not the sum of the risks of indi-
vidual positions, it is in fact the sum of the marginal impacts on portfolio
risk from small percentage increases in each of the portfolio positions. Such
a marginal analysis thus provides the basis for a risk decomposition.

Before we discuss this risk decomposition, however, consider figure 4.8.
This is a useful diagram for understanding how, in a simple linear con-
text, the volatilities of two positions combine to form the volatility of the
portfolio. The diagram illustrates that the volatilities of the two positions
combine to form portfolio volatility in the same way that the lengths of two
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sides of a triangle combine to form the length of the third side. In the case
of portfolio risk, the correlation between the returns of the two assets plays
the same role as the angle between the two sides plays in the case of the
triangle. Correlations range between –1 and +1 and map into angles rang-
ing from 0 to 180 degrees. The case of no correlation corresponds to a 90-
degree angle. Positive correlations correspond to angles between 90 and
180 degrees, and negative correlations correspond to angles between 0 and
90 degrees.15

In figure 4.8, the lower side represents the volatility of a $100 million
position in U.S. 10-year Treasury bonds. The shorter side represents a
$50 million (equity) position in the S&P 500 Index. The annualized return
volatilities of the bonds and stocks are 10.2% and 13.1%, respectively, lead-
ing to position volatilities of $10.2 and $6.5 million. The correlation between
the two assets is 0.47, and the volatility of the total portfolio is $14.5 mil-
lion, only 86% of the sum of the two volatilities. We describe this as a 14%
reduction in risk resulting from diversification. It is obvious in this example
that risks are not additive and that the decomposition of portfolio risk re-
quires attention to this fact.

In figure 4.9, we modify the previous diagram and its interpretation
slightly to illustrate the common case where we are interested in the im-
pact on portfolio risk of a trade that is small relative to the size of the port-
folio. The same diagram applies, except that now we use one side of the
triangle to represent the tracking error of an investment of $1 billion in our
example equity portfolio, while the second side represents a $10 million
trade out of Japan into various other asset classes.16 The combined port-

$100 million in U.S. 10-year
Treasury bonds.

$50 million in
S&P equity

index

Portfolio Volatility

Figure 4.8. Combining Volatilities. The volatilities of two positions sum to create
portfolio volatility in a manner analogous to the way in which the lengths of two
sides of a triangle create the length of the third side. Correlation plays the role of the
angle between the two sides

A

B

C

O riginal Portfolio T racking Error (length of base)

T rade Volatilities
(length of short s ide)

N ew Portfolio T racking E rror
(length of top s ide)

Figure 4.9. Portfolio Volatility Example
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folio risk is represented by the length of the third side. As is clear in the
diagram, as long as the risk in the trade is small relative to the risk of the
original portfolio, the correlation of the returns of the trade with those of
the original portfolio is much more important than the volatility of that po-
sition itself in determining the impact on portfolio risk.

In this example, we assume a sale of Japanese equity and look at the
impact of several different potential purchases: Brazilian, Thai, and U.S.
equities. The sale of Japanese equity represents a reduction in the largest
single deviation of the portfolio from its benchmark. Japanese equity is also
a fairly volatile asset, so the result of such a sale in which the proceeds are
invested in cash is not surprising—the tracking error of the portfolio is
reduced from 1.82% to 1.70%. If the proceeds are used to purchase Brazilian
equity, which represents an increase in the deviation from the benchmark
in a highly volatile asset, then without taking into account the portfolio
effects, it is not clear which impact will dominate: the reduction in the Japa-
nese exposure or the increase in the Brazilian exposure. In fact, the higher
volatility of the Brazilian exposure leads to an increase in tracking error,
up to 1.98%. Alternatively, a sale of Japanese equity coupled with a pur-
chase of Thai equity, which in the original portfolio had the same expo-
sure as Brazil, leads to a slight reduction in overall tracking error, down to
1.81%. Finally, the largest reduction in risk would be generated by invest-
ing the proceeds of the Japanese equity sale in U.S. equity, which repre-
sents a significant underweight position in the original portfolio. Such a
trade is very negatively correlated with the portfolio risk and reduces the
tracking error to 1.67%.

In figure 4.9, in each case the triangle represents the effect of selling Japa-
nese equity and buying equity of another country. Triangle A represents
increasing exposure to Brazil, triangle B represents increasing exposure to
Thailand, and triangle C represents reducing the underweight position in
the United States. In each case, the volatility of the trade, represented by
the length of the short side of the triangle, is not that different; but what
clearly matters in determining the effect on the portfolio volatility (repre-
sented by the length of the third side) is the correlation of that trade’s re-
turns with the original portfolio tracking error, represented by the angle
between the short side and the base of the triangle.

Another interesting analysis results from starting with an existing port-
folio and considering how its risk will be affected by adding different
amounts of one particular trade. We call this simple graph the “Trade Risk
Profile” and use it to better understand the effects of correlations on port-
folio risk. As an example of this type of analysis, we start from the triangle
diagram in figure 4.9. Once the original portfolio and the particular trade
are chosen (in this case we focus on the trade out of Japanese equity into
U.S. equity), the length of the base of the triangle is fixed, as well as the
angle between it and the side representing the particular trade. The rela-
tionship we are interested in is the one between the length of the second
side, representing the size of the position in the trade, and the length of
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the third side, representing the effect on portfolio volatility. This relation-
ship always has the same shape, which is shown in figure 4.10. Of particu-
lar interest will be both the size of the second side of the triangle (which
we show in figure 4.10 on the horizontal axis) at the point where the length
of the third side (which we show in figure 4.10 on the vertical axis) is mini-
mized and the length of the third side at that minimum.

The triangle diagrams can also be very helpful in understanding how
correlations affect the ability of hedges to reduce portfolio risk. In particu-
lar, many traders and portfolio managers may not be aware of how sensi-
tive risk reduction is to the degree of correlation between the returns of
the positions being hedged and the hedging instruments. As we will show,
for example, a correlation of 0.8, which is a high degree of correlation, cre-
ates a risk reduction potential of only 40%. The risk reduction potential rises
to 56% with a correlation of 0.9, 69% for a correlation of 0.95, 86% for a
correlation of 0.99, and 96% for a correlation of 0.999. In figure 4.11, we
illustrate what we mean by a risk reduction potential. In figure 4.12, we
show the relationship between correlation, the angle between the two sides
of a triangle, and the risk reduction potential.

Figure 4.11 shows a risk triangle with the base representing a long posi-
tion of $100 million worth of Italian lira exposure. We are interested in what
fraction of the risk, which in this case is a daily volatility of $408,000, we
can hedge. The second side of the triangle represents the risk of a position
in deutsche marks that, from the point of view of a U.S. dollar-based in-
vestor at the time this report was being written, had a correlation of 0.24
with the lira. The correlation of –0.24 between lire and short deutsche marks
implies an angle of 76 degrees between the two sides of the triangle. The
risk-minimizing hedge is represented by a point on the second side that
minimizes the distance to the opposite side of the base—that is, that mini-
mizes the length of the third side of the triangle. That risk-minimizing
position in this case corresponds to a short deutsche mark position of
$23 million. The resulting portfolio has a daily volatility of $396,210. This
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represents only a 2.9% reduction in risk. Clearly, in order to create a mean-
ingful reduction in portfolio risk, we need to find hedging instruments that
have a much higher degree of correlation with the risk of the portfolio.

This relationship between correlation and risk reduction potential ap-
pears graphically in figure 4.12. Here we show the different correlations,
the angles to which they correspond, and the percentage risk reduction
potential. We highlight the point corresponding to a correlation of 0.5,
which leads to an angle of 60 degrees and creates a risk reduction poten-
tial of only 13.4%. As correlations increase, the angle gets smaller and the
potential for risk reduction increases, but only quite slowly.

We next use the triangle diagram to illustrate how we will decompose
risk. In figure 4.13, the length of the third side of the triangle represents
the portfolio volatility that we wish to decompose. In this example, the two
assets are currency positions of a dollar-based investor: long $100 million
in Swiss francs and short $100 million in deutsche marks. If we were to
focus on the volatilities of the two assets alone, we would attribute just over
one-half of the risk to francs and a little under one-half to deutsche marks
(the annualized volatilities of these currencies are 12.9% and 11.6%, respec-
tively). Such an attribution would be misleading, however. The risk of the
joint position is only 5.0%, and the dominant risk in the portfolio is clearly
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Figure 4.11. Risk Reduction Potential
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the long position in Swiss francs; the returns of the deutsche mark posi-
tion are highly (–0.92) negatively correlated with those of the franc and are
offsetting much of its risk. Rather than focus on the volatilities, which cor-
respond to the lengths of the two sides of the triangle and do not sum to
create portfolio volatility, we will concentrate on what happens to the vola-
tility of the portfolio as we make small percentage increases in each of the
positions. This is illustrated in figure 4.13 as changes in the length of the
third side as we make small percentage increases in the lengths of each of
the two other sides of the triangle. What we see is that the small increase
in the length of the franc side creates an increase in the length of the third
side, whereas an increase in the length of the deutsche mark side reduces
the length of the third side. For a 1% increase in the sizes of the positions,
the percentage changes in risk are an increase of 1.34% and a reduction of
0.08%, respectively, for the Swiss franc and the deutsche mark. These im-
pacts represent a useful decomposition of the portfolio volatility—the franc
position is creating the portfolio risk, and the deutsche mark position is
reducing it. As we show below, this idea of looking at the marginal impact
on risk of percentage changes in position sizes generalizes as a risk decom-
position to the case of VaR, as well.17

In figure 4.13, triangle A represents a portfolio of long $100 million of
Swiss francs, the base side, and short $100 million of deutsche marks, the
upper right side. The effects of marginal increases in the size of the posi-
tions are shown in triangle B for francs and in triangle C for deutsche marks.
At the margin, an increase in the franc position increases portfolio risk (rep-
resented by the length of the third side), whereas an increase in the deutsche
mark position has no discernible effect (in fact, it is a very slight reduction).

Finally, in figure 4.14, we show what happens when we increase the size
of the deutsche mark position to $200 million. Now the marginal impact
of increasing the length of the side representing deutsche marks increases
the length of the side representing portfolio risk, whereas increasing the
length of the side representing Swiss francs has the opposite effect. The
revised position has a risk of 12.4%, and the percentage change in risk with
respect to a 1% increase in the size of the positions is a decrease of 0.69%
for the Swiss franc and an increase of 1.73% for the deutsche mark. In other
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Figure 4.13. Decomposing Portfolio Volatility
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words, the increased size of the deutsche mark position has made it the
dominant risk in the portfolio.

Using the same letters as before to represent the marginal impacts, in
figure 4.14 we see that having increased the size of the deutsche mark
position in the portfolio, the marginal changes in each of the two positions
have different effects: Now an increase in francs (triangle B) reduces risk,
while an increase in deutsche marks (triangle C) increases risk.

Both volatility and VAR have a feature in common that allows us to form
this useful marginal risk decomposition: They are both linear in position
size. In other words, if all positions are increased by a common factor, then
risk, as measured by both volatility and VAR, is also increased by that same
factor.18

Because of this linear nature of the two risk measures, marginal impacts
provide a decomposition of risk. Scaling all positions by a common factor
increases the volatility or VAR by that same factor. In other words, R(kx) =
k*R(x), where k is a factor greater than zero, x is the n-dimensional vector
of positions, and R is the risk function. Taking the derivative with respect
to k of both sides of this equation reveals that

R1 (x) * x1 + R2 (x) * x2 + . . . Rn (x) * xn = R(x) (1)

where Ri(x) is the partial derivative of R with respect to the ith position
and xi is the ith position. Loosely speaking, the product Ri(x) * xi, which is
the marginal rate of change in risk per unit change in the position (at the
current position size) times the position size itself, can be thought of as the
rate of change in risk with respect to a small percentage change in the size
of the position. Thus, the risk itself, R, is the sum of the rates of change in
risk with respect to percentage changes in each of the positions. This is a
useful decomposition because it highlights the positions to which the risk
of the portfolio is most sensitive.

We define

Ri (x) * xi * 100 / R(x) (2)

to be the percentage contribution to portfolio risk of the ith position.
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Figure 4.14. Decomposing Risk: Increased DM Position
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There is one important limitation to this risk decomposition—it is a mar-
ginal analysis. If we find, for example, that in the decomposition a particu-
lar position accounts for half the risk, that implies that a small percentage
increase in that position will increase risk as much as the sum of a similar
percentage increase in all other positions. It does not imply, however, that
eliminating that position entirely will reduce risk by half. As might be ex-
pected, as the size of the position of a contributor to risk is reduced, the
marginal contribution of that position to risk will be reduced as well.

Not all positions need provide a positive contribution to risk. In fact, as
was clear in the risk triangle diagrams (figures 4.8, 4.9, 4.11, 4.13, and 4.14),
any trade whose returns are negatively correlated with the returns of the
portfolio (so that the angle between the first and second sides of the tri-
angle is less than 90 degrees) will, at least at the margin, reduce risk. The
interpretation of a negative contribution to risk is very straightforward—
increasing the size of such a position will, at the margin, reduce risk.19

Eventually, as the size of such a position is increased, it will contribute enough
to the returns of the portfolio that its returns are no longer negatively corre-
lated with the returns of the portfolio but rather are uncorrelated. At that
point, a marginal increase in the position does not affect the risk of the
portfolio.

Indeed, this point is a very interesting position size. The risk contribu-
tion is zero, and the position is such that it is the risk-minimizing position
for that asset class, holding all other positions at their current size.20 We
call such a position a “best hedge.”

Using the notation above:

Ri (x) = 0 implies that xi is the best hedge position, holding (3)
all other positions fixed.

Let us return to the “Trade Risk Profile” graph (see figure 4.10) and con-
sider the relationship between it and the contribution to portfolio risk of
an individual position. In figure 4.15, we again show an analysis of the risk
for our global equity portfolio as a function of the amount moved from
Japanese equity into U.S. equity. We also show, for the same-sized trade,
the contribution of the trade (treated as a separate position) to portfolio
risk. The risk contribution of a trade is really just a simple generalization
of the risk contribution of any other asset class. In either case, we look at
the change in risk as a function of a small percentage increase in the size of
the position. As the chart shows, the trade will (almost) always have two
positions where it contributes zero to portfolio risk. The first is where the
trade size is zero; the second is where the risk of the portfolio is minimized
with respect to the size of the trade—that is, the point where the trade rep-
resents a “best hedge” position. At all points between these two, the trade
will have a negative impact on portfolio volatility, and outside this range
it will have a positive impact—increasingly so as the size of the trade gets
big relative to the other risks in the portfolio. (The only time there will not
be two positions of zero contribution is when the trade is uncorrelated with
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the portfolio, in which case the only zero contribution position is the null
position.)

Earlier, we analyzed the impact of small changes in position or trade
size on the portfolio risk to create a portfolio risk decomposition. We can
generalize this concept still further and consider the decomposition of risk
in a large portfolio into that contributed by smaller components of the
portfolio. For example, we find it useful to decompose the firmwide risk
of Goldman Sachs into that contributed by its divisions, the divisional risk
into that contributed by business units, and so on. The contribution to
firmwide risk can vary considerably from the absolute level of risk. The
latter clearly is a function of the correlation of the risks of different busi-
nesses. If the dominant risk faced by the firm is long global interest rates,
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Table 4.6. Firmwide risk decomposition.

VaRa Percentage Contribution to Firmwide Risk

Firmwide Total 11.8 100.0

Fixed Income 6.7 46.0

Asia 2.8 5.8

Emerging Markets 1.8 4.1

Europe 5.6 32.4

Europe Governments 4.8 24.7

Gilts 1.1 2.9

Trader #1 0.9 1.9

Trader #2 0.5 1.1

North America 2.3 3.7

aWe have scaled the numbers to arbitrary units in order to avoid revealing the
actual level of risk taken on this date.
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then a large short in one particular business may have significant risk in
itself but contribute negatively to firmwide risk. In table 4.6, we show a
simple example of this decomposition. On this particular day, the VaR for
North America Fixed Income was over 40% of that of Europe Fixed Income,
while the contribution to firmwide risk was less than 12%. Mathematically,
this decomposition follows immediately by considering the components
of the overall portfolio in the same way that we consider trades—that is,
we take the derivative of risk with respect to percentage changes in their
position sizes. Similarly, a pension fund or mutual fund may want to de-
compose its overall portfolio risk into the amounts contributed by each of
its components. Those components could represent geographic regions,
countries, asset types, or portfolio managers.

5. PORTFOLIO ANALYSIS TOOLS

In this section, we describe a number of portfolio analysis tools that we have
developed and found useful in managing risk at Goldman Sachs. We show
how they apply to our example portfolios and discuss how we try to use
them.

“Hot Spots” Reveal Which Positions in the Portfolio
Have the Biggest Impact on Risk

Since the marginal impacts on risk sum to the risk of the portfolio, it is
natural to express the risk decomposition in terms of the percentages of
risk accounted for by each position or asset class. When we do this for a
portfolio—and sort the resulting decomposition according to the asset
classes and countries that create the largest contributions to risk—we have
what we at Goldman Sachs call a “Hot Spots” report. We show reports for
our example portfolios in tables 4.7–4.10. In our Hot Spots reports, we gen-
erally show two numbers for each asset class. The first is the percentage of
marginal risk accounted for by the position in that asset class. The second
is the position size itself. The dark shading represents all positions whose
marginal contribution is more than 5% of the total, and the light shading
indicates all positions whose marginal contribution is to reduce risk by more
than 5% of the total.

The Hot Spots report for the equity portfolio (table 4.7) clearly highlights
which positions merit the risk manager’s attention. The combination of
Japan and Brazil contributes more than half of the total portfolio’s risk
decomposition. This is surprising because their deviations from benchmark
weights do not stand out as obvious candidates for attention. In contrast,
the two countries with the biggest absolute deviations, the United States
and the United Kingdom, contribute a total of less than 20% to the risk
decomposition. Canada, which has a large absolute deviation from the
benchmark, contributes virtually no risk. Given the size of the underweight
position in the United States, the overweight position in Canada is close to
a best hedge position.
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In the case of the proprietary portfolio, the risk decomposition can be
applied to the four individual securities or to the two different contract
expiration dates.21 In the first case, the analysis shows that the December
option contributes the dominant risk in the portfolio. The short position in
the December Eurodollar option contributes 131% of the risk. Clearly, as
seen in table 4.5 (the best and worst days analysis), the risk in this portfo-
lio, limited as it is, is largely that implied volatility on the December con-
tract will rise. Of course, when volatility in the December contract rises, it
is likely that volatility in the September contract will rise also, offsetting
some of the losses; and indeed, the September option shows a negative
contribution to risk of 15% (table 4.8).

Table 4.7. Hot Spots Report for the global equity portfolio.a

Percentage Contribution
Country to Risk Position

Japan 30.7 4.5

Brazil 23.6 2.0

United States 13.0 –7.0

Thailand 10.4 2.0

Italy 6.9 2.0

United Kingdom 6.6 –6.0

Germany 3.7 2.0

France 3.3 –3.5

Switzerland 2.7 2.5

Canada 0.2 4.0

South Africa –0.8 –1.0

Australia –2.1 –1.5

aAnnualized Tracking Error 1.82%.

Table 4.8. Hot Spots Report for the proprietary trading
portfolio.a

Percent Contribution
Contract Type to Risk Position

September –5

Future 9 –45

Option –15 80

December 105

Future –25 22

Option 131 –66

aDaily once-per-year VAR $127,000.
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Our example consists of a portfolio long gamma and short vega. If we
flip the signs of all the positions, then we have a portfolio with the classic
profile that risk managers hate. It makes small amounts of money most of
the time and, on rare occasion, blows up with large losses. The five “best”
days become the five “worst” days. If we compute the risk decomposition
for this portfolio (table 4.9), the dominant risk, now short gamma, now
comes from the September option, which contributes 290% of the risk. The
December option reduces risk by 130%, and the futures offset the additional
component.

We constructed these examples in part to be easy to understand. But
because of this simplicity, they do not adequately illustrate the main bene-
fit of a risk decomposition, which is to highlight, in large, complex port-
folios, the positions that require attention. To illustrate this type of benefit,
we show in table 4.10 the percentage contributions from the Hot Spots
report for the Europe Fixed Income portfolio. Although the positive con-
tributors to risk are not necessarily long positions, we can see from table 4.3
that in this example that is generally the case.

Once we have identified the hot spots in a portfolio, the next step in
reducing risk is to decide how to change those positions. A complete solu-
tion to this problem requires a process of portfolio optimization. However,
because of the existence of transaction costs, traders and portfolio manag-
ers often update portfolios incrementally. As discussed above, it is fre-
quently useful in this context to visualize how portfolio risk, either VAR
or volatility, varies as a function of the position size in a given asset or trade.

For the equity portfolio, we found that the hot spots included Japan and
Brazil. We first focus on the Trade Risk Profile for a trade out of Japanese
equity into U.S. equity, which was shown in figures 4.10 and 4.15. This trade
risk analysis is not particularly surprising. The risk rises as the Japanese
equity position increases away from the benchmark weight—at first slowly,
but then with an increasing slope as this becomes the dominant risk in the
portfolio. The risk-minimizing position is at a point where the Japanese
equity position is close to the benchmark weight.

Table 4.9. Hot Spots Report for the proprietary trading
portfolio with all positions reversed.a

Percent Contribution
Contract Type to Risk Position

September 273

Future –17 45

Option 290 –80

December –173

Future –43 –22

Option –130 66

aDaily once-per-year VaR $322,000.
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Consider the appearance of the Trade Risk Profile for two limiting cases:
first, the case where only a single trade contributes all of the risk; and sec-
ond, the case where a particular trade contributes a small and dwindling
percentage of the risk. In the first case, the Trade Risk Profile appears as in
figure 4.16. Risk is minimized at the zero position point and increases lin-
early in trade size in either direction. The second case is illustrated in fig-
ure 4.17. Here, the portfolio risk is a flat line. By assumption, it is not
sensitive to the trade size (although, of course, if there is any sensitivity at
all, then for some trade size that is large enough, the portfolio risk will start
to be affected). For an asset that contributes a dominating risk to the port-

Table 4.10. Hot Spots Report for the Europe Fixed Income Portfolio.

Total Italy U.K. Spain Germany Belgium France Denmark

Total 100 78 25 –12 9 5 –4 –1

10-year future –67 9 –16 0 –62 0 1 0

5-year bond 25 19 17 0 –22 1 6 1

7-year bond 60 7 11 0 38 0 –2 5

10-year bond 8 24 6 –12 4 0 –11 0

30-year bond 34 3 0 0 31 0 0 0

5-year future 26 0 0 0 9 0 0 0

2-year bond –8 0 –10 0 1 0 1 0

20-year bond 15 0 14 0 0 0 1 0

Currency –3 –3 0 0 –2 5 0 0

3-year bond –4 2 1 0 1 –1 0 –7

1-year LIBOR 13 11 0 0 1 0 0 0

4-year bond –3 0 2 0 –5 0 0 0

2nd Euro contract 4 3 1 0 0 0 1 0

Other 0 2 0 0 –2 0 1 0
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Figure 4.16. Trade Risk Profile: Dominant Risk
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folio, the Trade Risk Profile for trades of that asset will look like that of the
first limiting case, except that the minimum position will not be zero but
will be the point where the trade minimizes the risk. The more interesting
Trade Risk Profiles are the ones for trades of assets that are not dominant
risks in the portfolio. We focus, for example, on trades of Canadian equity
in the context of our global equity portfolio. Perhaps the most common
misperception among portfolio managers is that they can minimize their
risk from a given asset class by holding a position that is at, or close to, its
benchmark weight. As you can see in figure 4.18, the minimum risk posi-
tion for Canadian equity,22 3.8% above the benchmark weight, is close to
the current position in the portfolio. As noted above, this is because the
Canadian equity is acting as a hedge to the risk contributed by the under-
weight position in U.S. equity.

The Trade Risk Profile graph is an important one to keep in mind when
thinking about portfolio risk. As noted above, it always has the same basic
shape. The two aspects of the graph that change are the location of the
minimum, which is the trade size that leads to the best hedge position, and
the drop between the level of risk at the current position and that at the
minimum, which reflects how much risk can be reduced by hedging using
that particular asset or trade.
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Figure 4.17. Trade Risk Profile: Small Risk Case
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The Best Hedges Report

A portfolio manager or trader should have a sense of what the Trade Risk
Profile looks like for each of his assets. The slope of the graph at the cur-
rent position reveals how sensitive risk is to that asset; whether the cur-
rent position is to the left or the right of the minimum reveals whether
purchases increase or decrease risk, and knowing how much higher than
the minimum height the current position is reveals how much risk reduc-
tion is available through purchases or sales of this position. We have found
that a useful report, which we call “Best Hedges,” can be formed by mea-
suring the purchase or sale of each individual asset required to reach the
risk-minimizing position and then calculating and sorting on the percent-
age risk reduction available through that purchase or sale. Table 4.11 shows
an example of this report for the equity portfolio. This report highlights
the importance of the overweight position in Japan in terms of its risk re-
duction potential far more clearly than do the percentage deviations from
the benchmark weights. The current 4.5% overweight in Japan, for example,
is small relative to the 7% and 6% underweight positions in the United
States and the United Kingdom. But the risk reduction potential is much
larger. Conversely, despite a 4% overweight position in Canada, there is
virtually no risk reduction potential. This is essentially the risk-minimizing
position.

Another example of a Best Hedges report is given in table 4.12 for the
Europe Fixed Income Portfolio. This report clearly shows that the biggest
opportunity for risk reduction is through selling Italian bonds. Other alter-
natives are to sell U.K. bonds, Belgian bonds, German bonds, or ECU bonds,

Table 4.11. Best Hedges Report for the global equity portfolio.

Volatility Percentage Trade Required
at the Reduction Current to Reach the Best

Country Best Hedge in Volatility Position Hedge Position

Japan 1.48 18.62 4.5 –4.93

Brazil 1.66 8.87 2.0 –1.50

Thailand 1.71 5.95 2.0 –2.30

Italy 1.75 3.73 2.0 –2.18

United States 1.75 3.72 –7.0 3.80

Germany 1.79 1.88 2.0 –2.06

Australia 1.80 1.28 –1.5 –1.89

United Kingdom 1.80 1.22 –6.0 2.10

Switzerland 1.81 0.75 2.5 –1.45

France 1.81 0.57 –3.5 1.18

South Africa 1.82 0.22 –1.0 –0.65

Canada 1.82 0.02 4.0 –0.11
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in decreasing order of effectiveness. Notice that selling Belgian bonds is a
portfolio hedge despite the fact that, as shown in table 4.3 above, the cur-
rent position in Belgian bonds is already a net short position.

The Relationship Between Best Hedge and “Market Exposure”

The risk-minimizing, or “Best Hedge,” position is also important in that
it represents a key reference point for risk management purposes. Kurt
Winkelmann and I (Litterman and Winkelmann 1996)23 have discussed how
portfolio managers could use the regression coefficient of portfolio returns
on those of a market portfolio to characterize their exposure to “the mar-
ket.” As reported in that paper, at Goldman Sachs we find it convenient in
fixed income traders’ portfolios to define the market as the 10-year bench-
mark bond and to characterize the amount that a trader is long as the
amount that he would have to sell to make his portfolio have zero market
exposure—that is, to be uncorrelated with the market. In cases such as
this, when the market is defined as one asset, that market exposure is
exactly the distance between the current position in that asset and the risk-
minimizing position. At positions larger than the risk-minimizing position,
the portfolio’s returns are positively correlated with the asset returns; at
positions less than this, the portfolio’s returns are negatively correlated with
those of the asset. At the risk-minimizing position, the portfolio is uncor-
related with the asset—a position that represents a market-neutral posi-
tion relative to that asset. More generally, the same idea applies in an
investment context where we typically do not represent the market with a
single asset, but we can think of buying or selling amounts of an index or

Table 4.12. Best Hedges Report for the Europe Fixed Income Portfolio.a

Percentage Trade Required
VaR Reduction to Reach the

Hedge Asset at the Best Hedge in VaR Best Hedge Position

Italian 30-year bond 3.37 39.42 –138.75

Italian 7-year bond 3.45 37.91 –258.25

Italian 10-year future 3.57 35.81 –180.00

Italian 2-year swap 3.66 34.12 –575.00

U.K. 5-year bond 4.49 19.26 –298.50

U.K. 7-year bond 4.49 19.25 –247.50

Belgian 2-year bond 4.53 18.38 –847.25

U.K. 10-year future 4.55 18.08 –179.25

U.K. 10-year bond 4.56 17.88 –180.50

German 2-year bond 4.64 16.45 –756.75

ECU 7-year bond 4.68 15.73 –263.25

aCurrent VaR is 5.55.
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assets correlated with the index in order to manage the investment port-
folio’s market exposure.

Table 4.13 shows the Market Exposure report for the Europe Fixed In-
come Portfolio expressed in terms of German 10-year bond equivalents.
While the basic exposures in most countries correspond to the duration-
based measure of positions shown in table 4.3, notice that there are some
significant differences in such holdings as Belgium and the ECU, where
significant currency positions contribute to Market Exposure but not to
duration. Another exception is in the U.K. 10-year sector, where a basis
trade long bonds and short futures nets out to a small short position on a
duration basis and a small long position on a market exposure basis. Fi-
nally, notice that the long Finland position in the under-one-year sector
contributes significantly less market exposure than duration because of the
relatively low correlation between Finnish short rate changes and 10-year
yield changes in Germany.

Best Replicating Portfolios

A natural generalization of the Best Hedge is what we call the “Best Rep-
licating Portfolio.” The general idea is that in most portfolios there is prob-
ably no one asset that hedges very effectively. For a variety of reasons, we
may want to find some small combination of asset positions that does pro-
vide an effective hedge—that is, a replicating portfolio. One benefit is sim-
ply to aid in understanding. For example, as we have seen, even when the
hundreds of positions in our Europe Fixed Income Portfolio are aggregated,
it is difficult to comprehend all that is going on. Here’s where a small Best
Replicating Portfolio can help. In addition, if a more effective hedge is
desired, the Best Replicating Portfolio is the optimal sale of a small num-
ber of assets. In our risk system, we have an algorithm designed to quickly
identify and compute the best three-, five-, and ten-asset replicating port-
folios. We also allow traders to choose a set of assets for a replicating port-
folio, in which case we simply solve for the weights.

Table 4.14 shows the three-, five-, and ten-asset Best Replicating Port-
folios for the Europe Fixed Income Portfolio that we have been following.
In addition to the choice of assets and optimal weights, the table shows
the percentage contribution to risk of the replicating portfolio for each as-
set and the percentage of risk explained—that is, 100 times one minus the
ratio of residual risk to the original risk of the portfolio.

The Hot Spots and Best Replicating Portfolio reports provide similar in-
formation—a picture of where the risks in a portfolio are coming from. They
do differ, however, and each has strengths and weaknesses. In general, Hot
Spots is more disaggregated, has more information, but unfortunately is more
difficult to interpret. The Best Replicating Portfolio is especially useful in the
context of a large, complex portfolio. These differences are highlighted by
comparing the two reports for the fixed income portfolio.

The three-asset Best Replicating Portfolio in table 4.14 clearly summa-
rizes the main risks of the fixed income positions in a concise, easy-to-
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Table 4.13. Market Exposure Summary for the Europe Fixed Income Portfolio.a

Asset Total Ger Ndl Fra Bgm U.K. U.S. Ita Spn Dnk Swe Fin Nor Swz Ecu Jap Hkg SAf

Currency –7.3 –6.8 0 –1.5 16.0 0 –0.8 0.8 0 0 0 –4.8 1.5 –11.5 0 0 0

< 1 year 55.8 8.5 0 3.3 0 4.0 0.3 34.5 0.8 0 0 4.5 0 0 0 0 0 0

1 to 5 year 132.0 0.5 4.5 35.8 –2.3 56.3 18.3 52.8 2.3 –44.0 8.8 0.8 0 0 –1.5 0 0 0

5 to 12 year –253.5 –200.5 2.0 –75.0 2.0 3.0 6.5 120.0 –126.3 34.3 –14.8 –14.5 0 0 9.3 –0.5 0 1.0

12 to 30 year 313.3 228.8 0.5 7.5 0 80.8 –12.0 7.8 0 0 0 0 0 0 0 0 0 0

Swaps –20.3 –20.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total FI 220.0 10.3 7.0 –30.0 15.8 144.0 13.3 213.8 –122.8 –9.8 –6.0 –9.3 -4.8 1.5 –4.0 –0.5 0 1.0

aExpressed in 10-year German equivalents.
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comprehend format. The portfolio is basically long $226 million in Italian
and $109 million in U.K. 10-year bonds and short $144 million in Spanish
10-year bonds. If more detail is needed, one can look at the five- and ten-
asset Best Replicating Portfolios. Thus, the information in these reports is
similar to that in the Hot Spots reports and in some respects is easier to
understand. The Hot Spots report can often be confusing. For example, the
one in table 4.10 indicates that the United Kingdom is a source of 25% of
the risk, but there are several U.K. asset classes contributing and others
hedging the overall risk. A careful look at the positions in table 4.3 shows

Table 4.14. Best Replicating Portfolio Report for the Europe Fixed Income Portfolio.

Best Three-Asset Portfolio, 59% of Risk Explained

Replicating Percentage
Asset Portfolio Weight Contribution to Risk

Italian 10-year bond 226.25 92

U.K. 10-year future 109.25 24

Spanish 10-year bond –144.25 –16

Best Five-Asset Portfolio, 63% of Risk Explained

Replicating Percentage
Asset Portfolio Weight Contribution to Risk

Italian 10-year bond 178.75 70

Italian floating rate bonds 298.00 18

Spanish 10-year bond –151.25 –16

U.K. 10-year future 69.00 15

German 7-year bond 99.75 13

Best Ten-Asset Portfolio, 82% of Risk Explained

Replicating Percentage
Asset Portfolio Weight Contribution to Risk

German 10-year future –54.25 –68

German 7-year bond 40.75 47

Italian 10-year bond 109.75 38

German 30-year bond 139.50 32

Italian 5-year bond 126.50 29

U.K. 10-year future 70.50 13

Spanish 10-year bond –143.00 –13

U.K. 5-year bond 103.50 12

Italian floating rate bond 213.50 12

Danish 3-year bond –76.75 –3
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that the contributors to risk are long positions while the short positions are
hedges; but in general the risks may not be so easily understood by look-
ing at the Hot Spots report alone.

On the other hand, the Hot Spots report does reveal the role that a par-
ticular asset class is playing, which unfortunately the Best Replicating
Portfolio might not. In this example, the U.K. 10-year bond future in the
Best Replicating Portfolio has a positive weight and is serving as a proxy
for the long position in U.K. bonds. In the actual portfolio, however, the
position in the U.K. 10-year bond future is short and hedges the overall
long bond position in the portfolio, as can be seen in the Hot Spots report.
Nonetheless, the two reports are complementary and together should pro-
vide a clear picture of what is going on in the portfolio.

Implied Views

In marketing asset allocation services, we have found that in a large num-
ber of cases the optimal portfolios generated when we put the client’s views
into our optimizer are very different from the client’s current portfolio. In
trying to explain these differences, we have found it useful to compare the
client’s stated views with those that would have been required to generate
the client’s current portfolio from the optimizer. We call those views for
which the current portfolio is optimal the “implied views” of the portfolio.
The comparison of actual views with the implied views of a portfolio is a
useful way to understand how and why portfolios can be improved.

We think of the creation of implied views as the process of reverse engi-
neering a portfolio. Instead of taking views as input and creating an optimal
portfolio, we take the portfolio as input and create the set of implied views.
Because every portfolio generates a set of implied views and the analysis
requires no further input from the portfolio manager or trader, it can be useful
to incorporate this exercise into the risk management routine.

At Goldman Sachs, we do not create our trading positions from the top
down. Our positions are not the result of a large portfolio optimization.
Rather, at any given time, the positions are the aggregate of many indi-
vidual decisions by traders operating in many different markets. At the
end of each day, however, we do a risk decomposition analysis to high-
light the hot spots, and we do an implied views analysis to highlight any
inconsistency between the views expressed by our economists and those
implicit in our trading positions.

One reason that the implied views of a portfolio are interesting stems
from the above-mentioned misperception that many traders and portfolio
managers have—specifically, that their “neutral” position in an asset is
either no position or, for managers with a benchmark, close to their bench-
mark weight. Of course, this is true if a particular asset is the only one in a
portfolio. But, in general, the neutral position for any given asset is a func-
tion of all of the other positions in the portfolio. The implication of taking
other positions into account is that a portfolio manager has to understand
the volatilities and correlations of the returns of all of his assets in order to
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know what view a particular position represents. A long position (or over-
weight the benchmark) can represent a bearish view; similarly, a short
position can represent a bullish view. It all depends upon what else is going
on in the portfolio.

How can an overweight position represent a bearish view? This can occur
anytime the returns of a position are negatively correlated with the returns
of the rest of the portfolio. As illustrated in figure 4.19, whenever there is a
position with such a negative correlation, there will be a region of long posi-
tion sizes, between 0 and the risk-minimizing or “best hedge” position, for
which the implied views will be bearish and therefore counterintuitive. If
the investor’s actual view is bullish—which is generally the case when the
investor is long (or overweight)—then there is an opportunity to increase
the expected return and reduce the risk by increasing the size of the position.
In figure 4.19, this would be true for all positions between points A and B.

To develop the intuition that underlies the implied views of a portfolio,
note that, for a portfolio to be optimal, the return per unit of contribution
to portfolio risk must be the same for all assets; otherwise, a portfolio could
be improved by moving out of an asset with a lower return per unit of
portfolio risk into an asset with a higher return per unit of portfolio risk.
Of course, this implies that you must understand the overall risks in a

Figure 4.19. Counter-Intuitive Implied Views Represent Opportunities. They arise
often whenever a new trade is negatively correlated with an existing portfolio
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portfolio in order to understand what views the portfolio represents. In the
region of counterintuitive views, a decrease in position size increases port-
folio risk. In this situation, there is an implied negative return (more accu-
rately an implied negative expected excess return relative to the risk-free
rate) despite the long or overweight position, in order to justify not increas-
ing the position and reducing the risk.

Most traders and portfolio managers find the analysis above counter-
intuitive. No doubt it is strange to regard a long position as representing a
bearish view. But don’t think that this situation shows up only in some
unusual set of circumstances in leveraged portfolios. It is actually an every-
day occurrence in investment portfolios. An example is provided by the
Canadian position in our global equity portfolio. Although the 4% posi-
tion is 0.11% larger than the risk-minimizing position, any overweight
position less than 3.8% would have represented a bearish view. Most in-
vestment portfolios are dominated by one risk: They are long or short the
market (or over- or underweight relative to their benchmark). In any port-
folio in which there is such a dominant risk, whether or not a position in
some other asset represents a bullish or bearish view is simply a function
of the correlation of that position’s returns with the dominant risk—it is
not particularly sensitive to the size of the position in that asset. For in-
stance, suppose the dominant risk is a long position in the U.S. equity
market. Suppose further that the investor is bullish on oil prices and takes
a long position in oil via purchases of the equities of oil companies or di-
rectly through commodity derivatives. Assume also that, as is almost al-
ways the case, the returns on oil are negatively correlated with the returns
on the equity market. As long as the long position in oil is small relative to
the overall size of the portfolio, it will have a negative correlation with the
portfolio and will therefore, at the margin, reduce its overall risk. Conse-
quently, such a position represents a bearish view despite being long.

You do not even have to look as far afield as commodities to find these
types of situations. A global equity manager who manages relative to a
market benchmark will generally have lots of equity risks that correlate
negatively with the dominant risk of the portfolio. Throughout the early
1990s, the international equity portfolios managed for U.S. investors often
had risk dominated by an underweight position in Japan. Whenever you
had such a situation, the overweight positions in every equity market that
correlated positively with Japanese equity were risk-reducing and there-
fore represented bearish views. Such situations were common in these
global equity portfolios, and they generally went unrecognized by the port-
folio managers.

When these types of counterintuitive implied views arise, they gener-
ally represent investment opportunities. In the example of the investor bull-
ish on oil prices, the investor has an opportunity to increase his expected
returns and reduce his risk by increasing the size of his oil position. Of
course, this opportunity is not unlimited. At some point, the size of the oil
position will grow larger than the risk-minimizing, or best hedge, position.
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At that point, the position starts to represent a bullish view, and the in-
crease in expected return has to be balanced against the increase in risk.

In table 4.15, we show the implied views for the Europe Fixed Income
Portfolio. Notice that the overall long position in Europe is reflected in the
implied views of rate declines. Not surprisingly, the largest source of risk,
long Italian bonds, is reflected in the strongest implied view. On the other
hand, this is not a simple straightforward mapping. Notice also that the
significant short positions in Spain and France do not imply increases in
yields—just a spread widening relative to Italy.

Two Different Types of Marginal Analyses

A key message of this chapter is that it is the contribution to portfolio risk
that matters, not the volatility of a position in isolation. Both the Hot Spots
report and the implied views are driven by this marginal contribution to
portfolio risk. Yet there is an important distinction between how marginal
risk drives the contribution to risk and how it creates the implied views.
Implied views are a function of the increase in risk generated by the next
marginal unit of investment. In other words, they are a function of the slope
of the Trade Risk Profile for that asset at the current position. Contribu-
tion to risk, on the other hand, is a function of the impact on portfolio risk
of a marginal percentage increase in the position size. There can be a big
difference, especially when the minimum risk is far from the origin. In such
a case, having no position may represent a strong view, but clearly it can’t
be a contributor to risk. For example, the 10-year U.S. Treasury bond’s re-
turns may be highly correlated with the returns of a current portfolio in
which the risk is dominated by a long position in 30-year U.S. Treasuries,
even though there is no current position of 10-year bonds in the portfolio.
In this case, it makes sense to consider the contribution to risk of the
10-year bonds as zero, but it also makes sense that the implied view on
10-year bonds, the returns of which are highly correlated with those of the
30-year bonds, is strongly bullish. A neutral view on 10-year bonds, for
example, is inconsistent with having no position. This is because it would
suggest using 10-year bonds as a hedge, which would generate a substan-
tial risk reduction with no change in expected return.

Optimal Portfolios

Portfolio optimization is a relatively simple computational exercise but a
rare procedure in the world of traders and portfolio managers. The practi-
cal difficulties that arise in optimizations—difficulties of systematically
formulating views in a quantitative manner, of estimating a covariance
matrix, of rebalancing portfolios, and of understanding the counterintuitive
results that often come out of the complex interactions of views, correla-
tions, constraints, and measuring risk relative to benchmarks—leave many
portfolio managers scratching their heads. Our experience in working with
portfolio managers suggests that the answer is not to give up but rather to
start with a thorough grounding in understanding the sources of risk in
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Table 4.15. One-month horizon Implied Views for the Europe Fixed Income Portfolio.a

Asset Ger Ndl Fra Bgm U.K. U.S. Ita Spn Dnk Swe Fin Nor Swz Ecu Jap Hkg SAf

Currency .89 .86 .66 .87 –.43 –.51 1.00 .86 .30 .67 .76 .97 –.51 .27 0 .91

2-year –14 –6 –18 –13 –17 –14 –53 –5 –11 –20 –5

5-year –14 –11 –14 –12 –18 –17 –50 –8 –15 –20 –1

10-year –11 –10 –10 –17 –16 -47 –9 –13 –19 –8 –13 0 5

30-year –12 –10 –10 –15 –13 –40 –12

aPercentage change in U.S. dollar exchange rate for currencies. Yield changes are in basis points. In all cases except the U.K., a positive number for the exchange rate
represents appreciation of the dollar. In the U.K. case, where the exchange rate is quoted in dollars per pound, a positive number represents sterling appreciation.
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the portfolio, the correlations of each asset with the dominant risks, and the
other portfolio effects. The Hot Spots report, the Best Hedges report, Trade
Risk Profiles, Best Replicating Portfolios, Market Exposure, and the Implied
Views of the portfolio are all useful in this context. Once these tools are
mastered, portfolio optimization—or, at the very least, improved portfolio
management—follows naturally. We discussed earlier a situation where a
bullish view in oil might have led to a surprisingly large position because of
the negative correlation between that asset and the dominant equity risk in
the portfolio. More generally, the art of successful portfolio management is
not only to be able to identify opportunities but also to balance them against
the risks that they create in the context of the overall portfolio.

6. CONCLUSION

Risk management has received more attention in recent years as the com-
plexity of financial markets has increased. Unfortunately, so far that focus
has been applied almost exclusively to derivatives and the risks of individual
securities. Investors and traders need to recognize—and the practice of risk
managers needs to reflect—that what matters is the marginal impact on the
risk of the portfolio, not the risk of individual securities. With that in mind,
this chapter has highlighted some of the tools and analyses that we have
developed along these lines at Goldman Sachs to help improve the profit-
ability of our traders and the investment performance of our clients.
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NOTES

1. Value-at-risk is a measure of a point in the distribution of possible outcomes. It has
two parameters: a horizon and a probability. For example, a common regulatory defini-
tion of VaR is the amount of capital that you should expect to lose no more than once in a
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hundred two-week intervals, given your current positions. At Goldman Sachs, we com-
monly focus on an amount of capital that we should expect to lose no more than once per
year in a given day. We think of this not as a “worst case” but rather as a regularly occur-
ring event with which we should be comfortable.

2. Despite widespread acceptance of VAR as a statistical measure of risk, many risk
managers still think it has been oversold—they feel it represents an attempt to generate one
number from a “black box” analysis that can summarize risk, but they argue it provides
little understanding of risk or guidance in risk management. Of course, no one number can
provide much information by itself. But, as discussed in this chapter, because statistical
measures such as VAR can be used appropriately as the basis for understanding the sources
and magnitudes of risk in a portfolio, they should in fact provide the cornerstone of mod-
ern risk management.

3. Of course, in actually trying to implement such an approach, the risk manager will
encounter many interesting and difficult statistical issues that must be addressed but that are
beyond the scope of this chapter.

4. Note that an assumption of nonnormality, in particular fat tails, is natural in finan-
cial markets. The usual justification of the assumption of a normal distribution—that many
independent sources of uncertainty sum to create the total uncertainty—is clearly not valid.
On those days when important information is observed, most market participants will re-
act to the same information. In some special situations, as, for example, was the case in the
crash of October 1987, that information may be in large part the market price movement
itself. (The crash was approximately a 25–standard-deviation event relative to previous daily
price moves.)

5. Currency devaluations, especially during periods when central banks are attempting
to fix or stabilize exchange rates, are a notable exception to this rule of thumb. In such situa-
tions, the probability of a devaluation is uncertain, and when it occurs, it is generally much
larger than four standard deviations relative to the daily volatility of the preceding period.

6. This aggregation can be handled in various ways. Here, we simply assume that the
individual equity positions are small and sufficiently representative of the index that the
dollar value in each asset class is a fair representation of the index exposure. An alternative
would be to compute the “beta” of the individual equity positions with respect to the asset
class benchmark in order to get a more precise measure of exposure. The choice of how
finely to disaggregate the data is a compromise between accuracy of risk measurement,
which comes from disaggregation, and the clarity that comes from aggregation. In addi-
tion, lack of availability of data or computing resources may limit the degree to which the
positions can be analyzed on a disaggregated basis.

7. For simplicity, we assume that half of the currency exposures created by the devia-
tions from the benchmark weights are hedged. At this level of hedging, the currency expo-
sures do not create significant risk relative to the equity exposures, and in this chapter we
report the sum of the two.

8. This report shows positions aggregated into the sectors of the fixed income markets
of different countries. This actually represents the second level of aggregation: from posi-
tions into asset classes, and then from asset classes into sectors. In addition, we aggregate
into risk factors, such as a parallel move in interest rates, a steepening of a yield curve, etc.

9. Traders often add other Greek letters, such as the theta (the time decay of the port-
folio) and the rho (the sensitivity to financing rates). We do not report them here. Theta is
better viewed as a cost, not a risk factor, since it is a known quantity, and rho is not a sig-
nificant risk in this context.

10. In the course of defending the use of statistical approaches to risk management, we
do not mean to suggest that other approaches are invalid or obsolete. In particular, in this
chapter we will say nothing about issues such as looking for illiquid or aged items, two
particular classes of securities that need to be monitored closely by a risk manager but do
not get highlighted by our statistical measures.

11. We estimated the covariance matrix used here, and volatilities and correlations
quoted later in this chapter, using daily excess return data from February 1, 1988, through
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April 12, 1996. We gave all observations equal weight in the estimation. When applying
the covariance approach to trading positions that have a short expected holding period,
we typically use an exponential decay function that puts more weight on more recent ob-
servations. Such an approach has drawbacks, though. There is a delicate trade-off between
the benefit of capturing current market conditions by downweighting older data and the
increased noise in the estimates that arises from having fewer observations. This is a par-
ticularly acute concern when the covariance matrix is to be used for understanding sources
of risk and constructing hedges, not simply for measuring risk. For example, no matter how
short the expected holding period, we would never put the majority of the weight on data
less than one month old, an unfortunate and dangerous feature of one widely used approach.
Our default decay rate for trading positions is 20% per month. For analyses of client port-
folios, which typically have a much longer expected holding period, we typically let the
data decay much more slowly.

12. Because we are focusing on tracking error, we don’t need to specify benchmark
weights. We have, however, set underweighted positions to be no greater in absolute value
than the market capitalization weight.

13. An advantage of using a covariance matrix is that it can be estimated from a rela-
tively short period of data and therefore can capture the current state of volatilities and
correlations. In the context of a portfolio with nonlinearities, however, a portfolio manager
is likely to be especially concerned about large, rare events and may prefer to use a long
history of actual price and volatility changes rather than to rely on the assumption that
current conditions, which may reflect recent low volatility, will persist. On the other hand,
the historical simulation analysis does give up two important advantages of the covariance
approach: first, the ability to track time-varying volatilities and correlations and their im-
pact on risk; and second, the ability to search the “event space” thoroughly rather than sim-
ply being based on the limited set of actual historical events.

14. The yield and implied volatility changes for the particular contracts in the portfolio
are not actual yield and implied volatility changes for historical contracts; rather, they are
linearly interpolated values with weights that produce “constant-maturity” yield and vola-
tility changes. While not perfect, this avoids some of the instability of using yield and vola-
tility changes on “rolling” contracts.

15. Note the similarity. The formula for the length of a side of a triangle, A, given the
lengths of the two other sides, B and C, and the angle between them, θ, is given by: A2 = B2

+ C2 – 2BCcos(θ). The formula for the volatility of a portfolio, A, given the volatilities of its
two constituent assets, B and C, and the correlation between their returns, cor(), is given
by: A2 = B2 + C2 + 2BC cor(). Clearly, the analogy works when we let the lengths of the two
sides of the triangle correspond to the volatilities of the two assets and the angle between
them, θ equal the arccos of the negative of the correlation of the returns of the two assets. I
discovered the usefulness of this analogy while preparing a continuing education class for
fixed income professionals at Goldman Sachs, where it was quite well-received. While none
of my colleagues were aware of the use of this analogy, if it has been previously used (which
I suspect is likely), I apologize for the lack of a reference.

16. At the risk of complicating the example, we have recognized that the purchase of
the new asset is generally funded from the sale of another asset.

17. This marginal decomposition of risk contrasts with the common practice of looking
at the incremental impact on risk of a given position. The incremental view asks the ques-
tion, “What happens to the portfolio risk if each position individually is removed in its
entirety from the portfolio?” Unfortunately, such an analysis generally does not help to
identify the sources of risk in a portfolio. Consider, for example, that, in this simple two-
asset case, removing either position increases the risk of the portfolio by a large multiple.
This information is certainly not as useful for understanding the risks in the current port-
folio as is knowing the impacts of marginal changes in each.

18. Not all measures of risk have this convenient property. For example, one that does
not is the “probability of shortfall.” This measure, which is defined as the probability of a
loss greater than some specified amount over some period of time, does not exhibit the lin-
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earity that allows the decomposition that we develop in this chapter. This measure may be
useful if one’s disutility jumps at a shortfall point, but it is not well-suited for general risk
management. For example, when applied to an out-of-the-money call option that expires
during the period, the probability of shortfall is zero as long as the premium is less than
the shortfall, and then jumps to nearly one as soon as the premium becomes greater than
the shortfall—a discontinuity that is unlikely to be meaningful.

19. We can measure the risk contribution of a “position” or a “trade.” From a mathe-
matical point of view, there is no useful distinction in this context between a single posi-
tion or a combination of positions that might be considered a “trade.”

20. Using the notation above, if the risk contribution is 0, then Ri(x) * xi = 0. In this case,
either xi = 0 or Ri (x) = 0. The latter condition, that the derivative of risk with respect to
changes in the ith position is zero, implies that the ith position is risk-minimizing.

21. The computation of the risk decomposition is, as described above, a derivative with
respect to percentage changes in position size. However, if we take a particular day to rep-
resent the VAR—for example, the fifth worst out of the five years of data—then the result
will be very sensitive to what happened on that particular day. To avoid this problem, we
apply a smoothing filter to a set of worst days centered on the fifth worst. The filter we use
is simply a seven-day triangular window with weights {1, 2, 3, 4, 3, 2, 1}.

22. Earlier, we looked at the impact of trades such as selling Japanese equity and pur-
chasing Canadian equity. Here we look at the risk of the portfolio as a function of the po-
sition size in Canadian equity, holding all other risk positions constant—or, equivalently,
of exchanging cash for Canadian equity.

23. Robert Litterman and Kurt Winkelmann, Managing Market Exposure, Goldman Sachs
& Co., Risk Management Series, January 1996.
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5

Markets for Agents: Fund Management

Stephen A. Ross

During the period from the 1970s through the 1990s, the financial markets
of the United States and of the world became institutionalized. By some
estimates, over this period of time, the ownership of assets has reversed
from one in which individuals held approximately 75% of the assets and
institutions held 25% to one in which institutional ownership is now
approximately 75%. While this has occasioned much discussion in the
popular press, it is probably fair to say that the response in the academic
community has been one of indifference.

In large part, the academic response stems from a mind-set in which
equilibrium in the financial markets is determined by the interactions of
many individuals operating with their own information, which is partially
communicated through prices in efficient markets and under the discipline
of no arbitrage. This paradigm is exceptionally useful, but it brings with it
a strong predisposition to think of institutions as somewhat irrelevant. After
all, aren’t financial institutions only a reflection of the constituencies they
serve, and, as such, aren’t they merely more efficient facilitators of the origi-
nal concept of equilibrium?

This is, of course, a quite reasonable first approximation to the impact
of institutions that manage large blocks of funds, such as pension funds
and insurance companies and fund management companies, but it also
somewhat overstates the case. In particular, we know that institutions have
access to information that individuals do not, and as long as acquiring such
information is costly with attendant economies of scale and scope, and as
long as prices do not fully reveal the information of market participants,
this may well be a primary reason for the existence of such institutions.
Furthermore, insofar as institutions act as agents for primary participants
in the market, this will bring with it all of the attendant problems of agency,
including incentive problems, moral hazard issues, and adverse-selection
problems.

Not surprisingly, Fischer Black had an enduring interest in the role of
economic institutions in general and the money management business in
particular. One of his earliest papers (Black and Treynor 1973) directly
addressed the question of how money managers could combine portfolio
theory with security analysis to obtain ‘alphas’, and he continued this theme
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of using Modern Portfolio Theory to improve portfolio management in his
work on global asset allocation (Black and Litterman 1991, 1992). Never-
theless, despite his defining contributions to modern finance, numerous
conversations convinced me that Fischer’s faith in the explanatory power
of economic equilibrium made him more of a skeptic than an agnostic on
the value of quantitative active portfolio management. Fischer’s view that
the rational expectation equilibrium was ‘noisy’—perhaps by a factor of
two—fits nicely with the explanation offered in this chapter for the rise of
money managers who would probably add little value in a world of per-
fectly efficient markets.

This chapter takes the view that institutions may well be important and
concerns itself with modeling their impact on the market in a context where
they are informed and offer their services to less informed individuals. We
will examine this situation in a two-period model in which prices can con-
vey information. The model we use is the noisy rational expectations model
first introduced by Grossman (1976), refined by Hellwig (1980), and sub-
sequently modified to analyze a wide variety of financial problems involv-
ing information in a series of chapters by Admati and Pfleiderer (1986, 1987,
1990). Bhattacharya and Pfleiderer (1985) have examined the issue of dele-
gating portfolio management, but their concern was less with the equilib-
rium market for agents. A more closely related paper by Huberman and
Kandel (1993) is also directly concerned with the incentives for money
managers, but it does not address the sorting of agents by ability in an
equilibrium in which abilities are continuous and the reward to reputa-
tion is endogenous.

In section 1 of this chapter, we examine a noisy rational expectations
model and point out that the equilibrium is unstable to individuals offer-
ing to manage funds for others whose precision of information is lower than
their own. This provides a rationale for the formation of mutual funds, and
we examine the equilibrium when this occurs and agents endogenously
emerge. The new equilibrium is similar in form to the original one in which
participants trade directly, but it has some differences. One feature of the
new equilibrium is that the market risk premium will reflect the attitudes
of the agents who are choosing funds and their precisions as opposed to
those of the original participants. Another is that it is profitable to be a fund
manager with a high precision of information. Since fund management is
assumed to be costless—we do not consider the costs of information ac-
quisition—shirking is not an issue, and the agency problem is simply solved
by paying managers fees that depend only on their precisions and not on
performance.

The model developed in section 1 is of interest in its own right, but for
the purposes of this chapter our primary interest is in the behavior of a
market in which institutions and agents have yet to be identified. Section 2
considers such a situation one period prior to the equilibrium of section 1.
At this time, individuals are assumed to know their own precisions, but,
while they may have probabilistic assessments, they do not know the pre-
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cisions of others. This is unlike the second stage, at which precisions are
assumed to be common knowledge. As a consequence, agents and poten-
tial agents are interested in taking actions that will signal that they have
high precisions, and the market will reach an equilibrium in which they
are disciplined so that they cannot credibly forge their credentials.

1. THE NOISY RATIONAL EXPECTATIONS EQUILIBRIUM MODEL

The model we will explore has the following schematic. There are two
periods. In the second period, principals have some information about how
well-informed agents are, and they use this information to allocate their
investments across principals. Agents compete for principals by the terms
on which they offer their services. We will assume that a revelation prin-
ciple is at work or just note that, in our model, at the second stage agents
are either indifferent between doing what the principals would want and
any other policy either because they are paid a fixed sum independent of
their actions or because the incentives are perfectly aligned.

In the first stage, the actions and consequences of the actions taken by
agents provide information for the second-stage assessments of their abili-
ties. In the first stage, then, the terms under which they are employed by
principals must take account not only of first-stage rewards and incentives
but also of the second-stage implications for the agents’ reputations. This
latter is what makes the first-stage control issues of paramount importance.

We begin at the second stage and work backward. The basic model is
Hellwig’s (1980) noisy rational expectations model with an infinity of trad-
ers (see also Pfleiderer (1984) and Admati (1985)). Hellwig’s model is an
equilibrium model in which investors receive signals about future values
and trade on the basis of this information and the information revealed to
them from the equilibrium price. It is useful for our purposes since our
rationale for the agency relation to exist at all is differentially informed
participants in markets and since we are also looking for the equilibrium
implications of markets with institutional agents.

The market has only a single risky asset and a riskless asset, and, just
to simplify the algebra, we will assume that the rate of interest is zero.
Participants in the market have constant absolute risk aversion utility
functions

U(w) = –e–Aw

and the coefficient of absolute risk aversion, A, is the same for all. It is well-
known that the demand for the risky asset is given by

x
E p
A

=
−
σv

2

where x is the demand for units of the risky asset, E denotes the expected
end-of-period payoff on one unit of the risky asset, p is the risky asset’s
current price in terms of the riskless asset numeraire, and σv is the
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standard deviation of the random terminal payoff, v, on one unit of the
risky asset.

Indexing agents by i (i = 1, . . . , n), market clearing requires that

1 1
02n

x z
n

E p
A

zi
i

∑ ∑+ =
−

+ =
σi

where z is a per capita random demand for the risky asset that provides the
“noise” that—in the words of the Green Hornet—“clouds men’s minds” and
prevents the equilibrium price from being fully revealing of the economy-
wide information.

Information comes in the form of signals about the future value, v, of
the risky asset. Each participant, i, observes a signal, v + si, where si is a
mean zero random variable. All random variables are assumed to be nor-
mally distributed and independent of one another. Summarizing,

v ~ N(v\,σ2
v)

z ~ N(z \, σ2
z)

and

sj ~ N(0, σ2
s )

An individual’s demand for the risky asset depends on his individual as-
sessment of its expected payoff and its risk. Thus,

Ej = E{v|v + sj, p}

and

σjv
2 = Var{v|v + sj, p} .

We will let µ denote the measure of the participants as n → ∞ and assume
that the measure is sufficiently nonatomic that we can eliminate individual
effects on the equilibrium. Under this condition, there is an equilibrium
price linear in v and z

p = a0 + avv + azz

where we now index participants by r and have
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The demand by any individual for the risky asset is a function of his signal
precision and the particular signal he has received:
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Institutional Instability of the Equilibrium

Without any loss of generality, we need only consider variables as devia-
tions from their unconditional means. The equilibrium condition is now
split into two conditions, the original ones above, with all variables mean
zero, and the additional condition where all are set at their unconditional
means
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In what follows, then, all variables will have mean zero.
Notice that the uninformed trader can only condition on the equilibrium

price, p, and his demand will therefore be proportional to p,

x
A

p=
β

where β is the limit of the informed demand given above as the precision
of the signal goes to zero (see appendix).

There are a number of difficulties with this and nearly all versions of
noisy rational expectations models. For one thing, the source of the noise
is unclear, and in reality its only real function is to serve as a deus ex
machina to prevent the equilibrium from being fully revealing. In the lim-
iting state where the noise disappears, individuals supposedly use or con-
tribute their individual signals to the overall price, which is fully revealing
of the terminal value, but since in the final equilibrium the price is a suffi-
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cient statistic, no individual has any incentive to use his private informa-
tion. This paradox is well-known and is the price we pay for wanting to
achieve relevant results in a world in which individuals have limited com-
putational capacities that we cannot yet model convincingly.

Less well-known is that the equilibrium itself is unstable on its own
grounds in the sense that individuals have incentives to form institutions
such as funds and by so doing can improve their lot. Suppose, for example,
that we consider two individuals, i and j, with signal standard deviations
σi < σj. In this case, i and j can strike a deal that makes them both better off.
Suppose that i agrees to manage j’s money for a fixed fee of b. Since this
is the final stage, i is unconcerned about reputation effects, and since the
fee is fixed, i is indifferent to following any policy, and we will assume
that i simply does what j would do if j had access to the same informa-
tion signal that i does. In other words, we will assume that i uses his signal
si to maximize

E[–e–Ajw|v + si, p]

The following lemma verifies that this is an improvement for participant j.

LEMMA 1

If σi < σj, then

E[max E[–e–Ajw|v + si, p]] > E[max E[–e–Ajw|v + sj, p]]

Proof:
The result is quite general and is independent of the form of the utility

function as long as there exist some actions that will alter utility. Since σi <
σj, the signal si is a refinement of sj, and for any utility function, U, we have

max E[U(w)|v + sj, p] = max E[E[U(w)|v + si, p]|v + sj, p]
< E[max E[U(w)|v + si, p]|v + sj, p]

The inequality is strict because the inner expectation will vary with the
signal. Taking unconditional expectations produces the desired result.

�

Since the manager will improve j’s expected utility, there is a fee that i
could charge j and still leave j better off than by self-managing. Not only,
then, is the original equilibrium not Pareto-efficient, but in a world where
the precisions of signals are common knowledge, the mechanism of one
party managing assets for another hints that the equilibrium is not robust
to the creation of financial institutions that manage funds.

The Market for Fund Management

The next step in our analysis is to develop an equilibrium in a world in which
some participants select themselves out to be fund managers. It might be
thought that this could degenerate into a situation where only the single best
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manager survives and manages all of the assets. Upon reflection, though,
this would only occur if principals had to put all of their funds with a single
agent and agents could serve many principals. This would not be an equi-
librium if principals could divide their funds among agents since a single
fund manager would not offer diversification against the risk attendant in
relying on his one signal. This opens up the possibility that inferior man-
agers could survive by offering fund management that diversified the prin-
cipals’ positions and did so at lowered fees to compensate for the lowered
precision of their signals. Alternatively, if principals are only able to hire a
single agent and agents can only serve a single principal, then we would
expect some sort of pairing equilibrium in which the wealthiest principals
with the worst information paid the most for the best agents and so on.

To make this precise, we will assume that all of the participants are iden-
tical in all respects except that they differ in the precision of their informa-
tion signals. Since they all have constant absolute coefficients of risk aversion,
A, and identical wealth, w0, setting up funds can be a bit tricky. In particu-
lar, since the constant coefficient of absolute risk aversion investor puts a
fixed amount in risky assets independent of wealth, we have to determine
how a fund will operate when it may have many investors and may only
have a portion of each of their portfolios. We will adopt the following rules.
We assume that a participant may set up a fund, at which point they are said
to be an “agent” or a “manager”, and we will refer to participants who in-
vest in funds as “principals” or “clients.” Funds are open-ended and do not
trade as separate entities, and funds charge a fixed fee, θ, as a percentage of
assets given by the clients. Later, we will examine other pay arrangements.
The funds invest according to the following rule. First, the fund manager,
the agent, determines the optimal amount of the risky asset for an individual
with risk aversion A and the signal he receives. Call this optimal amount x.
The fund then multiplies this by (Wf/w0), where Wf is the amount invested
in the fund and w0 is the initial wealth of each investor, to obtain the amount
of units of the risky asset held in the fund, (Wf/w0)x. This is equivalent to
managing the funds on a separate account basis, where each account with
an amount wj holds (wj/w0)x units of the fund. Principals are free to invest
in many agents—this could be thought of as either an individual diversify-
ing across funds or a company hiring many managers or traders—and agents
are free to attract funds from many principals, which really fits the fund
model best. We will assume that these are mutually exclusive activities and
that fund managers cannot also invest in other funds.

We begin the analysis by considering the problem of a client who is
deciding on a portfolio of funds. Although a client doesn’t see a manager’s
signals, he knows that each fund in which he holds ωj units (as a propor-
tion of initial wealth) will return an investment in the risky asset of

ω ωj
j
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E v v s p
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The client’s end-of-period wealth is thus given by

w x v p w wj
j

j j= 



 −( )− 



 +∑ ∑ω ω θ0 0

In what follows, we will assume that everyone is a potential agent and
that the decision to become an agent is a function only of the precision or,
more precisely, the market’s perception of the agent’s precision. At this
stage, perceptions are reality because precisions are common knowledge.
Agents are said to be informed if they receive a signal that is useful for
predicting the terminal price, and they are said to be uninformed if their
precision is zero, which is equivalent to not receiving a signal.

With this structure, we will assume that principals allocate to the funds
before the market has opened and that the equilibrium price, p, has been
observed. A principal will thus choose a portfolio of funds that maximizes
unconditional expected utility

E[–e–Aw]

The following theorem solves for the expected utility for any choice of a
fund allocation. This theorem is of some interest in its own right, but it is
primarily useful for establishing the first-order conditions for an optimal
allocation across funds.

theorem 1

Conditional on any set of precisions, <σj
2 > , the expected utility takes the

form

E e eAw
j

Aw j j−

 = − −[ ] ∑− −

σ φ ψ ω θ2
1
2 0Ω

where φ and ψ are as defined in Lemma A2 and
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Proof:
See appendix.

�

Deriving the first-order conditions from the form for the expected util-
ity given in Theorem 1, we can obtain the demand for any fund j.

theorem 2

The demand for fund j is given by
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where



104 The Legacy of Fischer Black

q
az z v= >
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Proof:
See appendix.

�

Theorem 2 will be the workhorse of our analysis. It shows that for any
given fee θj charged by agent j, the direct impact of the fee on demand is
proportional to the agent’s precision, hj. Notice, too, that as the precision
goes to infinity, the amount invested in the fund goes to one and the fee
becomes irrelevant. In a general equilibrium, the other terms in the demand
function, c and k, are also functions of the fees, but the exercise of looking
at the impact of a rise in precision is not a movement across equilibria but
rather a cross-sectional movement within a given equilibrium moving
across different agents. In this way, the equilibrium price remains un-
changed and these terms may be kept constant.

Viable Agents and Equilibrium Analysis

Theorem 2 suggests a simple definition of a viable agent.

definition 1

An agent and, equivalently, the agent’s fund is said to be viable at a given
fee if there is positive demand for the fund at that fee.

Viability is important since there is no mechanism for shorting funds.
This, in turn, means that only funds held in positive amounts will contrib-
ute to the equilibrium. From Theorem 2, viability requires that the preci-
sion be sufficiently high. A necessary condition for viability is that the fund
be viable at a zero fee, which is equivalent to requiring that

hj > k

Among viable agents, there are some simple orderings. Comparing the
demand for fund i with that for fund j, we see that if the funds charge the
same fee, then the one with the higher precision will have the greater demand,
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Lemma A3 in the appendix verifies that k + cθ > 0, which for two viable
agents with both demands positive implies that ωi > ωj as hi > hj.

Examining the structure of c and k in the appendix, it can be seen that in
the special case where there is only a single agent, the demand is solved by
setting the purchase at a single unit. This is as we would expect since the
agent is more informed than the principal and the principal would optimize
by simply putting one unit into the risky asset. In general, though, the solu-
tion of the demand equations is a fixed point problem. Not only is the de-
mand for any given fund functionally dependent on the total number of units
of all funds purchased, but it also depends through c and k on Φ, Ψ, and Ω,
which are functions of weighted sums of the individual holdings. One ex-
ample that is easily solved is where all of the agents have identical preci-
sions, h, and charge the same fee, θ. In this case, it follows immediately from
Theorem 2 that, reflecting the symmetry of the problem, the optimum hold-
ing of each fund is identical and can be solved as the root of a quadratic
equation. Even in this case, though, analyzing the equilibrium is complex.

The demand equations are particularly easy to solve and very illumi-
nating when all fees are set at zero. In this base case, the system of demand
equations is of the form
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where n is the number of funds and h is the harmonic mean of the precisions,
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From this it can easily be seen that agents whose precision is too low
will not be viable. Any agent for whom
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is not viable. In particular, then, no uninformed participant with zero pre-
cision can be a viable agent unless all participants have zero precision.

As the number of agents grows large, the cutoff for viability approaches
the harmonic mean itself. This implies a sort of “rolling up” of the equilib-
rium since the harmonic mean is taken over only viable agents. Suppose,
for example, that all agents have the same precision, h. This is a perfectly
acceptable equilibrium situation, and the market equilibrium price, p, will
be the same as would obtain in a model without agents in which all of the
participants had this precision. If we introduce a worse-informed agent into
this situation, then he will obviously not be viable. On the other hand, if a
better-informed agent with greater precision is introduced, he will be vi-
able, but he will not attract a gross (atom in a continuum economy) amount,
rather only that amount consistent with his precision and the formulas
above. What limits the demand for the agent’s funds is the need to diver-
sify across signals even though one has a superior signal.

To see this more clearly, suppose that there are two types of agents, high
and low, with bounded precisions,

0 < hL < hH < ∞

Since the coefficient, q, is a function of the average variance in agents’
forecasts (see appendix), and since the noise term prevents the price from
ever becoming fully revealing, q is bounded from above and below as the
economy grows by adding agents (i.e., as n increases). This implies that
the coefficient of relative precision that determines viability converges
to 1, and
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It follows, then, that if there are two types of agents and the proportion
represented by the high-precision agents is bounded away from zero, then
the harmonic mean precision, h, will be strictly bounded above the preci-
sion of the low agents, h > hL. Thus, as the economy grows, the low-precision
agents will cease to be viable. This is what is meant by ‘rolling up’ the equi-
librium. The only way to prevent this is for high-precision agents to be-
come a vanishingly small proportion of the economy.

The Market Risk Premium

As we look at markets with different structures of agents, although the
coefficients can change, the form of the equilibrium price is unaltered; it re-
mains a linear combination of the true value, v, and the per capita noise, z.
The investments are still made by agents receiving signals as in the original
model, but now what matters is the precision of the fund managers and
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not of the clients. Since fund managers have higher precisions than clients,
and since the equilibrium will reflect the demand by these funds with
higher precision, it is to be expected that the price will be a better signal of
the true value than when there are no agents. As the number of agents
increases and the equilibrium rolls up, only still viable agents will be used,
and agents with lower precision will be discarded. This implies that the
price will be a better predictor, which will set a higher hurdle rate for the
fund manager to be viable.

One consequence of this is that the conditional variance that agents use
in their demands will be lower than is used in an individual market with-
out agents. This implies that the market risk premium declines as the mar-
ket institutionalizes.

lemma 2

The market risk premium declines when the market is institutionalized with
agents investing for individual participants.
Proof:
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The market equilibrium is determined by agents with higher precisions
than the average of the participants. This means that the harmonic mean
of the precisions, AH, rises, and, since A is assumed constant, H must also
rise. From the equilibrium conditions above and the definitions of the co-
efficients of the equilibrium price on v and z, av and az, respectively, the
gross market risk premium is a decreasing function of H.

�

The Equilibrium Fee Structure and the Rewards to Management

We have assumed that agents charge a variable fee. As Admati and Pfleiderer
(1990) point out, though, it is natural to consider nonlinear pricing systems
and, canonically, a fixed fee or load for the fund. In the case of a load and
no variable fee, the analysis becomes relatively straightforward. Condi-
tional on having a surplus from investing in the fund (i.e., if the fee is less
than the certainty equivalent of the gain from entering the fund), the de-
mand for the fund will be as given in Theorem 2 with the variable fee set
at zero. In other words, demand will be exactly as we have examined in
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the no-fee case above. In fact, it is easy to show that in this case there exists
a set of fixed fees that extract all of the surplus from the clients, which
implies that a fixed load is actually superior in our simple model where all
traders are symmetric. Presumably, with clients being differentiated, a
variable fee might be part of the equilibrium.

Lastly, we turn to the determination of the equilibrium fee structure.
Consider what the structure of the equilibrium might look like. If the agents
compete among themselves for the business of the principals, there will
generally be an equilibrium fee for their services—perhaps dependent on
their perceived precision. Even though the marginal cost of agency has been
assumed to be zero, unlike the case of competitors selling identical prod-
ucts, here there is complementarity, and each agent is of value at the mar-
gin because of his usefulness in diversifying the noise in the signals of other
agents.

Furthermore, as the number of agents grows and as we approach a con-
tinuum of agents, it seems reasonable to assume that each agent will act
as though he has no influence over the equilibrium itself. We will take
this to mean that the agent does not feel that he can influence broad market
averages or the equilibrium price. Rather, the agent will be assumed to
maximize profits—revenues since we have assumed there are no costs
to agency—by considering only the direct effects. The result will be a
(Nash) equilibrium in the sense of monopolistic competition.

theorem 3

A viable fund manager achieves maximum profits by setting

θ j
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which produces profits of
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where m is the number of clients served.
Proof:

See appendix.
�

In Theorem 3, the agent maximizes utility by ignoring his impact on the
equilibrium price parameters or the term Φ – ΩΨ. In a large economy,
the agent will have a negligible effect upon this term since it depends
on the investment-weighted precisions and the equilibrium price param-
eters. Such an assumption would be untenable if an agent were atomic and
loomed large in the determination of the equilibrium, but it is quite sen-
sible in our context. For example, it is easy to show that in the case of n
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identical agents the impact of a marginal change in the agent’s fee or fund
holdings on these variables is of order (1/n) and, therefore, that is the order
of the effect of the agent’s decision. In other words, the direct effect com-
puted in Theorem 3 dominates in large economies.

In the special case where all of the agents have identical precision, h,
the equilibrium is the noisy rational expectations equilibrium for a market
with participants whose precision is h. In this case, it can be shown that
the parameters of individual fund demand, k and c, depend only on the
number of total fund units purchased by each of the m identical partici-
pants, ω. It can then be shown that k and c remain of first order while the
demand for the fund is of order 1/n, where n is the number of funds. This
implies that the profits
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depend on the proportion of clients to agents, (m/n), which will be large
in a typical equilibrium. This verifies the basic intuition that being an agent
can be very profitable. In particular, viable agents with high precision will
make large profits.

We have yet to analyze viability generally with positive fees or in the
monopolistic competition equilibrium, but presumably low-precision
agents would have some ability to survive at lowered fee levels. This and
other features of this model, such as the equilibrium with nonlinear fees
and loads, are of enormous interest in their own right. There is certainly a
practical sense that demand depends much more sensitively on precision
and perceptions of precision than on fees, and it is particularly interesting
to see if the model sustains such a result. Nevertheless, at the least we know
that agents with sufficiently low precision (namely, no signals at all) will
be forced out of business to find alternative employment. This is impor-
tant because it puts a floor on the downside for agents’ compensation. In
the following section, we will use these results to examine the stage 1 de-
cision of an agent.

2. THE FRAMEWORK

In this section, we consider the stage 1 decisions of a participant who under-
stands the reward for having a high perceived precision at stage 2. We will
adopt the same noisy rational expectations model structure as for stage 2,
but here we will have a different mechanism for determining who invests
for whom. We will assume that all participants seek to maximize the ex-
pected value of an exponential two-period utility,

– E[e –Aw1 –Aw2]

and we can ignore endowments since with constant absolute risk aver-
sion the demand for units of risky assets is independent of endowments.
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In this formulation of preferences, wealth is assumed to be perfectly sub-
stitutable across the two periods. This could be easily modified to accom-
modate, for example, a different coefficient of risk aversion or time
preference for period 2 versus period 1, but the additional generality
would needlessly complicate the analysis. It is also entirely possible to
think of the prices that are determined in the second period as being the
terminal values in the first period. This provides an explicit intertemporal
link between the two periods. The results that we will develop are en-
tirely consistent with this possibility, but, since it only further compli-
cates matters and brings no real additional insights, we will not explicitly
develop this linkage.

From section 1, we know that the reward at stage 2 depends on whether
the participant is a viable agent. If his precision is perceived to be high
enough, then it will pay him to have or to be employed by an institution
that manages funds, and his reward will be
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On the other hand, agents whose precision is below the critical cutoff of
viability will leave the fund management business and seek alternative
employment. Thus, the terminal wealth for an agent is given by
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where wa is the wage in an alternative occupation. We write the payoff to
a high-precision agent as R(h) to emphasize its dependence on the preci-
sion, h.

The convex call option-like appearance of the second-period payoff as
a function of precision has important implications for the first-period
analysis. Clearly, agents have a strong stake in enhancing the market’s
perception of their precision, h. Our interest is in the properties of the
stage 1 market equilibrium as participants look forward to the second-
stage equilibrium.

We will assume that participants know their own precision—despite the
fact that this is rarely the case—and that they consider all other participants
as symmetric and assign a prior probability distribution to their precisions
that is the same as that for the population as a whole. We will also assume
at this stage that a set of participants has been chosen who are managers
of the funds of others. These may be employees of fund firms, traders, or
any group of young entrants to the financial markets, and we will call them
agents at this stage. From this set of agents, some may emerge as second-
stage agents as well, depending on whether they are perceived as having
sufficiently high precision at the second stage. Since the agents are all sym-
metric from the perspective of the principals, the equilibrium will also be
symmetric unless agents of differing precision can find an a priori way to
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sort themselves out at stage 1. For example, if we let the payoff functions
for fund managers differ, high-precision agents might choose to adopt
payoff functions that would signal their knowledge of their high precision
to the clients and they might, at stage 1, be able to sort themselves out.

To be explicit about this, we will assume that there are only two types
of agents, uninformed agents, who receive no signals and, therefore, have
zero precision, and informed agents, who receive a signal with precision
h. Agents manage funds subject to payoff functions that determine their
first-period compensation, f(·). The payoff depends on observables, and we
will assume that the agent’s portfolio choice, x, as well as the current price,
p, and the terminal value, v, are observable. Perhaps the simplest way to
think of this is that agents at this stage are endowed with some funds that
they manage. This implies that

payoff = f(ξ)

where

ξ = (p, v, x).

Notice that, in principle, the payoff for any one agent could depend on
the actions of all of the other agents, as in a tournament. This is permitted
here as well, but there is no need to make it explicit since with a large num-
ber of agents each agent will be assumed to play a Nash game in which the
other agents’ actions are taken as given. This permits us to fold these stra-
tegic considerations into the form of the payoff function.

Given the first-period payoff functions, the actions taken by the agents,
and the market results, the clients will make inferences about the preci-
sions of the agents. A variety of different types of equilibria are possible.
In general, an equilibrium will be a payoff function in the first period and
a mapping from portfolio choices and outcomes into precisions. The pay-
off function describes what the agent receives as a function of both his first-
period choice and first-period outcome, and to be an equilibrium this payoff
function must satisfy the condition that, given the precision mapping,
agents maximize their expected two-period utility over actions. Second,
the mapping must be verified in the sense that it correctly identifies the
precisions of the agents. This concept of an equilibrium is the same as that
used in signaling theory and has been applied before in financial markets
(see Ross 1977, 1978).

We will distinguish two versions of equilibria, one in which the precisions
are perfectly revealed and one in which they are only probabilistic: as a for-
mal matter, a fee, f : R3 → R+, and the precision mapping, M : R3n → S+n, where
n is the number of agents and S+n denotes the n-dimensional positive sim-
plex of probabilities. The elements of R3n are n tuples of triples, ϒ = (ξ1, . . . ,
ξn), and an element of S+n is an n-vector of probabilities (π1, . . . , πn), where
πj is the probability that agent j is informed. We will let I and U, respectively,
denote the sets of informed and uninformed agents.

We assume that the fee mapping is to the positive orthant because we
are making the important assumption that agents have limited liability. We
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will also assume that the fee to the uninformed agent is bounded above
(i.e., conditional on having no information beyond the market price, the
uninformed agent cannot expect unbounded compensation). Since at
stage 1 only the agent knows his precision, this compensation could ex-
ceed the alternative wage of uninformed participants at the second stage.
In equilibrium, we would expect this bound to be the certainty equivalent
compensation for an agent whose precision is 0 or h with weights repre-
senting the proportion of the population of stage 1 agents who are informed
and uninformed. For the present, though, we will simply assume that en-
try to the market for agents sets this at wc and require

E[–e–Af(ξ)|p] ≤ –e–Awc

Equilibrium and Separation

We are now in a position to define a stage 1 equilibrium.

definition 2

An equilibrium (E) is a set {f(·), M(·), p} such that, given the mapping and
the fee structure, agents are optimizing, for j = 1, . . . , n,

argmax πjE[–e–Af(ξ) –AR(h)|p, v + sj] + (1 – πj)E[–e–Af(ξ) –Awa|p]

and such that the mapping is verified,

πj ≡ M(ϒ)j = Prob [j∈I|p,v,ϒ]

It should be admitted that this definition of equilibrium is something of
a ‘fudge’. It assumes that the reward to an agent who is perceived to have
a probability π of being informed is distributed as a π chance of receiving
R(h) and a (1 – π) chance of receiving wa, the alternative wage. No doubt
the payoff to such an agent will be of this form, but it cannot be asserted
that the payoff function will be the same as the R(h) derived above. This
payoff function is the reward at the second stage for an agent with known
precision h. We have not worked out the stage 2 equilibrium for a market
in which agents are assigned probabilities that they are informed or not.
Nevertheless, we can safely assume that there is still a reward for being
perceived as informed, and we will write the equilibrium as we have de-
fined it with the understanding that while R(h) is an increasing function of
h, it may not take the form we derived in section 1.

No such problem arises when the equilibrium perfectly separates out
the informed agents from the uninformed agents.

definition 3

A separating equilibrium (SE) is a set { f(·), M(·), p} such that, given the
mapping and the fee structure, (i) clients do at least as well using agents as
the uninformed choice they would make on their own, (ii) agents are opti-
mizing, for j = 1, . . . , n



Markets for Agents 113

ξj = argmax E[–e–Af(ξ) –A(πjR(h) + (1–πj)wa)|p, v + sj]

and (iii) such that the mapping is verified with agents being perfectly sorted,

M(ϒ)j ≡ πj = 1 if j∈I ∧ πj = 0 if j∈U

Agents will be perceived as informed if and only if their actions are the
actions of informed agents. In what follows, we will let x(I) and x(U) de-
note the sets of actions taken by the informed and uninformed agents, re-
spectively. Formally, the space of actions and outcomes is then partitioned
into two disjoint sets,

x(I) ≡ [ξj|M(ϒ)j ≡ πj = 1]
x(U) ≡ [ξj|M(ϒ)j ≡ πj = 0]

The conditions that have to be satisfied for a separating equilibrium are
twofold. First, the mapping has to separate informed from uninformed in
the sense that informed will have no incentive to dissemble and pretend
they are uninformed:

maxξ∈x(I) E[–e–Af(ξ)–AR(h)|p, v + sj] ≥ maxξ∉x(I) E[–e–Af(ξ)–Awa|p, v + s]

Second, the fee schedule and the mapping have to induce uninformed
agents to act honestly:

maxξ∈x(I) E[–e–Af(ξ)–AR(h)|p] ≤ maxξ∉x(I) E[–e–Af(ξ)–Awa|p]

The Impossibility of a Separating Equilibrium

Not surprisingly, when the second-stage reward for agency is high and
limited liability constrains the available penalties for dissembling, no sepa-
rating equilibrium exists.

theorem 4

If the second-stage reward for being an agent with perceived high preci-
sion, R(h), exceeds the sum of the maximum first-stage compensation of
untried agents, wc, and the alternative second-stage wage for participants
with low precision, wa, then there is no separating equilibrium.
Proof:

The difficulty with finding a separating equilibrium when the terminal
reward is high lies in satisfying the honesty constraint. From the analysis
above, we know that a necessary condition for a separating equilibrium to
exist is that

maxξ∈x(I) E[–e–Af(ξ)–AR(h)|p] ≤ maxξ∉x(I) E[–e–Af(ξ)–Awa|p]

The only variable that the agent controls is the allocation, x, so that the
requirement that ξ ∈ x(I) is simply that x ∈ x(I) (i.e., the acceptance set
projected onto the allocation decision), and, similarly, ξ ∈ x(U) is that
x ∈ x(U). Thus, we can rewrite the honesty constraint as
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e–AR(h)maxx∈x(I) E[–e–Af(ξ)|p] ≤ e –Awa maxx∉x(I) E[–e–Af(ξ)|p]

From limited liability,

maxx∈x(I) E[–e–Af(ξ)|p] ≥ – 1

In addition, from the bound on the compensation of untried agents, we
must have

maxx∉x(I) E[–e–Af(ξ)|p] ≤ maxx E[–e–Af(ξ)|p]
≤ –e–Awc

Combining these results, we have that a necessary condition for sepa-
ration is simply that

R(h) ≤ wc + wa

�

Given the large ratio of participants to agents and the fact that R(h) rises
with precision h, it would not be surprising to expect the reward of an in-
formed agent to exceed the combined first- and second-stage compensa-
tion of an uninformed agent. This implies that there will not generally be
a separating equilibrium.

The Pooling Equilibria

If an equilibrium exists and is not a separating equilibrium, then it will be
said to be a pooling equilibrium. In a pooling equilibrium, there is no
mechanism for telling agents apart, and they will all receive the same com-
pensation function, f(·). Of course, after the fact, some of the agents will do
well and some will do poorly, and the market will make inferences from
their performance. Exactly what occurs is unclear since models of this sort
generally have an embarrassing richness of potential equilibria.

Suppose, for example, that the first-stage function for all agents is cho-
sen to be a constant wage, w. Now the only concern of agents is the per-
ception the market will have of them in the second stage. Whatever actions
the informed take will be based upon their signals. If the informed act
honestly—and they have no reason to do otherwise—then they will choose
an amount in the risky asset equal to

x x
A

v p sj

j

j= + − +( )1
2σ

where x (= x(p)) is the demand of uninformed agents acting honestly. If
uninformed agents simply chose x, then the market equilibrium at stage 1
would be determined solely by the demand of informed agents with pre-
cision h. This is not, however, a stage 1 equilibrium.

Clearly, the market would be able to tell the informed from the unin-
formed simply by observing who chose x and who did not. Any agent who
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varied from x would be considered informed and that would signal their
type. But, we have already shown that no such separating equilibrium is
possible. Indeed, in this and in all such cases, there is a simple and supe-
rior strategy open to the uninformed agents. Uninformed agents would
simply mimic the informed ones by using a ‘signal’ of their own making,
y, which would replace v + sj in the demand equation for the risky asset,
where y is drawn from a distribution

y ~ N(0, σ2
v + σ2

s)

Doing so will make it impossible for the market to tell them from informed
agents on the basis of their actions alone. The practical import of Theo-
rem 4 is that there is no separating equilibrium possible at stage 1, so in
all cases the uninformed participants will be unable to distinguish the
agents on the basis of their period 1 actions alone. As a consequence, the
stage 1 equilibrium will be one in which the market precision is lower
than if the informed alone determined the price, and the market risk pre-
mium will be higher.

Of course, at stage 2, the market will have observed that some of the
agents at stage 1 were successful and others were not. Since informed agents
make better decisions, the market will presumably have a posterior distri-
bution across the agents conditional on the outcomes. Informed agents will
more likely have xj > x when v > p and xj < x when v < p. Since the informed
demand is strictly monotone (linear) in their signal, no other fee schedule
could induce them to reveal more information than simply a constant at
which they optimize in the usual honest fashion. In this pooling equilib-
rium, uninformed agents will mimic by using a false noise signal, y.

It is straightforward to derive the Bayes updated probabilities of an agent
being informed or uninformed conditional on observing (xj, v, p).

theorem 5
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See appendix.
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In a pooling equilibrium, participants would use Theorem 5 to update
their assessments of each agent. To understand the implications of this
formula, observe first that as the standard deviation σs → 0, the agent
becomes perfectly informed but, for any given c, the probability that
he is informed approaches zero. The paradox is easily resolved by not-
ing that, as the precision approaches infinity, the perfectly informed
agent takes larger positions and the probability that the position is equal
to a given c must go to zero. In addition, since the agent takes larger
positions as his information becomes more precise, the equilibrium
price must converge to the terminal value, v. Conversely, as the agent be-
comes less informed and σs → ∞, the probability that he is informed ap-
proaches π, the proportion of informed agents, but, as σs → ∞, all agents
are equally uninformed. At less extreme positions, though, when in-
formed agents are not all that precisely informed, the posterior probabil-
ity is not all that different from the prior probability. This simply verifies
that a single observation of performance is not terribly informative about
precisions.

A central result of this section is that the equilibrium can be expected to
be a pooling equilibrium where all agents are perceived to behave in a simi-
lar fashion and uninformed agents mimic informed ones. Together with
Theorem 5, we can now expect that in financial markets in equilibrium a
substantial percentage and possibly even a majority of agents could be truly
uninformed. Having said that, though, at the second stage of our model,
clients are not fully informed about the precisions of their agents, and it
must be noted that we have not solved for the equilibrium in the second-
stage market with unknown precisions. Nevertheless, as long as the reward
for being perceived (exactly or in probability) to be of high precision is sig-
nificantly greater than not being so perceived, the pooling equilibrium of
this section will still hold.

CONCLUSION

Financial markets have become increasingly institutionalized, with indi-
vidual participants holding assets through intermediaries such as mutual
funds or pension plans that, in turn, make investment decisions for them.
We began our analysis by showing that the noisy rational expectations
equilibrium in which individual investors have information of varying
degrees of precision is unstable to the formation of institutions in which
agents with higher precisions manage assets for those with lower preci-
sions. As the market becomes more institutionalized, with participants of
known high precision becoming agents, they will come to dominate the
market. Within limits, though, agents of a range of precisions can survive
even when their precisions are known to be inferior because they provide
a mechanism for diversifying across the information received by agents.
Furthermore, markets dominated by institutions with higher precisions
than individuals will exhibit lower risk premiums.
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Another observation from this analysis is that the rewards from being
perceived to have a high-precision signal (i.e., to being a “top” manager)
are great. At this stage, we have assumed that the precisions of all agents
are common knowledge. We then examined the situation at a prior stage
when agents are untried and their precisions are known only by them. As
potential agents look forward to a market where it is highly desirable to
be perceived to be of high precision, they will have an incentive to engage
in a wide variety of “mimicking” behaviors so as to appear to be highly
informed even when they are not. The resulting equilibrium is a pooling
equilibrium in which there is no definitive way to separate the uninformed
from the truly informed. That being the case, all agents will appear to be-
have similarly, and it is only after the results are in that the market can
update its perceptions of the agents. Furthermore, uninformed agents fol-
low mimicking strategies that make the probability that they will appear
to be informed significant and not all that different from the probabilities
assigned by the market to agents who are truly informed.

Central to the result that it will generally be difficult to separate the in-
formed from the uninformed is what is known in trading firms as the
“trader’s option.” Traders who do well are very well rewarded as the poste-
rior probability of their precision (i.e., the perception of their trading ability)
rises, while, if they are poorly perceived, they always have a reasonable op-
portunity wage available to them. This call option-like feature is an impor-
tant part of our model. Traders and agents implicitly, if not explicitly, hold
call options on the market’s perception of their abilities. This underlies their
willingness to behave so as to alter the market’s perceptions of them and
undermines any hope of separating agents on the basis of their actions alone.

Coupled with the limited liability features of compensation, the trader’s
option also greatly limits the ability of institutions and markets to control
agents through incentives. That being the case, the natural market response
is to monitor and constrain the space of actions that agents can take. An
important area of future research would be to explain the limits that insti-
tutions place on their employees and that markets place on institutions as
equilibrium responses to the call option-like features that agents have. On
a more narrow plane, there is much that remains to be done with the models
of this chapter. In particular, we know very little about the equilibrium
when participants assign different probabilities to agents’ precisions based
on their past performance and next to nothing about what occurs when
agents are only imprecisely informed about their own abilities.

APPENDIX

lemma A1

If x ~ N(0, σ2), then
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Proof:
Straightforward integration.

�

lemma A2

Let v and z be independent mean zero normals with variances σv
2 and σz

2,
respectively. The following is true:
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Proof:
Holding z constant, integrate over v using Lemma A1. The result is an

exponential quadratic in z, and integrating over z using Lemma A1 veri-
fies the lemma.

�

For the next result, we will use the demeaned model in which the equi-
librium price is given by

p = avv + azz

and the demand of the uniformed agent is given by

x
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theorem A1

Conditional on any set of precisions, <σj
2>,we have the following result:
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and

αvv = (1 – av)(βavg0 + (1 – av)g1)
αvz = βaz (1 – 2av)g0 – 2az (1 – av)g1

αzz = –βa2
z g0 + a2

z g1
αv = (1 – av)
αz = – az

Proof:
The terminal wealth of a principal who invests in n funds, each of which

puts xj in the risky asset, is given by

w x v p wj
j

j j=( ) −( )−∑ ∑ω ω θ0

From the expressions for the demand xj in the text, it is easy to see that, as
the precision of agent j’s information converges to zero, we obtain
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This implies that
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We can now apply Lemma A2 to obtain

E e s e eAw j
j

g
Aw g− −




=, σ φ

ψ
φ2

1
2 2 2

2

0 3

Since the signals <sj> are independent normals,
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Applying Lemma A2 again, we now have
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In what follows, we will use, for the precision as the inverse of the vari-
ance, the notation

hj
j

=
1

2σ

Some algebra reveals that ψ can be simplified to

ψ = α2
v σ2

v + α2
zσ2

z

and is therefore dependent only on the equilibrium price parameters and
not directly on ωj, the client’s allocation to any fund j. Two additional use-
ful, if algebraically tedious, relations are that
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These observations together with some further algebra permit us to verify
the following result.

theorem A2

The demand for fund j is given by
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Proof:
Differentiating the expression for expected utility in Theorem A1 and

setting the result to zero provides the necessary first-order conditions,
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Since ψ is independent of ωj and

∂
∂

=
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rearranging the first-order conditions produces
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Differentiating φ with respect to ωj verifies the desired result. The con-
stant c > 0 from Theorem A2 shows that it has the sign of the expectation
of a positive function, and ω > 0 implies that q > 0.

�

lemma A3

If all θj = θ, then
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Proof:
From the demand equations,
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theorem A3

Ignoring the impact of the fee charged by fund j on the total invested in all
funds, a viable fund manager achieves maximum profits by setting
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where m is the number of clients served.
Proof:

The profits of a viable fund manager are given by
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where m denotes the number of clients. Differentiating with respect to θj

and setting the derivative equal to zero produces the desired result.
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Proof:
Letting lowercase “prob” denote probability density,
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where
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6

Recovering Probabilities and Risk
Aversion from Options Prices
and Realized Returns

Mark Rubinstein & Jens Jackwerth

1.

Standard equilibrium models in financial economics are, in their essential
nature, ways of determining state-contingent prices: the price today of a
dollar to be received at only a specific date in the future and given a spe-
cific description of the state of the economy at that time. If there are no
riskless arbitrage opportunities, each of these prices is positive. The sum of
the state-contingent prices for dollars received at a single date over all
possible states is the current price of a dollar received for sure at that date.
This is one divided by the current riskless return for that date. Therefore,
multiplying the state-contingent prices by this return converts them into a
probability measure over the states, which financial economists call risk-
neutral probabilities (figure 6.1). This chapter is largely about ways of recov-
ering these probabilities from the current riskless return, the currently
observed prices of traded assets, and the current prices of traded deriva-
tives on those assets.

The usual way of applying the equilibrium model goes about this
differently. It takes as given the subjective probabilities and risk prefer-
ences of an “average investor” and uses them to determine the risk-neutral
probabilities.

The argument is that, ceteris paribus, a risk-neutral probability will
be higher the higher the subjective probability of achieving its associated
state: the probability measuring the investor’s degree of belief that the
corresponding state will occur. If the investor were indifferent to risk, then
corresponding risk-neutral and subjective probabilities would be equal.
However, the investor may value an extra dollar more highly in one state
than another. For example, if he were risk averse, he would value an extra
dollar more highly in states when, ceteris paribus, his wealth was relatively
low. This motivates him to spread his wealth out evenly across states.
However, aggregate economic uncertainty prevents this since the aggre-
gate supply of dollars in all states is not the same. As a result, what he is
willing to pay today for a dollar received tomorrow depends not only on
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his subjective probabilities but also on his degree of risk aversion. Risk-neutral
probabilities, therefore, can be interpreted as subjective probabilities that
are adjusted upward (downward) if they correspond to states in which
dollars are more (less) highly valued (see figure 6.2).

In the standard approach, given the riskless return and having deter-
mined the state-contingent prices in this way, assuming perfect markets,
traded securities are simply portfolios of state-contingent securities. There-
fore, the value of traded securities can be easily calculated, and the model
may be tested by comparing these values to quoted market prices. As a
practical matter, the standard equilibrium model has been difficult to test

  Subjective       Preferences
Probabilities   (Risk Aversion)

Subjective Probabilities  =  Risk-Neutral Probabilities  ×  Risk Aversion Adj

 Risk-Neutral
 Probabilities
State-contingent prices 
      x  riskless return

Figure 6.1. Risk-Neutral Probabilities: The Link between Probabilities and Preferences

    Subjective              Preferences
   Probabilities              (Risk Aversion)

 Risk-Neutral
 Probabilities
State-contingent prices 
      x  riskless return

Option Prices

Compare Alternative
     Option Pricing
Models by Predicting
      Future Smiles

Economic Logic

Figure 6.2. Step 1: Recover Risk-Neutral Probabilities From Option Prices
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empirically because it has been difficult to identify the relevant subjective
probabilities and risk aversion.

The approach of this chapter is to break this Gordian knot and deter-
mine the risk-neutral probabilities directly—and only then try to say some-
thing about how these probabilities decompose into subjective probabilities
and risk aversion.

We take as data the current prices of traded options on a proxy for the
market portfolio (see figure 6.3): the portfolio of assets that has the same
proportionate payoffs across states as aggregate wealth. Our proxy is the
portfolio measured by the Standard and Poor’s 500 Index of common stocks
(S&P 500 Index). Since a highly liquid market has existed for about a de-
cade on a wide variety of different European puts and calls on the S&P
500 Index, it is tempting to take advantage of this comparatively recent
development in financial markets. Admittedly, this is an incomplete and
probably biased proxy, and some, though not all, of our results may be
affected by this.

We begin by discussing methods of recovering risk-neutral probabili-
ties from the concurrent prices of these options (along with the concurrent
level of the index and the riskless return). If these prices were set accord-
ing to the Black–Scholes formula, our task would be a simple one (Black and
Scholes 1973). In that case, the entire risk-neutral probability distribution
could be summarized by its volatility (its mean must equal the riskless
return). Unfortunately, since the stock market crash of 1987, the Black–
Scholes formula fits the market prices of S&P 500 Index options very poorly,
so we need to investigate other methods of recovering these probabilities
from market prices. If European options expiring on the target expiration
date existed on the Index spanning all possible strike prices from zero to
infinity, then (ignoring trading costs) the simultaneously observed prices

  Subjective        Preferences
Probabilities         (Risk Aversion)

  Risk-Neutral
  Probabilities
State-contingent prices 
      x  riskless return

Option Prices

Realized
Asset
Returns

Figure 6.3. Step 2: Use Realized Asset Returns as a Proxy for Subjective Probabilities



128 The Legacy of Fischer Black

of these options would uniquely determine the risk-neutral probability
distribution (Breeden and Litzenberger 1978).

Of course, such a complete set of options does not currently exist. In
practice, strike prices are set at discrete intervals, and there is a lowest (high-
est) strike price significantly greater (less) than zero (infinity). This opens
the recovery problem to different possible methodologies. We consider a
number of possibilities, including quadratic optimization and the method
of maximizing smoothness (Jackwerth and Rubinstein 1996). Because of
the richness of the market for S&P 500 Index options, the most important
properties of the recovered distribution—its extreme leptokurtosis (peaked-
ness) and left skewness—are not sensitive to the particular methodology.
While all methods tested result in much more probability in the lower left
tail than in the lognormal, because there are few options with strike prices
covering that region, the exact distribution of this greater probability in this
region is sensitive to the methodology chosen. For example, whether the
distribution contains another mode in this region can depend on the re-
covery methodology.

We might hope to recover even more information from option prices;
in particular, the stochastic process followed by the underlying index price.
Unfortunately, given the recovered risk-neutral probability distribution for
a given expiration date, there are an infinite number of possible stochastic
processes that are consistent with these prices. To sort through these pro-
cesses, we need to make additional assumptions. We design a model that
is as close as possible to the standard binomial option-pricing model while
allowing options to be valued under an arbitrary prespecified risk-neutral
probability distribution applying to a single given expiration date that cor-
responds to the ending nodes of a recombining binomial tree. We call the
resulting stochastic process an implied binomial tree (Rubinstein 1994). The
strongest assumption we make initially (also a property of standard bino-
mial trees) is that all paths leading to the same ending node have the same
risk-neutral probability. Applying this model to postcrash option prices,
produces a tree of local (or one move) volatilities with the following gen-
eral features:

• on a given date prior to expiration, local volatilities are higher the
lower the level of the underlying index;

• for a given change from the initial underlying index price, the faster
it occurs, the greater the change in the local volatility;

• for index levels near the initial underlying index price, the farther
into the future the local volatility, the lower it tends to be.

• One line of research has been to drop the assumption that all paths
leading to the same ending node have the same risk-neutral prob-
ability. Fortunately, the model can be generalized by adding path-
weighting parameters that can be calibrated so that the generalized
implied binomial tree now also fits the prices of options that ex-
pire on earlier dates. (Jackwerth 1997a)
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Stepping away from the purely modeling problems, we ask what fun-
damental features of the economy could create the recovered risk-neutral
distribution and implied binomial tree. We provide four potential expla-
nations. A goal of future research will be to find some way of determining
what combination of these explanations actually underlies the observed
phenomena. With this in hand, we will have a much deeper understand-
ing than we now have of the economic forces that determine security prices,
and we will be able to anticipate the effects on security prices of structural
economic changes.

While the recovered risk-neutral probability distribution for a given
expiration date is quite robust to our assumptions, this is not true for the
implied binomial tree (which requires a much stronger set of assump-
tions). Fortunately, an implied tree has several empirical implications that
are amenable to empirical tests (Jackwerth and Rubinstein, 2001). Most im-
portant of these is the prediction of future Black–Scholes implied volatility
smiles given the corresponding future underlying index price. Since other
option-pricing models also can be interpreted as making this kind of fore-
cast, we have an opportunity not only to test the validity of implied bino-
mial trees but also to compare their predictive power to that of other popular
option-pricing models or cruder smile prediction techniques used in prac-
tice (“naïve trader” models). We find that despite the greater sophistication
of “academic” approaches, a very crude rule of thumb used in practice pro-
duces the best predictions in our postcrash empirical sample. However, while
as expected the Black–Scholes formula does very poorly, a CEV model and
implied binomial trees only do a little worse than the best naïve trader model.

Relying only on our robust approach to estimate expiration-date risk-
neutral distributions, we then try to break these risk-neutral probabilities
apart into a product of subjective probabilities and risk aversion (see fig-
ure 6.4) (Jackwerth, 2000). We measure subjective probabilities using the
traditional technique of historical frequency distributions. In the past, the
two key problems with this kind of inference have been, first, estimating
the mean of the subjective probability distribution (since the mean of the
realized frequency distribution is highly unstable), and, second, the diffi-
culty of ascertaining the shape of the tails. Fortunately, we show that our
conclusions about inferred market-wide risk aversion need rely only on in-
formation about the shape of the subjective distribution near its mean, wher-
ever that mean may be.

Unfortunately, the logic of the model breaks down, implying for example
that in aggregate the market actually prefers risk, or at best has increasing
absolute risk aversion. We then consider a number of explanations for this
implausible result. The most disturbing of these is that the index options
market is highly inefficient. We test this hypothesis by following a postcrash
investment strategy where we accumulate profits by rolling over a sequence
of out-of-the-money puts and find that this strategy leads to highly exces-
sive risk-adjusted excess returns even if we adopt general risk adjustments
that account for the utility benefits of positive skewness and even if we in-
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ject frequent crashes of the October 1987 magnitude into the historically
realized index returns.

The research reported in this chapter summarizes a four-year effort,
some published and some still in unfinished working paper form, includ-
ing Jackwerth (1997a, b, c) and Jackwerth and Rubinstein (1996, 2001). To
pursue this in more detail, it will be necessary to look at those papers.

2. THE PROBLEM

The interest in this research arises because the popular approach of explain-
ing option prices—the Black–Scholes formula—fails miserably as an ex-
planation of postcrash U.S. index option prices (as well as postcrash index
option prices in several other countries). This anomaly stands out since the
formula works much better in explaining the prices of most individual stock
and foreign currency options.

Figure 6.5 shows the implied volatility smile for 164-day S&P 500 Index
options traded on the Chicago Board Options Exchange on July 1, 1987 at
8:59 A.M. Central Time. If the Black–Scholes formula were true for these
options, the smile should be perfectly flat. There can be only one risk-
neutral probability distribution for the underlying index behind these
options (since all the options are on the same underlying index and are only
exercisable on the same date). Black–Scholes assumes that this distribution
is lognormal, with its two free parameters, mean and variance, fully de-
termined by the riskless return and implied volatility.

As seen in figure 6.5, the smile is remarkably flat, well within the bounds
of realistic trading costs. So in this precrash period, the Black–Scholes for-
mula appears to be doing extremely well, justifying its reputation as the

         Subjective             Preferences
        Probabilities          (Risk Aversion)

  Risk-Neutral
  Probabilities
State-contingent prices 
      x  riskless return

Realized
  Asset
Returns

Option Prices

Figure 6.4. Step 3: Recover Risk-Aversion from Risk-Neutral and Subjective Probabilities
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last word in option pricing.1 Moreover, this time can be shown to be typi-
cal for these options priced before the 1987 stock market crash.

In stark contrast, after the stock market crash, a very steep smile devel-
oped in the S&P 500 Index option market, roughly similar to figure 6.6, from
mid-1988 to the present. This smile betrays an extreme departure from the
predictions of the Black–Scholes formula. One way to place a lower bound
on this departure is to select as the implied volatility in the Black–Scholes
formula the volatility that minimizes the largest dollar or percentage error
of a single option price over the set of all available options. This gives Black–
Scholes the full benefit of the doubt. However, even if we do this, one of
the options will have a pricing error of about $4.00, or one will have a pric-
ing error of 15%. Such errors are probably well beyond the range that could
be created by realistic trading costs. In any event, it is difficult to believe
that changes in trading costs could account for the change in the smile across
the divide of the stock market crash.

Options with shorter time-to-expiration are more liquid. Had we cho-
sen these, the smile would have been even steeper, implying even greater
departure from Black–Scholes predictions than for the 164-day options
in figure 6.6.

This pricing deviation from Black–Scholes is striking for several reasons:

• it has existed more or less continuously over a 10-year period;
• it resides in one of the most liquid and active option markets, with

a very large open interest;
• it is found in a market that, one might argue on theoretical grounds,

is most likely to be the one for which the Black–Scholes formula
works best.2
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Figure 6.5. Typical 164-Day Pre-Crash Smile Implied Combined Volatilities of S&P
500 Index Options July 1, 1987 (8:59 a.m.)
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This situation just cries out for an alternative way to approach option
pricing.

3. RECOVERING RISK-NEUTRAL PROBABILITY DISTRIBUTIONS

One possibility is to let the option prices speak for themselves. In contrast
with Black–Scholes, the approach advocated here is nonparametric in the
sense that any risk-neutral probability distribution could result. Instead,
Black–Scholes begins by assuming that the risk-neutral distribution must
be lognormal; the only question remaining is what its volatility is (its mean
is anchored to the riskless return).

However, whatever methodology is selected should satisfy the follow-
ing properties:

• As the number of available options with different strike prices be-
comes more dense, or spans a larger range, the methodology should
result in a recovered distribution that is closer in a useful sense to
the unique distribution recovered from a complete set of options.

• If the methodology uses a prior distribution as an input, and if the
option prices can be explained by this distribution, the recovered
(posterior) distribution should be the same.

• If any buy-and-hold arbitrage opportunities exist among the op-
tions, the underlying asset, and cash, the methodology should fail
to recover any distribution.

• If option prices were determined by the Black–Scholes formula, the
recovered distribution should be lognormal.
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Figure 6.6. Typical 164-Day Pre-Crash Smile Implied Combined Volatilities of S&P
500 Index Options: January 2, 1990 (11:07 a.m.)
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In table 6.1, we start by making a prior guess of the implied risk-neutral
distribution, Pj', over all possible levels of the underlying asset price Sj at
expiration, j = 0, 1, 2, . . . , n. Also assumed known are the current bid and
ask underlying asset prices, Sb and Sa, the current bid and ask prices of
associated call options, Ci

b and Ci
a, with strike prices Ki, i = 1, 2, 3, . . . , m,

all with the same time-to-expiration, t, the current annualized return on a
riskless zero-coupon bond maturing on the expiration date r, and the cur-
rent annualized payout return on the underlying asset through the expi-
ration date d.

The problem is to determine from this information the posterior risk-
neutral probabilities Pj, which explain the current prices of the options as
well as the underlying asset. The first constraints in table 6.1, ΣjPj = 1 and
Pj > 0, assure that the Pj will indeed be probabilities. The second constraints,
Sb ≤ S ≤ Sa and S = dtΣjPjSj/rt, assure that the current value placed on the
underlying asset, S, is the discounted expected value of its future possible
prices using the posterior risk-neutral probabilities after adjusting for
payouts and that this value lies between the market bid and ask prices.

The third constraints, Ci
b ≤ Ci ≤ Ci

a and Ci = ΣjPj max[0, Sj – Ki]/rt, assure
that the current value placed on the calls, Ci, is the discounted expected
value of their possible future payoffs using the posterior risk-neutral prob-
abilities and that this value lies between the market bid and ask prices.

Among all the posterior risk-neutral probability distributions that sat-
isfy these constraints, the distribution chosen by this methodology is the
one that is “closest” to the prior distribution in the sense of minimizing the
average squared distance between these two probability distributions.

While there is some arbitrariness created by the assumed prior distri-
bution and the quadratic measure of closeness, the method does satisfy the
previous four properties claimed to be desirable for any technique for re-
covering risk-neutral probabilities from options.3

Table 6.1. Recovering risk-neutral probabilities: Optimization method.

min Σj (Pj – Pj')2 subject to:

Pj

ΣjPj = 1 and Pj ≥ 0 for j = 0, . . . , n

Sb ≤ S ≤ Sa, where S = (dtΣjPjSj)/rt

Ci
b ≤ Ci ≤ Ci

a, where Ci = (ΣjPj max[0, Sj – Ki]) rt for i = 1, . . . , m

j indexes the ending binomial nodes from lowest to highest.
Pj ≡ implied (posterior) ending nodal risk-neutral probabilities.
Pj' ≡ prespecified (prior) ending nodal lognormal risk-neutral prohahi1ities.
Sj ≡ underlying (ex-payout) asset prices at end of standard binomial tree.
Sb (Sa) ≡ current observed bid (ask) underlying asset price.
Ci

b (Ci
a) ≡ current observed bid (ask) call option price with striking price Ki.

d ≡ observed annualized payout return.
r ≡ observed annualized riskless return.
t ≡ time to expiration.
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Figure 6.7 shows a typical postcrash distribution recovered by this method.
The distribution is based on the simultaneously observed bid and ask prices
of 16 164-day European S&P 500 Index options with strike prices ranging
from 250 to 385 and a current index level of 349.16 on January 2, 1990. This
information closely matches the postcrash smile reported earlier.

The lighter-colored distribution is the one we would expect from Black–
Scholes using the at-the-money options to determine the single implied
volatility (17.1%) applied to all the options. It is derived by taking loga-
rithms of returns to be a normal distribution. In contrast, the darker-colored
distribution is the recovered posterior distribution. Even though this dis-
tribution was in a sense prejudiced to come up lognormal (since the prior
was lognormal), its shape is markedly different, showing significant left
skewness, much higher leptokurtosis, and slight bimodality. Perhaps the
key feature is the much larger concentration of probability in the lower left-
hand tail.

While we don’t present the detailed evidence here, it turns out that these
features of the recovered distribution are continuously displayed from
about mid-1988 to the present in this market. On the other hand, prior to
October 1987, the two distributions are nearly indistinguishable. The crash,
then, marks a divide in the pricing of S&P 500 Index options. Evidence now
available on smiles for other U.S. index options and for options on foreign
stock market indexes is confirmatory: the features observed here for risk-
neutral distributions carry over to other equity index options (Gemmill and
Kamiyama 1997).

With enough options, the methodology we have used for recovering
probabilities becomes insensitive to our choice of prior or our choice of the
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STRIKE IV       BID      ASK    VALUE LMULT

0             0          349.16 349.26 349.16   0.0001

250         0.313   109.47 109.71 109.71  -0.0006

275         0.271     85.66   86.71   86.7     0

300         0.239     63        64.04   63.9     0

325         0.211     42        42.75   42.09   0

330         0.204     37.97   38.6     37.99   0

335         0.197     34.01   34.64   34.01   0.0007

340         0.189     30.1     30.73   30.16   0

345         0.184     26.45   27.13   26.45   0.0035

350         0.176     22.79   23.48   22.9     0

355         0.167     19.32   19.88   19.55   0

360         0.159     15.98  16.54    16.45   0

365         0.153     13.13  13.75    13.65   0

370         0.148     10.52  11.15    11.15  -0.0047

375         0.145       8.37    9.12      8.96   0

380         0.143       6.65    7.4        7.07   0

385         0.137       4.91    5.6        5.45   0

Figure 6.7. Prior and Implied Risk-Neutral 164-Day Probabilities S&P 500 Index
Options: January 2, 1990 (11:00 a.m.)
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quadratic measure of closeness. In effect, the recovered distribution be-
comes driven solely by the constraints.

To test the robustness of the approach with the number and span of
options usually available for S&P 500 Index options, we tried alternative
optimization criteria besides the quadratic (see table 6.2). Alternative cri-
teria that could replace min Σj (Pj – Pj')2 include:

• goodness of fit: min Σj (Pj – Pj')2 /Pj'
• absolute difference: min Σj |Pj – Pj|
• maximum entropy: min –Σj Pj'log(Pj/Pj')
• maximum smoothness: min Σj(Pj–1 – 2Pj + Pj+1)2

Each of these has its own rationale. The goodness of fit criterion places greater
weight on states with lower probabilities; the absolute difference criterion
places less weight on the most extreme differences between priors and pos-
teriors. Perhaps, from a purely theoretical standpoint, the maximum entropy
criterion is superior since it selects the posterior that has the highest prob-
ability of being correct given the prior. The maximum smoothness criterion,
similar to fitting a cubic spline, minimizes the sum of the square of the
second derivative ∂2P/∂S2 over the entire probability distribution. The
expression Pj–1 – 2Pj + Pj+1 is a finite-difference approximation for this sec-
ond derivative. Note that this last criterion does not rely on a prior.

In practice, although the maximum entropy criterion may be best in theory,
it is difficult to apply. In contrast, using the maximum smoothness criterion
almost permits the problem to be transformed into solving a set of triangu-
lar linear equations and so produces very quick and reliable solutions. In
any event, in the region between the lowest and highest strike prices, all the
optimization criteria result in almost the same recovered probability distri-
butions. In each case, the distribution is also heavily skewed to the left (post-
crash). However, while all approaches agree that the recovered distribution
has much more probability in the lower left tail than in the normal (postcrash),
they disagree about how that probability is distributed in that tail. For ex-
ample, one approach may produce slight bimodality while another may not.

Table 6.2. Recovering risk-neutral probabilities:
Alternative nonparametric methods.

Basic method

Smile interpolation method

Optimization methods:

• Quadratic: Σj (Pj – Pj')2

• Goodness of fit: Σj (Pj – Pj')2/Pj

• Absolute difference: Σj|Pj – Pj'|

• Maximum entropy: –Σj Pj log (Pj/Pj')

• Smoothness: Σj (Pj–1 – 2Pj + Pj+1)2 [no prior]
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For those methods that require priors, again it turns out that, at least for
S&P 500 Index options, available strike prices are sufficiently dense that
the implied risk-neutral distribution is not particularly sensitive to the
imposition of a uniform in place of a lognormal prior.

4. RECOVERING RISK-NEUTRAL STOCHASTIC PROCESSES

As we indicated earlier, obtaining a good estimate of the risk-neutral prob-
ability distribution at the expiration date is only part of the story. We also
want to recover the stochastic process that leads to this distribution. In a
discrete version of the Black–Scholes model, this can be described by a
recombining binomial tree with constant multiplicative up and down
moves, and constant riskless and payout returns. After a sequence of these
moves, the probabilities at the end of the tree can be made to approximate
closely a risk-neutral lognormal distribution with a prespecified volatility
and mean (Cox, Ross, and Rubinstein 1979). However, if the target risk-
neutral distribution departs significantly from lognormal, as we have seen
for the postcrash index option market, this simple binomial stochastic pro-
cess must perforce be inconsistent with this.

So one might ask whether there is a way to modify the binomial model
that leaves its major advantages—its intuitive simplicity and numerical
tractability—intact but at the same time is consistent with the actual re-
covered risk-neutral distribution. It turns out that this can be done even
while retaining the main attractive features of the the binomial approach:

• binomial price moves,
• recombining nodes,
• ending nodal values organized from lowest to highest,
• constant riskless and payout returns, and
• all paths leading to the same ending node having the same risk-

neutral probability.

This last feature means that if you stand at a node at the end of the tree
and look backward, you will see many paths from the beginning of the tree
that lead to that node. Each of these paths has the same probability. This
does not mean that all paths in the tree have the same probability but that,
conditional on ending up at a particular terminal node, the paths have the same
probability.

However, in an important way, the modified binomial tree differs from
the standard tree: it does not require constant move sizes. It allows the local
volatility of the underlying asset return to vary with changes in the under-
lying asset price and time. In addition, it can be shown that, given the end-
ing risk-neutral distribution, the riskless and payout returns, and with the
assumptions in table 6.3, there is a unique, consistent binomial tree that,
moreover, preserves the property that there are no arbitrage opportuni-
ties in the interior of the implied tree (all risk-neutral move probabilities,
although they may be different at each node, are nonnegative).
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Perhaps the most undesirable feature of this modified binomial ap-
proach—even though it is shared with the standard binomial approach—
is the assumption that all paths leading to the same ending node have the
same risk-neutral probability. Fortunately, it can be shown that this last
assumption can be dropped, and the implied tree can be tractably designed
to fit simultaneously options on the same underlying asset but with differ-
ent times-to-expiration as well as different strike prices.

The modified binomial approach can be used to imply the stochastic
process for S&P 500 Index options on January 2, 1990 with 164 days-to-
expiration. Instead of depicting the resulting process in the usual way as a
tree of up and down moves, it is perhaps more instructive to depict the
tree in terms of the evolution of implied volatility, as in table 6.4. The vola-
tility shown here is actually the annualized volatility from its associated
node to the end of the tree, called the “global volatility.” It turns out that

Table 6.3. Implied binomial trees: Assumptions.

Objective: value options for arbitrary risk-neutral expiration date probability distributions

• Underlying asset follows binomial process

• Binomial tree is recombining

• Ending nodal values ordered from lowest to highest

• Riskless (and payout) return constant

• All paths leading to the same ending node have the same risk-neutral probability

New Objective: generalize fifth assumption but retain the simplicity of the recursive
solution process

Table 6.4. Annualized global volatility structure for January
2, 1990 (10:00 A.M.) based on S&P 500 Index June call and put
options maturing in 164 days.

S&P 500
Days into the Future

Index 0 12 32 47 61 76 91

397 9.3 9.9 10.4 11.1 11.9

386 10.8 11.1 11.8 12.4 13.0

376 11.8 12.1 12.5 12.9 13.4 13.9

365 14.3 14.0 14.0 14.1 14.5 14.8

355a 20.0 18.8 17.1 16.2 15.8 15.7 15.9

338 26.6 24.1 22.1 20.4 18.8 17.8

318 34.0 31.5 29.5 27.5 25.1 22.5

297 38.6 36.4 34.4 32.6 30.3 28.2

273 38.7 36.7 34.5 32.2 30.2

aS&P 500 Index reported at 10:00 A.M. is 354.75.
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this will be similar to the Black–Scholes implied volatility for an option that
is at-the-money at that node.

As we can see from the tree, the global volatility starts at 20% on Janu-
ary 2, when the options have 164 days-to-expiration. If the index falls 16%
to 297 over the next 12 days (so the options now have only 152 days-to-
expiration), the volatility almost doubles to 38.6%. This may seem like an
excessive increase in volatility, but something like this happened during
the 1987 stock market crash. If this same fall were to take 91 days, then the
volatility would only rise to 28.6%. On the other hand, if the index rises,
the volatility falls. Also note that if the index ends up in 91 days at the same
level as it started, at 355, then the volatility will fall to 15.9%. The implied
binomial tree shows that one way to make sense out of the downward-slop-
ing smile (or alternatively, the left skewness of the recovered probability
distribution) in index options is to suppose that the implied volatility var-
ies inversely with the underlying asset price.

It is important to realize that these predictions concerning volatility are
all recovered from the January 2, 1990 prices of S&P 500 Index options. They
embody predictions about future option prices and are therefore amenable
to an empirical test. For example, if the predictions are accurate, when we
move 12 days into the future, say to January 14, 1990, if the index is then at
297, at-the-money options should be priced in the market such that their
implied volatility is about 38.6%. Of course, the world is much more com-
plex than our model, but we still might hope that the model gives an unbi-
ased, low-error-variance prediction of future implied volatility, conditional
on the future underlying asset price and the time remaining to expiration.
One of our tasks will be to check this out and to compare the predictions
from this method of constructing implied binomial trees to the predictions
from other approaches.

Recovery of the stochastic process through implied binomial trees, as
we have seen, strongly suggests that at-the-money implied volatility should
vary inversely with the underlying asset price. We can make a quick check
of this prediction.

Table 6.5 shows the results of regressions that attempt to use the cur-
rent at-the-money volatility, σt, and the log return over the next 14 trading
days, log(St+14/St), to predict the at-the-money volatility 14 trading days
into the future, σt+14. In general, the option used to calculate σt and the
option used to calculate σt+14 will not be the same since the option that is
at-the-money after 14 days will generally change since the underlying as-
set price has changed. The time period for the regressions, April 2, 1986
(the first day the S&P 500 Index calls traded as European options) to No-
vember 11, 1994, is divided into two subperiods, precrash (April 2, 1986 to
September 4, 1987) and postcrash (May 18, 1988 to November 11, 1994).

The regressions over the precrash period show that adding the 14-day
return to the current volatility does little to improve the prediction of the
future volatility. This fits with what we already know about this period.
Index option smiles were almost flat, suggesting that the Black–Scholes
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formula, based on a constant volatility, worked well during this period.
However, over the postcrash period, the 14-day return variable improves the
prediction considerably.

In both cases, the coefficient a in the regression σ = aσt+1 + ε, being near
one, indicates that σt by itself is an unbiased forecast of σt+14. Surely, this is
to be expected. Interestingly, this independent variable did a much better
job forecasting the volatility 14 days ahead in the postcrash period. A sec-
ond series of regressions sees how much of the variance of the forecast error
(σt+14 – σt) can be explained by log(St+14/St). Precrash, this variable was of
little assistance in helping explain this error, while, in stark contrast, post-
crash this variable was of considerable value, confirming the prediction of
implied binomial trees. Indeed, postcrash, σt and log(St+14/St) taken together
explain 91% of the variance in σt+14.

Jump movements, not contemplated by Black–Scholes, could also poten-
tially explain the observed leftskewness of the risk-neutral probability dis-
tribution if it were supposed that downward jumps are much more likely
than upward jumps. Since 1987, there has been some rough empirical evi-
dence of this in the U.S. stock market. However, these jumps would not also
explain the observed negative relation between volatility and index levels.

To recapitulate, so far we have identified a significant departure in
postcrash S&P 500 Index option pricing from the Black–Scholes formula.
We have shown that this translates into a left-skewed highly leptokurtotic
risk-neutral distribution for the future underlying asset price. Using im-
plied binomial trees, this further translates into a stochastic process for
which the salient departure from Brownian motion is the inverse relation
of implied volatility and the underlying asset price. Finally, we have veri-
fied that, as predicted, this inverse relation was only present marginally
precrash but was much stronger postcrash.

Table 6.5. Forecasting future ATM implied volatility.

σt ≡ current ATM implied volatility

σt+14 ≡ future ATM implied volatility (14 days later)

S&P 500 Index Options

Precrash April 12, 1986 to September 14, 1987

σt+14 = aσt: r2 = .47, a = 1.0024

σt+14 – σt = (b/n)log(St+14/St): r2 = .04, b = –0.6518

σt+14 = aσt + (b/n)log(St+14/St): r2= .49, a = 1.0058, b = –0.7327

Postcrash May 18, 1988 to November 25, 1994

σt+14 = aσt: r2 = .82, a = 0.9899

σt+14 – σt = (b/nlog(St+14/St): r2= .49, b = –4.0715

σt+14 = aσt: (b/n)log(St+14/St): r2= .91, a = 1.0007, b = –4.0800
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Perhaps we should ask what might be the economic causes of this de-
parture from Black–Scholes. We are aware of four explanations in the cur-
rent literature (see table 6.6):

Leverage effect: When stock prices fall, the firm’s debt-to-equity ratio
in market value terms tends to rise since its denominator falls faster
than its numerator. If returns from assets remain the same, the in-
creasing debt-to-equity ratio magnifies the influence of return from
assets on stock returns, thereby increasing volatility. Thus, indi-
rectly through automatic changes in the debt-to-equity ratio, a fall
in stock prices causes an increase in stock volatility. Not only should
this affect smiles of individual stock options, but since index returns
are a convex combination of constituent stock returns, a similar
smile effect should be observed from index options.

Correlation effect: Suppose that when stock index prices fall, or fall sig-
nificantly, individual stock returns become more highly correlated.
Some empirical evidence supports this. For example, in the 1987
stock market crash, most stock markets around the world fell to-
gether. If this occurs, then with the attendant reduced advantage
from diversification, volatility will rise.

Wealth effect: Suppose that when stock index prices fall, investors be-
come noticeably less wealthy and because of this more risk averse,
so that when the same type of information hits the market, they
respond by buying more or selling more than they would have with
higher stock prices. In turn, this causes stock prices to be more sen-
sitive to news, and volatility increases.

Risk effect: This reverses the order of causality of the wealth effect. In
this case, something exogenous happens to increase stock market
risk. Because investors are risk averse, they demand a higher ex-
pected return to hold stock. Assuming unchanged expectations, this
leads to a reduction of current stock market prices.

It may be that each of these effects has some truth. One way to disen-
tangle them is to compare the smiles for individual equities with the smile

Table 6.6. Economic causes of negative skewness and higher downside implied volatility.

Leverage: as asset price falls ⇒ market value debt–equity ratio rises ⇒ volatility rises

Correlation: equities become more highly correlated in down markets ⇒ volatility rises

Wealth: as market falls ⇒ wealth falls ⇒ investors become more risk averse ⇒ same
news leads to greater reaction and trading ⇒ volatility rises

Risk: as volatility rises ⇒ risk premium increases ⇒ market falls

To separate these potential causes, compare the volatility behavior of individual
stocks vs. market index.

Jumps: market is more likely to jump down than up ⇒ explains negative skewness but
not negative correlation between implied volatility and index level
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for indexes. In the United States, postcrash, the S&P 500 Index smile is far
more pronounced than the smiles observed for its constituent equities. This
suggests that the leverage effect may be quite weak, lending increased
weight to the three other possibilities (however, see Toft and Prucyk 1997).

5. EMPIRICAL TESTS OF ALTERNATIVE FORECASTS
OF RISK-NEUTRAL PROBABILITIES

Although the implied binomial tree model correctly anticipates the negative
relation between volatility and asset price, it is not the only option-pricing
model with this implication. This motivates our tests of alternative option-
pricing models. Earlier tests of option-pricing models often relied on esti-
mates of volatility from historically realized returns. Unfortunately, we can
not separate errors in volatility estimation from option formula errors, and
it is very easy to err in volatility estimation. So, in our tests, we will be care-
ful to avoid such a joint hypothesis, and the tests will not depend on histori-
cal volatility estimates. Another problem with many tests of option-pricing
models is that they often rely on following the outcome of managing a se-
quentially revised portfolio (usually chosen to replicate an option payoff).
This makes these results subject to questionable assumptions about transac-
tion costs and errors in asset price measurement. Again, our tests will not
rely on dynamic replication and so will also avoid these complications.

Table 6.7 contains four types of predictions from option-pricing models
that can be used, without relying on historical volatility estimation or dy-
namic replication, to test the validity of these models. The first and sim-
plest simply compares the differential pricing of options across strike prices
with model predictions (Rubinstein 1985). Unfortunately, this simple test
cannot be used for implied binomial trees because it takes these option
prices as data and fits the stochastic process to them.

Another test is to compare the concurrent prices of otherwise identical
options but with different times-to-expiration. This can be used to test im-
plied binomial trees (but not the generalized version). One can construct
an implied tree from long-term options. Then, this tree can be used to value
options that mature earlier.

Table 6.7. Types of Comparisons of option prices.

Volatility-free testing of alternative option-pricing models.

Comparisons among the prices of otherwise identical options but:

with different strike prices: explain the current smile

with different times-to-expiration: predict shorter-term smile from concurrent longer-
term smile

observed at different points in time: predict future conditional smile from current
smile

with different underlying asset: index option smiles vs. individual option smiles
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A more interesting and stronger test, and the one we will report here, is
to construct a tree based on current option prices and then to use this tree
to predict the future prices of these same options. Having constructed a
tree, as the future evolves, we can think of ourselves as moving along a
path in the tree. If we stop before the options expire at the then current
node, we can now infer a subtree from the original tree that should govern
the stochastic movement of the underlying asset from that node forward
to the expiration date. Using this inferred subtree, we can then value the
options at that node and compare these to the market prices observed at
that time. Stated equivalently, we can use the subtree to calculate the pre-
dicted implied volatilities of each option (the smile) and compare these to
the observed smile in the market.

A final test we have not yet performed is to compare smiles across dif-
ferent underlying assets, including a comparison of smiles for individual
equity options with smiles for indexes.

We shall be comparing alternative option-pricing models. The empiri-
cal test we shall emphasize uses the current prices of options to parame-
terize the models. Then the parameterized model is used to predict future
option smiles. We then compare the predicted future smile with the actual
smile subsequently observed in the market, conditional on knowing the
new underlying asset price. We will prefer the model with a predicted smile
that is closest (in absolute difference) to the realized smile.

Table 6.8 illustrates this test concretely. It lists options maturing in 189
days that have a strike price to current asset price ratio ranging from .8748
(out-of-the money puts) to 1.0756 (out-of-the-money calls). For example,
the option with strike price to current asset price ratio of 1.0039 currently
has an implied volatility of .1586. Thirty days from now, the options will
have 159 days-to-expiration. At that time, the underlying index rose from
1.000 to 1.024 (up 2.4%). Each option-pricing model will supply a different
prediction about the implied volatility of that option at that time. Our task
will be to compare those predictions.

Although not reported in detail here, the alternative option-pricing
models were also parameterized using current prices for options expir-
ing in 189 days, as well as current prices for options maturing in 91 days.
Again, the parameterized models are then used to predict option smiles
in 30 days. We have not reported these results because they were little
changed from the results where only options maturing in 189 days were
used.

We have compared nine alternative approaches to option pricing (see
table 6.9). They can be grouped into four categories:

Standard benchmark model
Black–Scholes model

“Naïve trader” models
Relative smile model
Absolute smile model
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Models emphasizing a functional relationship between volatility and asset price
Constant elasticity of variance diffusion: restricted
Constant elasticity of variance diffusion: unrestricted
Implied binomial trees
Displaced diffusion model

Models emphasizing other deviations from Black–Scholes
Jump diffusion
Stochastic volatility

The Black–Scholes model is parameterized by setting the volatility pa-
rameter in the formula equal to the current at-the-money implied vola-
tility. The prediction of the Black–Scholes model is that in the future all
options will have that same implied volatility.

The “naïve trader” models are so named because they are simple rules
of thumb commonly used by professionals. The relative smile model pre-
dicts that the future implied volatility of an option with strike price K when
the underlying asset price is S1 is the same as the current implied volatility
of an option with a strike price equal to K(S0/S1). In contrast, the absolute
smile model predicts that the future implied volatility of an option with
strike price K is the same as the current implied volatility of that option.
For this model, it is as if for each option its current implied volatility stays
pinned to it.

Table 6.8. Empirical test: Inferring future conditional smiles from
current option prices.

Implied Volatilities

159-day 91-day 189-day
K/S options in 30 days options now options now

.8748 ? (.2492) .2278

.8892 ? (.2403) .2209

.9035 ? (.2294) .2139

.9179 ? (.2192) .2049

.9322 ? (.2087) .1961

.9466 ? (.1953) .1888

.9609 ? Index (.1840) .1814 Index

.9752 ? = 1.024 (.1720) .1718 =1.000

.9896 ? (.1472) (.1607) .1645

1.0039 ? (.1506) .1586

1.0183 ? (.1398) .1503

1.0326 ? (.1298) .1436

1.0756 ? (.1070) .1244
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The restricted CEV model assumes that the local volatility of the under-
lying asset is σ'Sρ–1, where 0 ≤ ρ ≤ 1 and σ' are constants (Cox 1996). This
model builds in directly an inverse relation between the local volatility and
the underlying asset price S. The closer ρ is to 0, the stronger this relation;
and as ρ gets close to 1, the model becomes identical to the Black–Scholes
formula. A more general version of this model that allows for an even stron-
ger inverse relation is what we call the unrestricted version since it only
requires that ρ ≤ 1.

The displaced diffusion model is also based on the assumption that the
volatility is a function of the underlying asset price (Rubinstein 1983). As
it was originally developed for individual stock options, the source of this
dependence arose from the risk composition of the firm’s assets and its
financial leverage. Indeed, in contrast to the CEV model, the displaced
diffusion model actually permits the volatility to vary in the same direc-
tion as the underlying asset price if the asset composition effect is stronger
than the leverage effect. But, we can anticipate that, given the observed

Table 6.9. Alternative option-pricing models.

Black–Scholes (“flat smile”) [(dS)/S = µdt + σdz]

future implied σs set equal to current at-the-money implied σ

Relative Smile

future implied σs set equal to current implied σs of options with same K/S

Absolute Smile

future implied σs set equal to current implied σs of options with same K

Constant Elasticity of Variance: Restricted [(dS/S = µdt + σ'Sρ–1dz]

future (σ', ρ) set equal to best fitting current (σ', ρ) (0 ≤ ρ ≤ 1)

Constant Elasticity of Variance: Unrestricted

future (σ', ρ) set equal to best fitting current (σ', ρ) (ρ ≤ 1)

Implied Binomial Trees

future option prices derived from implied binomial tree fitting current option prices

Displaced Diffusion [St = (αey + (1–α)rt)S0]

future (σ, α) [= % in risky asset] set equal to best fitting current (σ, α)

Jump Diffusion [dS/S = (α – λk)dt + σdz+ dq]

future (σ, λ, k) set equal to best fitting current (σ, λ, k)

Stochastic Volatility [dS)/S = µdt + v(t)½dz1, dv(t) = κ(θ–v(t)) + v(t)½dz2]

future (σ, v(0), κ, θ, ρ) set equal to best fitting current (σ, v(0), κ, θ, ρ)
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empirical inverse relation between asset price and volatility for both indi-
vidual stocks and the index, the displaced diffusion model is likely to have
no advantage over the CEV model in forecasting future implied volatili-
ties (postcrash).

Many academics and professionals believe that diffusion-based option
models that only allow the volatility to depend at most on the underlying
asset price and time are too restrictive. Therefore, we also want to test models
incorporating the two other key generalizations of the Black–Scholes formula,
jump asset price movements and volatility, which can depend on other vari-
ables. We have therefore included Merton’s jump-diffusion model (Merton
1976) and Heston’s stochastic volatility model (Heston 1993).

Figure 6.8 illustrates the potential difference in estimated risk-neutral
probability distributions of three of the alternative pricing models. It shows,
as we have seen before, that the implied distribution is left-skewed, with
much greater leptokurtosis than the lognormal. Notice that the unrestricted
CEV model with a sufficiently low ρ parameter (about –4) fits the implied
distribution reasonably well. However, the methods for inferring the im-
plied stochastic process are different. In the CEV case, the ρ and σ' param-
eters determining the fit above are held fixed when the CEV formula is
reapplied to value options in the future. The only changed inputs in the
formula are S and t, whereas, in the implied tree approach, a more elabo-
rate backward-recursive tree construction is used, followed by the infer-
ence of the future subtree. In particular, in contrast to the CEV model, the
implied tree approach builds in a dependence of the local volatility not only
on the underlying asset price but on time as well.

Nonetheless, because of the similarity between the two risk-neutral ex-
piration date distributions and because, as it turns out, the time dependence
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of volatility appears slight, we can anticipate that the unrestricted CEV
model will give results similar to the implied tree model in forecasting
future implied volatility.

Recall that we will be comparing the forecasts of future option implied
volatility. Alternatively, we will be using alternative option-pricing models,
parameterized using current data, to forecast the prices of currently exist-
ing options at a specified future date before their expiration. That forecast
will be conditional on knowing the underlying asset price at that future
date since we are clearly not trying to forecast that as well. Having fore-
casted the future option prices using the Black–Scholes formula, we will
translate those prices into the metric of implied volatilities, construct the
implied volatility smile, and compare these predicted implied smiles across
the different pricing models.

Figure 6.9 provides an illustration. The upper sloped line is the current
smile, summarizing along with the current underlying asset price (indexed
to 1.00) most of the information we need to make our predictions. Note that
it is considerably downward-sloping, typifying the smiles for S&P 500 Index
options in the postcrash period. The lower sloped line is the observed smile
that was later observed at a specified future date when the index had risen
to 1.0545. Not surprisingly, it too is downward-sloping since we remain
within the postcrash period. The prediction of the Black–Scholes model,
based on constant volatility for all strike prices and times, is described by
the horizontal line. It simply says that the current at-the-money volatility of
about 26% should continue to reign in the future for all the options.

The two other lines illustrate the predictions from our two “naïve trader”
models. Since the horizontal axis is the ratio of the strike price to the under-
lying asset price, the relative smile model simply makes the prediction that
the smile, scaled in terms of this ratio, will remain unchanged. So the sloped
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line is at once the current smile and the prediction of the relative model of
the future smile. In contrast, the absolute smile model predicts that options
with the same striking price will have the same implied volatilities in the
future that they have now. In the example, since the index moved up to
1.0545 in the future, the option that currently is at-the-money when the
index is 1 will have in the future a strike price to index ratio of about .95.
Since the option’s implied volatility is currently about 26%, the model pre-
dicts it will continue to have that same implied volatility in the future. Thus,
the future prediction is graphed by the ordered pair (.95, .26), which is
indeed a point along the lower sloped line that lies just above the future
smile containing the absolute model’s prediction. In general, if the index
increases, the absolute model predicts that the smile will fall, while if in-
stead the index had fallen, the model would predict that the smile will rise.

Comparing the three predictions—Black–Scholes, relative, and abso-
lute—it is easy to see in figure 6.9 that the absolute model has worked best
since the bottom two lines lie close to one another.

For the precrash period sampling once per day, table 6.10 summarizes
the average absolute errors between the realized future smile and the smile
prediction from each model. For each model, two smile predictions are
made, one 10 trading days in advance and the other 30 trading days in
advance. For example, for the 10-day prediction, the Black–Scholes formula
makes an average error of about 50 cents, and the median error across all
the trading days is 39 cents. The median error for the 30-day prediction is
about twice this, at 73 cents.

All the models perform about the same. But this is just what would have
been expected since all models nest the Black–Scholes formula as a special

Table 6.10. Future versus current precrash pricing errors
for S&P 500 Index options for the period April 2, 1986 to
October 16, 1987 (365 observations). All models perform
about the same.

Error in Cents
of 10(30)-Day Forecast

Forecasting Method Mean Median Std. Dev.

Black-Scholes 50 39 (73) 36

Relative smile 51 42 (72) 34

Absolute smile 52 42 (74) 35

CEV: restricted 49 40 (72) 34

CEV: unrestricted 50 40 (72) 34

Implied binomial trees 54 44 (69) 40

Displaced diffusion 50 40 (72) 34

Jump diffusion 49 39 (71) 34

Stochastic volatility 50 41 (72) 34
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case and, as far as we can judge, the Black–Scholes formula worked quite
well in this period. Even the relative and absolute models are special cases
of Black–Scholes since if the current smile were flat, both the relative
and absolute models would predict that the future smile would remain
unchanged.

For the postcrash period, as expected, the Black–Scholes model works
very poorly, with a median absolute error of $1.72 over a 10-day forecast
period (see table 6.11). The jump-diffusion model does almost as poorly.
Again, given a strongly downward-sloping smile, with the near-symmet-
ric jump, up or down, of that model, we would not expect that it would
offer much improvement. Smile patterns where the jump-diffusion model
would help are weak smiles that turn up on both ends. Similarly, although
the restricted CEV model can explain a downward-sloping smile, it can only
explain a much weaker slope, so it also offers little improvement.

However, substantial improvement over Black–Scholes is offered by
the relative smile model, the absolute smile model, the unrestricted CEV
model, implied binomial trees, and Heston’s stochastic volatility model.
Of these, the best performing is the absolute model. It is ironic that the
simplest predictive rule (apart from Black–Scholes) does the best: every
option simply retains whatever Black–Scholes implied volatility it started
with. This model is a considerable improvement over Black–Scholes, re-
ducing the median 10-day error to $0.44, about one-fourth of the Black–
Scholes error. The absolute smile model is also best over the longer 30-day
prediction interval.4

Table 6.11. Future versus current postcrash pricing errors for
S&P 500 Index options for the period June 1, 1988 to
December 31, 1994 (1562 observations).

Error in Cents
of 10(30)-Day Forecast

Forecasting Method Mean Median Std. Dev.

Black–Scholes 175 172 (171) 58

Relative smile 73 55  (78) 61

Absolute smile 56 44 (63) 43

CEV: restricted 139 136 (145) 54

CEV: unrestricted 74 56 (78) 60

Implied binomial trees 83 67 (86) 62

Displaced diffusion 107 96 (112) 53

Jump diffusion 168 164 (166) 56

Stochastic volatility 75 57 (83) 67

Black–Scholes very poor at 172¢. Absolute smi1e best at 44¢, but
relative smile, CEV unrestricted, implied binomial trees, and
stochastic volatility not far behind.
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We should not conclude from this that academic attempts to improve
the Black–Scholes model—such as the CEV model, implied binomial trees,
or the stochastic volatility model—have therefore failed. Rather, they do
provide worthwhile improvements, cutting the Black–Scholes error to
about one-third. But it is true that a “naïve trader” approach such as the
absolute smile model, which has no academic foundations, does even bet-
ter. This throws down a challenge to academic and professional theorists
to explain why the absolute model should work so well.

Our fascination with the absolute smile model led us to decompose its
remaining $0.44 error. We divided that error into three parts:

• the error in predicting the future at-the-money volatility;
• the error in predicting the implied volatility of other options, con-

ditional on knowing the future at-the-money volatility;
• the error if, in addition, it is assumed that transactions can only take

place at the bid–ask prices rather than at their midpoint.

Knowing the 10-day-ahead at-the-money volatility in advance, cuts the
forecast error from $0.44 to $0.23, or even further to $0.14 if the error is
measured relative to the bid–ask spread (see table 6.12). This suggests that
one way to approach future research on this issue is first to explain the
changes in at-the-money volatility since that alone can explain about half
of the $0.44 error.

The success of the absolute model over the fancier academic models,
including implied binomial trees, motivated us to test it directly in a time
series analysis. In our previous time series analysis, we compared the im-
plied volatilities of options that were at-the-money at the beginning and
at the end of a 14-day trading interval. Table 6.13 compares the implied
volatilities of the same options at the beginning and end of 14-day trading
intervals.

In the precrash period, using the implied volatility at the beginning of
the period explains about half of the variance in the implied volatility of
the same option at the end of the period and, with a coefficient close to one,
provides an almost unbiased forecast. Adding the 14-day logarithmic re-

Table 6.12. Future versus current: Summary.

Best prediction is absolute smile. But relative smile, CEV unrestricted, implied
binomial trees, and stochastic volatility are not far behind.

Postcrash 10–day pricing errors for these models are about 1/3 to 1/4 of Black–
Scholes or CEV restricted errors.

In general, knowing current short-term option prices in addition to long-term
option prices doesn’t seem to help.

For absolute smile, postcrash 10-day forecast errors based just on the current long-
term option prices are 44¢. This is cut to 23¢ if, in addition, the future ATM option
price is assumed known. This error is further cut to 14¢ if, in addition, errors are
only measured outside the bid–ask spread.



150 The Legacy of Fischer Black

turn does little to improve this forecast. Again, given how well the Black–
Scholes model fits option prices during this period, this should come as no
surprise.

In the postcrash period, the beginning implied volatility now explains
a much greater percentage of the variance of the ending volatility (91%)
and continues to be a nearly unbiased forecast. When we looked at at-the-
money implied volatility comparisons previously, we found that adding the
log 14-day return substantially improved the forecast in the postcrash pe-
riod. But, if the regressions are recast in terms of predicting 14-day-ahead
volatilities of the same options, then adding the log 14-day return offers
almost no improvement in the forecast. This result is, of course, to be ex-
pected from our earlier analysis of comparative option-pricing models.

6. RECOVERING RISK AVERSION

What kind of a market would produce risk-neutral distributions so much
at variance with the Black–Scholes predictions?

• One possibility is that postcrash the market dramatically changed
the subjective probabilities it attached to the future performance
of the S&P 500 Index.

• Another possibility is that the market postcrash became much more
averse to downside risk.

If, following a time-honored tradition in financial economics, we measure
the consensus market subjective probability distribution by its future real-
ized frequency distribution, the result is the nearly normal curve in fig-
ure 6.10. Superimposed is the left-skewed risk-neutral distribution deduced
by our techniques from March 15, 1990 S&P 500 Index option prices.

Table 6.13. Naïve forecast of future implied volatility.

σt ≡ current ATM implied volatility

σt+14 ≡ future implied volatility of same option (14 days later)

S& 500 Index Options

Precrash April 2, 1986 to September 4, 1987

σt+14 = aσt: r2 = .49, a = 1.0018

σt+14 – σt = (b/n)log(St+14/St): r2 = .02, b = –0.4268

σt+14 = aσt + (b/n)log(St+14/St): r2 = .50, a = 1.0040, b = –0.4813

Postcrash May 18, 1988 to November 25, 1994

σt+14 = aσt: r2 = .91, a = 0.9709

σt+14 – σt = (b/n)log(St+14/St): r2 = .05, b = –1.1705

σt+14 = aσt + (b/n)log(St+14/St): r2 = .92, a = 0.9727, b = –0.8960



Recovering Probabilities from Options Prices 151

The difference between the two distributions is striking. If we have
measured the market subjective distribution accurately, then the shape of
this distribution has not changed very much pre- and postcrash. So, we
must look elsewhere for an explanation of the postcrash risk-neutral dis-
tribution, perhaps to changed risk aversion.

But before taking a look at this, we need to discuss an important objec-
tion. Using the realized frequency distribution, either drawn from realized
prices prior to March 15, 1990 or from realized prices after March 15, 1990,
time-honored though it may be, is a highly suspect measure of the subjec-
tive distribution that was actually in the minds of investors. In particular,
if the market were anticipating an improbable but extreme event (such as
a second crash) that had not yet been realized, it would not show up in our
estimate of the subjective distribution. At the same time, these events may,
despite their infrequency, be very important for understanding the pric-
ing of options, particularly out-of-the-money puts.

Our way around this problem is to draw implications for market-wide
risk aversion only from the comparative shapes of the realized and risk-
neutral distributions around their means, without needing to consider the
more questionable tails of these distributions. Around the means, it seems
likely that the realized distribution provides a reasonably reliable approxi-
mation of the true subjective distribution in this region. In addition, our
earlier analysis also shows that our techniques for estimating risk-neutral
distributions from option prices are very robust around the means to al-
ternative methods since available options are dense in this region.

Given the risk-neutral distribution, we can estimate the subjective dis-
tribution by imposing popular risk-aversion assumptions. We infer risk
aversion using a simple but widely used model of financial equilibrium.
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Table 6.14 defines the variables we will be using. Assuming a consensus
investor, we maximize his expected utility ΣjQjU(Rjδn) subject to a constraint
anchoring his present wealth (ΣjPjRj)/(r/δ)n to 1. Choosing his portfolio of
state-contingent claims is equivalent to choosing the returns Rj he will re-
alize in each state j. (δn is a correction for Rj that is defined only to be the
market portfolio return after payouts, so that Rjδn is the market portfolio’s
total return.)

As the optimal choice, we have the familiar first-order condition: U'( Rjδn)
= λ(Pj/Qj)/rn. Except for λ, this is a state-by-state restriction on the rela-
tion of risk aversion, subjective probabilities, and risk-neutral probabilities.

If we assume logarithmic utility so that U'(Rjδn) = log(Rjδn), then this first-
order condition becomes

1/(Rjδn) = λ(Pj/Qj)/rn

so that

Qj = λPjRj(δ/r)n

Summing over all j and since ΣjQj = 1:

1 = λ(ΣjPjRj)(δ/r)n

Since the investor is constrained so that ΣjPjRj(δ/r)n = 1, then λ = 1. Substi-
tuting this into one of the equations above leads to the very simple decom-
position of subjective probabilities

Qj = (Pj/rn)(Rjδn)

so that the subjective probability of a state equals the state-contingent price
for that state weighted by the total market return in that state.

Figure 6.11 shows the relation of subjective and risk-neutral probabili-
ties for January 2, 1990 if we derive the subjective probability distribution
not from past or future index realizations but from a simple model of fi-
nancial equilibrium based on logarithmic utility and risk-neutral probabili-
ties estimated from option prices.

Note how close the risk-neutral and subjective distributions are. The

Table 6.14. Notation.

Pj ≡ risk-neutral probability for state j = 1, . . . , n

Qj ≡ subjective probability for state j

Rj ≡ market portfolio return (ex-payout) for state j

δ ≡ market portfolio payout return over a single period

r ≡ riskless return over a single period

U(Rjδn) ≡ utility function of representative investor

Max ΣjQjU(Rjδn) – λ [ΣjPjRj)/r/δn –1]
Rj

differentiating once: U' (Rjδn) = λ (Pj/Qj)rn
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main difference is that the subjective distribution is shifted to the right with
a mean of 12.2%, in contrast to the 9% mean of the risk-neutral distribu-
tion. The risk-aversion property of logarithmic utility accounts for this shift.
But the shapes of the two distributions are almost the same.

This contrasts sharply with our previous comparison of subjective and
risk-neutral distributions, where the risk-neutral distribution was estimated
in the same way, but the subjective distribution was estimated from real-
ized index prices. Clearly, a simple model of equilibrium with logarithmic
utility does not explain this disparity. So we now ask what consensus util-
ity function could simultaneously rationalize these two distributions.

A trick to this comparison is to differentiate the general first-order condition
a second time to obtain another condition that needs to hold in equilibrium:

–U"(Rjδn)/U'(Rjδn) = (δ–n)[(Q'j/Qj) – (P'j/Pj)]

Q'j (P'j) is the change in the subjective (risk-neutral) distribution across the
nearby state. For example, Q'j = ∂Qj/∂Sj and is approximated by (Qj+1 –
Qj–1)/(Sj+1 – Sj–1). This has the advantage of being a true state-by-state con-
dition, where λ has been eliminated. This permits us to examine only the
states near the mean, in which we have the greatest confidence of our esti-
mate of the subjective distribution inferred from realizations. In particu-
lar, we can determine the utility function fit in this region without needing
to estimate the shape of the tail probabilities, in which we have very little
confidence (see table 6.15). This condition also conveniently isolates the
measure of absolute risk aversion on its left-hand side.

With our equilibrium result for absolute risk aversion in hand, the
risk-neutral and subjective distributions were estimated following the
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techniques described in table 6.16 for several nonoverlapping time peri-
ods from April 2, 1986 to December 30, 1994.5

Unreported tests show that the estimated subjective probabilities are
robust to perturbations in all of these assumptions. In particular, assum-
ing a risk premium in the range of 5–10% leaves the results essentially
unchanged.

The resulting absolute risk aversion is described in figure 6.12 for each
time period. For example, for the single precrash period, April 1986 to
September 1987, absolute risk aversion is positive but more or less declin-
ing with increasing wealth, and within the range 0 to 5—a plausible re-
sult. Unfortunately, in all the postcrash periods the results make no sense.
Absolute risk aversion is not only increasing over levels of wealth greater
than current wealth but is even negative over the range 0.9 to 1.06 times
current wealth. In addition, this bizarre result worsens as we move farther
into the future from the 1987 crash.

This result is essentially being driven by the extreme difference between
the risk-neutral and measured subjective distributions around the mean.
As we saw in figure 6.10, postcrash, on both sides of the mean, the risk-
neutral distributions changed much more rapidly than the subjective dis-

Table 6.15. Equilibrium preference probability relation.

Max ΣjQjU(Rjδn) – λ [ΣjPjRj)/(r/δ)n –1]
  Rj

differentiating once: U' (Rjδn) = λ (Pj/Qj)rn

differentiating twice: U"(Rjδn) = (λ/δnrn)[Pj'Qj – PjQj')/Qj
2]

combining: –U"(Rjδn)/U'(Rjδn) = (δ–n)[Qj'/Qj) – (Pj'/Pj)]

This shows how absolute risk aversion for a given state is related
to subjective and risk-neutral probabilities for that state,
independent of other states. With this, we can examine center
states that have the highest probability while neglecting the
notoriously unreliable tail estimates.

Table 6.16. Methodology.

Risk-neutral probability distributions:

• inferred from S&P500 Index options with 135–225 days-to-expiration

• using the maximum smoothness method

Other parameters (S, r, d, t) as observed in the market

Subjective probability distributions:

• bootstrapped from 4-year historical samples

• 25,000 returns matching the option’s time-to-expiration are generated and
smoothed through a Gaussian kernel

• mean is reset to risk-free rate plus 7% annualized

• volatility is reset to volatility of risk-neutral distribution
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tribution. It is simply the case that our equilibrium model can not make
sense of this.

For the first-order condition of this model to be a necessary condition of
equilibrium, the second-order condition, which requires a negative second
derivative of the utility function, must hold. But for absolute risk aversion
to be negative, either U' < 0 or U" > 0. If, for example, U' > 0 but U" > 0,
then the first-order condition need not characterize the optimum. In es-
sence, figure 6.12 says that something is seriously wrong somewhere.

If the assumed risk premium is pushed from 7% to as high as 23%, all the
lines of absolute risk aversion now fall just above the horizontal axis, so that
U' > 0 and U" < 0. However, even in this extreme case, the shape of the lines
remains about the same. In particular, postcrash, they continue to exhibit
increasing absolute risk aversion in the range above current wealth.

So what could be wrong? Something we have assumed must be at fault.
One possibility (see table 6.17) is that our use of a representative investor
could be a very bad assumption, or the S&P 500 Index could be a very poor
approximation of the market portfolio. For that to be true, the market port-
folio must be relatively uncorrelated with the returns of the S&P 500 Index.
Utility could be a function of other significant variables besides wealth.
Perhaps investors prefer risk over a range of their future wealth, such as
suggested by prospect theory.

Even though our results only depend on probabilities near the mean, it
may still be the case that historically realized returns are not reliable indi-
cators of subjective probabilities.

So far, for the most part, we have ignored trading costs. In particular, al-
though some methods used for estimating risk-neutral probabilities require
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that securities valued under these probabilities fall within the bid–ask spread,
even these methods do not give full consideration to the role of trading costs
in all their varying guises: commissions, bid–ask spread, and market impact.
For example, it may be that the relatively high prices of out-of-the-money
puts, which drive the postcrash S&P 500 Index smile, are somehow the re-
sult of trading costs that we have not considered. To us, given the magni-
tude of the smile effect and the high absolute dollar prices of these options
(since the underlying asset is scaled to a high price), this seems unlikely, but
it should not be dismissed without a deeper analysis.

Another problem with looking to trading costs as the solution to the
puzzle is that the implied risk-neutral distribution changed markedly from
before to after the stock market crash, yet it seems unlikely that trading
costs did.

Finally, although it may be heretical to suggest this, the high prices of
out-of-the-money puts may be the result of mispricing that a normally ef-
ficient market fails to correct. For some reason, not enough capital may be
mobilized to sell these types of options.

We consider this last possibility by examining the returns from follow-
ing a strategy where out-of-the-money six-month S&P 500 Index puts are
sold every three months during the postcrash period. Each period, we
assume that the number of puts sold equals the number that could be sold
with $100 margin under the requirement that the margin for a sold un-
covered put is 30% of the index level less the out-of-the-money amount.
We compare these realized returns to risk measured by a version of the
Capital Asset Pricing Model that considers positive preference toward
skewness, an aspect of investor preferences that may be important in the
pricing of securities with adjustable asymmetric outcomes, such as op-
tions. (Rubinstein 1976, Leland 1999).

Table 6.18 states that replacing

β ≡ Cov(rp, rm)/Var rm

Table 6.17. Potential explanations.

• Representative investor is a poor assumption.

• S&P 500 Index is a poor proxy for the market portfolio.

• Utility functions depend on other variables besides wealth.

• More general frameworks for utility functions admitting risk preference
(prospect theory).

• The subjective distribution Q is not well-approximated by realizations.

• Trading costs, particularly for deep out-of-the-money put options.

• Mispricing of deep out-of-the-money puts and calls.
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is the generalized risk measure (adjusted beta)

B ≡ Cov(rp, rm
–b)/Cov(rm, rm

–b)

where rp is the return (one plus the rate of return) of an arbitrary portfolio,
rm is the return of the market portfolio, and b is the consensus market rela-
tive risk aversion.

Using this measure, the realized excess over risk-adjusted return is

A = (rp – r) – B(rm – r)

which we call the realized adjusted alpha. Based on the formula

b = (ln(E[rm]) – ln r)/Var[ln rm]

we set b = 3.63. But even if b were as high as 10, our results would be essen-
tially unchanged.

Figure 6.13 shows the results of our adjusted alpha and adjusted beta
return analysis. The riskless return itself is located at the origin, and the
market return is located along the horizontal axis at 1 (adjusted alpha of 0,
adjusted beta of 1).

Each line looks at the alpha–beta ordered pairs for strategies using puts
of varying degrees of being out-of-the-money. For example, the puts on
the upper line were about 5% out-of-the-money at the time of sale.

An important objection to our analysis as it has so far been described is
that our strategy of selling out-of-the-money puts may do well in the post-
crash periods because the much-feared second crash has not yet occurred,
and had it occurred our strategies would have done poorly. To allow for
this, we have inserted crashes into the data at varying frequencies. For
example, the alpha–beta ordered pairs labeled 4 are constructed from the
time series of S&P 500 Index returns by adding crashes of the October 19,
1987 magnitude (down 20% in a single day) at the expected rate of once
every four years. That is, each day a number is drawn at random with re-

Table 6.18. Adjusted excess return measure.

• Assume the market portfolio exhibits lognormal returns

• Instead of β, we use B ≡ Cov[rp, – r m
–b]/ Cov[rm, –r m

–b], where B is an adjusted
beta measure for the portfolio

rp ≡ return of the portfolio

rm ≡ return of the market

r ≡ riskiess return

• In this case: b = (ln(E[rm) – ln r)/Var[ln rm]

• Instead of α, we use A ≡ (rp – r) – B(rm – r), where A is an adjusted portfolio
expected excess return
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placement from a bowl containing about 999 zeros and 1 one. If 0 is drawn,
no crash occurs. If 1 is drawn, then the return for that day is adjusted down-
ward by 20% and future returns continue as before unless yet another crash
is drawn. For example, if the return for that day were actually –1%, we
assume instead that the return was –21%.

Thus, the exhibit shows that with almost no crashes added to the post-
crash historical record (the ordered pairs labeled 512), the adjusted alpha
ranges from 11% to 15% per annum. Thus, given the actual outcomes in
the postcrash period, the strategy of selling out-of-the-money puts would
have beaten the market by a good margin, and the more out-of-the-money
the puts, the better.

Perhaps this is not surprising since almost no artificially induced crashs
have been added to the realized historical time series. However, at the
other extreme, suppose a crash is inserted into the data with a frequency
of every four years. This means that about two daily 20% crashes during
the postcrash periods were assumed to occur. In that case, the adjusted
alpha is about 6–7% per annum. Even in this case, the strategy produces
superior returns.

Now you may object that our result does not adequately consider the
extreme fear the market may have of downside returns. But we have given
some consideration to this because we have been careful to adjust our risk
measure for dislike of negatively skewed returns, for a relative risk-aversion
level of b = 3.63. Also, imposition of commissions plus bid–ask spread trans-
action costs, with a crash expected every four years, still leaves adjusted
alphas in the range of 4–5% per annum.

Table 6.19 provides a summary of this chapter.

Figure 6.13. Excess Returns Selling Out-of-the-Money Puts
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NOTES

1. Note, however, that a flat smile is only a necessary condition for the Black–Scholes
formula to hold, not also a sufficient condition.

2. It is sometimes argued that while the Black–Scholes formula can be expected to hold
for individual equity options since their underlying asset returns should be approximately
lognormal, it will not hold for index options whose underlying index would then be a
weighted sum of lognormal variables, clearly itself not lognormal. However, we believe
this puts the cart before the horse. It seems to us more probable that when “God” created
the financial universe, he made the market portfolio lognormal; and man, in his efforts to
create exchange arrangements, then created individual equities and other securities he called
bonds with returns that are not lognormal. We suspect that empirical analysis would show
that the returns of diversified portfolios of stocks are closer to lognormal than their typical
constituent components. Moreover, jumps, the Achilles heel of the Black–Scholes formula,
are much more likely to prove a problem for a typical individual equity than for an equity
index.

3. The fourth property, recovering a lognormal distribution if all available options have
the same Black–Scholes implied volatility, is met if the prior distribution is assumed to be
lognormal, as assumed in figure 6.7.

4. The paper by Dumas, Fleming, and Whaley (1998) seems to contain a similar result.
However, here, rather than emphasize the failure of implied binomial trees, we instead
emphasize that implied binomial trees do much better than Black–Scholes and about as well
as any competing “academic” model we have tested.

5. The use of a bootstrapping method destroys serial correlation. However, Jackwerth
(1997b) indicates that a lognormal distribution (which is the result of destroying serial de-
pendence) provides a reasonable fit to these half-year returns. On another matter, the risk-
neutral distribution is strictly a point estimate. Some results concerning the degree to which
probabilities can vary around point estimates is contained in Jackwerth (1997c).
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Cross-Sectional Determinants
of Expected Returns
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& Avanidhar Subrahmanyam

1.

In theory, the primary determinant of the cross section of expected returns
on securities is risk, although other factors such as taxes, liquidity, agency,
and informational considerations can also, in principle, affect the demand
for securities and therefore expected returns. The measure of risk that is
relevant for pricing is the covariance of the security’s return with the pric-
ing kernel, which may be expressed in terms of one or more return factors,
depending on the particular equilibrium model. Thus, in the Capital
Asset Pricing Model (CAPM), the pricing factor is the return on the mar-
ket portfolio; in the consumption CAPM, it is the return on the portfolio
that is most highly correlated with the growth rate of consumption; in
the Epstein and Zin (1989) recursive utility CAPM, it is a linear function
of the return on the market and the return on the maximum consumption
correlation portfolio; and in the Arbitrage Pricing Theory (APT) it is a lin-
ear function of a set of priced factors that span the pricing kernel.

In empirical work, a variety of approaches have been used to specify
the factors. First, they may be determined by the theory. This is the case
with the simple CAPM, in which the pricing factor is taken as some proxy
for the return on the market portfolio as in Black, Jensen, and Scholes (1972)
or Fama and MacBeth (1973). Chen, Roll, and Ross (1986) also adopted
this approach in their empirical implementation of the Arbitrage Pricing
Theory, in which the factors relevant for pricing were taken to be macro-
economic factors that affect stock prices. A second approach is to extract
the factors from the covariance structure of asset returns. This approach
has been followed by many different authors, including Roll and Ross
(1980), Chen (1983), Connor and Korajczyk (1988) and Lehmann and Mod-
est (1988). A third approach is to leave the factors unspecified but to as-
sume that factor loadings can be written as linear functions of a small set
of security characteristics: Rosenberg (1974) and Sharpe (1982) are early
examples of this approach.1 Finally, Fama and French (1993) have pioneered
a hybrid approach in which the factors are chosen not on the basis of their
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contribution to the covariance matrix or an a priori assessment of their
economic importance but as returns on portfolios constructed according
to particular characteristics of the securities, namely the market-to-book
ratio and firm size. Fama and French show that their factors are able to
explain the excess returns on a full set of portfolios ranked according to
the book-to-market ratio and firm size.

However, work by Roll (1994), Daniel and Titman (1997), and Haugen
and Baker (1996) has cast doubt on the ability of a factor model to explain
the cross section of expected returns. First, Roll shows in a paper that is closely
related to this chapter that relative returns on eight portfolios sorted by size,
earnings–price ratio, and book-to-market ratio cannot be explained by their
loadings on five Connor–Korajczyk (1988) type factors. Secondly, Daniel and
Titman show that portfolios with the same book-to-market and size charac-
teristics but different loadings on the Fama–French factors do not have dif-
ferent returns, as they should if expected returns are determined by the factor
loadings. Finally, Haugen and Baker show that dynamically rebalanced
portfolios formed on the basis of a large number of firm characteristics and
the lagged rewards to those characteristics have a wide dispersion in real-
ized mean returns without a corresponding dispersion in risk. Haugen and
Baker include among their firm characteristics the market beta and estimated
loadings on macroeconomic variables such as changes in industrial produc-
tion and inflation. However, these loadings are measured with error, which
is not taken into account in their monthly cross-section regressions of returns
on the firm characteristics. Despite this, the Haugen and Baker results present
a formidable empirical challenge to factor pricing theory.

This chapter complements these earlier studies by investigating further
the ability of firm characteristics to explain the cross section of returns after
accounting for the effects of APT type factors. First, rather than prespecify-
ing the factor structure as in Daniel and Titman and Fama and French, we
follow Roll (1994) in selecting the factors (as in the second approach above)
according to their importance in explaining the covariance matrix of re-
turns. Secondly, we consider a broader range of firm characteristics than
do these authors, though one that is smaller than that of Haugen and Baker.
Thirdly, in most of our tests we employ individual security data rather than
portfolios, while avoiding the errors-in-variables problem that arises from
putting estimated factor loadings on the right-hand side of a cross-sectional
regression in which returns are the dependent variable.

The characteristics that we focus on are firm size, stock price, turnover,
bid–ask spread, analyst following, dispersion of analyst opinion, book-to-
market ratio, institutional holdings, membership in the S&P 500 Index,
dividend yield, and lagged returns. These characteristics are chosen either
because of prior empirical evidence of their association with returns, as in
the case of size, share price, the book-to-market ratio, and lagged returns,
or because there are sound economic reasons for expecting that the vari-
ables may affect expected returns. One objective of this study is to deter-
mine whether the size and book-to-market anomalies may be accounted
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for by related variables whose economic role is understood, such as insti-
tutional ownership, liquidity, and dividend yield. While the effects of sev-
eral of these firm characteristics have been analyzed in earlier studies, this
is the first attempt to provide a joint analysis of the marginal effects of the
characteristics above on expected returns, given the role of five risk fac-
tors that are estimated according to the approach of Connor and Korajczyk
(1988), and it is also the first to consider jointly the effect of institutional
holdings and index membership on expected returns.

The traditional approach to assessing the importance of risk and other
security characteristics for expected returns has been to form portfolios by
first sorting securities on the characteristic of interest and then, following
Fama and MacBeth (1973), averaging the time series of coefficients from
cross-sectional regressions of (excess) returns on the portfolios on the aver-
age beta estimates and other portfolio characteristics. Securities are ag-
gregated into portfolios for the estimation because of the problem of errors
in the estimates of the betas, first noted in this context by Black, Jensen,
and Scholes (1972). A more direct approach to dealing with the errors-
in-variables problem is to estimate the security betas simultaneously with
the coefficients of the security characteristics in a single set of seemingly
unrelated regressions, as in Roll (1994), Pontiff (1995), and Brennan and
Subrahmanyam (1996). However, this approach also requires that the se-
curities be aggregated into portfolios before estimation, not to overcome
an error-in-variables problem but so that the number of risk parameters to
be estimated and the dimension of the error variance matrix will remain
manageable.

The use of portfolios rather than individual securities in tests of asset-
pricing models has been criticized from opposing perspectives by Roll
(1977) and by Lo and MacKinlay (1990). Roll argues that the portfolio for-
mation process, by concealing possibly return-relevant security character-
istics within portfolio averages, will make it difficult to reject the null
hypothesis of no effect on returns. Lo and MacKinlay make the almost
precisely opposite point that if the researcher forms portfolios on the basis
of characteristics that prior research has shown to be relevant to expected
returns, he will be inclined to reject the null hypothesis too often due to a
“data-snooping bias.” It is worth emphasizing that the Roll and the Lo and
MacKinlay critiques of the portfolio formation approach are complemen-
tary rather than competing; portfolio formation may both make some
return-irrelevant characteristics appear significant and disguise the empiri-
cal relevance of other return-relevant characteristics.

Consistent with the critiques of Roll and of Lo and MacKinlay, we find
that the empirical significance of security characteristics for expected re-
turns is dependent on the way in which the portfolios are formed. We there-
fore turn to a modification of the Fama–MacBeth approach that can be
applied to individual securities rather than to portfolios. We find that after
risk adjustment using the Connor–Korajczyk (1988) factors, mean returns
remain significantly related to several firm characteristics. First, we con-
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tinue to find that size is important when share turnover is measured as a
proportion of shares outstanding. However, when trading volume is mea-
sured by the dollar value of shares traded, size is no longer significant, while
trading volume is. This is consistent with size being priced because it is an
important component of liquidity. The market-to-book ratio is not signifi-
cant. We find a significant positive association with analyst following and
membership in the S&P 500 Index; it is possible that the latter, which im-
plies a return premium of 0.27% per month for Index membership, is asso-
ciated with the growth in index portfolio investment strategies during our
sample period.2 On the other hand, we find no significant return effects
associated with a measure of the dispersion of analysts’ opinions, the pro-
portion of stock owned by institutions, the (reciprocal of) share price, divi-
dend yield, or 3- and 6-month lagged returns. We do find a significant
positive association with the 12-month lagged returns, and our most strik-
ing finding is of a strong negative association between risk-adjusted returns
and the proportional bid–ask spread. This association persists, albeit in
somewhat weaker form, when the returns are risk-adjusted using the
Fama–French (1993) factors3 or when they are not risk-adjusted at all. This
finding of a negative association with the bid–ask spread is contrary to that
of Amihud and Mendelson (1986) and to the idea that investors require
compensation for illiquidity as measured by the bid–ask spread. However,
it is consistent with the empirical findings of Eleswarapu and Reinganum
(1993) and Brennan and Subrahmanyam (1996), who report a negative
association between returns and the spread using in one case the Capital
Asset Pricing Model and firm size and in the other the Fama–French (1993)
three-factor model to adjust for risk. Moreover, Petersen and Fialkowski
(1994) show that the correlation between the posted bid–ask spread mea-
sure that is used in empirical work and the effective spread that investors
pay is only of the order of 0.10, so that the posted bid–ask spread is a poor
measure of the cost of transacting. However, if the posted spread is not a
measure of transaction costs, there remains the issue of what it is measur-
ing and why it has such a powerful (and negative) association with expected
returns. We have no satisfactory answer to this question. The analysis of
MacKinlay (1995) suggests that the t-statistic for the coefficient on this se-
curity characteristic is too high to be consistent with an omitted risk factor
explanation.4 One possible explanation, suggested by Harris (1994), is that
high posted spreads are associated with more liquidity ceteris paribus
because they make it more attractive for traders to post limit orders, which
increase market depth. While accepting this point, we find it hard to be-
lieve that the (perverse) liquidity effect can be strong enough to explain
our findings.

As interesting as the variables for which we find a relation to risk-
adjusted expected returns are those for which we find no such relation. In
contrast to Stattman (1980), Rosenberg, Reid, and Lanstein (1985), Fama
and French (1993), and Roll (1994), we find no relation between expected
returns and the book-to-market ratio, suggesting that the effects of this
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variable are subsumed by our risk variables and firm characteristics.5 The
dividend yield variable is also insignificant, providing no support for the
Brennan (1970) differential taxation hypothesis. The dispersion of analyst
earnings forecasts also has no reliable association with expected returns.

The remainder of the chapter is organized as follows. In section 2, we
describe the empirical hypotheses we test. In section 3, the data are described,
and in section 4 the empirical results are presented. Section 5 concludes.

2. HYPOTHESES

The basic equation that we wish to estimate is
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where Rj is the return on security j, RF is the risk-free interest rate, βjk is the
loading of security j on factor k, λk is the risk premium associated with fac-
tor k, Zmj is the value of (nonrisk) characteristic m for security j, and cm is
the premium per unit of characteristic m. Our null hypothesis is that ex-
pected returns are determined solely by the risk variables, which are the
factor loadings, βjk, and that in the presence of the risk variables, the other
security characteristics have no marginal explanatory power. We include
14 security characteristics as possible determinants of expected returns.

The five risk factors are taken to be the first five (asymptotic) principal
components of stock returns estimated over the sample period. In decid-
ing which firm characteristics to include, attention was given to those that
had been found to be important in prior studies as well as those for which
there exists a theoretical rationale. Thus, firm size is included because of
the widespread evidence of a “small firm effect.”6 Fama and French (1993)
implicitly treat firm size as a loading on a risk factor, although the work of
Daniel and Titman (1995) suggests that the firm size itself is a stronger
determinant of expected returns than is the loading on the size factor. Berk
(1995) suggests that firm size may appear as a determinant of expected
returns because of imperfect risk adjustment in the empirical analysis. It is
therefore important to assess whether size has any residual explanatory
power for expected returns once account is taken of the five risk factors7

and other firm characteristics. Share price has also been found in a num-
ber of studies to be (negatively) related to expected return. It has also been
hypothesized that the low-price effect reflects the fact that firms with low
prices are often in financial distress and that financial institutions may be
reluctant to invest in them on account of the prudent man rule.8 Therefore,
we include the reciprocal of share price as a possible determinant of ex-
pected returns, as well as including institutional ownership.

Turnover, or trading volume, is included because this variable is asso-
ciated with liquidity, and the work of Amihud and Mendelson (1986) and
Brennan and Subrahmanyam (1996) suggests that expected returns are
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affected by liquidity. The bid–ask spread is included for similar reasons.
The limited-information model of Merton (1987) suggests that the expected
return on securities will depend on how well-known the securities are to
investors, and we hypothesize that this will depend on how many broker-
age analysts follow the firms.9 We therefore include a measure of analyst
following.

The dispersion of analyst opinion is included as a further possible ex-
planatory variable because the theoretical work of Miller (1977) and Jarrow
(1980) suggests that, in the presence of short-sales constraints, disagree-
ment among investors will tend to be associated with overpricing and there-
fore lower expected returns. The book-to-market ratio is included because
this variable has been found to be important empirically by Stattman (1980),
Rosenberg, Reid, and Lanstein (1985), and Frankel and Lee (1996) and be-
cause Fama and French (1993) found that a factor portfolio formed from
securities by sorting on this characteristic helped to explain the cross section
of expected returns on portfolios sorted by size and book-to-market ratio.
We consider the possible influence of institutional holdings and member-
ship in the S&P 500 Index because the agency model of Brennan (1994) sug-
gests that, insofar as institutional portfolio managers are rewarded on the
basis of relative rather than absolute performance, their portfolio decisions
will distort the structure of expected returns; it is also possible that insti-
tutional investors are superior analysts and that institutional ownership
is associated with superior investment performance. Dividend yield is
included because Brennan (1970) suggests that differential taxation of
dividends and capital gains could make this variable relevant, and the
resulting empirical work of Miller and Scholes (1978) and Litzenberger
and Ramaswamy (1979) has been inconclusive. Finally, we include lagged
return variables because the work of Jegadeesh and Titman (1993) has
shown these to be relevant, and by including them we should improve the
efficiency of the estimates of the coefficients of the other variables.

3. DATA

The basic data consist of monthly returns and other characteristics for a
sample of NYSE securities for the period January 1977 to December 1989.
The sample period is limited by the availability of data on analyst follow-
ing and the bid–ask spread. To be included in the sample for a given month,
a security had to satisfy the following criteria: (1) its return in the current
month and in 24 of the previous 60 months be available from CRSP, and
sufficient data be available to calculate the size, price, turnover, and divi-
dend yield as of the previous month; (2) sufficient data be available on the
COMPUSTAT tapes to calculate the book-to-market ratio as of December
of the previous year; (3) annual earnings forecasts be available on the
I/B/E/S tape for the previous month; (4) institutional holdings be reported
in the previous year’s December issue of the S&P Security Owner’s Stock
Guide; (5) the average bid–ask spread be available for the previous year.
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This screening process yielded an average of 980 stocks per month. In com-
parison, Fama and French (1992) had an average annual sample size of 2,267
stocks. The Fama and French sample, however, also included AMEX and
NASDAQ stocks.

The data come from several sources: Institutional Brokers’ Estimate
System (I/B/E/S) (analyst following and earnings forecasts); S&P Secu-
rity Owner’s Stock Guide (institutional holdings); Wells Fargo Investment
Advisors and Robert Whaley (S&P Index membership); Hans Stoll and
Marc Reinganum (bid–ask spread data); and the CRSP and COMPUSTAT
tapes (returns, market capitalization, price, turnover, dividend yield, and
book-to-market ratio). For each security, the following variables were cal-
culated each month as follows:

SIZE—the natural logarithm of the market value of the equity of the
firm as of the end of the previous month.

BM—the natural logarithm of the ratio of the book value of equity
plus deferred taxes to the market value of equity using the end of
the previous calendar year market value and the most recent book
value available at the end of the previous calendar year.

TO—the natural logarithm of share volume for the previous month
expressed as a proportion of the number of shares outstanding.

DVOL—the natural logarithm of the dollar share trading volume for
the previous month.

NANAL—the natural logarithm of the number of analysts making
annual earnings forecasts as reported on the I/B/E/S tape for the
previous month.

DISP—the absolute value of the coefficient of variation of analysts’
one-year earnings forecasts as of the previous month.

SPREAD—the natural logarithm of the average bid–ask spread as a
proportion of the closing stock price for the previous year (calcu-
lated as the average of the beginning and the end-of-year closing
bid–ask spread relative to the mean quote).

PINST—the natural logarithm of the proportion of the stock held by
institutions as reported in the S&P Security Owner’s Stock Guide
in December of the previous year.

S&P—a dummy variable that takes on a value of unity if the security
is included in the S&P 500 Index at the end of the previous month
and zero otherwise.

PRICE—the natural logarithm of the reciprocal of the share price as
reported at the end of the previous month.

YLD—the dividend yield as measured by the sum of all dividends
paid over the previous 12 months divided by the share price at the
end of the previous month.

RET3—the cumulative return from month –3 to month –1.
RET6—the cumulative return from month –6 to month –1.
RET12—the cumulative return from month –12 to month –1.
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Table 7.1. Summary statistics. The summary statistics represent the grand cross-section,
time series average for an average of 980 NYSE stocks over 156 months from January 1977
through December 1989. Each stock had to satisfy the following criteria: (1) its return in
the current month and in 24 of the previous 60 months be available from CRSP, and
sufficient data be available to calculate the size, price, turnover, and dividend yield as of
the previous month; (2) sufficient data be available on the COMPUSTAT tapes to calculate
the book-to-market ratio as of December of the previous year; (3) annual earnings
forecasts be available on the I/B/E/S tape for the previous month; (4) institutional
holdings be reported in the previous year’s December issue of the S&P Security Owner's
Stock Guide; (5) the average bid–ask spread be available for the previous year.

Variable Mean Median Std. Dev.

Firm size ($bill) 1.302 0.373 3.685

Book-to-market ratio 1.234 0.956 4.167

Share turnover (% per month) 4.81 3.44 5.28

Dollar trading volume ($mill. per month) 64.74 12.39 19.5

Number of analysts 10.06 8.00 8.30

Coefficient of variation of analysts’ earnings forecasts 0.199 0.047 2.098

Proportional bid–ask spread (%) 1.31 1.07 1.11

Institutional ownership (%) 29.54 26.23 20.67

Share price ($) 28.97 24.88 21.97

Dividend yield (%) 4.30 3.63 8.09

The lagged return variables are constructed to exclude the immediate pre-
vious month’s return to avoid any spurious association with the current
month return due to thin trading or bid–ask spread effects. Finally, for all
of the regressions reported below, all of the firm characteristics variables
were expressed as deviations from their cross-sectional means each month;
this implies that the expected return for a security with average values of
these characteristics will be determined solely by its factor loadings and
the factor risk premiums.

Table 7.1 reports the grand time series and cross-sectional means, medians,
and standard deviations of the raw security characteristics. Note that the
variables in table 7.1 are not in logarithms. Table 7.2 reports the averages of
the month-by-month cross-sectional correlations of the variables that we use
in our analysis. The largest correlations with SIZE are DVOL (positive),
NANAL (positive), SPREAD (negative), S&P (positive), and PRICE (nega-
tive); with NANAL, they are SPREAD (negative), PRICE (negative), PINST
(positive), and S&P (positive); with SPREAD, they are PRICE (positive) and
S&P (negative). The correlations of DVOL with the other variables are simi-
lar to those of SIZE. The other correlations are smaller than 0.4 in absolute
value.

For the first set of regressions reported below, 25 portfolios were con-
structed as follows. First, the securities were assigned to one of five equal-
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Table 7.2. Correlation matrix of transformed firm characteristics. This table presents time series averages of monthly cross-sectional
correlations between transformed firm characteristics used in pricing regressions. The variables relate to an average of 980 stocks over
156 months from January 1977 through December 1989. RETURN denotes the excess monthly return (i.e., the raw return less the risk-free
return). SIZE represents the logarithm of the market capitalization of firms in billions of dollars. BM is the ratio of book value of equity
plus deferred taxes to market capitalization. TO is the logarithm of the ratio of the monthly trading volume to the number of shares
outstanding. DVOL is the logarithm of the dollar trading volume. NANAL is the logarithm of the number of analysts following a stock. DISP
is the absolute value of the coefficient of variation of analyst forecasts. SPREAD is the logarithm of the relative bid–ask spread. PINST is
the logarithm of the fraction of firm shares held by institutions. S&P is a dummy variable, which equals one if the stock belongs to the
S&P500 Index. PRICE denotes the logarithm of the share price reciprocal. YLD is the dividend yield.

RETURN SIZE BM TO DVOL NANAL DISP SPREAD PINST S&P PRICE YLD

RETURN 1.00 –0.020 0.015 –0.001 –0.019 –0.015 –0.014 0.013 –0.001 –0.004 0.008 0.005

SIZE –0.020 1.00 –0.266 0.065 0.890 0.798 –0.056 –0.743 0.323 0.606 –0.672 0.125

BM 0.015 –0.266 1.00 0.012 –0.228 –0.182 0.075 0.219 –0.119 –0.081 0.252 0.154

TO –0.001 0.065 0.012 1.00 0.507 0.186 0.056 –0.081 0.169 0.160 –0.045 –0.171

DVOL –0.019 0.890 –0.228 0.507 1.00 0.771 –0.021 –0.676 0.356 0.592 –0.600 0.024

NANAL –0.015 0.798 –0.182 0.186 0.771 1.00 0.023 –0.586 0.402 0.564 –0.483 0.089

DISP –0.014 –0.056 0.075 0.056 –0.021 0.023 1.00 0.074 –0.008 0.020 0.125 –0.037

SPREAD 0.013 –0.743 0.219 –0.081 –0.676 –0.586 0.074 1.00 –0.341 –0.441 0.746 –0.147

PINST –0.001 0.323 –0.119 0.169 0.356 0.402 –0.008 –0.341 1.00 0.260 –0.396 –0.039

S&P –0.004 0.606 –0.081 0.160 0.592 0.564 0.020 –0.441 0.260 1.00 –0.355 0.027

PRICE 0.008 –0.672 0.252 –0.045 –0.600 –0.483 0.125 0.746 –0.396 –0.355 1.00 –0.016

YLD 0.005 0.125 0.154 –0.171 –0.024 0.089 –0.037 –0.147 –0.039 0.027 –0.016 1.00

169
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sized groups based on SIZE; then, within each of the SIZE quintiles, the
securities were again sorted on the basis of a second criterion and assigned
to one of five portfolios. In this way, 25 portfolios were formed each year
so as to maximize the dispersion of firm size and the second sorting crite-
rion. This second criterion was, in turn, YLD, DISP, PINST, NANAL, TO,
BM, and SPREAD, all measured prior to the current month. Thus, there
are seven sets of 25 portfolios based on the different sorting criteria. For
each of the portfolios, the monthly return was calculated as the arithmetic
average of the returns of the securities in the portfolio, and the portfolio
characteristics, SPREAD, SIZE, etc., were calculated in a similar fashion.

Finally, five factors were estimated by using the asymptotic principal
components methodology applied by Connor and Korajczyk (1988)10

(henceforth C–K factors). These factors were selected in preference to the
three Fama and French (1993) factors because Daniel and Titman’s (1995)
analysis suggests that the F–F factors may not be adequate to capture the
cross section of equity returns. We find that the C–K factors explain 95%,
63%, and 39% of the variation in the Fama–French market, size, and book-
to-market factors, respectively, and for robustness we repeat part of the
analysis with the Fama–French factors. For the purposes of calculating
excess returns, the risk-free interest rate is taken as the 1-month risk-free
rate from the CRSP bond files.

4. EMPIRICAL RESULTS

The null hypothesis against which we evaluate the influence of security
characteristics is the five-factor APT. Thus, assume that returns are gener-
ated by a five-factor approximate factor model11:

� � � �R E R f ejt jt jk kt jt
k

= 



 + +

=
∑β
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where fkt are mean zero and E[ejt|fkt] = 0. Then, the exact or equilibrium
version of the APT implies that expected returns may be written as

E R Rjt Ft kt jk
k

�



 − =

=
∑λ β

1

5

(3)

where RFt is the return on the riskless asset, and λkt is the risk premium for
factor k. Substituting from (3) into (2), the APT implies that realized returns
are given by
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where Fkt ≡ λkt + fkt is the factor plus its associated risk premium.
Then, in order to test whether security characteristics have incremental

explanatory power for returns relative to the Connor–Korajczyk (C–K)
factors, the following equation is estimated:
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where Zmjt is the value of characteristic m for portfolio j in month t for each
of the seven sets of 25 portfolios. Under the null hypothesis that expected
returns depend only on the risk characteristics of the returns, as represented
by βjk, the loadings on the C–K factors, the coefficients cm (m = 1, . . . , 14)
will be equal to zero.

A. Fama–MacBeth Portfolio Regressions

For comparability with previous studies, we first employed the following
adaptation of the Fama–MacBeth (1973) procedure on the portfolio data.
For each month j, the risk-adjusted return on each of the portfolios, R*jt,
was estimated as

� � �R R R Fjt jt Ft jk kt
k

∗

=

= − −∑β̂
1

5

(6)

where βjk was estimated by regressing the portfolio excess returns on the
C–K factors over the entire sample period from January 1977 through Decem-
ber 198912; to allow for the possible effects of thin trading, the Dimson (1979)
procedure with one lag was followed, and the estimate of βjk was obtained
by summing the coefficients on the current and lagged factors. Then, the risk-
adjusted portfolio return was regressed on the (nonrisk) portfolio charac-
teristics for each month from January 1977 to December 1989 according to

� �R c c Z ejt t mt mjt jt
m

∗

=

= +∑0
1

14

(7)

Finally, the estimates of the coefficients, cmt (m = 0,1, . . . 14), were averaged
over time and their standard errors calculated. Note that although the fac-
tor loadings are measured with error, this error affects only the dependent
variable in regression (7), and while the factor loadings will be correlated
with the security characteristics, there is no a priori reason to believe that
errors in the estimated loadings will be correlated with the security char-
acteristics, so the averaged coefficients should be unbiased estimates of the
true coefficients. The average coefficients and their associated t-statistics
are reported in table 7.3. There is very little evidence in these results that
firm characteristics exert any independent effect on security returns. For
example, the only variable that is significant in the SIZE/BM sorted port-
folio regressions is the institutional ownership variable, PINST, which has
a t-statistic of 2.26; however, this variable becomes insignificant in the re-
gressions using data on portfolios sorted on SIZE and institutional owner-
ship. No other firm characteristic is significant in more than one of the
regressions.

While it is tempting to interpret these results as supportive of the factor
model since there is no strong evidence against the null, there are two rea-
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Table 7.3. Fama–MacBeth regression estimates of Equation (7) using portfolio data.
Coefficient estimates are time series averages of cross-sectional OLS regressions. The
dependent variable is the portfolio excess return adjusted for the C–K factor realizations,
and the independent variables are the firm characteristics measured as the deviation
from the cross-sectional mean in each period. Quintile portfolios were first formed by
sorting on SIZE. Then, each size portfolio was further subdivided into quintile portfolios
by sorting (in turn) on YLD, DISP, PINST, NANAL, TO, BM, and SPREAD, yielding a total of
25 portfolios. The sample and the variables are defined in table 7.1. All coefficients are
multiplied by 100. t-statistics are in parentheses.

SZ/YLD SZ/DISP SZ/PINST SZ/NANAL SZ/TO SZ/BM SZ/SPRD

Intercept 0.030 –0.031 –0.031 –0.031 –0.030 –0.031 –0.031

(0.84) (0.85) (0.85) (0.85) (0.84) (0.85) (0.85)

SIZE –0.329 0.033 –0.290 0.109 0.023 –0.092 –0.171

(1.09) (0.12) (1.23) (0.31) (0.08) (0.33) (0.47)

BM 0.180 0.024 0.304 0.007 0.533 0.559 0.184

(0.47) (0.70) (0.85) (0.02) (1.58) (0.95) (0.51)

TO –0.401 0.104 –0.425 –0.172 –0.165 –0.231 –0.375

(1.23) (0.35) (1.56) (0.62) (0.22) (0.83) (1.15)

NANAL 0.143 –0.121 0.140 –0.358 –0.510 –0.166 –0.220

(0.51) (0.40) (0.51) (0.90) (1.70) (0.55) (0.70)

DISP –0.083 –0.254 0.284 –0.139 0.093 –0.694 0.209

0.51) (0.34) (0.55) (0.31) (0.21) (1.46) (0.32)

SPREAD –0.953 –0.548 –0.380 –0.157 0.396 0.259 –0.336

(1.36) (0.88) (0.60) (0.24) (0.62) (0.46) (0.31)

PINST –0.172 0.236 0.019 –0.334 0.636 0.448 0.089

(0.67) (1.04) (0.05) (1.38) (2.64) (2.26) (0.38)

S&P 0.169 0.343 0.793 –0.059 .503 0.734 0.502

(0.35) (0.78) (1.77) (0.11) (1.02) (1.56) (1.11)

PRICE 0.350 1.12 0.285 –0.562 –0.379 0.301 –0.246

(0.59) (1.89) (0.50) (0.92) (0.66) (0.58) (0.42)

YLD –1.76 1.03 –8.53 8.87 1.78 –3.70 –5.51

(0.13) (0.15) (1.29) (1.33) (0.27) (0.48) (0.81)

RET3 0.600 –2.71 –3.57 0.078 1.99 –2.18 0.213

(0.20) (1.05) (1.53) (0.03) (0.82) (0.91) (0.08)

RET6 1.95 0.857 2.03 –1.39 –4.37 –0.268 1.71

(1.00) (0.42) (1.03) (0.72) (2.20) (0.13) (0.82)

RET12 0.477 1.63 1.26 0.834 1.61 1.56 0.849

(0.40) (1.62) (1.14) (0.77) (1.37) (1.50) (0.73)
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sons to suspect these results. First, the Fama–MacBeth technique may lack
power against the alternative hypothesis insofar as it fails to take account
of any residual correlation in the risk-adjusted portfolio returns. Second,
as we shall discuss further below, the portfolio formation procedure may
be obscuring significant relations between the variables. The natural esti-
mation procedure to take account of cross-sectional correlation in the re-
sidual returns, ejt, is generalized least squares.

B. Generalized Least Squares Regressions

We run pooled cross-section time series regressions of the portfolio returns
on the C–K risk factors and portfolio characteristics; in this way we estimate
simultaneously the factor loadings and the coefficients of the characteristics.
We thus avoid the errors-in-variables problems associated with more tradi-
tional Fama and MacBeth (1973) procedures.13 The estimation proceeds as
follows. Define R as the 25T × 1 vector of portfolio excess returns, where T is
the total number of time series observations, and the vector is ordered by
month so that the first 25 observations correspond to the portfolio returns in
month 1. Define X as the partitioned matrix X = [W Z], where W is a 25T ×
125 matrix of the C–K factors. The first 25 columns of W consist of T stacked
25×25 diagonal matrices with identical elements F1t, the return on the first
factor in month t, t =1, . . . ,T; the second 25 columns consist similarly of the
second factor, F2t, and so on up to column 125. Z is a 25T × 15 matrix whose
first column is a vector of units and whose remaining 14 columns are the
vectors of the 14 portfolio attributes (SIZE, PRICE, etc.) whose incremental
effect on expected returns we wish to assess. We first estimate the following
OLS pooled cross-section time series regression:

R = X β + ε (8)

where β is a 140×1 vector of coefficients: the first 125 elements are the co-
efficients of the five C–K factors for the 25 portfolios, ordered by portfolio;
the next element is the constant term of the regression; and the last 14 ele-
ments are the coefficients of the 14 security characteristics. ε is a 25T× 1
vector of errors. In our application, the sample consists of monthly returns
from January 1977 to December 1989 so that T = 156 and the total number
of observations is 3,900. In order to obtain the GLS estimator of β, Ω, the
variance–covariance matrix of errors in (8), is estimated assuming that the
portfolio return errors are serially independent but allowing for cross-
sectional dependence. Then Ω is a 25T × 25T block diagonal matrix, whose
typical element is the 25 × 25 covariance matrix of portfolio return errors.
This is estimated using the residuals from (8). The generalized least squares
estimate of β is given by

β } = X' Ω}–1X) (X' Ω}–1Y) (9)

where Ω} is the estimate of Ω from the first-stage regressions.
The results of these GLS regressions for each of the seven sets of port-

folios are reported in table 7.4.14 Now we find much greater evidence that
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Table 7.4. Generalized least squares regressions. Coefficient estimates of seven pooled
time series, cross-section GLS regression estimates of equation (5). The dependent variable
is the portfolio excess returns, and the independent variables are the C–K factors and
firm characteristics, with the characteristics measured as the deviation from the cross-
sectional mean in each period. The column headings describe the sorting criteria.
Quintile portfolios were first formed by sorting on SIZE. Then, each size portfolio was
further subdivided into quintile portfolios by sorting (in turn) on YLD, DISP, PINST,
NANAL, TO, BM, and SPREAD, yielding a total of 25 portfolios. In addition to the variables
whose coefficients are reported, the regressions include the Connor–Korajczyk factors as
independent variables, whose coefficients are not reported for brevity. RETn denotes the
n-month lagged returns. The sample and the other variables are defined in table 7.2. All
coefficients are multiplied by 100. t-statistics are in parentheses.

(1) (2) (3) (4) (5) (6) (7)
SZ/YLD SZ/DISP SZ/PINST SZ/NANAL SZ/TO SZ/BM SZ/SPREAD

Intercept –0.03 –0.04 0.04 –0.03 –0.05 4.63 5.04

(0.73) (1.08) (0.99) (0.92) (1.34) (3.88) (3.78)

SIZE –0.214 –0.057 –0.039 0.054 –0.066 0.205 0.214

(1.29) (0.35) (0.25) (0.30) (0.41) (1.51) (1.65)

BM 0.670 0.916 0.878 0.104 0.971 0.730 0.228

(1.95) (2.74) (2.24) (0.30) (2.79) (2.21) (0.71)

TO –0.469 –0.153 –0.501 –0.422 –0.718 –0.033 –0.006

(2.79) (0.93) (3.07) (2.54) (2.35) (0.30) (0.05)

NANAL 0.016 –0.030 0.121 –0.392 –0.227 –0.023 0.059

(0.10) (0.16) (0.74) (1.81) (1.36) (0.16) (0.41)

DISP –0.043 0.046 0.020 –0.105 –0.105 –0.050 –0.035

(0.59) (0.59) (0.28) (1.41) (1.36) (0.65) (0.48)

SPREAD –0.495 –0.268 –0.210 –0.489 0.54 1.02 1.49

(1.33) (0.74) (0.61) (1.34) (1.52) (3.68) (4.64)

PINST 0.283 0.324 0.114 0.115 0.396 –0.211 0.207

(1.39) (1.64) (0.59) (0.59) (2.01) (0.86) (1.19)

S&P –3.85 0. 90 –1.15 1.14 4.35 –0.107 0.352

(2.23) (0.54) (0.72) (0.72) (2.60) (0.07) (0.22)

PRICE 0.218 0.474 0.714 0.108 –0.527 –0.006 –0.594

(0.68) (1.54) (2.41) (0.35) (1.72) (0.02) (2.09)

YLD 0.028 –0.658 0.141 –0.07 0.03 –0.938 –2.13

(0.08) (1.99) (0.44) (0.23) (0.08) (1.53) (3.59)

RET3 0.75 –0.63 0.37 –0.59 –2.11 –0.30 –0.63

(0.86) (0.77) (0.45) (0.68) (2.46) (1.02) (2.18)

RET6 0.44 1.56 1.32 0.87 0.02 0.15 0.16

(0.83) (3.06) (2.59) (1.67) (0.12) (0.71) (0.78)

RET12 0.19 0.45 0.43 0.06 0.44 0.43 0.26

(1.10) (2.63) (1.90) (0.33) (3.05) (3.00) (1.84)
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the risk-adjusted returns are affected by the security characteristics. Using
a t-statistic of two as a criterion of significance, we find that SIZE, NANAL,
and DISP are nowhere significant; BM is significant (positive) in four re-
gressions; TO is significant (negative) in four regressions; RET12 is signifi-
cant (positive) in three regressions; SPREAD is significant (positive) in two
regressions; and RET3 is significant (negative) in two regressions. S&P is
significant in two regressions but has opposite signs in the two regressions.
The remaining variables are significant in only one regression. The inter-
cept terms are insignificantly different from zero except in the cases of the
SIZE/BM and SIZE/SPREAD sorted regressions.

The fact that the significance and even the sign of the coefficients of the
firm characteristic variables can vary so drastically across the regressions
using data on portfolios sorted according to different criteria points to the
serious limitations of analyses of this type that employ portfolio returns as
the basic unit of analysis. Roll (1977) has pointed out that when portfolios
are used to test an asset-pricing model the results can support the model
even when it is false because individual asset deviations from the pricing
relation can cancel out in the formation of portfolios. In our context, this
corresponds to a situation in which the portfolio formation procedure re-
duces the cross-sectional variation in a particular security characteristic and
thus obscures its effect on expected returns.15 Roll’s observation suggests
that, neglecting sampling variability, the null hypothesis that a given char-
acteristic has no effect on returns should be rejected if the coefficient of the
characteristic is significant for any portfolio formation procedure. On this
basis, we would conclude that the effects of the variables BM, SPREAD,
PINST, PRICE, RET6, and RET12 are positive and that the following vari-
ables have a negative effect on expected returns: TO, YLD, and RET3. As
noted, S&P has a different sign in different regressions.

While the foregoing discussion suggests that, if a variable appears to be
significant in the regression corresponding to any sort, then the null hy-
pothesis of no effect should be rejected, Lo and MacKinlay (1990) argue
that portfolio formation procedures based on some empirically motivated
characteristic can lead to the spurious conclusion that such a characteris-
tic (or, by extension, a characteristic that is correlated with it) has a signifi-
cant effect on returns. Both the GLS and FM regresssions reported above
are vulnerable to such criticism. Therefore, regressions that depend on
portfolio formation are hard to interpret—significance can be explained
away as spurious, following Lo and MacKinlay, and insignificance can be
attributed to the portfolio formation used, following Roll. Despite this, it
is notable that almost all analysis of the cross section of security returns
has relied on the use of portfolios sorted according to a single criterion.16

In the balance of this chapter, we turn to individual security regressions.

C. Individual Security Fama–MacBeth Regressions

First, we follow Fama and French (1992) in performing Fama–MacBeth style
cross sectional regressions of excess returns of individual securities on the
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security characteristics, including the estimated factor loadings. The factor
loadings were estimated as follows. In December of each year, all NYSE
stocks were allocated to one of ten size-ranked portfolios. Each size decile
was then subdivided into ten portfolios on the basis of individual stock
preranking loading on the first factor. The preranking factor loadings were
estimated using the prior 24 to 60 monthly returns as available. After as-
signing stocks to size-factor loading portfolios in December, we calculated
the equal-weighted monthly returns for the next 12 months, continuing this
process for the entire sample period. Then, following Dimson (1979), for
each portfolio, the factor loadings were estimated as the sum of the slopes
in the regression of the portfolio returns on the current and the prior
month’s factor returns,17 using the full sample of returns. The factor load-
ings assigned to individual stocks each year were then the loadings of the
portfolio to which the stock was assigned that year.

Cross-sectional regressions were then estimated each month with the
security excess returns as the dependent variable and the factor loadings
and other characteristics as the independent variables. The coefficients were
then averaged over time in the standard Fama–MacBeth manner, and the
results are reported in table 7.5. The estimated coefficients of the (estimated)
factor loadings are all insignificant, but the coefficients of several of the
security characteristics are significant. These include the coefficients of SIZE
(negative), TO (negative), SPREAD (negative), PINST (positive), S&P (posi-
tive), and RET12 (positive). Moreover, the intercept is large and significant,
indicating that the model does not properly price securities with average
characteristics (recall that the characteristic variables are expressed as de-
viations from the monthly means).

While these individual security regressions are free of the problems of
portfolio formation we have discussed, we have no assurance that the pro-
cedure used to assign factor loadings to individual securities leads to er-
rors in the factor-loading estimates that are orthogonal to the other security
characteristics. Indeed, we suspect that they will be dependent on the se-
curity characteristics since we expect the true factor loadings to be related
to the security characteristics, while the factor loadings we have assigned
are independent of the individual security characteristics. To address this
issue of errors in variables, a second modified Fama–MacBeth approach
for individual securities was adopted. First, the risk-adjusted monthly re-
turn was estimated for each security using the preranking factor loadings
estimated from the previous 24 to 60 months as in equation (4),18 and then
the risk-adjusted returns were regressed on the security characteristics each
month as in equation (7). Note that since the security characteristics are
measured largely without error, there is no errors-in-variables problem
induced by this procedure, despite the fact that we are using individual
security data. On the other hand, we are imposing the constraint that the
rewards to factor risk be equal to the returns on the underlying factor port-
folios. The cross-sectional regression coefficients were averaged, and the
results are summarized in table 7.6. SIZE remains significantly negatively
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associated with returns; BM now has a significant negative effect19; TO,
PRICE, YLD, and the lagged return variables are all insignificant. How-
ever, the additional characteristics NANAL, DISP, and PINST are signifi-
cant, and the most striking finding is that SPREAD has a highly significant
negative effect on returns. The factor model does a good job of pricing se-
curities with average characteristics since we observe that the intercept of
the regression is small and insignificant.

Although our procedure should ensure that errors in the estimated factor
loadings are uncorrelated with the security characteristics, to the extent that
they are correlated, the coefficients in the cross-sectional regressions will
be biased by an amount that is proportional to the factor realizations. There-

Table 7.5. Fama–MacBeth regression estimates of equation (5) using
individual security data. Coefficient estimates are time series
averages of cross-sectional OLS regressions. The dependent variable is
the security excess returns, and the independent variables are the
C–K factors and firm characteristics, measured as the deviation from
the cross-sectional mean in each period. Dimson betas with one lag
are used. The sample and the variables are defined in tables 7.1 and
7.2. The bold coefficient on size is the result replacing TO by DVOL in
the independent variables. All coefficients are multiplied by 100.
t-statistics are in parentheses.

Intercept 0.828 NANAL 0.050

(2.44) (0.72)

β1 0.063 DISP –0.147

(0.15) (1.30)

β2 –0.164 SPREAD –0.219

(0.37) (2.87)

β3 0.771 PINST 0.114

(1.27) (2.46)

β4 0.000 S&P 0.279

(0.00) (2.63)

β5 –0.520 PRICE 0.168

(0.91) (1.31)

SIZE –0.248 YLD 2.24

(3.50) (1.14)

–1.037 RET3 –0.599

(1.07) (1.11)

BM 0.070 RET6 –0.162

(0.89) (0.36)

TO / –0.144 RET12 1.36

DVOL (1.98) (4.68)
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fore, as a final check on the robustness of our results, the monthly regres-
sion coefficients of each of the characteristics were regressed on the C–K
factors,

c F umt m mk kt mt
k

= + +
=

∑γ γ0
1

5
� � (10)

and the intercepts from these regressions, γm0, which are purged of any
influence from the factor realizations, are reported in table 7.7 with their
associated t-statistics. The results do not change very much.

Thus, we continue to find that SIZE is strongly and negatively related
to returns, while RET12 is positively associated; we find no independent
effect associated with PRICE or BM once account is taken of the C–K fac-
tors. Thus, while Daniel and Titman (1995) continue to find a significant
BM effect in the presence of the Fama–French factors, it is not present in
our (shorter) sample, once account is taken of the influence of the other

Table 7.6. Fama–MacBeth regression estimates of equation (7) using
individual security data. Coefficient estimates are time series
averages of cross-sectional OLS regressions. The dependent variable is
the excess return adjusted for the C–K factors (Dimson betas with one
lag are used). The independent variables are the firm characteristics,
measured as the deviation from the cross-sectional mean in each
period. The sample and the variables are defined in tables 7.1 and
7.2. The bold coefficient on size is the result replacing TO by DVOL in
the independent variables. All coefficients are multiplied by 100.
t-statistics are in parentheses.

Intercept –0.028 PINST 0.179

(0.21) (3.30)

SIZE –0.422 S&P 0.184

(5.95) (1.66)

–0.315

(2.65)

BM –0.256 PRICE 0.069

(2.51) (0.43)

TO / –0.108 YLD 2.33

DVOL (1.30) (1.20)

NANAL 0.214 RET3 –0.280

(2.98) (0.20)

DISP –0.287 RET6 –0.929

(2.53) (0.85)

SPREAD –0.534 RET12 0.778

(5.24) (1.92)
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variables. Other new findings include a significant negative relation be-
tween TO and returns, which is consistent with a liquidity effect, and a
positive effect associated with NANAL, which is inconsistent with the
‘neglected firm effect’ hypothesis. Interestingly, we find that S&P mem-
bership is associated with positive risk-adjusted returns; this is perhaps
due to the growth in index funds during our sample period (see Chan
and Lakonishok 1993). There is no YLD effect. The most significant find-
ing is the negative coefficient associated with the SPREAD variable, which
has a t-statistic in excess of 4 even after adjustment by regression on the
factors.

To check whether the SPREAD results are being driven by securities with
extreme values of the spread, we formed spread-sorted quintiles each year
and allowed the intercept in the cross-sectional Fama–MacBeth regression
to depend on the spread quintile. Differences in the intercepts across quintiles
would be indicative of nonlinearity in the return–spread relation. In fact, we
found virtually no differences in the intercepts across the quintiles, suggest-

Table 7.7. Risk-adjusted Fama–MacBeth Regression Estimates of
equation (7) using individual security data. Coefficient estimates are
the intercept terms from equation (10), obtained by regressing the
parameter estimates from the monthly cross-section regressions on
the C–K factors. The sample and the variables are defined in
tables 7.1 and 7.2. The bold coefficient on size is the result replacing
TO by DVOL in the independent variables. All coefficients are
multiplied by 100. t-statistics are in parentheses.

Intercept –0.015 PINST 0.073

(0.33) (1.61)

SIZE –0.299 S&P 0.273

(4.91) (2.65)

–0.081

(0.91)

BM –0.048 PRICE 0.132

(0.53) (1.63)

TO / –0.217 YLD 2.89

DVOL (2.87) (1.56)

NANAL 0.202 RET3 1.99

(2.75) (1.45)

DISP –0.177 RET6 –2.02

(1.47) (1.80)

SPREAD –0.404 RET12 0.957

(4.13) (2.27)
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ing that the spread effect is not being driven by the stocks with extreme values
of the bid–ask spread.

The risk-adjusted rewards for SIZE and TO in table 7.7 are of the same
sign and similar magnitude. This suggests that it is the sum of these vari-
ables that is important; that is, the logarithm of dollar trading volume. To
test this hypothesis, TO was replaced by the logarithm of the product of
firm size and turnover to yield the variable DVOL, log dollar volume, and
the regression results are reported in tables 7.6 and 7.7. Note that all the
coefficients are the same except for that of SIZE (shown in bold in tables 7.5
through 7.10), which is no longer significant. This is not surprising given the
fact that all our variables are in logarithms and DVOL = TO + SIZE. Consid-
ering the risk-adjusted results in table 7.7, we see that DVOL has a sig-
nificant negative effect on returns, which is consistent with investors
requiring a lower rate of return on liquid stocks; moreover, the coeffi-
cient of the SIZE variable is now small and insignificant. Thus, our results
are consistent with the much analyzed ‘size effect’ being a liquidity effect.

It is evident that the SPREAD variable is not proxying for liquidity in
the sense of Amihud and Mendelson (1986). Nor is it likely that SPREAD
is associated with a negative bias in measured returns; in fact, any bias
associated with bid–ask bounce is likely to be positive. We are not sure what
role this variable plays. The finding of Petersen and Fialkowski (1994) that
the quoted spread is only loosely associated with the effective spread that
investors pay further raises the issue of how the quoted spread is set. Tinic
(1972) presents a statistical model that explains 84% of the variance in
spreads of NYSE stocks. The factors that are statistically significant in his
regression are price, trading volume, number of institutional investors,
an index of concentration of trading on the NYSE, and the fraction of days
on which the stock was traded. Since we have already included price,
turnover, and proportional institutional ownership as firm characteris-
tics, SPREAD cannot be proxying for these variables in our regressions.
Concentration of trading on the NYSE and thin trading20 hardly seem suf-
ficient to account for the importance of the SPREAD effect on returns that
we find.

To further investigate the robustness of the SPREAD effect, the analysis
was repeated using the three Fama–French (1993) factors to risk-adjust
returns. The results, which are reported in tables 7.8 and 7.9, show that the
coefficient of SPREAD remains negative and significant, although there are
changes in some of the other coefficients. Thus (from table 7.9), NANAL
and S&P are no longer significant, while PINST is now only marginally
significant.

As a final check on the robustness of the spread effect, Fama–MacBeth
regressions were run using individual security excess returns without
any risk adjustment as the dependent variable. The results are reported in
table 7.10  SPREAD remains strongly significant. Thus, there is no evidence
that the SPREAD effect is due to the risk-adjustment procedure.
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Table 7.8. Fama–MacBeth regression estimates of equation (9) using
individual security data. Coefficient estimates are time series
averages of cross-sectional OLS regressions. The dependent variable is
the excess return adjusted for the F–F factors (Dimson betas with one
lag are used). The independent variables are the firm characteristics,
measured as the deviation from the cross-sectional mean in each
period. The sample and the variables are defined in tables 7.1 and
7.2. The bold coefficient on size is the result replacing TO by DVOL in
the independent variables. All coefficients are multiplied by 100.
t-statistics are in parentheses.

Intercept 0.835 PINST 0.115

(2.06) (2.40)

SIZE –0.256 S&P 0.280

(4.13) (2.63)

–0.107

(1.10)

BM 0.091 PRICE –0.170

(1.15) (1.29)

TO / –0.148 YLD 0.980

DVOL (1.93) (0.41)

NANAL 0.033 RET3 –0.653

(0.47) (1.19)

DISP –0.132 RET6 –0.113

(1.26) (0.24)

SPREAD –0.213 RET12 1.30

(2.78) (4.42)

5. CONCLUSION

This chapter makes several contributions to the growing literature on the
determinants of the cross section of security returns. First, we have brought
together the attributes approach of Fama and French (1992) and the fac-
tors approach of Connor and Korajczyk (1988) to examine the relation-
ship between returns and 14 firm characteristics after accounting for the
Connor and Korajczyk factors. Second, we have shown that the use of
portfolio data to test asset-pricing models is fraught with difficulty—the
results are highly sensitive to the particular portfolio formation criteria
that are used. Finally, we have discussed how data on individual securi-
ties may be used to test a given asset-pricing model against a specific
alternative hypothesis.21 Using data on NYSE securities for the period
1977–1989, we have found that, after adjustment for risk by the Connor–
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Table 7.9. Risk Adjusted Fama–MacBeth regression estimates of
equation (9) using individual security data. Coefficient estimates are
the intercept terms from equation (10) obtained by regressing the
parameter estimates from the monthly cross-section regressions on
the Fama–French factors. The sample and the variables are defined in
tables 7.1 and 7.2. The bold coefficient on size is the result replacing
TO by DVOL in the independent variables. All coefficients are
multiplied by 100. As the Durbin–Watson statistic for the dividend
yield regression showed significant evidence of serial correlation in
residuals, this coefficient is estimated assuming an AR(2) process for
the residuals. t-statistics are in parentheses.

Intercept –0.033 PINST 0.099

(0.56) (1.99)

SIZE –0.216 S&P 0.165

(3.89) (1.54)

–0.001

(0.02)

BM –0.015 PRICE –0.055

(0.24) (0.45)

TO / –0.215 YLD 2.00

DVOL (3.11) (1.03)

NANAL 0.071 RET3 0.476

(0.98) (0.92)

DISP –0.167 RET6 –0.148

(1.53) (0.30)

SPREAD –0.269 RET12 1.29

(2.91) (4.22)

Korajczyk factors, security returns are reliably related to the following
security characteristics: the dollar volume of share trading, analyst fol-
lowing, S&P membership, spread, and the 12-month lagged return. We
find no significant evidence of a relation to firm size, the book-to-market
ratio, dispersion of analyst forecasts, institutional ownership, price, divi-
dend yield, or 3- and 6-month lagged returns.

Our most puzzling finding is the very strong negative relation between
returns and the measured bid–ask spread. This relation appears to be con-
stant over time and is (log)linear across different levels of the spread. We
have no satisfactory explanation for this phenomenon, which clearly war-
rants further research.
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NOTES

1. Connor (1995), who discusses the three approaches, refers to the third approach as a
“fundamental factor model.” He compares the three approaches in terms of their ability to
explain the covariance matrix of U.S. stock returns: the model with five macroeconomic
factors explains 10.9% of the variance, a (five) statistical factor model explains 39.0%, and
his “fundamental factor model” explains 42.6%. Note that this ranking conveys little infor-
mation about the ability of the different approaches to explain pricing.

2. See Chan and Lakonishok (1993).
3. However, when returns are risk-adjusted using the Fama–French factors, the coeffi-

cient of the dividend yield becomes positive and significant.

Table 7.10. Fama–MacBeth regression estimates of equation (9) using
individual security data. Coefficient estimates are time series
averages of cross-sectional OLS regressions. The dependent variable is
the risk-unadjusted excess return. The independent variables are the
firm characteristics, measured as the deviation from the cross-
sectional mean in each period. The sample and the variables are
defined in tables 7.1 and 7.2. The bold coefficient on size is the result
replacing TO by DVOL in the independent variables. All coefficients
are multiplied by 100. t-statistics are in parentheses.

Intercept 0.835 PINST 0.115

(2.06) (2.40)

SIZE –0.256 S&P 0.280

(4.13) (2.63)

–0.107

(1.10)

BM –0.091 PRICE 0.170

(1.15) (1.29)

TO / –0.148 YLD 0.980

DVOL (1.93) (0.41)

NANAL 0.033 RET3 –0.653

(0.48) (1.19)

DISP –0.132 RET6 –0.113

(1.26) (0.24)

SPREAD –0.213 RET12 1.30

(2.78) (4.42)
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4. The t-statistic is an estimate of the Sharpe ratio for a particular portfolio, and MacKinlay
(1995) places bounds on the maximum Sharpe ratio for a risky portfolio.

5. Fama and French (1993) also find that the book-to-market effect disappears when the
risk model contains a factor based on the returns on portfolios formed on the basis of the
book-to-market ratio.

6. Banz (1981) and Fama and French (1992).
7. Lehmann and Modest (1988) found that their implementation of a five-factor APT

was unable to account for the size anomaly.
8. Falkenstein (1996) shows that mutual funds “show an aversion to low-price stocks.”
9. The empirical work of Arbel et al. (1983) also suggests the existence of a “neglected

firm” effect in expected returns.
10. Connor and Korajczyk (1993) “find evidence for one to six pervasive factors gener-

ating returns on the NYSE and AMEX over the period 1967 to 1991.” We are grateful to
Bob Korajczyk for providing us with updated estimates of the factors.

11. See Connor and Korajczyk (1988), for example, for the definition of an approximate
factor model.

12. Fama and French (1992) state that their results are not sensitive to whether the fac-
tor loadings are calculated using the full-period postranking betas or 5-year preranking
betas. Following these authors, we use the full-period betas in our cross-sectional regres-
sions.

13. Roll (1994) follows a similar procedure with eight portfolios but uses dummy vari-
ables to represent three security characteristics.

14. To conserve space, the estimated factor loadings, βjk, are not reported.
15. In addition, the portfolio formation procedure may induce multicollinearity between

the average security characteristics in the portfolios, making it even more difficult to de-
tect the influence of particular characteristics on expected returns.

16. Fama and French (1992) is a notable exception.
17. This procedure allows for thin trading that would cause biases in estimated factor

loadings.
18. The Dimson procedure with one lag was used.
19. Note that this is despite the fact that our procedure implicitly assumes that the book

value is known as of the end of the calendar year, whereas it may be reported only later.
Our assumption may impart an upward bias to this coefficient.

20. Tinic (1972) finds that the less continuous the trading, the higher the spread.
21. Bossaerts and Hillion (1995) show how to use individual security data to test for

the mean–variance efficiency of a portfolio.
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On Cross-Sectional Determinants
of Expected Returns

Bruce N. Lehmann

1.

It is both a pleasure and a privilege, albeit somewhat daunting ones, to
discuss Brennan, Chordia, and Subrahmanyam’s chapter “Cross-Sectional
Determinants of Expected Returns” in this volume (see chap. 7). It is a plea-
sure because this is an interesting essay, one that challenges both the reli-
ability of recent empirical evidence on risk/return relations obtained by
Fama and French (1992) and others and the interpretation of postulated
risk exposures in factor-pricing models. It is an honor because Fischer was
one of the most extraordinary students of all areas of financial economics
and of most of economics more broadly defined. I am somewhat intimi-
dated, however, for Fischer was justly famous for his voracious reading of
an extraordinarily large fraction of the published and unpublished research
in finance and economics available at any point in time along with his
detailed, insightful commentary on those aspects of any analysis he found
either compelling or wanting.1 Fischer set a very high bar indeed for com-
mentary on papers prepared for a conference in his honor.

One aspect of Fischer’s commentary on empirical work on asset-pricing
relations seem relevant to the chapter by Brennan et al.: his insistence on
rigorously interpreting evidence within the theoretical framework of the
Capital Asset Pricing Model (CAPM). Now, I would be forsaking both com-
parative and absolute advantage were I to try to articulate what Fischer
might have said about the Brennan et al. chapter if only because I lack his
remarkable ability to provide cogent economic interpretations of empiri-
cal evidence in terms of false models such as the CAPM. Nevertheless, my
own approach to empirical work is not entirely dissimilar to Fischer’s be-
cause I try to rigorously interpret evidence by explicating what is being
measured to (and, perhaps, past) the point of pedantry.

What do these high-sounding principles have to do with this chapter?
Much of the empirical asset-pricing literature of the 1990s has revolved
around the extent to which the security attributes that generated anomalies
in the CAPM should be thought of as microdeterminants of risk exposures
or as fundamental flaws in the fabric of the no-arbitrage or equilibrium
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approaches to pricing capital assets in perfect markets. Chapter 7 fills a void
in the literature by simultaneously considering a large set of asset character-
istics in the context of a single benchmark asset-pricing model, the Connor
and Korajczyk (1988) implementation of the Arbitrage Pricing Theory (APT).
The inclusion of a laundry list of security attributes holds out the hope of
sorting out the wheat from the chaff by harvesting a consistent and coher-
ent description of mispricing in conventional asset-pricing models.

My goal is to suggest dimensions in which Brennan et al. can better
achieve these goals. The next section discusses the difficulty in using their
empirical specification to distinguish the microdeterminants of risk expo-
sures and mispricing interpretations of the role of security attributes. The
third section suggests a simple procedure for simultaneous measurement
of individual security risk exposures and characteristic risk premiums, an
approach that can mitigate any concerns about sequential estimation of
these parameters. The penultimate section addresses two problems asso-
ciated with the inference in this literature: the extreme fragility of infer-
ence about characteristic risk premiums based on grouped portfolios as
documented by Brennan et al. and the data-mining concerns engendered
by using attributes found largely through specification searches in the lit-
erature, a subject of great concern to Fischer. Brief concluding remarks
round out my comments.

2. WHAT THESE LINEAR ASSET-PRICING RELATIONS MEASURE

It is profitable to work through the arithmetic of equations (3)–(5) in chap-
ter 7 in order to be precise about what is being measured in these asset-
pricing relations. In a vector version of equation (5) in chapter 7, the model
for excess returns is

Rt – ιRft = ιβ0 + BFt + Ztc + et

where ι is an N-vector of ones. Letting It–1 denote information available to
investors at time t–1 with Zt∈It–1, conditional mean returns are given by

E[Rt – ιRft|It–1] = ιβ0 + Bλt + Ztc + E[et|It–1]; λt = E[Ft|It–1]

which is satisfied arithmetically given only the existence of the relevant
conditional means. Brennan, Chordia, and Subrahmanyam append the
standard, though nontrivial, assumption that E[et|It–1] = 0, a presumption
they use to justify their estimation procedures but one not actually neces-
sary for this purpose.

What exactly do the characteristic risk premiums c measure? The au-
thors provide the obvious answer: c reflects the reward for bearing the risks
associated with the security attributes Zt, compensation that should be zero
if the five-factor model spans conditional mean excess returns or, more
precisely, if Zt does not help account for any mispricing engendered by this
model. Yet there is another interpretation, one that strikes me as equally
plausible a priori. Note that a maintained hypothesis in this model is that
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the conditional factor loadings B are constant. If these loadings, in fact, vary
over time, Zt might simply be proxying for time variation in conditional
risk exposures.2

There is a sense in which time variation in conditional loadings is the
more natural interpretation. If this market admits no arbitrage opportu-
nities, the mean–variance efficient frontier has finite slope and returns
satisfy

Rt – ιRft = βpt [Rpt – Rft] + εpt; E[εpt|It–1] = 0

where p is the maximum conditional Sharpe ratio portfolio of these assets.
Now there are two sets of portfolio returns implicit in equation (5) of chap-
ter 7: Ft, the excess returns of the Connor–Korajczyk basis portfolios, and
c, the unconditional mean returns of zero net investment portfolios of these
assets with weights that are linear combinations of the columns of Zt since
Zt'ι = 0.

Accordingly, actual returns and conditional expected returns also satisfy

Rt – ιRft = ιβ0 + BFt + ZtWZtZt'Rt + ut; ut = Zt [c – WZtZt'Rt] + et

E[Rt – ιRft|It–1] = [BβpFt + ZtβpZt] E[Rpt – Rft|It–1] + E[ut|It–1]

where WZt∈It-1 is a linear combination of the characteristic basis portfolios
(see the discussion in the following section) and βpFt and βpZt are the condi-
tional betas of the Connor–Korajczyk and characteristic basis portfolios,
respectively. If E[ut|It–1] = 0, B and Zt provide conditional beta models in
the sense that

βpt = BβpFt + ZtβpZt

Put differently, a correctly specified (conditional) multifactor asset-pricing
model can always be interpreted as a conditional beta model within the
corresponding single beta pricing relation.

Parenthetically, ignoring the specification and data-mining issues dis-
cussed further below, Fischer would doubtless have tried to interpret any
characteristic risk premiums he thought empirically reliable along these
lines—that is, within the CAPM assuming that portfolio p was the market
portfolio of all risky assets. If he adopted this view, he would have construed
the characteristic risk premiums as reflections of the implicit betas of the
excess characteristic portfolio returns on the market portfolio.3 At minimum,
he would have demanded consistency in the attribute premiums such as the
same signs and similar premium estimates for those characteristics that,
loosely speaking, reflected the same economic quantities. In fact, he would
probably have doubted the empirical reliability of any premium that he could
not rationalize in this fashion, although judging whether implicit betas make
economic sense is not an entirely straightforward matter.

Alternatively, suppose the five-factor model did, in fact, price this col-
lection of assets but with time-varying conditional factor loadings Bt as in

E[Rt – ιRft|It–1] = Btλt
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a circumstance that arises when

Btλt = Bλt + Ztc + E[et|It–1]

since β0 is zero in this model. Given the unconditional projection

Bt – B = ZtΠ + Vt; Zt'Vt = 0

the characteristic risk premiums are given by

c = Πλt – [Zt' Zt]–1Zt'E[et|It–1]

Under the authors’ assumption that E[et|It–1] = 0, one would naturally
model c as the time average of Πλt (i.e., c = ΠE[λt]) if λt is time-varying and
as the appropriate compensation for bearing time-varying risk exposure
when it is time-invariant.

In any event, there is a natural way to mitigate this ambiguity: incorpo-
rate a linear model for conditional loadings into the model specification.4
That is, the excess return model (5) in chapter 7 can be rewritten in the
general form

Rt – ιRft = ιβ0 + [B+ZtΠ]Ft + Ztc + et

To be sure, the characteristic risk premiums c still might not be purged
of the effects of time-varying conditional risk due to the potential corre-
lation between the factor risk premiums and Vt, the unmodeled part of
the conditional risk exposures Bt (i.e., E[VtFt] = E[Vtλt] need not be zero).
Nevertheless, most researchers would probably conclude that there is
some mispricing or omitted risk factor related to the characteristics Zt if
c proved to be nonzero in this revised model.

3. THE MEASUREMENT OF RISK PREMIUMS

One of the admirable qualities of chapter 7 is the authors’ insistence on
using individual securities to estimate the characteristic risk premiums, as
opposed to basing inference solely on results obtained from grouped port-
folios. However, the authors share a common misapprehension: that the
Fama–MacBeth procedure is necessary because it is not generally possible
to estimate risk exposures and premiums simultaneously when the num-
ber of securities exceeds the number of time series observations in the ab-
sence of restrictions on the residual covariance matrix. My purpose in this
section is to show both that inference for risk premiums can proceed in a
straightforward way without such restrictions and that the difference be-
tween such inferences and those produced by the Fama–MacBeth proce-
dure reflect distinctions in the premiums being estimated.

Before proceeding, it is worth noting that the Fama–MacBeth procedure
might just as well be called the Black, Jensen, and Scholes procedure. Black,
Jensen, and Scholes (1972) developed this procedure to estimate the zero
beta rate, the intercept in the zero beta CAPM pricing relation, via cross-
sectional regression. At each time t, the regressand was the vector of ex-
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cess returns of portfolios sorted by prior period sample beta less the prod-
uct of the excess return of a market index and the vector of portfolio beta
estimates. The regressors were comprised of a vector of ones less the same
portfolio beta estimates. The cross-sectional regression coefficient was the
actual return of a portfolio constructed to have an estimated beta of zero.
This simple idea—that least squares coefficients estimated from cross-
sectional regressions of security returns on asset characteristics are port-
folio returns—has provided many insights linking financial econometrics
with asset-pricing theory. Fischer was justly proud of this contribution.

Under whatever name, the inference issue is easily explicated in the
pooled time series/cross-sectional regression (8) in chapter 7:

R = Xβ + ε; Ω = E[εε']

where R is the NT × 1 vector of excess individual security returns, X is a
matrix comprised of the Connor–Korajczyk excess basis portfolio returns,
the pricing intercept, and the security attributes, β is a conformable param-
eter vector consisting of the factor risk exposures in the first 5N elements
and the zero beta rate and the characteristic risk premiums in the last
15 elements, and ε is an NT × 1 residual vector. The authors assume that
the errors are serially uncorrelated and homoskedastic with potentially
nonzero contemporaneous correlation, resulting in Ω = Σ⊗IT, where Σ is
the contemporaneous covariance matrix of εt.

This is a set of seemingly unrelated regressions since the elements of X
are not identical across securities at each time t due to the presence of the
individual asset characteristics. It is natural to estimate β, ε, and Σ by or-
dinary least squares via
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for use in the asymptotically efficient generalized least squares estimate:

β }GLS = [X' (Σ }–1 ⊗IT)X]–1X'Σ}–1⊗IT)R; Var[β }GLS] = [X' (Σ}–1⊗IT)X]–1

where Var[β }GLS] is a consistent estimate of the asymptotic covariance ma-
trix of β }GLS. Of course, this estimate is only feasible when N<T and gener-
ally performs well only if N<<T.

However, there is an alternative to grouping if N>T because inefficient
methods can be applied to very large asset menus when their dimension
renders efficient approaches infeasible. That is, it is possible to implement
any weighted least squares estimator given a nonsingular weighting
matrix W }, in this case of the form A }⊗IT with A } converging in probability
to some nonsingular limit A. Feasible estimators include ordinary least
squares with W = INT = IN⊗IT and conventional weighted least squares
with W } = [Diag(Σ })]–1⊗IT, where Diag[•] denotes a diagonal matrix com-
prised of the diagonal elements of its argument. The weighted least
squares estimator and a consistent estimate of its covariance matrix are
given by5
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β }WLS = [X'W}X]–1X'W}R; Var[β }WLS] = [X'W}X]–1[X'W}(Σ}⊗IT) W}X]–1[X'W}X]–1

which uses the same estimate of Σ but does not require that it be invertible.
Of course, the finite sample reliability of Var[β}WLS] need not be good, but it
is likely to be no better or worse than that of the Fama–MacBeth estimator.

The justification for the last statement is evident after contemplation of
these expressions. Suppose that the factor risk exposures were known and
included in the model so that X contained only the security characteristics
and a vector of ones, while β included only the zero beta rate and the char-
acteristic risk premiums. In this case, both the Fama–MacBeth risk pre-
mium estimator and the standard estimator of its covariance matrix are
numerically identical to those of the corresponding weighted least squares
estimator. Of course, it is possible that the simultaneous estimation of
risk exposures and characteristic risk premiums results in an estimator
with small sample properties drastically different from that of the Fama–
MacBeth estimator, but this outcome strikes me as an unlikely one given
the relative precision with which risk exposures are estimated.

There is a subtle difference in the nature of the risk premiums produced
by the Fama–MacBeth and weighted least squares procedures. Holding
constant the weighting matrices and the risk exposure and zero beta rate
estimates (which would, of course, differ across estimation procedures),
the Fama–MacBeth and weighted least squares estimators are given by
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As is readily apparent, these estimators differ with regard to when Zt' A }Zt

is inverted in the estimation procedure.
In either case, the risk premium estimates are the average returns of linear

combinations of zero net investment portfolios. The portfolios implicit in the
Fama–MacBeth estimator differ in each time period due to the weighting by
[Zt' A }Zt]–1. In contradistinction, those associated with the weighted least
squares estimator are time-invariant, being the inverse of the time series mean
of Zt' A }Zt , due to the implicit imposition of the restriction that the character-
istic risk premiums are time-invariant as well. Which is superior depends
on the source of the characteristic risk premiums in the population.

Finally, modifications along these lines need not materially change the
risk premium estimates. In fact, ignoring the common practice of estimat-
ing betas in prior sample periods before running cross-sectional regressions,
the Fama–MacBeth and weighted least squares procedures (with identical
weighting matrices) will produce numerically identical risk exposure esti-
mates if there is a security-specific intercept (i.e., the usual α coefficient)
in the regression. Nevertheless, it seems sensible to use joint estimation if
it can eliminate any concerns about inference.6
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4. THE MEASURED RISK PREMIUMS

The main focus of chapter 7 is on the sample characteristic risk premiums
and their relevance for interpreting asset-pricing anomalies. What should
we make of these estimates even ignoring the changes that might transpire
if either the time-varying risk exposure model or the simultaneous esti-
mation procedure was employed? Does this experiment teach us about
anomaly risk premiums or the methods we use to investigate them? Chap-
ter 7 has much to say on both scores.

As the authors stress, the results are quite sensitive to the choices of asset
menu and econometric procedures. Reading the tables is an exercise in
confusion if one thinks that commonly employed methods measure the
characteristic risk premiums. The risk premium estimates often change sign
and significance across both grouping strategies and estimation procedures.
Some of this variation is doubtless due to sample size—as the authors note,
13 years is a small sample for measuring unconditional risk premiums, as
emphasized by Merton (1980). Similarly, the screening criteria dramatically
reduce the number of firms in the sample. However, the main cause of
variation is likely to be the implicit experimental design.

What asset menus facilitate the measurement of characteristic risk pre-
miums in this model? The experimental design that sharpens the risk pre-
mium estimates is that which facilitates precise estimation of the parameters
of the multivariate linear regression model.7 Assets with small residual
variances and modest cross-sectional correlations are clearly desirable.
Considerable cross-sectional variation in security characteristics alone is
insufficient; it is also necessary that the variation be sufficiently indepen-
dent across securities as well so that the separate effects of the attributes—
that is, their individual risk premiums—can be reliably ascertained.

These observations suggest that portfolio grouping can be beneficial.
Grouping securities into a smaller number of portfolios reduces residual
variance because of the obvious diversification effect. Similarly, ranking
on characteristics creates cross-sectional variation in those included in the
sort. However, there is no a priori reason to think that sorting on attributes
creates portfolios with modest cross-sectional residual correlations. If any-
thing, the difference between the Fama–MacBeth and seemingly unrelated
regression results for grouped portfolios suggests the opposite is the case.8
Moreover, the limitations of grouping are obvious; as more characteristics
are added to the sort, the number of securities in each portfolio declines,
causing a corresponding reduction in the diversification benefits.

The results reported in tables 7.3 and 7.4 suggest that the potential bene-
fits of grouping are not realized in this application.9 Put differently, chap-
ter 7 provides further documentation of the tenuousness of inference based
on portfolio grouping. I find it unsurprising that inferences about the char-
acteristic risk premiums prove so sensitive to the choice of grouping vari-
ables as well as to the use of individual securities since such findings have
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cropped up in the literature when researchers have bothered to look. What
is surprising to me is the common reliance on grouping procedures when
they are so unreliable.

The experimental design issues are somewhat different in the case of
the individual security Fama–MacBeth regressions. The correlation matrix
in table 7.2 suggests nontrivial linear dependence among a subset of the
characteristics across all securities, but it does not provide enough infor-
mation to indicate whether it is severe enough to cause econometric prob-
lems. My guess is that collinearity among asset characteristics is high among
those securities with extreme values of the attributes—that is, those with
large (in absolute value) magnitudes of the characteristics in the metric of
their squares and cross products—that have the most influence on the risk
premium estimates. For example, there are many small firms with high
yields, large spreads, and low volume and turnover that are not in the S&P
500 Index, much followed by analysts, or owned by institutions.

Finally, Fischer would doubtless have asked: “Where do the character-
istics come from?” All are the result of loose economic reasoning, some of
it a priori but much of it ex post, and the quarter century search for attributes
correlated with pricing errors in the CAPM and other asset-pricing models.
One cannot judge by the sign or significance of risk premium estimates since
anomalies only remain anomalous as long as they remain statistically im-
portant in different asset menus. The only sure way to tell if a surviving
security characteristic is a consequence of data mining is to see if it suc-
cumbs to the law of large numbers, which probably involves a long wait
due to the imprecision with which mean excess stock returns are measured.

The concern regarding data mining makes it difficult to judge the liquid-
ity-based explanation offered by the authors.10 They observe that the coef-
ficients on the logarithms of size and turnover have the same sign and
similar magnitudes, suggesting that their effects are additive and repre-
sent a liquidity effect. Maybe so, but the coefficient on analyst’s dispersion
is similar, too, and one would surely not add it to size. Moreover, this find-
ing might not survive the addition of securities, particularly of small firms,
that would arise if the authors dropped some of the characteristics from
the experiment and, hence, loosened the screening criteria. Similarly, the
passage of the bid/ask spread coefficient from large and negative to small
and positive by lagging size, price, and yield by one month suggests that
this is a good choice due to the common factor of the closing month-end
price. However, the authors would probably have looked for other empiri-
cal explanations for the puzzling negative spread coefficient had this not
worked, raising concerns that this is a sample, not a population, effect.

5. CONCLUDING REMARKS

Except for concerns about sample size, my comments on chapter 7 can be
accurately summarized in terms of hypotheses about potential collinear-
ity between the security attributes and the corresponding risk/return
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characteristics. Perhaps security characteristics are collinear with risk ex-
posures but not risk premiums. Perhaps the collinearity among expected
returns, risk exposures, and characteristics varies so much across group-
ing procedures, estimation methods, and weighting matrices that it is hard
to know which set of results, if any, to believe. Perhaps they are collinear
with expected returns as well, but there is so much collinearity among
the attributes that it is hard to tell which attributes have economically
significant risk premiums. Perhaps risk premiums also differ across char-
acteristics that loose economic reasoning suggests should reflect similar
economic risks.

Some of these concerns can be addressed using different methods, and
some are the irremediable difficulties associated with inductive learning.
Nevertheless, chapter 7 is a good start on resolving some of the outstand-
ing disputes in the literature regarding the role of security characteristics
in asset pricing. Perhaps at the end of this part of the road, the liquidity-
based attributes will remain economically and statistically important with
the right signs and plausible magnitudes with the other characteristics
insignificant in both senses. It will still be difficult to tell if their economic
relevance reflects a need to substantially relax the perfect markets assump-
tions so central to modern asset-pricing theory or if the CAPM (or other
asset-pricing model) interpretation Fischer would doubtless have cham-
pioned made more intuitive economic sense. Nevertheless, such a finding
will have further narrowed the domain of the competition between these
alternative views.

NOTES

1. Many others have noted the joy associated with their first receipt of unsolicited com-
ments from Fischer Black when they were unknown assistant professors or the great sur-
prise they experienced on visiting him and finding that he had a file of comments on their
papers. I offer another such anecdote. A few years ago, David Modest and I prepared a paper
entitled “Market Structure and Liquidity on the Tokyo Stock Exchange” for the National
Bureau of Economic Research Conference on The Industrial Organization and Regulation
of the Securities Industry. While writing about some of the limitations on the inferences
that could be drawn from the trade and quote record in the middle of this paper, I wanted
to contrast the demand for immediacy in the form of market orders and the supply of li-
quidity in the form of limit orders. David and I both viewed the precommitment associ-
ated with limit orders as a defining characteristic of the supply of immediacy. However,
Fischer most assuredly did not, and I must confess that, with malice aforethought, I wrote
two offending paragraphs on this topic in a fashion that I imagined would most upset Fischer
since the contra-Black view of the supply of immediacy best characterized what I wanted
to say at the time. Some two weeks after we sent the paper off to the NBER, certainly well
before it was widely circulated (I had sent out fewer than 20 copies of the paper by that
time), I received an email message from Fischer that began with “When I start reading a
paper like yours, I am flooded with basic questions. What is liquidity exactly? . . . What
does it mean to supply liquidity? To demand liquidity?” and followed with a coherent ar-
gument that the precommitment associated with limit orders had zero value in equilibrium.
While the correctness of his insights on the value of limit orders may be open to dispute, I
still find it astonishing that Fischer found two paragraphs written in a fashion designed to
irritate him in a narrowly circulated working paper.
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2. The sometimes substantial differences between the raw and purged Fama–MacBeth
risk premium estimates in tables 7.5 and 7.6 are consistent with this hypothesis.

3. One more comfortable with less restrictive no-arbitrage models would focus more
generally on the covariances among the characteristics’ portfolios.

4. Lehmann (1992) shows that linear models for conditional factor risk exposures natu-
rally arise when the APT holds both conditionally and unconditionally.

5. I have glossed over some solvable implementation details, most notably the fact that
many securities will have missing data for at least part of the sample.

6. The comparison of the Fama–MacBeth and GLS risk premium estimates based on
grouped portfolios in chapter 7 shed little light on this question because of the OLS weighting
of the former and the GLS weighting of the latter. Perhaps the sometimes substantial dif-
ferences between the raw and purged risk premium estimates in tables 7.5 and 7.6 reflect
potential gains from the use of joint estimation procedures.

7. Warga (1989) discusses these issues in a different multifactor asset-pricing model.
8. Other potential problems include those engendered by sample size.
9. The sorts reported in chapter 7 all involve size and one other variable; my conjecture

is that the variation in estimated risk premiums would be greater still if sorting was carried
out on other characteristic pairs or, for that matter, triplets.

10. The virtues of including many of the anomalies found in prior research to see if
liquidity-based variables can systematically account for prior findings must be balanced
against the cost that sampling variation in many variables facilitates the finding of spuri-
ous correlations in the sample.
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9

Exploring a Two-Factor, Markovian,
Lognormal Model of the Term Structure
of Interest Rates

Scott F. Richard

The purpose of this chapter is to better understand two-factor, Markovian,
lognormal models of the term structure of interest rates. This class of models
is useful in valuing and hedging fixed-income securities. As such, we find
it a valuable tool in managing fixed-income portfolios.

The one-factor, Markovian, lognormal model of the instantaneous in-
terest rate first appeared in Dothan (1978). The model became useful and
popular because of the binomial tree solution invented by Black, Derman,
and Toy (1990) (BDT). In the models of both Dothan and BDT, the loga-
rithm of the short rate follows a random walk and does not mean-revert.
The lack of mean reversion makes it difficult for the model to price inter-
est rate options such as caps and swaptions. To remedy this problem, Black
and Karasinski (1991) extended the binomial tree in BDT to include mean
reversion.

The one-factor, Markovian, lognormal model proved extremely use-
ful in practice. It was adopted by many Wall Street firms to price deriva-
tives, mortgage securities, and other interest-rate contingent claims. Over
time, however, single-factor models proved inadequate for valuing and
hedging simultaneously fixed-income securities, as argued in Canabarro
(1995). Wall Street and other financial industry participants are largely
replacing single-factor models with two-factor Markovian models or with
(non-Markovian) multifactor Heath, Jarrow, and Morton (1992) models.

To my knowledge, there are two papers, Chan (1992) and Tenney (1995),
that contain a two-factor, Markovian, lognormal model of the term struc-
ture of interest rates. Both papers develop essentially the same model, as
we show in an appendix, but with different representations of the two
state variables. Both models have been developed into successful com-
mercial applications. Chan’s model is used in Salomon Brothers’ Yield
Book; Tenney’s model is implemented by Chalke, Inc., in their insurance
company models.1

An empirically important feature of these models and the one presented
here is that the two state variables are in general (negatively) correlated.
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We shall see in section 2 that autonomous, independent state variables
restrict the correlation of spot interest rates with futures prices on interest
rates to be too high to match empirical observations.2

Why has this model proven successful in portfolio management? The
answer, I think, is that the model is a very parsimonious representation,
which can simultaneously value and hedge many fixed-income securities.
In general, valuation and hedging are the two main uses of a term struc-
ture model. First, we calibrate the model to the current yield curve, futures
prices, and liquid option prices and then value other securities. Second,
having calibrated the model, we can determine what combination of bonds,
futures, and options will hedge the security.

A calibrated two-factor, Markovian, lognormal model has three desir-
able characteristics. The first is the shape of the term structure. The model
can simultaneously approximate both the term structure of interest rates
and the term structure of London Interbank Offered Rate (LIBOR) futures
prices. The peak of the hump in the term structure is often at 20 years or
more; this peak is difficult to match using a one-factor model. Of course,
to match the term structure exactly, we must use time-dependent fudge
factors, but these should be small and in some sense average to zero. (Other-
wise, the shape of the endogenous term structures will become unrealistic
over time.)

Term structure shocks are the second characteristic. An empirical analy-
sis of the covariance matrix of monthly changes in the yields on zero-coupon
bonds between 1986 and 1995 reveals that there are two (or three) statisti-
cally significant factors determining the changes in the term structure of
interest rates.3 Figures 9.1 and 9.2 show the first two principal components
of the correlation matrix.4 Together, these two factors account for about 97%
of the variation in monthly yield curve changes. The first factor is commonly
called a yield curve shift and the second a yield curve twist.5 The shape of
the yield curve shift is evidence of mean reversion in interest rates. The
factor shocks for the two-factor, Markovian, lognormal model closely re-
semble those shown in figures 9.1 and 9.2.

The final characteristic is the term structure of volati1ity. Typically, the
term structure of cap prices is determined as if implied Black volatility is
first rising and then falling. Implied Black volatility for long-dated swaptions
is usually less than for caps. The price of a forward cap resetting to at-the-
money should not necessarily decline with the starting date. Taken together,
these stylized facts are further evidence for mean reversion of interest rates
but not for decreasing conditional short-rate volatility.

Other models may have these characteristics as well, but that needs to
be verified before we use them in practice.

This chapter is organized as follows. Section 1 contains the general for-
mulation of the one-factor, Markovian, lognormal model and a simple and
intuitive numerical solution technique. Section 2 extends this model and
numerical solution to two factors. Section 3 contains some illustrative out-
put and a discussion of the model results. The Appendix shows how to map
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Figure 9.1. First Principal Component of the Correlation Matrix of Log Yield Changes
(87.5%)

the models of Chan (1992), Tenney (1995), and Canabarro (1996) into our
framework.

1. THE ONE-FACTOR, MARKOVIAN, LOGNORMAL MODEL

In this section, we review the one-factor, Markovian, lognormal model and
present a new explicit numerical technique for finding contingent claims
prices for the model. An explicit numerical technique is one where we build
a grid or lattice to approximate the instantaneous interest rate. Perhaps the
best-known explicit technique is the one-dimensional, recombining, bino-
mial tree derived in Black, Derman, and Toy (1990). Their model was ex-
tended to accommodate mean reversion in Black and Karasinski (1991).
We present an alternative numerical technique, a grid, which is extremely
simple to build, intuitively understandable, and appears to have good

Figure 9.2. Second Principal Component of the Correlation Matrix of Log Yield
Changes (9.5%)
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numerical properties. Furthermore, the grid can easily be extended to the
two-dimensional case.

The risk-adjusted model we consider is the same as the one in Black and
Karasinski (1991):

dx(t) = m(h – x(t))dt + σdw(t) (1)

where ln(r(t)) = x(t), h, m > 0, and σ > 0 are constants, and w(t) is a standard
Wiener process.6 The solution to equation (1) is

x(t) = h + ϕ(t)(x(0) – h) + ϕ(t)
t

∫
0
ϕ–1(s)σdw(s) (2)

where ϕ(t) = exp(–mt). Asymptotically, x(∞) is normally distributed with
mean h and variance σ2/(2m).

We want to build a discrete-time, binomial grid to approximate x(t) in
such a way that the conditional mean and variance of x(t) are correct over
the approximating interval. We assume it is currently time zero and di-
vide time into equal intervals of length ∆t. (Typically, we choose ∆t equal
to 1/12 or 1/24 of a year for actual applications.) Over an interval of length
∆t, we calculate that the conditional mean of the change in x is

E0∆x = (h – x(0))(1 – β) (3)

where β= exp(–m∆t) < 1. The conditional variance of the change in x is
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For small ∆t, the conditional mean is approximately equal to (h – x(0))m∆t,
and v2 is approximately equal to σ2∆t. It is convenient to define the nor-
malized process

z(t) = (x(t) – h)/v (5)

so that the conditional mean of the change in z is

E0∆z = – z(0)(1 – β) (6)

and the conditional variance of the change in z is one. Clearly, if we calcu-
late z(t), then we can invert equation (5) to find x(t).

The grid approximating z(t) is symmetric about z0 = 0 the grid points
are given by the formula
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It is easily verified that zn+1 > zn. Over an interval ∆t, zn either moves up to
zn+1 or down to zn–1.The probability of moving up is

p nn

n

n n=
+

=−

β
β β

, , , ,0 1 2… (8)

Naturally, the probability of moving downward is 1–pn. It can be verified
by direct computation that ∆z satisfies equation (6) and has a conditional
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variance of one. Figure 9.3 illustrates a section of the grid and the direc-
tion of the transition probabilities.

Intuitively, the grid is centered around the stationary mean of x (or z)
rather than the current value. Conversely, the BDT tree is centered around
the current value of x. This makes sense to me in that, with mean rever-
sion, the future distribution of x is centered about h, while without mean
reversion the future distribution is centered around x(0). Also, the grid
depends only on m∆t, so that it does not need to be recalculated if h or σ
changes.

There are some practical considerations in actually building the grid
(which can easily be done in a spreadsheet). First, the grid must be trun-
cated at some N (chosen so that all interesting values of x and hence r are
spanned). At the boundaries, we have the choice of making the grid either
reflecting or absorbing. We will discuss how to do this in turn.

If the grid is to be made reflecting, then at the upper boundary node, zN,
we must redefine pN as the probability of staying in zN. In order to match
the conditional mean given by equation (6), we calculate that

p
zN

N

N
N

=
+ −( )

β
β β1 (9)

Similarly, at the lower boundary node, z–N, we redefine (1–p–N) = pN to be
the probability of staying in z–N The conditional variances at the boundary
nodes will be less than one, but this will have no practical effect on contin-
gent claims pricing.

If the grid is to be made absorbing, then at the upper boundary node,
zN, we must redefine pN = 1 as the probability of staying in zN. Similarly, at
the lower boundary node, z–N, we redefine (1–p–N) = 1 to be the probability
of staying in z–N. We have found that the absorbing boundary has better
numerical properties when calculating the Green’s functions (which are a
proper subset of the Arrow–Debreu prices).

Having constructed the grid, contingent claims pricing proceeds in the
obvious way. At each node, we use equation (5) to calculate the short rate
rn = exp(h + vzn) and the discount function dn = exp(–rn∆t).7 Denote by πn(t)
the value at time t = K∆t in node n of any contingent claim. If the cash flow
for the claim is not path-dependent, then we can value it through back-
ward induction. We begin at the maturity date, T = K∆t, of the claim where
the cash flow determines πn(T). For example, for a zero-coupon bond ma-

Figure 9.3. A Segment of the One Dimensional Grid with Transition Probabilities
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turing at T, we have πn(T) = 1, and for a caplet struck at s, we have πn(T) =
max(0, rn–s). Valuation proceeds through backward induction:

πn(t) = dn(pnπn+1 (t + ∆t) + (1 – pn)πn–1 (t + ∆t)), n = 0, ±l, ±2, . . . , ±N–1 (10)

Figure 9.4 illustrates the backward induction from time t + ∆t to time t at
node z0.

At the boundaries, the backward induction is

πN(t) = dN(pNπN(t + ∆t) (1 – pN)πN–1 (t + ∆t)) (11a)

and

π–N(t) = d–N(p–Nπ–N+1(t + ∆t) + (1 – p–N)π–N (t + ∆t)) (11b)

The present value of the contingent claim is calculated by interpolating
between the values at the two nodes straddling r(0). The value of a path-
dependent claim, such as a mortgage security, is calculated by simulating
paths of interest rates from the grid.

In the following section, we extend the one-factor model and solution
technique to a two-factor model.

2. THE TWO-FACTOR, MARKOVIAN, LOGNORMAL MODEL

In our model, the instantaneous interest rate is lognormally distributed,
mean reverts, has a stationary steady-state distribution, and is described
by two stochastic variables. We set

ln(r(t)) = x1(t) + x2(t) (12)

where x1 and x2 are jointly normally distributed with risk-neutral dynamics

dx = M(h – x)dt + Bdw(t) (13)

In equation (13), h is a 2-vector of constants, M is a diagonal matrix with
elements m2 > m1 > 0, B is a 2-by-2 matrix of constants such that Σ = BB' > 0,
and w is a two-dimensional vector of independent Wiener processes. It is
very important to note that x1 and x2 are, in general, correlated random
variables. If we assume them to be independent, then it is not possible to

Figure 9.4. Backward Induction in the Grid
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guarantee the existence of parameter values that match the covariance of
the spot interest rate and futures on the interest rate, as we will see below.

Because M is diagonal, the stochastic differential equations given by (13)
are autonomous and can be solved for x(t). (In fact, it is easily shown that
any pair of linear equations for ln(r) can be reduced to autonomous equa-
tions.) To solve equation (13), define Φ(t) to be a diagonal matrix with ele-
ments ϕ1(t) = exp(–m1t) and ϕ2(t) = exp(–m2t). Then we find that

x(t) = h + Φ(t)(x(0) – h) + Φ(t)∫
t

0
Φ–1(s)Bdw(s) (14)

From equation (14), we calculate the mean of x(t) to be

Ex(t) = h + Φ(t)(x(0) – h) (15)

and the covariance matrix to be

Vx t v t v t
v t v t

( )
( ) ( )
( ) ( )













11 12

12 22
(16)

where v11(t) = (σ11/2m1) (1 – exp(–2m1t)), v12(t) = (σ12/(m1 + m2))(1 – exp(–(m1
+ m2t)), and v22(t) = (σ22/2m2)(l –exp(–2m2t)).

We calculate the moments of ln(r(t))

E ln(r(t)) = 1'h + 1'Φ(t)(x(0) – h) (17)

and

V ln(r(t)) = v11(t) + 2v12(t) + v22(t) (18)

Asymptotically ln(r) is normally distributed with mean

E ln(r(∞)) = h1 + h2 = η (19)

and variance

V r
m m m m

ln ∞( )( ) = +
+

+
σ σ σ11

1

12

1 2

22

22
2

2 (20)

I have no formal proof, but experimentation shows that prices of interest-rate
contingent claims depend only on η and not on its allocation to h1 and h2.

The dynamics for ln(r(t)) are given by

dlnr(t)) = 1'M(h – x(t))dt + 1'Bdw(t) (21)

The instantaneous variance of r(t) is a constant

σ2
r = σ11 + 2σ12 + σ22 (22)

Using equation (12), we can eliminate one of the unobserved state variables
in equation (21) but not both. We need to introduce a second observed state
variable.

Our second state variable is the τ-year futures price of r denoted by f(t; τ).
If we approximate r by 3-month LIBOR, then we might choose τ equal to
5 years and approximate f(t; τ) by the 5-year futures price for 3-month
LIBOR. Each day, we would have to interpolate f(t; τ) between the two
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contracts straddling 5 years until expiration. Under the risk-neutral distri-
bution, we have

f(t; τ) = E[r(t + τ)|r(t)] (23)

Calculating the conditional expectation on the right-hand side of equation
(23), we find that

ln( f(t; τ)) = c(τ) + 1'Φ(τ)x(t) (24)

where

c(τ) = ½ (v11(τ) + 2v12(τ) + v22 (τ)) + η – 1'Φ(τ)h (25)

Denoting v(τ) = v11(τ) + 2v12(τ) + v22(τ), we find that ln( f(t; τ)) is normally
distributed with mean

Eln( f(t; τ)) = ½ v(τ) + η + 1'Φ (t + τ)(x(0) – h) (26)

and variance

Vln( f(t; τ)) = ϕ2
1 (τ)v11 (t) + 2ϕ1(τ)ϕ2 (τ)v12 (t) + ϕ2

2 (τ)v22 (t) (27)

We can study f(t;τ) asymptotically for fixed τ as t gets large or for fixed t as τ
gets large. Asymptotically, as t→∞, ln( f(t;τ)) is normally distributed with mean

Eln( f(∞; τ)) = ½ v(τ)+ η (28)

and variance

V f
m m m m

ln ;∞( )( ) = ( ) + ( ) ( )
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From equations (19) and (20) and from equations (26) and (27), we calcu-
late that for fixed t

Er
m m m m

f∞( ) = + +
+

+
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22

2
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(i.e., the value of all futures prices converges to the asymptotic expected
instantaneous interest rate or, equivalently, the term structure of futures
prices is asymptotically flat). Finally, we turn to the dynamics for ln( f(t; τ)).
From equation (24), we calculate that

dln( f(t; τ)) = 1'Φ (τ)M(h – x(t))dt + 1'Φ(τ)Bdw(t) (31)

The instantaneous variance of ln( f(t; τ)) is a constant

σ2
f = ϕ2

1 (τ)σ11 + 2ϕ1(τ)ϕ2 (τ)σ12 + ϕ2
2(τ)σ22 (32)

as is the instantaneous covariance of ln(r(t)) and ln( f(t; τ)),

σrf = ϕ1(τ)σ11 + ϕ1(τ)σ12 + ϕ2 (τ)σ12 + ϕ2 (τ)σ22 (33)

We now return to the claim that x1 and x2 must in general be correlated in
order to match the correlation, ρrf, between the spot rate and the futures
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rate. By inverting equations (22), (32), and (33), we find that ρ12 = 0 if and
only if

ρ
ϕ ϕ σ σ

ϕ ϕ σ σrf
r f

r f

=
+

+( )
1 2

2 2

1 2
(34)

Since ϕ1 and ϕ2 must both be positive and less than one, we have ρrf > σf/σr,
which is empirically too large a lower bound. For example, if τ = 5 years,
then ρrf is typically about 0.5, but σf/σr is typically greater than 0.65.

We are finally ready to derive an observable dynamic system for ln(r(t))
and ln( f(t;τ)). Solving equations (12) and (24) simultaneously for x(t), we
get

x1(t) = [ϕ2(τ)ln(r(t)) – ln ( f(t; τ)) + c(τ)]/[ϕ2(τ) – ϕ1(τ)] (35a)

and

x2(t) = [–ϕ1(τ)ln(r(t)) + ln( f(t;τ)) – c(τ)]/[ϕ2(τ) – ϕ1(τ)] (35b)

Equations (35) can be substituted into equations (21) and (31) to find a pair
of internally consistent stochastic differential equations for ln(r(t)) and
ln( f(t;τ)).

We now turn to building the two-dimensional grid. We will roughly
replicate the steps in building the one-dimensional grid. First, we calcu-
late the conditional mean of the change in x using equation (15):

E0∆xi = (hi – xi (0))(1 – βi), i = 1, 2 (36)

where βi = exp(–mi∆t), i =1, 2. Next, we calculate the conditional variance
of the change in x using equation (16):

V x t v t v t
v t v t0

11 12

12 22
∆ ∆ ∆

∆ ∆
( )
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Finally, we define the normalized processes

z t x t h v t ii i i ii
( ) = ( )−( ) ( ) =/ , ,∆ 1 2 (38)

The conditional mean of the change in z is

E0∆zi = –zi (0)(1 –βi), i = 1,2 (39)

and the conditional covariance matrix is

V z0
1

1
∆ =

′
′













ρ
ρ (40)

where

′ =
( )

( ) ( )
ρ

v t

v t v t
12

11 22

∆

∆ ∆ (41)

For small t, 12 11 22∆ ′ ≈ ≡ρ ρ σ σ σ/
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The grid approximating the correlated processes z1(t) and z2(t) is sim-
ply the Cartesian product of the grids approximating each process. The grid
points are given by the obvious specialization of equation (6) to β1 and β2.
The probabilities must be modified to reflect the correlation of the processes.
Denote a node of the grid by (n, j), where n is the index for z1 and j is the
index for z2. Denote the probability of moving from (n, j) to (n', j') by
pnj(n', j'). Then we have that

pnj (n + 1, j + 1) = (βn
1 β j

2 + ρ') / D (42a)

pnj (n + 1, j – 1) = (βn
1 β–

2
j – ρ') / D (42b)

pnj (n – 1, j + 1) = (β–
1
n βj

2 – ρ') / D (42c)

pnj (n – 1, j – 1) = (β–
1
n β–

2
j + ρ') / D (42d)

where D = (βn
1  + β–

1
n)(β j

2  + β–
2

j). Inspecting equations (42) shows that the prob-
ability of each of the processes moving up or down is unaltered from the
one-dimensional case, so the conditional means automatically satisfy equa-
tion (39) and the conditional variances are each equal to one. Direct calcu-
lations will verify that the covariance between ∆z1 and ∆z2 equals ρ'.

Unlike the one-dimensional grid, the probabilities in (42) can become
negative. When one of the probabilities as given by (42) is negative, we
are at a corner point and must modify the probabilities. To show how this
is done, we will assume that ρ'< 0, which is the case empirically. When ρ' < 0,
(βn

1 β j
2 + ρ') will become negative for large enough positive n and j. Assum-

ing (n, j) is such a corner node, we replace (42) with

pnj(n + 1, j + 1) = 0 (43a)

pnj(n + 1, j – 1) = βn
1 /(βn

1+β–n
1) (43b)

pnj(n – 1, j + 1) = β j
2 /(β j

2 +β–j
2) (43c)

pnj(n – 1, j – 1) = (β–
1
n–β–

2
j – βn

1 β j
2)/ D > 0 (43d)

The choices of probabilities given in (43) will cause the conditional means
of the change in z to satisfy equation (39), but the conditional covariance
matrix will not be correct. At the boundary nodes of the grid, as opposed
to the corners, we continue to make the grid absorbing.

3. DISCUSSION OF SOLUTIONS

In this section, we present some solutions of the model that are indicative of
the term structure, cap, and swaption prices at the end of July 1996. The values
of the state variables are r = 5.61% and f = 7.13%, where f is the 5-year Euro-
dollar futures; the parameters of the model are m1 = 6%, m2 = 60%, σr = 25%,
σf = 15%, ρrf = 0.5, and η = –2.533. The grid we built is 121 by 91 and has ∆t
= 1/24 year. We calculate that σ1 = 20.86%, σ2 = 24.65%, and ρ12 = –0.406.

The computed term structure is shown in figure 9.5. Figures 9.6 and 9.7,
respectively, show the first and second principal components of the co-
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Figure 9.5. The Term Structure of Interest Rates

Figure 9.6. First Principal Component of the Covariance Matrix of Log Yield Changes

Figure 9.7. Second Principal Component of the Covariance Matrix of Log Yield
Changes
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variance matrix of log yield changes. If actual log yield changes were gen-
erated by the model, then the observed empirical principal components
would look like figures 9.6 and 9.7. (Of course, we cannot calculate more
than two components since we have generated the data from a two-factor
model.) The similarity of the model output (figures 9.6 and 9.7) to the ac-
tual empirical results (figures 9.1 and 9.2) should be noted.

The term structure of futures prices for the short-term interest rate is
shown in figure 9.8. The 5-year rate was an input; the rest are calculated.
Notice that the rate is asymptotically approaching 9.46%.

Finally, we turn to the evaluation of options. Table 9.1 shows the price
and implied Black volatility of at-the-money caps of various maturities.

Figure 9.8. The Term Structure of Futures Prices for the Short Rate. The term
structure of futures prices for the short term interest rate is shown in Figure 9.8. The
five year rate was an input; the rest are calculated.

Table 9.1. At-the-money strikes, cap prices, and Black
volatilities.

Maturity Stike Cap Price Black Volatility

1 5.82% 29.30 28.9%

2 6.01% 85.70 35.9%

3 6.16% 152.93 24.7%

5 6.37% 305.58 23.6%

7 6.53% 463.98 22.0%

10 6.67% 688.10 21.5%
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Notice that the implied Black volatilities rise from 1-year caps to 2-year
caps and then decline, a pattern similar to market prices.

Swaption prices and volatilities are shown in table 9.2. The implied yield
volatilities for longer-dated swaptions are indicative of market quotes. The
two-factor, Markovian, lognormal model appears to be a successful repre-
sentation of the term structure of interest rates. It mimics well the shape of
the term structure, the principal components of the change in the term struc-
ture, the term structure of futures prices, the term structure of cap volatil-
ity, and the term structure of swaption volatility. Increasing experience in
using it to buy and hedge securities should lead to the discovery of its short-
comings and hence improvement.

acknowledgments Thanks to Ben Gord, Jaidip Singh, and Eduardo Schwartz,
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NOTES

1. Canabarro (1996), contains essentially the same model as Chan (1992) and Tenney
(1995), but with the correlation between changes in the short rate and changes in the sec-
ond factor restricted to be zero; a model implemented at Goldman Sachs.

2. There have been a number of papers using two uncorrelated square root interest rate
processes. See, for example, Richard (1978), Cox, Ingersoll, and Ross (1985), Chen and Scott
(1992), and Longstaff and Schwartz (1992).

3. The original study of factor shifts in the yield curve is Litterman and Scheinkman
(1991). They find that the first factor, the yield curve shift, is nearly a parallel shift. If we
restrict our data to their time period (1984–1989), we closely replicate their results.

4. The results of factor analysis, as opposed to principal components, are nearly identical.
5. The fact that so much of the variation in yields is described by two principal com-

ponents by itself guides us to look at two-factor models. Another equally important con-
sideration points us toward a two (or more)-factor model: We have been unable to find
any single-factor model that qualitatively has a principal component in the shape shown
in figure 9.1.

6. In Black and Karasinski (1991), h is a time function used to match exactly the current
term structure of interest rates. We will discuss in note 7 how to accommodate this modi-
fication in our solution technique.

Table 9.2. Swaption prices, yield volatilities, and price volatilities.

Option Swap
Maturity Maturity Strike Price Yield Vol. Price Vol.

1 7 6.88% 2.19% 16.8% 5.8%

1 10 6.99% 2.69% 16.4% 7.2%

2 7 7.03% 2.89% 16.5% 5.8%

2 10 7.12% 3.54% 16.1% 7.1%

3 7 7.15% 3.29% 16.1% 5.8%

5 10 7.32% 4.33% 15.1% 6.7%
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7. If you wish to match the current term structure of interest rates exactly, then the con-
stant h is replaced with h(t) for t = 0, ∆t, 2∆t, . . . , T. The algorithm given below can be
used to first estimate h(t) by matching the price of zero-coupon bonds before proceeding to
contingent claims pricing.
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APPENDIX

We want to show that the models of Chan (1992), Tenney (1995), and
Canabarro (1996) can be put into the form of equation (13). With some
modification of notation, but not of content, all three models can be writ-
ten as

dy = P(k – y)dt + Sdw (A1)

where y1(t) = ln(r(t)), y2 is a second (unobservable) state variable, P is a
2-by-2 matrix of constants, k is a 2-vector, and the instantaneous covariance
matrix of the state variables is SS' > 0; in Canabarro, the covariance matrix is
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diagonal, implying that the state variables are uncorrelated. Let m2 > m1 > 0
be the eigenvalues of P, and let E be the corresponding 2-by-2 matrix of eigen-
vectors. Denote the diagonal matrix with elements m1 and m2 by M so that

PE = EM (A2)

Defining x = E–1y, we see that x satisfies equation (13) with h = (EM)–1k and
B = E–1S. In fact, we have shown a more general result: Any two-factor,
Markovian, lognormal model can be reduced to equation (13).
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Convexity and Empirical Option Costs
of Mortgage Securities

Douglas T. Breeden

The option to prepay is the main focus of researchers in mortgage securi-
ties, as it is extremely important for both hedging and valuation. The first-
order effect of prepayments is to shorten the lives of mortgages, thereby
reducing their effective durations and price elasticities with respect to in-
terest rates.

While researchers at major brokerage houses differ significantly in fore-
casting the effective durations of various fixed-rate mortgage coupons, on
average their forecasts for standard fixed-rate mortgages are closely related
to subsequent empirical durations (see Breeden 1994). Their forecasts of
effective durations for interest-only strips vary hugely, by contrast, and are
highly inaccurate forecasts of subsequent price elasticities. The risks of
interest-only strips are extremely difficult to forecast, despite the major
talent and resources that investment banks have devoted to research on
mortgage securities. Errors in these risk estimates may have contributed
to the many well-publicized losses in derivative mortgage securities in
1992–1995.

This chapter examines the second-order effect of prepayments on mort-
gage risk (i.e., the cost of the “negative convexity” of mortgages) (see
Diller 1984). This is the asymmetry in mortgage returns; losses are larger
for rate increases than the gains are for corresponding decreases in rates,
due to the borrowers’ use of the prepayment option adverse to the mort-
gage investor’s interests. For hedgers of interest rate risk (which includes
most of the investment banks and major players in the market), the first-
order duration risk is routinely hedged, which makes this second-order con-
vexity risk really of the first order with regard to movements in hedged
profits.

Mortgage derivatives such as interest-only strips (IOs) and principal-
only strips (POs) may have positive or negative convexity and positive or
negative skewness of returns, depending upon the level of interest rates.
Thus, the option risk adjustment may reverse sign and reflect an option
benefit, making the certainty equivalent yield greater than the yield of the
base case. The option risk adjustment may also be very large and, indeed,
overwhelm the duration risk adjustment.
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For example, in 1993, some interest-only strips had estimated option
benefits of positive convexity that were estimated to be worth as much as
1,000 basis points, which was a very large portion of their projected risk-
adjusted spreads to Treasuries. Also in 1993, other IO strips had option costs
of negative convexity of 1,000 basis points, as estimated by one broker.

The expected patterns of option costs and option-adjusted durations for
IO and PO strips are considerably more complex and interesting than for
whole mortgage-backed securities (MBS), as is shown by work of Roll (1986)
and Asay and Sears (1988). For this reason, we focus on brokers’ forecasts
of option costs for IOs, as they illustrate the differences most vividly. We
also empirically estimate the option costs using a dynamic hedging strat-
egy and compare these estimates to brokers’ forecasts. Following the analy-
sis of IO convexity option costs is a similar analysis for conventional (whole)
fixed-rate mortgage-backed securities.

Section 1 gives an overview of the cross-sectional diversity and time
series behavior of brokers’ forecasts of option costs, option-adjusted dura-
tions, and option-adjusted spreads for mortgage securities. Section 2 re-
views the theory of pricing and expected patterns of risk for interest- and
principal-only strips, as well as for whole mortgages. Section 3 presents
the empirical data for IO price behavior and empirical durations and com-
pares the data to the predictions of theory, as well as to the brokers’ forecasts.

Section 4 presents estimates for the scale and pattern of empirical op-
tion costs for IOs. The estimates are from a dynamic hedging strategy based
upon brokers’ forecasts of durations. These empirical option costs are then
compared to the brokers’ forecasts of option costs.

Section 5 briefly shows similar results for standard (whole, principal,
and interest) FNMA mortgage-backed securities. Section 6 concludes with
a few remarks on the results and future work.

1. MORTGAGE ENVIRONMENT AND BROKERS’ FORECASTS

Figure 10.1 shows the roller coaster ride in FNMA 9% IO prices for 1991–
1996. Prices dropped by over 50% from 1991 to 1993, as rates dropped
sharply and prepayments surged. IO prices then doubled to near their
original levels in 1994, as rates increased by 260 basis points. Prices fell again
in 1995 by over 30%, and then rose in 1996 by 25% (through July), mirror-
ing moves in interest rates.

Figure 10.2 shows corresponding movements in prices for principal-only
strips, which also moved dramatically but opposite to IO strip prices, as
expected.

Prices of both IO and PO strips are closely related to mortgage prepay-
ments, which are closely related to interest rates. Figure 10.3 shows the
movements in the prepayment rate on the conventional mortgage coupon
(with over $1 billion outstanding) with the highest prepayment rate, which
is usually a coupon rate 100 to 300 basis points over the current par mort-
gage rate.
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In this chart, four unprecedented surges in prepayment rates are seen
in 1992–1993, as they rise from 30% in 1991 to a peak of 70% annualized
paydowns in late 1993. Then follows a huge plunge in prepayments in 1994
to a 15% maximum, responding to a 260 basis point increase in mortgage
rates.

In 1995 and 1996, prepayment rates mirrored mortgage rate movements,
increasing sharply in 1995 and early 1996 to 40% annualized prepayments
before falling back to a 25% pace in mid-1996.

Par MBS Yield

Figure 10.1. FNMA 9% Interest Only Prices: 1991–1996

Figure 10.2. FNMA 9% Principal Only Prices: 1991–1996
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Figure 10.4 shows some of the differences in the prepayment response
curves of the 1992–1993 epoch, vis-à-vis the 1986–1987 and 1988–1991
epochs. Technological change, program rule changes, consumer learning,
and a pronounced media effect have led to great nonstationarities in the
mortgage prepayment function. This is what makes the valuation and fore-
casting of risk problems so difficult for mortgage researchers.

The workhorse model for researchers in mortgages has been estimation
of “option-adjusted spreads” (OAS) to Treasury rates or to the London
Interbank Offered Rate (LIBOR) and selection of securities for purchase that
have wide OAS. Although in recent years there have been criticisms of OAS

Figure 10.3. Mortgage Prepayments: 1991–1996

Figure 10.4. Empirical Data for FHLMC and FNMA. Prepayments Sorted by Refinancing
Incentive (C-R)
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models, as well as some improvements in focusing on projected total re-
turns, OAS models continue to prevail.

A typical OAS analysis starts with a prepayment model to simulate
the mortgage’s cash flows under a wide variety of interest rate paths.
From these cash flows, an internal rate of return is estimated, which is
then risk-adjusted based upon the interest rate sensitivity (effective du-
ration or price elasticity) and upon the prepayment option risk (negative
or positive convexity).

Figure 10.5 shows the quarterly time series of the median broker’s fore-
casts of option-adjusted spreads for IO strips with coupons of 7–10%. In
late 1990, OAS were negative. Then, as prices of IOs fell sharply from 1991
to 1993, OAS surged to as much as 1,500 basis points (over Treasury rates).

Figure 10.6 shows that the brokers’ forecasts of OAS were very useful
in predicting the subsequent quarter’s hedged excess returns on IOs. The
relatively low OAS (at least in hindsight) that brokers forecasted for IOs in
1990 and 1991 were followed by very negative hedged returns in 1992 and
1993. In contrast, the very high OAS that brokers forecasted in 1992
and 1993 were followed by outstanding hedged performance of IOs in 1994
and 1995.

Unfortunately, while the OAS valuation results are very good on
IOs for the brokers’ researchers, the duration estimation and hedge
precision results are not so comforting. (These results are opposite from
those for whole fixed-rate mortgages, which have good duration estima-
tion but poor OAS correlation with hedged returns, as Breeden (1994)
shows.)

Table 10.1 shows the various investment bankers’ published forecasts
of option-adjusted durations at (or near) the ends of years from 1991 to 1995

Figure 10.5. Median Broker Forecasts Interest Only Strips: Option Adjusted Spreads.
End of Quarter: December 1990–June 1996
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and at mid-year 1996. For portfolio managers, the spread in risk estimates
is not comforting. In many cases, one broker’s estimate of an IO’s duration
will be a multiple of another broker’s forecast, and occasionally they are
even of the opposite sign (1991, 1993).

We can see the difficulty that brokers had in forecasting IO durations
by examining figure 10.7, which shows the option-adjusted durations fore-
casted by one broker for 8%, 9%, and 10.5% IOs. Major revisions to the
model are apparent in both April 1993 and December 1993, as forecasts of
durations of 8% IOs flipped from –15 years to 3 years and back to –12 years,
without corresponding interest rate movements.

This illustrates what traders call “model whipsaw,” as researchers al-
most everywhere frequently changed their models as the unprecedented
prepayment waves came in. Also, it should be noted that some brokers have
other estimates that they publish for the best recommended hedges, which
may be based more on empirical durations than on option-adjusted dura-
tions from computer models.

Figure 10.8 shows that brokers’ estimates of the durations of IOs were
significantly smaller in absolute value than were the empirical durations
measured. Brokers’ duration estimates averaged about –15 years, while
empirical durations averaged –25 to –30 years in the 1992–1994 period—a
substantial difference. As Figure 10.9 shows, however, brokers’ option-
adjusted duration forecasts were useful predictors of realized durations
(but statistically biased toward zero), as there is a significant correlation
of the sizes of the forecasts with the sizes of realized durations.

In this chapter, the focus is on the “option cost” that is subtracted in risk-
adjusting the mortgage’s projected return for its negative convexity, which
is due to the borrower’s prepayment option. Even if an OAS approach is
not used, all pricing models in mortgages must reflect these option features
and, implicitly if not explicitly, adjust for the value of the negative con-
vexity or negative skewness in normal mortgage returns. This chapter

Figure 10.6. Median Broker Forecasts Interest Only Strips: Broker OASs vs. Hedged
Returns
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Table 10.1. Broker Forecasts for interest-only strip option-adjusted durations.

December 31, 1991 (Par Yield = 7.55) December 31, 1994 (Par Yield = 8.88)

#1 #2 #3 #5 #6 #1 #3 #4 #5 #6
Goldman Prudential J.P. Morgan BS DLJ Goldman J.P. Morgan Salomon BS DLJ

6.5 1.3 (1.5) 1.9

7.0 (0.4) (1.9) (2.7) 0.8

7.5 (1.7) (3.8) (4.3) (0.8)

8.0 (6.4) (3.7) (6.1) (2.6) (6.1) (6.0) (3.1)

8.5 (9.5) (8.6) 8.9 (2.9) (7.7) (2.7)

9.0 (16.8) (16.8) 12.1 (4.2) (8.9) (6.7) (6.3)

9.5 (22.0) (16.9) 12.8 (4.9) (10.0) (5.6) (9.9)

10.0 (24.0) (12.1) 12.1 (4.5) (11.8) (5.8) (15.4)

10.5 (5.7) (9.6) (12.9) (8.2)

December 31, 1992 (Par Yield = 7.55) December 31, 1995 (Par Yield = 6.79)

#1 #2 #3 #5 #6 #1 #3 #4 #5 #6
Goldman Prudential J.P. Morgan BS DLJ Goldman J.P. Morgan Salomon BS DLJ

6.5 (6.1) (17.2) (16.1) (5.0)

7.0 (14.9) (28.1) (22.0) (12.2)

7.5 (25.0) (40.5) (28.9) (21.5)

8.0 (4.0) (8.1) (9.0) (33.9) (37.7) (34.5) (40.8)

8.5 (7.4) (12.4) (15.0) (7.3) (23.4) (22.3) (25.1) (61.2)

9.0 (17.3) (14.7) (18.0) (7.6) (19.4) (17.9) (13.7) (12.6)

9.5 (22.8) (12.5) (17.0) (8.8) (14.5) (15.4) (9.0) (10.9)

10.0 (28.3) (8.6) (12.0) (9.0) (10.7) (13.2) (7.4) (11.8)

10.5 (5.9) (8.0) (12.4) (12.6) (8.5)
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December 31, 1993 (Par Yield = 6.67) June 30, 1996 (Par Yield = 7.80)

#1 #2 #3 #5 #6 #1 #3 #4 #5 #6
Goldman Prudential J.P. Morgan BS DLJ Goldman J.P. Morgan Salomon BS DLJ

6.5 (13.3) 1.3 (1.5) 1.9

7.0 (22.4) (17.0) 8.5 (16.5) (0.4) (1.9) (2.7) 0.8

7.5 (34.6) (27.8) 9.8 (26.8) (1.7) (3.8) (4.3) (0.8)

8.0 (41.6) (32.4) 11.5 (31.3) (2.6) (6.1) (6.0) (3.1)

8.5 (11.3) (17.4) 3.8 (26.7) (2.9) (7.7) (2.7)

9.0 (5.8) (14.1) (5.1) (12.4) (24.2) (4.2) (8.9) (6.7) (6.3)

9.5 (5.6) (11.0) (5.1) (12.5) (24.7) (4.9) (10.0) (5.6) (9.9)

10.0 (4.1) (6.1) (0.6) (12.1) (24.5) (4.5) (11.8) (5.8) (15.4)

10.5 4.7 (14.8) (12.9) (8.2)



Figure 10.7. (a) J.P. Morgan, 8.0% Interest Only Option Adjusted Duration Monthly
September 1991–August 1995. (b) J.P. Morgan, 9.0% Interest Only Option Adjusted
Duration Monthly September 1991–August 1995. (c) J.P. Morgan, 10.5% Interest Only
Option Adjusted Duration Monthly September 1991–August 1995.

(a)

(b)

(c)
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addresses whether or not the scale and pattern (both cross-sectional and
time series) of option cost estimates make theoretical sense and are vali-
dated by the empirical data.

Empirical estimates of option costs (“whipsaw costs”) for MBS using a
dynamic hedging strategy are presented in Breeden (1991) for 1982–1990
using monthly data. The much more volatile dynamic option hedging costs
for stripped securities are not examined. Also, the series of actual brokers’
forecasts of durations is not used in those earlier estimates of dynamic
option hedging costs as they are here.

Table 10.2 shows brokers’ forecasts of option costs and OAS for IO strips
at year-end 1991–1995 and mid-year 1996. Positive numbers indicate op-
tion costs (due to negative convexity), and negative numbers indicate op-
tion benefits (due to positive convexity).

Figure 10.8. FNMA Interest-Only Strips: Average 8%–10% Empirical Durations vs.
Median Broker Forecast

Figure 10.9. FNMA Interest-Only Strips. Empirical Durations vs Median Broker Forecasts



Table 10.2 Broker Forecasts of option costs, and OAS for interest-only strips.

December 31, 1991 (MBS Par Yield = 7.55%)
(FH/FN Max. Prep. = 38%)

Estimated Option
Cost (Benefit) Estimated OAS

#1 #2 #3 #1 #2 #3
GS Pru JPM GS Pru JPM

8.0 (169) 19 766 110 116 35

8.5 (344) (36) 1,104 469 191 365

9.0 (776) (139) 301 568 (2) 496

9.5 (933) (198) 128 691 43 634

10.0 (1,153) (202) (366) 661 49 904

10.5 (219) (671) 226 1,004

December 31, 1992 (MBS Par Yield = 7.55%)
(FH/FN Max. Prep. = 57%)

Estimated Option
Cost (Benefit) Estimated OAS

#1 #2 #3 #1 #2 #3
GS Pru JPM GS Pru JPM

8.0 120 192 840 623 179 (65)

8.5 163 47 551 968 370 500

9.0 280 (41) (116) 982 295 717

9.5 335 (70) (970) 931 372 693

10.0 366 (76) (1,174) 684 454 426

10.5 (123) (631) 988 128

December 31, 1993 (MBS Par Yield = 6.67%)
(FH/FN Max. Prep. = 70%)

Estimated Option
Cost (Benefit) Estimated OAS

#1 #2 #3 #1 #2 #3
GS Pru JPM GS Pru JPM

8.0 322 93 965 529 1,555 1,400

8.5 (84) 41 390 1,093 2,487 1,233

9.0 (106) 35 (324) 1,482 2,343 760

9.5 (168) 12 (302) 1,420 1,747 769

10.0 (215) 25 (233) 1,286 1,931 808

10.5 210 1,042

continued
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December 31, 1994 (MBS Par Yield = 8.88%)
(FH/FN Max. Prep. = 19%)

Estimated Option
Cost (Benefit) Estimated OAS

#1 #3 #1 #3
Goldman J.P. Morgan Goldman J.P. Morgan

6.5 46 46

7.0 70 334 70 (17)

7.5 100 430 100 (16)

8.0 141 560 141 (52)

8.5 127 603 127 27

9.0 182 589 182 98

9.5 195 574 192 184

10.0 153 475 153 140

10.5 271 129

December 31, 1995 (MBS Par Yield = 6.79%
(FH/FN Max. Prep. = 32%)

Estimated Option
Cost (Benefit) Estimated OAS

#1 #4 #1 #4
Goldman Salomon Goldman Salomon

6.5 178 242 423 297

7.0 384 444 611 415

7.5 616 628 668 481

8.0 682 254 680 583

8.5 401 68 833 683

9.0 244 52 752 504

9.5 171 59 848 661

10.0 121 82 1,088 724

10.5 104 922

June 30, 1996 (MBS Par Yield = 7.80%)
(FH/FN Max. Prep. = 26%)

Estimated Option
Cost (Benmefit) Estimated OAS

#1 #4 #1 #4
Goldman Salomon Goldman Salomon

6.5 69 108 135 62

7.0 126 139 189 129

7.5 191 189 239 220

8.0 260 260 376 310

8.5 251 291 432 407

9.0 250 205 478 304

9.5 157 98 511 349

10.0 114 43 622 371

10.5 20 462



224 The Legacy of Fischer Black

There are several interesting points to be seen in table 10.2. First, the gen-
eral scale of the option cost is quite large in absolute value and is of the
same order of magnitude as the OAS. Second, brokers differ significantly
in their forecasts of IO option costs. For example, as of December 31, 1991,
Goldman Sachs forecasted option costs of –169 and –1,153 for 8% and 10%
IOs, respectively, while J.P. Morgan forecasted +766 and –366 basis points
(bp) of cost for those same coupons. They don’t even agree on whether these
IOs have positive or negative convexities!

As we’ll see in section 2, given the form expected for the option cost
function, this is not quite as surprising and implausible as it seems, although
it is unusual and causes legitimate concerns among portfolio managers.

Despite their differences, both Goldman Sachs and J.P. Morgan found
the 10% IOs to have about 1,000 bp of better convexity than did the 8s.
Prudential, however, projected +19 bp and –202 bp of option cost for the
8s and 10s, respectively, for an option cost advantage to the 10s of only
221 bp. Thus, there are wide differences in brokers’ views on the general
magnitudes and coupon structures of IOs’ option costs.

Figure 10.10 shows four brokers’ estimates of option costs for IO coupons
of 7%, 8%, 9%, and 10%. Scanning these charts, we do see a generally posi-
tive correlation of brokers’ estimates of option costs and benefits for IOs (8s
generally positive, 10s negative in 1991–1993), but there are still very wide
differences for the brokers cross-sectionally, as well as through time.

Prepayment and valuation model revisions have occurred at all mort-
gage research firms during this volatile period, dramatically affecting
a research group’s option cost estimates. Figure 10.11 shows the option
cost estimates of Goldman Sachs, which is acknowledged by most re-
searchers as one of the leaders in mortgage research, particularly on IOs
and POs.

Without having been privy to model changes, we can see that the dis-
continuities in option cost estimates for both 8.5% and 9.5% coupons (and
others not shown) clearly indicate a model revision implemented in Au-
gust 1992. For the 9.5s, an option cost (benefit) estimate of over –1,000 basis
points in July 1992 turns into an estimate of option costs of over +200 basis
points the next month, with relatively little intervening movement in in-
terest rates. These model revisions were common at many firms, as re-
searchers dealt with nonstationarities, nonlinearities, and prepayment
movements never seen before.

Our main point is to show that analysis of these mortgage derivatives is
not easy and that there are many interesting questions to examine.

1. From finance theory, what do we expect to be the scale and pat-
tern of durations and option costs for IOs across coupons?

2. How can we empirically estimate durations and option costs, and
how do the results of these estimates conform to the theory?

3. Do the forecasts of the brokers’ research groups conform to either
the theory or the data?
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Figure 10.10. (a). 4 Brokers: 7.0% Interest Only Option Costs Monthly April 1991–June 1996. (b) 4 Brokers: 8.0% Interest Only Option Costs
Monthly April 1991–June 1996. (c) 4 Brokers: 9.0% Interest Only Option Costs Monthly April 1991–June 1996. (d) 4 Brokers: 10.0% Interest Only
Option Costs Monthly April 1991–June 1996

225

(b)

(d)
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Figure 10.11. (a) Goldman Sachs, 7.5% Interest Only Option Costs Monthly September
1993–June 1996. (b) Goldman Sachs, 8.5% Interest Only Option Costs Monthly
September 1993–June 1996. (c) Goldman Sachs, 9.5% Interest Only Option Costs
Monthly September 1993–June 1996

(a)

(b)

(c)
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2. REVIEW OF THEORETICAL PREDICTIONS OF RISKS
IN INTEREST-ONLY STRIPS

The theory on durations and option risks for IOs precedes all the empiri-
cal data examined, so if it explains much of what we subsequently observed
in this volatile period, it is a nice victory for the theorists and, indeed, shows
the power of theory (much as Fischer Black believed and implemented).

Richard Roll produced the major path-breaking work on stripped
mortgage-backed securities in 1986 while working at Goldman Sachs. His
work was followed by fine work by his colleagues, Michael Asay and Timo-
thy Sears (1988). As all the data examined in this chapter come from the
1988–1996 period, their theoretical work clearly precedes all the empirical
results. What is described in subsequent sections is impressive support for
their theory.

An illustration of a prepayment function and pricing for an FHLMC or
FNMA 9% fixed-rate mortgage and its interest-only and principal-only
strips is in table 10.3. For research on mortgage prepayment functions, see
Richard and Roll (1989), Hayre (1994), and Patruno (1994). Valuations for
the mortgage, the IO, and the PO are normally achieved with a Monte Carlo
model, as is common in mortgage research, building on the approach of
Black, Derman, and Toy (1990).

Figure 10.12 graphs the prices of these securities for par mortgage rates
from 3% to 13% and indicates the option-like payoffs that these investments
have at different interest rate levels. At very low interest rates, when pre-
payments are near their peak level on their S-curve, for example, an IO sells
for a very low price but has a favorable asymmetric return pattern (posi-
tive convexity). At that low price the IO has little to lose (as prepays are
near their peak and unlikely to increase much more with lower rates) but
much to gain (as prepays will fall dramatically if rates increase).

Thus, at very low interest rates, the IO has a limited downside in price
but a substantial potential upside if rates increase, very much like a put
option on bond prices. Corresponding to this, at low rates, the IO has a
substantial option benefit of positive convexity, rather than an option cost
of negative convexity, as a normal MBS has.

At very high interest rates, the situation is reversed for the IO in that
prepayment rates are then extremely low (near their minimum on their
S-curve) and IO prices are quite high, but have limited upside for rate in-
creases and a very substantial downside if rates drop. At high rates, the
payoff pattern for the IO resembles having written a call option on bond
prices in that, if rates increase and bond prices decline, the position has
small gains, but if rates decline and bond prices increase, the position
has large losses (as the call is in-the-money). Thus, at high rates, the IO has
negative convexity and a substantial option cost.

It is important to note that the effective duration of an IO can actually
change signs (to be positive, i.e., bond-like) both at very high and very low
interest rates. At very low rates, as prepayments peak out quickly, addi-
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tional drops in rates might not accelerate prepayments but will benefit the
IO by a lower discount rate for its cash flows (a standard positive duration
effect). Similarly, at very high rates, when prepayment rates approach their
minimum levels, additional rate increases will not benefit the IO much with
lower prepays but will decrease the value of the IO as its cash flows are
discounted at higher rates. Thus, while IOs usually have a large negative
duration, their durations can become slightly negative and even positive
at rates that are both very high and very low (as measured by the coupon
minus refinancing rate (C – R) for the IO coupon).

Theoretical option-adjusted durations for interest-only and principal-
only strips are illustrated in figure 10.13. Note that coupons that are 100 to
200 basis points above the current refinancing rate should have the great-

Table 10.3. FHLMC/FNMA 9% illustration, interest-only and principal-only strip values.

Coupon – Assumed Principal- Interest- FHLMC
Current-Coupon Refi Prepay Only Only 9%
Mortgage Rate (%) Rate (%) Rate (%) Value Value MBS

3.00 6 37.4 95.83 18.21 114.0

4.00 5 35.1 93.16 19.36 112.5

5.00 4 33.4 90.16 20.52 110.6

6.00 3 32.2 86.59 22.03 108.6

7.00 2 30.0 81.51 24.88 106.3

8.00 1 20.5 73.52 30.19 103.7

9.00 0 9.0 63.20 37.00 100.2

10.00 –1 6.3 54.42 41.35 95.77

11.00 –2 5.3 47.32 43.66 90.98

12.00 –3 4.8 41.68 44.50 86.18

13.00 –4 4.4 37.15 44.43 81.58

Figure 10.12. FHLMC/FNMA 9% Illustration. Prices of Interest Only and Principal Only
Strips
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est negative duration, as they are on the cusp of the prepayment curve and
have values most sensitive to interest rates. Both very high premiums (e.g.,
C – R = 4%) and discounts (C – R = –1% or –2%) have much lower dura-
tions (in absolute value), as their prepayments are at relatively flat segments
of the prepayment curve—either near maximum prepayment levels or near
minimum prepayment levels. Note that the IO duration curve is approxi-
mately V-shaped (we examine brokers’ forecasts and empirical estimates
for them in section 3).

Theoretical option costs for IOs and POs are illustrated in figure 10.14.
Note that IOs on discount mortgages have negative convexity and a pro-
jected positive option cost. In contrast, IOs on premium mortgages have
positive convexity and therefore projected negative option costs, or option
benefits. The crossover point from positive to negative option cost here is
at a premium of 100 basis points, but bear in mind that this is related more
to the prepayment function than it is to interest rates (and figure 10.4
showed the substantial shifts in the prepayment function over time).

Figure 10.13.  FHLMC/FNMA 9% Illustration. Option Adjusted Durations for Interest
Only and Principal Only Strips

Options Cost (% Per Year)

Figure 10.14. FHLMC/FNMA 9% MBS Illustration. Whipsaw Option Costs for Interest
Only and Principal Only Strips
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Thus, without the benefit of seeing the future, it is entirely reasonable
that some researchers projected positive option costs in 1991–1993, while
others projected negative option costs for coupons that are slight pre-
miums and near the (changing) cusp of the prepayment function. Note that
the shape of the projected option cost function is a bit like a “sine wave”
located to cross from positive to negative. (We examine brokers’ forecasts
and empirical estimates of IOs’ option costs in section 4.)

3. EMPIRICAL IO PRICE AND DURATION FUNCTIONS

Prices of interest-only strips are expected to form an S-curve, with the steep
slope located between par and refinancing rates where the coupon is 200
to 300 basis points over the refi rate, as that’s where prepayments are most
elastic with respect to interest rates. Figure 10.15 shows the IO strip price
curves observed using monthly data for 1987–1996 collected by Smith
Breeden Associates from a variety of sources. While the lower coupons trace
out only a segment of the price curve, due to their more recent existence,
the 9s to 10.5s have data for the entire period, which traces out a greater
range in the IO price function. Both the positive and negative convexities
anticipated by the theory (Figure 10.12) are demonstrated in these observed
price curves for the higher coupons.

Brokers’ forecasts of IOs’ option-adjusted durations were collected, and
table 10.4 presents the medians of brokers’ forecasts of those durations
quarterly for 1991–1996. Empirical durations for IOs (or “price elasticities”)
are estimated by regressing 5-day IO returns on 5-day changes in the
10-year Treasury note rate, and they are in table 10.5. Figures 10.16
and 10.17 plot those values sorted by their “relative coupon” (i.e., C – R =
Coupon – Refinancing Rate). The V-shaped pattern predicted by the theory
is present in the scatter plot.

The V-shaped pattern for IO durations is much easier to see in figures 10.18
and 10.19, which graph the mean IO durations for coupons that fall into
different “C – R buckets.” For example, the 0.5 bucket contains the aver-
age duration estimate or empirical duration for coupons with C – R between
0.25 and 0.75. Note that the largest predicted durations are for coupons
with C – R = 1–2%, which conforms to the theory’s illustration in figure
10.13. Similarly, the empirical durations are also highest for coupons in that
cusp range. The major inconsistency is that the brokers’ maximum median
forecast of duration averages only about –16 years, while the maximum
empirical duration averages –28 years.

It is intuitive from the V-pattern of option-adjusted durations in fig-
ures 10.18 and 10.19 to see how option costs and benefits are generated by
dynamic hedging strategies for IOs. As IOs usually have negative dura-
tions, proper hedges will go long bond futures. For IOs on discount and
near-par securities, we are traveling along the left side of the pattern, mean-
ing that as rates decrease, C – R increases, and the IO duration increases in
absolute value.



Figure 10.15. (a) FNMA 7.5 Interest Only Prices vs. Rates: Monthly Data January
1994–July 1996. (b) FNMA 8.5 Interest Only Prices vs. Rates: Monthly Data June 1992–
July 1996. (c) FNMA 9.0 Interest Only Prices vs. Rates: Monthly Data July 1987–July
1996. (d) FNMA 9.5 Interest Only Prices vs. Rates: Monthly Data May 1987–June 1996.
(e) FNMA 10.0 Interest Only Prices vs. Rates: Monthly Data July 1987 1994–July 1996.
(f) FNMA 10.5 Interest Only Prices vs. Rates: Monthly Data June 1990–July 1996.

(a)

(b)

(c)
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Figure 10.15. continued
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Table 10.4. Interest-only strips: median broker forecasts of option-adjusted durations.

FN FN FN FN FN FN FN FN FN
End of Par Yield IO 6.5 IO 7.0 IO 7.5 IO 8.0 IO 8.5 IO 9.0 IO 9.5 IO 10.0 IO 10.5
Quarter FNMA 249 215 218 203/54 7/24 1/6 4 2 50

4Q90 9.27 –1.3 –2.7 –5.7 –8.1 –11.7 –15.9

1Q91 9.08 –1.0 –2.5 –5.7 –8.2 –11.7 –14.1

2Q91 9.19 1.4 0.0 –2.9 –4.9 –7.3 –9.9

3Q91 8.41 –1.2 –3.0 –6.7 –9.6 –11.7 –10.4

4Q91 7.55 –6.1 –8.6 –16.8 –16.9 –12.1 –7.7

1Q92 8.40 –1.8 –3.8 –9.2 –13.3 –16.4 –12.0

2Q92 7.84 –3.3 –6.0 –12.0 –16.9 –16.0 –7.1

3Q92 7.27 –10.4 –16.0 –17.0 –15.3 –15.0 –7.6

4Q92 7.55 –8.1 –9.9 –16.0 –14.7 –11.0 –8.0

1Q93 6.92 –19.4 –18.4 –16.1 –11.4 –10.9 –2.7

2Q93 6.63 –12.2 –20.1 –24.2 –20.5 –15.4 –11.4 –10.4 –4.6

3Q93 6.28 –20.2 –27.5 –29.1 –9.1 –9.3 –5.6 –3.0 –3.6

4Q93 6.67 –16.7 –27.3 –31.8 –14.4 –10.0 –8.3 –5.1 –4.6

1Q94 7.74 –4.3 –6.8 –11.4 –20.2 –22.3 –18.7 –13.6 –11.7 –13.0

2Q94 8.29 –2.1 –2.6 –4.6 –7.6 –9.4 –11.6 –8.9 –11.0 –15.2

3Q94 8.48 2.2 0.2 –2.5 –4.1 –2.8 –5.0 –7.9 –10.5 –12.8

4Q94 8.88 1.6 –0.4 –1.7 –3.1 –2.9 –6.3 –9.9 –11.8 –12.9

1Q95 8.25 1.1 –1.1 –2.8 –6.6 –8.8 –12.1 –14.1 –14.5 –13.5

2Q95 7.42 –1.2 –5.3 –10.6 –17.3 –26.4 –14.8 –12.5 –11.8 –10.2

3Q95 7.34 –0.9 –3.9 –8.6 –17.2 –19.7 –14.8 –12.2 –11.6 –10.7

4Q95 6.79 –6.1 –14.9 –25.0 –37.7 –23.4 –17.9 –14.5 –11.8 –11.2

1Q96 7.53 –1.4 –4.5 –8.0 –12.5 –16.1 –13.3 –12.2 –11.1 –10.3

2Q96 7.80 –1.0 –3.3 –6.7 –11.6 –14.1 –8.0 –6.7 –7.2 –6.5

This means the long hedge will have to get longer by purchasing more
bond futures when rates are lower and bond prices higher. Similarly, the
hedge will sell futures as rates increase (i.e., when bond prices are low).
This dynamic hedging strategy generates “whipsaw” losses due to nega-
tive convexity if rates move away from and then back to their starting point.
This corresponds to the prediction that discount and current coupon IOs
will have positive option costs.

For high-premium IOs (with C – R > 1.0), the dynamic hedging strategy
is shifting according to the right side of the V in figures 10.18 and 10.19.
For these IOs, as rates decrease and C – R increases, the proper hedge be-
comes smaller. To accomplish this, bond futures are sold when rates de-
crease and bond prices increase. This dynamic hedging strategy generates



234
The Legacy of Fischer B

lack
Table 10.5. Interest-only strips: empirical data for option-adjusted durations.

FN FN FN FN FN FN FN FN FN FN
End of Par Yield IO 6.5 IO 7.0 IO 7.5 IO 8.0 IO 8.5 IO 9.0 IO 9.5 IO 10.0 IO 10.5 IO 11.5
Quarter FNMA 249 215 218 203/54 7/24 1/6 4 2 50

1Q92 8.40 –8.6 –14.2 –10.7 –25.3 –18.9

2Q92 7.84 –39.2 –5.5 –12.8 –17.3 –15.0

3Q92 7.27 –30.0 –37.4 –48.2 –47.9 –49.1

4Q92 7.55 –10.9 –24.0 –26.8 –26.3 –18.7 –13.0

1Q93 6.92 –38.2 –25.0 –23.3 –27.1 –22.8 –29.4

2Q93 6.63 –41.0 –20.1 –19.9 –11.7 –9.0 –5.0

3Q93 6.28 –32.6 –17.9 –14.8 –16.0 –9.6 –6.8

4Q93 6.67 –32.5 –39.7 –34.8 –24.8 –22.0 –15.6 –10.6 –8.4

1Q94 7.74 –32.7 –44.2 –60.5 –44.6 –37.1 –28.3 –21.5 –13.2

2Q94 8.29 –8.0 –11.4 –14.6 –21.6 –19.8 –30.2 –26.2 –14.5

3Q94 8.48 –7.0 –10.1 –10.4 –14.0 –16.3 –15.5 –17.2 –15.2 –15.4

4Q94 8.88 –12.2 –11.6 –11.3 –13.8 –13.5 –14.9 –15.3 –17.9 –16.8

1Q95 8.25 –5.5 –6.5 –6.1 –17.4 –16.8 –17.1 –16.0 –16.7 –15.8

2Q95 7.42 –8.4 –9.8 –11.7 –22.8 –21.0 –19.4 –19.5 –19.5 –17.7

3Q95 7.34 –15.1 –19.3 –29.6 –31.5 –25.3 –22.5 –21.0 –17.1 –15.5

4Q95 6.79 –21.0 –26.8 –26.0 –29.9 –27.7 –29.2 –25.9 –24.2 –22.2

1Q96 7.53 –19.8 –23.9 –24.0 –30.5 –20.1 –18.1 –17.6 –17.7 –16.3

2Q96 7.80 –21.2 –20.3 –20.2 –21.1 –24.0 –23.0 –22.9 –24.3 –23.1
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Figure 10.16. FNMA Interest Only Strips: Quarterly by Coupon, 1991–1996. Median
Broker Option-Adjusted duration Forecasts vs. C-R

Figure 10.17. FNMA Interest Only Strips: Quarterly by Coupon 1992–1996. Empirical
Option Adjusted Durations vs. C-R

“whipsaw gains” due to the positive convexity of the high-premium IOs.
Thus, these IOs have an option benefit, as is discussed further in the next
section.

4. BROKER FORECASTS AND EMPIRICAL OPTION COSTS FOR IOS

Medians of brokers’ forecasts for the option costs of interest-only strips are
in table 10.6, with a time series plot as figure 10.20. A scatter plot of these
data sorted by C – R is in figure 10.21, and the means of the C – R buckets
are in figure 10.22. (In figures 10.21 and 10.22, 3.00 represents 300 basis
points.)

Note that the brokers’ forecasts of option costs do have a rational pat-
tern, according to the theory of section 2, in that they have the “sine wave”
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shape. Discount and small-premium IOs are predicted to have significant
option costs, while higher-premium (C – R > 2) IOs are predicted to have
option benefits (positive convexity). This squares with the theory, although
the brokers’ crossover point appears to be at a slightly higher C – R than
the illustration of section 2.

Empirical option creation costs are estimated as in Breeden (1991). For
1991–1996, the median broker forecasts of durations are used quarterly to
hedge IO returns with 10-year Treasury note futures, with durations chang-

Average Median Elasticity Forecast

Figure 10.18. Median IO Duration Broker Forecasts vs. Coupon-Refinancing Rate:
Composite of FNMA 6.5–10.5 Coupons

Average Empirical Elasticities

Figure 10.19. Empirical Durations vs. Coupon-Refinancing Rate for IOs: Average of
FNMA 6.5–10.5 Coupons, Quarterly Estimates, 1991–1996



Convexity and Empirical Option Costs of Mortgage Securities 237Table 10.6. Median broker forecasts: option costs for interest-only strips.

End of ParYld # of
Quarter FNMA Brokers 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

1Q91 9.08 1 120 144 203 208 217 208

2Q91 9.19 2 106 154 227 267 285 300

3Q91 8.41 3 171 157 246 170 –8 –120

4Q91 7.55 3 19 –36 –139 –198 –366 –671

1Q92 8.40 3 83 84 114 –13 –100 –706

2Q92 7.84 3 49 –80 –169 –777 –1,086 –919

3Q92 7.27 3 101 132 195 218 –104 –542

4Q92 7.55 3 192 163 116 –70 –76 –375

1Q93 6.92 3 217 276 –4 –33 –31 –296

2Q93 6.63 3 322 62 64 40 –83

3Q93 6.28 3 349 330 86 –218 –117 –179 –169

4Q93 6.67 3 529 477 322 405 –93 –105 –38

1Q94 7.74 3 260 433 389 381 198 97 –72

2Q94 8.29 2 281 388 552 645 652 489 165

3Q94 8.48 2 230 291 370 401 436 406 287

4Q94 8.88 2 202 265 350 365 385 385 314

1Q95 8.25 2 305 410 535 372 415 294 120

2Q95 7.42 3 172 276 473 305 174 126 110

3Q95 7.34 2 8 187 309 456 270 115 71 45

4Q95 6.79 2 210 414 622 468 234 148 115 102

1Q96 7.53 2 96 163 257 371 277 195 123 94

2Q96 7.80 2 89 132 190 260 271 227 127 78

Option Costs in Basis Points

Figure 10.20. Median Broker Forecasts Interest Only Strips: Options Costs. End of
Quarter: March 1991–June 1996
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ing quarterly. For 1988–1990, Smith Breeden’s IO duration forecasts are
used to estimate the IO option cost through the same dynamic hedging
strategy. The return from the dynamic hedging strategy is then compared
to the return that would have been earned if one had hedged with the ex
post average duration forecasted.

Thus, if this were a normal mortgage with negative convexity, the dy-
namic strategy would do worse due to the “whipsaw” that occurs with
buying high and selling low to recreate the prepayment call option in the
hedge. Of course, if the underlying instrument had positive convexity, the
whipsaw option cost should be negative (i.e., an option benefit).

Table 10.7 shows the numerical empirical option costs for IOs, where
12.93 represents 1,293 basis points. Figure 10.23 shows the scatter plot of
these empirical option costs sorted by C – R, and figure 10.24 shows the

Figure 10.21. Interest Only Strips: Quarterly by Coupon, 1991–1996. Median Broker
Option Cost Forecasts vs. C-R
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Figure 10.22. Interest Only Strips: Composite of FNMA 6.5–10.5, 1991–1996. Median
Broker Option Cost Forecasts vs. C-R
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Table 10.7. Interest-only empirical option costs from dynamic hedging; quarterly median broker duration adjustments.

Par MBS FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA
Yield TNote TNote 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Year End 8.82 Volatility Rate T257 T254 T203 T7 T6 T4 T2 T50

1987 10.19 4.2 0.63

1988 10.56 4.5 –0.02 1.75 5.77 4.40

1989 9.51 3.8 –1.15 5.10 –1.31 –4.07

1990 9.33 3.5 0.12 2.64 3.00 3.26

1991 7.59 2.7 –1.79 1.00 1.06 2.19 4.18

1992 7.59 3.9 –0.63 7.27 1.07 –4.02 –1.49

1993 6.72 2.8 –1.67 –2.69 4.70 –5.68 –5.59 –2.07

1994 8.92 3.5 1.47 12.93 14.00 4.17 0.63 –0.16 –3.14 –5.22

1995 6.82 2.9 –2.67 2.35 4.33 6.09 10.17 2.04 –0.42 –1.16 –1.72

6/95–6/96 7.81 3.2 0.26 8.17 11.93 14.64 0.99 2.08 1.68 0.03 0.40

Average 8.53 3.50 –0.55 5.26 9.73 11.58 3.16 1.98 0.56 –0.90 –0.99
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bucketed means. Note that the shape of the relationship is that predicted
by the theory, and the crossover point from negative to positive convexity
is similar to the brokers’ forecasts. Thus, the theory, the brokers’ forecasts,
and the empirical data all have the same shape for the option costs.

The scale of the option cost is a remaining point of dispute, however.
Figures 10.25 and 10.26 show the bucketed means for the option cost from
Goldman Sachs and J.P. Morgan. Both have sensible shapes, in accord with
the theory and the data. Note that the amplitudes of the option cost fluctua-
tions differ considerably, as Goldman’s are in a range of ±200 basis points,
while J.P. Morgan’s are in a range of ±800 basis points. From figure 10.22,

Figure 10.23. FNMA Interest Only Strips: Yearly by Coupon, 1988–1996. Empirical
Option Costs vs. C-R

2.5 3 3.5 4

Figure 10.24. FNMA Interest Only Strips: Composite of FNMA 7.0–10.5, 1988–1996.
Empirical Option Costs
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Basis Points

Basis Points

Figure 10.25. Goldman Sachs Option Cost Forecasts vs. C-R for Interest Only Strips:
Composite of FNMA 6.5–100 Coupons, 1991–1996

Figure 10.26. J.P. Morgan Option Cost Forecasts vs. C-R for Interest Only Strips:
Composite of FNMA 6.5–10.0 Coupons, 1991–1996

the median broker’s forecast is in a range from –200 to +300 basis points.
What are the empirical estimates?

From figure 10.24, the empirical estimates of option costs range from
approximately +600 basis points to –550 basis points, roughly between the
Goldman and the J.P. Morgan estimates, but above the median broker esti-
mates. From the results obtained and shown in table 10.7, forecasts of option
costs of 1,000 basis points or more are not out of line in some years for IOs on
lower coupons. Option benefits of 500 basis points or more have also occurred.
Thus, IOs certainly display nontrivial positive and negative convexities.



Table 10.8. Median broker forecasts: FHLMC/FNMA option-adjusted spreads.

End of Par Yld # of
Quarter FNMA Brokers 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

4Q87 10.11 2 112 106 103 102 93 89 85 78 70

1Q88 9.76 4 99 95 84 75 71 49 36 28 11 32 11

2Q88 9.83 5 78 74 72 63 54 44 38 32 20 9 9 –54

3Q88 9.91 3 82 86 81 70 60 46 41 29 32 29 68

4Q88 10.48 4 95 84 88 84 82 74 92 60 79 54 62

1Q89 10.81 5 97 97 103 102 91 91 64 59 76 71 76 10

2Q89 9.70 5 94 90 93 88 83 76 73 80 62 79 61

3Q89 9.88 4 104 100 103 94 87 82 83 85 84 50 65

4Q89 9.50 5 88 95 101 91 82 79 86 94 80 85 91

1Q90 9.97 5 76 79 87 83 74 70 73 77 85 86 89

2Q90 9.67 5 74 64 72 72 72 70 72 72 79 81 86

3Q90 9.78 5 72 66 62 63 62 57 52 71 70 60 97

4Q90 9.27 6 93 83 88 83 81 83 91 106 105 107 106

1Q91 9.08 6 97 70 80 70 68 71 72 75 83 89 109

2Q91 9.19 5 76 67 75 66 66 55 58 75 72 65

3Q91 8.41 6 74 78 70 68 66 65 61 80 112 121
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4Q91 7.55 8 69 77 75 83 87 88 76 88 105 114 120

1Q92 8.40 7 76 67 64 61 61 69 73 70 46 85 106

2Q92 7.84 7 79 66 65 61 58 65 72 70 71 104 131

3Q92 7.27 6 86 85 92 90 82 97 96 96 99 122 179

4Q92 7.55 7 65 64 68 69 69 70 69 53 60 67

1Q93 6.92 7 67 77 93 100 80 80 80 80 105 79

2Q93 6.63 7 58 63 71 85 83 83 85 85 56 77 43

3Q93 6.28 7 58 72 98 115 126 135 96 102 108 87 121 125

4Q93 6.67 7 66 68 70 73 68 77 79 71 69 68 106 124

1Q94 7.74 7 69 69 65 59 57 52 60 59 44 41 52 115

2Q94 8.29 6 55 54 54 54 56 55 45 42 42 3 23

3Q94 8.48 6 51 48 52 52 54 52 58 49 42 23 50

4Q94 8.88 6 48 47 49 47 49 50 45 44 38 45 48 79

1Q95 8.25 8 50 45 48 45 47 54 55 59 60 45 56

2Q95 7.42 6 42 44 57 61 47 68 59 41 91 49 36

3Q95 7.34 7 48 50 57 61 61 57 59 48 75 58

4Q95 6.79 7 55 59 65 54 50 63 63 99 85 75 175 201

1Q96 7.53 7 51 49 51 66 65 59 48 12 14 40 123 151

2Q96 7.80 7 58 63 68 70 75 84 85 64 83 36 34
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Table 10.9. Median broker forecasts: FHLMC/FNMA price elasticities (option-adjusted durations).

End of Par Yld # of
Quarter FNMA Brokers Slope R2 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

1Q87 8.69 2 5.6 5.4 5.2 5.4 3.5 1.8 1.4

2Q87 9.85 2 0.86 0.86 5.0 5.8 5.4 5.2 4.2 2.9 2.0

3Q87 10.70 2 0.73 0.83 5.4 5.8 5.6 5.6 5.0 4.4 3.4 2.7 2.0

4Q87 10.11 2 0.58 0.50 6.1 5.8 5.6 5.2 5.0 4.0 2.8 2.2 1.6

1Q88 9.76 3 0.84 0.98 5.2 5.4 5.1 4.9 4.5 3.9 3.4 2.7 1.9 1.9

2Q88 9.83 4 0.87 0.98 5.2 5.5 5.2 5.0 4.6 4.0 3.5 2.8 2.1 1.0

3Q88 9.91 2 0.84 0.98 4.8 5.2 5.0 4.6 4.4 3.8 3.0 2.4 1.0 1.0

4Q88 10.48 4 1.03 0.88 5.8 5.4 5.1 4.7 4.2 4.0 3.2 2.8 2.3 1.8

1Q89 10.81 5 1.15 0.74 5.3 5.4 5.0 4.6 4.3 4.0 3.4 2.9 2.4 2.2

2Q89 9.70 5 0.73 0.97 5.1 5.2 4.6 4.1 3.9 3.5 2.9 2.2 2.0 1.6

3Q89 9.88 4 0.63 0.95 5.0 4.8 4.6 4.3 4.0 3.4 2.9 2.2 1.8 1.7

4Q89 9.50 5 0.63 0.95 5.0 5.1 4.7 4.0 3.7 3.3 2.4 1.8 1.7 1.6

1Q90 9.97 5 0.89 0.94 5.2 5.1 4.8 4.7 4.4 3.8 3.1 2.3 2.0 2.0

2Q90 9.67 4 1.01 0.99 5.2 5.4 5.1 4.8 4.4 3.8 3.2 2.6 2.3 2.4

3Q90 9.78 5 1.12 0.95 5.6 5.5 5.3 5.1 4.8 4.3 3.5 2.7 2.3 2.3

4Q90 9.27 5 1.14 0.98 5.2 5.3 5.2 4.8 4.3 3.6 2.7 2.7 2.8 2.7

1Q91 9.08 6 1.31 0.93 5.3 5.3 5.0 4.8 4.3 3.5 2.6 2.2 2.4 2.2

2Q91 9.19 5 0.96 0.93 5.2 5.2 5.2 5.0 4.4 3.8 3.0 2.4 2.2 2.5
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3Q91 8.41 6 0.95 0.96 5.0 5.1 5.0 4.5 3.6 2.6 2.5 2.5 2.6 2.6

4Q91 7.55 8 1.20 0.95 5.6 5.0 4.8 3.9 2.8 2.0 1.8 1.9 1.6 2.4

1Q92 8.40 7 1.10 0.90 6.1 5.5 5.0 4.2 3.5 2.5 2.1 2.1 2.1 2.6

2Q92 7.84 7 1.00 0.93 6.2 6.2 5.7 4.8 3.6 2.7 1.9 1.8 1.4 1.9 2.6

3Q92 7.27 6 0.81 0.97 6.1 5.6 5.0 3.6 2.6 2.2 2.0 1.5 1.6 1.4

4Q92 7.55 8 1.00 0.93 6.0 5.8 5.0 3.9 3.0 2.2 2.0 1.8 1.5 1.0

1Q93 6.92 8 0.92 0.99 6.8 6.0 5.4 4.4 2.8 2.0 1.6 1.8 1.6 1.6 1.8

2Q93 6.63 8 0.67 0.95 6.4 5.8 4.7 3.4 2.4 1.6 1.4 1.5 1.5 1.6 1.8

3Q93 6.28 7 0.76 0.92 6.8 5.9 5.0 3.7 2.8 2.0 1.9 1.8 1.7 1.3 1.1 1.8

4Q93 6.67 8 0.92 0.97 6.8 6.2 5.3 4.0 2.8 2.4 2.0 1.7 1.6 1.4 1.4 1.3

1Q94 7.74 6 0.94 0.98 6.6 6.4 5.9 5.2 4.4 3.0 2.6 2.4 2.3 1.8 1.9 2.1

2Q94 8.29 7 1.18 0.95 6.5 6.4 5.9 5.6 5.1 4.4 3.6 3.2 3.0 2.2 2.2

3Q94 8.48 7 1.40 0.97 6.3 6.1 5.9 5.7 5.2 4.6 4.0 3.4 2.8 2.4 2.4

4Q94 8.88 7 6.3 6.2 5.8 5.6 5.1 4.8 4.1 3.5 3.1 2.1 2.0 3.0 1.9

1Q95 8.25 7 6.3 5.9 5.5 5.0 4.4 3.7 3.7 2.7 2.6 2.3 2.7 2.7 1.8

2Q95 7.42 6 6.0 5.5 4.9 4.1 3.0 1.6 1.9 1.2 2.2 1.8 2.5 2.5

3Q95 7.34 7 5.8 5.5 4.8 3.9 2.7 2.0 1.1 1.2 2.3 1.8 1.7 2.9

4Q95 6.79 7 5.6 5.0 3.9 3.2 1.9 1.3 1.2 1.5 2.2 1.8 1.7 2.5

1Q96 7.53 7 6.2 5.4 5.5 4.7 3.7 2.7 1.9 1.3 2.4 1.7 2.7 3.2

2Q96 7.80 7 6.4 6.0 5.6 4.9 4.1 3.3 2.5 1.6 2.7 1.7 2.2
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Table 10.10. Median broker forecasts: FHLMC/FNMA option cost (basis points).

End of Par Yld # of
Quarter FNMA Brokers 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

4Q86 8.77

1Q87 8.69 1

2Q87 9.85 1 57 62 60 60 65 73 79 85 70 56

3Q87 10.70 1 62 67 65 65 70 74 75 90 91 92

4Q87 10.11 1 57 62 61 61 66 72 82 92 88 83

1Q88 9.76 3 24 30 38 51 58 82 93 86 71 41 38

2Q88 9.83 3 34 43 53 59 68 78 88 98 93 88 43

3Q88 9.91 2 33 28 34 50 61 74 85 93 84 75

4Q88 10.48 3 36 45 50 58 68 82 91 78 56 38 33

1Q89 10.81 3 32 42 46 57 67 88 91 99 108 116 69

2Q89 9.70 3 44 48 53 66 79 94 105 112 101 84 70

3Q89 9.88 2 8 20 23 33 44 56 68 48 45 47 49

4Q89 9.50 2 19 20 28 34 42 53 62 55 43 39

1Q90 9.97 2 22 23 25 32 39 49 56 52 40 36

2Q90 9.67 2 22 23 27 32 40 48 57 50 41 35

3Q90 9.78 2 22 22 26 30 35 43 52 50 46 40

4Q90 9.27 3 23 21 27 38 45 50 49 33 31 25 12

1Q91 9.08 3 16 22 25 36 46 54 54 33 13 24 14
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2Q91 9.19 2 12 16 21 29 39 45 44 32 18 10

3Q91 8.41 3 14 9 21 35 40 38 23 12 10 7

4Q91 7.55 4 4 11 32 37 34 30 28 17 3 1

1Q92 8.40 3 14 20 41 43 42 31 13 4 –15 –24

2Q92 7.84 3 2 42 43 42 26 11 7 3 –37 –49

3Q92 7.27 3 25 4 14 20 36 32 39 31 50 46

4Q92 7.55 4 9 29 40 54 67 63 59 54 72 75

1Q93 6.92 4 19 31 44 66 56 58 61 41 49 51

2Q93 6.63 4 14 20 31 47 50 42 37 34 34

3Q93 6.28 4 17 20 29 42 50 30 25 15 19 36

4Q93 6.67 5 10 18 41 50 52 55 49 33 34 50 56

1Q94 7.74 5 13 24 36 50 64 73 71 56 40 52 52 48

2Q94 8.29 5 15 22 29 39 53 61 69 63 57 64 58

3Q94 8.48 5 17 19 23 28 39 50 47 49 41 23 31

4Q94 8.88 5 10 18 25 35 42 52 63 54 53 52 38 33

1Q95 8.25 4 18 24 32 43 52 59 72 71 41 33 27 24

2Q95 7.42 4 37 36 51 68 74 72 77 47 19 14 11 12

3Q95 7.34 4 22 35 32 69 88 77 77 47 36 14 15 12

4Q95 6.79 5 45 49 62 80 83 53 15 65 17 39 4

1Q96 7.53 5 28 30 38 49 59 70 73 78 34 16 11 –16

2Q96 7.80 5 31 48 53 56 62 75 53 67 53 48 39



Figure 10.27. (a) Median Broker Forecasts: FNMA 7.5% Option Adjusted Durations.(b)
Median Broker Forecasts: FNMA 8.0% Option Adjusted Durations. (c) Median Broker
Forecasts: FNMA 8.5% Option Adjusted Durations. (d) Median Broker Forecasts: FNMA
9.0% Option Adjusted Durations. (e) Median Broker Forecasts: FNMA 9.5% Option
Adjusted Durations. (f) Median Broker Forecasts: FNMA 10.5% Option Adjusted Durations.
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Figure 10.28. (a) Median Broker Forecasts: Broker vs. Empirical Elasticities by C-R.
(b) Broker Risk Estimates vs. Empirical Risk: 1987–1990 Quarterly Data, Coupons: 7%–
12%. (c) Broker Risk Estimates vs. Empirical Risk: 1991–1994 Quarterly, Coupons: 7%–
12%.

(a)

(b)
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Figure 10.29. (a) Median Broker Forecasts 1987–1996: FHLMC/FNMA Whipsaw Option
Costs by C-R. (b) Empirical Option Costs for FNMA 1988–1996: Median Broker
Quarterly OA Durations. (c) Empirical Option Cost vs. Broker Forecast: Median Broker
Quarterly OA Durations.

(a)

(b)

(c)
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Table 10.11. FNMA dynamic option hedging cost (“model whipsaw”).

FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA FNMA
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

1987

1988 0.23 0.29 0.23 0.35 0.11 0.08

1989 0.14 0.20 0.24 0.22 0.37 0.47

1990 0.32 0.72 0.75 0.69 0.51 0.34

1991 0.03 –0.02 –0.22 –0.24 0.04 0.13

1992 0.70 0.78 0.50 0.34 0.44 0.15 0.24 –0.20 0.53

1993 1.33 1.33 1.06 0.51 0.13 0.14 0.30 0.31

1994 0.04 0.33 0.90 1.28 1.13 0.96 0.86 0.71 0.48 0.49

1995 0.24 0.35 0.54 0.81 1.25 0.99 0.88 0.27 0.25

1996 0.39 0.57 0.42 0.48 0.34 –0.08 –0.24 0.04 0.02

0.22 0.42 0.78 0.94 0.56 0.43 0.34 0.26 0.26 0.23 0.53 0.26
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5. DURATIONS AND EMPIRICAL OPTION COSTS FOR CONVENTIONAL MBS

This section presents the results of similar analysis for conventional
mortgage-backed securities using data on FHLMC and FNMA coupons.
Tables 10.8–10.10 present our survey results for the median broker fore-
casts of option-adjusted spreads, price elasticities (or option-adjusted du-
rations), and option costs. Comparing tables 10.8 and 10.10, we see that
the option costs are similar in magnitude to option-adjusted spreads, but
estimated option costs are in a much more narrow range for standard MBS
than for IOs. Most of the option cost estimates fall between 25 and 75 basis
points for conventional MBS.

One of the reasons for this study is the observation from studying port-
folio returns in practice that the whipsaw option cost appears often to be
greater than this 25–75 basis point range in practice. We’ll see what the
results are shortly.

If you study table 10.9, you find quite predictably that when rates de-
cline, prepayments surge, and durations (and corresponding dynamic
hedge positions) shorten. To make this easier to see, figure 10.27 shows the
coupon-by-coupon sensitivities of brokers’ duration forecasts to changes
in interest rates. As these have a positive slope, short hedges are reduced
by buying futures when rates are low and prices high, and hedges are in-
creased by selling futures when rates are high and prices low. This dynamic
hedging pattern generates whipsaw costs due to the negative convexities
of standard MBS, as expected.

Figure 10.28 shows the relationship of option-adjusted durations (or
price elasticities) to relative coupons. The higher coupons (relative to par)
have lower elasticities, as is sensible. Figure 10.28 shows that brokers’
forecasts of durations are closely and significantly related to empirical
durations for MBS, with the fit being tighter in the more recent period
(1991–1996) than in earlier years (1987–1990).

Figure 10.29 shows median broker forecasts of option costs for conven-
tional MBS, along with a graph of the empirical estimates of option cost sorted
by relative coupon. Note that the empirical whipsaw option costs are quite
similar in magnitude to the brokers’ forecasts over the entire period from
1988 to 1996. The empirical option costs are slightly higher than the brokers’
forecasts on coupons near par, but slightly lower than the brokers’ forecasts
on both superpremiums and deep discount securities.

Table 10.11 gives the annual data on empirical estimates of the option
cost in conventional fixed-rate MBS. From these data, we see that the real-
ized whipsaw cost year by year can be much higher than projected by the
brokers, with some years giving whipsaws of 100 to 133 basis points. In
other quiet years with little change in rates, whipsaw can be smaller than
forecasted, or even slightly negative if model changes occur that generate
positive benefits of “model whipsaw.” On the whole, the option costs for
conventional MBS turn out to be very similar to the median of brokers’
forecasts.
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It is interesting that when these dynamic hedging costs are estimated
using Smith Breeden’s empirical duration forecasts, empirical option costs
that result are higher than shown here for lower and middle coupons, with
a peak of 170 basis points on FNMA 7.5s and 8s in 1993. For GNMAs, the
Smith Breeden elasticities yielded whipsaws of as much as 200 basis points
in 1994.

Thus, once again we may have evidence of “model whipsaw” that af-
fects option costs in practice. Alternatively, it is possible that taking the
medians in the broker survey series tends to lead to underestimates of the
whipsaws experienced in practice. This may be plausible, given the lags
that may appear in adjustments in our median broker forecasts.

6. CONCLUSION

Theory says that interest-only strips should have large positive and nega-
tive option costs and benefits, due to their convexity patterns. While bro-
kers clearly have some difficulty zeroing in on the proper costs of these
strips, as well as the empirical durations, their forecasts appear rational in
shape across coupons and time. The empirical option costs, however, ex-
hibit somewhat greater amplitudes of fluctuation (larger positive and nega-
tive values) than did the median brokers’ forecasts.

Given their size, option costs for interest-only strips and other high-risk
mortgage derivatives deserve researchers’ and traders’ attention and con-
tinued study. Certainly, it would seem advisable that investors in high-risk
derivatives put a band of error around their estimates of option-adjusted
durations and whipsaw option costs and benefits. This probably is wise
not just for IO strips but also for many mortgage derivatives that have
volatile cash flow streams.

The results on option costs for conventional MBS show that the empirical
dynamic hedging costs are similar in magnitude to those estimated by the
brokers, although there is a great deal of annual fluctuation in the dynamic
whipsaw experienced by portfolio managers. These fluctuations in the dy-
namic whipsaw cost of hedging mortgage prepayments are a return factor of
the first order of magnitude for the returns on hedged mortgage portfolios.
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The Supply and Demand of Immediacy:
Evidence from the NYSE

Roger D. Huang & Hans R. Stoll

1.

Participants in a trading market can be partitioned into suppliers of im-
mediacy and demanders of immediacy, as Demsetz (1968) first noted.
Suppliers of immediacy stand ready to trade at the prices they post, and
demanders of immediacy place market orders and require immediate exe-
cution at posted prices. On the New York Stock Exchange (NYSE), imme-
diacy is supplied by specialists, who post bid and/or ask quotes for their
own accounts, by securities firms that place quotes for their own accounts,
and by public traders, who place limit orders. The bid–ask spread is often
used as a measure of the cost of immediacy to investors, but it is rare that
the supplier of immediacy earns the entire spread. A supplier of imme-
diacy earns the difference between the bid (ask) at which he buys (sells)
and the subsequent price at which he sells (buys). Because prices tend to
move against suppliers of immediacy, revenues on a round-trip trade are
less than the spread. Consequently, revenues of suppliers of immediacy
are typically less than the spread.

Professional suppliers of immediacy, such as the specialist, must earn
enough to cover their operating costs and a normal profit. Public limit
order traders may be willing to supply immediacy at a loss so long as limit
orders are not more costly than market orders. As markets become auto-
mated and public investors have direct access to markets, the role of pub-
lic limit orders is likely to increase and the role of professional dealers is
likely to decrease, a point made by Fischer Black (1971a, 1971b, 1995). Black
was intrigued by the interplay of professional dealers, public traders, and
automation. He concluded that dealers would not exist in a competitive
equilibrium under a technology that gives public investors easy access to
exchanges. In Black’s view, an exchange is an order-matching system de-
fined by the kinds of orders it accepts. In equilibrium, orders will be de-
signed to offer traders protection against being picked off and to offer
informed traders ways to capitalize on their information.

In this study, we measure the average revenues per share earned on the
NYSE by suppliers of immediacy as a group by comparing the buying (sell-
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ing) price to the average price at a later time, a measure we term the real-
ized spread. Since stock market trading is a zero sum game (over the short
run), what suppliers of immediacy earn, demanders of immediacy fail to
earn. Consequently, the revenues of immediacy suppliers are the execu-
tion costs of investors that place market orders. Execution costs measured
by the realized spread are less than execution costs measured in other ways,
such as by the quoted spread, by the effective spread, or by the Roll (1984)
implied spread. We compare the realized spread with these other measures.
The revenues to immediacy suppliers are compensation for services ren-
dered. By contrast, other measures of investor execution costs include a
portion that represents losses to informed traders, a phenomenon first dis-
cussed by Bagehot (1971) and modeled by Copeland and Galai (1983) and
Glosten and Milgrom (1985). When investors differ in their information sets,
income is redistributed from those without information to those with in-
formation. This redistribution does not reflect the use of real resources (that
is, labor and real capital) to provide immediacy.

The existing literature is characterized by different execution cost mea-
sures, although neither the appropriateness of the measures nor the relation
among them have been addressed. Execution costs viewed from the perspec-
tive of institutional investors are analyzed by Beebower, Kamath, and Surz
(1985), Berkowitz, Logue, and Noser (1988), Perold (1988), Schwartz and
Whitcomb (1988), Arnott and Wagner (1990), Bodurtha and Quinn (1990),
Chan and Lakonishok (1993), Perold and Sirri (1993), Wagner and Edwards
(1993) and Keim and Madhavan (1996). Execution costs are estimated from
observable quotes and transaction prices in a number of studies, including
Roll (1984), Stoll (1989), and Hasbrouck (1993). Papers that focus on the dif-
ferences in execution costs across markets include Blume and Goldstein
(1992), McInish and Wood (1992), Christie and Huang (1994),  Lee (1993),
Petersen and Fialkowski (1994), and Huang and Stoll (1996a,b). Stoll (1979)
and Cohen and Conroy (1990) study the impact of regulatory changes on
trading costs. Huang and Stoll (1994) show that execution costs computed
from transaction data affect the short-run dynamics of stock prices.

The contributions of this study are fourfold. First, we calculate the real-
ized half-spread, a measure of the revenue per share to suppliers of imme-
diacy. While studies of the price impact of block trades by Kraus and Stoll
(1972) and Holthausen, Leftwich, and Mayers (1987) have provided simi-
lar measures for blocks, this is the first study to provide such measures for
all trade sizes. Sofianos (1995) calculates specialist revenues from special-
ist trading reports, but our estimates encompass all immediacy suppliers.
Second, we decompose the average revenue per share into revenues of
securities firms and public limit orders. Third, noting that the revenues
earned by suppliers of immediacy are the execution costs paid by demand-
ers of immediacy, we provide evidence on the relation between the reve-
nue measure and measures of execution costs such as the quoted spread
and the effective spread. We also provide evidence on the Roll implied half-
spread and a measure we term the perfect foresight half-spread. Fourth,
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our study is distinguished by the large sample size. The database consists
67 million transactions in 343 NYSE stocks in the 5-year period 1987 to 1991.

2. TRANSACTION DATA

The data source is the transactions database for 1987 to 1991 maintained
by the Institute for the Study of Security Markets. We restrict our sample
to NYSE companies that were continuously in the S&P 500 Index from 1987
to 1991. This results in a sample of 343 securities with more than 67 mil-
lion transactions.1 Summary measures of execution costs and other data
are computed for each stock in every month except October 1987, produc-
ing a sample containing 20,237 stock-months.

All trades that are coded as regular sales and all quotations that are BBO-
eligible are included in our data set.2 We confine the sample to trades with
positive prices, positive volumes, and positive bid and ask quotes with
nonnegative depths. To further minimize data errors, we apply the follow-
ing filters:

1. Exclude quotes and prices when their decimal portions are not
multiples of 1/16.

2. Exclude bid–ask quotes when the spread is greater than $2.
3. Exclude trade price pt when |(pt – pt–1)/pt–1| > .10.
4. Exclude ask quote at when |(at – at–1)/at–1| > .10.
5. Exclude bid quote bt when |(bt – bt–1)/bt–1| > .10.
6. Exclude the entire day’s data if the first trade price and quotes satisfy

p a b

p

t t t

t

− +( )
>

1
2 10. .

Filter 6 is used to eliminate data errors such as a price that is wrongly coded
for the entire trading day since filter 3 will not pick it up.

When trade prices are compared to quotes, we use the most recent prior
NYSE quote that is time stamped at least 5 seconds earlier than the trade.3
This 5-second rule is intended to compensate for the speedier reporting of
quotes than of trades. If a trade does not have a prior BBO-eligible quote
on the same day, it is excluded from the analysis.

2.1 Volume of Trading

Our data set contains a total of 67,153,925 trades. Table 11.1 presents sum-
mary statistics on the number of trades and share volumes for our sample.
The number of trades in the 343 stocks on all markets, including regional
exchanges and NASDAQ, has increased steadily since 1987 and amounted
to 16,470,169 trades in 1991. On average, 70% of a stock’s trades and 85.8%
of its total share volume took place on the NYSE. In the period 1987 to 1991,
the NYSE share of small trades declined from 74.2% to 64.4%, and the NYSE
share of small trade volume declined from 78% to 68.8%. In the large trade
size category, the NYSE share of trades and volume has increased.



Table 11.1. Number of trades and share volume of 343 S&P 500 stocks and
percentage of trades and share volume conducted on the NYSE by trade size
and year in the period 1987–1991 with October 1987 excluded. A small trade
size has 1,000 shares or less, a medium trade size has greater than 1,000 but
less than 10,0OO shares, and a large trade has 10,000 or more shares.

Trade Size

All Small Medium Large

Number of trades in all markets

1987 10,692,524 7,975,043 2,374,063 343,418

1988 11,843,178 8,830,727 2,595,486 416,965

1989 13,471,358 10,306,370 2,714,700 450,288

1990 14,676,696 11,346,885 2,876,433 453,378

1991 16,470,169 12,881,716 3,094,049 494,404

Percentage of all trades on NYSEa

1987 0.787 0.742 0.925 0.889

1988 0.774 0.730 0.903 0.893

1989 0.737 0.691 0.885 0.893

1990 0.738 0.692 0.891 0.899

1991 0.700 0.644 0.885 0.917

Share volume of trading in all markets (in 100s)

1987 199,076,076 30,204,014 70,463,104 98,408,702

1988 241,353,320 33,629,868 78,606,8l9 129,116,374

1989 233,519,518 37,342,106 82,820,458 113,356,537

1990 247,708,082 40,784,732 87,769,408 119,153,574

1991 254,055,237 45,600,250 94,126,963 114,327,538

Percentage of share volume on NYSEa

1987 0.880 0.780 0.931 0.872

1988 0.871 0.757 0.913 0.879

1989 0.858 0.721 0.900 0.877

1990 0.859 0.725 0.905 0.881

1991 0.858 0.688 0.903 0.899

aThe percentage of NYSE trades or volume is calculated for each stock-month,
and the average percentage over all stock-months in the year is reported.
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In 1991, small trades of 1,000 shares or less accounted for 78.2% of all
trades and 17.9% of share volume. Medium trades of more than 1,000 but
less than 10,000 shares accounted for 18.8% of all trades and 37.0% of share
volume. Large trades of 10,000 or more shares accounted for 3.0% of all
trades and 45.0% of share volume.

2.2 Trade Frequency

Table 11.2 documents the frequency of trades at various price locations: at
the bid, at the ask, at the midpoint, between the midpoint and bid–ask
quotes, and outside the bid–ask quotes. For example, in 1991, 33.6% of the
trades took place inside the quotes—24.2% at the midpoint and 9.4% away
from the midpoint but inside the quotes. The percentage of trades at the
midpoint has increased over time at the expense of trades inside the quotes
but not at the midpoint. This trend is consistent with a decrease in quoted
spreads.

Table 11.2. Percentage of trades in 343 S&P 500 stocks by price location and
trade size in the years 1987–1991 with October 1987 excluded. A small trade size
has 1,000 shares or less, a medium trade size has greater than 1,000 but less than
10,000 shares, and a large trade has 10,000 or more shares. Monthly averages are
first calculated across all stocks from the average values for each stock, and the
figures below represent means of the monthly averages.

Trade Size

All Small Medium Large

At bid 1987 0.304 0.292 0.336 0.335

1988 0.333 0.330 0.345 0.346

1989 0.323 0.325 0.321 0.315

1990 0.311 0.317 0.299 0.293

1991 0.309 0.310 0.312 0.312

At ask 1987 0.350 0.334 0.384 0.382

1988 0.341 0.322 0.386 0.383

1989 0.343 0.335 0.361 0.365

1990 0.326 0.326 0.325 0.313

1991 0.352 0.352 0.357 0.341

At midpoint 1987 0.191 0.208 0.153 0.158

198 0.208 0.222 0.176 0.181

1989 0.238 0.242 0.230 0.241

1990 0.253 0.246 0.268 0.292

1991 0.242 0.241 0.238 0.260

continued
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Table 11.2. continued

Trade Size

All Small Medium Large

Between bid and midpoint 1987 0.068 0.074 0.051 0.049

1988 0.055 0.060 0.041 0.039

1989 0.045 0.046 0.041 0.036

1990 0.052 0.052 0.052 0.047

1991 0.045 0.045 0.044 0.040

Between midpoint and ask 1987 0.078 0.085 0.057 0.047

1988 0.059 0.064 0.046 0.037

1989 0.049 0.051 0.043 0.033

1990 0.057 0.058 0.053 0.044

1991 0.049 0.050 0.044 0.036

Less than bid 1987 0.004 0.003 0.009 0.016

1988 0.001 0.001 0.003 0.007

1989 0.001 0.000 0.001 0.005

1990 0.001 0.001 0.001 0.006

1991 0.001 0.001 0.002 0.005

More than ask 1987 0.005 0.003 0.0 10 0.0 14

1988 0.002 0.001 0.003 0.006

1989 0.001 0.001 0.002 0.005

1990 0.001 0.001 0.002 0.005

1991 0.001 0.001 0.003 0.005

Surprisingly, trading inside the quotes is just as frequent for large trades
as for small trades. We suspect that this reflects the prenegotiation of block
trades and the presence of preblock trading to bring market prices in line
with block prices.

Finally, table 11.2 discloses a small asymmetry in that the proportion of
trades at the bid is less than the proportion of trades at the ask (.309 versus
.352 in 1991). This is surprising since sellers are usually thought to be more
anxious than buyers, which would imply greater frequency of trades at the
bid than at the ask. Since this pattern is present in all trade sizes and since
purchases equal sales, the asymmetry implies that trades at the quote mid-
point are more likely to be at undisclosed bid prices than at undisclosed
ask prices.
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3. REVENUES OF IMMEDIACY SUPPLIERS: THE REALIZED HALF-SPREAD

Suppliers of immediacy are passive traders. They place quotes or limit
prices and wait for incoming market orders with which to trade. A sup-
plier of immediacy who buys (sells) at the bid (ask) price does so in antici-
pation of ultimately reversing that position at a higher (lower) price. If
trades can be reversed at better prices, suppliers of immediacy earn reve-
nues. If not, they make losses.

The reversal after a trade at the bid or the ask measures the revenue per
share realized by a supplier of immediacy in a single trade.4 We term this
measure the realized half-spread. We say “realized” because the measure
calculates what suppliers of immediacy actually realize as reflected in sub-
sequent market prices and “half-spread” because we measure revenue on
a single trade, whereas the spread is a measure of revenue on a round trip
consisting of two trades.

The realized spread measure requires identification of a trade as a pur-
chase or sale. In particular, price reversals cannot be reported for trades at
the quote midpoint, where buys and sells cannot be distinguished. We
expect that suppliers of immediacy do earn revenues from trades at the
midpoint; we just cannot measure them.5 Our measure of the realized half-
spread, π, is the average price reversal subsequent to a trade. For trades at
the bid, the average reversal is

πb = E(∆ pt + τ|bt) = E(pt + τ – pb
t) (1)

where pt is the transaction price at time t, τ is the time until the subsequent
trade, b denotes trades at the bid, and E() is the mean operator. For trades
at the ask, the average reversal is

πa = – E(∆ pt + τ|at) = – E(pt + τ – pa
t) (2)

where a denotes trades at the ask. Note that the subsequent price at t + τ is
a transaction price that may be either at the bid or the ask or inside the
quotes. On average, for initial trades at pb

t, the expected price change is
positive. For initial trades at pa

t, the expected price change is negative. The
expected reversal, or realized half-spread, is positive in each case. We
assume, in other words, that the suppliers of immediacy are able to liqui-
date at the average subsequent trade price. Since the trade price will some-
times be at the bid and sometimes at the ask, we expect that suppliers of
immediacy are active about half the time and passive about half the time
in unwinding their positions.

The reversal compensates the provider of immediacy for costs associ-
ated with processing the order and for inventory risk. For professional
suppliers of immediacy, order-processing costs include wages, clearing
charges, communication costs, and the like. For public limit orders, order-
processing costs include the costs of monitoring the order. The inventory
cost of providing immediacy arises from the risk of taking on unwanted
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inventory or of holding unwanted inventory, which includes the cost of
nonexecution.

Two opposing considerations enter in specifying the period τ over
which the reversal is measured. On the one hand, τ should be long enough
for the price at t + τ to reflect an independent trade. In particular, we do
not look at the immediately following price because trades tend to clus-
ter at the bid or the ask. On the other hand, choosing too large a τ increases
the likelihood of confounding the measure with additional information
or information-based trades. In our empirical work, τ is 5 minutes or
30 minutes. The choice of 5 minutes is intended to be long enough to over-
come clustering yet short enough not to be unduly influenced by random
price changes resulting from unexpected news events. Additional esti-
mates based on τ at 30 minutes provide a check on the robustness of our
results.

For each trade on the NYSE, we determine the trade price, pt, and its
location with respect to the bid or ask. For the 5-minute horizon, we choose
the first trade price on any exchange after 5 minutes but no more than 10
minutes have elapsed, pt + 5, and we calculate pt + 5 – pt. If no subsequent
price is available within the specified time span on the same day, no price
change is calculated. The 30-minute standard follows the same procedure
except that the first price after 30 minutes but no more than 35 minutes
have elapsed is used to calculate the price change.6

Table 11.3 reports the average 5-minute and 30-minute price changes
for transactions taking place at the ask and for transactions taking place at
the bid. We present dollar measures of trading costs rather than percent-
age measures because the cross-sectional variation in stock prices is greater
than the cross-sectional variation in execution costs per share. Dividing by
price would only increase the difference across stocks in measured costs.
The table also presents the results of t-tests of the null hypothesis that the
trading cost estimate is zero. All values, except those with an asterisk, are
significant at the 5% level. The test results using the Fisher sign test are
similar and are not reported here.

As expected, the average price change after a transaction at the ask is
negative and the average price change after a transaction at the bid is posi-
tive. In 1991, for example, the average revenue per share of a trader who
bought at the bid and sold 5 minutes later was 3.2 cents. The average reve-
nue of a trader who sold at the ask and covered 5 minutes later was 2.4
cents. The corresponding revenues for the 30-minute horizon were 3.2 and
1.9 cents, respectively.

The average price reversals do not appear to become smaller over the
period 1987 to 1991. This implies that any efficiencies in trading and any
reductions in spreads have not been reflected in reduced revenues for sup-
pliers of immediacy. It has been suggested by Lee (1993) that competing
markets are diverting the easy trades of uninformed investors away from
the NYSE. If that were the case, realized spreads should decline over time
on the NYSE, and there is no indication of that in our data.



Table 11.3. Price reversal measure of execution costs on the
NYSE in 343 S&P 500 stocks by trade size and year in the
period 1987–1991 with October 1987 excluded. The figures
are in dollars per share. A small trade size has 1,000 shares or
less, a medium trade size has greater than 1,000 but less than
10,000 shares, and a large trade has 10,000 or more shares.
Monthly averages are first calculated across all stocks from
the average values for each stock, and the figures below
represent means of the monthly averages. An asterisk
represents a p-value greater than 5% using the t-test.

Trade Size

All Small Medium Large

5-minute price change at bid

1987 0.032 0.035 0.032 0.039

1988 0.026 0.029 0.020 0.028

1989 0.033 0.037 0.025 0.026

1990 0.032 0.035 0.027 0.029

1991 0.032 0.036 0.026 0.029

5-minute price change at ask

1987 –0.017 –0.023 –0.009 –0.003*

1988 –0.026 –0.032 –0.016 –0.007

1989 –0.030 –0.037 –0.018 –0.006

1990 –0.027 –0.032 –0.016 –0.011

1991 –0.024 –0.030 –0.013 –0.005

30-minute price change at bid

1987 0.043 0.043 0.046 0.045

1988 0.024 0.027 0.020 0.021

1989 0.033 0.037 0.025 0.027

1990 0.031 0.034 0.025 0.024

1991 0.032 0.036 0.027 0.028

30-minute price change at ask

1987 –0.010 –0.017 –0.001* 0.010

1988 –0.024 –0.031 –0.013 0.001*

1989 –0.027 –0.035 –0.015 0.005

1990 –0.027 –0.032 –0.015 –0.005

1991 –0.019 –0.025 –0.006 0.007
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Somewhat to our surprise, the per share reversal does not increase with
trade size. For trades at the bid, the reversal is about the same for all trade
sizes, which means that total revenues increase linearly with the number
of shares. Apparently, these revenues, combined with economies of scale
in handling a large trade, are enough to offset the higher inventory risk
present in a large trade.

Evident in the data is an asymmetry in the price reversals after trades at
the ask and at the bid. Formal tests (not reported here) confirm that price
reversals at the bid and the ask are reliably different from one another. In
the small trade size category, the asymmetry is small. In 1991, for example,
the average reversal after trades at the ask was 3 cents and the average
reversal after trades at the bid was 3.6 cents. In the large size category, the
asymmetry is larger. In 1991, for example, the average reversal after large
trades at the ask was 0.5 cents and the average reversal after trades at
the bid was 2.9 cents. This difference is too large to be explained by trades
inside the quotes. It reflects the well-known asymmetry in the price be-
havior around block purchases and block sales. Kraus and Stoll (1972)
and Holthausen, Leftwich, and Mayers (1987) have found that prices re-
verse after sales but not after purchases, which implies that sales have a
market impact cost but that purchases do not. The data in table 11.3 show
this same pattern. Chan and Lakonishok (1993) examined large packages
of institutional trades and reached a similar conclusion. They found that
prices after the completion of a package of sales tended to reverse by about
0.10%, whereas prices tended to continue after a package of purchases. As-
suming an average stock price of $35, a 0.10% reversal is 3.5 cents per share.

4. DECOMPOSITION OF REVENUES: RETURNS TO LIMIT ORDERS
AND TO SECURITIES FIRMS

The realized half-spread measures the average revenue to all suppliers of
immediacy. On the NYSE, some providers of immediacy are public cus-
tomers who place limit orders, while others are securities firms that quote
bids and offers and that earn a living from supplying immediacy. We in-
clude in securities firms not only specialist firms but also other firms that
trade for their own accounts. In this section, we make inferences about the
revenues of these two categories of immediacy suppliers. Presumably, firms
earn larger reversals than public limit orders because they are closer to the
market and can more quickly adjust their orders, thereby reducing the
chances of being “picked off.” If that were not the case, firms could not
cover their costs and would exit the market. A decomposition is impor-
tant when comparing a mixed dealer/auction market like the NYSE with
a dealer market like NASDAQ. Even if the two markets exhibit different
average reversals, there is still the possibility that dealers in the two mar-
kets earn the same return.

We divide the market into active traders, who demand immediacy by
placing market orders, and passive traders, who supply immediacy by
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placing limit orders. Firms, f, and public investors, p, can in principle be
either active or passive. We can represent these possibilities with the fol-
lowing 2×2 trading table in which the cells can represent the proportion of
trading, α, or the price reversal, π:

Active
Market orders

Passive
Limit orders

Firms

Public

Firms

,

,

,

f

p

f PPublic, p
ff fp

ff fp

pf pp

pf pp

α α
π π
α α
π π

Where αij is the fraction of shares traded in which i is passive and j is ac-
tive, where i, j can take on the value f (firm) or p (public), and πij is the av-
erage price reversal after trades in which i is passive and j is active, where
i, j can take on the value f (firm) or p (public). A positive reversal indicates
earnings by suppliers of immediacy, and a negative reversal indicates losses
by suppliers of immediacy.

The trading table can apply to the bid side of the market, where passive
buyers and active sellers meet, or to the ask side of the market, where pas-
sive sellers and active buyers meet. Our discussion usually refers to the
bid side.

To help identify the fractions and the price reversals in the trading table,
we tap three different data sources and state three different conditions that
must hold on the elements in the trading table. The first condition defines
the overall average realized half-spread, π. . , as

π α π. . = ∑ ij ij
ij

(3)

The first data source, which provides information on π.. , is the aggregate
estimate of the average realized half-spread for passive buyers or passive
sellers, which can be computed from our data as presented in tables 11.2
and 11.3. These estimates of π.. are reported as lines 1 and 2 in table 11.4.
These estimates account for the frequency of trading at different trade lo-
cations and are averaged under the assumption that the reversal for trades
at the midpoint is 25% of the reversal for trades at the quote:

π.. = [w(∆Pb) + (.5 – w)0.25(∆Pb)]/0.5

where∆Pb is the average price change after a trade at the bid for all trades
as reported in table 11.3, w is the fraction of trades at prices below the
midquote as reported in table 11.2, (.5 – w) is the fraction of trades at
the midquote, and 0.25 is the fraction of the price change after a trade at
the bid that is assumed to occur after a trade at the midpoint. The reversal
after a trade at the midpoint is nonzero because we assume that immediacy
suppliers receive some compensation, even for trades at the midquote. The
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proportion of trades at the midpoint is divided between passive purchases
and passive sales such that the overall frequencies of passive sales and
passive purchases are both 50%. (Implicit in this procedure is the assump-
tion that every trade has an active trader on one side and a passive trader
on the other.) We assume that the reversal for trades between the quote and
the midpoint is the same as the reversal at the quote reported in table 11.3. In
1991, the average reversal for passive buyers, which we take as the left-
hand side of equation (3), is calculated as 2.5 cents.

Table 11.4. Realized half-spread, securities firms’ per share trading revenues, and
implied price changes after limit order trades.

Year

1987 1988 1989 1990 1991

1. Avg. ∆P after passive purchasea 2.6 2.2 2.6 2.5 2.5

(in cents)

2. Avg. ∆P after passive saleb –1.5 –2.2 –2.5 –2.2 –2.0

(in cents)

3. Firms’ participationc 0.265 0.228 0.237 0.230 0.231

4. Firms’ trading gainsd 1,854 2,255 2,756 830 2, 020

(in millions of dollars)

5. Share volume on exchangese 64,083 52,666 54,417 53,746 58,296

(in millions)

6. Firms’ trading gains per sharef 5.46 9.40 10.70 3.36 7.50

(in cents)

7. Implied ∆P after limit order buyg –0.63 –3.84 –4.70 1.77 –1.79

(in cents)

8. Implied ∆P after limit order sellh 2.79 3.84 4.89 –1.21 2.72

(in cents)

aCalculated as [w(∆Pb) + (.5 – w) 0.25 (∆Pb)]/0.5, where ∆Pb is the average price change after a
trade at the bid for all trades (table 11.3), w is the fraction of trades at prices below the
midquote (table 11.2), (.5 – w) is the fraction of trades at the midquote. and 0.25 is the fraction
of the price change after a trade at the bid assumed to occur after a trade at the midpoint.
bCalculated in the same way as the average price change after passive purchase described in
note a.
cSpecialists and other member firms’ purchases plus sales as a fraction of twice total volume.
Taken from the NYSE Fact Book.
dBased on FOCUS reports as described in Stoll (1994). The figure represents gains from
trading on the NYSE, AMEX, and regional exchanges. Investment gains and underwriting
gains of firms are not included.
eShare volume of trading in stocks listed on the NYSE, AMEX, and regional exchanges. Taken
from SEC Annual Report.
fFirms’ trading gains divided by twice the firms’ volume.
gCalculated as described in text so that the average price change is an average of the gains of
firms and the gains of limit orders. All firms’ volume is assumed to be passive.
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The second condition defines the participation rate for securities firms—
specialists and other NYSE members. The participation rate of firms Pf is
defined as firms’ purchases plus sales divided by twice the volume. It can
be written as

Pf
ff fp ff pf

ff
fp pf=

+ + +
= +

+α α α α
α

α α

2 2
(4)

The second data source is the participation rate as reported by the NYSE.
In 1991, the participation rate was Pf = 0.231.7 Corresponding data for other
years are in line 3 of table 11.4.

The third condition defines the firms’ average trading gain, Gf, as the
weighted average of the gains from passive and active trading:

Gf

ff ff fp fp ff ff pf pf

ff fp ff pf

fp fp
=

+ + −( )+ −( )
+ + +

=
α π α π α π α π

α α α α

α π ++ −( )
+ +

α π

α α α
pf pf

ff fp pf2
(5)

where the first two terms in the numerator of the expression between the
two equal signs represent gains from supplying immediacy to firms and
the public and the second two terms represent gains from active trading
with firms and the public. Equation (5) says that the firms’ total trading
gains come from reversals they earn as providers of immediacy and from
continuations in price (negative reversals) after active trading.

The third data set, which provides information on Gf, is the FOCUS (Fi-
nancial and Operational Combined Uniform Single) report. All securities
firms report their revenues, expenses, and balance sheet items to the Secu-
rities and Exchange Commission on this form. Our interest is in securities
firms’ trading gains in exchange-listed stocks, something that is reported.
Trading gains are earned if price changes are favorable after a trade. As in
Stoll (1995), we compute per share trading gains on exchanges from these
data and data on securities firms’ share volume of trading. Lines 3, 4, and
5 of table 11.4 are used to derive firms’ trading gains per share for the years
1987–1991 in line 6. For example, in 1991, securities firms’ revenues from
trading in exchange-listed stocks were $2020 million (line 4).8 Dividing by
firms’ purchases plus sales (the product of twice line 5 and line 3) yields a
per share trading gain of 7.5 cents (line 6).9

In addition to equations (3), (4), and (5), we have the following add-up
constraint on the participation rate of different parties:

1 = ∑αij
ij

It is easily seen that not all the variables in the 2×2 table can be identified
with equations (3) to (5) and the adding-up constraint. Thus, our decom-
position of the realized spread between securities firms and public limit
orders is one of many possible decompositions. We analyze two informa-
tive decompositions.
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In the first decomposition, we assume that firms always act as suppli-
ers of immediacy so that αff = αpf = 0. Since πff and πpf only appear in con-
junction with αff and αpf, respectively, we can ignore the first column of the
2×2 table. Under this scenario, and using the fact that Pf = 0.231 in 1991,
equation (4) implies that firms’ participation as suppliers of immediacy is
αfp = 0.462, or passive purchases average 0.462 of active sellers. Therefore,
using the add-up constraint, immediacy for the remaining fraction of trades,
αpp = 0.538, is provided by public limit orders. A dealer/auction market
like the NYSE is distinguished by the ability of limit orders to provide
immediacy to public market orders. By way of contrast, in a dealer market
like the NASDAQ Stock Market, αpp= 0.0.

Next, using equation (5), with Gf = 7.5 in 1991 and αfp = 0.462, we calcu-
late that πfp = 7.5 when firms’ trading gains come entirely from providing
immediacy to the public. In 1991, the overall reversal was 2.5 cents, and
substituting the values of αpp , αpp , and πfp into equation (3) to solve for price
reversals after public limit buy orders yields πpp = –1.79. This figure is re-
ported in line 7 of table 11.4. When firms earn all their trading revenues by
supplying immediacy to the public, the overall reversal of 2.5 cents is sim-
ply a weighted average of the reversal earned by firms (7.5 cents) and by
public limit buy orders (–1.79 cents), where the weights are the fraction of
trading by each, 0.462 and 0.538, respectively.

The implied price changes after public limit order purchases (when a
positive price change is expected) and sales (when a negative price change
is expected), reported for the years 1987–1991 in lines 7 and 8 of table 11.7,
indicate that price changes after public limit order trades tend to be ad-
verse. They fall after limit order purchases in four of the five years, and
they rise after limit order sales in four of the five years. In other words,
these calculations imply that public limit orders face a winner’s curse: if
they trade, they tend to lose. Securities firms are able to avoid this winner’s
curse because they are better informed and are closer to the market. Simi-
lar conclusions are reached by Simpson (1994) in an analysis of TORQ data.
He finds that public limit orders are “picked off” more frequently than
specialist limit orders. A second cost facing public limit orders is the cost
of nonexecution, which is not reflected in these data. Harris and Hasbrouck
(1996) also find that changes in the quote after a trade by a limit order are
adverse. For example, after a limit order purchase at the bid when the
spread is 1/8, the bid price falls on average 7.3 cents and 9.2 cents depend-
ing on order size (their table 7). Their numbers are much larger than ours
because they are quotes, not transaction prices. If passive limit order buyers
dispose of their position by entering active market orders to sell, the ad-
verse price change would be this large, but this is unlikely. Our estimates
are based on transaction prices, and they reflect the fact that, in disposing
their positions, suppliers of immediacy may be active or passive.

Despite the winner’s curse, and depending on the cost of nonexecution,
it may be rational for public investors to place limit orders. We estimate
that limit orders to buy lost an average of 1.79 cents per share in 1991, and



270 The Legacy of Fischer Black

that, under the assumptions of our first decomposition, public market
orders to buy lost an average of 2.0 cents per share, as shown in line 2 of
table 11.4. Not included in the cost of a limit order is the cost of nonexecution.
While our results are fairly crude estimates, they are consistent with an
equilibrium in which the expected cost to the public investor of trading with
a market order equals the expected cost of trading with a limit order.

In the second decomposition, we assume that securities firms trade by
market order as well as by placing bids and offers. Since securities firms
earn positive revenues, the effect would be to raise the public’s cost of trad-
ing by market order above the average realized spread and to reduce the
cost of trading by limit order. For this scenario, suppose that 5% of the
securities firms’ active trading is vis-à-vis other firms acting passively and
10% is vis-à-vis public limit orders. In addition, we assume that firms earn
the same from passive and active trading with the public (that is, πfp = –πpf )
and that firms neither gain nor lose when they trade with each other (that
is, πff = 0.0).

As in the previous decomposition, we use 1991 values for equations (3)
to (5). Substituting αff = 0.05 and αpf = 0.10 into equation (4), we can solve
for αfp = 0.262. Therefore, given the add-up constraint, we can solve for αpp

= 0.588. Under our assumptions, equation (5) implies that πfp = –πpf = 7.5
when αfp = 0.262. Finally, we use equation (3) with the appropriate substi-
tutions to solve for πpp = 2.19. The trading table can now be completed as
follows:

Active
Market orders Average

Firms, f Public, p

Passive
Limit orde

πj

rrs

Firms f

Public p

,
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. .
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.
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In this case, public market orders pay an average of 3.82 cents (the price
reverses by 3.82 cents), which is larger than under the decomposition that
assumes firms act only passively. Firms make an average of 5 cents (the
price continues by 5 cents) when trading actively and an average of 6.3 cents
(the price reverses by 6.3 cents) when trading passively. Public limit orders
earn an average of 0.78 cents. The average price reversal is maintained at
2.5 cents.

In both decompositions, public market orders pay 7.5 cents to firms,
while the average cost of immediacy for public market orders is 2.5 cents
in the first decomposition and 3.82 cents in the second. These data com-
pare with an average reversal of about 15 cents on the NASDAQ Stock
Market in 1991.10 We assume that the reversal on NASDAQ is earned by
dealers because all trades are with dealers. The difference between the
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average reversal on the NYSE (2.5 cents) and the average reversal on
NASDAQ (15 cents) is striking. The difference between the average rever-
sal earned by firms on the NYSE (7.5 cents) and the average NASDAQ
reversal earned by dealers (15 cents) is less striking, yet the difference is
still large.11 One may ask whether the earnings of NYSE firms from pro-
viding immediacy to the public are underestimated. First, it is possible that
the FOCUS data underestimate firms’ trading gains or that other assump-
tions made in Stoll (1995) lead to an underestimate. Second, the estimate
also depends on the degree to which firms trade actively and on the earn-
ings per share from active trading. If firms earn less on active trading than
on passive trading, their earnings from providing immediacy to the pub-
lic must be higher than 7.5 cents.

In summary, we have shown that the realized spread is small yet con-
sistent with data from an entirely different source—FOCUS reports filed
by securities firms. The data on securities firms’ revenues and trading
volume permit inferences as to the revenues of limit orders. Our results
imply that limit orders are “picked off,” a result consistent with an equi-
librium in which public investors choose limit orders and market orders
so as to equalize their costs on the margin. Securities firms earn greater
revenues per share than the realized half-spread, and public limit orders
earn less. Comparisons with the realized spread on the NASDAQ market
indicate that suppliers of immediacy on that market earned substantially
more per trade than on the NYSE. This is because limit orders were not
allowed to provide immediacy on NASDAQ and because NASDAQ dealers
earned a larger reversal than NYSE firms.

5. RECONCILING REVENUES OF IMMEDIACY SUPPLIERS
AND BID–ASK SPREADS

We have shown that immediacy suppliers earn an average of 2.5 cents per
share (or less), a number that seems quite small when compared to half
the quoted spread or half the minimum tick size, but we have also shown
that the number is consistent with reported trading gains of securities firms
and the distribution of volume between securities firms and limit orders.
If immediacy suppliers earn 2.5 cents on average, immediacy demanders
pay 2.5 cents on average. We now ask whether frequently used measures
of market order execution costs—the quoted spread and the effective
spread—are consistent with a realized spread of 2.5 cents.

The quoted bid–ask spread is used to measure the trading cost on a
round trip of two trades. For a single trade, the execution measure is the
quoted half-spread:

1
2

1
2

s a bt t t
= −( )

where st is the quoted bid–ask spread, at is the quoted ask price for a nor-
mal quantity, and bt is the quoted bid price for a normal quantity.12 The
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half-spread implicitly uses the quote midpoint at the time of a trade as the
standard against which trades that occur at the bid or the ask quotes are
compared. Given the minimum tick size of 12.5 cents, the minimum quoted
half-spread is 6.25 cents, which is more than double the realized half-spread
reported in table 11.3. The first panel in table 11.5 shows that the average
quoted half-spread on the NYSE for the 343 S&P 500 stocks in our data set
amounted to 14.2 cents in 1987 and 11.1 cents in 1991. Since quotes are not
available for trades of different sizes, no categorization by trade size is
possible.

Is a quoted spread of 11.1 cents consistent with a realized spread of
2.5 cents? The answer is “approximately yes.” Quoted spreads overstate
the average execution costs to market orders for three reasons. First, some
quotes are excessively wide and attract no trades. This can be seen from
the second and third panels of table 11.5, which provide data on the aver-
age effective half-spread for trades at the bid and at the ask. The effective
half-spread is defined as

zt = |pt – qt|

where zt is the effective half-spread and qt = ½ (at – bt) is the quote mid-
point existing at the time of the trade. Blume and Goldstein (1992), Lee
(1993), and Petersen and Fialkowski (1994) base most of their analyses of
trading costs on this statistic, a measure termed “liquidity premium” by
Lee. The effective half-spread for trades at the bid and the ask is the quoted
half-spread weighted by the number of trades taking place at the quotes.
If a quote attracts no trades, it receives zero weight. The second and third
panels of table 11.5 indicate that the quoted half-spread at which trades
took place is about two cents less than the average quoted half-spread. For
example, in 1991, the quoted half-spread for trades at the bid and at the
ask was 9.1 cents per share as compared with a quoted spread of 11.1 cents.

A second reason that the realized spread is less than the quoted spread
is that a substantial fraction of trades take place inside the quotes. Table 11.2
indicates that in 1991 33.6% of the trades took place inside the quotes.
McInish and Wood (1992) report that limit orders bettering the displayed
quote are frequently not displayed. Consequently, when a market order
arrives and trades with the undisplayed limit order, a trade inside the dis-
seminated quotes takes place. Brokers on the floor may also hold orders
with undisplayed quotes inside the quoted spread. A second reason for
trades inside the quoted spread is that the specialist “stops” stock; that is,
he guarantees the posted quote but attempts to better it by negotiating with
an incoming order.

The fourth panel of table 11.5 shows that the average effective half-
spread was 6.7 cents in 1991, which reflects not only the fact that the quotes
at which trades take place are narrower than the set of all quotes but also
the fact that a third of the trades take place inside the quotes. Effective
spreads increase with trade size, although the increase is not large. For
example, in 1991 the effective half-spread was 6.5 cents for small trades,



Table 11.5. Contemporaneous measures of execution
costs on the NYSE in 343 S&P 500 stocks by trade size
and year in the period 1987–1991 with October 1987
excluded. The figures are in dollars per share. A small
trade size has 1,000 shares or less, a medium trade size
has greater than 1,000 but less than 10,000 shares, and a
large trade has 10,000 or more shares. Monthly averages
are first calculated across all stocks from the average
values for each stock, and the figures below represent
means of the monthly averages. All the estimates are
significantly different from zero using the t-test.

Trade Size

All Small Medium Large

Quoted half-spread

1987 0.142

1988 0.124

1989 0.113

1990 0.113

1991 0.111

Effective ha1f-spread,a trades at the bid

1987 0.126 0.123 0.131 0.134

1988 0.104 0.102 0.109 0.112

1989 0.092 0.090 0.097 0.101

1990 0.092 0.090 0.096 0.103

1991 0.091 0.089 0.096 0.101

Effective half-spread,a trades at the ask

1987 0.126 0.124 0.129 0.130

1988 0.106 0.104 0.109 0.110

1989 0.093 0.092 0.097 0.098

1990 0.093 0.092 0.096 0.098,

1991 0.091 0.089 0.094 0.098

Effective half-spread,a all trades

1987 0.095 0.090 0.108 0.114

1988 0.079 0.075 0.087 0.092

1989 0.068 0.066 0.073 0.078

1990 0.066 0.065 0.068 0.073

1991 0.067 0.065 0.071 0.076

aEquals pt – qt , where pt is the trade price and qt is the
quote midpoint.
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7.1 cents for medium trades, and 7.6 cents for large trades. The middle two
panels of table 11.5 show that effective spreads for trades at the quotes
increase with trade size, which suggests that quotes are widened in antici-
pation of large trades.

Over time, effective spreads and quoted spreads have fallen. For ex-
ample, the overall effective spread declined from 9.5 cents in 1987 to
6.7 cents in 1991, corresponding to a decline in quoted half-spreads from
14.2 cents to 11.1 cents. Corresponding declines in effective spreads are evi-
dent in each size category. Possible explanations for the decline are in-
creased competition for order flow (reflected in part in the NYSE’s market
share decline), new, more efficient trading technology, and the ability to
hedge positions in futures and options markets.

A third reason that the realized half-spread is less than the quoted half-
spread is that the quoted and effective spreads are wider than out-of-pocket
execution costs as protection against informed traders, as described by
Bagehot (1971) and modeled by Copeland and Galai (1983) and Glosten
and Milgrom (1985). After a sale (purchase) at the bid (ask), quotes adjust
downward (upward) to reflect the adverse information conveyed by the
trade. Consequently, reversals are attenuated. Suppose the effective half-
spread is 6.7 cents and that the expected value of adverse information re-
flected in a sale is 4 cents.13 After a trade at the bid, the bid and ask prices
would decline by 4 cents to reflect the information contained in the trade.
This would cause the average reversal to be 2.7 cents rather than the effec-
tive half-spread of 6.7 cents. The adverse information component of the
spread is not an execution cost but a redistribution of income from unin-
formed to informed traders. Active informed traders who place market
orders impose losses on suppliers of immediacy, and active uninformed
traders pay enough to cover the costs of supplying immediacy plus the
losses of immediacy suppliers to informed traders, a point first made by
Bagehot (1971).

Different demanders of immediacy incur different execution costs. One
expects that securities firms and informed investors who trade actively incur
smaller costs than uninformed public investors. Different suppliers of im-
mediacy also earn different revenues. Securities firms must earn enough
to cover their costs, and limit orders can be expected to earn less. Trading
strategies may be able to reduce trading costs for any particular market
participant. An appropriate standard against which execution costs should
be measured is the average realized half-spread across all trades (perhaps
categorized by trade size), for it reflects the market-wide out-of-pocket
costs.

6. RECONCILING REVENUES OF IMMEDIACY SUPPLIERS
AND THE ROLL IMPLIED HALF-SPREAD

Another well-known measure of execution costs was proposed by Roll
(1984). Roll shows that the presence of a bid–ask bounce induces negative
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serial covariance in price changes. He calculates an implied spread from
the observed serial correlation of price changes under an assumed price-
generating process. The Roll implied half-spread is −cov,  where cov is the
serial covariance of successive price changes. Using daily data for the NYSE
and the AMEX stocks in the period 1963 to 1982, Roll calculates an implied
spread of 0.298%, or about 8.9 cents on a $30 stock. He interprets his result
as a measure of the effective spread at which transactions actually occur.
Roll’s measure is particularly useful if data on bid and ask prices, which
are required for the other execution cost measures, are not available. Like
the reversal measure of trading costs, the implied half-spread is a prospec-
tive measure in the sense that it depends on price changes after the trade.

Under Roll’s (1984) assumptions that quotes don’t change in response
to trades, his implied half-spread equals the effective half-spread. But
quotes do respond to trades, and this fact causes the Roll implied spread
to be greater than the realized spread. Stoll (1989) modifies the Roll (1984)
model to allow quotes to adjust in response to trades. Huang and Stoll
(1997) provide a general framework that incorporates the Roll (1984) and
Stoll (1989) models as special cases.

We can analyze the relation between the effective half-spread, the Roll
implied half-spread, and the realized half-spread by using the following
model of transaction price changes from Huang and Stoll (1997):

∆p
S

Q Q
S

Q et t t t t= −( )+ +− −2 21 1λ (6)

where S is the effective spread, Qt = –1 if the trade is at the bid and 1 if the
trade is at the ask, λ is the fraction of the effective half-spread by which
quotes adjust in response to a trade, and et is the random error reflecting
unanticipated news events, etc. Huang and Stoll (1997) show that this model
yields the following serial covariance in price changes derived in Stoll
(1989):
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where ρ is the probability of a price reversal. Roll assumes λ = 0, ρ = 0.5,
which results in cov = –S2/4. Solving for the effective half-spread gives
1
2 1S p pt t= − ( )−cov ,∆ ∆ , as indicated above.

By taking the conditional expectation of equation (6), the model also
yields the following expected price change14:

E p Q SQt t−1∆ t−1( ) = −






2

λ
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Under the Roll assumptions, λ = 0, ρ = 0.5, the expected reversal is π = 0.5S,
the effective half-spread. However, we expect in general that 0 < λ < 1 and
0.5 < ρ < 1. Under these parameter restrictions, it will be the case that the
effective half-spread > Roll implied half-spread > realized half-spread; that is,
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S
p pt t2 1= − ( ) >−cov ,∆ ∆ π

We examine these implications by estimating the Roll implied half-
spread. We calculate a serial covariance for all trades in a given stock in a
given month as follows. For each trade, we determine the trade price, pt,
the most recent prior price, pt–1, and the next price, pt+1. The trade at time t
with price pt takes place on the NYSE, and the other trades may take place
on any exchange. The three prices provide two price changes, and we use
all such pairs of price changes to calculate one serial covariance, cov, for
each stock in each month:

cov = − −( ) − −( )



+E p p p p p pt t t t−11 ∆ ∆

where ∆p is the mean price change in the stock-month. Thus, there is one
covariance estimate for each stock-month. This contrasts with the other
execution cost measures, which are averages based on all eligible trades in
the stock-month.

The implied half-spread reported in table 11.6 is calculated as the square
root of the average covariance over all stock-months in each year. By tak-
ing the square root of the average, we avoid the downward bias, due to
Jensen’s inequality, present in the average of the square root of negative
covariances.15

In table 11.6, we report the average Roll half-spread by year and for trade
size categories. Roll’s measure does not provide execution costs at specific
price locations. In contrast, the reversal measures are meaningful only when
calculated for specific price locations. As predicted, the implied half-spread
is less than the quoted or the effective half-spread in table 11.5 and greater
than the realized half-spread in table 11.3. For example, in 1991, the over-
all implied half-spread was 4.2 cents, whereas the effective half-spread was
6.7 cents. The realized half-spread was about 2.5 cents. These differences
reflect the fact that prices do not bounce back by the full amount of the
effective half-spread. Since trades convey information, prices tend to move
in the direction of the trade, attenuating the bid–ask bounce. There is some
tendency for Roll’s spreads to increase with trade size but, with the excep-
tion of 1991, the tendency is not strong. Roll’s spreads have also declined
over time for small and medium trade size categories.

The differences between the Roll implied half-spread and the realized
half-spread are not likely to be due to differences in the estimation pro-
cedures or to statistical problems such as those raised by Harris (1990).
The covariance underlying the Roll measure is based on successive trade
prices, whereas the reversals are based on trade prices that are 5 or
30 minutes apart. Since successive price changes are more likely to be
positively correlated, and since positive serial correlation reduces Roll’s
spread, this is not an explanation for the larger Roll spread. The reversal
calculations also omit trades inside the quotes, whereas the covariance
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is calculated over all trades. Since trades inside the quotes are unlikely
to have bigger reversals than trades at the quotes, this is also not an ex-
planation for the larger Roll spread. Finally, as Harris has noted, the Roll
measure is likely to be biased downward, yet it still exceeds the reversal
measure.

7. MAXIMUM REVENUES OF IMMEDIACY SUPPLIERS

The realized half-spread measures the average price increase after a trade
at the bid or the average price decrease after a trade at the ask. Some sup-
pliers of immediacy, such as professional market makers, may be better
able to anticipate price changes than others, such as public limit orders,
and therefore earn more than the average realized half-spread. Similarly,
some demanders of immediacy may pay a higher execution cost than the
average. We calculate a perfect foresight realized half-spread to measure
the maximum execution costs that an investor might pay. A supplier of
immediacy who has perfect foresight would trade so as always to earn the
subsequent price change. He would buy before the price goes up and sell
before the price goes down. The perfect foresight measure is useful in the
sense that it provides an upper bound on estimates of trading costs. It is
also useful for assessing the potential costs of trading inside the quotes.
Other measures give a zero cost of trading at the midquote, but this need

Table 11.6. Roll’s half-spread measure of execution costs
on the NYSE in 343 S&P 500 stocks by trade size and year
in the period 1987–1991 with October 1987 excluded.
The figures are in dollars per share. A small trade size
has 1,000 shares or less, a medium trade size has greater
than 1,000 but less than 10,000 shares, and a large trade
has 10,000 or more shares. Monthly averages are first
calculated across all stocks from the average values for
each stock, and the figures below represent means of the
monthly averages. An asterisk represents a p-value
greater than 5% using the t-test.

Trade Size

All Small Medium Large

Roll’s half-spread

1987 0.054 0.053 0.060 0.058

1988 0.049 0.048 0.052 0.049

1989 0.045 0.046 0.048 0.044

1990 0.045 0.045 0.043 0.049

1991 0.042 0.041 0.045 0.131*
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not be the case if the demander of immediacy trades with someone who
can anticipate the subsequent price change.

The perfect foresight realized half-spread is defined as the absolute price
change after a trade:

E p pt t+ −τ

where τ is 5 or 30 minutes. This is a measure of the maximum revenues
that a market maker could earn and as such serves as an upper bound on
the trading costs. Alternatively, this measure can be interpreted as the short-
run volatility of prices.16 Some authors, such as Hasbrouck (1993), have
taken unexplained short-run variability of transaction prices as a measure
of execution costs and the quality of a market. The perfect foresight price
reversal overestimates maximum execution costs because some of the ab-
solute price changes reflect the price volatility induced by new informa-
tion, and this overestimate will be greater the longer the time period over
which it is calculated.

The first two panels of table 11.7 present perfect foresight price rever-
sals for all the trades over 5-minute and 30–minute horizons. In 1987, the
average perfect foresight price reversal is 11.5 cents for the 5-minute hori-
zon and 20.2 cents for a 30-minute horizon. The corresponding values for
1991 are 8.1 cents and 14.3 cents. The 5-minute results are less than the
quoted half-spread reported in table 11.5. In other words, even a supplier
of immediacy with perfect foresight does not earn the quoted half-spread
over a 5-minute horizon. As expected, the perfect foresight reversal is sub-
stantially larger when calculated over the 30-minute horizon, but the like-
lihood that a supplier of immediacy would in fact be able to anticipate price
changes over this longer horizon is less.

There has been some decline over time in the perfect foresight half-
spread, but most of the apparent decline reflects the abnormally large
values of the absolute price change in 1987. The perfect foresight reversal
is somewhat larger for medium trades than for small trades, but, sur-
prisingly, it tends to be smaller for large trades than for small trades. The
process of prenegotiation of large trades and preblock trading seems to at-
tenuate the block’s posttrade price volatility.

The last three panels of table 11.7 provide data on the 5-minute perfect
foresight spread of trades at the ask, the bid, and the midpoint.17 A com-
parison of the three panels indicates that the perfect foresight half-spread
is roughly the same for trades at the midquote as for trades at the quotes.
For example, in 1991, the average absolute 5-minute price change after a
midpoint trade was 7.9 cents, which compares with absolute price changes
of 7.8 and 8.1 cents after trades at the ask and the bid, respectively. Mea-
suring execution costs by the effective spread (as in Lee (1993) and Petersen
and Fialkowski (1994), for example) assumes that trades at the midquote
incur no trading costs, but this need not be the case if market makers can
anticipate the near term price change. If market makers can anticipate near-



Table 11.7. Perfect foresight price reversal measure of
execution costs on the NYSE in 343 S&P 500 stocks by
trade size and year in the period 1987–1991 with October
1987 excluded. The figures are in dollars per share. A
small trade size has 1,000 shares or less, a medium trade
size has greater than 1,000 but less than 10,000 shares,
and a large trade has 10,000 or more shares. Monthly
averages are first calculated across all stocks from the
average values for each stock, and the figures below
represent means of the monthly averages. All the estimates
are significantly different from zero using the t-test.

Trade Size

All Small Medium Large

5-minute |∆P|, all trades

1987 0.115 0.114 0.119 0.106

1988 0.087 0.085 0.092 0.082

1989 0.081 0.079 0.085 0.074

1990 0.084 0.082 0.088 0.078

1991 0.081 0.080 0.085 0.074

30-minute |∆P|, all trades

1987 0.202 0.199 0.210 0.195

1988 0.146 0.144 0.152 0.146

1989 0.138 0.135 0.145 0.136

1990 0.146 0.144 0.151 0.143

1991 0.143 0.141 0.150 0.143

5-minute |∆P|, trades at bid

1987 0.120 0.119 0.122 0.107

1988 0.087 0.086 0.091 0.080

1989 0.079 0.078 0.083 0.074

1990 0.080 0.079 0.085 0.076

1991 0.081 0.081 0.085 0.075

5-minute |∆P|, trades at ask

1987 0.115 0.113 0.117 0.104

1988 0.088 0.087 0.093 0.082

1989 0.081 0.079 0.085 0.073

1990 0.081 0.080 0.086 0.075

1991 0.078 0.077 0.083 0.073

5-minute |∆P|, trades at midpoint

1987 0.108 0.107 0.111 0.100

1988 0.082 0.082 0.084 0.075

1989 0.078 0.077 0.080 0.070

1990 0.083 0.083 0.085 0.072

1991 0.079 0.078 0.080 0.072
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term price changes, they can earn as much from trades at the midquote as
from trades at the bid or ask. We thought that posttrade volatility would
be greater for trades at the bid or ask than for trades inside the quotes, but
this does not appear to be the case.

8. CORRELATION AMONG EXECUTION COST MEASURES

The average execution cost measures do not tell us how much the vari-
ous measures covary across stocks. If the measures are highly correlated,
they can be assumed to reflect the same phenomena. If not, they can be
assumed to reflect different aspects of execution costs. However, caution
must be used in interpreting the correlations between pairs of execution
cost measures since some costs, such as bid–ask spreads, tend to have low
variation by construction. Moreover, the execution costs have different
temporal characteristics. Bid–ask spreads and effective half-spreads are
contemporaneous measures. Roll’s half-spread is measured in transac-
tion time. Realized and perfect foresight price reversals are measured in
calendar time.

We examine the correlations of execution cost measures after filtering
out the effects of price level and market activity on the measures. Let yi be
the monthly average execution cost measure for stock i in a particular year.
We first estimate the following cross-sectional regression for each year:

yi = a0 + a1pi + a2p2
i + a3Vi + ei (9)

where pi is the average of monthly stock prices for stock i, and Vi is the
natural logarithm of the average of monthly NYSE share volume of stock i.
The price-squared variable is used as an explanatory variable to capture
nonlinearities in the execution cost and price relation. We then examine
the correlations between the residuals from the regressions above for trans-
actions on the NYSE in 1991. These correlations of adjusted execution cost
measures avoid correlations that could be attributed to differences in vol-
ume and price.

The results reported in table 11.8 show that the contemporaneous mea-
sures—the half-spread and the effective half-spread—are positively cor-
related with each other. The correlation between the adjusted half-spread
and the adjusted effective half-spread is 0.593. The high correlation con-
trasts with those obtained by Petersen and Fialkowski (1994). The perfect
foresight spread is also correlated with the effective and quoted spreads
because more volatile stocks with larger absolute price changes also tend
to have larger spreads. The prospective measures—the implied spread and
the realized spread—are also positively correlated with each other. For
example, the correlation between the adjusted implied spread and the ad-
justed realized spreads at the bid and the ask exceed 0.58.

In contrast, the correlation between the contemporaneous and the
prospective measures are insignificantly different from zero or are nega-
tive. Specifically, negative correlations between the two sets of adjusted
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measures are unduly affected by a few outliers, and removing the outliers
produces correlations close to zero. The lack of positive correlation between
the contemporaneous and the prospective measures indicates that they
measure different aspects of execution costs.

9. SUMMARY

This study estimates the average per share revenues of immediacy suppli-
ers for 343 NYSE stocks continuously listed in the period 1987–1991 at about
2 to 3 cents per share. The estimate, which we term the realized half-spread,
is simply the average price increase after a trade at the bid, or the negative
of the average price decrease after a trade at the ask, estimated over hori-
zons of 5 and 30 minutes. We find that the realized spread, albeit small, is
consistent with data from an entirely different source—FOCUS reports filed
by securities firms with the Securities and Exchange Commission.

The data on securities firms’ revenues and trading volume also make
possible inferences as to the revenues of limit orders. Our inferences sug-
gest that limit orders are “picked off,” a result consistent with an equilib-
rium in which public investors choose limit orders and market orders so
as to equalize their costs on the margin. Securities firms earn greater reve-
nues per share than the average realized half-spread, and public limit or-
ders earn less than the average. Comparisons with the realized spread on

Table 11.8. Correlations between execution costs. The table shows the correlations
between various adjusted execution costs for all trade sizes in 1991. The adjusted
execution costs are residuals from regressing costs on the natural logarithm of NYSE total
share volume, NYSE trade price, and square of NYSE trade price. S denotes the quoted
spread, Z denotes half the effective spread, COV denotes the covariance of price changes,
Abs5 (Abs30) denotes perfect foresight 5-minute (30-minute) price change, Bid5 (Ask5)
denotes the 5-minute price reversals at the bid (ask), and Bid30 (Ask30) denotes 30–
minute price reversals at the bid (ask). The sample consists of 343 S&P 500 stocks that
were continuously listed on the NYSE between 1987 and 1991 and excludes data from
October 1987. An asterisk denotes insignificance at the 5% level.

S Z Abs5 Abs30 Bid5 Ask5 Bid30 Ask30

S

Z 0.593

Abs5 0.685 0.567

Abs30 0.592 0.399 0.905

Bid5 –0.140 –0.272 –0.279 –0.355

Ask5 –0.250 –0.356 –0.436 –0.511 0.498

Bid30 –0.123 –0.207 –0.242 –0.303 0.798 0.437

Ask30 –0.288 –0.422 –0.417 –0.482 0.448 0.858 0.313

Cov –0.219 –0.080* –0.362 –0.365 0.587 0.590 0.513 0.483
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the NASDAQ market indicate that suppliers of immediacy in that market
earned substantially more per trade than on the NYSE. This is because limit
orders are not allowed to provide immediacy on NASDAQ and because
NASDAQ dealers earned a larger reversal than NYSE firms.

The quoted half-spread [(ask – bid)/2] in 1991 averaged 11.1 cents, and
the effective half-spread [absolute value of (trade price – midpoint)] aver-
aged 6.7 cents. Two factors explain the difference between the quoted and
effective spreads. First, some quotes attract no trades. Second, many trades
take place at the quote midpoint. The realized half-spread is less than the
effective half-spread because prices move against suppliers of immediacy
(the adverse information effect). We also predict on the basis of Huang and
Stoll (1997) that Roll’s implied half-spread is less than the effective half-spread
but greater than the realized half-spread, and the data support this prediction.

Finally, we calculate the average absolute price change after a trade, a
measure we term the perfect foresight half-spread. This measure provides
an upper bound on the revenues of immediacy suppliers since only a trader
with perfect foresight could consistently predict the direction of the price
change. In 1991, the average perfect foresight half-spread, calculated over
a 5-minute horizon, was 8.1 cents, less than the quoted half-spread. Sur-
prisingly, the perfect foresight spread is approximately the same for trades
at the bid, at the ask, and at the midpoint, which suggests that knowledge-
able suppliers of immediacy are able to earn revenues from trades at the
midpoint, contrary to the assumption underlying the effective half-spread
that such revenues are zero.
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NOTES

1. Hasbrouck, Sofianos, and Sosebee (1993) provide an excellent description of the in-
stitutional arrangements that generate the data used in this and other studies based on NYSE
transaction data.

2. Quotes that are BBO (best bid or offer)-eligible are used to calculate the inside quote
across markets. Certain quotes are not used for this purpose (for example, preopening quote
indications or quotes that are not firm). Our ISSM data tapes also exclude autoquotes of the
regional exchanges. An autoquote provides no new information since it is simply calculated
by adding (subtracting) 1/8 to (from) the NYSE ask (bid) whenever the NYSE quote changes.

3. Lee and Ready (1991) recommend this rule.
4. The price reversal as a measure of market impact was first used by Scholes (1972).

See also Kraus and Stoll (1972).
5. Instead, we later report the results of perfect foresight price reversal, defined as the

absolute price change, which can be calculated for trades at the midpoint and compared to
trades at the quotes.
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6. By requiring a subsequent trade to be within a 5-minute interval, we reduce the sample
of eligible transactions, especially for low-volume stocks. However, we standardize on the
calendar time over which reversals are measured. The smaller sample does not introduce
bias as long as the average price change we are unable to observe is not systematically dif-
ferent from the average price change we do observe. We see no reason why this isn’t the
case. Bias might be introduced if the procedure forces us to eliminate stock-months (our
basic unit of observation) from our analysis. However, no stock-month was eliminated by
this procedure. We also calculated reversals on the basis of the first trade after 5 minutes or
30 minutes, which produced the same results.

7. From NYSE Fact Book.
8. See Stoll (1994) for details.
9. An alternative approach to the per share trading gains of firms (and limit orders) is

to estimate directly the realized half-spread after trades by firms (or limit orders). Unfortu-
nately, this is usually impossible because identification of the parties to a trade is not known.
However, limit orders can be identified in the TORQ data, and Simpson (1994) and Harris
and Hasbrouck (1996) provide some estimates of price reversals after limit order trades.

10. See Huang and Stoll (1996b), table 3.
11. Demsetz (1995) has pointed out the fact that revenues of specialists could be the same

as revenues of NASDAQ dealers, but this is unlikely from our data. The specialist would
be required to earn a reversal of more than the quoted half-spread.

12. Perold recommends a measure that is broader than the quoted spread, namely the
difference between the trade price and the price of the stock when the decision to trade was
reached. In other words, if an investor decides to sell the stock at 9 A.M. when its price is
$30 and actually sells the stock at 11 A.M. at a price of $29, the cost is $1. Keim and Madhavan
(1996) adopt this approach to measuring execution cost. The Perold approach includes the
quoted half-spread as a component, but it also includes any price changes between the
decision point and the trade point.

13. See Huang and Stoll (1994, 1997) for the response of quotes to trades and for esti-
mates of the adverse information component (and other components) of the spread.

14. We use the fact that E(Qt|Qt–1) = (1 – 2ρ)Qt–1.
15. Harris (1990) describes the Jensen inequality bias and biases arising from small

samples, both of which bias downward the estimated serial covariance.
16. One can also think of the perfect foresight price reversal as a measure of price con-

tinuity since it gives the average price change over 5 and 30 minutes. The NYSE calculates
the proportion of adjacent trades that are within a given range relative to the last price.

17. Only the 5-minute results are presented in table 11.6; the 30-minute results yield
qualitatively similar inferences.
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Black, Merton, and Scholes—Their
Central Contributions to Economics

Darrell Duffie

1. WHY THEY WON THE PRIZE

I will briefly summarize the central contributions to economics of Fischer
Black, Robert C. Merton, and Myron S. Scholes.

Of course, the contribution that first comes to mind is the Black–Scholes
option-pricing formula, for which Robert Merton and Myron Scholes were
awarded the Alfred Nobel Memorial Prize in Economic Sciences in 1997. I
have no doubt that, because of his key role in that far-reaching formula,
Fischer Black would have shared in that prize but for his untimely death.
In this chapter, I will address the contributions of all three of these excep-
tional economists simultaneously, rather than giving separate treatment
to Fischer Black. My goal is to give an objective and concise account of their
path-breaking research and what it has offered to the theory and practice
of economics.

2. SETTING THE STAGE

Finance is a large, richly interwoven, widely applied, and extremely ac-
tive area of economics. One of the central issues within finance is the valua-
tion of future cash flows. While there are important alternatives, a current
basic paradigm for valuation, in both academia and in practice, is that of
competitive market equilibrium: The price that will apply in the market is
that price which, taken as given by market participants, equates total de-
mand to total supply.

With 1997’s award to Robert Merton and Myron Scholes, three funda-
mental contributions to the theory of financial valuation that are based on
this paradigm of market equilibrium have now been closely linked to Nobel
Memorial Prizes. These are:

1. the portion of the Modigliani–Miller (1958) theory that deals with
the irrelevance of capital structure or dividend policy for the mar-
ket value of a corporation;

2. the Capital Asset Pricing Model (CAPM) of William Sharpe1 (1964);
3. the Black–Scholes (1973) option-pricing theory.
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The first and third of these contributions rely on the notion of market
equilibrium in only the weakest possible sense, known as “arbitrage reason-
ing.” If, under their respective assumptions, the valuation formulas provided
by these theories were not correct, then market participants would have
an opportunity to create an “arbitrage”; that is, to trade securities so as to
make unbounded profits with no initial investment and no subsequent risk
of loss. In particular, if the market price of a financial security were lower
than suggested by arbitrage reasoning, arbitrageurs would ask to buy it,
and in unbounded quantities. Conversely, if the market price were higher
than suggested by theory, arbitrageurs would want to sell, and the more
the better. In such situations, markets could not clear, and equilibrium
would be impossible. Such “arbitrages” are only prevented, in theory, when
the proposed valuation formulas actually apply.

While there are some close precursors in the literature, Modigliani and
Miller (1958) essentially established the modern foundation in finance for
arbitrage-based valuation reasoning. The Black–Scholes theory provided
an extremely powerful extension of arbitrage modeling to dynamic settings.

The assumptions of any model rarely (if ever) apply literally. What might
be an arbitrage in theory is sometimes difficult to carry out in practice. For
example, arbitrage-based valuation models often rely on the assumptions
of perfect information and the absence of transaction costs. No-arbitrage
arguments are so compelling, however, that financial economists encoun-
ter almost daily reference to the Modigliani–Miller and Black–Scholes theo-
ries as central points of departure for model building or reasoned discussion
of financial problems.

As shall be discussed below, even though the CAPM does not rely on
arbitrage reasoning, it also played a key role in the development of the
Black–Scholes formula.

3. ARBITRAGE PRICING OF OPTIONS

Before getting to the focal point of our story, the Black–Scholes formula, it
will be useful for readers that are newcomers to finance or unfamiliar with
stochastic calculus to see the basic idea of arbitrage-based option pricing
in the simplest possible setting. Ironically, this simple introductory model
was only developed, by William F. Sharpe, after the advent of the Black–
Scholes model.

Consider a financial security, say a traded stock, whose price today is
100 and whose price tomorrow will be either 102 or 98. Consider an op-
tion that grants its owner the right to purchase the stock tomorrow for 100.
If the stock price tomorrow turns out to be 102, the owner of the option
will (as we assume rationality and no transaction costs) exercise the right
to buy for 100 and thereby benefit from exercising the option to the extent
of a cash flow of 102 – 100 = 2. If, on the other hand, the stock price turns
out to be 98 tomorrow, the owner of the option will decline the opportu-
nity to buy at 100, and the option has no cash flow in that event.
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Suppose, to keep the numbers simple, that the overnight interest rate is
zero. At another interest rate, the following arguments would apply with
slightly different numbers.

We claim that, in the absence of arbitrage, the price of the option today
is 1. How can one be so precise in the absence of any additional informa-
tion? Is there no role in this for the risk preferences of market participants
or the probabilities that they assign to the event that the stock price goes
up? Let’s delay an answer to these questions for now.

Before directly addressing the arbitrage valuation, let us first find the
number a of shares of stock to buy and the amount b to borrow so that,
whether the stock price goes up or down, the net proceeds of the stock
portfolio with loan repayment are equal to the cash flow from owning one
option. This means that a and b must solve

102a – b = 2 (1)

98a – b = 0 (2)

The solution is a = 0.5 and b = 49. The net initial cost of this option-
replicating portfolio is 100a – b = 50 – 49 = 1. It seems unlikely that brokers
would quote a price other than 1 for the option if one can make a “syn-
thetic” version of its cash flows for a cost of 1.

In order to substantiate this claim, a simple proof by contradiction will
serve. Suppose that the option were actually trading at a price of p >1. If
this were true, an arbitrageur could sell the option for p and replicate, at
an initial cost of 1, the option’s future cash flows by purchasing 0.5 shares
of stock and borrowing 49. The net payoff tomorrow of the replicating
portfolio meets any cash flow demanded tomorrow by the purchaser of
the option, whether the stock price goes up or down. The arbitrageur has
netted an initial gain of p – 1 > 0 with no investment and no risk. This,
however, is an arbitrage! So, we must have p ≤ 1. If, however, p < 1, then
buying the option and selling the option-replicating portfolio (that is, short-
selling 0.5 shares of stock and lending 49) constitutes an arbitrage. Thus,
p = 1 is necessary for the absence of arbitrage. One can easily check that it
is sufficient for no arbitrage that p = 1.

Those new to this could test their understanding by solving the option
valuation problem for a nonzero interest rate. (A simple daily interest rate
below –2% or above 2% will not work. Why?)

Before we get to the actual Black–Scholes formula, let us revisit the role
in this simple option-pricing example of the risk preferences of investors
and the probabilities that they may assign to positive or negative stock
returns. A naive objection might be: How could the initial option price be
as little as 1, for example, if there is a 99% chance that the stock return will
be positive (in which case the option pays 2) and there are investors that
are relatively close to indifferent about bearing risk? The natural, and cor-
rect, reply is that preferences as well as beliefs about the likelihoods of two
states do indeed play a role because they determine the initial price of the
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stock and the interest rate. If, for example, an investor that is close to risk-
neutral believes that it is virtually certain that the stock price will be 102
tomorrow, then the initial price of the stock must be close to 102 today, not
100. As the stock price and interest rate vary with the preferences and be-
liefs of investors, so will the option price.

4. THE BLACK–SCHOLES FORMULA

Now we are ready to see how the Black–Scholes formula works.
In the Black–Scholes model, the price of a security, say a stock, is as-

sumed to be given at any time t ≥ 0 by Xt = x exp (αt + σBt), where x > 0, a
and σ > 0 are constants, and B is a standard Brownian motion.2 Riskless
borrowing and lending is possible at the constant continuously compound-
ing interest rate r. For future reference, x is the initial stock price, σ is re-
ferred to as the volatility of the stock, and, because E(Xt) = e(α + σ2/2)t, we call
µ ≡ α + σ2/2 the expected rate of return on the stock.

Consider an option that grants its owner the right, but not the obliga-
tion, to buy the stock at a given exercise date T and at a given exercise price
K. Trading is permitted at arbitrary frequency, and there are no transac-
tion costs. The information available to investors at any time t is the his-
tory of the stock price up to that time. Certain minor technical assumptions
apply.

Now, at what price will the option be sold, assuming that there are no
arbitrages? For purposes of future reference, let

C(x, r, µ, T, σ, K) = e–rTE[max (XT – K, 0)] (3)

denote the expected discounted payoff of the option for given parameters
(x, r, µ, T, σ, K). This is not, in general, the price of the option. Sprenkle (1961),
in effect, showed that

C x r T K xe N d x T e KN d x, T Tr T rT, , , , , , , ,µ σ µµ σµ( ) = ( )( )− ( )( )−− −( ) (4)

where N(·) is the cumulative standard normal distribution function and,
for any (x, y, T),

d x y T
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Stochastic calculus3 can be used to show the following fact: One can
invest a total of C(x, r, r, T, σ, K) at time 0 and, at each time t between 0 and
T, hold N(d(Xt, r, T – t)) shares of the stock, always borrowing or lending
cash flows as necessary to finance the position between 0 and T, and be
left at time T with a position in cash and stock whose market value is ex-
actly max (XT – K, 0), the payoff of the option. (This is analogous to the
replication strategy shown in section 3.)

From the definition (3) of C(·), this initial cost C(x, r, r, T, σ, K) of repli-
cating the option, called the Black–Scholes option-pricing formula, would
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be the expected discounted payoff of the option, if the mean rate of the re-
turn of the stock were the riskless rate r.

Using the same logic as in section 3, assuming that there are no arbitrages,
the option must trade in the market for its initial replication cost, C(x, r, r,
T, σ, K). If the option were selling for some amount p strictly larger than
C(x, r, r, T, σ, K), then one could sell the option, invest in the replicating
strategy, and take away an initial riskless profit of p – C(x, r, r, T, σ, K). The
net cash flow at expiration is zero since the payoff of the replicating strat-
egy precisely covers the claim against the option. This would be an arbi-
trage. Conversely, if p < C(x, r, r, T, σ, K), the opposite strategy of buying
the option and selling the replicating strategy is an arbitrage. Indeed, then,
the arbitrage-free price of the option is C(x, r, r, T, σ, K), which is familiar
from (4) as the Black–Scholes option-pricing formula.

As far as the sufficiency of the Black–Scholes formula for the absence of
arbitrage, one must place only some reasonable limits on the class of al-
lowable trading strategies. For example, as shown by Dybvig and Huang
(1988), it is enough to insist that an investor should not be given unlimited
credit.

5. HISTORY OF THE BLACK–SCHOLES FORMULA

The best two available written sources on the history of the development
of the formula are Black (1989) and Bernstein (1992), the latter being based
on extensive interviews of those involved. The accounts given in these two
sources are consistent with each other, with other published sources in-
cluding the published form of the original paper by Black and Scholes (1973)
presenting the formula, and with what has been told to me anecdotally.
The story goes roughly as follows.

Fischer Black, one of many who had looked at this problem,4 began with
the idea of applying the Capital Asset Pricing Model at each instant of time
for investments over an infinitesimally small period of time. This allowed
him to derive a partial differential equation (PDE) for the option price
c(x, t) that would apply at any time t < T and at any stock price x for that
time. This now famous PDE is

c x t c x t rx c x t x rc x tt x xx, , , ,( )+ ( ) + ( ) − ( ) =
1
2

02 2σ (5)

where subscripts indicate partial derivatives in the customary way, with
the obvious boundary condition

c(x, T) = max (x – K, 0) (6)

Black had found this PDE by 1969 or earlier but could not initially solve
it. He did note, however, that the solution could not allow any role for the
coefficient µ, the expected rate of return on the stock! With this in mind,
Black and Scholes teamed up at MIT. They noted that since the PDE did
not involve µ, any expected return for the stock would generate the same



Black, Merton, and Scholes—Their Central Contributions to Economics 291

option price, including the riskless rate of return r. Then they noted that if
the stock could be treated as having a riskless rate of return, then, by ap-
plying the CAPM instant-by-instant, so could the option because (under
the assumption that the option price is a smooth function of the stock price)
changes in the option and stock prices over infinitesimal periods of time
are perfectly correlated. Using Sprenkle’s calculation (4), this would imply
the explicit option valuation C(x, r, r, T, σ, K), the discounted expected
payoff of the option that would apply if the stock had the riskless expected
rate of return r and if the option payoff could be discounted at a risk-free
rate. Sure enough, this solution satisfied the PDE (5).

As Black (1989) put it, referring to himself and Scholes, “We had our
option formula.” He continued, “As we worked on the paper, we had long
discussions with Robert Merton, who was also working on option valua-
tion. Merton made a number of suggestions that improved our paper. In
particular, he pointed out that if you assume continuous trading in the
option or stock, you can maintain a hedged position between them that is
literally riskless. In the final version of the paper, we derived the formula
that way, because it seemed to be the most general derivation.” This gen-
erous acknowledgment of Merton’s contribution to the more general deri-
vation, indeed the derivation that truly revolutionized modern financial
theory, is consistent with the acknowledgment of Merton’s contribution
given in Black and Scholes (1973) (in their footnote numbered 3). To be
precise, there is no need to rely, as Black and Scholes had originally, on
market equilibrium under the strong assumptions of the CAPM. Instead,
the simple assumption of no arbitrage would suffice. Merton’s no-arbitrage
argument appears, along with the CAPM-based argument, in the finally5

published form of Black and Scholes (1973).
In yet another source,6 Merton’s contribution is acknowledged, with

Black’s statement that “A key part of the option paper that I wrote with
Myron Scholes was the arbitrage argument for deriving the formula. Bob
gave us that argument. It should probably be called the Black–Merton–
Scholes paper.”

Merton went on to write his 1973 paper, “Rational Option Pricing,” an-
other landmark contribution that elaborated on the Black–Scholes approach
to option valuation in many ways. Merton generously attempted to delay
the publication of his own paper until the earlier paper of Black and Scholes,
after surprising resistance from journal editors, could finally be published
(apparently with the help of Merton Miller and Gene Fama) in The Journal of
Political Economy in 1973. Later, Merton (1977) derived a more theoretically
sound and concrete version of his replication argument, based on actual trad-
ing strategies rather than the more ephemeral notion of returns over “infini-
tesimal periods.” The argument sketched out in section 2 is essentially that
of Merton (1977), and is now the standard derivation.

There is an additional important contribution in Black and Scholes (1973).
They observed that because of limited liability, the equity of a corporation
may itself be treated as an option on the total asset value of the firm and
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thereby priced by the same methodology. This observation is at the core of
modern corporate finance and was apparently made independently by
Merton (1973a). Because Merton, having overslept, missed a presentation
of this idea by Black and Scholes, neither team was aware of the other’s
progress on this problem.

6. THE SIGNIFICANCE OF BLACK–SCHOLES TODAY

The option-pricing methods of Black, Merton, and Scholes are now being
taught to almost every MBA student and to most graduate, and many under-
graduate, students in economics. Many investors and major corporations use
these methods for planning, purchasing, pricing, or accounting purposes.
In addition to valuing straight put and call options, corporations use
Black–Scholes modeling to value executive stock compensation plans, real
production options, warrants, convertible securities, debt, and so on. (In
fact, for many of these applications, the methods are sometimes applied
inappropriately.)

Before the advent of Black–Scholes, option markets were sparse and
thinly traded. Now they are among the largest and most active security
markets. The change is attributed by many to the Black–Scholes model since
it provides a benchmark for valuation and (via the arbitrage argument) a
method for replicating or hedging options positions. One now can buy
options on most of the major exchange-traded commodities, foreign curren-
cies, stock indices, and government bonds. None of these markets existed in
any active form before 1973. Over-the-counter options can be obtained from
major investment banks on almost any important index, even if there is no
commodity or security underlying the index.

The Black–Scholes approach has been extended to a wide variety of in-
struments with embedded options such as caps, floors, collars, collateral-
ized mortgage obligations, knockout options, swaptions, lookback options,
barrier options, compound options, and the list goes on and on. Indeed,
there is nothing that restricts the approach to options, as opposed to other
contingent claims. For example, the same arguments used in the previous
section apply for a contingent claim paying g(XT) at time T for any func-
tion g:[0, ∞) → R satisfying technical conditions. One merely substitutes
the PDE boundary condition (6) with c(x, T) = g(x). In many cases, of course,
the contingent claim’s price cannot be computed explicitly, and it is now
standard operating procedure to use such numerical techniques as finite-
difference solution of the associated PDE or Monte Carlo integration of the
associated “risk-neutral” expectation. Almost every major bank and trading
firm has a team of specialists that use advanced Black–Scholes methods.
All of these methods have their genesis in the work of Black, Merton, and
Scholes.

Aside from their use in pricing, the methods developed by Black, Merton,
and Scholes are widely applied to financial risk management. The idea that
the option can be priced by finding a trading strategy that replicates its
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payoff is frequently used to hedge a given security, or even to hedge a given
cash flow that is not traded as a security. If one is to receive an untraded
option payoff, for example, the risk inherent in that payoff can be eliminated
by selling the replicating strategy previously described. This converts the
risky cash flow at expiration into an initial cash flow. Indeed, the ability to
hedge the value of an option on the entire S&P 500 portfolio in this manner,
under the rubric of “portfolio insurance,” was accused by some of having
contributed significantly to the stock market crash of 1987. Investment banks
routinely sell securities with embedded options of essentially any variety
requested by their customers and then cover the combined risk associated
with their net position by adopting dynamic hedging strategies.

The approach of Black, Merton, and Scholes also allows one to use mar-
ket option price quotations as a gauge of market volatility. For example,
the Black–Scholes formula C(x, r, r, T, σ, K) can be inverted to recover the
volatility parameter σ implied by the option price. The fact that volatility
is not actually constant, but rather varies over time with uncertainty, has
instigated a new generation of option-pricing formulas allowing “stochastic
volatility” but based on the same Black–Scholes approach.

In addition to these important practical applications (pricing, synthesis
of untraded cash flows, hedging, and information discovery), the option-
pricing work of Black, Scholes, and Merton has led to important theoretical
work on optimal portfolio choice and multiperiod equilibrium in financial
markets. The key to this work is the observation that, in a Black–Scholes
setting, one can replicate not only the opton payoff but any stream of cash
flows that depends on the path taken by the stock price. The required ini-
tial investment is the expected discounted cash flow after replacing the
expected return of the stock with the riskless rate of return. Harrison and
Kreps (1979) later obtained an essentially definitive extension of the Black–
Scholes model and the general notion of “risk-neutral valuation,” follow-
ing in part on ideas appearing in Cox and Ross (1976). The Harrison–Kreps
generalization of the Black–Scholes modeling approach allowed Cox and
Huang (1989) to give important extensions of Merton’s (1971) model of
optimal portfolio choice in a multiperiod setting.7 The idea is that the dy-
namic program that Merton solved can be replaced with a static calculus-
of-variations problem. One merely replaces the complicated dynamic
budget constraint with a static constraint that the expected discounted
consumption payoff of the investor (after replacing the expected rate of
return on all securities with the riskless rate) must be equal to the initial
wealth of the investor. This approach applies not only in Merton’s setting
but in significantly more general settings.

The replication arguments used to derive the Black–Scholes formula have
also been applied to general equilibrium modeling in multiperiod financial
markets. Arrow (1953) showed that security markets are an efficient method
for allocating risk because they allow one to replace a complete set of con-
tingent claims markets with a sparser set of financial security markets.
The payoff of any contingent claim can be replicated by a portfolio of basis
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securities. His one-period model has been extended in a series of papers
by various authors to multiperiod settings by using the dynamic replica-
tion arguments used to prove the Black–Scholes formula. Literally, an
infinite-dimensional space of possible consumption streams that investors
might wish to obtain can be synthesized by trading a small number of se-
curities. This allows one to convert a complicated multiperiod general
equilibrium problem into a single-period problem.

With some additional concepts, many of these ideas apply even if there
are not enough securities to replicate every possible consumption stream,
a situation known as “incomplete markets.”

7. OTHER MAJOR CONTRIBUTIONS

As indicated in part by the attached list of publications, Black, Merton, and
Scholes are responsible for a tremendously large and important body of
ideas and papers going well beyond the Black–Scholes formula. I have listed
below only those that I think of as extremely important to the development
of financial markets or theory. Even without any of these additional con-
tributions, the discovery of the Black–Scholes formula and the method by
which it was derived constitute an exceptionally strong justification for the
award of the Nobel Memorial Prize in Economic Sciences.

1. Black (1972) developed an extension of the Capital Asset Pricing
Model that applies without the existence of a riskless security. The
new “zero-beta” model replaces the riskless rate of return in the
famous “beta formula” with the expected rate of return on a port-
folio uncorrelated with the market portfolio.

2. Black (1976) examined the pricing of commodity contracts and, in
particular, extended the Black–Scholes model to the case of options
on futures or forwards.

3. Black, Derman, and Toy (1990) developed a model of the valua-
tion of term-structure securities (those whose payoffs depend on
the history of the term structure of interest rates) that is now an
industry standard. The model is in broad spirit much like the
Black–Scholes model, in its binomial form developed by Cox, Ross,
and Rubinstein (1979), and has important computational advan-
tages in everyday work on “Wall Street.” An important aspect of
the model is the fact that it is constructed so that, in principle, its
parameters can be computed from the current term structure and
from the current prices of options on Treasury bonds, much in the
way that the volatility parameter of the Black–Scholes model can
be computed from the option price.

4. Merton (1969, 1971) found a path-breaking method of solving
the problem of optimal consumption and portfolio choice in
a continuous-time setting. His method involved reduction of
the problem to a partial differential (Hamilton–Jacobi–Bellman)
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equation for the investor’s indirect utility function for wealth. This
formulation, a breakthrough in its own right, may well have in-
fluenced the way that Black and Scholes approached the option-
pricing problem, in choosing a continuous setting with the same
stock price model assumed by Merton, and reducing the valua-
tion equation to a PDE. To this day, there is a virtual industry of
researchers extending Merton’s model in many different ways.
Merton’s model is also widely referred to among specialists work-
ing in mathematics as the best and most elegant textbook example
of a stochastic control problem.

5. Merton (1973b) offered the first major extension of equilibrium
capital asset pricing theory to a multiperiod setting. By taking the
approach used in his 1971 paper on optimal investment and con-
sumption behavior, and allowing for a multivariate Markov state
process for the market environment, Merton was able to show how
the equilibrium expected rate of return of a given security depends
not only on the covariance of the return with that of the market
portfolio (as in the one-period CAPM) but also on the covariance
of the return with changes in the state variables of the economy.
This is the essence of the dynamic equilibrium problem: Investors
are concerned not only with their wealth in the next period but
also with how their opportunities to generate wealth in much later
periods will depend on state variables in the next period. Breeden
(1979), based in part on work by Rubinstein (1976), was later able
to reduce Merton’s solution to an elegant formula showing that
the multiperiod CAPM is in fact the same as the Sharpe–Lintner
CAPM once one substitutes covariance between returns and aggre-
gate consumption for covariance between returns and aggregate
wealth (the payoff of the market portfolio). (Of course, aggregate
consumption and aggregate wealth are the same in the one-period
setting of Sharpe–Lintner.)

6. Among Merton’s most important extensions of the Black–Scholes
formula are: (i) his work on American options and on options on
stocks paying dividends, among many other applications, in
Merton (1973a); (ii) his extension to the case of discontinuous stock
price processes in Merton (1976), which is important also for show-
ing that the model would not in the future be confined to the set-
ting of Brownian motion; and (iii) the conversion in Merton (1977)
of the original Black–Scholes–Merton no-arbitrage pricing argu-
ment from one based on instantaneous returns to one based on dy-
namic replicating strategies.

7. Scholes did important work on dividends and their impact on the
valuation of common stock in Black and Scholes (1974), Miller and
Scholes (1978), and Miller and Scholes (1982].

8. Scholes and Williams (1977), in a study of how to estimate betas
(in the sense of the CAPM) from nonsynchronous data, provided
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an important and widely cited (and taught) contribution to em-
pirical methods in finance.

9. Scholes is one of the leading experts on employee stock compen-
sation plans. His textbook Taxes and Business Strategy (1992), co-
authored with Mark Wolfson, is the first of its kind in a critical and
understudied area of finance.
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NOTES

1. The work of John Lintner (1965) is also often cited.
2. Underlying the model is a probability space. On this space, B0 = 0, Bt – Bs is normally

distributed with zero expectation and variance |t – s|, and the increments of B are inde-
pendently distributed. Except for technicalities that can be found, for example, in Karatzas
and Shreve (1988), these properties define a standard Brownian motion. It is noteworthy
that Brownian motion was first given an effective definition by Bachelier (1900) in a study
of security price behavior that included an option-pricing formula not entirely unlike that
of Black and Scholes.

3. Karatzas and Shreve (1988) offer a good textbook treatment of stochastic calculus.
4. Those who had attacked some version of the problem prior to Black and Scholes in-

cluded Bachelier (1900), Sprenkle (1961), Samuelson (1965), and Samuelson and Merton
(1969), who, in effect, derived the reservation price of an investor with a particular utility
function.

5. Because of the difficulty that Black and Scholes had in getting their original paper
(1973) published, their second paper on this topic (1972) actually appeared in print before
the first.

6. See MIT Management, 1988, Fall, p. 28. This quote came to my attention in Bernstein
(1992, p. 223).

7. See also Karatzas, Lehoczky, and Shreve (1987).

REFERENCES

Arrow, K.: Le rôle des valeurs boursier pour la repartition la meilleure des risques.
Econométrie Colloques Internationaux du C.N.R.S. 40, 41–47, Paris, 1952; discus-
sion, 47–48, C.N.R.S., Paris, 1953; English translation: Review of Economic Stud-
ies 31, 91–96, 1964.

Bachelier, L.: Théorie de la speculation. Annales Scientifiques de l’Ecole Normale
Supérieure, troisième série 17, 21–88, 1900; translation in The Random Character
of Stock Market Prices, Paul Cootner (ed.), MIT Press, Cambridge, Mass., 1967.

Bemstein, P.: Capital Ideas: The Improbable Origins of Modern Wall Street. Free Press,
New York, 1992.

Black, F.: Capital market equilibrium with restricted borrowing. Journal of Busi-
ness 45, 444–454, 1972.

Black, F.: The pricing of commodity contracts. Journal of Financial Economics 3, 167–
179, 1976.

Black, F.: How we came up with the option formula. Journal of Portfolio Manage-
ment 15 (2), 4–8, 1989.



Black, Merton, and Scholes—Their Central Contributions to Economics 297

Black, F., Derman, E., and Toy, W.: A one-factor model of interest rates and
its application to treasury bond options. Financial Analysts Journal 7, 33–39,
1990.

Black, F., and Scholes M. S.: The valuation of options contracts and a test of mar-
ket efficiency. Journal of Finance 27 (May), 399–417, 1972.

Black, F., and Scholes M. S.: The pricing of options and corporate liabilities. Jour-
nal of Political Economy 81 (May/June), pp. 637–654, 1973.

Black, F., and Scholes M. S.: The effects of dividend yield and dividend policy on
common stock prices and returns. Journal of Financial Economics 1 (May), pp. 1–
22, 1974.

Breeden, D.: An intertemporal asset pricing model with stochastic consump-
tion and investment opportunities. Journal of Financial Economics 7, 265–296,
1979.

Cox, J. and Huang, C.-F.: Optimal consumption and portfolio policies when asset
prices follow a diffusion process. Journal of Economic Theory 49, 33–83, 1989.

Cox, J. and Ross, S.: The valuation of options for alternative stochastic processes.
Journal of Financial Economics 3, 145–166, 1976.

Cox, J., Ross, S., and Rubinstein, M.: Option pricing: A simplified approach. Jour-
nal of Financial Economics 7, 229–263, 1979.

Dybvig, P. and Huang, C.-F.: Non-negative wealth, absence of arbitrage, and fea-
sible consumption plans. Review of Financial Studies 1, 377–401, 1988.

Harrison, J. M. and Kreps, D.: Martingales and arbitrage in multiperiod securi-
ties markets. Journal of Economic Theory 20, 381–408, 1979.

Karatzas, I., Lehoczky, J., and Shreve, S.: Optimal portfolio and consumption de-
cisions for a “small investor” on a finite horizon. SIAM Journal of Control and
Optimization 25, 1157–1186, 1987.

Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus. Springer-
Verlag, New York, 1988.

Lintner, J.: The valuation of risky assets and the selection of risky investment in
stock portfolios and capital budgets. Review of Economics and Statistics 47, 13–
37, 1965.

Merton, R. C. : Lifetime portfolio selection under uncertainty: the continuous-time
case. Review of Economics and Statistics 51 (August), pp. 247–257, 1969.

Merton, R. C. : Optimum consumption and portfolio rules in a continuous-time
model. Journal of Economic Theory 3 (December) pp. 373–413, 1971; Erratum (1973),
pp. 213–214.

Merton, R. C. : Theory of rational option pricing. Bell Journal of Economics and Man-
agement Science 4 (Spring), pp. 141–183, 1973a.

Merton, R. C. : An intertemporal capital asset pricing model. Econometrica 41 (Sep-
tember), pp. 867–888, 1973b.

Merton, R. C.: Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics 3 (January-February), pp. 125–144, 1976.

Merton, R. C.: On the pricing of contingent claims and the Modigliani-Miller theo-
rem. Journal of Financial Economics 5 (November), pp. 241–250, 1977.

Miller, M. and Scholes, M.: Dividends and taxes. Journal of Financial Economics 6,
pp. 333–364, 1978.

Miller, M. and Scholes, M.: Dividends and taxes: some empirical evidence. Jour-
nal of Political Economy 90, pp. 1118–1141, 1982.

Modigliani, F. and Miller, M.: The cost of capital, corporation finance, and the
theory of investment. American Economic Review 48, 261–297, 1958.



298 The Legacy of Fischer Black

Rubinstein, M.: The valuation of uncertain income streams and the pricing of
options. Bell Journal of Economics 7, 407–425, 1976.

Samuelson, P.: Rational theory of warrant pricing. Industrial Management Review
6, 13–31, 1965.

Samuelson, P. A., and Merton, R. C.: A complete model of warrant pricing that
maximizes utility. Industrial Management Review 10 (Winter), pp. 17–46, 1969.

Scholes, M. S., and Williams, J.: Estimating betas for non-synchronous data. Jour-
nal of Financial Economics 5, pp. 309–327, 1977.

Scholes, M. S. and Wolfson, M. A: Taxes and Business Strategy: A Planning Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1992.

Sharpe, W.: Capital asset prices: A theory of market equilibrium under conditions
of risk. Journal of Finance 19, 425–442, 1964.

Sprenkle, C.: Warrant prices as indications of expectations. Yale Economics Essays
1, 139–232, 1961; reprinted in The Random Character of Stock Market Prices, Paul
Cootner (ed.), Cambridge, MA: MIT Press, 1967.



299

Index

abandonment put, 41, 47n.21
absolute smile model, 142–44, 147–49
accounting

Black on, 33, 43–44
definition of earnings, 43
and portfolio risk, 55, 60–61

active traders, 265–66
agency business, 53
agency theories of capital structure,

42
agents, markets for, 96–117
aggregation, 93n.6, 93n.8
AMEX, 167, 267
APT. See Arbitrage Pricing Theory

(APT) models
arbitrage

pricing of options, 287–89
riskless opportunities, 125
and risk-neutral probability

distribution, 132
tax in pension funding, 42–43,

47n.26
Arbitrage Pricing Theory (APT)

models, 9, 21, 161, 162, 170, 188
arbitrage reasoning, 287
Arrow-Debreu model, 22–23, 28
Asay, Michael, 227
asset class benchmark, 60, 93n.6
asset pricing, 21–30

linear, 188–90
models, 39, 163, 295
and volatility, 141, 143, 144–45
See also Capital Asset Pricing Model

at-the-money implied volatility, 150
average trading gain, 268

balance of payments, 14
balance sheet, 34, 36, 40, 50
Bank for International Settlements

(BIS), 51, 53

banks, 49
Bayesian updating, 29, 115
bearish view, 88, 89
best hedge position, 75, 83–84, 88, 89
Best Hedges report, 56, 82–83, 92
Best Replicating Portfolio, 56, 84, 92
beta, 46n.10

in cross-sectional regressions,
186n.12

estimation of, 36, 295
relationship with return, 35–36
time-varying or uncertain, 38
zero assets, 19, 20, 21
zero CAPM, 7–11, 12
zero rate, 13

Bibliography of Finance, A (Brealey and
Edwards), 3

bid-ask bounce, 274
bid-ask spread, 164, 166, 168, 256,

271–74, 280
binomial tree, 159

extension to include mean
reversion, 197, 199, 201

in forecasts of risk-neutral
probabilities, 141–44, 148, 149

implied, 128–29, 136–38, 141–44,
148, 149, 160n.4

recombining, 136, 199
in risk-neutral stochastic processes,

136–38
BIS. See Bank for International

Settlements
Black, Fischer, 187, 189, 194, 195–

96n.1
on accounting, 33, 43–44
on applied theory and empirical

work, 26
on consumption smoothing, 29
contributions to corporate finance,

33–44, 294



300 Index

Black, Fischer (continued)
contributions to financial

economics, 3–4, 96–97, 286, 294
contributions to international asset

pricing, 11–19
on corporate investment decisions,

36–39
discounting rule, 37, 38–39
on dividends, 42
on hedging, 18–19
implied volatility, 198, 208–9
theory of business cycles, 22
on valuation, 3–31
See also Black, Derman, Toy model;

Black-Scholes model
Black, Derman, Toy model, 197, 199,

201, 227, 294
Black-Scholes model, 40, 289–90

and Capital Asset Pricing Model,
19–21

contemporary significance of, 292–
94

economic causes of departure from,
140

as extension of arbitrage modeling,
287

history of, 290–92
of option pricing, 33, 129–32, 142–

50, 160n.2
and risk-neutral probabilities, 127,

132, 134, 150
and volatility, 131, 138–39, 143, 289

bonds, 17, 19, 26, 49–50, 90, 198, 201–2
book-to-market ratio, 164, 166, 186n.5
borrowing, 10
Brealey, Richard, 3
Brownian motion, 16, 295, 298n.2
bullish view, 88, 90
business cycles, 21–30

call options, 58, 127
Canabarro model, 210, 210n.1
capital, 22, 46n.2
Capital Asset Pricing Model (CAPM),

33, 156, 164, 189, 194, 195
anomalies in, 10
application to option valuation, 19
Black’s application of, 290, 291, 294
in general equilibrium, 3–31
global, 13, 18

international, 15, 18
linkage to Nobel Prize, 286
mean-variance analysis as basis for,

56
multiperiod, 295
pricing, 19–21, 23, 26, 161
progression to ICAPM, 30
Sharpe-Lintner, 4–10, 12, 14, 18, 21,

28, 295
and standard framework for

corporate finance, 34–36
zero beta, 7–11, 12, 294
See also ICAPM

capitalism, 24
capital market theory, 6
CAPM. See Capital Asset Pricing

Model
cap prices, 197, 198, 208
cash flow, 36–39, 46n.10, 46n.12, 286,

287, 293
CEV model, 129, 144–49
Chalke, Inc., 197
Chan model, 197, 210, 210n.1
commodity contracts, 294
common stock, 24, 295
competitive market equilibrium, 286
Connor-Korajczyk factors, 162, 163,

170–74, 177–79, 181–82, 186n.10,
188, 189, 191

consumption, 5, 8, 12, 21–22, 161, 294
consumption smoothing, 26–27, 29
continuous-time setting, 294
corporate finance, 33–44
corporate investment decisions, 36–39
correlation effect, 140
correlation matrix, 198, 199
counterintuitive views, 88–89
covariance matrix, 66, 94n.11, 94n.13,

162, 185n.1, 198, 203, 205–8, 210
credit spreads, 49, 50
crises. See financial crises
cross-sectional determinants, of

expected returns, 161–96
data, 166–70
empirical results, 170–81
Fama-MacBeth portfolio

regressions, 171–73
generalized least squares

regressions, 173–75
hypotheses, 165–66



Index 301

individual security Fama-MacBeth
regressions, 175–81

linear asset-pricing relations, 188–
90

measurement of risk premiums,
190–94

currency, 16, 62, 93n.5, 93n.7

data-snooping bias, 163
DCF. See discounted cash flow
debt, 41–42, 47n.24
debt-to-equity ratio, 140
decomposition of revenues, 265–71
default, 49
demand. See supply and demand
deposit insurance, 42
derivatives, 19–21, 26, 55, 65
differential taxation hypothesis, 165
diffusion-based option models, 144–

45, 148
diffusion process, 16, 19, 20, 21, 23, 26
Dimson procedure, 186n.18
disaggregation, 93n.6
discounted cash flow (DCF), 34, 35,

36–41, 46n.12, 47n.21
discounting rule, 37, 38–39
discount rates, 37, 38, 46n.12
displaced diffusion model, 144, 148
distribution, 128, 145, 153

of gains and losses, 57, 68
historical frequency, 129
lognormal, 132, 134, 136, 145,

160nn.2–3, 160n.5
of outcomes, 65, 68
recovered, 132
risk-neutral, 132–36, 150–51

diversification, 68
dividends, 10–11, 33, 42, 165, 166, 295
Dothan model, 197
duration risk adjustment, 212

economy, 129
Edwards, Helen, 3
effective half-spread, 272–75, 280, 281
efficient market, 33
employee stock compensation plans,

296
equilibrium

analysis, 104–6
arbitrage reasoning, 287

Capital Asset Pricing Model, 3–31,
295

competitive market, 286
fee structure, 107–9
in financial markets, 96
institutional instability of, 100–101
market for fund management, 101–

4
market risk premium, 106–7
models of financial, 125–26, 151–53
noisy rational expectations model,

97, 98–116
pooling, 114–16, 117
separating, 112–14, 115
and viable agents, 104–6

“Equilibrium in the Creation of
Investment Goods under
Uncertainty” (Black), 4–5

equity premium puzzle, 26
errors-in-variables problems, 163, 173
evidence, 31
exchange rate, 14, 15–17, 18, 19, 93n.5
exchanges, 256
execution costs, 257, 264, 273, 277–82,

285n.12
expectations, 27, 30
expected returns. See cross-sectional

determinants, of expected returns
expiration date, 128, 129, 141
explicit numerical technique, 199
exposure-accounting system, 50

factor analysis, 210n.4
factor loadings, 176
factor-pricing models, 161–96
Fama-French factors, 161, 162, 164,

165, 167, 170, 178, 180, 181,
185n.3, 186n.12

Fama-MacBeth procedures, 163, 171–
73, 175–83, 190, 192–94, 196n.6

Federal Reserve Bank, 48
fee structure, 107–9
finance

closed and open economy, 14
corporate, 33–44
data mining in, 10
international, 11–19
valuation of cash flow within, 286

financial asset flows, 14
financial crises, 48–54



302 Index

financial economics, 3–4, 25
financial institutions, 96–117
financial modeling, 48
financing, 41–42
fixed income, 93n.8

accounting approach, 60–61
Best Hedges report, 82–83
Best Replicating Portfolio, 84, 86
implied views for, 90, 91
market exposure summary, 85
Markovian, lognormal models for,

197–209
portfolio hot spots, 80
stress tests for Eurodollar futures

and options, 62
flexibility, 40
FOCUS (Financial and Operational

Combined Uniform Single)
report, 267, 268, 271, 281

four-standard-deviation rule, 58, 66,
93n.5

fund management, 96–117
fuzziness, 41

gains and losses, 57
general equilibrium, 3–31
generalized least squares regressions,

173–75, 196n.6
geometric random walk, 37, 46n.12
gestation lags, 22
global asset allocation, 97
global equity portfolio, 59, 60, 66, 75,

82
global volatility, 137–38
Goldman Sachs, 18, 55, 56, 58, 60, 61,

66, 76, 77, 83, 87, 224–26, 240–41
Gorgias, 31
“Greek letter” exposures, 61, 63
Green’s functions, 201

Harrison-Kreps generalization, 293
hedging

best hedge position, 75, 83–84, 88,
89

Black’s work on, 18–19
of currency exposures, 93n.7
exchange rate, 17, 19
Markovian, lognormal model, 197–

209
of mortgage securities, 212–54

on options, 293
portfolio, 56, 75, 83–84, 88, 89, 92
of risks, 53, 68, 71–72, 75

historical frequency distributions, 129
historical simulations, 66, 67
Hot Spots report, 77–80, 86–87, 92
human capital, 22, 23, 24

ICAPM, 23, 24–25, 30
IMF. See International Monetary Fund
immediacy, 195–96n.1, 256–82
implied binomial tree, 128–29, 136–38,

141–44, 148, 149, 159, 160n.4
implied half-spread, 257, 274–77, 280,

281
implied views, 56, 87–90, 92
implied volatility smile model, 129–

32, 143
independent state variables, 198, 202
individual security Fama-MacBeth

regressions, 175–81
information flows, 8, 20, 28
institutional investors, 166, 257
interest-only strips (IOs), 212–14, 216–

30
broker forecasts and empirical

option costs, 235–41, 243
empirical price and duration

functions, 230–35
option-adjusted spreads, 216–17,

222–23
predictions of risks, 227–30

interest rates
and arbitrage pricing of options, 288
and prepayment of mortgage

securities, 212–54
riskless, 5, 7
term structure of, 197–209, 211nn.6–

7, 294
international asset pricing, 11–19
International Monetary Fund (IMF),

52
IOs. See interest-only strips
irrational pricing, 36

Jensen’s inequality, 17, 276, 285n.15
J.P. Morgan (co.), 224, 225, 240–41
jump-diffusion model, 143–45, 147,

148
jumps, 140



Index 303

left skewness, 128, 139, 145, 150, 159
leptokurtosis, 128, 145, 159
leverage, 46n.9, 52, 140
LIBOR. See London Interbank Offered

Rate
limited-information model, 166
limit orders, 196n.1, 256, 265–71,

285n.9
linear approximation, 56, 57
linear asset pricing, 188–90
linear payoff, 58, 59
Lintner, John, 46n.4, 297n.1
liquidity, 48–54, 164, 165–66, 195–

96n.1
liquidity premium, 272
lognormal distribution, 132, 134, 136,

160nn.2–3, 160n.5
lognormal model, 197–209
London Interbank Offered Rate

(LIBOR), 49–50, 198, 203, 215
Long-Term Capital Management

(LTCM), 48–49
losses. See gains and losses; profits

and losses; whipsaw losses
LTCM. See Long-Term Capital

Management

macroeconomic factors, 38, 47n.15,
161, 162, 185n.1

marginal analyses, 90
market exposure, 83–84, 92
Market Exposure report, 56, 84, 85
market portfolio, 127
market risk premium, 106–7
market-value balance sheet, 34
market-value maximization, 34
Markovian, lognormal model, 197–209
Markowitz, Harry, 56
matched book business, 53
maximum entropy criterion, 135
maximum smoothness criterion, 128,

135
MBS. See mortgage-backed securities
mean reversion, 37, 197, 198, 199, 201
mean-variance analysis, 56
mean-variance-efficient portfolio, 6,

8–9, 18, 19, 186n.21
Merton, Robert C., 286, 291, 292, 293,

294–95
Merton’s ICAPM, 23, 295

Merton’s option valuation model, 21,
291

minimum-variance portfolios, 13
model whipsaw, 217, 243, 254
Modern Portfolio Theory, 56, 97
Modigliani-Miller theory, 286, 287
Monte Carlo models, 66, 227, 292
mortgage-backed securities (MBS),

213, 220–23, 226–27, 229, 242–43
mortgages

broker forecasts and empirical
option costs for interest-only
strips, 235–41

convexity and empirical option
costs, 212–54

empirical interest-only price and
duration functions, 230–35

environment and brokers’ forecasts,
213–26

predictions of risk in interest-only
strips, 227–30

prepayment, 212–17, 224, 227–30,
242

spreads, 49
mutual funds, 97

naïve trader models, 129, 142, 143,
146, 149, 159

NASDAQ Stock Market, 167, 265, 269,
270–71, 281, 285n.11

negative skewness, 140, 212
“neglected firm” effect, 186n.9
net present value (NPV), 40
New York Stock Exchange. See NYSE
noise, 9, 29, 42
noisy rational expectations model, 97,

98–116
nonlinear payoff, 58, 59, 61
NPV. See net present value
NYSE (New York Stock Exchange),

166, 168, 176, 181, 256–82

October, 1987, stock market crash, 27–
28, 93n.4, 127, 140, 293

one-dimensional, recombining
binomial tree, 199

one-factor, Markovian, lognormal
model, 197, 199–202

option-adjusted durations, 216, 218–
20, 230–35, 246–47, 250–52



304 Index

option-adjusted spreads (OAS), 215–
17, 222–24, 244–45

option costs (whipsaw costs), 217, 221–
26, 229, 235–43, 248–49, 253–54

option risk adjustment, 212
options

arbitrage pricing of, 287–89
call, 58, 127
hedging on, 293
Merton’s work on, 21, 291, 295
pricing models, 20, 39, 40–41, 48,

125–59
put, 52, 127, 129, 156, 158
real, 39–41
valuation, 19, 20
See also Black-Scholes model

out-of-the-money puts, 129, 156, 158

partial differential equation (PDE),
290–91, 292, 294–95

participation rate, 268
passive traders, 265–66
PDE. See partial differential equation
pensions, 42–43, 47nn.26–27
perfect foresight price reversal, 278–

79, 285n.5, 285.16
perfect foresight realized half-spread,

257, 278–82
Perold approach, 285n.12
physical capital, 22, 24
portfolio

analysis tools, 56, 77–92
cross-sectional determinants of

expected returns, 161–96
effects, 35
fixed-income, 197
formation, 163, 181, 186n.15
global equity, 59, 60, 66, 75, 82
hedges, 56, 75, 83–84, 88, 89, 92
“hot spots,” 77–81, 84, 86–87, 92
implied views of, 56, 87–90, 91, 92
market, 127
mean-variance-efficient, 6, 8–9, 18,

19, 186n.21
measures of risk, 57–59
minimum-variance, 13
optimal, 90, 92
proprietary, 61, 63, 64, 67, 68
quantitative management, 18
replicating, 84, 86–87

risk analysis, 56–57
risk management, 55–95
selection, 46n.4
theory, 53, 57, 96
understanding risk, 59–68
volatility, 55, 56, 66, 68–77,

94nn.14–15
world market, 13
zero beta, 19

POs. See principal-only strips
positive skewness, 212
present value of growth

opportunities, 40
price-earnings ratios, 43
price elasticities. See option-adjusted

durations
pricing factors, 161–96
principal-only strips (POs), 212–14,

227–29
probabilities, 125–59, 201
probability of shortfall, 94n.18
production, 5, 22
profits and losses, 51, 63, 64, 65, 68
proprietary portfolio, 61, 63, 64, 67, 68
Prudential (co.), 224–25
put-call parity, 41
put options, 52, 127, 129, 156, 158
PVGO (present value of growth

opportunities), 40

quadratic optimization, 128
quoted half-spread, 271–74, 281,

285n.12

R&D. See research and development
“Rational Option Pricing” (Merton), 291
realized half-spread, 257, 262–67, 274–

82, 285n.9
realized spread, 257, 262, 272, 280–81
real options, 39–41
relative price, 41
relative smile model, 142–44, 147–49
research and development, 40, 41
reverse repurchase agreement

(reverse REPO), 49, 50
risk

analysis, 56–57
asset, 47n.24, 56
aversion, 26–27, 29, 98, 102, 109–10,

125–59



Index 305

cross-sectional determinants of
expected returns, 161–96

decomposition, 56, 68, 72–79,
94n.17, 95n.21

definition, 57
effect, 140
hedging, 53, 68, 71–72, 75
incremental impact on, 94n.17
in interest-only strips, 227–30
market price, 27
measures, 57–59
monitoring, 56, 68–77
premiums, 18, 25–26, 97, 106–7,

190–94, 196n.9
reduction potential, 72
understanding, 59–68
volatility as measure of, 56, 58, 65,

74, 78, 79
See also risk management

risk-adjusted returns, 164
risk-free rate, 13, 26
riskless arbitrage opportunities, 125
riskless rate of interest, 5, 7
riskless return, 125–26
risk management, 50–54

accounting approach, 60–61
best hedge position, 75, 83–84, 88, 89
Black, Merton, Scholes methods of,

292–93
“hot spots,” 77–81, 84, 86–87, 92
portfolio, 55–95
Trade Risk Profile, 56, 70, 71, 75, 76,

79–82, 90, 92
versus risk monitoring, 56, 68–77

risk-neutral probabilities, 125–59
distributions, 132–36
empirical tests of alternative

forecasts, 141–50
risk-neutral valuation, 20, 293
risky assets, 4, 5, 8, 17, 19, 28, 98–100,

102, 109
Roll, Richard, 227
Roll implied half-spread, 257, 274–77,

280, 281
roundabout production, 22

Salomon Brothers, 197, 225
Scholes, Myron S., 286, 294, 295–96

See also Black-Scholes model
Sears, Timothy, 227

Security Market Line, 8, 13, 14, 19, 36,
38, 46n.9

Sharpe, William, 56, 286, 287
Sharpe-Lintner CAPM, 4–10, 12, 14,

18, 21, 28, 295
Siegel’s paradox, 18
size factor, 164, 165
small-firm effect, 10, 165
smiles and smile models, 129–32, 135,

141–44, 147–49
smooth information flows, 24
spread levels, 49, 50
Standard and Poor’s 500, 49, 127, 130–

32, 134–39, 146–47, 150, 153–56,
164, 166, 169, 182, 258–60, 273,
277, 279

state-contingent prices, 125–26
state dependence, 8, 21–30
statistical measures, 55, 65, 66, 93–

94n.10
stochastic growth theory, 26
stochastic information flows, 8, 20
stochastic processes, 128, 136–41, 145
stochastic volatility, 144, 148, 149, 293
stock market

cross-sectional determinants of
expected returns, 161–96

October, 1987, crash, 27–28, 93n.4,
127, 140, 293

share prices, 140, 165
supply and demand of immediacy,

256–82
See also Standard and Poor’s 500

stock volatility, 289
stop-loss policy, 52–53
strategic investments, 40, 41
stress-loss cushions, 52, 53
stress-loss limits, 51, 52
stress tests, 55, 57, 61, 63–65
strike price, 128, 132, 137, 141, 208–9
stripped mortgage-backed securities,

227
subjective probability, 125–27, 130
supply and demand, 5, 22, 256–82
swap spreads, 49, 50, 51
swaptions, 197, 198, 209

tail exposures, 51
tangency portfolio. See mean-

variance-efficient portfolio



306 Index

taxation
arbitrage, 42–43, 47n.26
and dividends, 42, 165, 166
and international asset pricing, 12–

13, 14
and pensions, 42–43, 47n.26

Taxes and Business Strategy (Scholes
and Wolfson), 296

Tenney model, 197, 210, 210n.1
term structure, 197–209, 211nn.6–7,

294
tracking error, 66, 69–70, 94n.12
Trade Risk Profile, 56, 70, 71, 75, 76,

79–82, 90, 92
trader’s option, 117
trading volume, 164, 165
transaction costs, 52, 79
transition probabilities, 201
t-statistic, 164, 172, 174, 175, 177–79,

181–83, 185n.4
turnover. See trading volume
two-factor, Markovian, lognormal

model, 197–99, 202–9

upside potential, 58

valuation
arbitrage-based reasoning, 287
Black on, 3–31
within finance, 296
Markovian, lognormal model, 197–

209
prepayment of mortgage securities,

212–54
risk-neutral, 20, 293
of term-structure securities, 197–

209, 211nn.6–7, 294
value additivity, 34
value-at-risk (VAR), 50–53, 55, 57–59,

65, 66, 68, 74, 79, 93nn.1–2
value-relevant states, 24
VAR. See value-at-risk
viable agents, 104–6, 110

volatility
and asset price, 141, 143, 144–45
in Black-Scholes formula, 131, 138–

39, 289
definition of, 57
expectations regarding, 27
and general equilibrium model, 9
global, 137–38
implied, 140, 143, 147, 148, 150
and implied binomial tree, 128
implied Black, 198, 208–9
implied smile model, 129–32, 143
at Long-Term Capital Management,

48
as measure of risk, 56, 58, 65, 74, 78,

79
of portfolio, 55, 56, 66, 68–77,

94nn.14–15
of profits and losses, 51
on Standard and Poor’s index, 49
stochastic, 144, 148, 149, 293
of stock, 289
and stop-loss technology, 53
term structure of, 198
wealth, 26

wealth, 26, 27, 140
weighted average cost of capital,

46n.3
whipsaw costs. See option costs
whipsaw losses, 233
Wiener process, 200
winner’s curse, 269
Wolfson, Mark, 296

yield curve shift, 198, 210n.3
yield curve twist, 198

zero beta assets, 19, 20, 21
zero beta CAPM, 7–11, 12, 294
zero beta rate, 13
zero-coupon bonds, 198, 201–2
zero net supply, 13, 19, 24, 29, 30


	Contents
	1. Fischer Black on Valuation: The CAPM in General Equilibrium
	2. Fischer Black’s Contributions to Corporate Finance
	3. Crisis and Risk Management
	4. Hot Spots and Hedges
	5. Markets for Agents: Fund Management
	6. Recovering Probabilities and Risk Aversion from Options Prices and Realized Returns
	7. Cross-Sectional Determinants of Expected Returns
	8. On Cross-Sectional Determinants of Expected Returns
	9. Exploring a Two-Factor, Markovian, Lognormal Model of the Term Structure of Interest Rates
	10. Convexity and Empirical Option Costs of Mortgage Securities
	11. The Supply and Demand of Immediacy: Evidence from the NYSE
	12. Black, Merton, and Scholes—Their Central Contributions to Economics
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z




